Entrants' Sample Solutions


CSE 1.0

Feng Cao (Yang Xu, Jun Liu, Shuwei Chen, Xiaomei Zhong, Peng Xu, Qinghua Liu, Huimin Fu, Xiaodong Guan, Zhenming Song)
Southwest Jiaotong University, China
Ulster University, United Kingdom (Jun Liu)

Sample proof for SEU140+2

% SZS status Theorem for theBenchmark
% SZS output start Proof
%ClaNum:116(EqnAxiom:34)
%VarNum:421(SingletonVarNum:165)
%MaxLitNum:4
%MaxfuncDepth:2
%SharedTerms:12
%goalClause: 37 38 55
%singleGoalClaCount:3
[35]P1(a2)
[36]P1(a3)
[37]P4(a5,a6)
[38]P7(a6,a8)
[54]~P1(a11)
[55]~P7(a5,a8)
[40]P4(a2,x401)
[43]P4(x431,x431)
[56]~P12(x561,x561)
[39]E(f9(a2,x391),a2)
[41]E(f10(x411,a2),x411)
[42]E(f9(x421,a2),x421)
[44]E(f10(x441,x441),x441)
[46]E(f9(x461,f9(x461,a2)),a2)
[49]E(f9(x491,f9(x491,x491)),x491)
[45]E(f10(x451,x452),f10(x452,x451))
[47]P4(x471,f10(x471,x472))
[48]P4(f9(x481,x482),x481)
[50]E(f10(x501,f9(x502,x501)),f10(x501,x502))
[51]E(f9(f10(x511,x512),x512),f9(x511,x512))
[52]E(f9(x521,f9(x521,x522)),f9(x522,f9(x522,x521)))
[57]~P1(x571)+E(x571,a2)
[61]~P4(x611,a2)+E(x611,a2)
[62]P13(f14(x621),x621)+E(x621,a2)
[59]~E(x592,x591)+P4(x591,x592)
[60]~E(x601,x602)+P4(x601,x602)
[63]~P13(x632,x631)+~E(x631,a2)
[64]~P12(x641,x642)+~E(x641,x642)
[65]~P1(x651)+~P13(x652,x651)
[70]~P12(x701,x702)+P4(x701,x702)
[71]~P7(x712,x711)+P7(x711,x712)
[74]~P13(x742,x741)+~P13(x741,x742)
[75]~P12(x752,x751)+~P12(x751,x752)
[76]~P4(x762,x761)+~P12(x761,x762)
[67]~P4(x671,x672)+E(f9(x671,x672),a2)
[69]P4(x691,x692)+~E(f9(x691,x692),a2)
[72]~P4(x721,x722)+E(f10(x721,x722),x722)
[78]P1(x781)+~P1(f10(x782,x781))
[79]P1(x791)+~P1(f10(x791,x792))
[80]P4(x801,x802)+P13(f15(x801,x802),x801)
[81]P7(x811,x812)+P13(f16(x811,x812),x812)
[82]P7(x821,x822)+P13(f16(x821,x822),x821)
[96]P4(x961,x962)+~P13(f15(x961,x962),x962)
[88]~P7(x881,x882)+E(f9(x881,f9(x881,x882)),a2)
[89]~P4(x891,x892)+E(f10(x891,f9(x892,x891)),x892)
[90]~P4(x901,x902)+E(f9(x901,f9(x901,x902)),x901)
[95]P7(x951,x952)+~E(f9(x951,f9(x951,x952)),a2)
[104]P7(x1041,x1042)+P13(f18(x1041,x1042),f9(x1041,f9(x1041,x1042)))
[99]~P4(x991,x993)+P4(f9(x991,x992),f9(x993,x992))
[106]~P7(x1061,x1062)+~P13(x1063,f9(x1061,f9(x1061,x1062)))
[107]~P4(x1071,x1073)+P4(f9(x1071,f9(x1071,x1072)),f9(x1073,f9(x1073,x1072)))
[58]~P1(x582)+~P1(x581)+E(x581,x582)
[73]P12(x731,x732)+~P4(x731,x732)+E(x731,x732)
[77]~P4(x772,x771)+~P4(x771,x772)+E(x771,x772)
[97]E(x971,x972)+P13(f17(x971,x972),x972)+P13(f17(x971,x972),x971)
[103]E(x1031,x1032)+~P13(f17(x1031,x1032),x1032)+~P13(f17(x1031,x1032),x1031)
[83]~P4(x833,x832)+P13(x831,x832)+~P13(x831,x833)
[84]~P4(x841,x843)+P4(x841,x842)+~P4(x843,x842)
[91]~P7(x913,x912)+~P13(x911,x912)+~P13(x911,x913)
[98]~P4(x982,x983)+~P4(x981,x983)+P4(f10(x981,x982),x983)
[108]P13(f19(x1082,x1083,x1081),x1082)+P13(f19(x1082,x1083,x1081),x1081)+E(x1081,f9(x1082,x1083))
[111]P13(f19(x1112,x1113,x1111),x1111)+~P13(f19(x1112,x1113,x1111),x1113)+E(x1111,f9(x1112,x1113))
[113]~P13(f21(x1132,x1133,x1131),x1133)+~P13(f21(x1132,x1133,x1131),x1131)+E(x1131,f10(x1132,x1133))
[114]~P13(f21(x1142,x1143,x1141),x1142)+~P13(f21(x1142,x1143,x1141),x1141)+E(x1141,f10(x1142,x1143))
[105]~P4(x1051,x1053)+~P4(x1051,x1052)+P4(x1051,f9(x1052,f9(x1052,x1053)))
[109]P13(f20(x1092,x1093,x1091),x1093)+P13(f20(x1092,x1093,x1091),x1091)+E(x1091,f9(x1092,f9(x1092,x1093)))
[110]P13(f20(x1102,x1103,x1101),x1102)+P13(f20(x1102,x1103,x1101),x1101)+E(x1101,f9(x1102,f9(x1102,x1103)))
[85]~P13(x851,x853)+P13(x851,x852)+~E(x853,f9(x852,x854))
[86]~P13(x861,x864)+P13(x861,x862)+~E(x862,f10(x863,x864))
[87]~P13(x871,x873)+P13(x871,x872)+~E(x872,f10(x873,x874))
[92]~P13(x924,x921)+~P13(x924,x923)+~E(x921,f9(x922,x923))
[100]~P13(x1001,x1003)+P13(x1001,x1002)+~E(x1003,f9(x1004,f9(x1004,x1002)))
[112]P13(f21(x1122,x1123,x1121),x1123)+P13(f21(x1122,x1123,x1121),x1122)+P13(f21(x1122,x1123,x1121),x1121)+E(x1121,f10(x1122,x1123))
[115]P13(f19(x1152,x1153,x1151),x1153)+~P13(f19(x1152,x1153,x1151),x1152)+~P13(f19(x1152,x1153,x1151),x1151)+E(x1151,f9(x1152,x1153))
[116]~P13(f20(x1162,x1163,x1161),x1163)+~P13(f20(x1162,x1163,x1161),x1162)+~P13(f20(x1162,x1163,x1161),x1161)+E(x1161,f9(x1162,f9(x1162,x1163)))
[93]~P13(x931,x934)+P13(x931,x932)+P13(x931,x933)+~E(x934,f10(x933,x932))
[94]~P13(x941,x944)+P13(x941,x942)+P13(x941,x943)+~E(x943,f9(x944,x942))
[102]~P13(x1021,x1024)+~P13(x1021,x1023)+P13(x1021,x1022)+~E(x1022,f9(x1023,f9(x1023,x1024)))
%EqnAxiom
[1]E(x11,x11)
[2]E(x22,x21)+~E(x21,x22)
[3]E(x31,x33)+~E(x31,x32)+~E(x32,x33)
[4]~E(x41,x42)+E(f9(x41,x43),f9(x42,x43))
[5]~E(x51,x52)+E(f9(x53,x51),f9(x53,x52))
[6]~E(x61,x62)+E(f10(x61,x63),f10(x62,x63))
[7]~E(x71,x72)+E(f10(x73,x71),f10(x73,x72))
[8]~E(x81,x82)+E(f20(x81,x83,x84),f20(x82,x83,x84))
[9]~E(x91,x92)+E(f20(x93,x91,x94),f20(x93,x92,x94))
[10]~E(x101,x102)+E(f20(x103,x104,x101),f20(x103,x104,x102))
[11]~E(x111,x112)+E(f17(x111,x113),f17(x112,x113))
[12]~E(x121,x122)+E(f17(x123,x121),f17(x123,x122))
[13]~E(x131,x132)+E(f15(x131,x133),f15(x132,x133))
[14]~E(x141,x142)+E(f15(x143,x141),f15(x143,x142))
[15]~E(x151,x152)+E(f19(x151,x153,x154),f19(x152,x153,x154))
[16]~E(x161,x162)+E(f19(x163,x161,x164),f19(x163,x162,x164))
[17]~E(x171,x172)+E(f19(x173,x174,x171),f19(x173,x174,x172))
[18]~E(x181,x182)+E(f21(x181,x183,x184),f21(x182,x183,x184))
[19]~E(x191,x192)+E(f21(x193,x191,x194),f21(x193,x192,x194))
[20]~E(x201,x202)+E(f21(x203,x204,x201),f21(x203,x204,x202))
[21]~E(x211,x212)+E(f16(x211,x213),f16(x212,x213))
[22]~E(x221,x222)+E(f16(x223,x221),f16(x223,x222))
[23]~E(x231,x232)+E(f18(x231,x233),f18(x232,x233))
[24]~E(x241,x242)+E(f18(x243,x241),f18(x243,x242))
[25]~E(x251,x252)+E(f14(x251),f14(x252))
[26]~P1(x261)+P1(x262)+~E(x261,x262)
[27]P13(x272,x273)+~E(x271,x272)+~P13(x271,x273)
[28]P13(x283,x282)+~E(x281,x282)+~P13(x283,x281)
[29]P4(x292,x293)+~E(x291,x292)+~P4(x291,x293)
[30]P4(x303,x302)+~E(x301,x302)+~P4(x303,x301)
[31]P7(x312,x313)+~E(x311,x312)+~P7(x311,x313)
[32]P7(x323,x322)+~E(x321,x322)+~P7(x323,x321)
[33]P12(x332,x333)+~E(x331,x332)+~P12(x331,x333)
[34]P12(x343,x342)+~E(x341,x342)+~P12(x343,x341)

%-------------------------------------------
cnf(119,plain,
   (~P13(x1191,a2)),
   inference(equality_inference,[],[63])).
