fof(pel24_1,axiom, ~ ? [X] : ( s(X) & q(X) ), file('Pell24Simplified.p',pel24_1) ). fof(pel24_2,axiom, ! [X] : ( p(X) => ( q(X) | r(X) ) ), file('Pell24Simplified.p',pel24_2) ). fof(pel24_3a,axiom, ? [X] : p(X), file('Pell24Simplified.p',pel24_3a) ). fof(pel24_4a,axiom, ! [X] : ( q(X) => s(X) ), file('Pell24Simplified.p',pel24_4a) ). fof(pel24,conjecture, ? [X] : ( p(X) & r(X) ), file('Pell24Simplified.p',pel24) ). fof(f1,negated_conjecture, ~ ? [X] : ( p(X) & r(X) ), inference(negate,[status(cth)],[pel24]) ). cnf(c1,plain, ( ~ p(X) | ~ r(X) ), inference(clausify,[status(thm)],[f1]) ). cnf(c2,plain, ( ~ s(X) | ~ q(X) ), inference(clausify,[status(thm)],[pel24_1]) ). cnf(c3,plain, p(a), inference(clausify,[status(esa),new_symbols(skolem,[a]),skolemized(X)],[pel24_3a]) ). cnf(c4,plain, ( ~ q(X) | s(X) ), inference(clausify,[status(thm)],[pel24_4a]) ). cnf(c5,plain, ( ~ p(X) | q(X) | r(X) ), inference(clausify,[status(thm)],[pel24_2]) ). cnf(t1,plain, ( ~ p(a) | ~ r(a) ), inference(start,[status(thm),path([])],[c1]) ). cnf(t2,plain, p(a), inference(extension,[status(thm),path([t1:1])],[c3]) ). cnf(t3,plain, $false, inference(reduction,[status(thm),path([t2:1,t1:1])],[t2:1,t1:1]) ). cnf(t4,plain, ( ~ p(a) | q(a) | r(a) ), inference(extension,[status(thm),path([t1:2])],[c5]) ). cnf(t5,plain, $false, inference(reduction,[status(thm),path([t4:3,t1:2])],[t4:1,t1:2]) ). cnf(t6,plain, p(a), inference(extension,[status(thm),path([t4:1,t1:2])],[c3]) ). cnf(t7,plain, $false, inference(reduction,[status(thm),path([t6:1,t4:1,t1:2])],[t6:1,t4:1]) ). cnf(t8,plain, ( ~ s(a) | ~ q(a) ), inference(extension,[status(thm),path([t4:2,t1:2])],[c2]) ). cnf(t9,plain, $false, inference(reduction,[status(thm),path([t8:2,t4:2,t1:2])],[t8:2,t4:2]) ). cnf(t10,plain, ( ~ q(a) | s(a) ), inference(extension,[status(thm),path([t8:1,t4:2,t1:2])],[c4]) ). cnf(t11,plain, $false, inference(reduction,[status(thm),path([t10:2,t8:1,t4:2,t1:2])],[t10:2,t8:1]) ). cnf(t12,plain, $false, inference(reduction,[status(thm),path([t10:1,t8:1,t4:2,t1:2])],[t10:1,t4:2]) ).