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Goal

TPTP is the standard in (classical) theorem proving

Our goal: ’gracefully’ extend to non-classical logics

▶ Minimal syntactic changes

▶ Uniform syntax for all non-classical logics

▶ Consistency throughout TPTP dialects

▶ User-friendly syntax
(easy reading and writing of problems)

▶ Developer-friendly syntax
(easy parsing, minimal no. of cases to consider)

This talk: Describe extensions to TPTP (focus on language)

,
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Classical TPTP

Typed first-order logic (TXF): Recap on TPTP syntax

tff(dog_decl,type, dog: $tType ).
tff(human_decl,type, human: $tType ).
tff(owner_of_decl,type, owner_of: dog > human ).
tff(bit_decl,type, bit: (dog * human * $int) > $o ).
tff(hates_decl,type, hates: (human * human) > $o ).

tff(hate_the_multi_biter_dog,axiom,
! [D: dog,H: human,N: $int] :
( ( H != owner_of(D) & bit(D,H,N) & $greater(N,1) )
=> hates(H,owner_of(D)) ) ).

,
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Classical TPTP

Higher-order logic (THF): Recap on TPTP syntax

thf(dog_decl,type, dog: $tType ).
thf(human_decl,type, human: $tType ).
thf(owner_of_decl,type, owner_of: dog > human ).
thf(owns_decl,type, owns: human > dog > $o ).

thf(owns_defn,definition,
( owns = ( ^ [H: human,D: dog] : ( H = ( owner_of @ D ) ) ) ) ).

thf(hate_the_multi_biter_dog,axiom,
! [Huddle: dog > $o]: ?[Group: human > $o]:
![D: dog]: ? [H: human]:
( (Huddle @ D) & (Group @ H) & (owns @ H @ D) ) ).

,
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NTF: Non-Classical TPTP

Extend languages with new operator:
▶ New kind of connective:

{ connective_name }

▶ connective_name is either TPTP-defined: e.g. { $necessary }, { $possible }, { $knows }, ...
▶ or connective_name is system-defined: e.g. { $$future }, { $$obligation }, { $$permission }, ...

Resulting language: NTF (non-classical typed form)
▶ Non-classical typed extended first-order form (NXF)
▶ first-order-like application style:

{ connective_name } @ (a,b)

▶ Non-classical typed higher-order form (NHF)
▶ canonical higher-order application style (curried):

{ connective_name } @ a @ b

,
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Non-Classical TPTP

Example in NXF:

tff(possible_dog_bit_owner,axiom,
{$dia} @ (? [D: dog] : bit(D,owner_of(D),1)) ).

tff(jon_says_necessary_truth,axiom,
! [S: $o] : ( says(jon,S) => {$box} @ (S) ) ).

Example in NHF:

thf(possible_jon_owns_biter,axiom,
! [D: dog] :
( ( bit @ D @ jon @ 1 )
=> ( {$dia} @ ( owns @ jon @ D ) ) ) ).

thf(jon_says_he_must_feed_odie,axiom,
says @ jon @ ({$box} @ (feeds @ jon @ odie)) ).
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Parameterized connectives

Optional parameters: Every NCL connective may be parameterized
▶ For logics with families of operators, e.g. ...
▶ multi-modal logics: □i
▶ term-modal logics: [t]φ

▶ propositional dynamic logic: [p ∪ q]φ
▶ epistemic logic: KAφ, C{A,B,C}ϕ, ...

Representation: key-value arguments

{ connective_name(param1 := value1, param2 := value2, ...) }

▶ ... where the params are functors,
▶ and the values are arbitrary terms

Allow hashed (#ed) index value as first argument:

{ connective_name(#index, param1 := value1, param2 := value2, ...) }
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Parameterized exmaples

tff(alice_knows_its_possible_odie_bit_jon,axiom,
{$knows(#alice)} @ ({$dia} @ (bit(odie,jon,1)) ).

tff(jon_says_common_knowledge,axiom,
! [S: $o] :
( says(jon,S) => {$common($agents:=[alice,bob,claire])} @ (S) ) ).

thf(alice_knows_jon_owns_a_dog,axiom,
{$knows(#alice)} @
? [D: dog] : ( owns @ jon @ D ) ).

thf(alice_and_bob_know_jon_might_lie,axiom,
! [S: $o] :
( (says @ jon @ S )
=> {$common($agents:=[alice,bob])} @ ({$dia} @ ~ S) ) ).
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Note on representation in TPTP

A note on the format

▶ NTF is a result of different deliberate design decisions:
▶ Minimal parser extensions if TXF (or THF) is already supported

▶ Prolog parsing compability (long-standing principle)

▶ Syntax should be general enough to cover many (complicated) NCLs

▶ Distinction of object-language and meta-language components

,
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A note on the format

▶ NTF is a result of different deliberate design decisions:
▶ Minimal parser extensions if TXF (or THF) is already supported