cnf(121,plain,
   (~P13(x1211,f9(x1212,x1213))+P13(x1211,x1212)),
   inference(equality_inference,[],[85])).
cnf(122,plain,
   (~P13(x1221,x1222)+P13(x1221,f10(x1223,x1222))),
   inference(equality_inference,[],[86])).
cnf(123,plain,
   (~P13(x1231,x1232)+P13(x1231,f10(x1232,x1233))),
   inference(equality_inference,[],[87])).
cnf(124,plain,
   (~P13(x1241,f9(x1242,x1243))+~P13(x1241,x1243)),
   inference(equality_inference,[],[92])).
cnf(125,plain,
   (~P13(x1251,f10(x1252,x1253))+P13(x1251,x1253)+P13(x1251,x1252)),
   inference(equality_inference,[],[93])).
cnf(126,plain,
   (~P13(x1261,x1262)+P13(x1261,x1263)+P13(x1261,f9(x1262,x1263))),
   inference(equality_inference,[],[94])).
cnf(127,plain,
   (~P13(x1271,f9(x1272,f9(x1272,x1273)))+P13(x1271,x1273)),
   inference(equality_inference,[],[100])).
cnf(130,plain,
   (~P12(x1301,x1302)+~P4(x1302,x1301)),
   inference(rename_variables,[],[76])).
cnf(132,plain,
   (~P12(x1321,x1322)+~P4(x1322,x1321)),
   inference(rename_variables,[],[76])).
cnf(134,plain,
   (~P12(x1341,x1342)+~P4(x1342,x1341)),
   inference(rename_variables,[],[76])).
cnf(137,plain,
   (E(f9(x1371,x1372),a2)+~P4(x1371,x1372)),
   inference(rename_variables,[],[67])).
cnf(139,plain,
   (E(f9(x1391,x1392),a2)+~P4(x1391,x1392)),
   inference(rename_variables,[],[67])).
cnf(141,plain,
   (E(f9(x1411,x1412),a2)+~P4(x1411,x1412)),
   inference(rename_variables,[],[67])).
cnf(144,plain,
   (P7(x1441,x1442)+~P7(x1442,x1441)),
   inference(rename_variables,[],[71])).
cnf(148,plain,
   (E(f10(x1481,x1482),x1482)+~P4(x1481,x1482)),
   inference(rename_variables,[],[72])).
cnf(150,plain,
   (E(f10(x1501,x1502),x1502)+~P4(x1501,x1502)),
   inference(rename_variables,[],[72])).
cnf(152,plain,
   (E(f10(x1521,x1522),x1522)+~P4(x1521,x1522)),
   inference(rename_variables,[],[72])).
cnf(155,plain,
   (P13(f16(x1551,x1552),x1552)+P7(x1551,x1552)),
   inference(rename_variables,[],[81])).
cnf(157,plain,
   (P13(f16(x1571,x1572),x1572)+P7(x1571,x1572)),
   inference(rename_variables,[],[81])).
cnf(161,plain,
   (P13(f16(x1611,x1612),x1611)+P7(x1611,x1612)),
   inference(rename_variables,[],[82])).
cnf(165,plain,
   (E(f9(x1651,f9(x1651,x1652)),a2)+~P7(x1651,x1652)),
   inference(rename_variables,[],[88])).
cnf(169,plain,
   (E(f10(x1691,f9(x1692,x1691)),x1692)+~P4(x1691,x1692)),
   inference(rename_variables,[],[89])).
cnf(171,plain,
   (E(f10(x1711,f9(x1712,x1711)),x1712)+~P4(x1711,x1712)),
   inference(rename_variables,[],[89])).
cnf(173,plain,
   (E(f10(x1731,f9(x1732,x1731)),x1732)+~P4(x1731,x1732)),
   inference(rename_variables,[],[89])).
cnf(176,plain,
   (E(f9(x1761,f9(x1761,x1762)),x1761)+~P4(x1761,x1762)),
   inference(rename_variables,[],[90])).
cnf(178,plain,
   (E(f9(x1781,f9(x1781,x1782)),x1781)+~P4(x1781,x1782)),
   inference(rename_variables,[],[90])).
cnf(182,plain,
   (~E(f9(x1821,f9(x1821,x1822)),a2)+P7(x1821,x1822)),
   inference(rename_variables,[],[95])).
cnf(184,plain,
   (~E(f9(x1841,f9(x1841,x1842)),a2)+P7(x1841,x1842)),
   inference(rename_variables,[],[95])).
cnf(188,plain,
   (P4(f9(x1881,x1882),f9(x1883,x1882))+~P4(x1881,x1883)),
   inference(rename_variables,[],[99])).
cnf(190,plain,
   (P4(f9(x1901,x1902),f9(x1903,x1902))+~P4(x1901,x1903)),
   inference(rename_variables,[],[99])).
cnf(192,plain,
   (P4(f9(x1921,x1922),f9(x1923,x1922))+~P4(x1921,x1923)),
   inference(rename_variables,[],[99])).
cnf(195,plain,
   (P13(f18(x1951,x1952),f9(x1951,f9(x1951,x1952)))+P7(x1951,x1952)),
   inference(rename_variables,[],[104])).
cnf(199,plain,
   (~P13(x1991,f9(x1992,f9(x1992,x1993)))+~P7(x1992,x1993)),
   inference(rename_variables,[],[106])).
cnf(201,plain,
   (~P13(x2011,f9(x2012,f9(x2012,x2013)))+~P7(x2012,x2013)),
   inference(rename_variables,[],[106])).
cnf(203,plain,
   (~P13(x2031,f9(x2032,f9(x2032,x2033)))+~P7(x2032,x2033)),
   inference(rename_variables,[],[106])).
cnf(206,plain,
   (P4(f9(x2061,f9(x2061,x2062)),f9(x2063,f9(x2063,x2062)))+~P4(x2061,x2063)),
   inference(rename_variables,[],[107])).
cnf(210,plain,
   (P4(x2101,x2102)+~E(x2102,x2101)),
   inference(rename_variables,[],[59])).
cnf(212,plain,
   (P4(x2121,x2122)+~E(x2122,x2121)),
   inference(rename_variables,[],[59])).
cnf(214,plain,
   (P4(x2141,x2142)+~E(x2142,x2141)),
   inference(rename_variables,[],[59])).
cnf(217,plain,
   (P4(x2171,x2172)+~E(x2171,x2172)),
   inference(rename_variables,[],[60])).
cnf(219,plain,
   (P4(x2191,x2192)+~E(x2191,x2192)),
   inference(rename_variables,[],[60])).
cnf(221,plain,
   (P4(x2211,x2212)+~E(x2211,x2212)),
   inference(rename_variables,[],[60])).
cnf(224,plain,
   (~E(x2241,a2)+~P13(x2242,x2241)),
   inference(rename_variables,[],[63])).
