:: BVFUNC_6 semantic presentation  Show TPTP formulae Show IDV graph for whole article:: Showing IDV graph ... (Click the Palm Trees again to close it)

theorem :: BVFUNC_6:1  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for Y being non empty set
for a, b being Element of Funcs Y,BOOLEAN holds a 'imp' (b 'imp' (a '&' b)) = I_el Y
proof end;

theorem :: BVFUNC_6:2  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for Y being non empty set
for a, b being Element of Funcs Y,BOOLEAN holds (a 'imp' b) 'imp' ((b 'imp' a) 'imp' (a 'eqv' b)) = I_el Y
proof end;

theorem :: BVFUNC_6:3  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for Y being non empty set
for a, b being Element of Funcs Y,BOOLEAN holds (a 'or' b) 'eqv' (b 'or' a) = I_el Y
proof end;

theorem :: BVFUNC_6:4  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for Y being non empty set
for a, b, c being Element of Funcs Y,BOOLEAN holds ((a '&' b) 'imp' c) 'imp' (a 'imp' (b 'imp' c)) = I_el Y
proof end;

theorem :: BVFUNC_6:5  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for Y being non empty set
for a, b, c being Element of Funcs Y,BOOLEAN holds (a 'imp' (b 'imp' c)) 'imp' ((a '&' b) 'imp' c) = I_el Y
proof end;

theorem :: BVFUNC_6:6  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for Y being non empty set
for a, b, c being Element of Funcs Y,BOOLEAN holds (c 'imp' a) 'imp' ((c 'imp' b) 'imp' (c 'imp' (a '&' b))) = I_el Y
proof end;

theorem :: BVFUNC_6:7  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for Y being non empty set
for a, b, c being Element of Funcs Y,BOOLEAN holds ((a 'or' b) 'imp' c) 'imp' ((a 'imp' c) 'or' (b 'imp' c)) = I_el Y
proof end;

theorem :: BVFUNC_6:8  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for Y being non empty set
for a, b, c being Element of Funcs Y,BOOLEAN holds (a 'imp' c) 'imp' ((b 'imp' c) 'imp' ((a 'or' b) 'imp' c)) = I_el Y
proof end;

theorem :: BVFUNC_6:9  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for Y being non empty set
for a, b, c being Element of Funcs Y,BOOLEAN holds ((a 'imp' c) '&' (b 'imp' c)) 'imp' ((a 'or' b) 'imp' c) = I_el Y
proof end;

theorem :: BVFUNC_6:10  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for Y being non empty set
for a, b being Element of Funcs Y,BOOLEAN holds (a 'imp' (b '&' ('not' b))) 'imp' ('not' a) = I_el Y
proof end;

theorem :: BVFUNC_6:11  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for Y being non empty set
for a, b, c being Element of Funcs Y,BOOLEAN holds ((a 'or' b) '&' (a 'or' c)) 'imp' (a 'or' (b '&' c)) = I_el Y
proof end;

theorem :: BVFUNC_6:12  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for Y being non empty set
for a, b, c being Element of Funcs Y,BOOLEAN holds (a '&' (b 'or' c)) 'imp' ((a '&' b) 'or' (a '&' c)) = I_el Y
proof end;

theorem :: BVFUNC_6:13  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for Y being non empty set
for a, b, c being Element of Funcs Y,BOOLEAN holds ((a 'or' c) '&' (b 'or' c)) 'imp' ((a '&' b) 'or' c) = I_el Y
proof end;

theorem :: BVFUNC_6:14  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for Y being non empty set
for a, b, c being Element of Funcs Y,BOOLEAN holds ((a 'or' b) '&' c) 'imp' ((a '&' c) 'or' (b '&' c)) = I_el Y
proof end;

theorem :: BVFUNC_6:15  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for Y being non empty set
for a, b being Element of Funcs Y,BOOLEAN st a '&' b = I_el Y holds
a 'or' b = I_el Y
proof end;

theorem :: BVFUNC_6:16  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for Y being non empty set
for a, b, c being Element of Funcs Y,BOOLEAN st a 'imp' b = I_el Y holds
(a 'or' c) 'imp' (b 'or' c) = I_el Y
proof end;

theorem :: BVFUNC_6:17  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for Y being non empty set
for a, b, c being Element of Funcs Y,BOOLEAN st a 'imp' b = I_el Y holds
(a '&' c) 'imp' (b '&' c) = I_el Y
proof end;

theorem :: BVFUNC_6:18  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for Y being non empty set
for a, b, c being Element of Funcs Y,BOOLEAN st c 'imp' a = I_el Y & c 'imp' b = I_el Y holds
c 'imp' (a '&' b) = I_el Y
proof end;

theorem :: BVFUNC_6:19  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for Y being non empty set
for a, b, c being Element of Funcs Y,BOOLEAN st a 'imp' c = I_el Y & b 'imp' c = I_el Y holds
(a 'or' b) 'imp' c = I_el Y
proof end;

theorem :: BVFUNC_6:20  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for Y being non empty set
for a, b being Element of Funcs Y,BOOLEAN st a 'or' b = I_el Y & 'not' a = I_el Y holds
b = I_el Y
proof end;

theorem :: BVFUNC_6:21  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for Y being non empty set
for a, b, c, d being Element of Funcs Y,BOOLEAN st a 'imp' b = I_el Y & c 'imp' d = I_el Y holds
(a '&' c) 'imp' (b '&' d) = I_el Y
proof end;

theorem :: BVFUNC_6:22  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for Y being non empty set
for a, b, c, d being Element of Funcs Y,BOOLEAN st a 'imp' b = I_el Y & c 'imp' d = I_el Y holds
(a 'or' c) 'imp' (b 'or' d) = I_el Y
proof end;

