%-------------------------------------------------------------------------- input_formula(phi_substitution_1,axiom,( ! [A,B] : ( equal(A,B) => equal(phi(A),phi(B)) ) )). %----Definition of a homomorphism input_formula(homomorphism1,axiom,( ! [X] : ( group_member(X,f) => group_member(phi(X),h) ) )). ... %----Definition of left zero input_formula(left_zero,axiom,( ! [G,X] : ( left_zero(G,X) <=> ( group_member(X,G) & ! [Y] : ( group_member(Y,G) => equal(multiply(G,X,Y),X) ) ) ) )). %----The conjecture input_formula(left_zero_for_f,hypothesis,( left_zero(f,f_left_zero) )). input_formula(prove_left_zero_h,conjecture,( left_zero(h,phi(f_left_zero)) )). %--------------------------------------------------------------------------