cnf(226,plain,
   (~E(x2261,a2)+~P13(x2262,x2261)),
   inference(rename_variables,[],[63])).
cnf(228,plain,
   (~E(x2281,a2)+~P13(x2282,x2281)),
   inference(rename_variables,[],[63])).
cnf(231,plain,
   (~E(x2311,x2312)+~P12(x2311,x2312)),
   inference(rename_variables,[],[64])).
cnf(233,plain,
   (~E(x2331,x2332)+~P12(x2331,x2332)),
   inference(rename_variables,[],[64])).
cnf(235,plain,
   (~E(x2351,x2352)+~P12(x2351,x2352)),
   inference(rename_variables,[],[64])).
cnf(238,plain,
   (~E(f9(x2381,x2382),a2)+P4(x2381,x2382)),
   inference(rename_variables,[],[69])).
cnf(242,plain,
   (P13(f15(x2421,x2422),x2421)+P4(x2421,x2422)),
   inference(rename_variables,[],[80])).
cnf(244,plain,
   (P13(f15(x2441,x2442),x2441)+P4(x2441,x2442)),
   inference(rename_variables,[],[80])).
cnf(246,plain,
   (P13(f15(x2461,x2462),x2461)+P4(x2461,x2462)),
   inference(rename_variables,[],[80])).
cnf(249,plain,
   (~E(x2491,x2492)+E(x2492,x2491)),
   inference(rename_variables,[],[2])).
cnf(251,plain,
   (~E(x2511,x2512)+E(x2512,x2511)),
   inference(rename_variables,[],[2])).
cnf(253,plain,
   (~E(x2531,x2532)+E(x2532,x2531)),
   inference(rename_variables,[],[2])).
cnf(256,plain,
   (E(f9(x2561,x2562),f9(x2563,x2562))+~E(x2561,x2563)),
   inference(rename_variables,[],[4])).
cnf(258,plain,
   (E(f9(x2581,x2582),f9(x2583,x2582))+~E(x2581,x2583)),
   inference(rename_variables,[],[4])).
cnf(260,plain,
   (E(f9(x2601,x2602),f9(x2603,x2602))+~E(x2601,x2603)),
   inference(rename_variables,[],[4])).
cnf(263,plain,
   (E(f9(x2631,x2632),f9(x2631,x2633))+~E(x2632,x2633)),
   inference(rename_variables,[],[5])).
cnf(265,plain,
   (E(f9(x2651,x2652),f9(x2651,x2653))+~E(x2652,x2653)),
   inference(rename_variables,[],[5])).
cnf(267,plain,
   (E(f9(x2671,x2672),f9(x2671,x2673))+~E(x2672,x2673)),
   inference(rename_variables,[],[5])).
cnf(270,plain,
   (E(f10(x2701,x2702),f10(x2703,x2702))+~E(x2701,x2703)),
   inference(rename_variables,[],[6])).
cnf(272,plain,
   (E(f10(x2721,x2722),f10(x2723,x2722))+~E(x2721,x2723)),
   inference(rename_variables,[],[6])).
cnf(274,plain,
   (E(f10(x2741,x2742),f10(x2743,x2742))+~E(x2741,x2743)),
   inference(rename_variables,[],[6])).
cnf(277,plain,
   (E(f10(x2771,x2772),f10(x2771,x2773))+~E(x2772,x2773)),
   inference(rename_variables,[],[7])).
cnf(279,plain,
   (E(f10(x2791,x2792),f10(x2791,x2793))+~E(x2792,x2793)),
   inference(rename_variables,[],[7])).
cnf(281,plain,
   (E(f10(x2811,x2812),f10(x2811,x2813))+~E(x2812,x2813)),
   inference(rename_variables,[],[7])).
cnf(284,plain,
   (E(f20(x2841,x2842,x2843),f20(x2844,x2842,x2843))+~E(x2841,x2844)),
   inference(rename_variables,[],[8])).
cnf(286,plain,
   (E(f20(x2861,x2862,x2863),f20(x2864,x2862,x2863))+~E(x2861,x2864)),
   inference(rename_variables,[],[8])).
cnf(288,plain,
   (E(f20(x2881,x2882,x2883),f20(x2884,x2882,x2883))+~E(x2881,x2884)),
   inference(rename_variables,[],[8])).
cnf(291,plain,
   (E(f20(x2911,x2912,x2913),f20(x2911,x2914,x2913))+~E(x2912,x2914)),
   inference(rename_variables,[],[9])).
cnf(293,plain,
   (E(f20(x2931,x2932,x2933),f20(x2931,x2934,x2933))+~E(x2932,x2934)),
   inference(rename_variables,[],[9])).
cnf(295,plain,
   (E(f20(x2951,x2952,x2953),f20(x2951,x2954,x2953))+~E(x2952,x2954)),
   inference(rename_variables,[],[9])).
cnf(298,plain,
   (E(f20(x2981,x2982,x2983),f20(x2981,x2982,x2984))+~E(x2983,x2984)),
   inference(rename_variables,[],[10])).
cnf(300,plain,
   (E(f20(x3001,x3002,x3003),f20(x3001,x3002,x3004))+~E(x3003,x3004)),
   inference(rename_variables,[],[10])).
cnf(302,plain,
   (E(f20(x3021,x3022,x3023),f20(x3021,x3022,x3024))+~E(x3023,x3024)),
   inference(rename_variables,[],[10])).
cnf(305,plain,
   (E(f17(x3051,x3052),f17(x3053,x3052))+~E(x3051,x3053)),
   inference(rename_variables,[],[11])).
cnf(307,plain,
   (E(f17(x3071,x3072),f17(x3073,x3072))+~E(x3071,x3073)),
   inference(rename_variables,[],[11])).
cnf(309,plain,
   (E(f17(x3091,x3092),f17(x3093,x3092))+~E(x3091,x3093)),
   inference(rename_variables,[],[11])).
cnf(312,plain,
   (E(f17(x3121,x3122),f17(x3121,x3123))+~E(x3122,x3123)),
   inference(rename_variables,[],[12])).
cnf(314,plain,
   (E(f17(x3141,x3142),f17(x3141,x3143))+~E(x3142,x3143)),
   inference(rename_variables,[],[12])).
cnf(316,plain,
   (E(f17(x3161,x3162),f17(x3161,x3163))+~E(x3162,x3163)),
   inference(rename_variables,[],[12])).
cnf(319,plain,
   (E(f15(x3191,x3192),f15(x3193,x3192))+~E(x3191,x3193)),
   inference(rename_variables,[],[13])).
cnf(321,plain,
   (E(f15(x3211,x3212),f15(x3213,x3212))+~E(x3211,x3213)),
   inference(rename_variables,[],[13])).
cnf(323,plain,
   (E(f15(x3231,x3232),f15(x3233,x3232))+~E(x3231,x3233)),
   inference(rename_variables,[],[13])).
cnf(326,plain,
   (E(f15(x3261,x3262),f15(x3261,x3263))+~E(x3262,x3263)),
   inference(rename_variables,[],[14])).
cnf(328,plain,
   (E(f15(x3281,x3282),f15(x3281,x3283))+~E(x3282,x3283)),
   inference(rename_variables,[],[14])).
cnf(330,plain,
   (E(f15(x3301,x3302),f15(x3301,x3303))+~E(x3302,x3303)),
   inference(rename_variables,[],[14])).
cnf(333,plain,
   (E(f19(x3331,x3332,x3333),f19(x3334,x3332,x3333))+~E(x3331,x3334)),
   inference(rename_variables,[],[15])).
cnf(335,plain,
   (E(f19(x3351,x3352,x3353),f19(x3354,x3352,x3353))+~E(x3351,x3354)),
   inference(rename_variables,[],[15])).
cnf(337,plain,
   (E(f19(x3371,x3372,x3373),f19(x3374,x3372,x3373))+~E(x3371,x3374)),
   inference(rename_variables,[],[15])).
cnf(340,plain,
   (E(f19(x3401,x3402,x3403),f19(x3401,x3404,x3403))+~E(x3402,x3404)),
   inference(rename_variables,[],[16])).
cnf(342,plain,
   (E(f19(x3421,x3422,x3423),f19(x3421,x3424,x3423))+~E(x3422,x3424)),
   inference(rename_variables,[],[16])).
cnf(344,plain,
   (E(f19(x3441,x3442,x3443),f19(x3441,x3444,x3443))+~E(x3442,x3444)),
   inference(rename_variables,[],[16])).
cnf(347,plain,
   (E(f19(x3471,x3472,x3473),f19(x3471,x3472,x3474))+~E(x3473,x3474)),
   inference(rename_variables,[],[17])).
