Here is a list of the statistics maintained about each clause:
(0) {G0,W4,D2,L1,V1,M1} I { product( identity, X, X ) }. (1) {G0,W4,D2,L1,V1,M1} I { product( X, identity, X ) }. (3) {G0,W5,D3,L1,V1,M1} I { product( X, inverse( X ), identity ) }. (4) {G0,W6,D3,L1,V2,M1} I { product( X, Y, multiply( X, Y ) ) }. (5) {G0,W11,D2,L3,V4,M1} I { ! product( X, Y, Z ), Z = T, ! product( X, Y, T ) }. (6) {G0,W16,D2,L4,V6,M1} I { ! product( Y, T, U ), ! product( X, Y, Z ), product( X, U, W ), ! product( Z, T, W ) }. (7) {G0,W16,D2,L4,V6,M1} I { ! product( X, Y, Z ), ! product( X, U, W ), product( Z, T, W ), ! product( Y, T, U ) }. (8) {G0,W4,D2,L1,V1,M1} I { product( X, X, identity ) }. (9) {G0,W4,D2,L1,V0,M1} I { product( a, b, c ) }. (10) {G0,W4,D2,L1,V0,M1} I { ! product( b, a, c ) }. (17) {G1,W9,D3,L2,V3,M1} R(5,4) { Z = multiply( X, Y ), ! product( X, Y, Z) }. (22) {G1,W7,D2,L2,V2,M1} R(5,1) { Y = X, ! product( X, identity, Y ) }. (28) {G1,W12,D2,L3,V4,M1} R(6,0) { ! product( X, Y, Z ), product( T, Z, Y ), ! product( T, X, identity ) }. (41) {G1,W12,D2,L3,V4,M1} R(7,8) { ! product( X, identity, T ), product( Z, Y, T ), ! product( X, Y, Z ) }. (42) {G2,W5,D3,L1,V1,M1} R(22,4) { multiply( X, identity ) ==> X }. (140) {G2,W8,D2,L2,V3,M1} R(28,8) { product( X, Z, Y ), ! product( X, Y, Z) }. (145) {G3,W5,D3,L1,V1,M1} R(140,3) { product( X, identity, inverse( X ) ) }. (146) {G3,W4,D2,L1,V0,M1} R(140,9) { product( a, c, b ) }. (169) {G4,W4,D3,L1,V1,M1} R(145,17);d(42) { inverse( X ) ==> X }. (236) {G4,W8,D2,L2,V1,M1} R(41,146) { ! product( a, identity, X ), product( b, c, X ) }. (307) {G5,W8,D2,L2,V1,M1} R(236,140) { product( b, X, c ), ! product( a, identity, X ) }. (320) {G6,W0,D0,L0,V0,M0} R(307,145);d(169);r(10) { }.
(322) {G0,W4,D2,L1,V1,M1} { product( identity, X, X ) }. (323) {G0,W4,D2,L1,V1,M1} { product( X, identity, X ) }. (324) {G0,W5,D3,L1,V1,M1} { product( inverse( X ), X, identity ) }. (325) {G0,W5,D3,L1,V1,M1} { product( X, inverse( X ), identity ) }. (326) {G0,W6,D3,L1,V2,M1} { product( X, Y, multiply( X, Y ) ) }. (327) {G0,W11,D2,L3,V4,M3} { ! product( X, Y, Z ), ! product( X, Y, T ), Z = T }. (328) {G0,W16,D2,L4,V6,M4} { ! product( X, Y, Z ), ! product( Y, T, U ), ! product( Z, T, W ), product( X, U, W ) }. (329) {G0,W16,D2,L4,V6,M4} { ! product( X, Y, Z ), ! product( Y, T, U ), ! product( X, U, W ), product( Z, T, W ) }. (330) {G0,W4,D2,L1,V1,M1} { product( X, X, identity ) }. (331) {G0,W4,D2,L1,V0,M1} { product( a, b, c ) }. (332) {G0,W4,D2,L1,V0,M1} { ! product( b, a, c ) }. Total Proof: subsumption: (0) {G0,W4,D2,L1,V1,M1} I { product( identity, X, X ) }. parent0: (322) {G0,W4,D2,L1,V1,M1} { product( identity, X, X ) }. substitution0: X := X end permutation0: 0 ==> 0 end subsumption: (1) {G0,W4,D2,L1,V1,M1} I { product( X, identity, X ) }. parent0: (323) {G0,W4,D2,L1,V1,M1} { product( X, identity, X ) }. substitution0: X := X end permutation0: 0 ==> 0 end subsumption: (3) {G0,W5,D3,L1,V1,M1} I { product( X, inverse( X ), identity) }. parent0: (325) {G0,W5,D3,L1,V1,M1} { product( X, inverse( X ), identity ) }. substitution0: X := X end permutation0: 0 ==> 0 end subsumption: (4) {G0,W6,D3,L1,V2,M1} I { product( X, Y, multiply( X, Y ) ) }. parent0: (326) {G0,W6,D3,L1,V2,M1} { product( X, Y, multiply( X, Y ) ) }. substitution0: X := X Y := Y end permutation0: 0 ==> 0 end subsumption: (5) {G0,W11,D2,L3,V4,M1} I { ! product( X, Y, Z ), Z = T, ! product( X, Y, T ) }. parent0: (327) {G0,W11,D2,L3,V4,M3} { ! product( X, Y, Z ), ! product( X, Y, T ), Z = T }. substitution0: X := X Y := Y Z := Z T := T end permutation0: 0 ==> 0 1 ==> 2 2 ==> 1 end subsumption: (6) {G0,W16,D2,L4,V6,M1} I { ! product( Y, T, U ), ! product( X, Y, Z ), product( X, U, W ), ! product( Z, T, W ) }. parent0: (328) {G0,W16,D2,L4,V6,M4} { ! product( X, Y, Z ), ! product( Y, T, U ), ! product( Z, T, W ), product( X, U, W ) }. substitution0: X := X Y := Y Z := Z T := T U := U W := W end permutation0: 0 ==> 1 1 ==> 0 2 ==> 3 3 ==> 2 end subsumption: (7) {G0,W16,D2,L4,V6,M1} I { ! product( X, Y, Z ), ! product( X, U, W ), product( Z, T, W ), ! product( Y, T, U ) }. parent0: (329) {G0,W16,D2,L4,V6,M4} { ! product( X, Y, Z ), ! product( Y, T, U ), ! product( X, U, W ), product( Z, T, W ) }. substitution0: X := X Y := Y Z := Z T := T U := U W := W end permutation0: 0 ==> 0 1 ==> 3 2 ==> 1 3 ==> 2 end subsumption: (8) {G0,W4,D2,L1,V1,M1} I { product( X, X, identity ) }. parent0: (330) {G0,W4,D2,L1,V1,M1} { product( X, X, identity ) }. substitution0: X := X end permutation0: 0 ==> 0 end subsumption: (9) {G0,W4,D2,L1,V0,M1} I { product( a, b, c ) }. parent0: (331) {G0,W4,D2,L1,V0,M1} { product( a, b, c ) }. substitution0: end permutation0: 0 ==> 0 end subsumption: (10) {G0,W4,D2,L1,V0,M1} I { ! product( b, a, c ) }. parent0: (332) {G0,W4,D2,L1,V0,M1} { ! product( b, a, c ) }. substitution0: end permutation0: 0 ==> 0 end resolution: (376) {G1,W9,D3,L2,V3,M2} { ! product( X, Y, Z ), Z = multiply ( X, Y ) }. parent0[2]: (5) {G0,W11,D2,L3,V4,M1} I { ! product( X, Y, Z ), Z = T, ! product( X, Y, T ) }. parent1[0]: (4) {G0,W6,D3,L1,V2,M1} I { product( X, Y, multiply( X, Y ) ) }. substitution0: X := X Y := Y Z := Z T := multiply( X, Y ) end substitution1: X := X Y := Y end subsumption: (17) {G1,W9,D3,L2,V3,M1} R(5,4) { Z = multiply( X, Y ), ! product( X, Y, Z ) }. parent0: (376) {G1,W9,D3,L2,V3,M2} { ! product( X, Y, Z ), Z = multiply( X , Y ) }. substitution0: X := X Y := Y Z := Z end permutation0: 0 ==> 1 1 ==> 0 end resolution: (378) {G1,W7,D2,L2,V2,M2} { ! product( X, identity, Y ), Y = X }. parent0[2]: (5) {G0,W11,D2,L3,V4,M1} I { ! product( X, Y, Z ), Z = T, ! product( X, Y, T ) }. parent1[0]: (1) {G0,W4,D2,L1,V1,M1} I { product( X, identity, X ) }. substitution0: X := X Y := identity Z := Y T := X end substitution1: X := X end subsumption: (22) {G1,W7,D2,L2,V2,M1} R(5,1) { Y = X, ! product( X, identity, Y ) }. parent0: (378) {G1,W7,D2,L2,V2,M2} { ! product( X, identity, Y ), Y = X }. substitution0: X := X Y := Y end permutation0: 0 ==> 1 1 ==> 0 end resolution: (381) {G1,W12,D2,L3,V4,M3} { ! product( X, Y, Z ), ! product( T, X, identity ), product( T, Z, Y ) }. parent0[3]: (6) {G0,W16,D2,L4,V6,M1} I { ! product( Y, T, U ), ! product( X , Y, Z ), product( X, U, W ), ! product( Z, T, W ) }. parent1[0]: (0) {G0,W4,D2,L1,V1,M1} I { product( identity, X, X ) }. substitution0: X := T Y := X Z := identity T := Y U := Z W := Y end substitution1: X := Y end subsumption: (28) {G1,W12,D2,L3,V4,M1} R(6,0) { ! product( X, Y, Z ), product( T, Z, Y ), ! product( T, X, identity ) }. parent0: (381) {G1,W12,D2,L3,V4,M3} { ! product( X, Y, Z ), ! product( T, X, identity ), product( T, Z, Y ) }. substitution0: X := X Y := Y Z := Z T := T end permutation0: 0 ==> 0 1 ==> 2 2 ==> 1 end resolution: (387) {G1,W12,D2,L3,V4,M3} { ! product( X, Y, Z ), ! product( X, identity, T ), product( Z, Y, T ) }. parent0[3]: (7) {G0,W16,D2,L4,V6,M1} I { ! product( X, Y, Z ), ! product( X , U, W ), product( Z, T, W ), ! product( Y, T, U ) }. parent1[0]: (8) {G0,W4,D2,L1,V1,M1} I { product( X, X, identity ) }. substitution0: X := X Y := Y Z := Z T := Y U := identity W := T end substitution1: X := Y end subsumption: (41) {G1,W12,D2,L3,V4,M1} R(7,8) { ! product( X, identity, T ) , product( Z, Y, T ), ! product( X, Y, Z ) }. parent0: (387) {G1,W12,D2,L3,V4,M3} { ! product( X, Y, Z ), ! product( X, identity, T ), product( Z, Y, T ) }. substitution0: X := X Y := Y Z := Z T := T end permutation0: 0 ==> 2 1 ==> 0 2 ==> 1 end eqswap: (391) {G1,W7,D2,L2,V2,M2} { Y = X, ! product( Y, identity, X ) }. parent0[0]: (22) {G1,W7,D2,L2,V2,M1} R(5,1) { Y = X, ! product( X, identity , Y ) }. substitution0: X := Y Y := X end resolution: (392) {G1,W5,D3,L1,V1,M1} { X = multiply( X, identity ) }. parent0[1]: (391) {G1,W7,D2,L2,V2,M2} { Y = X, ! product( Y, identity, X ) }. parent1[0]: (4) {G0,W6,D3,L1,V2,M1} I { product( X, Y, multiply( X, Y ) ) }. substitution0: X := multiply( X, identity ) Y := X end substitution1: X := X Y := identity end eqswap: (393) {G1,W5,D3,L1,V1,M1} { multiply( X, identity ) = X }. parent0[0]: (392) {G1,W5,D3,L1,V1,M1} { X = multiply( X, identity ) }. substitution0: X := X end subsumption: (42) {G2,W5,D3,L1,V1,M1} R(22,4) { multiply( X, identity ) ==> X }. parent0: (393) {G1,W5,D3,L1,V1,M1} { multiply( X, identity ) = X }. substitution0: X := X end permutation0: 0 ==> 0 end resolution: (395) {G1,W8,D2,L2,V3,M2} { ! product( X, Y, Z ), product( X, Z, Y ) }. parent0[2]: (28) {G1,W12,D2,L3,V4,M1} R(6,0) { ! product( X, Y, Z ), product( T, Z, Y ), ! product( T, X, identity ) }. parent1[0]: (8) {G0,W4,D2,L1,V1,M1} I { product( X, X, identity ) }. substitution0: X := X Y := Y Z := Z T := X end substitution1: X := X end subsumption: (140) {G2,W8,D2,L2,V3,M1} R(28,8) { product( X, Z, Y ), ! product( X, Y, Z ) }. parent0: (395) {G1,W8,D2,L2,V3,M2} { ! product( X, Y, Z ), product( X, Z, Y ) }. substitution0: X := X Y := Y Z := Z end permutation0: 0 ==> 1 1 ==> 0 end resolution: (396) {G1,W5,D3,L1,V1,M1} { product( X, identity, inverse( X )) }. parent0[1]: (140) {G2,W8,D2,L2,V3,M1} R(28,8) { product( X, Z, Y ), ! product( X, Y, Z ) }. parent1[0]: (3) {G0,W5,D3,L1,V1,M1} I { product( X, inverse( X ), identity) }. substitution0: X := X Y := inverse( X ) Z := identity end substitution1: X := X end subsumption: (145) {G3,W5,D3,L1,V1,M1} R(140,3) { product( X, identity, inverse( X ) ) }. parent0: (396) {G1,W5,D3,L1,V1,M1} { product( X, identity, inverse( X ) ) }. substitution0: X := X end permutation0: 0 ==> 0 end resolution: (397) {G1,W4,D2,L1,V0,M1} { product( a, c, b ) }. parent0[1]: (140) {G2,W8,D2,L2,V3,M1} R(28,8) { product( X, Z, Y ), ! product( X, Y, Z ) }. parent1[0]: (9) {G0,W4,D2,L1,V0,M1} I { product( a, b, c ) }. substitution0: X := a Y := b Z := c end substitution1: end subsumption: (146) {G3,W4,D2,L1,V0,M1} R(140,9) { product( a, c, b ) }. parent0: (397) {G1,W4,D2,L1,V0,M1} { product( a, c, b ) }. substitution0: end permutation0: 0 ==> 0 end eqswap: (398) {G1,W9,D3,L2,V3,M2} { multiply( Y, Z ) = X, ! product( Y, Z , X ) }. parent0[0]: (17) {G1,W9,D3,L2,V3,M1} R(5,4) { Z = multiply( X, Y ), ! product( X, Y, Z ) }. substitution0: X := Y Y := Z Z := X end resolution: (400) {G2,W6,D3,L1,V1,M1} { multiply( X, identity ) = inverse ( X ) }. parent0[1]: (398) {G1,W9,D3,L2,V3,M2} { multiply( Y, Z ) = X, ! product( Y , Z, X ) }. parent1[0]: (145) {G3,W5,D3,L1,V1,M1} R(140,3) { product( X, identity, inverse( X ) ) }. substitution0: X := inverse( X ) Y := X Z := identity end substitution1: X := X end paramod: (401) {G3,W4,D3,L1,V1,M1} { X = inverse( X ) }. parent0[0]: (42) {G2,W5,D3,L1,V1,M1} R(22,4) { multiply( X, identity ) ==> X }. parent1[0; 1]: (400) {G2,W6,D3,L1,V1,M1} { multiply( X, identity ) = inverse( X ) }. substitution0: X := X end substitution1: X := X end eqswap: (402) {G3,W4,D3,L1,V1,M1} { inverse( X ) = X }. parent0[0]: (401) {G3,W4,D3,L1,V1,M1} { X = inverse( X ) }. substitution0: X := X end subsumption: (169) {G4,W4,D3,L1,V1,M1} R(145,17);d(42) { inverse( X ) ==> X }. parent0: (402) {G3,W4,D3,L1,V1,M1} { inverse( X ) = X }. substitution0: X := X end permutation0: 0 ==> 0 end resolution: (403) {G2,W8,D2,L2,V1,M2} { ! product( a, identity, X ), product( b, c, X ) }. parent0[2]: (41) {G1,W12,D2,L3,V4,M1} R(7,8) { ! product( X, identity, T ) , product( Z, Y, T ), ! product( X, Y, Z ) }. parent1[0]: (146) {G3,W4,D2,L1,V0,M1} R(140,9) { product( a, c, b ) }. substitution0: X := a Y := c Z := b T := X end substitution1: end subsumption: (236) {G4,W8,D2,L2,V1,M1} R(41,146) { ! product( a, identity, X ), product( b, c, X ) }. parent0: (403) {G2,W8,D2,L2,V1,M2} { ! product( a, identity, X ), product ( b, c, X ) }. substitution0: X := X end permutation0: 0 ==> 0 1 ==> 1 end resolution: (405) {G3,W8,D2,L2,V1,M2} { product( b, X, c ), ! product( a, identity, X ) }. parent0[1]: (140) {G2,W8,D2,L2,V3,M1} R(28,8) { product( X, Z, Y ), ! product( X, Y, Z ) }. parent1[1]: (236) {G4,W8,D2,L2,V1,M1} R(41,146) { ! product( a, identity, X), product( b, c, X ) }. substitution0: X := b Y := c Z := X end substitution1: X := X end subsumption: (307) {G5,W8,D2,L2,V1,M1} R(236,140) { product( b, X, c ), ! product( a, identity, X ) }. parent0: (405) {G3,W8,D2,L2,V1,M2} { product( b, X, c ), ! product( a, identity, X ) }. substitution0: X := X end permutation0: 0 ==> 0 1 ==> 1 end resolution: (407) {G4,W5,D3,L1,V0,M1} { product( b, inverse( a ), c ) }. parent0[1]: (307) {G5,W8,D2,L2,V1,M1} R(236,140) { product( b, X, c ), ! product( a, identity, X ) }. parent1[0]: (145) {G3,W5,D3,L1,V1,M1} R(140,3) { product( X, identity, inverse( X ) ) }. substitution0: X := inverse( a ) end substitution1: X := a end paramod: (408) {G5,W4,D2,L1,V0,M1} { product( b, a, c ) }. parent0[0]: (169) {G4,W4,D3,L1,V1,M1} R(145,17);d(42) { inverse( X ) ==> X }. parent1[0; 2]: (407) {G4,W5,D3,L1,V0,M1} { product( b, inverse( a ), c ) }. substitution0: X := a end substitution1: end resolution: (409) {G1,W0,D0,L0,V0,M0} { }. parent0[0]: (10) {G0,W4,D2,L1,V0,M1} I { ! product( b, a, c ) }. parent1[0]: (408) {G5,W4,D2,L1,V0,M1} { product( b, a, c ) }. substitution0: end substitution1: end subsumption: (320) {G6,W0,D0,L0,V0,M0} R(307,145);d(169);r(10) { }. parent0: (409) {G1,W0,D0,L0,V0,M0} { }. substitution0: end permutation0: end
