Interpretation Representation and Model Verification

by Geoff Sutcliffe, Alex Steen, Pascal Fontaine, Jack McKeown


Representation of Interpretations in the TPTP World


Background

Why is Model Finding Useful?

Is there a need for model finding systems that:
  1. Give only a "yes", indicating that there is a model.
    • In an (industrial) application where models indicate bugs, users would probably get very frustrated. [McCune]
    • Acceptable, but a model is preferred. [Claessen]
    • As part of a decision procedure, sat/unsat could be used as a yes/no subroutine. I do use this for my I/O logic reasoner. [Steen]
  2. Give only a "yes, finite", indicating that there is a finite model.
  3. Output a model in some form
    • In the case of a countermodel for a conjecture, one would like to have some concrete representation of it to see why the theorem cannot be proved. [Claessen]
    • Sometimes it is very easy to find satisfiability (a saturation) with ordered resolution even if there is a finite model. [Tammet]
    • Regardless of the cardinalities, applications that use ATP systems to find models typically need an explicit model with a domain and symbol mapping. [Sutcliffe]
  4. Output a finite model in some form
    • Finite models are used to evaluate other clauses. [McCune]
    • It's better to require the output of a finite model as this can be easily checked by other systems. [Zhang]
    • It is not enough to know that there is a solution; one would like to know what the solution is. [Claessen]

Representation of Interpretations

Infinite domains are necessary as soon as the formula language contains any numbers on an infinite domain (not arithemetic modulo). Infinite domains are also necessary for other (non-numeric) applications, e.g., those that involve modeling time. Types of interpretations include:

Properties of Different Representations


Representation of FOF Finite Interpretations

Consider the following FOF problem from the
TPTP Format for Finite Interpretations in the TPTP Quick Guide. It is CounterSatisfiable, i.e., there is a model for the axioms and negated conjecture.
%------------------------------------------------------------------------------
%----All (hu)men are created equal. John is a human. John got an F grade.
%----There is someone (a human) who got an A grade. An A grade is not 
%----equal to an F grade. Grades are not human. Therefore, it is not the 
%----case being created equal is the same as really being equal.

fof(all_created_equal,axiom,
    ! [H1,H2] :
      ( ( human(H1)
        & human(H2) )
     => created_equal(H1,H2) ) ).

fof(john,axiom,
    human(john) ).

fof(john_failed,axiom,
    grade_of(john) = f ).

fof(someone_got_an_a,axiom,
    ? [H] :
      ( human(H)
      & grade_of(H) = a ) ).

fof(distinct_grades,axiom,
    a != f ).

fof(grades_not_human,axiom,
    ! [G] : ~ human(grade_of(G)) ).

fof(equality_lost,conjecture,
    ! [H1,H2] :
      ( ( human(H1)
        & human(H2)
        & created_equal(H1,H2) )
    <=> H1 = H2 ) ).
%------------------------------------------------------------------------------

A weakness of the format for the finite interpretation presented in the TPTP Format for Finite Interpretations in the TPTP Quick Guide is that the format relies on the formulae names (all the same) to link the three components of the interpretation, which is not allowed in the TPTP world. In the new format these are merged into a single annotated formula with the role interpretation:
%------------------------------------------------------------------------------
fof(equality_lost,interpretation,
    ( ! [X] : ( X = "a" | X = "f" | X = "john" | X = "gotA") 
    & ( a = "a"
      & f = "f"
      & john = "john"
      & grade_of("a") = "a"
      & grade_of("f") = "a"
      & grade_of("john") = "f"
      & grade_of("gotA") = "a" ) 
    & ( ~ human("a")
      & ~ human("f")
      & human("john")
      & human("gotA")
      & ~ created_equal("a","a")
      & ~ created_equal("a","f")
      & ~ created_equal("a","john")
      & ~ created_equal("a","gotA")
      & ~ created_equal("f","a")
      & ~ created_equal("f","f")
      & ~ created_equal("f","john")
      & ~ created_equal("f","gotA")
      & ~ created_equal("john","a")
      & ~ created_equal("john","f")
      & created_equal("john","john")
      & created_equal("john","gotA")
      & ~ created_equal("gotA","a")
      & ~ created_equal("gotA","f")
      & created_equal("gotA","john")
      & created_equal("gotA","gotA") ) ) ).
%------------------------------------------------------------------------------

Note how the use of "distinct object"s makes the domain elements distinct.

The parts of a single interpretation formula can be separated out at varying levels of granularity, using subroles. At a medium grained level the domain and mappings can be separated:

%------------------------------------------------------------------------------
fof(equality_lost_domain,interpretation-domain,
    ! [X] : ( X = "a" | X = "f" | X = "john" | X = "gotA") ).

fof(equality_lost_term_mappings,interpretation-mapping,
    ( a = "a"
    & f = "f"
    & john = "john"
    & grade_of("a") = "a"
    & grade_of("f") = "a"
    & grade_of("john") = "f"
    & grade_of("gotA") = "a" ) ).

fof(equality_lost_predicate_mappings,interpretation-mapping,
    ( ~ human("a")
    & ~ human("f")
    & human("john")
    & human("gotA") ).
    & ~ created_equal("a","john")
    & ~ created_equal("a","gotA")
    & ~ created_equal("f","john")
    & ~ created_equal("f","gotA")
    & ~ created_equal("john","a")
    & ~ created_equal("john","f")
    & ~ created_equal("gotA","a")
    & ~ created_equal("gotA","f")
    & ~ created_equal("a","a")
    & ~ created_equal("a","f")
    & ~ created_equal("f","a")
    & ~ created_equal("f","f")
    & created_equal("john","john")
    & created_equal("john","gotA")
    & created_equal("gotA","john")
    & created_equal("gotA","gotA") ).
%------------------------------------------------------------------------------

At a fine grained level the domain and mappings can be separated by symbol:

%------------------------------------------------------------------------------
fof(equality_lost_domain,interpretation-domain($i,$i),
    ! [X] : ( X = "a" | X = "f" | X = "john" | X = "gotA") ).

fof(equality_lost_a,interpretation-mapping(a,$i),
    a = "a" ).

fof(equality_lost_f,interpretation-mapping(f,$i),
    f = "f" ).

fof(equality_lost_john,interpretation-mapping(john,$i),
    john = "john" ).

fof(equality_lost_grade_of,interpretation-mapping(grade_of,$i),
    ( grade_of("a") = "a"
    & grade_of("f") = "a"
    & grade_of("john") = "f"
    & grade_of("gotA") = "a" ) ).

fof(equality_lost_human,interpretation-mapping(human,$o),
    ( ~ human("a")
    & ~ human("f")
    & human("john")
    & human("gotA") ).

fof(equality_lost_created_equal,interpretation-mapping(created_equal,$o),
    ( ~ created_equal("a","john")
    & ~ created_equal("a","gotA")
    & ~ created_equal("f","john")
    & ~ created_equal("f","gotA")
    & ~ created_equal("john","a")
    & ~ created_equal("john","f")
    & ~ created_equal("gotA","a")
    & ~ created_equal("gotA","f") ).
    & ~ created_equal("a","a")
    & ~ created_equal("a","f")
    & ~ created_equal("f","a")
    & ~ created_equal("f","f")
    & created_equal("john","john")
    & created_equal("john","gotA")
    & created_equal("gotA","john")
    & created_equal("gotA","gotA") ).
%------------------------------------------------------------------------------