cnf(349,plain,
   (E(f19(x3491,x3492,x3493),f19(x3491,x3492,x3494))+~E(x3493,x3494)),
   inference(rename_variables,[],[17])).
cnf(351,plain,
   (E(f19(x3511,x3512,x3513),f19(x3511,x3512,x3514))+~E(x3513,x3514)),
   inference(rename_variables,[],[17])).
cnf(354,plain,
   (E(f21(x3541,x3542,x3543),f21(x3544,x3542,x3543))+~E(x3541,x3544)),
   inference(rename_variables,[],[18])).
cnf(356,plain,
   (E(f21(x3561,x3562,x3563),f21(x3564,x3562,x3563))+~E(x3561,x3564)),
   inference(rename_variables,[],[18])).
cnf(358,plain,
   (E(f21(x3581,x3582,x3583),f21(x3584,x3582,x3583))+~E(x3581,x3584)),
   inference(rename_variables,[],[18])).
cnf(361,plain,
   (E(f21(x3611,x3612,x3613),f21(x3611,x3614,x3613))+~E(x3612,x3614)),
   inference(rename_variables,[],[19])).
cnf(363,plain,
   (E(f21(x3631,x3632,x3633),f21(x3631,x3634,x3633))+~E(x3632,x3634)),
   inference(rename_variables,[],[19])).
cnf(365,plain,
   (E(f21(x3651,x3652,x3653),f21(x3651,x3654,x3653))+~E(x3652,x3654)),
   inference(rename_variables,[],[19])).
cnf(368,plain,
   (E(f21(x3681,x3682,x3683),f21(x3681,x3682,x3684))+~E(x3683,x3684)),
   inference(rename_variables,[],[20])).
cnf(370,plain,
   (E(f21(x3701,x3702,x3703),f21(x3701,x3702,x3704))+~E(x3703,x3704)),
   inference(rename_variables,[],[20])).
cnf(372,plain,
   (E(f21(x3721,x3722,x3723),f21(x3721,x3722,x3724))+~E(x3723,x3724)),
   inference(rename_variables,[],[20])).
cnf(375,plain,
   (E(f16(x3751,x3752),f16(x3753,x3752))+~E(x3751,x3753)),
   inference(rename_variables,[],[21])).
cnf(377,plain,
   (E(f16(x3771,x3772),f16(x3773,x3772))+~E(x3771,x3773)),
   inference(rename_variables,[],[21])).
cnf(379,plain,
   (E(f16(x3791,x3792),f16(x3793,x3792))+~E(x3791,x3793)),
   inference(rename_variables,[],[21])).
cnf(382,plain,
   (E(f16(x3821,x3822),f16(x3821,x3823))+~E(x3822,x3823)),
   inference(rename_variables,[],[22])).
cnf(384,plain,
   (E(f16(x3841,x3842),f16(x3841,x3843))+~E(x3842,x3843)),
   inference(rename_variables,[],[22])).
cnf(386,plain,
   (E(f16(x3861,x3862),f16(x3861,x3863))+~E(x3862,x3863)),
   inference(rename_variables,[],[22])).
cnf(389,plain,
   (E(f18(x3891,x3892),f18(x3893,x3892))+~E(x3891,x3893)),
   inference(rename_variables,[],[23])).
cnf(391,plain,
   (E(f18(x3911,x3912),f18(x3913,x3912))+~E(x3911,x3913)),
   inference(rename_variables,[],[23])).
cnf(393,plain,
   (E(f18(x3931,x3932),f18(x3933,x3932))+~E(x3931,x3933)),
   inference(rename_variables,[],[23])).
cnf(396,plain,
   (E(f18(x3961,x3962),f18(x3961,x3963))+~E(x3962,x3963)),
   inference(rename_variables,[],[24])).
cnf(398,plain,
   (E(f18(x3981,x3982),f18(x3981,x3983))+~E(x3982,x3983)),
   inference(rename_variables,[],[24])).
cnf(400,plain,
   (E(f18(x4001,x4002),f18(x4001,x4003))+~E(x4002,x4003)),
   inference(rename_variables,[],[24])).
cnf(403,plain,
   (E(f14(x4031),f14(x4032))+~E(x4031,x4032)),
   inference(rename_variables,[],[25])).
cnf(405,plain,
   (E(f14(x4051),f14(x4052))+~E(x4051,x4052)),
   inference(rename_variables,[],[25])).
cnf(407,plain,
   (E(f14(x4071),f14(x4072))+~E(x4071,x4072)),
   inference(rename_variables,[],[25])).
cnf(410,plain,
   (E(x4101,a2)+~P1(x4101)),
   inference(rename_variables,[],[57])).
cnf(412,plain,
   (E(x4121,a2)+~P1(x4121)),
   inference(rename_variables,[],[57])).
cnf(416,plain,
   (E(x4161,a2)+~P4(x4161,a2)),
   inference(rename_variables,[],[61])).
cnf(420,plain,
   (~P1(x4201)+~P13(x4202,x4201)),
   inference(rename_variables,[],[65])).
cnf(422,plain,
   (~P1(x4221)+~P13(x4222,x4221)),
   inference(rename_variables,[],[65])).
cnf(426,plain,
   (~P13(x4261,x4262)+~P13(x4262,x4261)),
   inference(rename_variables,[],[74])).
cnf(428,plain,
   (~P13(x4281,x4282)+~P13(x4282,x4281)),
   inference(rename_variables,[],[74])).
cnf(430,plain,
   (~P13(x4301,x4302)+~P13(x4302,x4301)),
   inference(rename_variables,[],[74])).
cnf(433,plain,
   (~P1(f10(x4331,x4332))+P1(x4332)),
   inference(rename_variables,[],[78])).
cnf(435,plain,
   (~P1(f10(x4351,x4352))+P1(x4352)),
   inference(rename_variables,[],[78])).
cnf(437,plain,
   (~P1(f10(x4371,x4372))+P1(x4372)),
   inference(rename_variables,[],[78])).
cnf(440,plain,
   (~P1(f10(x4401,x4402))+P1(x4401)),
   inference(rename_variables,[],[79])).
cnf(442,plain,
   (~P1(f10(x4421,x4422))+P1(x4421)),
   inference(rename_variables,[],[79])).
cnf(444,plain,
   (~P1(f10(x4441,x4442))+P1(x4441)),
   inference(rename_variables,[],[79])).
cnf(447,plain,
   (P13(x4471,x4472)+~P13(x4471,f9(x4472,x4473))),
   inference(rename_variables,[],[121])).
cnf(449,plain,
   (P13(x4491,x4492)+~P13(x4491,f9(x4492,x4493))),
   inference(rename_variables,[],[121])).
cnf(451,plain,
   (P13(x4511,x4512)+~P13(x4511,f9(x4512,x4513))),
   inference(rename_variables,[],[121])).
cnf(454,plain,
   (~P13(x4541,x4542)+P13(x4541,f10(x4543,x4542))),
   inference(rename_variables,[],[122])).
cnf(456,plain,
   (~P13(x4561,x4562)+P13(x4561,f10(x4563,x4562))),
   inference(rename_variables,[],[122])).
cnf(458,plain,
   (~P13(x4581,x4582)+P13(x4581,f10(x4583,x4582))),
   inference(rename_variables,[],[122])).
cnf(461,plain,
   (~P13(x4611,x4612)+P13(x4611,f10(x4612,x4613))),
   inference(rename_variables,[],[123])).
cnf(463,plain,
   (~P13(x4631,x4632)+P13(x4631,f10(x4632,x4633))),
   inference(rename_variables,[],[123])).
cnf(465,plain,
   (~P13(x4651,x4652)+P13(x4651,f10(x4652,x4653))),
   inference(rename_variables,[],[123])).
cnf(468,plain,
   (~P13(x4681,x4682)+~P13(x4681,f9(x4683,x4682))),
   inference(rename_variables,[],[124])).
cnf(470,plain,
   (~P13(x4701,x4702)+~P13(x4701,f9(x4703,x4702))),
   inference(rename_variables,[],[124])).
cnf(472,plain,
   (~P13(x4721,x4722)+~P13(x4721,f9(x4723,x4722))),
   inference(rename_variables,[],[124])).
cnf(475,plain,
   (P13(x4751,x4752)+~P13(x4751,f9(x4753,f9(x4753,x4752)))),
   inference(rename_variables,[],[127])).
cnf(477,plain,
   (P13(x4771,x4772)+~P13(x4771,f9(x4773,f9(x4773,x4772)))),
   inference(rename_variables,[],[127])).
cnf(479,plain,
   (P13(x4791,x4792)+~P13(x4791,f9(x4793,f9(x4793,x4792)))),
   inference(rename_variables,[],[127])).
