
The NTF format for non-classical logics

Alexander Steen, University of Greifswald
TPTPTP 2024, Nancy, France

jww. G. Sutcliffe, T. Scholl, C. Benzmüller, D. Fuenmayor, M. Taprogge

Goal

TPTP is the standard in (classical) theorem proving

Our goal: ’gracefully’ extend to non-classical logics

▶ Minimal syntactic changes

▶ Uniform syntax for all non-classical logics

▶ Consistency throughout TPTP dialects

▶ User-friendly syntax
(easy reading and writing of problems)

▶ Developer-friendly syntax
(easy parsing, minimal no. of cases to consider)

This talk: Describe extensions to TPTP (focus on language)

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 2

Goal

TPTP is the standard in (classical) theorem proving

Our goal: ’gracefully’ extend to non-classical logics

▶ Minimal syntactic changes

▶ Uniform syntax for all non-classical logics

▶ Consistency throughout TPTP dialects

▶ User-friendly syntax
(easy reading and writing of problems)

▶ Developer-friendly syntax
(easy parsing, minimal no. of cases to consider)

This talk: Describe extensions to TPTP (focus on language)

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 2

Goal

TPTP is the standard in (classical) theorem proving

Our goal: ’gracefully’ extend to non-classical logics

▶ Minimal syntactic changes

▶ Uniform syntax for all non-classical logics

▶ Consistency throughout TPTP dialects

▶ User-friendly syntax
(easy reading and writing of problems)

▶ Developer-friendly syntax
(easy parsing, minimal no. of cases to consider)

This talk: Describe extensions to TPTP (focus on language)

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 2

Classical TPTP

Typed first-order logic (TXF): Recap on TPTP syntax

tff(dog_decl,type, dog: $tType).
tff(human_decl,type, human: $tType).
tff(owner_of_decl,type, owner_of: dog > human).
tff(bit_decl,type, bit: (dog * human * $int) > $o).
tff(hates_decl,type, hates: (human * human) > $o).

tff(hate_the_multi_biter_dog,axiom,
! [D: dog,H: human,N: $int] :
((H != owner_of(D) & bit(D,H,N) & $greater(N,1))
=> hates(H,owner_of(D)))).

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 3

Classical TPTP

Higher-order logic (THF): Recap on TPTP syntax

thf(dog_decl,type, dog: $tType).
thf(human_decl,type, human: $tType).
thf(owner_of_decl,type, owner_of: dog > human).
thf(owns_decl,type, owns: human > dog > $o).

thf(owns_defn,definition,
(owns = (^ [H: human,D: dog] : (H = (owner_of @ D))))).

thf(hate_the_multi_biter_dog,axiom,
! [Huddle: dog > $o]: ?[Group: human > $o]:
![D: dog]: ? [H: human]:
((Huddle @ D) & (Group @ H) & (owns @ H @ D))).

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 4

NTF: Non-Classical TPTP

Extend languages with new operator:
▶ New kind of connective:

{ connective_name }

▶ connective_name is either TPTP-defined: e.g. { $necessary }, { $possible }, { $knows }, ...
▶ or connective_name is system-defined: e.g. { $$future }, { $$obligation }, { $$permission }, ...

Resulting language: NTF (non-classical typed form)
▶ Non-classical typed extended first-order form (NXF)
▶ first-order-like application style:

{ connective_name } @ (a,b)

▶ Non-classical typed higher-order form (NHF)
▶ canonical higher-order application style (curried):

{ connective_name } @ a @ b

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 5

NTF: Non-Classical TPTP

Extend languages with new operator:
▶ New kind of connective:

{ connective_name }

▶ connective_name is either TPTP-defined: e.g. { $necessary }, { $possible }, { $knows }, ...
▶ or connective_name is system-defined: e.g. { $$future }, { $$obligation }, { $$permission }, ...

Resulting language: NTF (non-classical typed form)
▶ Non-classical typed extended first-order form (NXF)
▶ first-order-like application style:

{ connective_name } @ (a,b)

▶ Non-classical typed higher-order form (NHF)
▶ canonical higher-order application style (curried):

{ connective_name } @ a @ b

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 5

NTF: Non-Classical TPTP

Extend languages with new operator:
▶ New kind of connective:

{ connective_name }

▶ connective_name is either TPTP-defined: e.g. { $necessary }, { $possible }, { $knows }, ...
▶ or connective_name is system-defined: e.g. { $$future }, { $$obligation }, { $$permission }, ...

