:: HESSENBE semantic presentation :: Showing IDV graph ... (Click the Palm Trees again to close it)
theorem :: HESSENBE:1 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem :: HESSENBE:2 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem Th3: :: HESSENBE:3 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
PCPP being
CollProjectiveSpace for
a,
b,
c being
Element of
PCPP st
a,
b,
c is_collinear holds
(
b,
c,
a is_collinear &
c,
a,
b is_collinear &
b,
a,
c is_collinear &
a,
c,
b is_collinear &
c,
b,
a is_collinear )
theorem Th4: :: HESSENBE:4 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: HESSENBE:5 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
PCPP being
CollProjectiveSpace for
p,
q,
a,
b,
r being
Element of
PCPP st
p <> q &
a,
b,
p is_collinear &
a,
b,
q is_collinear &
p,
q,
r is_collinear holds
a,
b,
r is_collinear
theorem Th6: :: HESSENBE:6 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem :: HESSENBE:7 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th8: :: HESSENBE:8 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th9: :: HESSENBE:9 :: Showing IDV graph ... (Click the Palm Tree again to close it)
theorem Th10: :: HESSENBE:10 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
PCPP being
CollProjectiveSpace for
o,
a,
d,
d',
x,
a' being
Element of
PCPP st not
o,
a,
d is_collinear &
o,
d,
d' is_collinear &
a,
d,
x is_collinear &
d <> d' &
a',
d',
x is_collinear &
o,
a,
a' is_collinear &
o <> a' holds
x <> d
theorem :: HESSENBE:11 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem Th12: :: HESSENBE:12 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
PCPP being
CollProjectiveSpace for
a1,
a2,
a3,
c3,
c1,
x being
Element of
PCPP st not
a1,
a2,
a3 is_collinear &
a1,
a2,
c3 is_collinear &
a2,
a3,
c1 is_collinear &
a1,
a3,
x is_collinear &
c1,
c3,
x is_collinear &
c3 <> a1 &
c3 <> a2 &
c1 <> a2 &
c1 <> a3 holds
(
a1 <> x &
a3 <> x )
theorem Th13: :: HESSENBE:13 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
PCPP being
CollProjectiveSpace for
a,
b,
c,
d,
e being
Element of
PCPP st not
a,
b,
c is_collinear &
a,
b,
d is_collinear &
c,
e,
d is_collinear &
e <> c &
d <> a holds
not
e,
a,
c is_collinear
theorem Th14: :: HESSENBE:14 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
PCPP being
CollProjectiveSpace for
p1,
p2,
q1,
q2,
q3 being
Element of
PCPP st not
p1,
p2,
q1 is_collinear &
p1,
p2,
q2 is_collinear &
q1,
q2,
q3 is_collinear &
p1 <> q2 &
q2 <> q3 holds
not
p2,
p1,
q3 is_collinear
theorem :: HESSENBE:15 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
PCPP being
CollProjectiveSpace for
p1,
p2,
q1,
p3,
q2 being
Element of
PCPP st not
p1,
p2,
q1 is_collinear &
p1,
p2,
p3 is_collinear &
q1,
q2,
p3 is_collinear &
p3 <> q2 &
p2 <> p3 holds
not
p3,
p2,
q2 is_collinear
theorem Th16: :: HESSENBE:16 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
PCPP being
CollProjectiveSpace for
p1,
p2,
q1,
p3,
q2 being
Element of
PCPP st not
p1,
p2,
q1 is_collinear &
p1,
p2,
p3 is_collinear &
q1,
q2,
p1 is_collinear &
p1 <> p3 &
p1 <> q2 holds
not
p3,
p1,
q2 is_collinear
theorem Th17: :: HESSENBE:17 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
PCPP being
CollProjectiveSpace for
a1,
a2,
b1,
b2,
x,
y being
Element of
PCPP st
a1 <> a2 &
b1 <> b2 &
b1,
b2,
x is_collinear &
b1,
b2,