theorem :: BVFUNC_6:23  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for Y being non empty set
for a, b being Element of Funcs Y,BOOLEAN st (a '&' ('not' b)) 'imp' ('not' a) = I_el Y holds
a 'imp' b = I_el Y
proof end;

theorem :: BVFUNC_6:24  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
canceled;

theorem :: BVFUNC_6:25  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for Y being non empty set
for a, b being Element of Funcs Y,BOOLEAN st a 'imp' ('not' b) = I_el Y holds
b 'imp' ('not' a) = I_el Y
proof end;

theorem :: BVFUNC_6:26  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for Y being non empty set
for a, b being Element of Funcs Y,BOOLEAN st ('not' a) 'imp' b = I_el Y holds
('not' b) 'imp' a = I_el Y
proof end;

theorem :: BVFUNC_6:27  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for Y being non empty set
for a, b being Element of Funcs Y,BOOLEAN holds a 'imp' (a 'or' b) = I_el Y
proof end;

theorem :: BVFUNC_6:28  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for Y being non empty set
for a, b being Element of Funcs Y,BOOLEAN holds (a 'or' b) 'imp' (('not' a) 'imp' b) = I_el Y
proof end;

theorem :: BVFUNC_6:29  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for Y being non empty set
for a, b being Element of Funcs Y,BOOLEAN holds ('not' (a 'or' b)) 'imp' (('not' a) '&' ('not' b)) = I_el Y
proof end;

theorem :: BVFUNC_6:30  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for Y being non empty set
for a, b being Element of Funcs Y,BOOLEAN holds (('not' a) '&' ('not' b)) 'imp' ('not' (a 'or' b)) = I_el Y
proof end;

theorem :: BVFUNC_6:31  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for Y being non empty set
for a, b being Element of Funcs Y,BOOLEAN holds ('not' (a 'or' b)) 'imp' ('not' a) = I_el Y
proof end;

theorem :: BVFUNC_6:32  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for Y being non empty set
for a being Element of Funcs Y,BOOLEAN holds (a 'or' a) 'imp' a = I_el Y
proof end;

theorem :: BVFUNC_6:33  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for Y being non empty set
for a, b being Element of Funcs Y,BOOLEAN holds (a '&' ('not' a)) 'imp' b = I_el Y
proof end;

theorem :: BVFUNC_6:34  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for Y being non empty set
for a, b being Element of Funcs Y,BOOLEAN holds (a 'imp' b) 'imp' (('not' a) 'or' b) = I_el Y
proof end;

theorem :: BVFUNC_6:35  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for Y being non empty set
for a, b being Element of Funcs Y,BOOLEAN holds (a '&' b) 'imp' ('not' (a 'imp' ('not' b))) = I_el Y
proof end;

theorem :: BVFUNC_6:36  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for Y being non empty set
for a, b being Element of Funcs Y,BOOLEAN holds ('not' (a 'imp' ('not' b))) 'imp' (a '&' b) = I_el Y
proof end;

theorem :: BVFUNC_6:37  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for Y being non empty set
for a, b being Element of Funcs Y,BOOLEAN holds ('not' (a '&' b)) 'imp' (('not' a) 'or' ('not' b)) = I_el Y
proof end;

theorem :: BVFUNC_6:38  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for Y being non empty set
for a, b being Element of Funcs Y,BOOLEAN holds (('not' a) 'or' ('not' b)) 'imp' ('not' (a '&' b)) = I_el Y
proof end;

theorem :: BVFUNC_6:39  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for Y being non empty set
for a, b being Element of Funcs Y,BOOLEAN holds (a '&' b) 'imp' a = I_el Y
proof end;

theorem :: BVFUNC_6:40  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for Y being non empty set
for a, b being Element of Funcs Y,BOOLEAN holds (a '&' b) 'imp' (a 'or' b) = I_el Y
proof end;

theorem :: BVFUNC_6:41  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for Y being non empty set
for a, b being Element of Funcs Y,BOOLEAN holds (a '&' b) 'imp' b = I_el Y
proof end;

theorem :: BVFUNC_6:42  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for Y being non empty set
for a being Element of Funcs Y,BOOLEAN holds a 'imp' (a '&' a) = I_el Y
proof end;

theorem :: BVFUNC_6:43  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for Y being non empty set
for a, b being Element of Funcs Y,BOOLEAN holds (a 'eqv' b) 'imp' (a 'imp' b) = I_el Y
proof end;

theorem :: BVFUNC_6:44  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for Y being non empty set
for a, b being Element of Funcs Y,BOOLEAN holds (a 'eqv' b) 'imp' (b 'imp' a) = I_el Y
proof end;

theorem :: BVFUNC_6:45  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for Y being non empty set
for a, b, c being Element of Funcs Y,BOOLEAN holds ((a 'or' b) 'or' c) 'imp' (a 'or' (b 'or' c)) = I_el Y
proof end;

theorem :: BVFUNC_6:46  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for Y being non empty set
for a, b, c being Element of Funcs Y,BOOLEAN holds ((a '&' b) '&' c) 'imp' (a '&' (b '&' c)) = I_el Y
proof end;

theorem :: BVFUNC_6:47  Show TPTP formulae Show IDV graph:: Showing IDV graph ... (Click the Palm Tree again to close it) Show TPTP problem
for Y being non empty set
for a, b, c being Element of Funcs Y,BOOLEAN holds (a 'or' (b 'or' c)) 'imp' ((a 'or' b) 'or' c) = I_el Y
proof end;