Resulting language: NTF (non-classical typed form)
▶ Non-classical typed extended first-order form (NXF)
▶ first-order-like application style:

{ connective_name } @ (a,b)

▶ Non-classical typed higher-order form (NHF)
▶ canonical higher-order application style (curried):

{ connective_name } @ a @ b

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 5

Non-Classical TPTP

Example in NXF:

tff(possible_dog_bit_owner,axiom,
{$dia} @ (? [D: dog] : bit(D,owner_of(D),1))).

tff(jon_says_necessary_truth,axiom,
! [S: $o] : (says(jon,S) => {$box} @ (S))).

Example in NHF:

thf(possible_jon_owns_biter,axiom,
! [D: dog] :
((bit @ D @ jon @ 1)
=> ({$dia} @ (owns @ jon @ D)))).

thf(jon_says_he_must_feed_odie,axiom,
says @ jon @ ({$box} @ (feeds @ jon @ odie))).

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 6

Non-Classical TPTP

Example in NXF:

tff(possible_dog_bit_owner,axiom,
{$dia} @ (? [D: dog] : bit(D,owner_of(D),1))).

tff(jon_says_necessary_truth,axiom,
! [S: $o] : (says(jon,S) => {$box} @ (S))).

Example in NHF:

thf(possible_jon_owns_biter,axiom,
! [D: dog] :
((bit @ D @ jon @ 1)
=> ({$dia} @ (owns @ jon @ D)))).

thf(jon_says_he_must_feed_odie,axiom,
says @ jon @ ({$box} @ (feeds @ jon @ odie))).

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 6

Parameterized connectives

Optional parameters: Every NCL connective may be parameterized
▶ For logics with families of operators, e.g. ...
▶ multi-modal logics: □i
▶ term-modal logics: [t]φ

▶ propositional dynamic logic: [p ∪ q]φ
▶ epistemic logic: KAφ, C{A,B,C}ϕ, ...

Representation: key-value arguments

{ connective_name(param1 := value1, param2 := value2, ...) }

▶ ... where the params are functors,
▶ and the values are arbitrary terms

Allow hashed (#ed) index value as first argument:

{ connective_name(#index, param1 := value1, param2 := value2, ...) }

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 7

Parameterized connectives

Optional parameters: Every NCL connective may be parameterized
▶ For logics with families of operators, e.g. ...
▶ multi-modal logics: □i
▶ term-modal logics: [t]φ

▶ propositional dynamic logic: [p ∪ q]φ
▶ epistemic logic: KAφ, C{A,B,C}ϕ, ...

Representation: key-value arguments

{ connective_name(param1 := value1, param2 := value2, ...) }

▶ ... where the params are functors,
▶ and the values are arbitrary terms

Allow hashed (#ed) index value as first argument:

{ connective_name(#index, param1 := value1, param2 := value2, ...) }

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 7

Parameterized connectives

Optional parameters: Every NCL connective may be parameterized
▶ For logics with families of operators, e.g. ...
▶ multi-modal logics: □i
▶ term-modal logics: [t]φ

▶ propositional dynamic logic: [p ∪ q]φ
▶ epistemic logic: KAφ, C{A,B,C}ϕ, ...

Representation: key-value arguments

{ connective_name(param1 := value1, param2 := value2, ...) }

▶ ... where the params are functors,
▶ and the values are arbitrary terms

Allow hashed (#ed) index value as first argument:

{ connective_name(#index, param1 := value1, param2 := value2, ...) }

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 7

Parameterized exmaples

tff(alice_knows_its_possible_odie_bit_jon,axiom,
{$knows(#alice)} @ ({$dia} @ (bit(odie,jon,1))).

tff(jon_says_common_knowledge,axiom,
! [S: $o] :
(says(jon,S) => {$common($agents:=[alice,bob,claire])} @ (S))).

thf(alice_knows_jon_owns_a_dog,axiom,
{$knows(#alice)} @
? [D: dog] : (owns @ jon @ D)).

thf(alice_and_bob_know_jon_might_lie,axiom,
! [S: $o] :
((says @ jon @ S)
=> {$common($agents:=[alice,bob])} @ ({$dia} @ ~ S))).