Representation of FOF Saturation Interpretations

The new format for interpretations can also be used for saturations that induce a set of Herbrand interpretations, by giving the saturation formulae the role interpretation-herbrand: (the -herbrand is optional but useful):
%------------------------------------------------------------------------------
cnf(c_0_15,interpretation-herbrand,
    ( created_equal(X1,X2) | ~ human(X1) | ~ human(X2) ) ).

cnf(c_0_16,interpretation-herbrand, ~ human(grade_of(X1)) ).

cnf(c_0_17,interpretation-herbrand, grade_of(esk3_0) = a ).

cnf(c_0_18,interpretation-herbrand, grade_of(john) = f ).

cnf(c_0_20,interpretation-herbrand,
    ( esk1_0 != esk2_0 | ~ human(esk1_0) | ~ human(esk2_0) ) ).

cnf(c_0_21,interpretation-herbrand,
    ( created_equal(esk1_0,esk2_0) | esk1_0 = esk2_0 ) ).

cnf(c_0_22,interpretation-herbrand, ( human(esk2_0) | esk1_0 = esk2_0 ) ).

cnf(c_0_23,interpretation-herbrand, ( human(esk1_0) | esk1_0 = esk2_0 ) ).

cnf(c_0_24,interpretation-herbrand, ~ human(a) ).

cnf(c_0_25,interpretation-herbrand, ~ human(f) ).

cnf(c_0_26,interpretation-herbrand, a != f ).

cnf(c_0_27,interpretation-herbrand, human(esk3_0) ).

cnf(c_0_28,interpretation-herbrand, human(john) ).
%------------------------------------------------------------------------------

(This saturation was created by E.)


Representation of FOF Formulae Interpretations

The new format for interpretations can also be used for formulae that induce a set of Herbrand interpretations, by giving the formulae the role interpretation-herbrand (the -herbrand is optional but useful):
%------------------------------------------------------------------------------
fof(created_equal,interpretation-herbrand,
    ! [X0,X1] : ( created_equal(X0,X1) <=> $true ) ).

fof(human,interpretation-herbrand,
    ! [X0] : ( human(X0) <=> ( X0 != "f" & X0 != "a" ) ) ).

fof(john,interpretation-herbrand,
    ! [X0] : ( X0 = john <=> X0 = "john" ) ).

fof(grade_of,interpretation-herbrand,
    ! [X0,X1] :
      ( X0 = grade_of(X1)
    <=> ( ( X0 = "f" & X1 != "gotA" )
        | ( X0 = "a" & X1 = "gotA" ) ) ) ).

fof(f,interpretation-herbrand,
    ! [X0] : ( X0 = f <=> X0 = "f" ) ).

fof(a,interpretation-herbrand,
    ! [X0] : ( X0 = a <=> X0 = "a" ) ).
%------------------------------------------------------------------------------

(This set of formulae is a modified version of the
Herbrand-formulae created by iProver.)

Representation of TFF/TXF Interpretations

The example of a finite FOF interpretation clearly points to the need for types. The problem would be better written as ...
%------------------------------------------------------------------------------
tff(human_type,type,      human: $tType ).
tff(cat_type,type,        cat: $tType ).
tff(jon_decl,type,        jon: human ).
tff(garfield_decl,type,   garfield: cat ).
tff(arlene_decl,type,     arlene: cat ).
tff(nermal_decl,type,     nermal: cat ).
tff(loves_decl,type,      loves: cat > cat ).
tff(owns_decl,type,       owns: ( human * cat ) > $o ).

tff(only_jon,axiom, ! [H: human] : H = jon ).

tff(only_garfield_and_arlene_and_nermal,axiom,
    ! [C: cat] : 
      ( C = garfield | C = arlene | C = nermal ) ).

tff(distinct_cats,axiom,
    ( garfield != arlene & arlene != nermal 
    & nermal != garfield ) ).

tff(jon_owns_garfield_not_arlene,axiom,
    ( owns(jon,garfield) & ~ owns(jon,arlene) ) ).

tff(all_cats_love_garfield,axiom,
    ! [C: cat] : ( loves(C) = garfield ) ).

tff(jon_owns_garfields_lovers,conjecture,
    ! [C: cat] :
      ( ( loves(C) = garfield & C != arlene ) 
       => owns(jon,C) ) ).
%------------------------------------------------------------------------------

... and a finite interpretation (a countermodel for the conjecture) is ...
%------------------------------------------------------------------------------
tff(human_type,type,      human: $tType ).
tff(cat_type,type,        cat: $tType ).
tff(jon_decl,type,        jon: human ).
tff(garfield_decl,type,   garfield: cat ).
tff(arlene_decl,type,     arlene: cat ).
tff(nermal_decl,type,     nermal: cat ).
tff(loves_decl,type,      loves: cat > cat ).
tff(owns_decl,type,       owns: ( human * cat ) > $o ).

%----Types of the domains
tff(d_human_type,type,    d_human: $tType ).
tff(d_cat_type,type,      d_cat: $tType ).
%----Types of the promotion functions
tff(d2human_decl,type,    d2human: d_human > human ).
tff(d2cat_decl,type,      d2cat: d_cat > cat ).
%----Types of the domain elements
tff(d_jon_decl,type,      d_jon: d_human ).
tff(d_garfield_decl,type, d_garfield: d_cat ).
tff(d_arlene_decl,type,   d_arlene: d_cat ).
tff(d_nermal_decl,type,   d_nermal: d_cat ).

tff(garfield,interpretation,
%----The domain for human is d_human
    ( ( ! [H: human] : ? [DH: d_human] : H = d2human(DH)
%----The d_human elements are {d_jon}
      & ! [DH: d_human] : ( DH = d_jon )
%----The type-promoter is a bijection
      & ! [DH1: d_human,DH2: d_human] :
          ( d2human(DH1) = d2human(DH2) => DH1 = DH2 )
%----The domain for cat is d_cat
      & ! [C: cat] : ? [DC: d_cat] : C = d2cat(DC)
%----The d_cat elements are {d_garfield,d_arlene,d_nermal}
      & ! [DC: d_cat]: 
          ( DC = d_garfield | DC = d_arlene | DC = d_nermal )
      & $distinct(d_garfield,d_arlene,d_nermal)
%----The type-promoter is a bijection
      & ! [DC1: d_cat,DC2: d_cat] : 
          ( d2cat(DC1) = d2cat(DC2) => DC1 = DC2 ) )
%----Interpret terms via the type-promoted domain
    & ( jon = d2human(d_jon)
      & garfield = d2cat(d_garfield)
      & arlene = d2cat(d_arlene)
      & nermal = d2cat(d_nermal)
      & loves(d2cat(d_garfield)) = d2cat(d_garfield)
      & loves(d2cat(d_arlene)) = d2cat(d_garfield)
      & loves(d2cat(d_nermal)) = d2cat(d_garfield) )
%----Interpret atoms as true or false
    & ( owns(d2human(d_jon),d2cat(d_garfield))
      & ~ owns(d2human(d_jon),d2cat(d_arlene))
      & ~ owns(d2human(d_jon),d2cat(d_nermal)) ) ) ).
%------------------------------------------------------------------------------

The parts of a single interpretation formula can be separated out at varying levels of granularity, using subroles. At a medium grained level the domain and mappings can be separated:

%------------------------------------------------------------------------------
tff(human_type,type,      human: $tType ).
tff(cat_type,type,        cat: $tType ).
tff(jon_decl,type,        jon: human ).
tff(garfield_decl,type,   garfield: cat ).
tff(arlene_decl,type,     arlene: cat ).
tff(nermal_decl,type,     nermal: cat ).
tff(loves_decl,type,      loves: cat > cat ).
tff(owns_decl,type,       owns: ( human * cat ) > $o ).