clause( 0, [ product( identity, X, X ) ] ) . clause( 1, [ product( X, identity, X ) ] ) . clause( 3, [ product( X, inverse( X ), identity ) ] ) . clause( 4, [ product( X, Y, multiply( X, Y ) ) ] ) . clause( 5, [ ~( product( X, Y, Z ) ), =( Z, T ), ~( product( X, Y, T ) ) ]) . clause( 6, [ ~( product( Y, T, U ) ), ~( product( X, Y, Z ) ), product( X, U, W ), ~( product( Z, T, W ) ) ] ) . clause( 7, [ ~( product( X, Y, Z ) ), ~( product( X, U, W ) ), product( Z, T, W ), ~( product( Y, T, U ) ) ] ) . clause( 8, [ product( X, X, identity ) ] ) . clause( 9, [ product( a, b, c ) ] ) . clause( 10, [ ~( product( b, a, c ) ) ] ) . clause( 17, [ =( Z, multiply( X, Y ) ), ~( product( X, Y, Z ) ) ] ) . clause( 22, [ =( Y, X ), ~( product( X, identity, Y ) ) ] ) . clause( 28, [ ~( product( X, Y, Z ) ), product( T, Z, Y ), ~( product( T, X , identity ) ) ] ) . clause( 41, [ ~( product( X, identity, T ) ), product( Z, Y, T ), ~( product( X, Y, Z ) ) ] ) . clause( 42, [ =( multiply( X, identity ), X ) ] ) . clause( 140, [ product( X, Z, Y ), ~( product( X, Y, Z ) ) ] ) . clause( 145, [ product( X, identity, inverse( X ) ) ] ) . clause( 146, [ product( a, c, b ) ] ) . clause( 169, [ =( inverse( X ), X ) ] ) . clause( 236, [ ~( product( a, identity, X ) ), product( b, c, X ) ] ) . clause( 307, [ product( b, X, c ), ~( product( a, identity, X ) ) ] ) . clause( 320, [] ) . found a proof! % ABCDEFGHIJKLMNOPQRSTUVWXYZ initialclauses( [ clause( 322, [ product( identity, X, X ) ] ) , clause( 323, [ product( X, identity, X ) ] ) , clause( 324, [ product( inverse( X ), X, identity ) ] ) , clause( 325, [ product( X, inverse( X ), identity ) ] ) , clause( 326, [ product( X, Y, multiply( X, Y ) ) ] ) , clause( 327, [ ~( product( X, Y, Z ) ), ~( product( X, Y, T ) ), =( Z, T) ] ) , clause( 328, [ ~( product( X, Y, Z ) ), ~( product( Y, T, U ) ), ~( product( Z, T, W ) ), product( X, U, W ) ] ) , clause( 329, [ ~( product( X, Y, Z ) ), ~( product( Y, T, U ) ), ~( product( X, U, W ) ), product( Z, T, W ) ] ) , clause( 330, [ product( X, X, identity ) ] ) , clause( 331, [ product( a, b, c ) ] ) , clause( 332, [ ~( product( b, a, c ) ) ] ) ] ). subsumption( clause( 0, [ product( identity, X, X ) ] ) , clause( 322, [ product( identity, X, X ) ] ) , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ). subsumption( clause( 1, [ product( X, identity, X ) ] ) , clause( 323, [ product( X, identity, X ) ] ) , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ). subsumption( clause( 3, [ product( X, inverse( X ), identity ) ] ) , clause( 325, [ product( X, inverse( X ), identity ) ] ) , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ). subsumption( clause( 4, [ product( X, Y, multiply( X, Y ) ) ] ) , clause( 326, [ product( X, Y, multiply( X, Y ) ) ] ) , substitution( 0, [ :=( X, X ), :=( Y, Y )] ), permutation( 0, [ ==>( 0, 0 )] ) ). subsumption( clause( 5, [ ~( product( X, Y, Z ) ), =( Z, T ), ~( product( X, Y, T ) ) ] ) , clause( 327, [ ~( product( X, Y, Z ) ), ~( product( X, Y, T ) ), =( Z, T ) ] ) , substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z ), :=( T, T )] ), permutation( 0, [ ==>( 0, 0 ), ==>( 1, 2 ), ==>( 2, 1 )] ) ). subsumption( clause( 6, [ ~( product( Y, T, U ) ), ~( product( X, Y, Z ) ), product( X, U, W ), ~( product( Z, T, W ) ) ] ) , clause( 328, [ ~( product( X, Y, Z ) ), ~( product( Y, T, U ) ), ~( product( Z, T, W ) ), product( X, U, W ) ] ) , substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z ), :=( T, T ), :=( U , U ), :=( W, W )] ), permutation( 0, [ ==>( 0, 1 ), ==>( 1, 0 ), ==>( 2 , 3 ), ==>( 3, 2 )] ) ). subsumption( clause( 7, [ ~( product( X, Y, Z ) ), ~( product( X, U, W ) ), product( Z, T, W ), ~( product( Y, T, U ) ) ] ) , clause( 329, [ ~( product( X, Y, Z ) ), ~( product( Y, T, U ) ), ~( product( X, U, W ) ), product( Z, T, W ) ] ) , substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z ), :=( T, T ), :=( U , U ), :=( W, W )] ), permutation( 0, [ ==>( 0, 0 ), ==>( 1, 3 ), ==>( 2 , 1 ), ==>( 3, 2 )] ) ). subsumption( clause( 8, [ product( X, X, identity ) ] ) , clause( 330, [ product( X, X, identity ) ] ) , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ). subsumption( clause( 9, [ product( a, b, c ) ] ) , clause( 331, [ product( a, b, c ) ] ) , substitution( 0, [] ), permutation( 0, [ ==>( 0, 0 )] ) ). subsumption( clause( 10, [ ~( product( b, a, c ) ) ] ) , clause( 332, [ ~( product( b, a, c ) ) ] ) , substitution( 0, [] ), permutation( 0, [ ==>( 0, 0 )] ) ). resolution( clause( 376, [ ~( product( X, Y, Z ) ), =( Z, multiply( X, Y ) ) ] ) , clause( 5, [ ~( product( X, Y, Z ) ), =( Z, T ), ~( product( X, Y, T ) ) ] ) , 2, clause( 4, [ product( X, Y, multiply( X, Y ) ) ] ) , 0, substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z ), :=( T, multiply( X, Y ) )] ), substitution( 1, [ :=( X, X ), :=( Y, Y )] )). subsumption( clause( 17, [ =( Z, multiply( X, Y ) ), ~( product( X, Y, Z ) ) ] ) , clause( 376, [ ~( product( X, Y, Z ) ), =( Z, multiply( X, Y ) ) ] ) , substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] ), permutation( 0, [ ==>( 0, 1 ), ==>( 1, 0 )] ) ). resolution( clause( 378, [ ~( product( X, identity, Y ) ), =( Y, X ) ] ) , clause( 5, [ ~( product( X, Y, Z ) ), =( Z, T ), ~( product( X, Y, T ) ) ] ) , 2, clause( 1, [ product( X, identity, X ) ] ) , 0, substitution( 0, [ :=( X, X ), :=( Y, identity ), :=( Z, Y ), :=( T, X )] ), substitution( 1, [ :=( X, X )] )). subsumption( clause( 22, [ =( Y, X ), ~( product( X, identity, Y ) ) ] ) , clause( 378, [ ~( product( X, identity, Y ) ), =( Y, X ) ] ) , substitution( 0, [ :=( X, X ), :=( Y, Y )] ), permutation( 0, [ ==>( 0, 1 ), ==>( 1, 0 )] ) ). resolution( clause( 381, [ ~( product( X, Y, Z ) ), ~( product( T, X, identity ) ), product( T, Z, Y ) ] ) , clause( 6, [ ~( product( Y, T, U ) ), ~( product( X, Y, Z ) ), product( X , U, W ), ~( product( Z, T, W ) ) ] ) , 3, clause( 0, [ product( identity, X, X ) ] ) , 0, substitution( 0, [ :=( X, T ), :=( Y, X ), :=( Z, identity ), :=( T, Y ), :=( U, Z ), :=( W, Y )] ), substitution( 1, [ :=( X, Y )] )). subsumption( clause( 28, [ ~( product( X, Y, Z ) ), product( T, Z, Y ), ~( product( T, X , identity ) ) ] ) , clause( 381, [ ~( product( X, Y, Z ) ), ~( product( T, X, identity ) ), product( T, Z, Y ) ] ) , substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z ), :=( T, T )] ), permutation( 0, [ ==>( 0, 0 ), ==>( 1, 2 ), ==>( 2, 1 )] ) ). resolution( clause( 387, [ ~( product( X, Y, Z ) ), ~( product( X, identity, T ) ), product( Z, Y, T ) ] ) , clause( 7, [ ~( product( X, Y, Z ) ), ~( product( X, U, W ) ), product( Z , T, W ), ~( product( Y, T, U ) ) ] ) , 3, clause( 8, [ product( X, X, identity ) ] ) , 0, substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z ), :=( T, Y ), :=( U, identity ), :=( W, T )] ), substitution( 1, [ :=( X, Y )] )). subsumption( clause( 41, [ ~( product( X, identity, T ) ), product( Z, Y, T ), ~( product( X, Y, Z ) ) ] ) , clause( 387, [ ~( product( X, Y, Z ) ), ~( product( X, identity, T ) ), product( Z, Y, T ) ] ) , substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z ), :=( T, T )] ), permutation( 0, [ ==>( 0, 2 ), ==>( 1, 0 ), ==>( 2, 1 )] ) ). eqswap( clause( 391, [ =( Y, X ), ~( product( Y, identity, X ) ) ] ) , clause( 22, [ =( Y, X ), ~( product( X, identity, Y ) ) ] ) , 0, substitution( 0, [ :=( X, Y ), :=( Y, X )] )). resolution( clause( 392, [ =( X, multiply( X, identity ) ) ] ) , clause( 391, [ =( Y, X ), ~( product( Y, identity, X ) ) ] ) , 1, clause( 4, [ product( X, Y, multiply( X, Y ) ) ] ) , 0, substitution( 0, [ :=( X, multiply( X, identity ) ), :=( Y, X )] ), substitution( 1, [ :=( X, X ), :=( Y, identity )] )). eqswap( clause( 393, [ =( multiply( X, identity ), X ) ] ) , clause( 392, [ =( X, multiply( X, identity ) ) ] ) , 0, substitution( 0, [ :=( X, X )] )). subsumption( clause( 42, [ =( multiply( X, identity ), X ) ] ) , clause( 393, [ =( multiply( X, identity ), X ) ] ) , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ). resolution( clause( 395, [ ~( product( X, Y, Z ) ), product( X, Z, Y ) ] ) , clause( 28, [ ~( product( X, Y, Z ) ), product( T, Z, Y ), ~( product( T , X, identity ) ) ] ) , 2, clause( 8, [ product( X, X, identity ) ] ) , 0, substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z ), :=( T, X )] ), substitution( 1, [ :=( X, X )] )). subsumption( clause( 140, [ product( X, Z, Y ), ~( product( X, Y, Z ) ) ] ) , clause( 395, [ ~( product( X, Y, Z ) ), product( X, Z, Y ) ] ) , substitution( 0, [ :=( X, X ), :=( Y, Y ), :=( Z, Z )] ), permutation( 0, [ ==>( 0, 1 ), ==>( 1, 0 )] ) ). resolution( clause( 396, [ product( X, identity, inverse( X ) ) ] ) , clause( 140, [ product( X, Z, Y ), ~( product( X, Y, Z ) ) ] ) , 1, clause( 3, [ product( X, inverse( X ), identity ) ] ) , 0, substitution( 0, [ :=( X, X ), :=( Y, inverse( X ) ), :=( Z, identity )] ), substitution( 1, [ :=( X, X )] )). subsumption( clause( 145, [ product( X, identity, inverse( X ) ) ] ) , clause( 396, [ product( X, identity, inverse( X ) ) ] ) , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ). resolution( clause( 397, [ product( a, c, b ) ] ) , clause( 140, [ product( X, Z, Y ), ~( product( X, Y, Z ) ) ] ) , 1, clause( 9, [ product( a, b, c ) ] ) , 0, substitution( 0, [ :=( X, a ), :=( Y, b ), :=( Z, c )] ), substitution( 1, [] )). subsumption( clause( 146, [ product( a, c, b ) ] ) , clause( 397, [ product( a, c, b ) ] ) , substitution( 0, [] ), permutation( 0, [ ==>( 0, 0 )] ) ). eqswap( clause( 398, [ =( multiply( Y, Z ), X ), ~( product( Y, Z, X ) ) ] ) , clause( 17, [ =( Z, multiply( X, Y ) ), ~( product( X, Y, Z ) ) ] ) , 0, substitution( 0, [ :=( X, Y ), :=( Y, Z ), :=( Z, X )] )). resolution( clause( 400, [ =( multiply( X, identity ), inverse( X ) ) ] ) , clause( 398, [ =( multiply( Y, Z ), X ), ~( product( Y, Z, X ) ) ] ) , 1, clause( 145, [ product( X, identity, inverse( X ) ) ] ) , 0, substitution( 0, [ :=( X, inverse( X ) ), :=( Y, X ), :=( Z, identity )] ), substitution( 1, [ :=( X, X )] )). paramod( clause( 401, [ =( X, inverse( X ) ) ] ) , clause( 42, [ =( multiply( X, identity ), X ) ] ) , 0, clause( 400, [ =( multiply( X, identity ), inverse( X ) ) ] ) , 0, 1, substitution( 0, [ :=( X, X )] ), substitution( 1, [ :=( X, X )] ) ). eqswap( clause( 402, [ =( inverse( X ), X ) ] ) , clause( 401, [ =( X, inverse( X ) ) ] ) , 0, substitution( 0, [ :=( X, X )] )). subsumption( clause( 169, [ =( inverse( X ), X ) ] ) , clause( 402, [ =( inverse( X ), X ) ] ) , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 )] ) ). resolution( clause( 403, [ ~( product( a, identity, X ) ), product( b, c, X ) ] ) , clause( 41, [ ~( product( X, identity, T ) ), product( Z, Y, T ), ~( product( X, Y, Z ) ) ] ) , 2, clause( 146, [ product( a, c, b ) ] ) , 0, substitution( 0, [ :=( X, a ), :=( Y, c ), :=( Z, b ), :=( T, X )] ), substitution( 1, [] )). subsumption( clause( 236, [ ~( product( a, identity, X ) ), product( b, c, X ) ] ) , clause( 403, [ ~( product( a, identity, X ) ), product( b, c, X ) ] ) , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 ), ==>( 1, 1 )] ) ). resolution( clause( 405, [ product( b, X, c ), ~( product( a, identity, X ) ) ] ) , clause( 140, [ product( X, Z, Y ), ~( product( X, Y, Z ) ) ] ) , 1, clause( 236, [ ~( product( a, identity, X ) ), product( b, c, X ) ] ) , 1, substitution( 0, [ :=( X, b ), :=( Y, c ), :=( Z, X )] ), substitution( 1, [ :=( X, X )] )). subsumption( clause( 307, [ product( b, X, c ), ~( product( a, identity, X ) ) ] ) , clause( 405, [ product( b, X, c ), ~( product( a, identity, X ) ) ] ) , substitution( 0, [ :=( X, X )] ), permutation( 0, [ ==>( 0, 0 ), ==>( 1, 1 )] ) ). resolution( clause( 407, [ product( b, inverse( a ), c ) ] ) , clause( 307, [ product( b, X, c ), ~( product( a, identity, X ) ) ] ) , 1, clause( 145, [ product( X, identity, inverse( X ) ) ] ) , 0, substitution( 0, [ :=( X, inverse( a ) )] ), substitution( 1, [ :=( X , a )] )). paramod( clause( 408, [ product( b, a, c ) ] ) , clause( 169, [ =( inverse( X ), X ) ] ) , 0, clause( 407, [ product( b, inverse( a ), c ) ] ) , 0, 2, substitution( 0, [ :=( X, a )] ), substitution( 1, [] )). resolution( clause( 409, [] ) , clause( 10, [ ~( product( b, a, c ) ) ] ) , 0, clause( 408, [ product( b, a, c ) ] ) , 0, substitution( 0, [] ), substitution( 1, [] )). subsumption( clause( 320, [] ) , clause( 409, [] ) , substitution( 0, [] ), permutation( 0, [] ) ). end.
