→
cmi
vs. →
con
The conditionals
→
cmi
T
B
N
F
T
T
B
N
F
B
T
B
N
F
N
T
T
T
T
F
T
T
T
T
→
con
T
B
N
F
T
T
B
N
F
B
T
B
N
F
N
T
B
T
B
F
T
T
T
T
The biconditionals
↔
cmi
T
B
N
F
T
T
B
N
F
B
B
B
N
F
N
N
N
T
T
F
F
F
T
T
↔
con
T
B
N
F
T
T
B
N
F
B
B
B
F
F
N
N
F
T
B
F
F
F
B
T
Similar but different
Differ on which (un)designated value is used
FDE
→
cmi
claims
N
↔
F
=
T
FDE
→
con
says ¬(
p
→
q
) ⊭
p