cnf(482,plain,
   (~P4(x4821,x4822)+E(x4821,x4822)+P12(x4821,x4822)),
   inference(rename_variables,[],[73])).
cnf(486,plain,
   (~P4(x4861,x4862)+E(x4861,x4862)+~P4(x4862,x4861)),
   inference(rename_variables,[],[77])).
cnf(488,plain,
   (~P4(x4881,x4882)+E(x4881,x4882)+~P4(x4882,x4881)),
   inference(rename_variables,[],[77])).
cnf(490,plain,
   (~P4(x4901,x4902)+E(x4901,x4902)+~P4(x4902,x4901)),
   inference(rename_variables,[],[77])).
cnf(493,plain,
   (~P13(x4931,x4932)+~P4(x4932,x4933)+P13(x4931,x4933)),
   inference(rename_variables,[],[83])).
cnf(495,plain,
   (~P13(x4951,x4952)+~P4(x4952,x4953)+P13(x4951,x4953)),
   inference(rename_variables,[],[83])).
cnf(497,plain,
   (~P13(x4971,x4972)+~P4(x4972,x4973)+P13(x4971,x4973)),
   inference(rename_variables,[],[83])).
cnf(500,plain,
   (~P4(x5001,x5002)+~P4(x5003,x5001)+P4(x5003,x5002)),
   inference(rename_variables,[],[84])).
cnf(502,plain,
   (~P4(x5021,x5022)+~P4(x5023,x5021)+P4(x5023,x5022)),
   inference(rename_variables,[],[84])).
cnf(504,plain,
   (~P4(x5041,x5042)+~P4(x5043,x5041)+P4(x5043,x5042)),
   inference(rename_variables,[],[84])).
cnf(507,plain,
   (~P13(x5071,x5072)+~P7(x5072,x5073)+~P13(x5071,x5073)),
   inference(rename_variables,[],[91])).
cnf(509,plain,
   (~P13(x5091,x5092)+~P7(x5092,x5093)+~P13(x5091,x5093)),
   inference(rename_variables,[],[91])).
cnf(511,plain,
   (~P13(x5111,x5112)+~P7(x5112,x5113)+~P13(x5111,x5113)),
   inference(rename_variables,[],[91])).
cnf(514,plain,
   (P4(f10(x5141,x5142),x5143)+~P4(x5142,x5143)+~P4(x5141,x5143)),
   inference(rename_variables,[],[98])).
cnf(516,plain,
   (P4(f10(x5161,x5162),x5163)+~P4(x5162,x5163)+~P4(x5161,x5163)),
   inference(rename_variables,[],[98])).
cnf(518,plain,
   (P4(f10(x5181,x5182),x5183)+~P4(x5182,x5183)+~P4(x5181,x5183)),
   inference(rename_variables,[],[98])).
cnf(521,plain,
   (P4(x5211,f9(x5212,f9(x5212,x5213)))+~P4(x5211,x5213)+~P4(x5211,x5212)),
   inference(rename_variables,[],[105])).
cnf(523,plain,
   (P4(x5231,f9(x5232,f9(x5232,x5233)))+~P4(x5231,x5233)+~P4(x5231,x5232)),
   inference(rename_variables,[],[105])).
cnf(525,plain,
   (P4(x5251,f9(x5252,f9(x5252,x5253)))+~P4(x5251,x5253)+~P4(x5251,x5252)),
   inference(rename_variables,[],[105])).
cnf(528,plain,
   (~P4(x5281,x5282)+P4(x5283,x5282)+~E(x5281,x5283)),
   inference(rename_variables,[],[29])).
cnf(530,plain,
   (~P4(x5301,x5302)+P4(x5303,x5302)+~E(x5301,x5303)),
   inference(rename_variables,[],[29])).
cnf(532,plain,
   (~P4(x5321,x5322)+P4(x5323,x5322)+~E(x5321,x5323)),
   inference(rename_variables,[],[29])).
cnf(535,plain,
   (~P4(x5351,x5352)+P4(x5351,x5353)+~E(x5352,x5353)),
   inference(rename_variables,[],[30])).
cnf(537,plain,
   (~P4(x5371,x5372)+P4(x5371,x5373)+~E(x5372,x5373)),
   inference(rename_variables,[],[30])).
cnf(539,plain,
   (~P4(x5391,x5392)+P4(x5391,x5393)+~E(x5392,x5393)),
   inference(rename_variables,[],[30])).
cnf(542,plain,
   (~P7(x5421,x5422)+P7(x5423,x5422)+~E(x5421,x5423)),
   inference(rename_variables,[],[31])).
cnf(544,plain,
   (~P7(x5441,x5442)+P7(x5443,x5442)+~E(x5441,x5443)),
   inference(rename_variables,[],[31])).
cnf(546,plain,
   (~P7(x5461,x5462)+P7(x5463,x5462)+~E(x5461,x5463)),
   inference(rename_variables,[],[31])).
cnf(549,plain,
   (~P7(x5491,x5492)+P7(x5491,x5493)+~E(x5492,x5493)),
   inference(rename_variables,[],[32])).
cnf(551,plain,
   (~P7(x5511,x5512)+P7(x5511,x5513)+~E(x5512,x5513)),
   inference(rename_variables,[],[32])).
cnf(553,plain,
   (~P7(x5531,x5532)+P7(x5531,x5533)+~E(x5532,x5533)),
   inference(rename_variables,[],[32])).
cnf(556,plain,
   (~E(x5561,x5562)+E(x5563,x5562)+~E(x5563,x5561)),
   inference(rename_variables,[],[3])).
cnf(558,plain,
   (~E(x5581,x5582)+E(x5583,x5582)+~E(x5583,x5581)),
   inference(rename_variables,[],[3])).
cnf(560,plain,
   (~E(x5601,x5602)+E(x5603,x5602)+~E(x5603,x5601)),
   inference(rename_variables,[],[3])).
cnf(563,plain,
   (~E(x5631,x5632)+~P1(x5631)+P1(x5632)),
   inference(rename_variables,[],[26])).
cnf(565,plain,
   (~E(x5651,x5652)+~P1(x5651)+P1(x5652)),
   inference(rename_variables,[],[26])).
cnf(567,plain,
   (~E(x5671,x5672)+~P1(x5671)+P1(x5672)),
   inference(rename_variables,[],[26])).
cnf(570,plain,
   (~P12(x5701,x5702)+P12(x5703,x5702)+~E(x5701,x5703)),
   inference(rename_variables,[],[33])).
cnf(572,plain,
   (~P12(x5721,x5722)+P12(x5723,x5722)+~E(x5721,x5723)),
   inference(rename_variables,[],[33])).
cnf(574,plain,
   (~P12(x5741,x5742)+P12(x5743,x5742)+~E(x5741,x5743)),
   inference(rename_variables,[],[33])).
cnf(577,plain,
   (~P12(x5771,x5772)+P12(x5771,x5773)+~E(x5772,x5773)),
   inference(rename_variables,[],[34])).
cnf(579,plain,
   (~P12(x5791,x5792)+P12(x5791,x5793)+~E(x5792,x5793)),
   inference(rename_variables,[],[34])).
cnf(581,plain,
   (~P12(x5811,x5812)+P12(x5811,x5813)+~E(x5812,x5813)),
   inference(rename_variables,[],[34])).
cnf(584,plain,
   (~E(x5841,f9(x5842,x5843))+~P13(x5844,x5841)+P13(x5844,x5842)),
   inference(rename_variables,[],[85])).
cnf(586,plain,
   (~E(x5861,f9(x5862,x5863))+~P13(x5864,x5861)+P13(x5864,x5862)),
   inference(rename_variables,[],[85])).
cnf(588,plain,
   (~E(x5881,f9(x5882,x5883))+~P13(x5884,x5881)+P13(x5884,x5882)),
   inference(rename_variables,[],[85])).
cnf(591,plain,
   (~E(x5911,f10(x5912,x5913))+~P13(x5914,x5913)+P13(x5914,x5911)),
   inference(rename_variables,[],[86])).
cnf(593,plain,
   (~E(x5931,f10(x5932,x5933))+~P13(x5934,x5933)+P13(x5934,x5931)),
   inference(rename_variables,[],[86])).
cnf(595,plain,
   (~E(x5951,f10(x5952,x5953))+~P13(x5954,x5953)+P13(x5954,x5951)),
   inference(rename_variables,[],[86])).
cnf(598,plain,
   (~E(x5981,f10(x5982,x5983))+~P13(x5984,x5982)+P13(x5984,x5981)),
   inference(rename_variables,[],[87])).
cnf(600,plain,
   (~E(x6001,f10(x6002,x6003))+~P13(x6004,x6002)+P13(x6004,x6001)),
   inference(rename_variables,[],[87])).
