%------------------------------------------------------------------------------ % File : SET817+4 : TPTP v6.0.0. Released v3.2.0. % Domain : Set Theory (Order relations) % Problem : The product of a nonempty set of ordinals is an ordinal % Version : [Pas05] axioms. % English : % Refs : [Pas05] Pastre (2005), Email to G. Sutcliffe % Source : [Pas05] % Names : % Status : Theorem % Rating : 0.93 v7.1.0, 0.91 v7.0.0, 0.97 v6.4.0, 0.96 v6.2.0, 0.88 v6.1.0, 0.97 v6.0.0, 0.96 v5.5.0, 0.93 v5.2.0, 0.95 v5.0.0, 0.96 v3.7.0, 0.95 v3.3.0, 0.93 v3.2.0 % Syntax : Number of formulae : 23 ( 1 unit) % Number of atoms : 76 ( 4 equality) % Maximal formula depth : 11 ( 6 average) % Number of connectives : 56 ( 3 ~ ; 3 |; 19 &) % ( 17 <=>; 14 =>; 0 <=) % ( 0 <~>; 0 ~|; 0 ~&) % Number of predicates : 9 ( 0 propositional; 1-3 arity) % Number of functors : 13 ( 3 constant; 0-3 arity) % Number of variables : 64 ( 0 singleton; 60 !; 4 ?) % Maximal term depth : 3 ( 1 average) % SPC : FOF_THM_RFO_SEQ % Comments : %------------------------------------------------------------------------------ %----Include set theory definitions include('Axioms/SET006+0.ax'). %----Include ordinal numbers axioms include('Axioms/SET006+4.ax'). %------------------------------------------------------------------------------ fof(thI3,axiom,( ! [A,B,C] : ( ( subset(A,B) & subset(B,C) ) => subset(A,C) ) )). fof(set_product,axiom,( ! [X] : ( set(X) => set(product(X)) ) )). fof(thI42,axiom,( ! [A,X] : ( member(X,A) => subset(product(A),X) ) )). fof(thV21,conjecture,( ! [A] : ( ( subset(A,on) & set(A) & ? [X] : member(X,A) ) => member(product(A),on) ) )). %------------------------------------------------------------------------------