fof(pel24_1,axiom, ~ ? [X] : ( s(X) & q(X) ) ). fof(pel24_2,axiom, ! [X] : ( p(X) => ( q(X) | r(X) ) ) ). fof(pel24_3a,axiom, ? [X] : p(X) ). fof(pel24_4a,axiom, ! [X] : ( q(X) => s(X) ) ). %----Clausify pel24_1 fof(p1a,plain, ! [X] : ( ~ s(X) | ~ q(X) ), inference(same_nnf,[status(thm)],[pel24_1]) ). cnf(p1, plain, ( ~ s(X) | ~ q(X) ), inference(forall_inst,[status(thm)],[p1a]) ). %----Clausify pel24_2 fof(p2a, plain, ! [X] : ( ~ p(X) | q(X) | r(X) ), inference(same_nnf,[status(thm)],[pel24_2]) ). cnf(p2, plain, ~ p(Y) | q(Y) | r(Y), inference(forall_inst,[status(thm)],[p2a]) ). %----Clausify pel24_3a. "a" is the Skolem constant fof(a_defn,axiom, ( a = # [X] : p(X) ) ), introduced(epsilon,[skolemized(X2),parent(a1)]) ). cnf(p3,plain, p(a), inference(epsilon_rule,[status(thm)],[pel24_3a,a_defn]) ). %----Clausify pel24_4a fof(p4a,plain, ! [X] : ( ~ q(X) | s(X) ), inference(same_nnf,[status(thm)],[pel24_4a]) ). cnf(p4,plain, ~ q(X) | s(X), inference(forall_inst,[status(thm)],[p4a]) ). %----Start "resolution" proof fof(p5,assumption, [q(a)] --> [q(a)], inference(hyp, [status(thm)], []) ). fof(p7,plain, [q(a)] --> [s(a)], inference(inst,[status(thm)],[inference(inst,[status(thm),bind(X,$fot(a))],[p4])]) ). fof(p9,plain, [q(a)] --> [~ q(a)], inference(resolution,[status(thm)],[p7,inference(inst,[status(thm),bind(X,$fot(a))],[p1])]) ). fof(p10,plain, ~ q(a), inference(rightNot,[status(thm)],[p9]) ). fof(p12,plain, q(a) | r(a), inference(resolution,[status(thm)],[p3,inference(inst,[status(thm),bind(Y,$fot(a))],[p2])]) ). fof(p13,plain, r(a), inference(resolution,[status(thm)],[p12,p10]) ). fof(p14,plain, p(a) & r(a), inference(rightAnd,[status(thm)],[p3,p13]) ). fof(pel24,conjecture, ? [X] : ( p(X) & r(X) ), inference(rightExists,[status(thm)],[p14]) ).