:: HESSENBE semantic presentation  Show TPTP formulae Show IDV graph for whole article:: Showing IDV graph ... (Click the Palm Trees again to close it)

theorem :: HESSENBE:1  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
canceled;

theorem :: HESSENBE:2  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
canceled;

theorem Th3: :: HESSENBE:3  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for PCPP being CollProjectiveSpace
for a, b, c being Element of PCPP st a,b,c is_collinear holds
( b,c,a is_collinear & c,a,b is_collinear & b,a,c is_collinear & a,c,b is_collinear & c,b,a is_collinear )
proof end;

theorem Th4: :: HESSENBE:4  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for PCPP being CollProjectiveSpace
for a, b, c, d being Element of PCPP st a <> b & a,b,c is_collinear & a,b,d is_collinear holds
a,c,d is_collinear
proof end;

theorem :: HESSENBE:5  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for PCPP being CollProjectiveSpace
for p, q, a, b, r being Element of PCPP st p <> q & a,b,p is_collinear & a,b,q is_collinear & p,q,r is_collinear holds
a,b,r is_collinear
proof end;

theorem Th6: :: HESSENBE:6  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for PCPP being CollProjectiveSpace
for p, q being Element of PCPP st p <> q holds
ex r being Element of PCPP st not p,q,r is_collinear
proof end;

theorem :: HESSENBE:7  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for PCPP being CollProjectiveSpace
for p being Element of PCPP holds
not for q, r being Element of PCPP holds p,q,r is_collinear
proof end;

theorem Th8: :: HESSENBE:8  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for PCPP being CollProjectiveSpace
for a, b, c, b' being Element of PCPP st not a,b,c is_collinear & a,b,b' is_collinear & a <> b' holds
not a,b',c is_collinear
proof end;

theorem Th9: :: HESSENBE:9  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for PCPP being CollProjectiveSpace
for a, b, c, d being Element of PCPP st not a,b,c is_collinear & a,b,d is_collinear & a,c,d is_collinear holds
a = d
proof end;

theorem Th10: :: HESSENBE:10  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for PCPP being CollProjectiveSpace
for o, a, d, d', x, a' being Element of PCPP st not o,a,d is_collinear & o,d,d' is_collinear & a,d,x is_collinear & d <> d' & a',d',x is_collinear & o,a,a' is_collinear & o <> a' holds
x <> d
proof end;

theorem :: HESSENBE:11  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
canceled;

theorem Th12: :: HESSENBE:12  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for PCPP being CollProjectiveSpace
for a1, a2, a3, c3, c1, x being Element of PCPP st not a1,a2,a3 is_collinear & a1,a2,c3 is_collinear & a2,a3,c1 is_collinear & a1,a3,x is_collinear & c1,c3,x is_collinear & c3 <> a1 & c3 <> a2 & c1 <> a2 & c1 <> a3 holds
( a1 <> x & a3 <> x )
proof end;

theorem Th13: :: HESSENBE:13  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for PCPP being CollProjectiveSpace
for a, b, c, d, e being Element of PCPP st not a,b,c is_collinear & a,b,d is_collinear & c,e,d is_collinear & e <> c & d <> a holds
not e,a,c is_collinear
proof end;

theorem Th14: :: HESSENBE:14  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for PCPP being CollProjectiveSpace
for p1, p2, q1, q2, q3 being Element of PCPP st not p1,p2,q1 is_collinear & p1,p2,q2 is_collinear & q1,q2,q3 is_collinear & p1 <> q2 & q2 <> q3 holds
not p2,p1,q3 is_collinear
proof end;

theorem :: HESSENBE:15  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for PCPP being CollProjectiveSpace
for p1, p2, q1, p3, q2 being Element of PCPP st not p1,p2,q1 is_collinear & p1,p2,p3 is_collinear & q1,q2,p3 is_collinear & p3 <> q2 & p2 <> p3 holds
not p3,p2,q2 is_collinear
proof end;

theorem Th16: :: HESSENBE:16  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for PCPP being CollProjectiveSpace
for p1, p2, q1, p3, q2 being Element of PCPP st not p1,p2,q1 is_collinear & p1,p2,p3 is_collinear & q1,q2,p1 is_collinear & p1 <> p3 & p1 <> q2 holds
not p3,p1,q2 is_collinear
proof end;

theorem Th17: :: HESSENBE:17  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for PCPP being CollProjectiveSpace
for a1, a2, b1, b2, x, y being Element of PCPP st a1 <> a2 & b1 <> b2 & b1,b2,x is_collinear & b1,b2,y is_collinear & a1,a2,x is_collinear & a1,a2,y is_collinear & not a1,a2,b1 is_collinear holds
x = y
proof end;