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 8

Parameterized exmaples

tff(alice_knows_its_possible_odie_bit_jon,axiom,
{$knows(#alice)} @ ({$dia} @ (bit(odie,jon,1))).

tff(jon_says_common_knowledge,axiom,
! [S: $o] :
(says(jon,S) => {$common($agents:=[alice,bob,claire])} @ (S))).

thf(alice_knows_jon_owns_a_dog,axiom,
{$knows(#alice)} @
? [D: dog] : (owns @ jon @ D)).

thf(alice_and_bob_know_jon_might_lie,axiom,
! [S: $o] :
((says @ jon @ S)
=> {$common($agents:=[alice,bob])} @ ({$dia} @ ~ S))).

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 8

Parameterized exmaples

tff(alice_knows_its_possible_odie_bit_jon,axiom,
{$knows(#alice)} @ ({$dia} @ (bit(odie,jon,1))).

tff(jon_says_common_knowledge,axiom,
! [S: $o] :
(says(jon,S) => {$common($agents:=[alice,bob,claire])} @ (S))).

thf(alice_knows_jon_owns_a_dog,axiom,
{$knows(#alice)} @
? [D: dog] : (owns @ jon @ D)).

thf(alice_and_bob_know_jon_might_lie,axiom,
! [S: $o] :
((says @ jon @ S)
=> {$common($agents:=[alice,bob])} @ ({$dia} @ ~ S))).

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 8

Parameterized exmaples

tff(alice_knows_its_possible_odie_bit_jon,axiom,
{$knows(#alice)} @ ({$dia} @ (bit(odie,jon,1))).

tff(jon_says_common_knowledge,axiom,
! [S: $o] :
(says(jon,S) => {$common($agents:=[alice,bob,claire])} @ (S))).

thf(alice_knows_jon_owns_a_dog,axiom,
{$knows(#alice)} @
? [D: dog] : (owns @ jon @ D)).

thf(alice_and_bob_know_jon_might_lie,axiom,
! [S: $o] :
((says @ jon @ S)
=> {$common($agents:=[alice,bob])} @ ({$dia} @ ~ S))).

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 8

Note on representation in TPTP

A note on the format

▶ NTF is a result of different deliberate design decisions:
▶ Minimal parser extensions if TXF (or THF) is already supported

▶ Prolog parsing compability (long-standing principle)

▶ Syntax should be general enough to cover many (complicated) NCLs

▶ Distinction of object-language and meta-language components

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 9

Note on representation in TPTP

A note on the format

▶ NTF is a result of different deliberate design decisions:
▶ Minimal parser extensions if TXF (or THF) is already supported

▶ Prolog parsing compability (long-standing principle)

▶ Syntax should be general enough to cover many (complicated) NCLs

▶ Distinction of object-language and meta-language components

Advantages:
(1) n-ary operators remain n-ary: {$box(#i)} @ (phi) for □iφ

(2) operators always use the same number of arguments (also in case NCL has e.g.
indexed and unindexed box)

(3) no typing issues (meta-level objects – like index i – may not be part of the
term/formula language)

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 9

Note on representation in TPTP

A note on the format

▶ NTF is a result of different deliberate design decisions:
▶ Minimal parser extensions if TXF (or THF) is already supported

▶ Prolog parsing compability (long-standing principle)

▶ Syntax should be general enough to cover many (complicated) NCLs

▶ Distinction of object-language and meta-language components

▶ NTF clearly is (a bit) more complex than single-purpose languages
▶ If we only need to support (indexed) modal operators, things are syntactically simpler

▶ If we only need to support unary (binary) NCL operators, things are syntactically
simpler

▶ ...

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 9

Object-level syntax is not enough

From which logic does the formula p∨ q come from?

Classical logic? Wrong! I meant intuitionistic logic.

From which logic does the formula □ϕ→ ϕ come from?

Modal logic K? Wrong! I meant S5 ...