Here is a list of all inferences:
This proof uses all but "ef", although it uses some in fairly trivial ways. Note that clause normalization is inherently performed after all inferences but rewriting.
0 : [++equal(a, b),++equal(a, c)] : initial 1 : [++equal(i(X1), i(X2))] : initial 2 : [++equal(b, c),--equal(X1, X2),--equal(X3, X4),--equal(c, d)] : initial 3 : [++equal(c, d),--equal(h(i(a)), h(i(e)))] : initial 4 : [++equal(f(X1,X2), f(X2,X1))] : initial 5 : [--equal(f(f(X1,X2),f(X3,g(X4,X5))), f(f(g(X4,X5),X3),f(X2,X1))),--equal(k(X1,X1), k(a,b))] : initial 6 : [--equal(k(X1,X1), k(a,b))]: ar(5, 0, 4) 7 : [++equal(c, b),++epred1_0,--equal(d, c),--equal(X1, X2)] : split(2) 8 : [++epred2_0,--equal(X3, X4)] : split(2) 9 : [--epred2_0,--epred1_0] : split(2) 10 : [++epred2_0] : er(8) 11 : [--$true,--epred1_0] : rw(9,10) 12 : [++equal(c, b),++epred1_0,--equal(d, c)] : er(7) 13 : [++equal(d, c)] : sr(3,1) 14 : [++equal(c, b),++epred1_0,--equal(c, c)] : rw(12,13) 15 : [++equal(c, b),++epred1_0] : cn(14) 16 : [++equal(b, a),++epred1_0] : pm(15,0) 17 : [++epred1_0,--equal(k(a,a), k(X1,X1))] : pm(16,6) 18 : [++epred1_0] : er(17) 19 : [--$true,--$true] : rw(11,18) 20 : [] : cn(19) 21 : [] : 20 : {proof}
0 : [++subclass(X1,universal_class)] : initial 1 : [--member(y,universal_class)] : initial 2 : [++equal(unordered_pair(X1,X1), singleton(X1))] : initial 3 : [++equal(X1, null_class),++member(regular(X1),X1)] : initial 4 : [++member(X1,X2),--subclass(X3,X2),--member(X1,X3)] : initial 5 : [++equal(X1, X2),++equal(X1, X3),--member(X1,unordered_pair(X2,X3))] : initial 6 : [++equal(unordered_pair(singleton(X1),unordered_pair(X1,singleton(X2))), ordered_pair(X1,X2))] : initial 7 : [--equal(unordered_pair(singleton(x),unordered_pair(x,null_class)), ordered_pair(x,y))] : initial 8 : [++member(X2,universal_class),--member(X2,X1)] : pm(0,4) 9 : [++member(regular(X1),universal_class),++equal(X1, null_class)] : pm(3,8) 10 : [++equal(X1, X2),--member(X1,singleton(X2))] : pm(2,5) 11 : [++equal(regular(singleton(X1)), X1),++equal(singleton(X1), null_class)] : pm(3,10) 12 : [++member(X1,universal_class),++equal(singleton(X1), null_class)] : pm(11,9) 13 : [++equal(singleton(y), null_class)] : pm(12,1) 14 : [++equal(unordered_pair(singleton(X1),unordered_pair(X1,null_class)), ordered_pair(X1,y))] : pm(13,6) 15 : [--equal(ordered_pair(x,y), ordered_pair(x,y))] : rw(7,14) 16 : [] : cn(15) 17 : [] : 16 : {proof}
0 : [++equal(j(0,X1), X1)] : initial 1 : [++equal(j(X1,0), X1)] : initial 2 : [++equal(f(X1,X1), X1)] : initial 3 : [++equal(j(X1,g(X1)), 0)] : initial 4 : [++equal(j(X1,X2), j(X2,X1))] : initial 5 : [--equal(f(a,b), f(b,a))] : initial 6 : [++equal(j(j(X1,X2),X3), j(X1,j(X2,X3)))] : initial 7 : [++equal(f(X1,j(X2,X3)), j(f(X1,X2),f(X1,X3)))] : initial 8 : [++equal(f(j(X1,X2),X3), j(f(X1,X3),f(X2,X3)))] : initial 9 : [++equal(j(0,X2), j(X1,j(g(X1),X2)))] : pm(3,6) 10 : [++equal(j(X1,j(X2,X3)), j(X3,j(X1,X2)))] : pm(6,4) 11 : [++equal(X2, j(X1,j(g(X1),X2)))] : rw(9,0) 12 : [++equal(j(X1,0), g(g(X1)))] : pm(3,11) 13 : [++equal(X1, g(g(X1)))] : rw(12,1) 14 : [++equal(j(X1,f(X1,X2)), f(X1,j(X1,X2)))] : pm(2,7) 15 : [++equal(j(f(X1,X2),X1), f(X1,j(X2,X1)))] : pm(2,7) 16 : [++equal(j(X1,f(X1,X2)), f(X1,j(X2,X1)))] : rw(15,4) 17 : [++equal(f(X1,X1), j(X1,f(X1,0)))] : pm(1,14) 18 : [++equal(f(X1,0), j(X1,f(X1,g(X1))))] : pm(3,14) 19 : [++equal(X1, j(X1,f(X1,0)))] : rw(17,2) 20 : [++equal(j(X1,g(X1)), f(g(X1),0))] : pm(19,11) 21 : [++equal(0, f(g(X1),0))] : rw(20,3) 22 : [++equal(f(X1,0), 0)] : pm(13,21) 23 : [++equal(0, j(X1,f(X1,g(X1))))] : rw(18,22) 24 : [++equal(j(X1,0), f(g(X1),g(g(X1))))] : pm(23,11) 25 : [++equal(X1, f(g(X1),g(g(X1))))] : rw(24,1) 26 : [++equal(X1, f(g(X1),X1))] : rw(25,13) 27 : [++equal(j(X1,f(X2,X1)), f(j(X1,X2),X1))] : pm(2,8) 28 : [++equal(j(f(X1,X2),X2), f(j(X1,X2),X2))] : pm(2,8) 29 : [++equal(j(X2,f(X1,X2)), f(j(X1,X2),X2))] : rw(28,4) 30 : [++equal(f(X1,X1), j(X1,f(0,X1)))] : pm(1,27) 31 : [++equal(f(0,X1), j(X1,f(g(X1),X1)))] : pm(3,27) 32 : [++equal(X1, j(X1,f(0,X1)))] : rw(30,2) 33 : [++equal(f(0,X1), j(X1,X1))] : rw(31,26) 34 : [++equal(j(X1,g(X1)), f(0,g(X1)))] : pm(32,11) 35 : [++equal(0, f(0,g(X1)))] : rw(34,3) 36 : [++equal(f(0,X1), 0)] : pm(13,35) 37 : [++equal(0, j(X1,X1))] : rw(33,36) 38 : [++equal(j(0,X2), j(X1,j(X1,X2)))] : pm(37,6) 39 : [++equal(j(X1,0), j(X2,j(X1,X2)))] : pm(37,10) 40 : [++equal(X2, j(X1,j(X1,X2)))] : rw(38,0) 41 : [++equal(X1, j(X2,j(X1,X2)))] : rw(39,1) 42 : [++equal(f(X2,j(X2,X1)), j(j(X2,X1),f(X1,j(X2,X1))))] : pm(41,29) 43 : [++equal(j(X2,f(X2,X1)), j(j(X2,X1),f(X1,j(X2,X1))))] : rw(42,14) 44 : [++equal(j(X2,f(X2,X1)), j(j(X2,X1),j(X1,f(X1,X2))))] : rw(43,16) 45 : [++equal(j(X2,f(X2,X1)), j(X2,j(X1,j(X1,f(X1,X2)))))] : rw(44,6) 46 : [++equal(j(X2,f(X2,X1)), j(X2,f(X1,X2)))] : rw(45,40) 47 : [++equal(j(X1,j(X1,f(X2,X1))), j(X1,f(X1,j(X1,X2))))] : pm(27,46) 48 : [++equal(j(X1,j(X1,f(X2,X1))), j(X1,j(X1,f(X1,X2))))] : rw(47,14) 49 : [++equal(f(X2,X1), j(X1,j(X1,f(X1,X2))))] : rw(48,40) 50 : [++equal(f(X2,X1), f(X1,X2))] : rw(49,40) 51 : [--equal(f(a,b), f(a,b))] : rw(5,50) 52 : [] : cn(51) 53 : [] : 52 : {proof}
PUZ031-1
0 : [++wolf(a_wolf)] : initial 1 : [++fox(a_fox)] : initial 2 : [++bird(a_bird)] : initial 3 : [++snail(a_snail)] : initial 4 : [++grain(a_grain)] : initial 5 : [++animal(X1),--wolf(X1)] : initial 6 : [++animal(X1),--fox(X1)] : initial 7 : [++animal(X1),--bird(X1)] : initial 8 : [++animal(X1),--snail(X1)] : initial 9 : [++plant(X1),--grain(X1)] : initial 10 : [++plant(snail_food_of(X1)),--snail(X1)] : initial 11 : [++eats(X1,snail_food_of(X1)),--snail(X1)] : initial 12 : [++much_smaller(X1,X2),--snail(X1),--bird(X2)] : initial 13 : [++much_smaller(X1,X2),--bird(X1),--fox(X2)] : initial 14 : [++much_smaller(X1,X2),--fox(X1),--wolf(X2)] : initial 15 : [--wolf(X1),--fox(X2),--eats(X1,X2)] : initial 16 : [--wolf(X1),--grain(X2),--eats(X1,X2)] : initial 17 : [--bird(X1),--snail(X2),--eats(X1,X2)] : initial 18 : [--animal(X1),--animal(X2),--grain(X3),--eats(X1,X2),--eats(X2,X3)] : initial 19 : [++eats(X1,X2),++eats(X1,X3),--animal(X1),--plant(X2),--animal(X3),--plant(X4),--much_smaller(X3,X1),--eats(X3,X4)] : initial 20 : [++animal(a_wolf)] : pm(0,5) 21 : [++animal(a_fox)] : pm(1,6) 22 : [++animal(a_bird)] : pm(2,7) 23 : [++animal(a_snail)] : pm(3,8) 24 : [++eats(X2,X3),++eats(X2,X1),--animal(X2),--plant(X3),--animal(X1),--plant(snail_food_of(X1)),--much_smaller(X1,X2),--snail(X1)] : pm(11,19) 25 : [++eats(X2,X3),++eats(X2,X1),--animal(X2),--plant(X3),--animal(X1),--plant(snail_food_of(X1)),--snail(X1),--bird(X2)] : pm(12,24) 26 : [++eats(X1,X3),--bird(X1),--snail(X2),--animal(X1),--plant(X3),--animal(X2),--plant(snail_food_of(X2))] : pm(25,17) 27 : [++eats(X2,X3),--bird(X2),--snail(X1),--animal(X2),--plant(X3),--animal(X1)] : pm(10,26) 28 : [++eats(X1,X2),--bird(X1),--animal(X1),--plant(X2),--animal(a_snail)] : pm(3,27) 29 : [++eats(X1,X2),--bird(X1),--animal(X1),--plant(X2),--$true] : rw(28,23) 30 : [++eats(X1,X2),--bird(X1),--animal(X1),--plant(X2)] : cn(29) 31 : [--animal(X3),--animal(X1),--grain(X2),--eats(X3,X1),--bird(X1),--plant(X2)] : pm(30,18) 32 : [++eats(X3,X4),++eats(X3,X1),--animal(X3),--plant(X4),--animal(X1),--plant(X2),--much_smaller(X1,X3),--bird(X1)] : pm(30,19) 33 : [++eats(X3,X1),++eats(X3,X4),++epred1_0,--bird(X1),--much_smaller(X1,X3),--animal(X1),--plant(X4),--animal(X3)] : split(32) 34 : [++epred2_0,--plant(X2)] : split(32) 35 : [--epred2_0,--epred1_0] : split(32) 36 : [++epred2_0,--grain(X1)] : pm(9,34) 37 : [++epred2_0] : pm(4,36) 38 : [--$true,--epred1_0] : rw(35,37) 39 : [++eats(X2,X1),++eats(X2,X3),++epred1_0,--bird(X1),--animal(X1),--plant(X3),--animal(X2),--fox(X2)] : pm(13,33) 40 : [--animal(X2),--animal(X3),--grain(X1),--eats(X2,X3),--bird(X3)] : pm(9,31) 41 : [++eats(X1,X4),++epred1_0,--animal(X1),--animal(X2),--grain(X3),--bird(X2),--plant(X4),--fox(X1)] : pm(39,40) 42 : [++eats(X1,X2),++epred1_0,--animal(X1),--animal(a_bird),--grain(X3),--plant(X2),--fox(X1)] : pm(2,41) 43 : [++eats(X1,X2),++epred1_0,--animal(X1),--$true,--grain(X3),--plant(X2),--fox(X1)] : rw(42,22) 44 : [++eats(X1,X2),++epred1_0,--animal(X1),--grain(X3),--plant(X2),--fox(X1)] : cn(43) 45 : [++eats(X1,X2),++epred1_0,--animal(X1),--plant(X2),--fox(X1)] : pm(4,44) 46 : [++eats(X3,X4),++eats(X3,X1),++epred1_0,--animal(X3),--plant(X4),--animal(X1),--plant(X2),--much_smaller(X1,X3),--fox(X1)] : pm(45,19) 47 : [++eats(X2,X3),++eats(X2,X1),++epred1_0,--animal(X2),--plant(X3),--animal(X1),--plant(X4),--fox(X1),--wolf(X2)] : pm(14,46) 48 : [++eats(X1,X3),++epred1_0,--wolf(X1),--fox(X2),--animal(X1),--plant(X3),--animal(X2),--plant(X4)] : pm(47,15) 49 : [++eats(X1,X2),++epred1_0,--wolf(X1),--animal(X1),--plant(X2),--animal(a_fox),--plant(X3)] : pm(1,48) 50 : [++eats(X1,X2),++epred1_0,--wolf(X1),--animal(X1),--plant(X2),--$true,--plant(X3)] : rw(49,21) 51 : [++eats(X1,X2),++epred1_0,--wolf(X1),--animal(X1),--plant(X2),--plant(X3)] : cn(50) 52 : [++epred1_0,--wolf(X1),--grain(X2),--animal(X1),--plant(X2),--plant(X3)] : pm(51,16) 53 : [++epred1_0,--grain(X1),--animal(a_wolf),--plant(X1),--plant(X2)] : pm(0,52) 54 : [++epred1_0,--grain(X1),--$true,--plant(X1),--plant(X2)] : rw(53,20) 55 : [++epred1_0,--grain(X1),--plant(X1),--plant(X2)] : cn(54) 56 : [++epred1_0,--grain(X1),--plant(X2)] : pm(9,55) 57 : [++epred1_0,--plant(X1)] : pm(4,56) 58 : [++epred1_0,--grain(X1)] : pm(9,57) 59 : [++epred1_0] : pm(4,58) 60 : [--$true,--$true] : rw(38,59) 61 : [] : cn(60) 62 : [] : 61 : {proof}
---------------- PROOF ---------------- 1 [] -Wolf(x)|animal(x). 2 [] -Fox(x)|animal(x). 3 [] -Bird(x)|animal(x). 5 [] -Snail(x)|animal(x). 6 [] -Grain(x)|plant(x). 7 [] -animal(x)| -plant(y)|eats(x,y)| -animal(z)| -Smaller(z,x)| -plant(u)| -eats(z,u)|eats(x,z). 9 [] -Snail(x)| -Bird(y)|Smaller(x,y). 10 [] -Bird(x)| -Fox(y)|Smaller(x,y). 11 [] -Fox(x)| -Wolf(y)|Smaller(x,y). 15 [] -Snail(x)|plant($f2(x)). 16 [] -Snail(x)|eats(x,$f2(x)). 17 [] -Wolf(x)| -Fox(y)| -eats(x,y). 18 [] -Wolf(x)| -Grain(y)| -eats(x,y). 19 [] -Bird(x)| -Snail(y)| -eats(x,y). 20 [] -animal(x)| -animal(y)| -eats(x,y)|Grain($f3(x,y)). 21 [] -animal(x)| -animal(y)| -eats(x,y)| -eats(y,$f3(x,y)). 23 [factor,7.2.6] -animal(x)| -plant(y)|eats(x,y)| -animal(z)| -Smaller(z,x)| -eats(z,y)|eats(x,z). 29 [] Wolf($c1). 30 [] Fox($c2). 31 [] Bird($c3). 33 [] Snail($c5). 34 [] Grain($c6). 35 [hyper,1,29.1] animal($c1). 36 [hyper,11,30.1,29.1] Smaller($c2,$c1). 37 [hyper,2,30.1] animal($c2). 38 [hyper,10,31.1,30.1] Smaller($c3,$c2). 39 [hyper,3,31.1] animal($c3). 45 [hyper,16,33.1] eats($c5,$f2($c5)). 46 [hyper,15,33.1] plant($f2($c5)). 47 [hyper,9,33.1,31.1] Smaller($c5,$c3). 48 [hyper,5,33.1] animal($c5). 49 [hyper,6,34.1] plant($c6). 52 [hyper,7,39.1,49.1,48.1,47.1,46.1,45.1] eats($c3,$c6)|eats($c3,$c5). 61 [hyper,19,31.1,33.1,52.2] eats($c3,$c6). 62 [hyper,23,37.1,49.1,39.1,38.1,61.1] eats($c2,$c6)|eats($c2,$c3). 68 [hyper,23,35.1,49.1,37.1,36.1,62.1] eats($c2,$c3)|eats($c1,$c6)|eats($c1,$c2). 86 [hyper,18,29.1,34.1,68.2] eats($c2,$c3)|eats($c1,$c2). 91 [hyper,17,29.1,30.1,86.2] eats($c2,$c3). 92 [hyper,20,37.1,39.1,91.1] Grain($f3($c2,$c3)). 93 [hyper,6,92.1] plant($f3($c2,$c3)). 94 [hyper,7,39.1,93.1,48.1,47.1,46.1,45.1] eats($c3,$f3($c2,$c3))|eats($c3,$c5). 95 [hyper,21,37.1,39.1,91.1,94.1] eats($c3,$c5). 99 [hyper,19,31.1,33.1,95.1] $F. ------------ end of proof -------------