cnf(602,plain,
   (~E(x6021,f10(x6022,x6023))+~P13(x6024,x6022)+P13(x6024,x6021)),
   inference(rename_variables,[],[87])).
cnf(605,plain,
   (~E(x6051,f9(x6052,x6053))+~P13(x6054,x6051)+~P13(x6054,x6053)),
   inference(rename_variables,[],[92])).
cnf(607,plain,
   (~E(x6071,f9(x6072,x6073))+~P13(x6074,x6071)+~P13(x6074,x6073)),
   inference(rename_variables,[],[92])).
cnf(609,plain,
   (~E(x6091,f9(x6092,x6093))+~P13(x6094,x6091)+~P13(x6094,x6093)),
   inference(rename_variables,[],[92])).
cnf(614,plain,
   (~E(x6141,f9(x6142,f9(x6142,x6143)))+~P13(x6144,x6141)+P13(x6144,x6143)),
   inference(rename_variables,[],[100])).
cnf(616,plain,
   (~E(x6161,f9(x6162,f9(x6162,x6163)))+~P13(x6164,x6161)+P13(x6164,x6163)),
   inference(rename_variables,[],[100])).
cnf(618,plain,
   (~E(x6181,f9(x6182,f9(x6182,x6183)))+~P13(x6184,x6181)+P13(x6184,x6183)),
   inference(rename_variables,[],[100])).
cnf(621,plain,
   (P13(x6211,x6212)+P13(x6211,x6213)+~P13(x6211,f10(x6213,x6212))),
   inference(rename_variables,[],[125])).
cnf(623,plain,
   (P13(x6231,x6232)+P13(x6231,x6233)+~P13(x6231,f10(x6233,x6232))),
   inference(rename_variables,[],[125])).
cnf(625,plain,
   (P13(x6251,x6252)+P13(x6251,x6253)+~P13(x6251,f10(x6253,x6252))),
   inference(rename_variables,[],[125])).
cnf(627,plain,
   ($false),
   inference(scs_inference,[],[37,38,55,40,43,119,47,48,56,44,45,41,42,35,36,54,49,52,50,51,39,76,130,132,134,67,137,139,141,71,144,72,148,150,152,81,155,157,82,161,88,165,89,169,171,173,90,176,178,95,182,184,99,188,190,192,104,195,106,199,201,203,107,206,59,210,212,214,60,217,219,221,63,224,226,228,64,231,233,235,69,238,80,242,244,246,2,249,251,253,4,256,258,260,5,263,265,267,6,270,272,274,7,277,279,281,8,284,286,288,9,291,293,295,10,298,300,302,11,305,307,309,12,312,314,316,13,319,321,323,14,326,328,330,15,333,335,337,16,340,342,344,17,347,349,351,18,354,356,358,19,361,363,365,20,368,370,372,21,375,377,379,22,382,384,386,23,389,391,393,24,396,398,400,25,403,405,407,57,410,412,61,416,65,420,422,74,426,428,430,78,433,435,437,79,440,442,444,121,447,449,451,122,454,456,458,123,461,463,465,124,468,470,472,127,475,477,479,73,482,77,486,488,490,83,493,495,497,84,500,502,504,91,507,509,511,98,514,516,518,105,521,523,525,29,528,530,532,30,535,537,539,31,542,544,546,32,549,551,553,3,556,558,560,26,563,565,567,33,570,572,574,34,577,579,581,85,584,586,588,86,591,593,595,87,598,600,602,92,605,607,609,97,100,614,616,618,125,621,623,625,126]),
   ['proof']).
% SZS output end Proof

CSE 1.1

Feng Cao (Yang Xu, Jun Liu, Shuwei Chen, Xingxing He, Xiaomei Zhong, Peng Xu, Qinghua Liu, Huimin Fu, Jian Zhong, Guanfeng Wu, Xiaodong Guan, Zhenming Song)
Southwest Jiaotong University, China
Ulster University, United Kingdom (Jun Liu)

Sample proof for SEU140+2

% SZS status Theorem for theBenchmark
% SZS output start Proof
%ClaNum:116(EqnAxiom:34)
%VarNum:421(SingletonVarNum:165)
%MaxLitNum:4
%MaxfuncDepth:2
%SharedTerms:12
%goalClause: 37 38 55
%singleGoalClaCount:3
[35]P1(a2)
[36]P1(a3)
[37]P4(a5,a6)
[38]P7(a6,a8)
[54]~P1(a11)
[55]~P7(a5,a8)
[40]P4(a2,x401)
[43]P4(x431,x431)
[56]~P12(x561,x561)
[39]E(f9(a2,x391),a2)
[41]E(f10(x411,a2),x411)
[42]E(f9(x421,a2),x421)
[44]E(f10(x441,x441),x441)
[46]E(f9(x461,f9(x461,a2)),a2)
[49]E(f9(x491,f9(x491,x491)),x491)
[45]E(f10(x451,x452),f10(x452,x451))
[47]P4(x471,f10(x471,x472))
[48]P4(f9(x481,x482),x481)
[50]E(f10(x501,f9(x502,x501)),f10(x501,x502))
[51]E(f9(f10(x511,x512),x512),f9(x511,x512))
[52]E(f9(x521,f9(x521,x522)),f9(x522,f9(x522,x521)))
[57]~P1(x571)+E(x571,a2)
[61]~P4(x611,a2)+E(x611,a2)
[62]P13(f14(x621),x621)+E(x621,a2)
[59]~E(x592,x591)+P4(x591,x592)
[60]~E(x601,x602)+P4(x601,x602)
[63]~P13(x632,x631)+~E(x631,a2)
[64]~P12(x641,x642)+~E(x641,x642)
[65]~P1(x651)+~P13(x652,x651)
[70]~P12(x701,x702)+P4(x701,x702)
[71]~P7(x712,x711)+P7(x711,x712)
[74]~P13(x742,x741)+~P13(x741,x742)
[75]~P12(x752,x751)+~P12(x751,x752)
[76]~P4(x762,x761)+~P12(x761,x762)
[67]~P4(x671,x672)+E(f9(x671,x672),a2)
[69]P4(x691,x692)+~E(f9(x691,x692),a2)
[72]~P4(x721,x722)+E(f10(x721,x722),x722)
[78]P1(x781)+~P1(f10(x782,x781))
[79]P1(x791)+~P1(f10(x791,x792))
[80]P4(x801,x802)+P13(f15(x801,x802),x801)
[81]P7(x811,x812)+P13(f16(x811,x812),x812)
[82]P7(x821,x822)+P13(f16(x821,x822),x821)
[96]P4(x961,x962)+~P13(f15(x961,x962),x962)
[88]~P7(x881,x882)+E(f9(x881,f9(x881,x882)),a2)
[89]~P4(x891,x892)+E(f10(x891,f9(x892,x891)),x892)
[90]~P4(x901,x902)+E(f9(x901,f9(x901,x902)),x901)
[95]P7(x951,x952)+~E(f9(x951,f9(x951,x952)),a2)
[104]P7(x1041,x1042)+P13(f18(x1041,x1042),f9(x1041,f9(x1041,x1042)))
[99]~P4(x991,x993)+P4(f9(x991,x992),f9(x993,x992))
[106]~P7(x1061,x1062)+~P13(x1063,f9(x1061,f9(x1061,x1062)))
[107]~P4(x1071,x1073)+P4(f9(x1071,f9(x1071,x1072)),f9(x1073,f9(x1073,x1072)))
[58]~P1(x582)+~P1(x581)+E(x581,x582)
[73]P12(x731,x732)+~P4(x731,x732)+E(x731,x732)
[77]~P4(x772,x771)+~P4(x771,x772)+E(x771,x772)
[97]E(x971,x972)+P13(f17(x971,x972),x972)+P13(f17(x971,x972),x971)
[103]E(x1031,x1032)+~P13(f17(x1031,x1032),x1032)+~P13(f17(x1031,x1032),x1031)
[83]~P4(x833,x832)+P13(x831,x832)+~P13(x831,x833)
[84]~P4(x841,x843)+P4(x841,x842)+~P4(x843,x842)
[91]~P7(x913,x912)+~P13(x911,x912)+~P13(x911,x913)
[98]~P4(x982,x983)+~P4(x981,x983)+P4(f10(x981,x982),x983)
[108]P13(f19(x1082,x1083,x1081),x1082)+P13(f19(x1082,x1083,x1081),x1081)+E(x1081,f9(x1082,x1083))
[111]P13(f19(x1112,x1113,x1111),x1111)+~P13(f19(x1112,x1113,x1111),x1113)+E(x1111,f9(x1112,x1113))