▶ Formula syntax alone not enough to let ATP systems know which logic we’re in
▶ Introduce: Logic specification

tff(formula_name, logic, logic_name == [properties]).

where ...
▶ logic_name is the name of the logic family,
▶ properties is a comma-separated sequence of key-value pairs

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 10

Object-level syntax is not enough

From which logic does the formula p∨ q come from?

Classical logic? Wrong! I meant intuitionistic logic.

From which logic does the formula □ϕ→ ϕ come from?

Modal logic K? Wrong! I meant S5 ...

▶ Formula syntax alone not enough to let ATP systems know which logic we’re in
▶ Introduce: Logic specification

tff(formula_name, logic, logic_name == [properties]).

where ...
▶ logic_name is the name of the logic family,
▶ properties is a comma-separated sequence of key-value pairs

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 10

Object-level syntax is not enough

From which logic does the formula p∨ q come from?

Classical logic? Wrong! I meant intuitionistic logic.

From which logic does the formula □ϕ→ ϕ come from?

Modal logic K? Wrong! I meant S5 ...

▶ Formula syntax alone not enough to let ATP systems know which logic we’re in
▶ Introduce: Logic specification

tff(formula_name, logic, logic_name == [properties]).

where ...
▶ logic_name is the name of the logic family,
▶ properties is a comma-separated sequence of key-value pairs

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 10

Object-level syntax is not enough

From which logic does the formula p∨ q come from?

Classical logic? Wrong! I meant intuitionistic logic.

From which logic does the formula □ϕ→ ϕ come from?

Modal logic K? Wrong! I meant S5 ...

▶ Formula syntax alone not enough to let ATP systems know which logic we’re in
▶ Introduce: Logic specification

tff(formula_name, logic, logic_name == [properties]).

where ...
▶ logic_name is the name of the logic family,
▶ properties is a comma-separated sequence of key-value pairs

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 10

Object-level syntax is not enough

From which logic does the formula p∨ q come from?

Classical logic? Wrong! I meant intuitionistic logic.

From which logic does the formula □ϕ→ ϕ come from?

Modal logic K? Wrong! I meant S5 ...

▶ Formula syntax alone not enough to let ATP systems know which logic we’re in
▶ Introduce: Logic specification

tff(formula_name, logic, logic_name == [properties]).

where ...
▶ logic_name is the name of the logic family,
▶ properties is a comma-separated sequence of key-value pairs

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 10

Object-level syntax is not enough

From which logic does the formula p∨ q come from?

Classical logic? Wrong! I meant intuitionistic logic.

From which logic does the formula □ϕ→ ϕ come from?

Modal logic K? Wrong! I meant S5 ...

▶ Formula syntax alone not enough to let ATP systems know which logic we’re in
▶ Introduce: Logic specification

tff(formula_name, logic, logic_name == [properties]).

where ...
▶ logic_name is the name of the logic family,
▶ properties is a comma-separated sequence of key-value pairs

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 10

Object-level syntax is not enough

From which logic does the formula p∨ q come from?

Classical logic? Wrong! I meant intuitionistic logic.

From which logic does the formula □ϕ→ ϕ come from?

Modal logic K? Wrong! I meant S5 ...

▶ Formula syntax alone not enough to let ATP systems know which logic we’re in
▶ Introduce: Logic specification

tff(formula_name, logic, logic_name == [properties]).

where ...
▶ logic_name is the name of the logic family,
▶ properties is a comma-separated sequence of key-value pairs

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 10

Object-level syntax is not enough

From which logic does the formula p∨ q come from?

Classical logic? Wrong! I meant intuitionistic logic.

From which logic does the formula □ϕ→ ϕ come from?

Modal logic K? Wrong! I meant S5 ...