tff(d_human_type,type,    d_human: $tType ).
tff(d_cat_type,type,      d_cat: $tType ).
tff(d2human_decl,type,    d2human: d_human > human ).
tff(d2cat_decl,type,      d2cat: d_cat > cat ).
tff(d_jon_decl,type,      d_jon: d_human ).
tff(d_garfield_decl,type, d_garfield: d_cat ).
tff(d_arlene_decl,type,   d_arlene: d_cat ).
tff(d_nermal_decl,type,   d_nermal: d_cat ).

tff(garfield_domains,interpretation-domain,
    ( ! [H: human] : ? [DH: d_human] : H = d2human(DH)
    & ! [DH: d_human] : ( DH = d_jon )
    & ! [DH1: d_human,DH2: d_human] :
        ( d2human(DH1) = d2human(DH2) => DH1 = DH2 )
    & ! [C: cat] : ? [DC: d_cat] : C = d2cat(DC)
    & ! [DC: d_cat]: 
        ( DC = d_garfield | DC = d_arlene | DC = d_nermal )
    & $distinct(d_garfield,d_arlene,d_nermal)
    & ! [DC1: d_cat,DC2: d_cat] : 
        ( d2cat(DC1) = d2cat(DC2) => DC1 = DC2 ) ) ).

tff(garfield_mappings,interpretation-mapping,
    ( ( jon = d2human(d_jon)
      & garfield = d2cat(d_garfield)
      & arlene = d2cat(d_arlene)
      & nermal = d2cat(d_nermal)
      & loves(d2cat(d_garfield)) = d2cat(d_garfield)
      & loves(d2cat(d_arlene)) = d2cat(d_garfield)
      & loves(d2cat(d_nermal)) = d2cat(d_garfield) )
    & ( owns(d2human(d_jon),d2cat(d_garfield))
      & ~ owns(d2human(d_jon),d2cat(d_arlene))
      & ~ owns(d2human(d_jon),d2cat(d_nermal)) ) ) ).
%------------------------------------------------------------------------------

At a fine grained level the individual symbol mappings can be separated. The types of the symbols and the types of the domain must be given.
%------------------------------------------------------------------------------
tff(human_type,type,      human: $tType ).
tff(cat_type,type,        cat: $tType ).
tff(jon_decl,type,        jon: human ).
tff(garfield_decl,type,   garfield: cat ).
tff(arlene_decl,type,     arlene: cat ).
tff(nermal_decl,type,     nermal: cat ).
tff(loves_decl,type,      loves: cat > cat ).
tff(owns_decl,type,       owns: ( human * cat ) > $o ).

tff(d_human_type,type,    d_human: $tType ).
tff(d_cat_type,type,      d_cat: $tType ).
tff(d2human_decl,type,    d2human: d_human > human ).
tff(d2cat_decl,type,      d2cat: d_cat > cat ).
tff(d_jon_decl,type,      d_jon: d_human ).
tff(d_garfield_decl,type, d_garfield: d_cat ).
tff(d_arlene_decl,type,   d_arlene: d_cat ).
tff(d_nermal_decl,type,   d_nermal: d_cat ).

tff(garfield_domain_human,interpretation-domain(human,d_human),
    ( ! [H: human] : ? [DH: d_human] : H = d2human(DH)
    & ! [DH: d_human] : ( DH = d_jon )
    & ! [DH1: d_human,DH2: d_human] :
        ( d2human(DH1) = d2human(DH2) => DH1 = DH2 ) ) ).

tff(garfield_domain_cat,interpretation-domain(cat,d_cat),
    ( ! [C: cat] : ? [DC: d_cat] : C = d2cat(DC)
    & ! [DC: d_cat]: 
        ( DC = d_garfield | DC = d_arlene | DC = d_nermal )
    & $distinct(d_garfield,d_arlene,d_nermal)
    & ! [DC1: d_cat,DC2: d_cat] : 
        ( d2cat(DC1) = d2cat(DC2) => DC1 = DC2 ) ) ).

tff(garfield_mapping_jon,interpretation-mapping(jon,d_human),
    jon = d2human(d_jon) ).

tff(garfield_mapping_garfield,interpretation-mapping(garfied,d_cat),
    garfield = d2cat(d_garfield) ).

tff(garfield_mapping_arlene,interpretation-mapping(arlene,d_cat),
    arlene = d2cat(d_arlene) ).

tff(garfield_mapping_nermal,interpretation-mapping(nermal,d_cat),
    nermal = d2cat(d_nermal) ).

tff(garfield_mapping_loves,interpretation-mapping(loves,d_cat),
    ( loves(d2cat(d_garfield)) = d2cat(d_garfield)
    & loves(d2cat(d_arlene)) = d2cat(d_garfield)
    & loves(d2cat(d_nermal)) = d2cat(d_garfield) ) ).

tff(garfield_mapping_owns,interpretation-mapping(owns,$o),
    ( owns(d2human(d_jon),d2cat(d_garfield))
    & ~ owns(d2human(d_jon),d2cat(d_arlene))
    & ~ owns(d2human(d_jon),d2cat(d_nermal)) ) ).
%------------------------------------------------------------------------------


Representation of TXF Interpretations


Representation of THF Interpretations

The following TH0 problem is CounterSatisfiable, i.e., there is a model for the axioms and negated conjecture.
%------------------------------------------------------------------------------
thf(beverage_decl,type,   beverage: $tType ).
thf(syrup_decl,type,      syrup: $tType ).
thf(coffee_type,type,     coffee: beverage ).
thf(mix_type,type,        mix: beverage > syrup > beverage ).
thf(heat_type,type,       heat: beverage > beverage ).
thf(heated_mix_type,type, heated_mix: beverage > syrup > beverage ).
thf(hot_type,type,        hot: beverage > $o ).

thf(heated_mix,axiom,
    ( heated_mix
    = ( ^ [B: beverage,S: syrup] : ( heat @ ( mix @ B @ S ) ) ) ) ).

thf(hot_mixture,axiom,
    ! [B: beverage,S: syrup] : ( hot @ ( heated_mix @ B @ S ) ) ).

thf(heated_coffee_mix,axiom,
    ! [S: syrup] : ( ( heated_mix @ coffee @ S ) = coffee ) ).

thf(hot_coffee,conjecture,
    ? [Mixture: syrup > beverage] :
      ~ ? [S: syrup] :
          ( ( ( Mixture @ S ) = coffee )
          & ( hot @ ( Mixture @ S ) ) ) ).
%------------------------------------------------------------------------------

Here's a finite model (that I found using Nitpick) ...
%------------------------------------------------------------------------------
thf(beverage_decl,type,   beverage: $tType ).
thf(syrup_decl,type,      syrup: $tType ).
thf(coffee_type,type,     coffee: beverage ).
thf(mix_type,type,        mix: beverage > syrup > beverage ).
thf(heat_type,type,       heat: beverage > beverage ).
thf(heated_mix_type,type, heated_mix: beverage > syrup > beverage ).
thf(hot_type,type,        hot: beverage > $o ).

thf(d_beverage_decl,type, d_beverage: $tType ).
thf(d_syrup_decl,type,    d_syrup: $tType ).
thf(d2beverage_type,type, d2beverage: d_beverage > beverage ).
thf(d2syrup_type,type,    d2syrup: d_syrup > syrup ).
thf(d_coffee_type,type,   d_coffee: d_beverage ).
thf(d_date_type,type,     d_date: d_syrup ).

