Logical Analysis Axioms
Axioms for the Ontology Values
fof(esa,axiom,(
! [Ax,C] :
( ( ? [I1] : model(I1,Ax)
<=> ? [I2] : model(I2,C) )
<=> status(Ax,C,esa) ) )).
fof(thm,axiom,(
! [Ax,C] :
( ! [I1] :
( model(I1,Ax)
=> model(I1,C) )
<=> status(Ax,C,thm) ) )).
fof(eth,axiom,(
! [Ax,C] :
( ( ? [I1] : model(I1,Ax)
& ? [I2] : ~ model(I2,Ax)
& ! [I3] :
( model(I3,Ax)
<=> model(I3,C) ) )
<=> status(Ax,C,eth) ) )).
fof(wca,axiom,(
! [Ax,C] :
( ( ~ ? [I1] : model(I1,Ax)
& ? [I2] : model(I2,C)
& ? [I3] : ~ model(I3,C) )
<=> status(Ax,C,wca) ) )).
Axioms for Ontology Relationships
fof(isa,axiom,(
! [S1,S2] :
( ! [Ax,C] :
( status(Ax,C,S1)
=> status(Ax,C,S2) )
<=> isa(S1,S2) ) )).
fof(nota,axiom,(
! [S1,S2] :
( ? [Ax,C] :
( status(Ax,C,S1)
& ~ status(Ax,C,S2) )
<=> nota(S1,S2) ) )).
fof(nevera,axiom,(
! [S1,S2] :
( ! [Ax,C] :
( status(Ax,C,S1)
=> ~ status(Ax,C,S2) )
<=> nevera(S1,S2) ) )).
fof(xora,axiom,(
! [S1,S2] :
( ! [Ax,C] :
( status(Ax,C,S1)
<~> status(Ax,C,S2) )
<=> xora(S1,S2) ) )).
Axioms for Formulae and Models
fof(completeness,axiom,(
! [I,F] :
( model(I,F)
<~> model(I,not(F)) ) )).
fof(not,axiom,(
! [I,F] :
( model(I,F)
<=> ~ model(I,not(F)) ) )).
fof(tautology,axiom,(
? [F] :
! [I] : model(I,F) )).
fof(satisfiable,axiom,(
? [F] :
( ? [I1] : model(I1,F)
& ? [I2] : ~ model(I2,F) ) )).
fof(contradiction,axiom,(
? [F] :
! [I] : ~ model(I,F) )).
fof(sat_non_taut_pair,axiom,(
? [Ax,C] :
( ? [I1] :
( model(I1,Ax)
& model(I1,C) )
& ? [I2] :
( ~ model(I2,Ax)
| ~ model(I2,C) ) ) )).
fof(non_thm_spt,axiom,(
? [I1,Ax,C] :
( model(I1,Ax)
& ~ model(I1,C)
& ? [I2] : model(I2,C) ) )).