▶ Formula syntax alone not enough to let ATP systems know which logic we’re in
▶ Introduce: Logic specification

tff(formula_name, logic, logic_name == [properties]).

where ...
▶ logic_name is the name of the logic family,
▶ properties is a comma-separated sequence of key-value pairs

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 10

Modal logics

As a start: Focused on (quantified) modal logics

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 11

Examples

Example formulas of modal logics
Mono-modal:
▶ □raining→ ◊raining

▶ ∀P (◊rich(P)∨ ◊¬rich(P))

▶ ¬□(∃X rich(X))

Multi-modal:
▶ □araining→ ◊braining

▶ ∀P (◊brich(P)∨ ◊b¬rich(P))

▶ ¬□a(∃X rich(X))

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 12

Examples

Example formulas of modal logics
Mono-modal:
▶ □raining→ ◊raining

▶ ∀P (◊rich(P)∨ ◊¬rich(P))

▶ ¬□(∃X rich(X))

Multi-modal:
▶ □araining→ ◊braining

▶ ∀P (◊brich(P)∨ ◊b¬rich(P))

▶ ¬□a(∃X rich(X))

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 12

Quantified Modal Logics in TPTP

Representation in TPTP

Connectives (mono-modal)
▶ { $box }
▶ { $dia }

Connectives (multi-modal)
▶ { $box(#i)}
▶ { $dia(#i)}

Examples from above:

tff(1, axiom, { $box } @ (raining) => { $dia } @ (raining)).
tff(2, axiom, ![P]: ({ $dia } @ (rich(P)) | ~({ $dia } @ (rich(P))))).
tff(3, axiom, ~ { $box } @ (? [X]: rich(X))).

We also offer user-friendly names: { $necessary }, { $possible }, { $knows }, ...

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 13

Quantified Modal Logics in TPTP

Representation in TPTP

Connectives (mono-modal)
▶ { $box }
▶ { $dia }

Connectives (multi-modal)
▶ { $box(#i)}
▶ { $dia(#i)}

Examples from above:

tff(1, axiom, { $box } @ (raining) => { $dia } @ (raining)).
tff(2, axiom, ![P]: ({ $dia } @ (rich(P)) | ~({ $dia } @ (rich(P))))).
tff(3, axiom, ~ { $box } @ (? [X]: rich(X))).

We also offer user-friendly names: { $necessary }, { $possible }, { $knows }, ...

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 13

Quantified Modal Logics in TPTP

Representation in TPTP

Connectives (mono-modal)
▶ { $box }
▶ { $dia }

Connectives (multi-modal)
▶ { $box(#i)}
▶ { $dia(#i)}

Examples from above:

tff(1, axiom, { $box } @ (raining) => { $dia } @ (raining)).
tff(2, axiom, ![P]: ({ $dia } @ (rich(P)) | ~({ $dia } @ (rich(P))))).
tff(3, axiom, ~ { $box } @ (? [X]: rich(X))).

We also offer user-friendly names: { $necessary }, { $possible }, { $knows }, ...

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 13

Quantified Modal Logics in TPTP

Representation in TPTP

Connectives (mono-modal)
▶ { $box }
▶ { $dia }

Connectives (multi-modal)
▶ { $box(#i)}
▶ { $dia(#i)}

Examples from above:

tff(1, axiom, { $necessary } @ (raining) => { $possible } @ (raining)).
tff(2, axiom, ![P]: ({ $possible } @ (rich(P)) | ~({ $possible } @ (rich(P))))).
tff(3, axiom, ~ { $necessary } @ (? [X]: rich(X))).

We also offer user-friendly names: { $necessary }, { $possible }, { $knows }, ...

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 14

Modal logic flavours

Modal logic: A family of many different logics
▶ Many parameters exist to create more specific modal logics
▶ Popular example: Properties of the box operator

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 15

Logic dimensions of modal logic

1. Axiomatization of □i

2. Quantification domains

3. Rigid/flexible designation of symbols

4. Term locality

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 16

Logic dimensions of modal logic

1. Axiomatization of □i
▶ What properties does the box operators have?
▶ Depending on the application domain

Some popular axiom schemes:
Name Axiom scheme Condition on Ri Corr. formula

K □i(s ⊃ t) ⊃ (□is ⊃ □it) — —
B s ⊃ □i◊is symmetric wRiv ⊃ vRiw
D □is ⊃ ◊is serial ∃v.wRiv

T/M □is ⊃ s reflexive wRiw
4 □is ⊃ □i□is transitive (wRiv∧ vRiu) ⊃ wRiu
5 ◊is ⊃ □i◊is euclidean (wRiv∧wRiu) ⊃ vRiu
...

