%------------------------------------------------------------------------------ % File : LCL634^1 : TPTP v3.7.0. Released v3.6.0. % Domain : Logical Calculi % Problem : Goedel's ontological argument on the existence of God % Version : [Ben08] axioms : Especial. % English : % Refs : [Fit00] Fitting (2000), Higher-Order Modal Logic - A Sketch % : [Ben08] Benzmueller (2008), Email to G. Sutcliffe % Source : [Ben08] % Names : Fitting-HOLML-Ex-God-alternative-b [Ben08] % Status : Theorem % Rating : 1.00 v3.7.0 % Syntax : Number of formulae : 48 ( 3 unit; 27 type; 19 defn) % Number of atoms : 323 ( 19 equality; 60 variable) % Maximal formula depth : 13 ( 5 average) % Number of connectives : 71 ( 3 ~; 1 |; 2 &; 64 @) % ( 0 <=>; 1 =>; 0 <=; 0 <~>) % ( 0 ~|; 0 ~&; 0 !!; 0 ??) % Number of type conns : 118 ( 118 >; 0 *; 0 +) % Number of symbols : 28 ( 27 :; 0 :=) % Number of variables : 51 ( 2 sgn; 6 !; 4 ?; 41 ^) % ( 51 :; 0 :=; 0 !>; 0 ?*) % Comments :
%------------------------------------------------------------------------------ %----Include simple maths definitions and axioms include('Axioms/LCL008^0.ax'). %------------------------------------------------------------------------------ %----$tType thf(a,type, a: $tType )). %----The type role and global typing of constants thf(p,type,( p: ( a > $i > $o ) > $i > $o )). thf(g,type,( g: a > $i > $o )). thf(e,type,( e: ( a > $i > $o ) > a > $i > $o )). %----$i and $o thf(r,type,( r: $i > $i > $o )). %----> for function types thf(mall_aio,type,( mall_aio: ( ( a > $i > $o ) > $i > $o ) > $i > $o )). thf(mall_a,type,( mall_a: ( a > $i > $o ) > $i > $o )). %----Local typing of variables and ^ as the lambda binder thf(mall_aio,definition, ( mall_aio = ( ^ [P: ( a > $i > $o ) > $i > $o,W: $i] : ! [X: a > $i > $o] : ( P @ X @ W ) ) )). thf(mall_a,definition, ( mall_a = ( ^ [P: a > $i > $o,W: $i] : ! [X: a] : ( P @ X @ W ) ) )). %----@ for application thf(positiveness,axiom, ( mvalid @ ( mall_aio @ ^ [X: a > $i > $o] : ( mimpl @ ( mnot @ ( p @ X ) ) @ ( p @ ^ [Z: a] : ( mnot @ ( X @ Z ) ) ) ) ) )). thf(g,definition, ( g = ( ^ [Z: a] : ( mall_aio @ ^ [X: a > $i > $o] : ( mimpl @ ( p @ X ) @ ( X @ Z ) ) ) ) )). thf(e,definition, ( e = ( ^ [X: a > $i > $o,Z: a] : ( mall_aio @ ^ [Y: a > $i > $o] : ( mimpl @ ( Y @ Z ) @ ( mbox @ r @ ( mall_a @ ^ [W: a] : ( mimpl @ ( X @ W ) @ ( Y @ W ) ) ) ) ) ) ) )). thf(thm,conjecture, ( mvalid @ ( mall_a @ ^ [Z: a] : ( mimpl @ ( g @ Z ) @ ( e @ g @ Z ) ) ) )). %------------------------------------------------------------------------------