thf(hot_coffee,interpretation,
    ( ( ! [B: beverage] : ? [DB: d_beverage] : ( B = ( d2beverage @ DB ) )
      & ! [DB: d_beverage] : ( DB = d_coffee )
      & ! [DB1: d_beverage,DB2: d_beverage] :
          ( ( ( d2beverage @ DB1 ) = ( d2beverage @ DB2 ) ) => ( DB1 = DB2 ) )
      & ! [S: syrup] : ? [DS: d_syrup] : ( S = ( d2syrup @ DS ) )
      & ! [DS: d_syrup] : ( DS = d_date )
      & ! [DS1: d_syrup,DS2: d_syrup] :
          ( ( ( d2syrup @ DS1 ) = ( d2syrup @ DS2 ) ) => ( DS1 = DS2 ) ) )
    & ( ( ( mix @ ( d2beverage @ d_coffee ) @ ( d2syrup @ d_date ) ) 
        = ( d2beverage @ d_coffee ) )
      & ( ( heat @ ( d2beverage @ d_coffee ) ) 
        = ( d2beverage @ d_coffee ) )
      & ( ( heated_mix @ ( d2beverage @ d_coffee ) @ ( d2syrup @ d_date ) ) 
        = ( d2beverage @ d_coffee ) )
      & ( hot @ ( d2beverage @ d_coffee ) ) ) ) ).
%------------------------------------------------------------------------------


Representation of Infinite Interpretations

Consider the following TFF example that requires an integer size domain ...
%------------------------------------------------------------------------------
tff(person_type,type,        person: $tType ).
tff(bob_decl,type,           bob: person ).
tff(child_of_decl,type,      child_of: person > person ).
tff(is_descendant_decl,type, is_descendant: (person * person) > $o ).

tff(descendents_different,axiom,
    ! [A: person,D: person] : 
      ( is_descendant(A,D) => ( A != D ) ) ).

tff(descendent_transitive,axiom,
    ! [A: person,C: person,G: person] :
      ( ( is_descendant(A,C) & is_descendant(C,G) ) 
     => is_descendant(A,G) ) ).

tff(child_is_descendant,axiom,
    ! [P: person] : is_descendant(P,child_of(P)) ).

tff(all_have_child,axiom,
    ! [P: person] : ? [C: person] : C = child_of(P) ).
%------------------------------------------------------------------------------

Here's a model using closed terms representing Peano numbers as the domain elements ...
%------------------------------------------------------------------------------
tff(person_type,type,         person: $tType ).
tff(bob_decl,type,            bob: person ).
tff(child_of_decl,type,       child_of: person > person ).
tff(is_descendant_decl,type,  is_descendant: ( person * person ) > $o ).

tff(peano_type,type,          peano: $tType).
tff(zero_decl,type,           zero: peano ).
tff(s_decl,type,              s: peano > peano ).
tff(peano2person_decl,type,   peano2person: peano > person ).
tff(peano_less_decl,type,     peano_less: ( peano * peano ) > $o ).

tff(people,interpretation,
%----Domain for type person is the Peano numbers
    ( ( ! [P: person] : ? [I: peano] : ( P = peano2person(I) )
      & ! [I: peano] : ( I = zero | ? [P: peano] : I = s(P) )
%----The type promoter is a bijection (injective and surjective)
      & ! [I1: peano,I2: peano] :
          ( peano2person(I1) = peano2person(I2) => I1 = I2 )
%----Relationships between Peano numbers
      & ! [I1: peano,I2: peano,I3: peano] :
          ( peano_less(I1,s(I1))
          & ( ( peano_less(I1,I2) & peano_less(I2,I3) )
           => peano_less(I1,I3) )
          & ( peano_less(I1,I2)
           => I1 != I2 ) ) )
%----Mapping people to Peano numbers
    & ( bob = peano2person(zero)
      & ! [I: peano] :
          child_of(peano2person(I)) = peano2person(s(I)) )
%----Interpretation of descendancy
    & ( ! [A: peano,D: peano] :
          ( is_descendant(peano2person(A),peano2person(D))
        <=> peano_less(A,D) ) ) ) ).
%------------------------------------------------------------------------------


Here's a model using the integers for the domain elements ...
%------------------------------------------------------------------------------
tff(person_type,type,        person: $tType ).
tff(bob_decl,type,           bob: person ).
tff(child_of_decl,type,      child_of: person > person ).
tff(is_descendant_decl,type, is_descendant: ( person * person ) > $o ).

tff(int2person_decl,type,    int2person: $int > person ).

tff(people,interpretation,
%----Domain for type person is the integers
    ( ( ! [P: person] : ? [I: $int] : int2person(I) = P
%----The type promoter is a bijection (injective and surjective)
      & ! [I1: $int,I2: $int] : 
          ( int2person(I1) = int2person(I2) => I1 = I2 ) )
%----Mapping people to integers. Note that Bob's ancestors will be interpreted 
%----as negative integers.
    & ( bob = int2person(0)
      & ! [I: $int] : child_of(int2person(I)) = int2person($sum(I,1)) )
%----Interpretation of descendancy
    & ! [A: $int,D: $int] : 
        ( is_descendant(int2person(A),int2person(D)) <=> $less(A,D) ) ) ).
%------------------------------------------------------------------------------


Finite and infinite domains can be mixed. Here's a problem that can be proven by Vampire. With the conjecture modified as below, it has a countermodel with integer domains for the X and Y positions (mimicing the logic), and a finite domain for the Z level.
%------------------------------------------------------------------------------
tff(level_type,type,  level: $tType).
tff(ground_decl,type, ground: level).
tff(middle_decl,type, middle: level).
tff(top_decl,type,    top: level).
tff(space_decl,type,  space: level).

tff(possible_position_decl,type,
    possible_position: ( $int * $int * level ) > $o ).

tff(only_four_distinct_levels,axiom,
    ( ! [Z: level] :
        ( ( Z = ground )
        | ( Z = middle )
        | ( Z = top )
        | ( Z = space ) )
    & ( ground != middle )
    & ( ground != top )
    & ( ground != space )
    & ( middle != top )
    & ( middle != space )
    & ( top != space ) ) ).
%    & $distinct(ground,middle,top,space) ) ).

tff(start_at_origin,axiom,
    possible_position(0,0,ground) ).

tff(move_X,axiom,
    ! [X: $int,Y: $int,Z: level] :
      ( possible_position(X,Y,Z)
     => ( possible_position($difference(X,1),Y,Z)
        & possible_position($sum(X,1),Y,Z) ) ) ).

tff(move_Y,axiom,
    ! [X: $int,Y: $int,Z: level] :
      ( possible_position(X,Y,Z)
     => ( possible_position(X,$difference(Y,1),Z)
        & possible_position(X,$sum(Y,1),Z) ) ) ).

tff(move_Z,axiom,
    ! [X: $int,Y: $int] :
      ( ( possible_position(X,Y,ground)
       => possible_position(X,Y,middle) )
      & ( possible_position(X,Y,middle)
       => ( possible_position(X,Y,ground)
          & possible_position(X,Y,top) ) )
      & ( possible_position(X,Y,top)
       => possible_position(X,Y,middle) ) ) ).

tff(can_fly,conjecture,
    possible_position(3,-5,space) ).
%------------------------------------------------------------------------------

Here's the countermodel ...
%------------------------------------------------------------------------------
tff(level_type,type,level: $tType).
tff(ground_decl,type,ground: level).
tff(middle_decl,type,middle: level).
tff(top_decl,type,top: level).
tff(space_decl,type,space: level).
tff(possible_position_decl,type,
    possible_position: ($int * $int * level) > $o ).