▶ Prolog parsing compability (long-standing principle)

▶ Syntax should be general enough to cover many (complicated) NCLs

▶ Distinction of object-language and meta-language components

Advantages:
(1) n-ary operators remain n-ary: {$box(#i)} @ (phi) for □iφ

(2) operators always use the same number of arguments (also in case NCL has e.g.
indexed and unindexed box)

(3) no typing issues (meta-level objects – like index i – may not be part of the
term/formula language)

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 9



Note on representation in TPTP

A note on the format

▶ NTF is a result of different deliberate design decisions:
▶ Minimal parser extensions if TXF (or THF) is already supported

▶ Prolog parsing compability (long-standing principle)

▶ Syntax should be general enough to cover many (complicated) NCLs

▶ Distinction of object-language and meta-language components

▶ NTF clearly is (a bit) more complex than single-purpose languages
▶ If we only need to support (indexed) modal operators, things are syntactically simpler

▶ If we only need to support unary (binary) NCL operators, things are syntactically
simpler

▶ ...
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Object-level syntax is not enough

From which logic does the formula p∨ q come from?

Classical logic? Wrong! I meant intuitionistic logic.

From which logic does the formula □ϕ→ ϕ come from?

Modal logic K? Wrong! I meant S5 ...

▶ Formula syntax alone not enough to let ATP systems know which logic we’re in
▶ Introduce: Logic specification

tff(formula_name, logic, logic_name == [ properties ] ).

where ...
▶ logic_name is the name of the logic family,
▶ properties is a comma-separated sequence of key-value pairs

,
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Modal logics

As a start: Focused on (quantified) modal logics
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Examples

Example formulas of modal logics
Mono-modal:
▶ □raining→ ◊raining

▶ ∀P (◊rich(P)∨ ◊¬rich(P))

▶ ¬□(∃X rich(X))

Multi-modal:
▶ □araining→ ◊braining

▶ ∀P (◊brich(P)∨ ◊b¬rich(P))

▶ ¬□a(∃X rich(X))
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Quantified Modal Logics in TPTP

Representation in TPTP

Connectives (mono-modal)
▶ { $box }
▶ { $dia }

Connectives (multi-modal)
▶ { $box(#i)}
▶ { $dia(#i)}

Examples from above:

tff(1, axiom, { $box } @ (raining) => { $dia } @ (raining) ).
tff(2, axiom, ![P]: ( { $dia } @ (rich(P)) | ~({ $dia } @ (rich(P)))) ).
tff(3, axiom, ~ { $box } @ ( ? [X]: rich(X) ) ).

We also offer user-friendly names: { $necessary }, { $possible }, { $knows }, ...
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Connectives (mono-modal)
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Connectives (multi-modal)
▶ { $box(#i)}
▶ { $dia(#i)}

Examples from above:

tff(1, axiom, { $necessary } @ (raining) => { $possible } @ (raining) ).
tff(2, axiom, ![P]: ( { $possible } @ (rich(P)) | ~({ $possible } @ (rich(P)))) ).
tff(3, axiom, ~ { $necessary } @ ( ? [X]: rich(X) ) ).

We also offer user-friendly names: { $necessary }, { $possible }, { $knows }, ...
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Modal logic flavours

Modal logic: A family of many different logics
▶ Many parameters exist to create more specific modal logics
▶ Popular example: Properties of the box operator
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Logic dimensions of modal logic

1. Axiomatization of □i

2. Quantification domains

3. Rigid/flexible designation of symbols

4. Term locality

,
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Logic dimensions of modal logic

1. Axiomatization of □i
▶ What properties does the box operators have?
▶ Depending on the application domain

Some popular axiom schemes:
Name Axiom scheme Condition on Ri Corr. formula

K □i(s ⊃ t) ⊃ (□is ⊃ □it) — —
B s ⊃ □i◊is symmetric wRiv ⊃ vRiw
D □is ⊃ ◊is serial ∃v.wRiv

T/M □is ⊃ s reflexive wRiw
4 □is ⊃ □i□is transitive (wRiv∧ vRiu) ⊃ wRiu
5 ◊is ⊃ □i◊is euclidean (wRiv∧wRiu) ⊃ vRiu
... ... ... ...