[113]~P13(f21(x1132,x1133,x1131),x1133)+~P13(f21(x1132,x1133,x1131),x1131)+E(x1131,f10(x1132,x1133))
[114]~P13(f21(x1142,x1143,x1141),x1142)+~P13(f21(x1142,x1143,x1141),x1141)+E(x1141,f10(x1142,x1143))
[105]~P4(x1051,x1053)+~P4(x1051,x1052)+P4(x1051,f9(x1052,f9(x1052,x1053)))
[109]P13(f20(x1092,x1093,x1091),x1093)+P13(f20(x1092,x1093,x1091),x1091)+E(x1091,f9(x1092,f9(x1092,x1093)))
[110]P13(f20(x1102,x1103,x1101),x1102)+P13(f20(x1102,x1103,x1101),x1101)+E(x1101,f9(x1102,f9(x1102,x1103)))
[85]~P13(x851,x853)+P13(x851,x852)+~E(x853,f9(x852,x854))
[86]~P13(x861,x864)+P13(x861,x862)+~E(x862,f10(x863,x864))
[87]~P13(x871,x873)+P13(x871,x872)+~E(x872,f10(x873,x874))
[92]~P13(x924,x921)+~P13(x924,x923)+~E(x921,f9(x922,x923))
[100]~P13(x1001,x1003)+P13(x1001,x1002)+~E(x1003,f9(x1004,f9(x1004,x1002)))
[112]P13(f21(x1122,x1123,x1121),x1123)+P13(f21(x1122,x1123,x1121),x1122)+P13(f21(x1122,x1123,x1121),x1121)+E(x1121,f10(x1122,x1123))
[115]P13(f19(x1152,x1153,x1151),x1153)+~P13(f19(x1152,x1153,x1151),x1152)+~P13(f19(x1152,x1153,x1151),x1151)+E(x1151,f9(x1152,x1153))
[116]~P13(f20(x1162,x1163,x1161),x1163)+~P13(f20(x1162,x1163,x1161),x1162)+~P13(f20(x1162,x1163,x1161),x1161)+E(x1161,f9(x1162,f9(x1162,x1163)))
[93]~P13(x931,x934)+P13(x931,x932)+P13(x931,x933)+~E(x934,f10(x933,x932))
[94]~P13(x941,x944)+P13(x941,x942)+P13(x941,x943)+~E(x943,f9(x944,x942))
[102]~P13(x1021,x1024)+~P13(x1021,x1023)+P13(x1021,x1022)+~E(x1022,f9(x1023,f9(x1023,x1024)))
%EqnAxiom
[1]E(x11,x11)
[2]E(x22,x21)+~E(x21,x22)
[3]E(x31,x33)+~E(x31,x32)+~E(x32,x33)
[4]~E(x41,x42)+E(f9(x41,x43),f9(x42,x43))
[5]~E(x51,x52)+E(f9(x53,x51),f9(x53,x52))
[6]~E(x61,x62)+E(f10(x61,x63),f10(x62,x63))
[7]~E(x71,x72)+E(f10(x73,x71),f10(x73,x72))
[8]~E(x81,x82)+E(f20(x81,x83,x84),f20(x82,x83,x84))
[9]~E(x91,x92)+E(f20(x93,x91,x94),f20(x93,x92,x94))
[10]~E(x101,x102)+E(f20(x103,x104,x101),f20(x103,x104,x102))
[11]~E(x111,x112)+E(f17(x111,x113),f17(x112,x113))
[12]~E(x121,x122)+E(f17(x123,x121),f17(x123,x122))
[13]~E(x131,x132)+E(f15(x131,x133),f15(x132,x133))
[14]~E(x141,x142)+E(f15(x143,x141),f15(x143,x142))
[15]~E(x151,x152)+E(f19(x151,x153,x154),f19(x152,x153,x154))
[16]~E(x161,x162)+E(f19(x163,x161,x164),f19(x163,x162,x164))
[17]~E(x171,x172)+E(f19(x173,x174,x171),f19(x173,x174,x172))
[18]~E(x181,x182)+E(f21(x181,x183,x184),f21(x182,x183,x184))
[19]~E(x191,x192)+E(f21(x193,x191,x194),f21(x193,x192,x194))
[20]~E(x201,x202)+E(f21(x203,x204,x201),f21(x203,x204,x202))
[21]~E(x211,x212)+E(f16(x211,x213),f16(x212,x213))
[22]~E(x221,x222)+E(f16(x223,x221),f16(x223,x222))
[23]~E(x231,x232)+E(f18(x231,x233),f18(x232,x233))
[24]~E(x241,x242)+E(f18(x243,x241),f18(x243,x242))
[25]~E(x251,x252)+E(f14(x251),f14(x252))
[26]~P1(x261)+P1(x262)+~E(x261,x262)
[27]P13(x272,x273)+~E(x271,x272)+~P13(x271,x273)
[28]P13(x283,x282)+~E(x281,x282)+~P13(x283,x281)
[29]P4(x292,x293)+~E(x291,x292)+~P4(x291,x293)
[30]P4(x303,x302)+~E(x301,x302)+~P4(x303,x301)
[31]P7(x312,x313)+~E(x311,x312)+~P7(x311,x313)
[32]P7(x323,x322)+~E(x321,x322)+~P7(x323,x321)
[33]P12(x332,x333)+~E(x331,x332)+~P12(x331,x333)
[34]P12(x343,x342)+~E(x341,x342)+~P12(x343,x341)

%-------------------------------------------
cnf(119,plain,
   (~P13(x1191,a2)),
   inference(equality_inference,[],[63])).
cnf(121,plain,
   (~P13(x1211,f9(x1212,x1213))+P13(x1211,x1212)),
   inference(equality_inference,[],[85])).
cnf(122,plain,
   (~P13(x1221,x1222)+P13(x1221,f10(x1223,x1222))),
   inference(equality_inference,[],[86])).
cnf(123,plain,
   (~P13(x1231,x1232)+P13(x1231,f10(x1232,x1233))),
   inference(equality_inference,[],[87])).
cnf(124,plain,
   (~P13(x1241,f9(x1242,x1243))+~P13(x1241,x1243)),
   inference(equality_inference,[],[92])).
cnf(125,plain,
   (~P13(x1251,f10(x1252,x1253))+P13(x1251,x1253)+P13(x1251,x1252)),
   inference(equality_inference,[],[93])).
cnf(126,plain,
   (~P13(x1261,x1262)+P13(x1261,x1263)+P13(x1261,f9(x1262,x1263))),
   inference(equality_inference,[],[94])).
cnf(127,plain,
   (~P13(x1271,f9(x1272,f9(x1272,x1273)))+P13(x1271,x1273)),
   inference(equality_inference,[],[100])).
cnf(130,plain,
   (~P12(x1301,x1302)+~P4(x1302,x1301)),
   inference(rename_variables,[],[76])).
cnf(132,plain,
   (~P12(x1321,x1322)+~P4(x1322,x1321)),
   inference(rename_variables,[],[76])).
cnf(134,plain,
   (~P12(x1341,x1342)+~P4(x1342,x1341)),
   inference(rename_variables,[],[76])).
cnf(137,plain,
   (E(f9(x1371,x1372),a2)+~P4(x1371,x1372)),
   inference(rename_variables,[],[67])).
cnf(139,plain,
   (E(f9(x1391,x1392),a2)+~P4(x1391,x1392)),
   inference(rename_variables,[],[67])).
cnf(141,plain,
   (E(f9(x1411,x1412),a2)+~P4(x1411,x1412)),
   inference(rename_variables,[],[67])).
cnf(144,plain,
   (P7(x1441,x1442)+~P7(x1442,x1441)),
   inference(rename_variables,[],[71])).
cnf(148,plain,
   (E(f10(x1481,x1482),x1482)+~P4(x1481,x1482)),
   inference(rename_variables,[],[72])).
cnf(150,plain,
   (E(f10(x1501,x1502),x1502)+~P4(x1501,x1502)),
   inference(rename_variables,[],[72])).
cnf(152,plain,
   (E(f10(x1521,x1522),x1522)+~P4(x1521,x1522)),
   inference(rename_variables,[],[72])).
cnf(155,plain,
   (P13(f16(x1551,x1552),x1552)+P7(x1551,x1552)),
   inference(rename_variables,[],[81])).
cnf(157,plain,
   (P13(f16(x1571,x1572),x1572)+P7(x1571,x1572)),
   inference(rename_variables,[],[81])).
cnf(161,plain,
   (P13(f16(x1611,x1612),x1611)+P7(x1611,x1612)),
   inference(rename_variables,[],[82])).
cnf(165,plain,
   (E(f9(x1651,f9(x1651,x1652)),a2)+~P7(x1651,x1652)),
   inference(rename_variables,[],[88])).