tff(d_level_type,type,d_level: $tType).
tff(d_ground_decl,type,d_ground: d_level).
tff(d_middle_decl,type,d_middle: d_level).
tff(d_top_decl,type,d_top: d_level).
tff(d_space_decl,type,d_space: d_level).
tff(d2level_decl,type,d2level: d_level > level).

tff(drone,interpretation,
    ( ( ! [L: level] : ? [DL: d_level] : L = d2level(DL)
      & ! [Z: d_level] : ( Z = d_ground | Z = d_middle | Z = d_top | Z = d_space )
      & ( d_ground != d_middle
        & d_ground != d_top
        & d_ground != d_space
        & d_middle != d_top
        & d_middle != d_space
        & d_top != d_space )
%     & $distinct(ground,middle,top,space)
      & ! [DL1: d_level,DL2: d_level] : ( d2level(DL1) = d2level(DL2) => DL1 = DL2 ) )
    & ( ground = d2level(d_ground)
      & middle = d2level(d_middle)
      & top = d2level(d_top)
      & space = d2level(d_space) )
    & ! [X: $int,Y: $int] :
        ( possible_position(X,Y,d2level(d_ground))
        & possible_position(X,Y,d2level(d_middle))
        & possible_position(X,Y,d2level(d_top))
        & ~ possible_position(X,Y,d2level(d_space)) ) ) ).
%------------------------------------------------------------------------------


Representation of Kripke Interpretations

This can be done in only a typed logic.

Record world information in interpretation-formulas, using a new defined type $world, a new defined predicate $in_world with type ($world * $o) > $o, a new defined predicate $accessible_world with type ($world * $world) > $o, and a new defined constant $local_world with type $world. Syntactically distinct constants of type $world are known to be unequal. The interpretation in a world is represented as above, with guards used to specify the worlds in which the interpretation is used.

The logic specification of the problem is included as a comment, because the interpretation-formulae under-specify the logic, e.g., it's usually not possible to see whether an interpretation was meant to exemplify a S5 logic specification or a K logic specification - in both cases the concrete model could interpret the accessibility relation as equivalence relation (this is required for S5 but it is also OK for K).


Representation of Finite-Finite Kripke Interpretations - Global Axioms

Here's a non-theorem. Note that there are only global axioms and a local conjecture, which is the standard for satisfiability checking with Kripke semantics.
%------------------------------------------------------------------------------
tff(semantics,logic,
    $alethic_modal ==
      [ $domains == $constant,
        $designation == $rigid,
        $terms == $local,
        $modalities == $modal_system_M ] ).

tff(person_decl,type,person: $tType).
tff(product_decl,type,product: $tType).
tff(alex_decl,type,alex: person).
tff(chris_decl,type,chris: person).
tff(leo_decl,type,leo: product).
tff(work_hard_decl,type,work_hard: (person * product) > $o).
tff(gets_rich_decl,type,gets_rich: person > $o).

%----If there is a product that a person works hard on, then 
%----it's possible that the person will get rich.
tff(work_hard_to_get_rich,axiom,
    ! [P: person] :
      ( ? [R: product] : work_hard(P,R)
     => ( {$possible} @ (gets_rich(P)) ) ) ).

%----Nobody necessarily gets rich.
tff(not_all_get_rich,axiom,
    ~ ? [P: person] : ({$necessary} @ (gets_rich(P)) ) ).

%----Alex and Chris work hard on Leo-III.
tff(alex_works_on_leo,axiom,
    work_hard(alex,leo) ).

tff(chris_works_on_leo,axiom,
    work_hard(chris,leo) ).

%----Chris is not Alex
tff(chris_not_alex,axiom,
    chris != alex ).

%----It's possible that Alex gets rich but Chris does not.
tff(only_alex_gets_rich,conjecture,
    ( {$possible} @ (gets_rich(alex) & ~ gets_rich(chris)) ) ).
%------------------------------------------------------------------------------

After using NTF2THF to embed the
problem into TH0, Nitpick finds a model with a finite number of worlds each of which has a finite domain (hence a "Finite-Finite Kripke Interpretation") that I converted by hand into TPTP format ...
%------------------------------------------------------------------------------
tff(semantics,logic,
    $alethic_modal ==
      [ $domains == $constant,
        $designation == $rigid,
        $terms == $local,
        $modalities == $modal_system_M ] ).

%----Declarations to fool Vampire when processing this file directly
% tff('$world_type',type,$world: $tType).
% tff('$local_world_decl',type,$local_world: $world).
% tff('$accessible_world_decl',type,$accessible_world: ($world * $world) > $o).
% tff('$in_world_decl',type,$in_world: ($world * $o) > $o).

tff(person_decl,type,    person: $tType).
tff(product_decl,type,   product: $tType).
tff(alex_decl,type,      alex: person).
tff(chris_decl,type,     chris: person).
tff(leo_decl,type,       leo: product).
tff(work_hard_decl,type, work_hard: (person * product) > $o).
tff(gets_rich_decl,type, gets_rich: person > $o).

tff(d_person_type,type,  d_person: $tType).
tff(d2person_decl,type,  d2person: d_person > person ).
tff(d_alex_decl,type,    d_alex: d_person).
tff(d_chris_decl,type,   d_chris: d_person).
tff(d_product_type,type, d_product: $tType).
tff(d2product_decl,type, d2product: d_product > product ).
tff(d_leo_decl,type,     d_leo: d_product).

tff(w1_decl,type,w1:     $world).
tff(w2_decl,type,w2:     $world).

tff(leo_workers,interpretation,
    ( ( ! [W: $world] : ( W = w1 | W = w2 )
      & $distinct(w1,w2)
      & $local_world = w2
      & $accessible_world(w1,w1)     %----Logic is M
      & $accessible_world(w2,w2)
      & $accessible_world(w1,w2) 
      & $accessible_world(w2,w1) )
    & $in_world(w1,
        ( ! [P: person] : ? [DP: d_person] : P = d2person(DP)
        & ! [DP: d_person] : ( DP = d_alex | DP = d_chris )
        & $distinct(d_alex,d_chris)
        & ? [DP: d_person] : ( DP = d_alex )
        & ? [DP: d_person] : ( DP = d_chris )
        & ! [DP1: d_person,DP2: d_person] : 
            ( d2person(DP1) = d2person(DP2) => DP1 = DP2 )
        & ! [P: product] : ? [DP: d_product] : P = d2product(DP)
        & ! [DP: d_product] : DP = d_leo
        & ? [DP: d_product] : DP = d_leo
        & ! [DP1: d_product,DP2: d_product] :
            ( d2product(DP1) = d2product(DP2) => DP1 = DP2 ) )
      & ( alex = d2person(d_alex)
        & chris = d2person(d_chris)
        & leo = d2product(d_leo) )
      & ( work_hard(d2person(d_alex),d2product(d_leo))
        & work_hard(d2person(d_chris),d2product(d_leo))
        & gets_rich(d2person(d_alex))
        & gets_rich(d2person(d_chris)) ) )
    & $in_world(w2,
        ( ! [P: person] : ? [DP: d_person] : P = d2person(DP)
        & ! [DP: d_person] : ( DP = d_alex | DP = d_chris )
        & $distinct(d_alex,d_chris)
        & ? [DP: d_person] : ( DP = d_alex )
        & ? [DP: d_person] : ( DP = d_chris )
        & ! [DP1: d_person,DP2: d_person] : 
            ( d2person(DP1) = d2person(DP2) => DP1 = DP2 )
        & ! [P: product] : ? [DP: d_product] : P = d2product(DP)
        & ! [DP: d_product] : DP = d_leo
        & ? [DP: d_product] : DP = d_leo
        & ! [DP1: d_product,DP2: d_product] :
            ( d2product(DP1) = d2product(DP2) => DP1 = DP2 )
        & ( alex = d2person(d_alex)
          & chris = d2person(d_chris)
          & leo = d2product(d_leo) )
        & ( work_hard(d2person(d_alex),d2product(d_leo))
          & work_hard(d2person(d_chris),d2product(d_leo))
          & ~ gets_rich(d2person(d_alex))
          & ~ gets_rich(d2person(d_chris)) ) ) ) ) ).
%------------------------------------------------------------------------------