theorem :: HESSENBE:18  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
canceled;

theorem Th19: :: HESSENBE:19  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for PCPP being CollProjectiveSpace
for o, a1, a2, b1, b2 being Element of PCPP st not o,a1,a2 is_collinear & o,a1,b1 is_collinear & o,a2,b2 is_collinear & o <> b1 & o <> b2 holds
not o,b1,b2 is_collinear
proof end;

theorem Th20: :: HESSENBE:20  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for PCPP being Pappian CollProjectivePlane
for p2, p3, p1, q2, q3, q1, r3, r2, r1 being Element of PCPP st p2 <> p3 & p1 <> p3 & q2 <> q3 & q1 <> q2 & q1 <> q3 & not p1,p2,q1 is_collinear & p1,p2,p3 is_collinear & q1,q2,q3 is_collinear & p1,q2,r3 is_collinear & q1,p2,r3 is_collinear & p1,q3,r2 is_collinear & p3,q1,r2 is_collinear & p2,q3,r1 is_collinear & p3,q2,r1 is_collinear holds
r1,r2,r3 is_collinear
proof end;

Lm1: for PCPP being Pappian CollProjectivePlane
for o, b1, a1, b2, a2, b3, a3, c1, c3, c2 being Element of PCPP st o <> b1 & a1 <> b1 & o <> b2 & a2 <> b2 & o <> b3 & a3 <> b3 & not o,a1,a2 is_collinear & not o,a1,a3 is_collinear & not o,a2,a3 is_collinear & not o,c1,c3 is_collinear & a1,a2,c3 is_collinear & b1,b2,c3 is_collinear & a2,a3,c1 is_collinear & b2,b3,c1 is_collinear & a1,a3,c2 is_collinear & b1,b3,c2 is_collinear & o,a1,b1 is_collinear & o,a2,b2 is_collinear & o,a3,b3 is_collinear & ( a1,a2,a3 is_collinear or b1,b2,b3 is_collinear ) holds
c1,c2,c3 is_collinear
proof end;

Lm2: for PCPP being Pappian CollProjectivePlane
for o, b1, a1, b2, a2, b3, a3, c1, c3, c2, x being Element of PCPP st o <> b1 & a1 <> b1 & o <> b2 & a2 <> b2 & o <> b3 & a3 <> b3 & not o,a1,a2 is_collinear & not o,a1,a3 is_collinear & not o,a2,a3 is_collinear & not o,c1,c3 is_collinear & a1,a2,c3 is_collinear & b1,b2,c3 is_collinear & a2,a3,c1 is_collinear & b2,b3,c1 is_collinear & a1,a3,c2 is_collinear & b1,b3,c2 is_collinear & o,a1,b1 is_collinear & o,a2,b2 is_collinear & o,a3,b3 is_collinear & o,a2,x is_collinear & a1,a3,x is_collinear & not c1,c3,x is_collinear holds
c1,c2,c3 is_collinear
proof end;

Lm3: for PCPP being Pappian CollProjectivePlane
for o, b1, a1, b2, a2, b3, a3, c1, c3, c2 being Element of PCPP st o <> b1 & a1 <> b1 & o <> b2 & a2 <> b2 & o <> b3 & a3 <> b3 & not o,a1,a2 is_collinear & not o,a1,a3 is_collinear & not o,a2,a3 is_collinear & not o,c1,c3 is_collinear & a1,a2,c3 is_collinear & b1,b2,c3 is_collinear & a2,a3,c1 is_collinear & b2,b3,c1 is_collinear & a1,a3,c2 is_collinear & b1,b3,c2 is_collinear & o,a1,b1 is_collinear & o,a2,b2 is_collinear & o,a3,b3 is_collinear holds
c1,c2,c3 is_collinear
proof end;

theorem Th21: :: HESSENBE:21  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for PCPP being Pappian CollProjectivePlane
for o, b1, a1, b2, a2, b3, a3, c3, c1, c2 being Element of PCPP st o <> b1 & a1 <> b1 & o <> b2 & a2 <> b2 & o <> b3 & a3 <> b3 & not o,a1,a2 is_collinear & not o,a1,a3 is_collinear & not o,a2,a3 is_collinear & a1,a2,c3 is_collinear & b1,b2,c3 is_collinear & a2,a3,c1 is_collinear & b2,b3,c1 is_collinear & a1,a3,c2 is_collinear & b1,b3,c2 is_collinear & o,a1,b1 is_collinear & o,a2,b2 is_collinear & o,a3,b3 is_collinear holds
c1,c2,c3 is_collinear
proof end;

registration
cluster Pappian -> Desarguesian L5();
coherence
for b1 being CollProjectiveSpace st b1 is Pappian holds
b1 is Desarguesian
proof end;
end;