;; BEGINNING OF PROOF OBJECT ( (1 (input) (or (not (Wolf v0)) (animal v0)) (1)) (2 (input) (or (not (Fox v0)) (animal v0)) (2)) (3 (input) (or (not (Bird v0)) (animal v0)) (3)) (4 (input) (or (not (Snail v0)) (animal v0)) (5)) (5 (input) (or (not (Grain v0)) (plant v0)) (6)) (6 (input) (or (not (animal v0)) (or (not (plant v1)) (or (eats v0 v1) (or (not (animal v2)) (or (not (Smaller v2 v0)) (or (not (plant v3)) (or (not (eats v2 v3)) (eats v0 v2)))))))) (7)) (7 (input) (or (not (Snail v0)) (or (not (Bird v1)) (Smaller v0 v1))) (9)) (8 (input) (or (not (Bird v0)) (or (not (Fox v1)) (Smaller v0 v1))) (10)) (9 (input) (or (not (Fox v0)) (or (not (Wolf v1)) (Smaller v0 v1))) (11)) (10 (input) (or (not (Snail v0)) (plant ($f2 v0))) (15)) (11 (input) (or (not (Snail v0)) (eats v0 ($f2 v0))) (16)) (12 (input) (or (not (Wolf v0)) (or (not (Fox v1)) (not (eats v0 v1)))) (17)) (13 (input) (or (not (Wolf v0)) (or (not (Grain v1)) (not (eats v0 v1)))) (18)) (14 (input) (or (not (Bird v0)) (or (not (Snail v1)) (not (eats v0 v1)))) (19)) (15 (input) (or (not (animal v0)) (or (not (animal v1)) (or (not (eats v0 v1)) (Grain ($f3 v0 v1))))) (20)) (16 (input) (or (not (animal v0)) (or (not (animal v1)) (or (not (eats v0 v1)) (not (eats v1 ($f3 v0 v1)))))) (21)) (17 (instantiate 6 ((v1 . v3))) (or (not (animal v0)) (or (not (plant v3)) (or (eats v0 v3) (or (not (animal v2)) (or (not (Smaller v2 v0)) (or (not (plant v3)) (or (not (eats v2 v3)) (eats v0 v2)))))))) NIL) (18 (propositional 17) (or (not (animal v0)) (or (not (plant v3)) (or (eats v0 v3) (or (not (animal v2)) (or (not (Smaller v2 v0)) (or (not (eats v2 v3)) (eats v0 v2))))))) NIL) (19 (instantiate 18 ((v3 . v1))) (or (not (animal v0)) (or (not (plant v1)) (or (eats v0 v1) (or (not (animal v2)) (or (not (Smaller v2 v0)) (or (not (eats v2 v1)) (eats v0 v2))))))) (23)) (20 (input) (Wolf ($c1)) (29)) (21 (input) (Fox ($c2)) (30)) (22 (input) (Bird ($c3)) (31)) (23 (input) (Snail ($c5)) (33)) (24 (input) (Grain ($c6)) (34)) (25 (instantiate 1 ((v0 . ($c1)))) (or (not (Wolf ($c1))) (animal ($c1))) NIL) (26 (resolve 25 (1) 20 ()) (animal ($c1)) (35)) (27 (instantiate 9 ((v0 . ($c2)))) (or (not (Fox ($c2))) (or (not (Wolf v1)) (Smaller ($c2) v1))) NIL) (28 (resolve 27 (1) 21 ()) (or (not (Wolf v1)) (Smaller ($c2) v1)) NIL) (29 (instantiate 28 ((v1 . v0))) (or (not (Wolf v0)) (Smaller ($c2) v0)) NIL) (30 (instantiate 29 ((v0 . ($c1)))) (or (not (Wolf ($c1))) (Smaller ($c2) ($c1))) NIL) (31 (resolve 30 (1) 20 ()) (Smaller ($c2) ($c1)) (36)) (32 (instantiate 2 ((v0 . ($c2)))) (or (not (Fox ($c2))) (animal ($c2))) NIL) (33 (resolve 32 (1) 21 ()) (animal ($c2)) (37)) (34 (instantiate 8 ((v0 . ($c3)))) (or (not (Bird ($c3))) (or (not (Fox v1)) (Smaller ($c3) v1))) NIL) (35 (resolve 34 (1) 22 ()) (or (not (Fox v1)) (Smaller ($c3) v1)) NIL) (36 (instantiate 35 ((v1 . v0))) (or (not (Fox v0)) (Smaller ($c3) v0)) NIL) (37 (instantiate 36 ((v0 . ($c2)))) (or (not (Fox ($c2))) (Smaller ($c3) ($c2))) NIL) (38 (resolve 37 (1) 21 ()) (Smaller ($c3) ($c2)) (38)) (39 (instantiate 3 ((v0 . ($c3)))) (or (not (Bird ($c3))) (animal ($c3))) NIL) (40 (resolve 39 (1) 22 ()) (animal ($c3)) (39)) (41 (instantiate 11 ((v0 . ($c5)))) (or (not (Snail ($c5))) (eats ($c5) ($f2 ($c5)))) NIL) (42 (resolve 41 (1) 23 ()) (eats ($c5) ($f2 ($c5))) (45)) (43 (instantiate 10 ((v0 . ($c5)))) (or (not (Snail ($c5))) (plant ($f2 ($c5)))) NIL) (44 (resolve 43 (1) 23 ()) (plant ($f2 ($c5))) (46)) (45 (instantiate 7 ((v0 . ($c5)))) (or (not (Snail ($c5))) (or (not (Bird v1)) (Smaller ($c5) v1))) NIL) (46 (resolve 45 (1) 23 ()) (or (not (Bird v1)) (Smaller ($c5) v1)) NIL) (47 (instantiate 46 ((v1 . v0))) (or (not (Bird v0)) (Smaller ($c5) v0)) NIL) (48 (instantiate 47 ((v0 . ($c3)))) (or (not (Bird ($c3))) (Smaller ($c5) ($c3))) NIL) (49 (resolve 48 (1) 22 ()) (Smaller ($c5) ($c3)) (47)) (50 (instantiate 4 ((v0 . ($c5)))) (or (not (Snail ($c5))) (animal ($c5))) NIL) (51 (resolve 50 (1) 23 ()) (animal ($c5)) (48)) (52 (instantiate 5 ((v0 . ($c6)))) (or (not (Grain ($c6))) (plant ($c6))) NIL) (53 (resolve 52 (1) 24 ()) (plant ($c6)) (49)) (54 (instantiate 6 ((v0 . ($c3)))) (or (not (animal ($c3))) (or (not (plant v1)) (or (eats ($c3) v1) (or (not (animal v2)) (or (not (Smaller v2 ($c3))) (or (not (plant v3)) (or (not (eats v2 v3)) (eats ($c3) v2)))))))) NIL) (55 (resolve 54 (1) 40 ()) (or (not (plant v1)) (or (eats ($c3) v1) (or (not (animal v2)) (or (not (Smaller v2 ($c3))) (or (not (plant v3)) (or (not (eats v2 v3)) (eats ($c3) v2))))))) NIL) (56 (instantiate 55 ((v1 . v0)(v2 . v1)(v3 . v2))) (or (not (plant v0)) (or (eats ($c3) v0) (or (not (animal v1)) (or (not (Smaller v1 ($c3))) (or (not (plant v2)) (or (not (eats v1 v2)) (eats ($c3) v1))))))) NIL) (57 (instantiate 56 ((v0 . ($c6)))) (or (not (plant ($c6))) (or (eats ($c3) ($c6)) (or (not (animal v1)) (or (not (Smaller v1 ($c3))) (or (not (plant v2)) (or (not (eats v1 v2)) (eats ($c3) v1))))))) NIL) (58 (resolve 57 (1) 53 ()) (or (eats ($c3) ($c6)) (or (not (animal v1)) (or (not (Smaller v1 ($c3))) (or (not (plant v2)) (or (not (eats v1 v2)) (eats ($c3) v1)))))) NIL) (59 (instantiate 58 ((v1 . v0)(v2 . v1))) (or (eats ($c3) ($c6)) (or (not (animal v0)) (or (not (Smaller v0 ($c3))) (or (not (plant v1)) (or (not (eats v0 v1)) (eats ($c3) v0)))))) NIL) (60 (instantiate 59 ((v0 . ($c5)))) (or (eats ($c3) ($c6)) (or (not (animal ($c5))) (or (not (Smaller ($c5) ($c3))) (or (not (plant v1)) (or (not (eats ($c5) v1)) (eats ($c3) ($c5))))))) NIL) (61 (resolve 60 (2 1) 51 ()) (or (eats ($c3) ($c6)) (or (not (Smaller ($c5) ($c3))) (or (not (plant v1)) (or (not (eats ($c5) v1)) (eats ($c3) ($c5)))))) NIL) (62 (instantiate 61 ((v1 . v0))) (or (eats ($c3) ($c6)) (or (not (Smaller ($c5) ($c3))) (or (not (plant v0)) (or (not (eats ($c5) v0)) (eats ($c3) ($c5)))))) NIL) (63 (resolve 62 (2 1) 49 ()) (or (eats ($c3) ($c6)) (or (not (plant v0)) (or (not (eats ($c5) v0)) (eats ($c3) ($c5))))) NIL) (64 (instantiate 63 ((v0 . ($f2 ($c5))))) (or (eats ($c3) ($c6)) (or (not (plant ($f2 ($c5)))) (or (not (eats ($c5) ($f2 ($c5)))) (eats ($c3) ($c5))))) NIL) (65 (resolve 64 (2 1) 44 ()) (or (eats ($c3) ($c6)) (or (not (eats ($c5) ($f2 ($c5)))) (eats ($c3) ($c5)))) NIL) (66 (resolve 65 (2 1) 42 ()) (or (eats ($c3) ($c6)) (eats ($c3) ($c5))) (52)) (67 (instantiate 14 ((v0 . ($c3)))) (or (not (Bird ($c3))) (or (not (Snail v1)) (not (eats ($c3) v1)))) NIL) (68 (resolve 67 (1) 22 ()) (or (not (Snail v1)) (not (eats ($c3) v1))) NIL) (69 (instantiate 68 ((v1 . v0))) (or (not (Snail v0)) (not (eats ($c3) v0))) NIL) (70 (instantiate 69 ((v0 . ($c5)))) (or (not (Snail ($c5))) (not (eats ($c3) ($c5)))) NIL) (71 (resolve 70 (1) 23 ()) (not (eats ($c3) ($c5))) NIL) (72 (resolve 71 () 66 (2)) (eats ($c3) ($c6)) (61)) (73 (instantiate 19 ((v0 . ($c2)))) (or (not (animal ($c2))) (or (not (plant v1)) (or (eats ($c2) v1) (or (not (animal v2)) (or (not (Smaller v2 ($c2))) (or (not (eats v2 v1)) (eats ($c2) v2))))))) NIL) (74 (resolve 73 (1) 33 ()) (or (not (plant v1)) (or (eats ($c2) v1) (or (not (animal v2)) (or (not (Smaller v2 ($c2))) (or (not (eats v2 v1)) (eats ($c2) v2)))))) NIL) (75 (instantiate 74 ((v1 . v0)(v2 . v1))) (or (not (plant v0)) (or (eats ($c2) v0) (or (not (animal v1)) (or (not (Smaller v1 ($c2))) (or (not (eats v1 v0)) (eats ($c2) v1)))))) NIL) (76 (instantiate 75 ((v0 . ($c6)))) (or (not (plant ($c6))) (or (eats ($c2) ($c6)) (or (not (animal v1)) (or (not (Smaller v1 ($c2))) (or (not (eats v1 ($c6))) (eats ($c2) v1)))))) NIL) (77 (resolve 76 (1) 53 ()) (or (eats ($c2) ($c6)) (or (not (animal v1)) (or (not (Smaller v1 ($c2))) (or (not (eats v1 ($c6))) (eats ($c2) v1))))) NIL) (78 (instantiate 77 ((v1 . v0))) (or (eats ($c2) ($c6)) (or (not (animal v0)) (or (not (Smaller v0 ($c2))) (or (not (eats v0 ($c6))) (eats ($c2) v0))))) NIL) (79 (instantiate 78 ((v0 . ($c3)))) (or (eats ($c2) ($c6)) (or (not (animal ($c3))) (or (not (Smaller ($c3) ($c2))) (or (not (eats ($c3) ($c6))) (eats ($c2) ($c3)))))) NIL) (80 (resolve 79 (2 1) 40 ()) (or (eats ($c2) ($c6)) (or (not (Smaller ($c3) ($c2))) (or (not (eats ($c3) ($c6))) (eats ($c2) ($c3))))) NIL) (81 (resolve 80 (2 1) 38 ()) (or (eats ($c2) ($c6)) (or (not (eats ($c3) ($c6))) (eats ($c2) ($c3)))) NIL) (82 (resolve 81 (2 1) 72 ()) (or (eats ($c2) ($c6)) (eats ($c2) ($c3))) (62)) (83 (instantiate 19 ((v0 . ($c1)))) (or (not (animal ($c1))) (or (not (plant v1)) (or (eats ($c1) v1) (or (not (animal v2)) (or (not (Smaller v2 ($c1))) (or (not (eats v2 v1)) (eats ($c1) v2))))))) NIL) (84 (resolve 83 (1) 26 ()) (or (not (plant v1)) (or (eats ($c1) v1) (or (not (animal v2)) (or (not (Smaller v2 ($c1))) (or (not (eats v2 v1)) (eats ($c1) v2)))))) NIL) (85 (instantiate 84 ((v1 . v0)(v2 . v1))) (or (not (plant v0)) (or (eats ($c1) v0) (or (not (animal v1)) (or (not (Smaller v1 ($c1))) (or (not (eats v1 v0)) (eats ($c1) v1)))))) NIL) (86 (instantiate 85 ((v0 . ($c6)))) (or (not (plant ($c6))) (or (eats ($c1) ($c6)) (or (not (animal v1)) (or (not (Smaller v1 ($c1))) (or (not (eats v1 ($c6))) (eats ($c1) v1)))))) NIL) (87 (resolve 86 (1) 53 ()) (or (eats ($c1) ($c6)) (or (not (animal v1)) (or (not (Smaller v1 ($c1))) (or (not (eats v1 ($c6))) (eats ($c1) v1))))) NIL) (88 (instantiate 87 ((v1 . v0))) (or (eats ($c1) ($c6)) (or (not (animal v0)) (or (not (Smaller v0 ($c1))) (or (not (eats v0 ($c6))) (eats ($c1) v0))))) NIL) (89 (instantiate 88 ((v0 . ($c2)))) (or (eats ($c1) ($c6)) (or (not (animal ($c2))) (or (not (Smaller ($c2) ($c1))) (or (not (eats ($c2) ($c6))) (eats ($c1) ($c2)))))) NIL) (90 (resolve 89 (2 1) 33 ()) (or (eats ($c1) ($c6)) (or (not (Smaller ($c2) ($c1))) (or (not (eats ($c2) ($c6))) (eats ($c1) ($c2))))) NIL) (91 (resolve 90 (2 1) 31 ()) (or (eats ($c1) ($c6)) (or (not (eats ($c2) ($c6))) (eats ($c1) ($c2)))) NIL) (92 (resolve 91 (2 1) 82 (1)) (or (eats ($c1) ($c6)) (or (eats ($c1) ($c2)) (eats ($c2) ($c3)))) (68)) (93 (instantiate 13 ((v0 . ($c1)))) (or (not (Wolf ($c1))) (or (not (Grain v1)) (not (eats ($c1) v1)))) NIL) (94 (resolve 93 (1) 