Representation of Finite-Finite Kripke Interpretations - Global and Local Axioms

Here's a problem that can be proven by Leo-III. Note that it has both global and local axioms (contrary to the standard case for proving, where all the axioms are global). With the conjecture modified as below, it has a countermodel with a finite number of worlds each of which has a finite domain ...
%------------------------------------------------------------------------------
tff(semantics,logic,
    $alethic_modal == 
      [ $domains == $constant,
        $designation == $rigid,
        $terms == $local,
        $modalities == $modal_system_M ] ).

tff(fruit_type,type,   fruit: $tType).
tff(apple_decl,type,   apple: fruit).
tff(banana_decl,type,  banana: fruit).
tff(healthy_decl,type, healthy: fruit > $o).
tff(rotten_decl,type,  rotten: fruit > $o).

tff(apple_not_banana,axiom,
    apple != banana ).

tff(necessary_healthy_fruit_everywhere,axiom,
    ! [F: fruit] : ( {$necessary} @ (healthy(F)) ) ).

tff(fruit_possibly_not_rotten,axiom,
    ! [F: fruit] : ( {$possible} @ (~ rotten(F)) ) ).

tff(rotten_banana_here,axiom-local,
    rotten(banana) ).

tff(not_true,conjecture,
    ( {$necessary} @ 
      (( healthy(apple)
       & ~ rotten(banana) )) ) ).
%------------------------------------------------------------------------------

After using NTF2THF to embed the problem into TH0, Nitpick finds a countermodel that I converted by hand into TPTP format ...
%------------------------------------------------------------------------------
tff(semantics,logic,
    $alethic_modal ==
      [ $domains == $constant,
        $designation == $rigid,
        $terms == $local,
        $modalities == $modal_system_M ] ).

%----Declarations to fool Vampire when processing this file directly
% tff('$world_type',type,$world: $tType).
% tff('$local_world_decl',type,$local_world: $world).
% tff('$accessible_world_decl',type,$accessible_world: ($world * $world) > $o).
% tff('$in_world_decl',type,$in_world: ($world * $o) > $o).

tff(fruit_type,type,fruit: $tType).
tff(apple_decl,type,apple: fruit).
tff(banana_decl,type,banana: fruit).
tff(healthy_decl,type,healthy: fruit > $o).
tff(rotten_decl,type,rotten: fruit > $o).

tff(d_fruit_type,type,d_fruit: $tType).
tff(d2fruit_decl,type, d2fruit: d_fruit > fruit ).
tff(d_apple_decl,type,d_apple: d_fruit).
tff(d_banana_decl,type,d_banana: d_fruit).

tff(w1_decl,type,w1: $world).
tff(w2_decl,type,w2: $world).

tff(fruity_worlds,interpretation,
    ( ( ! [W: $world] : ( W = w1 | W = w2 )
      & $local_world = w1
      & $accessible_world(w1,w1)     %----Logic is M
      & $accessible_world(w2,w2)
      & $accessible_world(w1,w2) )
    & $in_world(w1,
        ( ( ! [F: fruit] : ? [DF: d_fruit] : F = d2fruit(DF)
          & ! [DF: d_fruit] : ( DF = d_apple | DF = d_banana )
          & $distinct(d_apple,d_banana)
          & ? [DP: d_fruit] : ( DP = d_apple )
          & ? [DP: d_fruit] : ( DP = d_banana )
          & ! [DF1: d_fruit,DF2: d_fruit] : 
              ( d2fruit(DF1) = d2fruit(DF2) => DF1 = DF2 ) )
        & ( apple = d2fruit(d_apple)
          & banana = d2fruit(d_banana) )
        & ( healthy(d2fruit(d_apple))
          & healthy(d2fruit(d_banana))
          & ~ rotten(d2fruit(d_apple))
          & rotten(d2fruit(d_banana)) ) ) )
    & $in_world(w2,
        ( ( ! [F: fruit] : ? [DF: d_fruit] : F = d2fruit(DF)
          & ! [DF: d_fruit] : ( DF = d_apple | DF = d_banana )
          & $distinct(d_apple,d_banana)
          & ? [DP: d_fruit] : ( DP = d_apple )
          & ? [DP: d_fruit] : ( DP = d_banana )
          & ! [DF1: d_fruit,DF2: d_fruit] : 
              ( d2fruit(DF1) = d2fruit(DF2) => DF1 = DF2 ) )
        & ( apple = d2fruit(d_apple)
          & banana = d2fruit(d_banana) )
        & ( healthy(d2fruit(d_apple))
          & healthy(d2fruit(d_banana))
          & ~ rotten(d2fruit(d_apple))
          & ~ rotten(d2fruit(d_banana)) ) ) ) ) ).
%------------------------------------------------------------------------------


Representation of Finite-Infinite Kripke Interpretations

Here's a problem that can be proven by Leo-III. With the conjecture modified as below, it has a countermodel that requires (I think, at least it uses) only two worlds, and they have infinite domains because sequences of tosses are infinite and different sequences are unequal.
%------------------------------------------------------------------------------
tff(simple_spec,logic,
    $alethic_modal == [
      $constants == $rigid,
      $quantification == $constant,
      $modalities == $modal_system_S4 ] ).

tff(sequence_type,type,  sequence: $tType ).
tff(null_decl,type,      null: sequence ).
tff(toss_decl,type,      toss: sequence > sequence ).
tff(all_heads_decl,type, all_heads: sequence > $o ).

tff(different_sequences,axiom,
    ! [S: sequence] : 
      ( ( toss(S) != null )
      & ( toss(S) != S ) ) ).

tff(injection,axiom,
    ! [S1: sequence,S2: sequence] :
      ( ( toss(S1) = toss(S2) )
     => ( S1 = S2 ) ) ).

tff(all_heads_possible,axiom,
    ! [S: sequence] :
      ( all_heads(S)
     => ( {$possible} @ (all_heads(toss(S)) ) ) ) ).

tff(no_heads,axiom,
    all_heads(null) ).
          
tff(two_heads_necessary,conjecture,
    ( {$necessary} 
    @ (? [S: sequence] : 
         ( all_heads(S) 
         & all_heads(toss(S)) ) ) ).
%------------------------------------------------------------------------------

After using NTF2THF to embed the problem into TH0, Nitpick cannot find a countermodel ... as expected ... Nitpick can find only finite models. So I hand-rolled a countermodel. In the countermodel sequences of tosses are represented by integers, with the null sequence represented by 1. The encoding is easy to see in binary, reading the tosses left-to-right and the bits right-to-left. If the last bit is 0 a head was tossed, if 1 a tail was tossed: null = 1 = 0001, head = 2 = 0010, tail = 3 = 0011, head-head = 4 = 0100, head-tail = 5 = 0101, tail-head = 6 = 0110, tail-tail = 7 = 0111, head-head-head = 8 = 1000, head-head-tail = 9 = 1001, head-tail-head = 10 = 1010, head-tail-tail = 11 = 1011, tail-head-head = 12 = 1100, etc, etc. The local world tosses a sequence of heads, interpreted as integer domain elements that are powers of 2. The other world first tosses a tail, represented by 3, and then tosses all heads, interpreted as integer domain elements that are powers of 2 multiplied by 3. There is no definition of sequences interpreted as integer domain elements less or equal to 0, but they are not "all_heads".
%------------------------------------------------------------------------------
tff(simple_spec,logic,
    $alethic_modal == [
      $constants == $rigid,
      $quantification == $constant,
      $modalities == $modal_system_S4 ] ).

