Annotated Formulae
- language(name, role, formula, source, useful info).
- language provides extensibility ...
cnf, fof, tff, thf
- role indicates user semantics, e.g.,
- For problems: axiom, conjecture,
lemma, ...
- For solutions: axiom, plain,
assumption, ...
- formula uses TPTP syntax
- Prolog-like (no Greek letters, only Roman)
- Connectives ... !, ?, ~,
|, &, =>, <=,
<=>, <~>.
- Easily identified
Interpreted symbols
- Equality ... =, !=
- Easy to parse (esp. in Prolog :-)
- source
- External: file, human, etc
- Derived: inference term
- useful info fields used for annotations, in
same abstract syntax
|
| Example FOF Problem Formula
fof(subclass_defn,axiom,
! [X,Y] :
( subclass(X,Y)
<=> ! [U] :
( member(U,X)
=> member(U,Y) ) ),
file('SET005+0.ax',subclass_defn),
[description('Definition of subclass'),
relevance(0.9)]).
Example CNF Solution Formula
cnf(140,lemma,
( equal_sets(a,aUa)
| member(member_of(a,aUa),a) ),
inference(unit_del,[status(thm)],[
inference(hyper,[status(thm)],[5,16]),11]),
[iquote('hyper,5,16.1,unit_del,11')]).
|