20 ()) (or (not (Grain v1)) (not (eats ($c1) v1))) NIL) (95 (instantiate 94 ((v1 . v0))) (or (not (Grain v0)) (not (eats ($c1) v0))) NIL) (96 (instantiate 95 ((v0 . ($c6)))) (or (not (Grain ($c6))) (not (eats ($c1) ($c6)))) NIL) (97 (resolve 96 (1) 24 ()) (not (eats ($c1) ($c6))) NIL) (98 (resolve 97 () 92 (1)) (or (eats ($c1) ($c2)) (eats ($c2) ($c3))) (86)) (99 (instantiate 12 ((v0 . ($c1)))) (or (not (Wolf ($c1))) (or (not (Fox v1)) (not (eats ($c1) v1)))) NIL) (100 (resolve 99 (1) 20 ()) (or (not (Fox v1)) (not (eats ($c1) v1))) NIL) (101 (instantiate 100 ((v1 . v0))) (or (not (Fox v0)) (not (eats ($c1) v0))) NIL) (102 (instantiate 101 ((v0 . ($c2)))) (or (not (Fox ($c2))) (not (eats ($c1) ($c2)))) NIL) (103 (resolve 102 (1) 21 ()) (not (eats ($c1) ($c2))) NIL) (104 (resolve 103 () 98 (1)) (eats ($c2) ($c3)) (91)) (105 (instantiate 15 ((v0 . ($c2)))) (or (not (animal ($c2))) (or (not (animal v1)) (or (not (eats ($c2) v1)) (Grain ($f3 ($c2) v1))))) NIL) (106 (resolve 105 (1) 33 ()) (or (not (animal v1)) (or (not (eats ($c2) v1)) (Grain ($f3 ($c2) v1)))) NIL) (107 (instantiate 106 ((v1 . v0))) (or (not (animal v0)) (or (not (eats ($c2) v0)) (Grain ($f3 ($c2) v0)))) NIL) (108 (instantiate 107 ((v0 . ($c3)))) (or (not (animal ($c3))) (or (not (eats ($c2) ($c3))) (Grain ($f3 ($c2) ($c3))))) NIL) (109 (resolve 108 (1) 40 ()) (or (not (eats ($c2) ($c3))) (Grain ($f3 ($c2) ($c3)))) NIL) (110 (resolve 109 (1) 104 ()) (Grain ($f3 ($c2) ($c3))) (92)) (111 (instantiate 5 ((v0 . ($f3 ($c2) ($c3))))) (or (not (Grain ($f3 ($c2) ($c3)))) (plant ($f3 ($c2) ($c3)))) NIL) (112 (resolve 111 (1) 110 ()) (plant ($f3 ($c2) ($c3))) (93)) (113 (instantiate 6 ((v0 . ($c3)))) (or (not (animal ($c3))) (or (not (plant v1)) (or (eats ($c3) v1) (or (not (animal v2)) (or (not (Smaller v2 ($c3))) (or (not (plant v3)) (or (not (eats v2 v3)) (eats ($c3) v2)))))))) NIL) (114 (resolve 113 (1) 40 ()) (or (not (plant v1)) (or (eats ($c3) v1) (or (not (animal v2)) (or (not (Smaller v2 ($c3))) (or (not (plant v3)) (or (not (eats v2 v3)) (eats ($c3) v2))))))) NIL) (115 (instantiate 114 ((v1 . v0)(v2 . v1)(v3 . v2))) (or (not (plant v0)) (or (eats ($c3) v0) (or (not (animal v1)) (or (not (Smaller v1 ($c3))) (or (not (plant v2)) (or (not (eats v1 v2)) (eats ($c3) v1))))))) NIL) (116 (instantiate 115 ((v0 . ($f3 ($c2) ($c3))))) (or (not (plant ($f3 ($c2) ($c3)))) (or (eats ($c3) ($f3 ($c2) ($c3))) (or (not (animal v1)) (or (not (Smaller v1 ($c3))) (or (not (plant v2)) (or (not (eats v1 v2)) (eats ($c3) v1))))))) NIL) (117 (resolve 116 (1) 112 ()) (or (eats ($c3) ($f3 ($c2) ($c3))) (or (not (animal v1)) (or (not (Smaller v1 ($c3))) (or (not (plant v2)) (or (not (eats v1 v2)) (eats ($c3) v1)))))) NIL) (118 (instantiate 117 ((v1 . v0)(v2 . v1))) (or (eats ($c3) ($f3 ($c2) ($c3))) (or (not (animal v0)) (or (not (Smaller v0 ($c3))) (or (not (plant v1)) (or (not (eats v0 v1)) (eats ($c3) v0)))))) NIL) (119 (instantiate 118 ((v0 . ($c5)))) (or (eats ($c3) ($f3 ($c2) ($c3))) (or (not (animal ($c5))) (or (not (Smaller ($c5) ($c3))) (or (not (plant v1)) (or (not (eats ($c5) v1)) (eats ($c3) ($c5))))))) NIL) (120 (resolve 119 (2 1) 51 ()) (or (eats ($c3) ($f3 ($c2) ($c3))) (or (not (Smaller ($c5) ($c3))) (or (not (plant v1)) (or (not (eats ($c5) v1)) (eats ($c3) ($c5)))))) NIL) (121 (instantiate 120 ((v1 . v0))) (or (eats ($c3) ($f3 ($c2) ($c3))) (or (not (Smaller ($c5) ($c3))) (or (not (plant v0)) (or (not (eats ($c5) v0)) (eats ($c3) ($c5)))))) NIL) (122 (resolve 121 (2 1) 49 ()) (or (eats ($c3) ($f3 ($c2) ($c3))) (or (not (plant v0)) (or (not (eats ($c5) v0)) (eats ($c3) ($c5))))) NIL) (123 (instantiate 122 ((v0 . ($f2 ($c5))))) (or (eats ($c3) ($f3 ($c2) ($c3))) (or (not (plant ($f2 ($c5)))) (or (not (eats ($c5) ($f2 ($c5)))) (eats ($c3) ($c5))))) NIL) (124 (resolve 123 (2 1) 44 ()) (or (eats ($c3) ($f3 ($c2) ($c3))) (or (not (eats ($c5) ($f2 ($c5)))) (eats ($c3) ($c5)))) NIL) (125 (resolve 124 (2 1) 42 ()) (or (eats ($c3) ($f3 ($c2) ($c3))) (eats ($c3) ($c5))) (94)) (126 (instantiate 16 ((v0 . ($c2)))) (or (not (animal ($c2))) (or (not (animal v1)) (or (not (eats ($c2) v1)) (not (eats v1 ($f3 ($c2) v1)))))) NIL) (127 (resolve 126 (1) 33 ()) (or (not (animal v1)) (or (not (eats ($c2) v1)) (not (eats v1 ($f3 ($c2) v1))))) NIL) (128 (instantiate 127 ((v1 . v0))) (or (not (animal v0)) (or (not (eats ($c2) v0)) (not (eats v0 ($f3 ($c2) v0))))) NIL) (129 (instantiate 128 ((v0 . ($c3)))) (or (not (animal ($c3))) (or (not (eats ($c2) ($c3))) (not (eats ($c3) ($f3 ($c2) ($c3)))))) NIL) (130 (resolve 129 (1) 40 ()) (or (not (eats ($c2) ($c3))) (not (eats ($c3) ($f3 ($c2) ($c3))))) NIL) (131 (resolve 130 (1) 104 ()) (not (eats ($c3) ($f3 ($c2) ($c3)))) NIL) (132 (resolve 131 () 125 (1)) (eats ($c3) ($c5)) (95)) (133 (instantiate 14 ((v0 . ($c3)))) (or (not (Bird ($c3))) (or (not (Snail v1)) (not (eats ($c3) v1)))) NIL) (134 (resolve 133 (1) 22 ()) (or (not (Snail v1)) (not (eats ($c3) v1))) NIL) (135 (instantiate 134 ((v1 . v0))) (or (not (Snail v0)) (not (eats ($c3) v0))) NIL) (136 (instantiate 135 ((v0 . ($c5)))) (or (not (Snail ($c5))) (not (eats ($c3) ($c5)))) NIL) (137 (resolve 136 (1) 23 ()) (not (eats ($c3) ($c5))) NIL) (138 (resolve 137 () 132 ()) false (99)) ) ;; END OF PROOF OBJECT
---------------- PROOF ---------------- 0: (wt=8) 1 [] (0xbxb) -sum(A,B,C)|sum(B,A,C). 0: (wt=8) 2 [] (0xbxb) -product(A,B,C)|product(B,A,C). 0: (wt=20) 3 [] (0xbxb) -product(A,B,C)| -product(A,D,E)| -sum(B,D,F)| -product(A,F,G)|sum(C,E,G). 0: (wt=20) 4 [] (0xbxb) -product(A,B,C)| -product(A,D,E)| -sum(B,D,F)| -sum(C,E,G)|product(A,F,G). 0: (wt=20) 5 [] (0xbxb) -product(A,B,C)| -product(D,B,E)| -sum(A,D,F)| -product(F,B,G)|sum(C,E,G). 0: (wt=20) 6 [] (0xbxb) -product(A,B,C)| -product(D,B,E)| -sum(A,D,F)| -sum(C,E,G)|product(F,B,G). 0: (wt=20) 7 [] (0xoxo) -sum(A,B,C)| -sum(A,D,E)| -product(B,D,F)| -sum(A,F,G)|product(C,E,G). 0: (wt=20) 9 [] (0xoxo) -sum(A,B,C)| -sum(D,B,E)| -product(A,D,F)| -sum(F,B,G)|product(C,E,G). 0: (wt=20) 10 [] (0xoxo) -sum(A,B,C)| -sum(D,B,E)| -product(A,D,F)| -product(C,E,G)|sum(F,B,G). 0: (wt=11) 11 [] (0x0xo) -sum(A,B,C)| -sum(A,B,D)|equal(C,D). 0: (wt=11) 12 [] (0x0xo) -product(A,B,C)| -product(A,B,D)|equal(C,D). 1: (wt=4) 14 [] (0x1x1) sum(x,y,x_plus_y). 3: (wt=6) 15 [] (0x1x1) product(inverse(x),inverse(y),x_inverse_times_y_inverse). 11: (wt=4) 16 [] (0xcxc) -equal(inverse(x_plus_y),x_inverse_times_y_inverse). 12: (wt=6) 18 [] (0x1x1) sum(A,B,add(A,B)). 17: (wt=6) 19 [] (0x1x1) product(A,B,multiply(A,B)). 7: (wt=4) 20 [] (0xbx0) sum(additive_identity,A,A). 8: (wt=4) 21 [] (0xbx0) sum(A,additive_identity,A). 9: (wt=4) 22 [] (0x1x1) product(multiplicative_identity,A,A). 10: (wt=4) 23 [] (0xbxb) product(A,multiplicative_identity,A). 13: (wt=5) 24 [] (0x1x0) sum(inverse(A),A,multiplicative_identity). 15: (wt=5) 25 [] (0xbx0) sum(A,inverse(A),multiplicative_identity). 4: (wt=5) 26 [] (0x1x1) product(inverse(A),A,additive_identity). 5: (wt=5) 27 [] (0xbxb) product(A,inverse(A),additive_identity). 21: (wt=5) 29,28 [] (0x1x1) equal(inverse(inverse(A)),A). 2: (wt=4) 30 [hyper,14,1] (0xbxb) sum(y,x,x_plus_y). 6: (wt=6) 31 [hyper,15,2] (0xbxb) product(inverse(y),inverse(x),x_inverse_times_y_inverse). 18: (wt=5) 35 [ur,16,12,23] (0x0x1) -product(x_inverse_times_y_inverse,multiplicative_identity,inverse(x_plus_y)). 19: (wt=5) 45,44 [hyper,18,11,30,flip.1] (0x1x1) equal(add(y,x),x_plus_y). 20: (wt=5) 47,46 [hyper,18,11,21,flip.1] (0x1x0) equal(add(A,additive_identity),A). 24: (wt=5) 49,48 [hyper,18,11,20,flip.1] (0x1x0) equal(add(additive_identity,A),A). 23: (wt=5) 51,50 [hyper,18,11,14,flip.1] (0x1x1) equal(add(x,y),x_plus_y). 28: (wt=6) 57 [hyper,18,9,20,18,23,demod,49] (0x1x0) product(A,add(multiplicative_identity,A),A). 43: (wt=7) 58 [hyper,18,9,18,30,26,demod,49] (0x1x1) product(add(inverse(y),x),x_plus_y,x). 56: (wt=6) 59 [hyper,18,9,18,30,22,demod,45] (0x1x1) product(add(multiplicative_identity,x),x_plus_y,x_plus_y). 36: (wt=6) 61 [hyper,18,9,18,20,22,demod,49] (0x1x0) product(add(multiplicative_identity,A),A,A). 76: (wt=9) 64 [hyper,18,9,18,18,26,demod,49] (0x1x0) product(add(inverse(A),B),add(A,B),B). 47: (wt=7) 68 [hyper,18,9,18,14,26,demod,49] (0x1x0) product(add(inverse(x),y),x_plus_y,y). 101: (wt=12) 82 [hyper,18,7,18,18,31] (0x1x1) product(add(A,inverse(y)),add(A,inverse(x)),add(A,x_inverse_times_y_inverse)). 27: (wt=6) 129 [hyper,18,1] (0x1x1) sum(A,B,add(B,A)). 29: (wt=4) 131,130 [hyper,24,11,21] (0x1x1) equal(inverse(additive_identity),multiplicative_identity). 58: (wt=6) 133,132 [hyper,24,11,18] (0x1x0) equal(add(inverse(A),A),multiplicative_identity). 64: (wt=6) 138 [hyper,24,9,24,18,23] (0x1x0) product(multiplicative_identity,add(multiplicative_identity,A),multiplicative_identity). 57: (wt=5) 183,182 [hyper,19,12,23,flip.1] (0x0x1) equal(multiply(A,multiplicative_identity),A). 60: (wt=5) 185,184 [hyper,19,12,22,flip.1] (0x0x1) equal(multiply(multiplicative_identity,A),A). 281: (wt=9) 200 [hyper,19,10,24,18,19,demod,185] (0x1x1) sum(multiply(inverse(A),B),A,add(B,A)). 416: (wt=10) 255 [hyper,19,9,18,30,18] (0x1x1) product(add(A,x),x_plus_y,add(multiply(A,y),x)). 286: (wt=14) 338 [hyper,19,7,18,18,24] (0x1x0) product(add(inverse(multiply(A,B)),A),add(inverse(multiply(A,B)),B),multiplicative_identity). 316: (wt=10) 352 [hyper,19,6,27,18,20] (0x1x0) product(add(A,B),inverse(A),multiply(B,inverse(A))). 0: (wt=8) 494 [hyper,19,3,23,23,18] (0x1x1) sum(A,A,multiply(A,add(multiplicative_identity,multiplicative_identity))). 140: (wt=6) 529 [hyper,19,2] (0x1x1) product(A,B,multiply(B,A)). 141: (wt=10) 537 [ur,35,4,19,19,24] (0x0x1) -sum(multiply(x_inverse_times_y_inverse,inverse(A)),multiply(x_inverse_times_y_inverse,A),inverse(x_plus_y)). 0: (wt=5) 800,799 [hyper,57,12,22] (0x1x0) equal(add(multiplicative_identity,multiplicative_identity),multiplicative_identity). 32: (wt=4) 946 [back_demod,494,demod,800,183] (0x1x0) sum(A,A,A). 0: (wt=14) 1722 [hyper,61,5,31,18,19] (0x1x1) sum(inverse(x),x_inverse_times_y_inverse,multiply(add(add(multiplicative_identity,inverse(x)),inverse(y)),inverse(x))). 0: (wt=12) 1729 [hyper,61,5,19,18,19] (0x1x1) sum(A,multiply(B,A),multiply(add(add(multiplicative_identity,A),B),A)). 0: (wt=14) 1731 [hyper,61,5,15,18,19] (0x1x1) sum(inverse(y),x_inverse_times_y_inverse,multiply(add(add(multiplicative_identity,inverse(y)),inverse(x)),inverse(y))). 62: (wt=6) 2172 [hyper,58,5,58,19,21] (0x1x1) sum(x,multiply(additive_identity,x_plus_y),x). 79: (wt=6) 2487 [hyper,68,5,68,19,21] (0x1x0) sum(y,multiply(additive_identity,x_plus_y),y). 0: (wt=13) 3508 [hyper,59,5,68,129,19] (0x1x1) sum(y,x_plus_y,multiply(add(add(multiplicative_identity,x),add(inverse(x),y)),x_plus_y)). 