%------------------------------------------------------------------------------ % File : GRP194+1 : TPTP v7.3.0. Released v2.0.0. % Domain : Group Theory (Semigroups) % Problem : In semigroups, a surjective homomorphism maps the zero % Version : [Gol93] axioms. % English : If (F,*) and (H,+) are two semigroups, phi is a surjective % homomorphism from F to H, and id is a left zero for F, % then phi(id) is a left zero for H. % Refs : [Gol93] Goller (1993), Anwendung des Theorembeweisers SETHEO a % Source : [Gol93] % Names : % Status : Theorem % Rating : 0.10 v7.3.0, 0.14 v7.2.0, 0.10 v7.1.0, 0.13 v7.0.0, 0.20 v6.4.0, 0.23 v6.3.0, 0.21 v6.2.0, 0.36 v6.1.0, 0.47 v6.0.0, 0.35 v5.5.0, 0.37 v5.4.0, 0.50 v5.3.0, 0.48 v5.2.0, 0.40 v5.1.0, 0.33 v4.1.0, 0.35 v4.0.1, 0.30 v4.0.0, 0.29 v3.7.0, 0.15 v3.5.0, 0.16 v3.4.0, 0.21 v3.3.0, 0.14 v3.2.0, 0.18 v3.1.0, 0.11 v2.7.0, 0.17 v2.6.0, 0.14 v2.5.0, 0.12 v2.4.0, 0.25 v2.3.0, 0.33 v2.2.1, 0.00 v2.1.0 % Syntax : Number of formulae : 8 ( 2 unit) % Number of atoms : 21 ( 4 equality) % Maximal formula depth : 8 ( 4 average) % Number of connectives : 13 ( 0 ~; 0 |; 6 &) % ( 1 <=>; 6 =>; 0 <=; 0 <~>) % ( 0 ~|; 0 ~&) % Number of predicates : 3 ( 0 propositional; 2-2 arity) % Number of functors : 5 ( 3 constant; 0-3 arity) % Number of variables : 15 ( 0 sgn; 14 !; 1 ?) % Maximal term depth : 3 ( 1 average) % SPC : FOF_THM_RFO_SEQ % Comments : %------------------------------------------------------------------------------ %----Include Semigroup axioms include('Axioms/GRP007+0.ax'). %------------------------------------------------------------------------------ %----Definition of a homomorphism fof(homomorphism1,axiom, ( ! [X] : ( group_member(X,f) => group_member(phi(X),h) ) )). fof(homomorphism2,axiom, ( ! [X,Y] : ( ( group_member(X,f) & group_member(Y,f) ) => multiply(h,phi(X),phi(Y)) = phi(multiply(f,X,Y)) ) )). fof(surjective,axiom, ( ! [X] : ( group_member(X,h) => ? [Y] : ( group_member(Y,f) & phi(Y) = X ) ) )). %----Definition of left zero fof(left_zero,axiom, ( ! [G,X] : ( left_zero(G,X) <=> ( group_member(X,G) & ! [Y] : ( group_member(Y,G) => multiply(G,X,Y) = X ) ) ) )). %----The conjecture fof(left_zero_for_f,hypothesis, ( left_zero(f,f_left_zero) )). fof(prove_left_zero_h,conjecture, ( left_zero(h,phi(f_left_zero)) )). %------------------------------------------------------------------------------