2. Quantification domains

3. Rigid/flexible designation of symbols

4. Term locality
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Logic dimensions of modal logic

1. Axiomatization of □i
▶ What properties does the box operators have?

2. Quantification domains
▶ What is the meaning of ∀?
▶ Several popular choices exist

(1) Varying domains: No restrictions
(2) Constant domains: Dw = Dv for all worlds w,v ∈W
(3) Cumulative domains: Dw ⊆ Dv whenever (w,v) ∈ Ri

(4) Decreasing domains: Dw ⊇ Dv whenever (w,v) ∈ Ri

3. Rigid/flexible designation of symbols

4. Term locality
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Logic dimensions of modal logic

1. Axiomatization of □i
▶ What properties does the box operators have?

2. Quantification domains
▶ What is the meaning of ∀?

3. Rigid/flexible designation of symbols
▶ Do all constants c ∈ Σ denote the same object at every world?
▶ Several popular choices exist

(1) Flexible constants: Iw may vary for each world w

(2) Rigid constants: Iw(c) = Iv(c)
for all worlds w,v ∈W and all c ∈ Σ

4. Term locality
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Logic dimensions of modal logic

1. Axiomatization of □i
▶ What properties does the box operators have?

2. Quantification domains
▶ What is the meaning of ∀?

3. Rigid/flexible designation of symbols
▶ Do all constants c ∈ Σ denote the same object at every world?

4. Term locality
▶ What is the domain for the interpretation of terms t?
▶ At least two common possibilites:

(1) Local terms: Interpretation of t at world w is an element of Dw

(2) Global terms: Interpretation of t at world w is some element from
⋃

w∈WDw
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Logic dimensions of modal logic

1. Axiomatization of □i
▶ What properties does the box operators have?

2. Quantification domains
▶ What is the meaning of ∀?

3. Rigid/flexible designation of symbols
▶ Do all constants c ∈ Σ denote the same object at every world?

4. Term locality
▶ What is the domain for the interpretation of terms t?

−→ many different logics

,
The NTF format for non-classical logics, TPTPTP 2024, Nancy, France 16



Representation in TPTP

Use logic specification to encode specific logic

tff(formula_name, logic, $modal == [ properties ] ).

▶ $modalities for the properties of □i
▶ $domains for the properties of Dw

▶ $designation for the properties of Iw
▶ $terms for the locality properties

Allowed values:

,
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Representation in TPTP

Use logic specification to encode specific logic

tff(formula_name, logic, $modal == [ properties ] ).

▶ $modalities for the properties of □i
▶ $domains for the properties of Dw

▶ $designation for the properties of Iw
▶ $terms for the locality properties

Allowed values:

$modalities: $modal_system_X or [$modal_axiom_Y1,...,$modal_axiom_Yn] for ...
X ∈ {K,KB,K4,K5,K45,KB5, . . . ,S4,S5},
Yi ∈ {K,T,B,D,4,5,C, ...}.

$domains: $constant, $varying, $cumulative, $decreasing

$designation: $rigid, $flexible

$terms: $global, $local
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Example

Simple example:

tff(simple_spec,logic,
$modal == [

$designation == $rigid,
$domains == [ $constant, some_user_type == $varying ],
$terms == $global,
$modalities == $modal_system_S5 ] ).

More complex example:

tff(complex_spec,logic,
$modal == [
$designation == [ $flexible, sun == $rigid ],
$domains == [ $constant,

planet_type == $varying],
$terms == $local,
$modalities == [ $modal_system_K,

{$box(#1)} == $modal_system_KB,
{$box(#2)} == [ $modal_axiom_K,

$modal_axiom_4 ] ] ).

,
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State of TPTP and tool support

TPTP integration
▶ TPTP v9.0.0 contains 147 NTF (monomodal logic) problems: 132 NXF + 15 NHF

▶ TPTP4X utility for NTF

▶ proof verification via GDV

▶ AGMV model verifier

▶ IDV derivation viewer (for NTF)

▶ IIV interpretation viewer for Kripke models

▶ scala-tptp-parser package available

Automation of modal logics
Existing translations to bridge to ...
▶ KSP

▶ nanoCoP-M

▶ MleanCoP

▶ any TFF/THF reasoner via Logic Embedding Tool

,
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Possible (exotic?) future

Dynamic epistemic logics (PAL)
▶ Does [φ!]φ hold?

tff(c1, conjecture, {$box($announce := phi)} @ (phi) ).

▶ Does [φ!] (Ca,b,c φ) hold?

tff(c2, conjecture, {$box($announce := phi)} @ ({common($agents := [a,b,c])} @ (phi)) ).

Term modal logics
▶ Does □f (x)φ hold?

tff(c4, conjecture, {$box($term := f(X))} @ (phi) ).

Of course, concrete syntax needs to be discussed.

,
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Summary

Summary
▶ NTF: Generic NCL syntax extension of the TPTP
▶ Current focus: Modal logic

▶ NTF problems in TPTP v9.0.0
▶ Solutions as usual in the TSTP
▶ Many TPTP tools and infrastructure extended to NTF
▶ More logics to come (with your help?)

Not discussed here:
▶ There exist means of automation for the presented logics
▶ Based on shallow semantical embedding to HOL

▶ Recent experients for quantified modal logics (QMLTP):
Competitive performance wrt. native modal logic provers
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