2. Quantification domains

3. Rigid/flexible designation of symbols

4. Term locality

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 16

Logic dimensions of modal logic

1. Axiomatization of □i
▶ What properties does the box operators have?

2. Quantification domains
▶ What is the meaning of ∀?
▶ Several popular choices exist

(1) Varying domains: No restrictions
(2) Constant domains: Dw = Dv for all worlds w,v ∈W
(3) Cumulative domains: Dw ⊆ Dv whenever (w,v) ∈ Ri

(4) Decreasing domains: Dw ⊇ Dv whenever (w,v) ∈ Ri

3. Rigid/flexible designation of symbols

4. Term locality

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 16

Logic dimensions of modal logic

1. Axiomatization of □i
▶ What properties does the box operators have?

2. Quantification domains
▶ What is the meaning of ∀?

3. Rigid/flexible designation of symbols
▶ Do all constants c ∈ Σ denote the same object at every world?
▶ Several popular choices exist

(1) Flexible constants: Iw may vary for each world w

(2) Rigid constants: Iw(c) = Iv(c)
for all worlds w,v ∈W and all c ∈ Σ

4. Term locality

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 16

Logic dimensions of modal logic

1. Axiomatization of □i
▶ What properties does the box operators have?

2. Quantification domains
▶ What is the meaning of ∀?

3. Rigid/flexible designation of symbols
▶ Do all constants c ∈ Σ denote the same object at every world?

4. Term locality
▶ What is the domain for the interpretation of terms t?
▶ At least two common possibilites:

(1) Local terms: Interpretation of t at world w is an element of Dw

(2) Global terms: Interpretation of t at world w is some element from
⋃

w∈WDw

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 16

Logic dimensions of modal logic

1. Axiomatization of □i
▶ What properties does the box operators have?

2. Quantification domains
▶ What is the meaning of ∀?

3. Rigid/flexible designation of symbols
▶ Do all constants c ∈ Σ denote the same object at every world?

4. Term locality
▶ What is the domain for the interpretation of terms t?

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 16

Logic dimensions of modal logic

1. Axiomatization of □i
▶ What properties does the box operators have?

2. Quantification domains
▶ What is the meaning of ∀?

3. Rigid/flexible designation of symbols
▶ Do all constants c ∈ Σ denote the same object at every world?

4. Term locality
▶ What is the domain for the interpretation of terms t?

−→ many different logics

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 16

Representation in TPTP

Use logic specification to encode specific logic

tff(formula_name, logic, $modal == [properties]).

▶ $modalities for the properties of □i
▶ $domains for the properties of Dw

▶ $designation for the properties of Iw
▶ $terms for the locality properties

Allowed values:

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 17

Representation in TPTP

Use logic specification to encode specific logic

tff(formula_name, logic, $modal == [properties]).

▶ $modalities for the properties of □i
▶ $domains for the properties of Dw

▶ $designation for the properties of Iw
▶ $terms for the locality properties

Allowed values:

$modalities: $modal_system_X or [$modal_axiom_Y1,...,$modal_axiom_Yn] for ...
X ∈ {K,KB,K4,K5,K45,KB5, . . . ,S4,S5},
Yi ∈ {K,T,B,D,4,5,C, ...}.

$domains: $constant, $varying, $cumulative, $decreasing

$designation: $rigid, $flexible

$terms: $global, $local

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 17

Example

Simple example:

tff(simple_spec,logic,
$modal == [

$designation == $rigid,
$domains == [$constant, some_user_type == $varying],
$terms == $global,
$modalities == $modal_system_S5]).

More complex example:

tff(complex_spec,logic,
$modal == [
$designation == [$flexible, sun == $rigid],
$domains == [$constant,

planet_type == $varying],
$terms == $local,
$modalities == [$modal_system_K,

{$box(#1)} == $modal_system_KB,
{$box(#2)} == [$modal_axiom_K,

$modal_axiom_4]]).

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 18

Example

Simple example:

tff(simple_spec,logic,
$modal == [

$designation == $rigid,
$domains == [$constant, some_user_type == $varying],
$terms == $global,
$modalities == $modal_system_S5]).

