fof(pel24,conjecture, ? [X] : ( p(X) & r(X) ) ). fof(pel24_1,axiom, ~ ? [X] : ( s(X) & q(X) ) ). fof(pel24_2,axiom, ! [X] : ( p(X) => ( q(X) | r(X) ) ) ). fof(pel24_3a,axiom, ? [X] : p(X) ). fof(pel24_4a,axiom, ! [X] : ( q(X) => s(X) ) ). fof(p1,negated_conjecture, ? [X] : ( p(X) & r(X) ), inference(clausify,[status(thm)],[pel24]) ). fof(p2,plain, ( s(X) & q(X) ), inference(clausify,[status(thm)],[pel24_1]) ). fof(p3,plain, ~ p(a), inference(clausify,[status(esa),new_symbols(skolem,[a]),skolemized(X)],[pel24_3a]) ). fof(p4,plain, q(X) & ~ s(X) ), inference(clausify,[status(thm)],[pel24_4a]) ). fof(p5,plain, ( p(X) & ~ q(X) & ~ r(X) ), inference(clausify,[status(thm)],[pel24_2]) ). fof(p6,plain, ( p(a) & r(a) ), inference(extension,[status(thm),path([])], [inference(instantiate,[status(thm),bind(X,a)],[p1])]) ). fof(p7,plain, ~ p(a), inference(extension,[status(thm),path([p6:1])],[p3]) ). fof(p8,plain, $true, inference(reduction,[status(thm),path([p7:1,p6:1])],[p7:1,p6:1]) ). fof(p9,plain, ( p(a) & ~ q(a) & ~ r(a) ), inference(extension,[status(thm),path([p6:2])], [inference(instantiate,[status(thm),bind(X,a)],[p5])])). fof(p10,plain, $true, inference(reduction,[status(thm),path([p9:3,p6:2])],[p6:2,p9:3]) ). fof(p11,plain, ~ p(a), inference(extension,[status(thm),path([p9:1,p6:2])],[p3]) ). fof(p12,plain, $true, inference(reduction,[status(thm),path([p11:1,p9:1,p6:2])],[p11:1,p9:1]) ). fof(p13,plain, ( s(a) & q(a) ), inference(extension,[status(thm),path([p9:2,p6:2])], [inference(instantiate,[status(thm),bind(X,a)],[p2])]) ). fof(p14,plain, $true, inference(reduction,[status(thm),path([p13:2,p9:2,p6:2])],[p13:2,p9:2]) ). fof(p15,plain, ( q(a) & ~ s(a) ), inference(extension,[status(thm),path([p13:1,p9:2,p6:2])], [inference(instantiate,[status(thm),bind(X,a)],[p4])]) ). fof(p16,plain, $true, inference(reduction,[status(thm),path([p15:2,p13:1,p9:2,p6:2])],[p15:2,p13:1]) ). fof(p17,plain, $true, inference(reduction,[status(thm),path([p15:1,p13:1,p9:2,p6:2])],[p15:1,p9:2]) ).