0: (wt=13) 3524 [hyper,59,5,58,18,19] (0x1x1) sum(x_plus_y,x,multiply(add(add(multiplicative_identity,x),add(inverse(y),x)),x_plus_y)). 0: (wt=7) 3884,3883 [hyper,2172,11,18] (0x1x1) equal(add(x,multiply(additive_identity,x_plus_y)),x). 69: (wt=5) 4098,4097 [hyper,138,12,22] (0x0x0) equal(add(multiplicative_identity,A),multiplicative_identity). 65: (wt=4) 4114 [back_demod,3524,demod,4098,4098,185] (0x1x1) sum(x_plus_y,x,x_plus_y). 77: (wt=4) 4118 [back_demod,3508,demod,4098,4098,185] (0x1x1) sum(y,x_plus_y,x_plus_y). 109: (wt=6) 4137 [back_demod,1731,demod,4098,4098,185] (0x1x0) sum(inverse(y),x_inverse_times_y_inverse,inverse(y)). 112: (wt=6) 4138 [back_demod,1729,demod,4098,4098,185] (0x1x0) sum(A,multiply(B,A),A). 124: (wt=6) 4139 [back_demod,1722,demod,4098,4098,185] (0x1x0) sum(inverse(x),x_inverse_times_y_inverse,inverse(x)). 80: (wt=4) 4221 [hyper,4114,9,20,19,129,demod,3884] (0x1x1) product(x,x_plus_y,x). 82: (wt=4) 4970 [hyper,2487,7,129,4118,19,demod,49] (0x1x0) product(y,x_plus_y,y). 104: (wt=5) 5022,5021 [hyper,4221,12,19] (0x1x1) equal(multiply(x,x_plus_y),x). 85: (wt=4) 5139 [hyper,4970,2] (0x1x0) product(x_plus_y,y,y). 0: (wt=7) 5351 [hyper,5139,9,18,129,25,demod,133] (0x1x0) product(add(x_plus_y,inverse(y)),multiplicative_identity,multiplicative_identity). 152: (wt=6) 6403 [hyper,4137,5,27,19,27,demod,29] (0x1x1) sum(additive_identity,multiply(x_inverse_times_y_inverse,y),additive_identity). 148: (wt=6) 6832 [hyper,4138,7,18,946,19] (0x1x0) product(add(A,B),A,A). 179: (wt=6) 7880 [hyper,4139,5,27,19,27,demod,29] (0x1x1) sum(additive_identity,multiply(x_inverse_times_y_inverse,x),additive_identity). 155: (wt=4) 13774 [hyper,6403,7,129,129,529,demod,47,47] (0x1x1) product(y,x_inverse_times_y_inverse,additive_identity). 188: (wt=4) 18441 [hyper,7880,6,13774,529,129,demod,51] (0x1x1) product(x_plus_y,x_inverse_times_y_inverse,additive_identity). 350: (wt=5) 19488,19487 [hyper,18441,12,529] (0x1x1) equal(multiply(x_inverse_times_y_inverse,x_plus_y),additive_identity). 0: (wt=10) 31128,31127 [hyper,200,11,18] (0x0x1) equal(add(multiply(inverse(A),B),A),add(B,A)). 317: (wt=6) 38740 [ur,352,10,129,64,537,demod,19488,19488,131,4098] (0x0x1) -sum(add(x_plus_y,x_inverse_times_y_inverse),additive_identity,multiplicative_identity). 0: (wt=16) 38911 [ur,38740,3,82,27,18] (0x0x1) -product(add(x_plus_y,inverse(y)),add(add(x_plus_y,inverse(x)),inverse(add(x_plus_y,inverse(y)))),multiplicative_identity). 424: (wt=5) 55542 [hyper,255,3,6832,18,338,demod,5022,5022,31128,45] (0x1x0) sum(inverse(x),x_plus_y,multiplicative_identity). 0: (wt=6) 58785,58784 [hyper,55542,11,129] (0x1x0) equal(add(x_plus_y,inverse(x)),multiplicative_identity). 0: (wt=7) 59151 [back_demod,38911,demod,58785,4098] (0x0x0) -product(add(x_plus_y,inverse(y)),multiplicative_identity,multiplicative_identity). 0: (wt=0) 59152 [binary,59151.1,5351.1] (0x0x0) $F. ------------ end of proof ------------- ---------------- PROOF ---------------- 0: (wt=4) 1 [] (0xxx0) theorem(A)| -axiom(A). 0: (wt=8) 2 [] (0xxxb) theorem(A)| -theorem(implies(B,A))| -theorem(B). 26: (wt=10) 3 [] (0xxxc) -theorem(implies(implies(p,implies(p,q)),implies(p,q))). 1: (wt=6) 5 [] (0xxx1) axiom(implies(or(A,A),A)). 3: (wt=6) 6 [] (0xxx1) axiom(implies(A,or(B,A))). 6: (wt=8) 7 [] (0xxx1) axiom(implies(or(A,B),or(B,A))). 7: (wt=12) 8 [] (0xxxb) axiom(implies(or(A,or(B,C)),or(B,or(A,C)))). 4: (wt=12) 9 [] (0xxx1) axiom(implies(implies(A,B),implies(or(C,A),or(C,B)))). 0: (wt=0) 10 [] (0xxx0) equal(implies(A,B),or(not(A),B)). 5: (wt=8) 12,11 [copy,10,flip.1] (0xxxb) equal(or(not(A),B),implies(A,B)). 2: (wt=6) 13 [hyper,5,1] (0xxxb) theorem(implies(or(A,A),A)). 13: (wt=6) 14 [hyper,6,1] (0xxx1) theorem(implies(A,or(B,A))). 18: (wt=12) 15 [hyper,9,1] (0xxx1) theorem(implies(implies(A,B),implies(or(C,A),or(C,B)))). 9: (wt=6) 17 [para_from,11.1.1,6.1.1.2] (0xxx1) axiom(implies(A,implies(B,A))). 15: (wt=8) 20 [hyper,7,1] (0xxx0) theorem(implies(or(A,B),or(B,A))). 8: (wt=9) 22 [para_into,7.1.1.2,11.1.1] (0xxxb) axiom(implies(or(A,not(B)),implies(B,A))). 31: (wt=12) 23 [hyper,8,1] (0xxx1) theorem(implies(or(A,or(B,C)),or(B,or(A,C)))). 10: (wt=12) 24 [para_into,8.1.1.1.2,11.1.1,demod,12] (0xxx1) axiom(implies(or(A,implies(B,C)),implies(B,or(A,C)))). 20: (wt=9) 26 [hyper,22,1] (0xxx0) theorem(implies(or(A,not(B)),implies(B,A))). 11: (wt=6) 28 [hyper,17,1] (0xxxb) theorem(implies(A,implies(B,A))). 19: (wt=12) 29 [hyper,24,1] (0xxxb) theorem(implies(or(A,implies(B,C)),implies(B,or(A,C)))). 25: (wt=9) 41 [para_into,20.1.1.1,11.1.1] (0xxx0) theorem(implies(implies(A,B),or(B,not(A)))). 161: (wt=10) 47 [hyper,15,2,28] (0xxx1) theorem(implies(or(A,B),or(A,implies(C,B)))). 23: (wt=10) 50 [hyper,15,2,13] (0xxx1) theorem(implies(or(A,or(B,B)),or(A,B))). 221: (wt=12) 55 [para_into,29.1.1.1,11.1.1,demod,12] (0xxx1) theorem(implies(implies(A,implies(B,C)),implies(B,implies(A,C)))). 86: (wt=13) 57 [hyper,26,2,15] (0xxx0) theorem(implies(or(A,or(B,not(C))),or(A,implies(C,B)))). 27: (wt=10) 69 [para_into,50.1.1.1,11.1.1,demod,12] (0xxx1) theorem(implies(implies(A,or(B,B)),implies(A,B))). 431: (wt=20) 103 [ur,3,2,13] (0xxx1) -theorem(or(implies(implies(p,implies(p,q)),implies(p,q)),implies(implies(p,implies(p,q)),implies(p,q)))). 35: (wt=4) 110 [hyper,69,2,14] (0xxx1) theorem(implies(A,A)). 39: (wt=5) 174 [hyper,110,2,41] (0xxx1) theorem(or(A,not(A))). 89: (wt=7) 186 [hyper,174,2,14] (0xxx1) theorem(or(A,or(B,not(B)))). 117: (wt=7) 938 [hyper,186,2,23] (0xxx1) theorem(or(A,or(B,not(A)))). 118: (wt=6) 1735 [hyper,938,2,57] (0xxx0) theorem(or(A,implies(A,B))). 208: (wt=8) 3437 [hyper,47,2,1735] (0xxx0) theorem(or(A,implies(B,implies(A,C)))). 228: (wt=8) 6139 [hyper,3437,2,20] (0xxx0) theorem(or(implies(A,implies(B,C)),B)). 333: (wt=8) 7106 [hyper,55,2,110] (0xxx1) theorem(implies(A,implies(implies(A,B),B))). 0: (wt=12) 17192 [hyper,7106,2,15] (0xxx1) theorem(implies(or(A,B),or(A,implies(implies(B,C),C)))). 0: (wt=28) 29455 [ur,103,2,6139] (0xxx0) -theorem(implies(or(implies(A,implies(B,C)),B),or(implies(implies(p,implies(p,q)),implies(p,q)),implies(implies(p,implies(p,q)),implies(p,q))))). 0: (wt=0) 29456 [binary,29455.1,17192.1] (0xxx0) $F. ------------ end of proof ------------- ---------------- PROOF ---------------- 0: (wt=0) 1 [] (00) -equal(apply(strong_fixed_point,fixed_pt),apply(fixed_pt,apply(strong_fixed_point,fixed_pt))). 2: (wt=9) 2 [copy,1,flip.1] (0b) -equal(apply(fixed_pt,apply(strong_fixed_point,fixed_pt)),apply(strong_fixed_point,fixed_pt)). 4: (wt=15) 4 [] (01) equal(apply(apply(apply(s,A),B),C),apply(apply(A,C),apply(B,C))). 1: (wt=7) 6,5 [] (00) equal(apply(apply(k,A),B),A). 0: (wt=0) 7 [] (00) equal(strong_fixed_point,apply(apply(s,apply(k,apply(apply(s,apply(apply(s,k),k)),apply(apply(s,k),k)))),apply(apply(s,apply(k,apply(apply(s,s),apply(s,k)))),apply(apply(s,apply(k,s)),k)))). 5: (wt=39) 8 [copy,7,flip.1] (00) equal(apply(apply(s,apply(k,apply(apply(s,apply(apply(s,k),k)),apply(apply(s,k),k)))),apply(apply(s,apply(k,apply(apply(s,s),apply(s,k)))),apply(apply(s,apply(k,s)),k))),strong_fixed_point). 6: (wt=15) 10 [copy,4,flip.1] (01) equal(apply(apply(A,B),apply(C,B)),apply(apply(apply(s,A),C),B)). 0: (wt=39) 11 [para_from,8.1.1,4.1.1.1,demod,6,flip.1] (00) equal(apply(apply(apply(s,apply(apply(s,k),k)),apply(apply(s,k),k)),apply(apply(apply(s,apply(k,apply(apply(s,s),apply(s,k)))),apply(apply(s,apply(k,s)),k)),A)),apply(strong_fixed_point,A)). 15: (wt=15) 17,16 [para_into,10.1.1.1,5.1.1,flip.1] (01) equal(apply(apply(apply(s,apply(k,A)),B),C),apply(A,apply(B,C))). 7: (wt=9) 24,23 [para_into,10.1.1,5.1.1,flip.1] (00) equal(apply(apply(apply(s,k),A),B),B). 10: (wt=31) 27 [back_demod,11,demod,17,17] (00) equal(apply(apply(apply(s,apply(apply(s,k),k)),apply(apply(s,k),k)),apply(apply(apply(s,s),apply(s,k)),apply(s,apply(k,A)))),apply(strong_fixed_point,A)). 16: (wt=35) 61 [para_into,27.1.1.2,4.1.1] (00) equal(apply(apply(apply(s,apply(apply(s,k),k)),apply(apply(s,k),k)),apply(apply(s,apply(s,apply(k,A))),apply(apply(s,k),apply(s,apply(k,A))))),apply(strong_fixed_point,A)). 28: (wt=39) 156,155 [para_into,61.1.1,4.1.1,demod,24,24] (00) equal(apply(apply(apply(s,apply(s,apply(k,A))),apply(apply(s,k),apply(s,apply(k,A)))),apply(apply(s,apply(s,apply(k,A))),apply(apply(s,k),apply(s,apply(k,A))))),apply(strong_fixed_point,A)). 0: (wt=9) 1244 [para_into,155.1.1,4.1.1,demod,24,17,156] (00) equal(apply(A,apply(strong_fixed_point,A)),apply(strong_fixed_point,A)). 0: (wt=0) 1246 [binary,1244.1,2.1] (00) $F. ------------ end of proof -------------
<clause> : <number>"." <clause body> <auxilliary info> "["<background list>"]" % nonempty clause : <number>'. #' <auxilliary info> '['<background list>']' % empty clause <clause body> : <literals> % all literals are selected : <literals>1 | <literals>2 % <literals>1 are selected % <literals>2 are nonselected <background list> : <flags><ancestors> <ancestors> : % empty (must be an input clause) : <number> ("," <number>)* <flags> : (<flag> )+ <flag> : "in" % input clause : "pp" % clause obtained by preprocessing : "br" % generated by binary resolution : "hr" % generated by hyperresolution : "fs" % generated by forward superposition : "bs" % generated by backward superposition : "er" % generated by equality resolution : "ef" % generated by equality factoring : "fd" % simplified by forward demodulation : "bd" % simplified by backward demodulation : "ers" % simplified by equality resolution : "fsr" % simplified by forward subsumption resolution : "sp" % splitting was used : "rea" % "reanimated" passive clause (selected in Discount algorithm) : "nm" % the clause is a part of a name introduction in % splitting, or obtained by preprocessing from such % a clause : "ns" % negative selection was used (does not mean that % all the selected literals are negative) <literals> : <literal> [" \/ " <literals>] <literal> : <standard literal> : <equational literal> : <splitting literal> <standard literal> : ["~"]<atom> % "~" is for negation <atom> : <predicate symbol> % propositional variable : <predicate symbol><arguments> <equational literal> : <term> = <term> % unoriented positive equality : <term> != <term> % unoriented negative equality : <term> == <term> % oriented positive equality : <term> !== <term> % oriented negative equality <splitting literal> : "["<predicate symbol>"]" <term> : <variable> : <constant> : <function symbol><arguments> <variable> : "X"<number> <arguments> : "("<term> (","<term>)* ")"
vproof(<JobId>,[<clause body> <clause number> <ancestors> <flags>]).<JobId> is an atom, uniquely identifying the job that produced the proof. <ancestors> is a list of ancestor numbers. <flags> is a list of flags, every flag is an atom. <clause body> is a list of literals.