More complex example:

tff(complex_spec,logic,
$modal == [
$designation == [$flexible, sun == $rigid],
$domains == [$constant,

planet_type == $varying],
$terms == $local,
$modalities == [$modal_system_K,

{$box(#1)} == $modal_system_KB,
{$box(#2)} == [$modal_axiom_K,

$modal_axiom_4]]).

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 18

State of TPTP and tool support

TPTP integration
▶ TPTP v9.0.0 contains 147 NTF (monomodal logic) problems: 132 NXF + 15 NHF

▶ TPTP4X utility for NTF

▶ proof verification via GDV

▶ AGMV model verifier

▶ IDV derivation viewer (for NTF)

▶ IIV interpretation viewer for Kripke models

▶ scala-tptp-parser package available

Automation of modal logics
Existing translations to bridge to ...
▶ KSP

▶ nanoCoP-M

▶ MleanCoP

▶ any TFF/THF reasoner via Logic Embedding Tool

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 19

State of TPTP and tool support

TPTP integration
▶ TPTP v9.0.0 contains 147 NTF (monomodal logic) problems: 132 NXF + 15 NHF

▶ TPTP4X utility for NTF

▶ proof verification via GDV

▶ AGMV model verifier

▶ IDV derivation viewer (for NTF)

▶ IIV interpretation viewer for Kripke models

▶ scala-tptp-parser package available

Automation of modal logics
Existing translations to bridge to ...
▶ KSP

▶ nanoCoP-M

▶ MleanCoP

▶ any TFF/THF reasoner via Logic Embedding Tool

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 19

Possible (exotic?) future

Dynamic epistemic logics (PAL)
▶ Does [φ!]φ hold?

tff(c1, conjecture, {$box($announce := phi)} @ (phi)).

▶ Does [φ!] (Ca,b,c φ) hold?

tff(c2, conjecture, {$box($announce := phi)} @ ({common($agents := [a,b,c])} @ (phi))).

Term modal logics
▶ Does □f (x)φ hold?

tff(c4, conjecture, {$box($term := f(X))} @ (phi)).

Of course, concrete syntax needs to be discussed.

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 20

Possible (exotic?) future

Dynamic epistemic logics (PAL)
▶ Does [φ!]φ hold?

tff(c1, conjecture, {$box($announce := phi)} @ (phi)).

▶ Does [φ!] (Ca,b,c φ) hold?

tff(c2, conjecture, {$box($announce := phi)} @ ({common($agents := [a,b,c])} @ (phi))).

Term modal logics
▶ Does □f (x)φ hold?

tff(c4, conjecture, {$box($term := f(X))} @ (phi)).

Of course, concrete syntax needs to be discussed.

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 20

Possible (exotic?) future

Dynamic epistemic logics (PAL)
▶ Does [φ!]φ hold?

tff(c1, conjecture, {$box($announce := phi)} @ (phi)).

▶ Does [φ!] (Ca,b,c φ) hold?

tff(c2, conjecture, {$box($announce := phi)} @ ({common($agents := [a,b,c])} @ (phi))).

Term modal logics
▶ Does □f (x)φ hold?

tff(c4, conjecture, {$box($term := f(X))} @ (phi)).

Of course, concrete syntax needs to be discussed.

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 20

Possible (exotic?) future

Dynamic epistemic logics (PAL)
▶ Does [φ!]φ hold?

tff(c1, conjecture, {$box($announce := phi)} @ (phi)).

▶ Does [φ!] (Ca,b,c φ) hold?

tff(c2, conjecture, {$box($announce := phi)} @ ({common($agents := [a,b,c])} @ (phi))).

Term modal logics
▶ Does □f (x)φ hold?

tff(c4, conjecture, {$box($term := f(X))} @ (phi)).

Of course, concrete syntax needs to be discussed.

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 20

Summary

Summary
▶ NTF: Generic NCL syntax extension of the TPTP
▶ Current focus: Modal logic

▶ NTF problems in TPTP v9.0.0
▶ Solutions as usual in the TSTP
▶ Many TPTP tools and infrastructure extended to NTF
▶ More logics to come (with your help?)

Not discussed here:
▶ There exist means of automation for the presented logics
▶ Based on shallow semantical embedding to HOL

▶ Recent experients for quantified modal logics (QMLTP):
Competitive performance wrt. native modal logic provers

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 21

