%------------------------------------------------------------------------------ % File : SWW587=2 : TPTP v6.1.0. Released v6.1.0. % Domain : Software Verification % Problem : Dijkstra-T-WP parameter shortest path code % Version : Especial : Let and conditional terms encoded away. % English : % Refs : [Fil14] Filliatre (2014), Email to Geoff Sutcliffe % : [BF+] Bobot et al. (URL), Toccata: Certified Programs and Cert % Source : [Fil14] % Names : dijkstra-T-WP_parameter_shortest_path_code [Fil14] % Status : Theorem % Rating : ? v6.1.0 % Syntax : Number of formulae : 135 ( 52 unit; 57 type) % Number of atoms : 440 ( 67 equality) % Maximal formula depth : 46 ( 5 average) % Number of connectives : 236 ( 26 ~; 19 |; 68 &) % ( 17 <=>; 106 =>; 0 <=; 0 <~>) % ( 0 ~|; 0 ~&) % Number of type conns : 95 ( 40 >; 55 *; 0 +; 0 <<) % Number of predicates : 76 ( 61 propositional; 0-6 arity) % Number of functors : 39 ( 8 constant; 0-5 arity) % Number of variables : 273 ( 0 sgn; 264 !; 9 ?) % Maximal term depth : 8 ( 2 average) % Arithmetic symbols : 8 ( 3 pred; 3 func; 2 numbers) % SPC : TF0_THM_EQU_ARI % Comments : %------------------------------------------------------------------------------ tff(uni,type,( uni: $tType )). tff(ty,type,( ty: $tType )). tff(sort,type,( sort1: ( ty * uni ) > $o )). tff(witness,type,( witness1: ty > uni )). tff(witness_sort1,axiom,( ! [A: ty] : sort1(A,witness1(A)) )). tff(int,type,( int: ty )). tff(real,type,( real: ty )). tff(bool,type,( bool1: $tType )). tff(bool1,type,( bool: ty )). tff(true,type,( true1: bool1 )). tff(false,type,( false1: bool1 )). tff(match_bool,type,( match_bool1: ( ty * bool1 * uni * uni ) > uni )). tff(match_bool_sort1,axiom,( ! [A: ty,X: bool1,X1: uni,X2: uni] : sort1(A,match_bool1(A,X,X1,X2)) )). tff(match_bool_True,axiom,( ! [A: ty,Z: uni,Z1: uni] : ( sort1(A,Z) => match_bool1(A,true1,Z,Z1) = Z ) )). tff(match_bool_False,axiom,( ! [A: ty,Z: uni,Z1: uni] : ( sort1(A,Z1) => match_bool1(A,false1,Z,Z1) = Z1 ) )). tff(true_False,axiom,( true1 != false1 )). tff(bool_inversion,axiom,( ! [U: bool1] : ( U = true1 | U = false1 ) )). tff(tuple0,type,( tuple02: $tType )). tff(tuple01,type,( tuple0: ty )). tff(tuple02,type,( tuple03: tuple02 )). tff(tuple0_inversion,axiom,( ! [U: tuple02] : U = tuple03 )). tff(qtmark,type,( qtmark: ty )). tff(compatOrderMult,axiom,( ! [X: $int,Y: $int,Z: $int] : ( $lesseq(X,Y) => ( $lesseq(0,Z) => $lesseq($product(X,Z),$product(Y,Z)) ) ) )). tff(ref,type,( ref: ty > ty )). tff(mk_ref,type,( mk_ref: ( ty * uni ) > uni )). tff(mk_ref_sort1,axiom,( ! [A: ty,X: uni] : sort1(ref(A),mk_ref(A,X)) )). tff(contents,type,( contents: ( ty * uni ) > uni )). tff(contents_sort1,axiom,( ! [A: ty,X: uni] : sort1(A,contents(A,X)) )). tff(contents_def1,axiom,( ! [A: ty,U: uni] : ( sort1(A,U) => contents(A,mk_ref(A,U)) = U ) )). tff(ref_inversion1,axiom,( ! [A: ty,U: uni] : ( sort1(ref(A),U) => U = mk_ref(A,contents(A,U)) ) )). tff(set,type,( set: ty > ty )). tff(mem,type,( mem: ( ty * uni * uni ) > $o )). tff(infix_eqeq,type,( infix_eqeq: ( ty * uni * uni ) > $o )). tff(infix_eqeq_def,axiom,( ! [A: ty,S1: uni,S2: uni] : ( ( infix_eqeq(A,S1,S2) => ! [X: uni] : ( mem(A,X,S1) <=> mem(A,X,S2) ) ) & ( ! [X: uni] : ( sort1(A,X) => ( mem(A,X,S1) <=> mem(A,X,S2) ) ) => infix_eqeq(A,S1,S2) ) ) )). tff(extensionality,axiom,( ! [A: ty,S1: uni,S2: uni] : ( sort1(set(A),S1) => ( sort1(set(A),S2) => ( infix_eqeq(A,S1,S2) => S1 = S2 ) ) ) )). tff(subset,type,( subset: ( ty * uni * uni ) > $o )). tff(subset_def,axiom,( ! [A: ty,S1: uni,S2: uni] : ( ( subset(A,S1,S2) => ! [X: uni] : ( mem(A,X,S1) => mem(A,X,S2) ) ) & ( ! [X: uni] : ( sort1(A,X) => ( mem(A,X,S1) => mem(A,X,S2) ) ) => subset(A,S1,S2) ) ) )). tff(subset_refl,axiom,( ! [A: ty,S: uni] : subset(A,S,S) )). tff(subset_trans,axiom,( ! [A: ty,S1: uni,S2: uni,S3: uni] : ( subset(A,S1,S2) => ( subset(A,S2,S3) => subset(A,S1,S3) ) ) )). tff(empty,type,( empty: ty > uni )). tff(empty_sort1,axiom,( ! [A: ty] : sort1(set(A),empty(A)) )). tff(is_empty,type,( is_empty: ( ty * uni ) > $o )). tff(is_empty_def,axiom,( ! [A: ty,S: uni] : ( ( is_empty(A,S) => ! [X: uni] : ~ mem(A,X,S) ) & ( ! [X: uni] : ( sort1(A,X) => ~ mem(A,X,S) ) => is_empty(A,S) ) ) )). tff(empty_def1,axiom,( ! [A: ty] : is_empty(A,empty(A)) )). tff(mem_empty,axiom,( ! [A: ty,X: uni] : ( mem(A,X,empty(A)) <=> $false ) )). tff(add,type,( add: ( ty * uni * uni ) > uni )). tff(add_sort1,axiom,( ! [A: ty,X: uni,X1: uni] : sort1(set(A),add(A,X,X1)) )). tff(add_def1,axiom,( ! [A: ty,X: uni,Y: uni] : ( sort1(A,X) => ( sort1(A,Y) => ! [S: uni] : ( mem(A,X,add(A,Y,S)) <=> ( X = Y | mem(A,X,S) ) ) ) ) )). tff(remove,type,( remove: ( ty * uni * uni ) > uni )). tff(remove_sort1,axiom,( ! [A: ty,X: uni,X1: uni] : sort1(set(A),remove(A,X,X1)) )). tff(remove_def1,axiom,( ! [A: ty,X: uni,Y: uni,S: uni] : ( sort1(A,X) => ( sort1(A,Y) => ( mem(A,X,remove(A,Y,S)) <=> ( X != Y & mem(A,X,S) ) ) ) ) )). tff(add_remove,axiom,( ! [A: ty,X: uni,S: uni] : ( sort1(set(A),S) => ( mem(A,X,S) => add(A,X,remove(A,X,S)) = S ) ) )). tff(remove_add,axiom,( ! [A: ty,X: uni,S: uni] : remove(A,X,add(A,X,S)) = remove(A,X,S) )). tff(subset_remove,axiom,( ! [A: ty,X: uni,S: uni] : subset(A,remove(A,X,S),S) )). tff(union,type,( union: ( ty * uni * uni ) > uni )). tff(union_sort1,axiom,( ! [A: ty,X: uni,X1: uni] : sort1(set(A),union(A,X,X1)) )). tff(union_def1,axiom,( ! [A: ty,S1: uni,S2: uni,X: uni] : ( mem(A,X,union(A,S1,S2)) <=> ( mem(A,X,S1) | mem(A,X,S2) ) ) )). tff(inter,type,( inter: ( ty * uni * uni ) > uni )). tff(inter_sort1,axiom,( ! [A: ty,X: uni,X1: uni] : sort1(set(A),inter(A,X,X1)) )). tff(inter_def1,axiom,( ! [A: ty,S1: uni,S2: uni,X: uni] : ( mem(A,X,inter(A,S1,S2)) <=> ( mem(A,X,S1) & mem(A,X,S2) ) ) )). tff(diff,type,( diff: ( ty * uni * uni ) > uni )). tff(diff_sort1,axiom,( ! [A: ty,X: uni,X1: uni] : sort1(set(A),diff(A,X,X1)) )). tff(diff_def1,axiom,( ! [A: ty,S1: uni,S2: uni,X: uni] : ( mem(A,X,diff(A,S1,S2)) <=> ( mem(A,X,S1) & ~ mem(A,X,S2) ) ) )). tff(subset_diff,axiom,( ! [A: ty,S1: uni,S2: uni] : subset(A,diff(A,S1,S2),S1) )). tff(choose,type,( choose: ( ty * uni ) > uni )). tff(choose_sort1,axiom,( ! [A: ty,X: uni] : sort1(A,choose(A,X)) )). tff(choose_def,axiom,( ! [A: ty,S: uni] : ( ~ is_empty(A,S) => mem(A,choose(A,S),S) ) )). tff(cardinal,type,( cardinal1: ( ty * uni ) > $int )). tff(cardinal_nonneg,axiom,( ! [A: ty,S: uni] : $lesseq(0,cardinal1(A,S)) )). tff(cardinal_empty,axiom,( ! [A: ty,S: uni] : ( cardinal1(A,S) = 0 <=> is_empty(A,S) ) )). tff(cardinal_add,axiom,( ! [A: ty,X: uni,S: uni] : ( ~ mem(A,X,S) => cardinal1(A,add(A,X,S)) = $sum(1,cardinal1(A,S)) ) )). tff(cardinal_remove,axiom,( ! [A: ty,X: uni,S: uni] : ( mem(A,X,S) => cardinal1(A,S) = $sum(1,cardinal1(A,remove(A,X,S))) ) )). tff(cardinal_subset,axiom,( ! [A: ty,S1: uni,S2: uni] : ( subset(A,S1,S2) => $lesseq(cardinal1(A,S1),cardinal1(A,S2)) ) )). tff(cardinal1,axiom,( ! [A: ty,S: uni] : ( cardinal1(A,S) = 1 => ! [X: uni] : ( sort1(A,X) => ( mem(A,X,S) => X = choose(A,S) ) ) ) )). tff(map,type,( map: ( ty * ty ) > ty )). tff(get,type,( get: ( ty * ty * uni * uni ) > uni )). tff(get_sort1,axiom,( ! [A: ty,B: ty,X: uni,X1: uni] : sort1(B,get(B,A,X,X1)) )). tff(set1,type,( set1: ( ty * ty * uni * uni * uni ) > uni )). tff(set_sort1,axiom,( ! [A: ty,B: ty,X: uni,X1: uni,X2: uni] : sort1(map(A,B),set1(B,A,X,X1,X2)) )). tff(select_eq,axiom,( ! [A: ty,B: ty,M: uni,A1: uni,A2: uni,B1: uni] : ( sort1(B,B1) => ( A1 = A2 => get(B,A,set1(B,A,M,A1,B1),A2) = B1 ) ) )). tff(select_neq,axiom,( ! [A: ty,B: ty,M: uni,A1: uni,A2: uni] : ( sort1(A,A1) => ( sort1(A,A2) => ! [B1: uni] : ( A1 != A2 => get(B,A,set1(B,A,M,A1,B1),A2) = get(B,A,M,A2) ) ) ) )). tff(const1,type,( const: ( ty * ty * uni ) > uni )). tff(const_sort1,axiom,( ! [A: ty,B: ty,X: uni] : sort1(map(A,B),const(B,A,X)) )). tff(const,axiom,( ! [A: ty,B: ty,B1: uni,A1: uni] : ( sort1(B,B1) => get(B,A,const(B,A,B1),A1) = B1 ) )). tff(vertex,type,( vertex1: $tType )). tff(vertex1,type,( vertex: ty )). tff(set_vertex,type,( set_vertex: $tType )). tff(v,type,( v1: set_vertex )). tff(g_succ,type,( g_succ1: vertex1 > set_vertex )). tff(t2tb,type,( t2tb: set_vertex > uni )). tff(t2tb_sort,axiom,( ! [X: set_vertex] : sort1(set(vertex),t2tb(X)) )). tff(tb2t,type,( tb2t: uni > set_vertex )). tff(bridgeL,axiom,( ! [I: set_vertex] : tb2t(t2tb(I)) = I )). tff(bridgeR,axiom,( ! [J: uni] : ( sort1(set(vertex),J) => t2tb(tb2t(J)) = J ) )). tff(g_succ_sound,axiom,( ! [X: vertex1] : subset(vertex,t2tb(g_succ1(X)),t2tb(v1)) )). tff(weight,type,( weight1: ( vertex1 * vertex1 ) > $int )). tff(weight_nonneg,axiom,( ! [X: vertex1,Y: vertex1] : $lesseq(0,weight1(X,Y)) )). tff(map_vertex_int,type,( map_vertex_int: $tType )). tff(min,type,( min1: ( vertex1 * set_vertex * map_vertex_int ) > $o )). tff(t2tb1,type,( t2tb1: map_vertex_int > uni )). tff(t2tb_sort1,axiom,( ! [X: map_vertex_int] : sort1(map(vertex,int),t2tb1(X)) )). tff(tb2t1,type,( tb2t1: uni > map_vertex_int )). tff(bridgeL1,axiom,( ! [I: map_vertex_int] : tb2t1(t2tb1(I)) = I )). tff(bridgeR1,axiom,( ! [J: uni] : t2tb1(tb2t1(J)) = J )). tff(t2tb2,type,( t2tb2: vertex1 > uni )). tff(t2tb_sort2,axiom,( ! [X: vertex1] : sort1(vertex,t2tb2(X)) )). tff(tb2t2,type,( tb2t2: uni > vertex1 )). tff(bridgeL2,axiom,( ! [I: vertex1] : tb2t2(t2tb2(I)) = I )). tff(bridgeR2,axiom,( ! [J: uni] : ( sort1(vertex,J) => t2tb2(tb2t2(J)) = J ) )). tff(t2tb3,type,( t2tb3: $int > uni )). tff(t2tb_sort3,axiom,( ! [X: $int] : sort1(int,t2tb3(X)) )). tff(tb2t3,type,( tb2t3: uni > $int )). tff(bridgeL3,axiom,( ! [I: $int] : tb2t3(t2tb3(I)) = I )). tff(bridgeR3,axiom,( ! [J: uni] : t2tb3(tb2t3(J)) = J )). tff(min_def,axiom,( ! [M: vertex1,Q: set_vertex,D: map_vertex_int] : ( min1(M,Q,D) <=> ( mem(vertex,t2tb2(M),t2tb(Q)) & ! [X: vertex1] : ( mem(vertex,t2tb2(X),t2tb(Q)) => $lesseq(tb2t3(get(int,vertex,t2tb1(D),t2tb2(M))),tb2t3(get(int,vertex,t2tb1(D),t2tb2(X)))) ) ) ) )). tff(path,type,( path1: ( vertex1 * vertex1 * $int ) > $o )). tff(path_nil,axiom,( ! [X: vertex1] : path1(X,X,0) )). tff(path_cons,axiom,( ! [X: vertex1,Y: vertex1,Z: vertex1,D: $int] : ( path1(X,Y,D) => ( mem(vertex,t2tb2(Z),t2tb(g_succ1(Y))) => path1(X,Z,$sum(D,weight1(Y,Z))) ) ) )). tff(path_inversion,axiom,( ! [Z: vertex1,Z1: vertex1,Z2: $int] : ( path1(Z,Z1,Z2) => ( ? [X: vertex1] : ( Z = X & Z1 = X & Z2 = 0 ) | ? [X: vertex1,Y: vertex1,Z3: vertex1,D: $int] : ( path1(X,Y,D) & mem(vertex,t2tb2(Z3),t2tb(g_succ1(Y))) & Z = X & Z1 = Z3 & Z2 = $sum(D,weight1(Y,Z3)) ) ) ) )). tff(length_nonneg,axiom,( ! [X: vertex1,Y: vertex1,D: $int] : ( path1(X,Y,D) => $lesseq(0,D) ) )). tff(shortest_path,type,( shortest_path1: ( vertex1 * vertex1 * $int ) > $o )). tff(shortest_path_def,axiom,( ! [X: vertex1,Y: vertex1,D: $int] : ( shortest_path1(X,Y,D) <=> ( path1(X,Y,D) & ! [Dqt: $int] : ( path1(X,Y,Dqt) => $lesseq(D,Dqt) ) ) ) )). tff(path_inversion1,axiom,( ! [Src: vertex1,V: vertex1,D: $int] : ( path1(Src,V,D) => ( ( V = Src & D = 0 ) | ? [Vqt: vertex1] : ( path1(Src,Vqt,$difference(D,weight1(Vqt,V))) & mem(vertex,t2tb2(V),t2tb(g_succ1(Vqt))) ) ) ) )). tff(path_shortest_path,axiom,( ! [Src: vertex1,V: vertex1,D: $int] : ( path1(Src,V,D) => ? [Dqt: $int] : ( shortest_path1(Src,V,Dqt) & $lesseq(Dqt,D) ) ) )). tff(main_lemma,axiom,( ! [Src: vertex1,V: vertex1,D: $int] : ( path1(Src,V,D) => ( ~ shortest_path1(Src,V,D) => ( ( V = Src & $less(0,D) ) | ? [Vqt: vertex1,Dqt: $int] : ( shortest_path1(Src,Vqt,Dqt) & mem(vertex,t2tb2(V),t2tb(g_succ1(Vqt))) & $less($sum(Dqt,weight1(Vqt,V)),D) ) ) ) ) )). tff(completeness_lemma,axiom,( ! [S: set_vertex] : ( ! [V: vertex1] : ( mem(vertex,t2tb2(V),t2tb(S)) => ! [W: vertex1] : ( mem(vertex,t2tb2(W),t2tb(g_succ1(V))) => mem(vertex,t2tb2(W),t2tb(S)) ) ) => ! [Src: vertex1] : ( mem(vertex,t2tb2(Src),t2tb(S)) => ! [Dst: vertex1,D: $int] : ( path1(Src,Dst,D) => mem(vertex,t2tb2(Dst),t2tb(S)) ) ) ) )). tff(inv_src,type,( inv_src1: ( vertex1 * set_vertex * set_vertex ) > $o )). tff(inv_src_def,axiom,( ! [Src: vertex1,S: set_vertex,Q: set_vertex] : ( inv_src1(Src,S,Q) <=> ( mem(vertex,t2tb2(Src),t2tb(S)) | mem(vertex,t2tb2(Src),t2tb(Q)) ) ) )). tff(inv,type,( inv1: ( vertex1 * set_vertex * set_vertex * map_vertex_int ) > $o )). tff(inv_def,axiom,( ! [Src: vertex1,S: set_vertex,Q: set_vertex,D: map_vertex_int] : ( inv1(Src,S,Q,D) <=> ( inv_src1(Src,S,Q) & tb2t3(get(int,vertex,t2tb1(D),t2tb2(Src))) = 0 & subset(vertex,t2tb(S),t2tb(v1)) & subset(vertex,t2tb(Q),t2tb(v1)) & ! [V: vertex1] : ( mem(vertex,t2tb2(V),t2tb(Q)) => ( mem(vertex,t2tb2(V),t2tb(S)) => $false ) ) & ! [V: vertex1] : ( mem(vertex,t2tb2(V),t2tb(S)) => shortest_path1(Src,V,tb2t3(get(int,vertex,t2tb1(D),t2tb2(V)))) ) & ! [V: vertex1] : ( mem(vertex,t2tb2(V),t2tb(Q)) => path1(Src,V,tb2t3(get(int,vertex,t2tb1(D),t2tb2(V)))) ) ) ) )). tff(inv_succ,type,( inv_succ1: ( vertex1 * set_vertex * set_vertex * map_vertex_int ) > $o )). tff(inv_succ_def,axiom,( ! [Src: vertex1,S: set_vertex,Q: set_vertex,D: map_vertex_int] : ( inv_succ1(Src,S,Q,D) <=> ! [X: vertex1] : ( mem(vertex,t2tb2(X),t2tb(S)) => ! [Y: vertex1] : ( mem(vertex,t2tb2(Y),t2tb(g_succ1(X))) => ( ( mem(vertex,t2tb2(Y),t2tb(S)) | mem(vertex,t2tb2(Y),t2tb(Q)) ) & $lesseq(tb2t3(get(int,vertex,t2tb1(D),t2tb2(Y))),$sum(tb2t3(get(int,vertex,t2tb1(D),t2tb2(X))),weight1(X,Y))) ) ) ) ) )). tff(inv_succ2,type,( inv_succ21: ( vertex1 * set_vertex * set_vertex * map_vertex_int * vertex1 * set_vertex ) > $o )). tff(inv_succ2_def,axiom,( ! [Src: vertex1,S: set_vertex,Q: set_vertex,D: map_vertex_int,U: vertex1,Su: set_vertex] : ( inv_succ21(Src,S,Q,D,U,Su) <=> ! [X: vertex1] : ( mem(vertex,t2tb2(X),t2tb(S)) => ! [Y: vertex1] : ( mem(vertex,t2tb2(Y),t2tb(g_succ1(X))) => ( ( X != U | ( X = U & ~ mem(vertex,t2tb2(Y),t2tb(Su)) ) ) => ( ( mem(vertex,t2tb2(Y),t2tb(S)) | mem(vertex,t2tb2(Y),t2tb(Q)) ) & $lesseq(tb2t3(get(int,vertex,t2tb1(D),t2tb2(Y))),$sum(tb2t3(get(int,vertex,t2tb1(D),t2tb2(X))),weight1(X,Y))) ) ) ) ) ) )). tff(wP_parameter_shortest_path_code,conjecture,( ! [Src: vertex1,Dst: vertex1,D: map_vertex_int] : ( ( mem(vertex,t2tb2(Src),t2tb(v1)) & mem(vertex,t2tb2(Dst),t2tb(v1)) ) => ! [Q: set_vertex,D1: map_vertex_int,Visited: set_vertex] : ( ( ! [X: vertex1] : ~ mem(vertex,t2tb2(X),t2tb(Visited)) & Q = tb2t(add(vertex,t2tb2(Src),empty(vertex))) & D1 = tb2t1(set1(int,vertex,t2tb1(D),t2tb2(Src),t2tb3(0))) ) => ! [Q1: set_vertex,D2: map_vertex_int,Visited1: set_vertex] : ( ( inv_src1(Src,Visited1,Q1) & tb2t3(get(int,vertex,t2tb1(D2),t2tb2(Src))) = 0 & subset(vertex,t2tb(Visited1),t2tb(v1)) & subset(vertex,t2tb(Q1),t2tb(v1)) & ! [V: vertex1] : ( mem(vertex,t2tb2(V),t2tb(Q1)) => ( mem(vertex,t2tb2(V),t2tb(Visited1)) => $false ) ) & ! [V: vertex1] : ( mem(vertex,t2tb2(V),t2tb(Visited1)) => shortest_path1(Src,V,tb2t3(get(int,vertex,t2tb1(D2),t2tb2(V)))) ) & ! [V: vertex1] : ( mem(vertex,t2tb2(V),t2tb(Q1)) => path1(Src,V,tb2t3(get(int,vertex,t2tb1(D2),t2tb2(V)))) ) & ! [X: vertex1] : ( mem(vertex,t2tb2(X),t2tb(Visited1)) => ! [Y: vertex1] : ( mem(vertex,t2tb2(Y),t2tb(g_succ1(X))) => ( ( mem(vertex,t2tb2(Y),t2tb(Visited1)) | mem(vertex,t2tb2(Y),t2tb(Q1)) ) & $lesseq(tb2t3(get(int,vertex,t2tb1(D2),t2tb2(Y))),$sum(tb2t3(get(int,vertex,t2tb1(D2),t2tb2(X))),weight1(X,Y))) ) ) ) & ! [M: vertex1] : ( ( mem(vertex,t2tb2(M),t2tb(Q1)) & ! [X: vertex1] : ( mem(vertex,t2tb2(X),t2tb(Q1)) => $lesseq(tb2t3(get(int,vertex,t2tb1(D2),t2tb2(M))),tb2t3(get(int,vertex,t2tb1(D2),t2tb2(X)))) ) ) => ! [X: vertex1,Dx: $int] : ( path1(Src,X,Dx) => ( $less(Dx,tb2t3(get(int,vertex,t2tb1(D2),t2tb2(M)))) => mem(vertex,t2tb2(X),t2tb(Visited1)) ) ) ) ) => ! [O: bool1] : ( ( O = true1 <=> ! [X: vertex1] : ~ mem(vertex,t2tb2(X),t2tb(Q1)) ) => ( O != true1 => ( ~ ! [X: vertex1] : ~ mem(vertex,t2tb2(X),t2tb(Q1)) => ! [Q2: set_vertex,U: vertex1] : ( ( mem(vertex,t2tb2(U),t2tb(Q1)) & ! [X: vertex1] : ( mem(vertex,t2tb2(X),t2tb(Q1)) => $lesseq(tb2t3(get(int,vertex,t2tb1(D2),t2tb2(U))),tb2t3(get(int,vertex,t2tb1(D2),t2tb2(X)))) ) & Q2 = tb2t(remove(vertex,t2tb2(U),t2tb(Q1))) ) => ( ( path1(Src,U,tb2t3(get(int,vertex,t2tb1(D2),t2tb2(U)))) & ! [Dqt: $int] : ( path1(Src,U,Dqt) => $lesseq(tb2t3(get(int,vertex,t2tb1(D2),t2tb2(U))),Dqt) ) ) => ! [Visited2: set_vertex] : ( Visited2 = tb2t(add(vertex,t2tb2(U),t2tb(Visited1))) => ! [Su: set_vertex,Q3: set_vertex,D3: map_vertex_int] : ( ( ! [X: vertex1] : ( mem(vertex,t2tb2(X),t2tb(Su)) => mem(vertex,t2tb2(X),t2tb(g_succ1(U))) ) & inv_src1(Src,Visited2,Q3) & tb2t3(get(int,vertex,t2tb1(D3),t2tb2(Src))) = 0 & subset(vertex,t2tb(Visited2),t2tb(v1)) & subset(vertex,t2tb(Q3),t2tb(v1)) & ! [V: vertex1] : ( mem(vertex,t2tb2(V),t2tb(Q3)) => ( mem(vertex,t2tb2(V),t2tb(Visited2)) => $false ) ) & ! [V: vertex1] : ( mem(vertex,t2tb2(V),t2tb(Visited2)) => shortest_path1(Src,V,tb2t3(get(int,vertex,t2tb1(D3),t2tb2(V)))) ) & ! [V: vertex1] : ( mem(vertex,t2tb2(V),t2tb(Q3)) => path1(Src,V,tb2t3(get(int,vertex,t2tb1(D3),t2tb2(V)))) ) & ! [X: vertex1] : ( mem(vertex,t2tb2(X),t2tb(Visited2)) => ! [Y: vertex1] : ( mem(vertex,t2tb2(Y),t2tb(g_succ1(X))) => ( ( X != U | ( X = U & ~ mem(vertex,t2tb2(Y),t2tb(Su)) ) ) => ( ( mem(vertex,t2tb2(Y),t2tb(Visited2)) | mem(vertex,t2tb2(Y),t2tb(Q3)) ) & $lesseq(tb2t3(get(int,vertex,t2tb1(D3),t2tb2(Y))),$sum(tb2t3(get(int,vertex,t2tb1(D3),t2tb2(X))),weight1(X,Y))) ) ) ) ) ) => ! [Result: bool1] : ( ( Result = true1 <=> ~ ! [X: vertex1] : ~ mem(vertex,t2tb2(X),t2tb(Su)) ) => ( Result = true1 => ( ~ ! [X: vertex1] : ~ mem(vertex,t2tb2(X),t2tb(Su)) => ! [Su1: set_vertex,V: vertex1] : ( ( mem(vertex,t2tb2(V),t2tb(Su)) & Su1 = tb2t(remove(vertex,t2tb2(V),t2tb(Su))) ) => ! [Q4: set_vertex,D4: map_vertex_int] : ( ( ( mem(vertex,t2tb2(V),t2tb(Visited2)) & Q4 = Q3 & D4 = D3 ) | ( mem(vertex,t2tb2(V),t2tb(Q4)) & $lesseq(tb2t3(get(int,vertex,t2tb1(D4),t2tb2(V))),$sum(tb2t3(get(int,vertex,t2tb1(D4),t2tb2(U))),weight1(U,V))) & Q4 = Q3 & D4 = D3 ) | ( mem(vertex,t2tb2(V),t2tb(Q4)) & $less($sum(tb2t3(get(int,vertex,t2tb1(D3),t2tb2(U))),weight1(U,V)),tb2t3(get(int,vertex,t2tb1(D3),t2tb2(V)))) & Q4 = Q3 & D4 = tb2t1(set1(int,vertex,t2tb1(D3),t2tb2(V),t2tb3($sum(tb2t3(get(int,vertex,t2tb1(D3),t2tb2(U))),weight1(U,V))))) ) | ( ~ mem(vertex,t2tb2(V),t2tb(Visited2)) & ~ mem(vertex,t2tb2(V),t2tb(Q3)) & Q4 = tb2t(add(vertex,t2tb2(V),t2tb(Q3))) & D4 = tb2t1(set1(int,vertex,t2tb1(D3),t2tb2(V),t2tb3($sum(tb2t3(get(int,vertex,t2tb1(D3),t2tb2(U))),weight1(U,V))))) ) ) => ( ( $less(tb2t3(get(int,vertex,t2tb1(D4),t2tb2(V))),$sum(tb2t3(get(int,vertex,t2tb1(D4),t2tb2(U))),weight1(U,V))) | tb2t3(get(int,vertex,t2tb1(D4),t2tb2(V))) = $sum(tb2t3(get(int,vertex,t2tb1(D4),t2tb2(U))),weight1(U,V)) ) => ! [X: vertex1] : ( mem(vertex,t2tb2(X),t2tb(Visited2)) => ! [Y: vertex1] : ( mem(vertex,t2tb2(Y),t2tb(g_succ1(X))) => ( ( X != U | ( X = U & ~ mem(vertex,t2tb2(Y),t2tb(Su1)) ) ) => ( mem(vertex,t2tb2(Y),t2tb(Visited2)) | mem(vertex,t2tb2(Y),t2tb(Q4)) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )). %------------------------------------------------------------------------------