<literal> : "++"<atom> % unselected positive literal : "+++"<atom> % selected positive literal : "--"<atom> % unselected negative literal : "---"<atom> % selected negative literal <atom> : <term> : "("<term>" = "<term>")" % unoriented equality : "("<term>" => "<term>")" % oriented equality <term> : <function symbol>["("<term>(","<term>)*")"] : <variable><function symbol> is a Prolog alphanumeric identifier. <variable> is a quoted Prolog atom "'X"
%======================== Proof: ========================= % 1. member(z,z) /3/3/0/ 0pe [in ] % 2. member(z,diagonalise(element_relation)) /4/4/0/ 0pe [in ] % 120. X0=null_class \/ intersection(X0,regular(X0))=null_class /9/9/0/ 2pe [in ] % 121. X0=null_class \/ member(regular(X0),X0) /7/7/0/ 1pe [in ] % 144. union(X0,singleton(X0))=successor(X0) /7/7/0/ 1pe [in ] % 161. complement(intersection(complement(X0),complement(X1)))=union(X0,X1) /10/10/0/ 1pe [in ] % 162. member(X0,complement(X1)) \/ ~member(X0,universal_class) \/ member(X0,X1) /10/10/0/ 0pe [in ] % 163. ~member(X0,complement(X1)) \/ ~member(X0,X1) /7/7/0/ 0pe [in ] % 164. ~member(X0,X2) \/ ~member(X0,X1) \/ member(X0,intersection(X1,X2)) /11/11/0/ 0pe [in ] % 165. ~member(X0,intersection(X1,X2)) \/ member(X0,X2) /8/8/0/ 0pe [in ] % 166. ~member(X0,intersection(X1,X2)) \/ member(X0,X1) /8/8/0/ 0pe [in ] % 175. unordered_pair(X0,X0)=singleton(X0) /6/6/0/ 1pe [in ] % 178. ~member(X0,universal_class) \/ member(X0,unordered_pair(X0,X1)) /8/8/0/ 0pe [in ] % 179. X0=X1 \/ ~member(X0,unordered_pair(X1,X2)) \/ X0=X2 /11/11/0/ 2pe [in ] % 183. subclass(X0,universal_class) /3/3/0/ 0pe [in ] % 186. ~member(X2,X0) \/ ~subclass(X0,X1) \/ member(X2,X1) /9/9/0/ 0pe [in ] % 190. member(z,z) /3/3/0/ 0pe [pp 1] % 191. member(z,diagonalise(element_relation)) /4/4/0/ 0pe [pp 2] % 237. intersection(X0,regular(X0))==null_class | X0=null_class /9/9/5/ 2pe [pp 120] % 238. member(regular(X0),X0) | X0=null_class /7/7/3/ 1pe [pp 121] % 261. union(X0,singleton(X0))==successor(X0) /7/7/3/ 1pe [pp 144] % 278. complement(intersection(complement(X0),complement(X1)))==union(X0,X1) /10/10/4/ 1pe [pp 161]% 279. ~member(X0,universal_class) | member(X0,complement(X1)) \/ member(X0,X1) /10/10/7/ 0pe [pp 162] % 280. ~member(X0,complement(X1)) | ~member(X0,X1) /7/7/3/ 0pe [pp 163] % 281. ~member(X0,X1) | ~member(X0,X2) \/ member(X0,intersection(X1,X2)) /11/11/8/ 0pe [pp ns 164] % 282. ~member(X0,intersection(X1,X2)) | member(X0,X2) /8/8/3/ 0pe [pp 165] % 283. ~member(X0,intersection(X1,X2)) | member(X0,X1) /8/8/3/ 0pe [pp 166] % 292. unordered_pair(X0,X0)==singleton(X0) /6/6/3/ 1pe [pp 175] % 295. ~member(X0,universal_class) | member(X0,unordered_pair(X0,X1)) /8/8/5/ 0pe [pp 178] % 296. ~member(X0,unordered_pair(X1,X2)) | X0=X1 \/ X0=X2 /11/11/6/ 2pe [pp 179] % 299. subclass(X0,universal_class) /3/3/0/ 0pe [pp 183] % 302. ~subclass(X0,X1) | ~member(X2,X0) \/ member(X2,X1) /9/9/6/ 0pe [pp 186] % 303. member(z,z) /3/3/0/ 0pe [pp 190] % 304. member(z,diagonalise(element_relation)) /4/4/0/ 0pe [pp 191] % 350. intersection(X0,regular(X0))==null_class | X0=null_class /9/9/5/ 2pe [pp 237] % 351. member(regular(X0),X0) | X0=null_class /7/7/3/ 1pe [pp 238] % 374. union(X0,singleton(X0))==successor(X0) /7/7/3/ 1pe [pp 261] % 391. complement(intersection(complement(X0),complement(X1)))==union(X0,X1) /10/10/4/ 1pe [pp 278]% 392. ~member(X0,universal_class) | member(X0,complement(X1)) \/ member(X0,X1) /10/10/7/ 0pe [pp 279] % 393. ~member(X0,complement(X1)) | ~member(X0,X1) /7/7/3/ 0pe [pp 280] % 394. ~member(X0,X1) | ~member(X0,X2) \/ member(X0,intersection(X2,X1)) /11/11/8/ 0pe [pp ns 281] % 395. ~member(X0,intersection(X1,X2)) | member(X0,X2) /8/8/3/ 0pe [pp 282] % 396. ~member(X0,intersection(X1,X2)) | member(X0,X1) /8/8/3/ 0pe [pp 283] % 405. unordered_pair(X0,X0)==singleton(X0) /6/6/3/ 1pe [pp 292] % 408. ~member(X0,universal_class) | member(X0,unordered_pair(X0,X1)) /8/8/5/ 0pe [pp 295] % 409. ~member(X0,unordered_pair(X1,X2)) | X0=X1 \/ X0=X2 /11/11/6/ 2pe [pp 296] % 412. subclass(X0,universal_class) /3/3/0/ 0pe [pp 299] % 415. ~subclass(X0,X1) | ~member(X2,X0) \/ member(X2,X1) /9/9/6/ 0pe [pp 302] % 424. member(z,z) /3/3/0/ 0pe [pp 303] % 425. member(z,diagonalise(element_relation)) /4/4/0/ 0pe [pp 304] % 457. intersection(X0,regular(X0))==null_class | X0=null_class /9/9/5/ 2pe [pp 350] % 458. member(regular(X0),X0) | X0=null_class /7/7/3/ 1pe [pp 351] % 474. union(X0,singleton(X0))==successor(X0) /7/7/3/ 1pe [pp 374] % 491. complement(intersection(complement(X0),complement(X1)))==union(X0,X1) /10/10/4/ 1pe [pp 391]% 492. ~member(X0,universal_class) | member(X0,complement(X1)) \/ member(X0,X1) /10/10/7/ 0pe [pp 392] % 493. ~member(X0,complement(X1)) | ~member(X0,X1) /7/7/3/ 0pe [pp 393] % 494. ~member(X0,X1) | ~member(X0,X2) \/ member(X0,intersection(X1,X2)) /11/11/8/ 0pe [pp ns 394] % 495. ~member(X0,intersection(X1,X2)) | member(X0,X2) /8/8/3/ 0pe [pp 395] % 496. ~member(X0,intersection(X1,X2)) | member(X0,X1) /8/8/3/ 0pe [pp 396] % 505. unordered_pair(X0,X0)==singleton(X0) /6/6/3/ 1pe [pp 405] % 508. ~member(X0,universal_class) | member(X0,unordered_pair(X0,X1)) /8/8/5/ 0pe [pp 408] % 509. ~member(X0,unordered_pair(X1,X2)) | X0=X1 \/ X0=X2 /11/11/6/ 2pe [pp 409] % 512. subclass(X0,universal_class) /3/3/0/ 0pe [pp 412] % 515. ~subclass(X0,X1) | ~member(X2,X0) \/ member(X2,X1) /9/9/6/ 0pe [pp 415] % 526. member(z,z) /3/3/0/ 0pe [pp 424] % 527. member(z,diagonalise(element_relation)) /4/4/0/ 0pe [pp 425] % 556. intersection(X0,regular(X0))==null_class | X0=null_class /9/9/5/ 2pe [pp 457] % 557. member(regular(X0),X0) | X0=null_class /7/7/3/ 1pe [pp 458] % 573. union(X0,singleton(X0))==successor(X0) /7/7/3/ 1pe [pp 474] % 590. complement(intersection(complement(X0),complement(X1)))==union(X0,X1) /10/10/4/ 1pe [pp 491]% 591. ~member(X0,universal_class) | member(X0,complement(X1)) \/ member(X0,X1) /10/10/7/ 0pe [pp 492] % 592. ~member(X0,complement(X1)) | ~member(X0,X1) /7/7/3/ 0pe [pp 493] % 593. ~member(X0,X1) | ~member(X0,X2) \/ member(X0,intersection(X2,X1)) /11/11/8/ 0pe [pp ns 494] % 594. ~member(X0,intersection(X1,X2)) | member(X0,X2) /8/8/3/ 0pe [pp 495] % 595. ~member(X0,intersection(X1,X2)) | member(X0,X1) /8/8/3/ 0pe [pp 496] % 604. unordered_pair(X0,X0)==singleton(X0) /6/6/3/ 1pe [pp 505] % 607. ~member(X0,universal_class) | member(X0,unordered_pair(X0,X1)) /8/8/5/ 0pe [pp 508] % 608. ~member(X0,unordered_pair(X1,X2)) | X0=X1 \/ X0=X2 /11/11/6/ 2pe [pp 509] % 611. subclass(X0,universal_class) /3/3/0/ 0pe [pp 512] % 614. ~subclass(X0,X1) | ~member(X2,X0) \/ member(X2,X1) /9/9/6/ 0pe [pp 515] % * 620. member(z,z) /3/3/0/ 0pe vip [pp 526] % * 621. member(z,diagonalise(element_relation)) /4/4/0/ 0pe vip [pp 527] % * 650. intersection(X0,regular(X0))==null_class | X0=null_class /9/9/5/ 2pe vip [pp 556] % * 651. member(regular(X0),X0) | X0=null_class /7/7/3/ 1pe vip [pp 557] % * 667. union(X0,singleton(X0))==successor(X0) /7/7/3/ 1pe [pp 573] % * 685. complement(intersection(complement(X0),complement(X1)))==union(X0,X1) /10/10/4/ 1pe [pp 590] % * 687. ~member(X0,universal_class) | member(X0,complement(X1)) \/ member(X0,X1) /10/10/7/ 0pe [pp 591] % * 688. ~member(X0,complement(X1)) | ~member(X0,X1) /7/7/3/ 0pe vip [pp 592] % * 689. ~member(X0,X1) | ~member(X0,X2) \/ member(X0,intersection(X1,X2)) /11/11/8/ 0pe [pp ns 593] % * 690. ~member(X0,intersection(X1,X2)) | member(X0,X2) /8/8/3/ 0pe vip [pp 594] % * 691. ~member(X0,intersection(X1,X2)) | member(X0,X1) /8/8/3/ 0pe vip [pp 595] % * 700. unordered_pair(X0,X0)==singleton(X0) /6/6/3/ 1pe [pp 604] % * 703. ~member(X0,universal_class) | member(X0,unordered_pair(X0,X1)) /8/8/5/ 0pe [pp 607] % * 704. ~member(X0,unordered_pair(X1,X2)) | X0=X1 \/ X0=X2 /11/11/6/ 2pe [pp 608] % * 707. subclass(X0,universal_class) /3/3/0/ 0pe vip [pp 611] % * 710. ~subclass(X0,X1) | ~member(X2,X0) \/ member(X2,X1) /9/9/6/ 0pe [pp 614] % * 753. ~member(regular(complement(X0)),X0) | complement(X0)==null_class /9/9/4/ 1pe [br 651,688] % * 757. ~member(z,X0) | member(z,intersection(z,X0)) /8/8/5/ 0pe [br 620,689] % * 758. ~member(z,X0) | member(z,intersection(diagonalise(element_relation),X0)) /9/9/6/ 0pe [br 621,689] % * 761. member(regular(intersection(X0,X1)),X1) | intersection(X0,X1)==null_class /11/11/5/ 1pe [br 651,690] % * 768. member(regular(intersection(X0,X1)),X0) | intersection(X0,X1)==null_class /11/11/5/ 1pe [br 651,691] % * 798. ~member(X0,singleton(X1)) | X0=X1 /7/7/3/ 1pe vip [fs 700,704] % * 822. ~member(X0,X1) | member(X0,universal_class) /6/6/3/ 0pe [br 707,710] % * 999. member(z,universal_class) /3/3/0/ 0pe vip [br 620,822] % * 1000. member(regular(X0),universal_class) | X0=null_class /7/7/3/ 1pe vip [br 651,822] % * 1005. member(z,unordered_pair(z,X0)) /5/5/0/ 0pe vip [br 703,999] % * 1007. member(z,complement(X0)) | member(z,X0) /7/7/3/ 0pe vip [br 687,999] % * 1083. member(z,singleton(z)) /4/4/0/ 0pe vip [fs 700,1005] % * 1085. ~member(z,X0) | member(z,intersection(singleton(z),X0)) /9/9/6/ 0pe [br 689,1083] % * 1568. regular(singleton(X0))==X0 | singleton(X0)==null_class /9/9/6/ 2pe vip [br 651,798] % * 1669. member(z,intersection(complement(X0),complement(X1))) | member(z,union(X0,X1)) /12/12/5/ 0pe [fs 685,1007] % * 2598. complement(universal_class)==null_class /4/4/2/ 1pe vip [br 1000,753] % * 2619. ~member(X0,null_class) /3/3/0/ 0pe vip [bs fsr 822,688,2598] % * 2730. member(z,intersection(diagonalise(element_relation),singleton(z))) /7/7/0/ 0pe vip [br 1083,758] % * 2771. ~member(z,X0) | member(z,intersection(intersection(diagonalise(element_relation),singleton(z)),X0)) /12/12/9/ 0pe [br 689,2730] % * 2824. intersection(X0,null_class)==null_class /5/5/2/ 1pe vip [br 2619,761] % * 2971. intersection(null_class,X0)==null_class /5/5/2/ 1pe vip [br 2619,768] % * 20420. member(z,intersection(singleton(z),z)) /6/6/0/ 0pe vip [br 620,1085] % * 23048. intersection(singleton(X0),X0)==null_class | singleton(X0)==null_class /10/10/6/ 2pe [bs 650,1568] % * 110195. member(z,union(X0,X1)) | member(z,complement(X0)) /9/9/4/ 0pe [br 691,1669] % * 110426. member(z,complement(X0)) | member(z,successor(X0)) /8/8/4/ 0pe [fs 667,110195] % * 110427. ~member(z,X0) | member(z,successor(X0)) /7/7/4/ 0pe [br 688,110426] % * 110491. member(z,successor(z)) /4/4/0/ 0pe vip [br 620,110427] % * 110884. ~member(z,X0) | member(z,intersection(successor(z),X0)) /9/9/6/ 0pe [br 689,110491] % * 120575. member(z,intersection(successor(z),intersection(singleton(z),z))) /9/9/0/ 0pe [br 20420,110884] % * 144335. member(z,intersection(intersection(diagonalise(element_relation),singleton(z)),universal_class)) /9/9/0/ 0pe vip [br 999,2771] % 144354. member(z,intersection(z,intersection(intersection(diagonalise(element_relation),singleton(z)),universal_class))) /11/11/0/ 0pe [br 757,144335] % 144460. singleton(z)==null_class /4/4/2/ 1pe vip [bs fd fsr 2619,2824,120575,23048] % 144462. # /1/0/0/ 0pe vip [fd bd fsr 2619,2824,2971,2824,144354,144460] %================== End of proof. ========================