%----Declarations to fool Vampire when processing this file directly
% tff('$world_type',type,$world: $tType).
% tff('$local_world_decl',type,$local_world: $world).
% tff('$accessible_world_decl',type,$accessible_world: ($world * $world) > $o).
% tff('$in_world_decl',type,$in_world: ($world * $o) > $o).

tff(sequence_type,type, sequence: $tType ).
tff(null_decl,type, null: sequence ).
tff(toss_decl,type, toss: sequence > sequence ).
tff(all_heads_decl,type, all_heads: sequence > $o ).

tff(int2sequence_decl,type,int2sequence: $int > sequence).

tff(w1_decl,type,w1: $world).
tff(w2_decl,type,w2: $world).

tff(tossed_worlds,interpretation,
    ( ( ! [W: $world] : ( ( W = w1 ) | ( W = w2 ) )
      & $local_world = w1
      & $accessible_world(w1,w1)
      & $accessible_world(w2,w2)
      & $accessible_world(w1,w2) )
    & $in_world(w1,
%----The domain for type sequence is the integers
        ( ( ! [S: sequence] : ? [I: $int] : S = int2sequence(I)
%----The type promoter is a bijection
          & ! [X: $int,Y: $int] : 
              ( int2sequence(X) = int2sequence(Y) => X = Y ) )
        & ( null = int2sequence(1)
%----In world w1 the first toss is a head. This is redundant.
          & toss(int2sequence(1)) = int2sequence(2)
          & ! [I: $int] : 
              toss(int2sequence(I)) = int2sequence($product(I,2)) )
        & ( all_heads(int2sequence(1))
          & ! [I: $int] :
              ( all_heads(int2sequence(I))
            <=> ( $greatereq(I,2)
                & ( $remainder_e(I,2) = 0 )
                & all_heads(int2sequence($quotient_e(I,2))) ) ) ) ) )
    & $in_world(w2,
        ( ( ! [S: sequence] : ? [I: $int] : S = int2sequence(I)
          & ! [X: $int,Y: $int] : 
              ( int2sequence(X) = int2sequence(Y) => X = Y ) )
        & ( null = int2sequence(1)
%----In world w2 the first toss is a tail
          & toss(int2sequence(1)) = int2sequence(3)
          & ! [I: $int] : 
              ( I != 1
             => toss(int2sequence(I)) = int2sequence($product(I,2)) ) )
        & ( all_heads(int2sequence(1))
          & ! [I: $int] :
              ( all_heads(int2sequence(I))
            <=> ( $greatereq(I,2)
                & ( $remainder_e(I,2) = 0 )
                & all_heads(int2sequence($quotient_e(I,2))) ) ) ) ) ) ) ).

%------------------------------------------------------------------------------


Representation of Infinite-Finite Kripke Interpretations

This example requires (I think) an infinite number of worlds. The interpretation in the local world will have an infinite domain, but all the other worlds' domains need only a single element (one of the domain elements from the local world). All the domain elements of the local world need to have a corresponding world with that domain element.
%------------------------------------------------------------------------------
tff(simple_spec,logic,
    $alethic_modal == [
      $constants == $rigid,
      $quantification == $constant,
      $modalities == $modal_system_M ] ).

tff(person_type,type, person: $tType).
tff(geoff_decl,type,  geoff: person).
tff(alive_decl,type,  alive: (person * $int) > $o).
tff(age_decl,type,    age: (person * $int) > $int).

tff(born_by_1961,axiom,
    ? [BirthYear: $int] :
      ( $lesseq(BirthYear,1961)
      & ! [PreBirthYear: $int] :
          ( $less(PreBirthYear,BirthYear)
         => ( ~ alive(geoff,PreBirthYear)
            & ( age(geoff,PreBirthYear) = -1 ) ) )
      & ! [FromBirthYear: $int] :
          ( $greatereq(FromBirthYear,BirthYear)
         => ( alive(geoff,FromBirthYear)
            & ( age(geoff,FromBirthYear) = $difference(FromBirthYear,BirthYear)) ) ) ) ).

tff(necessarily_alive_between,axiom,
    ! [StartYear: $int,EndYear: $int] :
      ( ( $less(StartYear,EndYear)
        & alive(geoff,StartYear)
        & alive(geoff,EndYear) )
     => ( {$necessary} 
        @ (! [BetweenYear: $int] :
             ( ( $greatereq(BetweenYear,StartYear)
               & $lesseq(BetweenYear,EndYear) )
            => alive(geoff,BetweenYear) )) ) ) ).

tff(necessarily_dead_after,axiom,
    ! [DeathYear: $int] :
      ( ( alive(geoff,DeathYear)
        & ~ alive(geoff,$sum(DeathYear,1)) )
     => ( {$necessary}
        @ (! [Year: $int] :
             ( $greater(Year,DeathYear)
            => ~ alive(geoff,Year) ) ) ) ) ).

tff(might_live_another_year,axiom,
    ! [Year: $int] :
      ( alive(geoff,Year)
     => ( {$possible} @ (alive(geoff,$sum(Year,1))) ) ) ).

%----Adding this should make the axioms contradictory
% tff(must_die,axiom,
%     {$necessary} @
%       ( ? [Year: $int] :
%           ( $greater(Year,1961)
%           & ~ alive(geoff,Year ) ) ).

%----This should be provable
% tff(might_live_long,conjecture,
%     {$possible} @
%       ( ? [Year: $int] :
%           ( age(geoff,Year) = 120
%           & alive(geoff,Year) ) ) ).
%------------------------------------------------------------------------------

Here's a model with an integer number of worlds.
%------------------------------------------------------------------------------
tff(simple_spec,logic,
    $alethic_modal == [
      $constants == $rigid,
      $quantification == $constant,
      $modalities == $modal_system_M ] ).

