fof(pab,axiom, p(a,b) ). fof(pafbc,axiom, p(a,f(b,c)) ). fof(pbZ,axiom, ! [Z] : p(b,Z) ). fof(pZc,axiom, ! [Z] : p(Z,c) ). fof(a_not_b,axiom, a != b ). fof(a_is_c,axiom, a = c ). fof(pXY,question, ? [X,Y] : p(X,Y) ).
SZS answers Tuple for ANS001+1 [[a,b],[b,Z],[a,c]]
SZS answers start Formulae for ANS001+1 fof(1,answer, ? [X,Y] : ( X = a & Y = b & p(X,Y) ), answer_to(pXY,[])). fof(2,answer, ? [X,Y] : ( X = b & Y = Z & p(X,Y) ), answer_to(pXY,[])). fof(3,answer, ? [X,Y] : ( X = a & Y = c & p(X,Y) ), answer_to(pXY,[])). SZS answers end Formulae for ANS001+1
fof(pXY,question, ? [X,Y] : ( p(X,Y) ). p(a,b) %----Answer [a,b] p(a,f(b,c)) ∀Z p(b,Z) fof(pXY,question, ? [X,Y] : ( p(X,Y) & ∀Z p(Z,c) (X != a | Y != b) ) ). a != b %----Answer [b,Z] a = c fof(pXY,question, ? [X,Y] : ! [Z] : ( p(X,Y) & (X != a | Y != b) & (X != b | Y != Z) ) ). %----Answer [a,c] fof(pXY,question, ? [X,Y] : ! [Z] : ( p(X,Y) & (X != a | Y != b) & (X != b | Y != Z) & (X != a | Y != c) ) ). %----CounterSatisfiable.
fof(pXY,question, ? [X,Y] : ( p(X,Y) ). p(a,b) %----Answer [a,b] p(a,f(b,c)) ∀Z p(b,Z) fof(ld__a_b,axiom, ld__(a,b) ). ∀Z p(Z,c) fof(ld__a_c,axiom, ld__(a,c) ). a != b fof(ld__a_f,axiom, ! [X,Y] : ld__(a,f(X,Y)) ). a = c fof(ld__b_c,axiom, ld__(b,c) ). fof(ld__b_f,axiom, ! [X,Y] : ld__(b,f(X,Y)) ). fof(ld__symmetry,axiom,! [X,Y] : (ld__(X,Y) => ld__(Y,X)) ). fof(pXY,question, ? [X,Y] : ( p(X,Y) & (ld__(X,a) | ld__(Y,b)) ) ). %----Answer [a,f(b,c)] fof(ld__c_f,axiom, ! [X,Y] : ld__(c,f(X,Y)) ). fof(ld__f_f,axiom, ! [X11,X12,X21,X22] : ( (ld__(X11,X12) | ld__(X21,X22)) => ld__(f(X11,X21),f(X12,X22)) ) ). fof(pXY,question, ? [X,Y] : ( p(X,Y) & (ld__(X,a) | ld__(Y,b)) & (ld__(X,a) | ld__(Y,f(b,c))) ) ). %----Answer [b,Z] etc.
%----Answers [[a,b],[a,f(b,c)]], then [b,Z] fof(new,conjecture, ? [Z] : ( ( b != a | Z != b) & (b != a | Z != f(b,c)) ) ). %----TheoremAnswer [b,Z] is accepted.
%----Answers [[a,b],[a,f(b,c)],[b,Z],[a,c]]
%----Answer [c,c]. Fail Unequal.
fof(old,conjecture, ? [Z] :
( (c = a & c = b) | (c = a & c = f(b,c)) |
(c = b & c = Z) | (c = a & c = c) ) ).
%----Theorem.
Answer [c,c] is rejected.