Processor Datapath Verification with Spass
Thomas Hillenbrand Carsten Thlemann

Max-Planck-Institut fiir Informatik, D-66123 Saarbriicken
{hillen,ihlemann}@mpi-sb.mpg.de

In the context of the VERISOFT project, we are currently verifying the datapath
of a simple processor the architecture of which is regularly taught in computer science
lectures at Saarbriicken [MP98]. The processor is a 32-bit RISC machine and similar in
design to the well-known DLX of [HP90], but uses neither caching nor pipelining at the
moment.

The specification is given via the semantics of a machine language that includes data
transfer between memory and registers, arithmetical and logical operations, branching
and jumping. Instructions are related to bit patterns on the specification level already.
The hardware implementation is presented as a circuit diagram with registers and mem-
ory as building blocks.

Actually one might think that processor correctness, being an inductive property,
were out of scope for a first-order theorem prover like SPAss [WBH'02]. In our setting,
however, this boils down to showing the following: Provided specification and imple-
mentation machine coincide in the contents of memory, registers and program counters,
they will still do so after one step of execution. We started with some pen-and-paper
proofwork to reassure ourselves that the proof obligations were really deductive, i.e.
first-order, and knew 13 pages later that in fact they were, except for some properties
of the type bitvector which is occuring frequently to model addresses, register contents
and the like.

To formalize these bitvectors adequately was the first major challenge, with the
need to capture inductive properties like associativity of append. Attempts with lists or
even words over 0 and 1 were not very convincing because SPASS enumerated, with any
bitvector pattern, commutation properties of append with other operations. Array-style
or function-style axiomatizations have only been considered theoretically, because the
idea of using n-place functions for vectors of length n led to a clause set which was
quickly saturated. The reason behind this is that commutation properties only need to
be established for bitvectors of fixed lengths; and in our application, there are indeed
only finitely many different lengths which are known in advance.

Another important point is how to deal with definitions that contain case distinc-
tions. For example, the second operand of arithmetical operations can be taken from
either the instruction word or some register, which translates into

) sxt(imm(c)) if comp.imm(c)

rop(c) := {C.GPR[RSQ(C)] otherwise



With a straightforward encoding, this single definition will be broken into two clauses
during clausification, which is approach (I). Alternatively (II), one can define (fragments
of) Boolean algebra on the term level up to an if-then-else-operator, such that the defi-
nition fits into a single clause. We are pursuing both approaches practically. Approach
(IT) more generally aims at axiomatizations that can finitely be saturated, which on the
long run can be understood as pre-processing important theories to achieve much more
efficiency. Some form of disproving might become possible as well this way.

As explained, the correctness theorem is broken down into three lemmata on preser-
vation of contents equivalence, namely for memory, registers and program counters. For
each of these lemmata, one has to prove that two particular expressions with case dis-
tinctions are equal, where the number of cases reaches up to six. Note that one has to
show not only that the case results are equal, but also that the case conditions imply
each other, which can become fairly non-trivial. In the pen-and-paper proof, these three
lemmata are supported by a corpus of 15 propositions. Our current state is that the
proof can be done automatically with this granularity in approach (I).

It would be nice if the propositions could be found automatically when proving the
lemmata; but it is not clear to us yet wether this is realistic. If so, the next step would
be to have the interactive theorem prover ISABELLE generating SPASS proof obligations
for this application domain, incorporating the experiences from this case study. Here it
is open wether our results will be sufficiently general.

Regarding previous work on hardware verification with first-order provers, the HWV
domain of TPTP contains problems e.g. on gate construction [WOLB92] or on some
FIFO buffer implementation [CHMO02], but it seems as if the datapath level had not been
reached yet. The general problem with first-order reasoning here is, however, that we
are always dealing with a bunch of models, whereas in the application there is only one.
Using bitvector decision procedures in some combination scheme might be a remedy.

[CHMO02] K. Claessen, R. Héhnle, and J. Martensson. Verification of hardware sys-
tems with first-order logic. In G. Sutcliffe, J. Pelletier, and C. Suttner,
editors, Proceedings of the CADE-18 Workshop on Problems and Problem
Sets for ATP, number 02/10 in Department of Computer Science, University
of Copenhagen, Technical Report, 2002.

[HP90] J.L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann Publishers, 1990.

[MP9Sg] S.M. Mueller and W. J. Paul. Computer Architecture: Complexity and Cor-
rectness. Springer-Verlag, 1998.

[WBHT02] Chr. Weidenbach, U. Brahm, Th. Hillenbrand, E. Keen, Chr. Theobald, and
D. Topié. Spass version 2.0. In A. Voronkov, editor, Proceedings of the 18th
International Conference on Automated Deduction, volume 2392 of LNAI
pages 275-279. Springer-Verlag, 2002.

[WOLB92] L. Wos, R. Overbeek, E.L. Lusk, and J. Boyle. Automated Reasoning:
Introduction and Applications. McGraw-Hill, 2nd edition, 1992.