%----Declarations to fool Vampire when processing this file directly
% tff('$world_type',type,$world: $tType).
% tff('$local_world_decl',type,$local_world: $world).
% tff('$accessible_world_decl',type,$accessible_world: ($world * $world) > $o).
% tff('$in_world_decl',type,$in_world: ($world * $o) > $o).

tff(person_type,type, person: $tType).
tff(geoff_decl,type,geoff: person).
tff(alive_decl,type,alive: (person * $int) > $o).
tff(age_decl,type,age: (person * $int) > $int).

tff(d_person_type,type,d_person: $tType).
tff(d_geoff_decl,type,d_geoff: d_person).
tff(d2person_decl,type,d2person: d_person > person).

tff(int2world_decl,type,int2world: $int > $world ).

tff(long_live_geoff,interpretation,
%----An infinite number of worlds, numbered by naturals
    ( ( ! [I: $int] : ? [W: $world] : int2world(I) = W
%----The type promoter is a bijection (injective and surjective)
      & ! [I1: $int,I2: $int] : 
          ( int2world(I1) = int2world(I2) => I1 = I2 )
      & ! [W: $world] : ? [I: $int] : int2world(I) = W
%----Worlds can access themselves and greater indexed worlds (worlds in the future)
      & ! [P: $int,F: $int] : 
          ( $greatereq(F,P)
         => $accessible_world(int2world(P),int2world(F)) ) )

%----Worlds before 1961 all think geoff was born that year
    & ! [IW: $int] :
        ( $less(IW,1961)
       => $in_world(int2world(IW),
%----Only one domain element for person
            ( ! [P: person] : ? [DP: d_person] : P = d2person(DP)
            & ! [DP: d_person] : DP = d_geoff
            & ? [DP: d_person] : DP = d_geoff
%----The type promoter is a bijection (injective and surjective)
            & ! [X: d_person,Y: d_person] :
                ( d2person(X) = d2person(Y) => X = Y )
            & geoff = d2person(d_geoff)
%----Alive and age interpretation
            & ! [Y: $int] :
                ( $less(Y,IW)
               => ( ~ alive(d2person(d_geoff),Y)
                  & age(d2person(d_geoff),Y) = -1 ) )
            & alive(d2person(d_geoff),IW)
            & age(d2person(d_geoff),IW) = 0
            & ! [Y: $int] :
                ( $greater(Y,IW)
               => ( alive(d2person(d_geoff),Y)
                  & age(d2person(d_geoff),Y) = $difference(Y,IW) ) ) ) )

%----Worlds from 1961 know geoff was born in 1961. geoff lives forever!
    & ! [IW: $int] :
        ( $greatereq(IW,1961)
       => $in_world(int2world(IW),
            ( ! [P: person] : ? [DP: d_person] : P = d2person(DP)
            & ! [DP: d_person] : DP = d_geoff
            & ? [DP: d_person] : DP = d_geoff
            & ! [X: d_person,Y: d_person] :
                ( d2person(X) = d2person(Y) => X = Y )
            & geoff = d2person(d_geoff)
            & ! [Y: $int] :
                ( ( $less(Y,1961)
                 => ( ~ alive(d2person(d_geoff),Y)
                    & age(d2person(d_geoff),Y) = -1 ) )
                & ( ( $greatereq(Y,1961)
                    & $less(Y,IW) )
                 => ( alive(d2person(d_geoff),Y)
                    & age(d2person(d_geoff),Y) = $difference(Y,1961) ) ) )
            & alive(d2person(d_geoff),IW)
            & age(d2person(d_geoff),IW) = $difference(IW,1961)
            & ! [Y: $int] :
                ( $greater(Y,IW)
               => ( alive(d2person(d_geoff),Y)
                  & age(d2person(d_geoff),Y) = $difference(Y,1961) ) ) ) ) ) ) ) ).

%------------------------------------------------------------------------------


Representation of Infinite-Infinite Kripke Interpretations

Here's a problem that I think should be provable, but none of the ATP systems I know can (after conversion to TH0, Leo-III does not have the arithmetic power, E, Vampire, and Zipperposition don't do arithmetic (at least in THF), cvc5 gives parse error). With the conjecture commented out as below, the axioms have a an Infinite-Infinite model (I think).
%------------------------------------------------------------------------------
tff(simple_spec,logic,
    $alethic_modal == [
      $constants == $flexible,
      $quantification == $varying,
      $modalities == $modal_system_M ] ).

tff(person_type,type, person: $tType).
tff(geoff_decl,type,  geoff: person).
tff(like_decl,type,   like: person > $o).
tff(id_of_decl,type,  id_of: person > $int).

tff(like_exactly_one_person,axiom,
    ? [P: person] :
      ( like(P)
      & ! [OP: person] :
          ( like(OP)
         => ( OP = P ) ) ) ).

%----Infinite people here. The RHS of the conjunction limits it to an integer 
%----number of people.
tff(infinite_people,axiom-local,
    ! [I: $int] : 
      ( $greatereq(I,0)
     => ( ? [P: person] : id_of(P) = I
        & ! [P1: person,P2: person] : 
            ( ( id_of(P1) = id_of(P2) )
           => ( P1 = P2 ) ) ) ) ).

tff(like_geoff_here,axiom-local,
    like(geoff) ).

tff(like_all,axiom-local,
    ! [X: person] : ( {$possible} @ (like(X)) ) ).
%------------------------------------------------------------------------------

Here's a model in which there are an infinite number of worlds - one for each integer numbered year, an infinite number of ages as integers, and just one person in each world.
%------------------------------------------------------------------------------
tff(simple_spec,logic,
    $alethic_modal == [
      $constants == $flexible,
      $quantification == $varying,
      $modalities == $modal_system_M ] ).

%----Declarations to fool Vampire when processing this file directly
% tff('$world_type',type,$world: $tType).
% tff('$local_world_decl',type,$local_world: $world).
% tff('$accessible_world_decl',type,$accessible_world: ($world * $world) > $o).
% tff('$in_world_decl',type,$in_world: ($world * $o) > $o).

tff(person_type,type,person: $tType).
tff(geoff_decl,type,geoff: person).
tff(like_decl,type,like: person > $o).
tff(id_of_decl,type,id_of: person > $int).

tff(int2person_decl,type, int2person: $int > person ).

tff(int2world_decl,type,int2world: $int > $world ).

tff(like_geoff,interpretation,
%----An infinite number of worlds, numbered by naturals
    ( ( ! [I: $int] : 
          ( $greatereq(I,0)
         => ? [W: $world] : int2world(I) = W )
      & $local_world = int2world(0)
%----The type promoter is a bijection (injective and surjective)
      & ! [I1: $int,I2: $int] : 
          ( ( int2world(I1) = int2world(I2) ) => ( I1 = I2 ) )
      & ! [W: $world] : ? [I: $int] : int2world(I) = W
%----World 0 can access itself (system T)
      & $accessible_world(int2world(0),int2world(0))
%----World 0 can access all other worlds
      & ! [I: $int] : 
          ( $greater(I,0)
         => $accessible_world(int2world(0),int2world(I)) ) )

%----Now interpret each world
%----In world 0 
    & $in_world(int2world(0),
%----The domain for type person is the integers
        ( ( ! [P: person] : ? [I: $int] : P = int2person(I)
%----The type promoter is a bijection (injective and surjective)
          & ! [I1: $int,I2: $int] : 
              ( int2person(I1) = int2person(I2) => I1 = I2 ) )
%----geoff is interpreted as 0
        & ( geoff = int2person(0)
%----id_of coincides with the domain elements
          & ! [I: $int] : id_of(int2person(I)) = I )
%----like is true for 0 (and only 0 by next part for all worlds)
        & like(int2person(0) ) ) )
%----In all worlds
    & ! [IW: $int] :
        ( $greatereq(IW,0)
       => $in_world(int2world(IW),
%----The type promoter is a bijection (injective and surjective)
            ( ( ! [P: person] : ? [I: $int] : P = int2person(I)
              & ! [I1: $int,I2: $int] : 
                  ( int2person(I1) = int2person(I2) => I1 = I2 ) )
%----geoff is interpreted as the world number
            & ( geoff = int2person(IW)
%----id_of coincides with the world
            & id_of(int2person(IW)) = IW )
%----Like the person who is interpreted as this world number (geoff)
            & ( like(int2person(IW)) 
%----Like only this one person
              & ! [ID: $int] :
                  ( like(int2person(ID))
                <=> ID = IW ) ) ) ) ) ) ).
%------------------------------------------------------------------------------