vproof('9520011456592226',[[+++member(z,z)],1,[],[in]]). vproof('9520011456592226',[[+++member(z,diagonalise(element_relation))],2,[],[in]]). vproof('9520011456592226',[[+++('X0' = null_class),+++(intersection('X0',regular('X0')) = null_class)],120,[],[in]]). vproof('9520011456592226',[[+++('X0' = null_class),+++member(regular('X0'),'X0')],121,[],[in]]). vproof('9520011456592226',[[+++(union('X0',singleton('X0')) = successor('X0'))],144,[],[in]]). vproof('9520011456592226',[[+++(complement(intersection(complement('X0'),complement('X1'))) = union('X0','X1'))],161,[],[in]]). vproof('9520011456592226',[[+++member('X0',complement('X1')),---member('X0',universal_class),+++member('X0','X1')],162,[],[in]]). vproof('9520011456592226',[[---member('X0',complement('X1')),---member('X0','X1')],163,[],[in]]). vproof('9520011456592226',[[---member('X0','X2'),---member('X0','X1'),+++member('X0',intersection('X1','X2'))],164,[],[in]]). vproof('9520011456592226',[[---member('X0',intersection('X1','X2')),+++member('X0','X2')],165,[],[in]]). vproof('9520011456592226',[[---member('X0',intersection('X1','X2')),+++member('X0','X1')],166,[],[in]]). vproof('9520011456592226',[[+++(unordered_pair('X0','X0') = singleton('X0'))],175,[],[in]]). vproof('9520011456592226',[[---member('X0',universal_class),+++member('X0',unordered_pair('X0','X1'))],178,[],[in]]). vproof('9520011456592226',[[+++('X0' = 'X1'),---member('X0',unordered_pair('X1','X2')),+++('X0' = 'X2')],179,[],[in]]). vproof('9520011456592226',[[+++subclass('X0',universal_class)],183,[],[in]]). vproof('9520011456592226',[[---member('X2','X0'),---subclass('X0','X1'),+++member('X2','X1')],186,[],[in]]). vproof('9520011456592226',[[+++member(z,z)],190,[1],[pp]]). vproof('9520011456592226',[[+++member(z,diagonalise(element_relation))],191,[2],[pp]]). vproof('9520011456592226',[[+++(intersection('X0',regular('X0')) => null_class),++('X0' = null_class)],237,[120],[pp]]). vproof('9520011456592226',[[+++member(regular('X0'),'X0'),++('X0' = null_class)],238,[121],[pp]]). vproof('9520011456592226',[[+++(union('X0',singleton('X0')) => successor('X0'))],261,[144],[pp]]). vproof('9520011456592226',[[+++(complement(intersection(complement('X0'),complement('X1'))) => union('X0','X1'))],278,[161],[pp]]). vproof('9520011456592226',[[---member('X0',universal_class),++member('X0',complement('X1')),++member('X0','X1')],279,[162],[pp]]). vproof('9520011456592226',[[---member('X0',complement('X1')),--member('X0','X1')],280,[163],[pp]]). vproof('9520011456592226',[[---member('X0','X1'),--member('X0','X2'),++member('X0',intersection('X1','X2'))],281,[164],[pp]]). vproof('9520011456592226',[[---member('X0',intersection('X1','X2')),++member('X0','X2')],282,[165],[pp]]). vproof('9520011456592226',[[---member('X0',intersection('X1','X2')),++member('X0','X1')],283,[166],[pp]]). vproof('9520011456592226',[[+++(unordered_pair('X0','X0') => singleton('X0'))],292,[175],[pp]]). vproof('9520011456592226',[[---member('X0',universal_class),++member('X0',unordered_pair('X0','X1'))],295,[178],[pp]]). vproof('9520011456592226',[[---member('X0',unordered_pair('X1','X2')),++('X0' = 'X1'),++('X0' = 'X2')],296,[179],[pp]]). vproof('9520011456592226',[[+++subclass('X0',universal_class)],299,[183],[pp]]). vproof('9520011456592226',[[---subclass('X0','X1'),--member('X2','X0'),++member('X2','X1')],302,[186],[pp]]). vproof('9520011456592226',[[+++member(z,z)],303,[190],[pp]]). vproof('9520011456592226',[[+++member(z,diagonalise(element_relation))],304,[191],[pp]]). vproof('9520011456592226',[[+++(intersection('X0',regular('X0')) => null_class),++('X0' = null_class)],350,[237],[pp]]). vproof('9520011456592226',[[+++member(regular('X0'),'X0'),++('X0' = null_class)],351,[238],[pp]]). vproof('9520011456592226',[[+++(union('X0',singleton('X0')) => successor('X0'))],374,[261],[pp]]). vproof('9520011456592226',[[+++(complement(intersection(complement('X0'),complement('X1'))) => union('X0','X1'))],391,[278],[pp]]). vproof('9520011456592226',[[---member('X0',universal_class),++member('X0',complement('X1')),++member('X0','X1')],392,[279],[pp]]). vproof('9520011456592226',[[---member('X0',complement('X1')),--member('X0','X1')],393,[280],[pp]]). vproof('9520011456592226',[[---member('X0','X1'),--member('X0','X2'),++member('X0',intersection('X2','X1'))],394,[281],[pp]]). vproof('9520011456592226',[[---member('X0',intersection('X1','X2')),++member('X0','X2')],395,[282],[pp]]). vproof('9520011456592226',[[---member('X0',intersection('X1','X2')),++member('X0','X1')],396,[283],[pp]]). vproof('9520011456592226',[[+++(unordered_pair('X0','X0') => singleton('X0'))],405,[292],[pp]]). vproof('9520011456592226',[[---member('X0',universal_class),++member('X0',unordered_pair('X0','X1'))],408,[295],[pp]]). vproof('9520011456592226',[[---member('X0',unordered_pair('X1','X2')),++('X0' = 'X1'),++('X0' = 'X2')],409,[296],[pp]]). vproof('9520011456592226',[[+++subclass('X0',universal_class)],412,[299],[pp]]). vproof('9520011456592226',[[---subclass('X0','X1'),--member('X2','X0'),++member('X2','X1')],415,[302],[pp]]). vproof('9520011456592226',[[+++member(z,z)],424,[303],[pp]]). vproof('9520011456592226',[[+++member(z,diagonalise(element_relation))],425,[304],[pp]]). vproof('9520011456592226',[[+++(intersection('X0',regular('X0')) => null_class),++('X0' = null_class)],457,[350],[pp]]). vproof('9520011456592226',[[+++member(regular('X0'),'X0'),++('X0' = null_class)],458,[351],[pp]]). vproof('9520011456592226',[[+++(union('X0',singleton('X0')) => successor('X0'))],474,[374],[pp]]). vproof('9520011456592226',[[+++(complement(intersection(complement('X0'),complement('X1'))) => union('X0','X1'))],491,[391],[pp]]). vproof('9520011456592226',[[---member('X0',universal_class),++member('X0',complement('X1')),++member('X0','X1')],492,[392],[pp]]). vproof('9520011456592226',[[---member('X0',complement('X1')),--member('X0','X1')],493,[393],[pp]]). vproof('9520011456592226',[[---member('X0','X1'),--member('X0','X2'),++member('X0',intersection('X1','X2'))],494,[394],[pp]]). vproof('9520011456592226',[[---member('X0',intersection('X1','X2')),++member('X0','X2')],495,[395],[pp]]). vproof('9520011456592226',[[---member('X0',intersection('X1','X2')),++member('X0','X1')],496,[396],[pp]]). vproof('9520011456592226',[[+++(unordered_pair('X0','X0') => singleton('X0'))],505,[405],[pp]]). vproof('9520011456592226',[[---member('X0',universal_class),++member('X0',unordered_pair('X0','X1'))],508,[408],[pp]]). vproof('9520011456592226',[[---member('X0',unordered_pair('X1','X2')),++('X0' = 'X1'),++('X0' = 'X2')],509,[409],[pp]]). vproof('9520011456592226',[[+++subclass('X0',universal_class)],512,[412],[pp]]). vproof('9520011456592226',[[---subclass('X0','X1'),--member('X2','X0'),++member('X2','X1')],515,[415],[pp]]). vproof('9520011456592226',[[+++member(z,z)],526,[424],[pp]]). vproof('9520011456592226',[[+++member(z,diagonalise(element_relation))],527,[425],[pp]]). vproof('9520011456592226',[[+++(intersection('X0',regular('X0')) => null_class),++('X0' = null_class)],556,[457],[pp]]). vproof('9520011456592226',[[+++member(regular('X0'),'X0'),++('X0' = null_class)],557,[458],[pp]]). vproof('9520011456592226',[[+++(union('X0',singleton('X0')) => successor('X0'))],573,[474],[pp]]). vproof('9520011456592226',[[+++(complement(intersection(complement('X0'),complement('X1'))) => union('X0','X1'))],590,[491],[pp]]). vproof('9520011456592226',[[---member('X0',universal_class),++member('X0',complement('X1')),++member('X0','X1')],591,[492],[pp]]). vproof('9520011456592226',[[---member('X0',complement('X1')),--member('X0','X1')],592,[493],[pp]]). vproof('9520011456592226',[[---member('X0','X1'),--member('X0','X2'),++member('X0',intersection('X2','X1'))],593,[494],[pp]]). vproof('9520011456592226',[[---member('X0',intersection('X1','X2')),++member('X0','X2')],594,[495],[pp]]). vproof('9520011456592226',[[---member('X0',intersection('X1','X2')),++member('X0','X1')],595,[496],[pp]]). vproof('9520011456592226',[[+++(unordered_pair('X0','X0') => singleton('X0'))],604,[505],[pp]]). vproof('9520011456592226',[[---member('X0',universal_class),++member('X0',unordered_pair('X0','X1'))],607,[508],[pp]]). vproof('9520011456592226',[[---member('X0',unordered_pair('X1','X2')),++('X0' = 'X1'),++('X0' = 'X2')],608,[509],[pp]]). vproof('9520011456592226',[[+++subclass('X0',universal_class)],611,[512],[pp]]). vproof('9520011456592226',[[---subclass('X0','X1'),--member('X2','X0'),++member('X2','X1')],614,[515],[pp]]). vproof('9520011456592226',[[+++member(z,z)],620,[526],[pp]]). vproof('9520011456592226',[[+++member(z,diagonalise(element_relation))],621,[527],[pp]]). vproof('9520011456592226',[[+++(intersection('X0',regular('X0')) => null_class),++('X0' = null_class)],650,[556],[pp]]). vproof('9520011456592226',[[+++member(regular('X0'),'X0'),++('X0' = null_class)],651,[557],[pp]]). vproof('9520011456592226',[[+++(union('X0',singleton('X0')) => successor('X0'))],667,[573],[pp]]). vproof('9520011456592226',[[+++(complement(intersection(complement('X0'),complement('X1'))) => union('X0','X1'))],685,[590],[pp]]). vproof('9520011456592226',[[---member('X0',universal_class),++member('X0',complement('X1')),++member('X0','X1')],687,[591],[pp]]). vproof('9520011456592226',[[---member('X0',complement('X1')),--member('X0','X1')],688,[592],[pp]]). vproof('9520011456592226',[[---member('X0','X1'),--member('X0','X2'),++member('X0',intersection('X1','X2'))],689,[593],[pp]]). vproof('9520011456592226',[[---member('X0',intersection('X1','X2')),++member('X0','X2')],690,[594],[pp]]). vproof('9520011456592226',[[---member('X0',intersection('X1','X2')),++member('X0','X1')],691,[595],[pp]]). vproof('9520011456592226',[[+++(unordered_pair('X0','X0') => singleton('X0'))],700,[604],[pp]]). vproof('9520011456592226',[[---member('X0',universal_class),++member('X0',unordered_pair('X0','X1'))],703,[607],[pp]]). vproof('9520011456592226',[[---member('X0',unordered_pair('X1','X2')),++('X0' = 'X1'),++('X0' = 'X2')],704,[608],[pp]]). vproof('9520011456592226',[[+++subclass('X0',universal_class)],707,[611],[pp]]). vproof('9520011456592226',[[---subclass('X0','X1'),--member('X2','X0'),++member('X2','X1')],710,[614],[pp]]). vproof('9520011456592226',[[---member(regular(complement('X0')),'X0'),++(complement('X0') => null_class)],753,[651,688],[br]]). vproof('9520011456592226',[[---member(z,'X0'),++member(z,intersection(z,'X0'))],757,[620,689],[br]]). vproof('9520011456592226',[[---member(z,'X0'),++member(z,intersection(diagonalise(element_relation),'X0'))],758,[621,689],[br]]). vproof('9520011456592226',[[+++member(regular(intersection('X0','X1')),'X1'),++(intersection('X0','X1') => null_class)],761,[651,690],[br]]). vproof('9520011456592226',[[+++member(regular(intersection('X0','X1')),'X0'),++(intersection('X0','X1') => null_class)],768,[651,691],[br]]). vproof('9520011456592226',[[---member('X0',singleton('X1')),++('X0' = 'X1')],798,[700,704],[fs]]). vproof('9520011456592226',[[---member('X0','X1'),++member('X0',universal_class)],822,[707,710],[br]]). vproof('9520011456592226',[[+++member(z,universal_class)],999,[620,822],[br]]). vproof('9520011456592226',[[+++member(regular('X0'),universal_class),++('X0' = null_class)],1000,[651,822],[br]]). vproof('9520011456592226',[[+++member(z,unordered_pair(z,'X0'))],1005,[703,999],[br]]). vproof('9520011456592226',[[+++member(z,complement('X0')),++member(z,'X0')],1007,[687,999],[br]]). vproof('9520011456592226',[[+++member(z,singleton(z))],1083,[700,1005],[fs]]). vproof('9520011456592226',[[---member(z,'X0'),++member(z,intersection(singleton(z),'X0'))],1085,[689,1083],[br]]). vproof('9520011456592226',[[+++(regular(singleton('X0')) => 'X0'),++(singleton('X0') => null_class)],1568,[651,798],[br]]). vproof('9520011456592226',[[+++member(z,intersection(complement('X0'),complement('X1'))),++member(z,union('X0','X1'))],1669,[685,1007],[fs]]). vproof('9520011456592226',[[+++(complement(universal_class) => null_class)],2598,[1000,753],[br]]). vproof('9520011456592226',[[---member('X0',null_class)],2619,[822,688,2598],[bs,fsr]]). vproof('9520011456592226',[[+++member(z,intersection(diagonalise(element_relation),singleton(z)))],2730,[1083,758],[br]]). vproof('9520011456592226',[[---member(z,'X0'),++member(z,intersection(intersection(diagonalise(element_relation),singleton(z)),'X0'))],2771,[689,2730],[br]]). vproof('9520011456592226',[[+++(intersection('X0',null_class) => null_class)],2824,[2619,761],[br]]). vproof('9520011456592226',[[+++(intersection(null_class,'X0') => null_class)],2971,[2619,768],[br]]). vproof('9520011456592226',[[+++member(z,intersection(singleton(z),z))],20420,[620,1085],[br]]). vproof('9520011456592226',[[+++(intersection(singleton('X0'),'X0') => null_class),++(singleton('X0') => null_class)],23048,[650,1568],[bs]]). vproof('9520011456592226',[[+++member(z,union('X0','X1')),++member(z,complement('X0'))],107744,[691,1669],[br]]). vproof('9520011456592226',[[+++member(z,complement('X0')),++member(z,successor('X0'))],108260,[667,107744],[fs]]). vproof('9520011456592226',[[---member(z,'X0'),++member(z,successor('X0'))],108261,[688,108260],[br]]). vproof('9520011456592226',[[+++member(z,successor(z))],108325,[620,108261],[br]]). vproof('9520011456592226',[[---member(z,'X0'),++member(z,intersection(successor(z),'X0'))],108718,[689,108325],[br]]). vproof('9520011456592226',[[+++member(z,intersection(successor(z),intersection(singleton(z),z)))],118516,[20420,108718],[br]]). vproof('9520011456592226',[[+++member(z,intersection(intersection(diagonalise(element_relation),singleton(z)),universal_class))],142519,[999,2771],[br]]). vproof('9520011456592226',[[+++member(z,intersection(z,intersection(intersection(diagonalise(element_relation),singleton(z)),universal_class)))],142538,[757,142519],[br]]). vproof('9520011456592226',[[+++(singleton(z) => null_class)],142584,[2619,2824,118516,23048],[bs,fd,fsr]]). vproof('9520011456592226',[[],142585,[2619,2824,2971,2824,142538,142584],[fd,bd,fsr]]).