SET817+4
%------------------------------------------------------------------------------
% File : SET817+4 : TPTP v6.0.0. Released v3.2.0.
% Domain : Set Theory (Order relations)
% Problem : The product of a nonempty set of ordinals is an ordinal
% Version : [Pas05] axioms.
% English :
% Refs : [Pas05] Pastre (2005), Email to G. Sutcliffe
% Source : [Pas05]
% Names :
% Status : Theorem
% Rating : 0.93 v7.1.0, 0.91 v7.0.0, 0.97 v6.4.0, 0.96 v6.2.0, 0.88 v6.1.0, 0.97 v6.0.0, 0.96 v5.5.0, 0.93 v5.2.0, 0.95 v5.0.0, 0.96 v3.7.0, 0.95 v3.3.0, 0.93 v3.2.0
% Syntax : Number of formulae : 23 ( 1 unit)
% Number of atoms : 76 ( 4 equality)
% Maximal formula depth : 11 ( 6 average)
% Number of connectives : 56 ( 3 ~ ; 3 |; 19 &)
% ( 17 <=>; 14 =>; 0 <=)
% ( 0 <~>; 0 ~|; 0 ~&)
% Number of predicates : 9 ( 0 propositional; 1-3 arity)
% Number of functors : 13 ( 3 constant; 0-3 arity)
% Number of variables : 64 ( 0 singleton; 60 !; 4 ?)
% Maximal term depth : 3 ( 1 average)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%------------------------------------------------------------------------------
%----Include set theory definitions
include('Axioms/SET006+0.ax').
%----Include ordinal numbers axioms
include('Axioms/SET006+4.ax').
%------------------------------------------------------------------------------
fof(thI3,axiom,(
! [A,B,C] :
( ( subset(A,B)
& subset(B,C) )
=> subset(A,C) ) )).
fof(set_product,axiom,(
! [X] :
( set(X)
=> set(product(X)) ) )).
fof(thI42,axiom,(
! [A,X] :
( member(X,A)
=> subset(product(A),X) ) )).
fof(thV21,conjecture,(
! [A] :
( ( subset(A,on)
& set(A)
& ? [X] : member(X,A) )
=> member(product(A),on) ) )).
%------------------------------------------------------------------------------