y is_collinear &
a1,
a2,
x is_collinear &
a1,
a2,
y is_collinear & not
a1,
a2,
b1 is_collinear holds
x = y
theorem :: HESSENBE:18 :: Showing IDV graph ... (Click the Palm Tree again to close it)
canceled;
theorem Th19: :: HESSENBE:19 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
PCPP being
CollProjectiveSpace for
o,
a1,
a2,
b1,
b2 being
Element of
PCPP st not
o,
a1,
a2 is_collinear &
o,
a1,
b1 is_collinear &
o,
a2,
b2 is_collinear &
o <> b1 &
o <> b2 holds
not
o,
b1,
b2 is_collinear
theorem Th20: :: HESSENBE:20 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
PCPP being
Pappian CollProjectivePlane for
p2,
p3,
p1,
q2,
q3,
q1,
r3,
r2,
r1 being
Element of
PCPP st
p2 <> p3 &
p1 <> p3 &
q2 <> q3 &
q1 <> q2 &
q1 <> q3 & not
p1,
p2,
q1 is_collinear &
p1,
p2,
p3 is_collinear &
q1,
q2,
q3 is_collinear &
p1,
q2,
r3 is_collinear &
q1,
p2,
r3 is_collinear &
p1,
q3,
r2 is_collinear &
p3,
q1,
r2 is_collinear &
p2,
q3,
r1 is_collinear &
p3,
q2,
r1 is_collinear holds
r1,
r2,
r3 is_collinear
Lm1:
for PCPP being Pappian CollProjectivePlane
for o, b1, a1, b2, a2, b3, a3, c1, c3, c2 being Element of PCPP st o <> b1 & a1 <> b1 & o <> b2 & a2 <> b2 & o <> b3 & a3 <> b3 & not o,a1,a2 is_collinear & not o,a1,a3 is_collinear & not o,a2,a3 is_collinear & not o,c1,c3 is_collinear & a1,a2,c3 is_collinear & b1,b2,c3 is_collinear & a2,a3,c1 is_collinear & b2,b3,c1 is_collinear & a1,a3,c2 is_collinear & b1,b3,c2 is_collinear & o,a1,b1 is_collinear & o,a2,b2 is_collinear & o,a3,b3 is_collinear & ( a1,a2,a3 is_collinear or b1,b2,b3 is_collinear ) holds
c1,c2,c3 is_collinear
Lm2:
for PCPP being Pappian CollProjectivePlane
for o, b1, a1, b2, a2, b3, a3, c1, c3, c2, x being Element of PCPP st o <> b1 & a1 <> b1 & o <> b2 & a2 <> b2 & o <> b3 & a3 <> b3 & not o,a1,a2 is_collinear & not o,a1,a3 is_collinear & not o,a2,a3 is_collinear & not o,c1,c3 is_collinear & a1,a2,c3 is_collinear & b1,b2,c3 is_collinear & a2,a3,c1 is_collinear & b2,b3,c1 is_collinear & a1,a3,c2 is_collinear & b1,b3,c2 is_collinear & o,a1,b1 is_collinear & o,a2,b2 is_collinear & o,a3,b3 is_collinear & o,a2,x is_collinear & a1,a3,x is_collinear & not c1,c3,x is_collinear holds
c1,c2,c3 is_collinear
Lm3:
for PCPP being Pappian CollProjectivePlane
for o, b1, a1, b2, a2, b3, a3, c1, c3, c2 being Element of PCPP st o <> b1 & a1 <> b1 & o <> b2 & a2 <> b2 & o <> b3 & a3 <> b3 & not o,a1,a2 is_collinear & not o,a1,a3 is_collinear & not o,a2,a3 is_collinear & not o,c1,c3 is_collinear & a1,a2,c3 is_collinear & b1,b2,c3 is_collinear & a2,a3,c1 is_collinear & b2,b3,c1 is_collinear & a1,a3,c2 is_collinear & b1,b3,c2 is_collinear & o,a1,b1 is_collinear & o,a2,b2 is_collinear & o,a3,b3 is_collinear holds
c1,c2,c3 is_collinear
theorem Th21: :: HESSENBE:21 :: Showing IDV graph ... (Click the Palm Tree again to close it)
for
PCPP being
Pappian CollProjectivePlane for
o,
b1,
a1,
b2,
a2,
b3,
a3,
c3,
c1,
c2 being
Element of
PCPP st
o <> b1 &
a1 <> b1 &
o <> b2 &
a2 <> b2 &
o <> b3 &
a3 <> b3 & not
o,
a1,
a2 is_collinear & not
o,
a1,
a3 is_collinear & not
o,
a2,
a3 is_collinear &
a1,
a2,
c3 is_collinear &
b1,
b2,
c3 is_collinear &
a2,
a3,
c1 is_collinear &
b2,
b3,
c1 is_collinear &
a1,
a3,
c2 is_collinear &
b1,
b3,
c2 is_collinear &
o,
a1,
b1 is_collinear &
o,
a2,
b2 is_collinear &
o,
a3,
b3 is_collinear holds
c1,
c2,
c3 is_collinear