cnf(169,plain,
   (E(f10(x1691,f9(x1692,x1691)),x1692)+~P4(x1691,x1692)),
   inference(rename_variables,[],[89])).
cnf(171,plain,
   (E(f10(x1711,f9(x1712,x1711)),x1712)+~P4(x1711,x1712)),
   inference(rename_variables,[],[89])).
cnf(173,plain,
   (E(f10(x1731,f9(x1732,x1731)),x1732)+~P4(x1731,x1732)),
   inference(rename_variables,[],[89])).
cnf(176,plain,
   (E(f9(x1761,f9(x1761,x1762)),x1761)+~P4(x1761,x1762)),
   inference(rename_variables,[],[90])).
cnf(178,plain,
   (E(f9(x1781,f9(x1781,x1782)),x1781)+~P4(x1781,x1782)),
   inference(rename_variables,[],[90])).
cnf(182,plain,
   (~E(f9(x1821,f9(x1821,x1822)),a2)+P7(x1821,x1822)),
   inference(rename_variables,[],[95])).
cnf(184,plain,
   (~E(f9(x1841,f9(x1841,x1842)),a2)+P7(x1841,x1842)),
   inference(rename_variables,[],[95])).
cnf(188,plain,
   (P4(f9(x1881,x1882),f9(x1883,x1882))+~P4(x1881,x1883)),
   inference(rename_variables,[],[99])).
cnf(190,plain,
   (P4(f9(x1901,x1902),f9(x1903,x1902))+~P4(x1901,x1903)),
   inference(rename_variables,[],[99])).
cnf(192,plain,
   (P4(f9(x1921,x1922),f9(x1923,x1922))+~P4(x1921,x1923)),
   inference(rename_variables,[],[99])).
cnf(195,plain,
   (P13(f18(x1951,x1952),f9(x1951,f9(x1951,x1952)))+P7(x1951,x1952)),
   inference(rename_variables,[],[104])).
cnf(199,plain,
   (~P13(x1991,f9(x1992,f9(x1992,x1993)))+~P7(x1992,x1993)),
   inference(rename_variables,[],[106])).
cnf(201,plain,
   (~P13(x2011,f9(x2012,f9(x2012,x2013)))+~P7(x2012,x2013)),
   inference(rename_variables,[],[106])).
cnf(203,plain,
   (~P13(x2031,f9(x2032,f9(x2032,x2033)))+~P7(x2032,x2033)),
   inference(rename_variables,[],[106])).
cnf(206,plain,
   (P4(f9(x2061,f9(x2061,x2062)),f9(x2063,f9(x2063,x2062)))+~P4(x2061,x2063)),
   inference(rename_variables,[],[107])).
cnf(210,plain,
   (P4(x2101,x2102)+~E(x2102,x2101)),
   inference(rename_variables,[],[59])).
cnf(212,plain,
   (P4(x2121,x2122)+~E(x2122,x2121)),
   inference(rename_variables,[],[59])).
cnf(214,plain,
   (P4(x2141,x2142)+~E(x2142,x2141)),
   inference(rename_variables,[],[59])).
cnf(217,plain,
   (P4(x2171,x2172)+~E(x2171,x2172)),
   inference(rename_variables,[],[60])).
cnf(219,plain,
   (P4(x2191,x2192)+~E(x2191,x2192)),
   inference(rename_variables,[],[60])).
cnf(221,plain,
   (P4(x2211,x2212)+~E(x2211,x2212)),
   inference(rename_variables,[],[60])).
cnf(224,plain,
   (~E(x2241,a2)+~P13(x2242,x2241)),
   inference(rename_variables,[],[63])).
cnf(226,plain,
   (~E(x2261,a2)+~P13(x2262,x2261)),
   inference(rename_variables,[],[63])).
cnf(228,plain,
   (~E(x2281,a2)+~P13(x2282,x2281)),
   inference(rename_variables,[],[63])).
cnf(231,plain,
   (~E(x2311,x2312)+~P12(x2311,x2312)),
   inference(rename_variables,[],[64])).
cnf(233,plain,
   (~E(x2331,x2332)+~P12(x2331,x2332)),
   inference(rename_variables,[],[64])).
cnf(235,plain,
   (~E(x2351,x2352)+~P12(x2351,x2352)),
   inference(rename_variables,[],[64])).
cnf(238,plain,
   (~E(f9(x2381,x2382),a2)+P4(x2381,x2382)),
   inference(rename_variables,[],[69])).
cnf(242,plain,
   (P13(f15(x2421,x2422),x2421)+P4(x2421,x2422)),
   inference(rename_variables,[],[80])).
cnf(244,plain,
   (P13(f15(x2441,x2442),x2441)+P4(x2441,x2442)),
   inference(rename_variables,[],[80])).
cnf(246,plain,
   (P13(f15(x2461,x2462),x2461)+P4(x2461,x2462)),
   inference(rename_variables,[],[80])).
cnf(249,plain,
   (~E(x2491,x2492)+E(x2492,x2491)),
   inference(rename_variables,[],[2])).
cnf(251,plain,
   (~E(x2511,x2512)+E(x2512,x2511)),
   inference(rename_variables,[],[2])).
cnf(253,plain,
   (~E(x2531,x2532)+E(x2532,x2531)),
   inference(rename_variables,[],[2])).
cnf(256,plain,
   (E(f9(x2561,x2562),f9(x2563,x2562))+~E(x2561,x2563)),
   inference(rename_variables,[],[4])).
cnf(258,plain,
   (E(f9(x2581,x2582),f9(x2583,x2582))+~E(x2581,x2583)),
   inference(rename_variables,[],[4])).
cnf(260,plain,
   (E(f9(x2601,x2602),f9(x2603,x2602))+~E(x2601,x2603)),
   inference(rename_variables,[],[4])).
cnf(263,plain,
   (E(f9(x2631,x2632),f9(x2631,x2633))+~E(x2632,x2633)),
   inference(rename_variables,[],[5])).
cnf(265,plain,
   (E(f9(x2651,x2652),f9(x2651,x2653))+~E(x2652,x2653)),
   inference(rename_variables,[],[5])).
cnf(267,plain,
   (E(f9(x2671,x2672),f9(x2671,x2673))+~E(x2672,x2673)),
   inference(rename_variables,[],[5])).
cnf(270,plain,
   (E(f10(x2701,x2702),f10(x2703,x2702))+~E(x2701,x2703)),
   inference(rename_variables,[],[6])).
cnf(272,plain,
   (E(f10(x2721,x2722),f10(x2723,x2722))+~E(x2721,x2723)),
   inference(rename_variables,[],[6])).
cnf(274,plain,
   (E(f10(x2741,x2742),f10(x2743,x2742))+~E(x2741,x2743)),
   inference(rename_variables,[],[6])).
cnf(277,plain,
   (E(f10(x2771,x2772),f10(x2771,x2773))+~E(x2772,x2773)),
   inference(rename_variables,[],[7])).
cnf(279,plain,
   (E(f10(x2791,x2792),f10(x2791,x2793))+~E(x2792,x2793)),
   inference(rename_variables,[],[7])).
cnf(281,plain,
   (E(f10(x2811,x2812),f10(x2811,x2813))+~E(x2812,x2813)),
   inference(rename_variables,[],[7])).
cnf(284,plain,
   (E(f20(x2841,x2842,x2843),f20(x2844,x2842,x2843))+~E(x2841,x2844)),
   inference(rename_variables,[],[8])).
cnf(286,plain,
   (E(f20(x2861,x2862,x2863),f20(x2864,x2862,x2863))+~E(x2861,x2864)),
   inference(rename_variables,[],[8])).
cnf(288,plain,
   (E(f20(x2881,x2882,x2883),f20(x2884,x2882,x2883))+~E(x2881,x2884)),
   inference(rename_variables,[],[8])).
cnf(291,plain,
   (E(f20(x2911,x2912,x2913),f20(x2911,x2914,x2913))+~E(x2912,x2914)),
   inference(rename_variables,[],[9])).
cnf(293,plain,
   (E(f20(x2931,x2932,x2933),f20(x2931,x2934,x2933))+~E(x2932,x2934)),
   inference(rename_variables,[],[9])).
cnf(295,plain,
   (E(f20(x2951,x2952,x2953),f20(x2951,x2954,x2953))+~E(x2952,x2954)),
   inference(rename_variables,[],[9])).
cnf(298,plain,
   (E(f20(x2981,x2982,x2983),f20(x2981,x2982,x2984))+~E(x2983,x2984)),
   inference(rename_variables,[],[10])).
cnf(300,plain,
   (E(f20(x3001,x3002,x3003),f20(x3001,x3002,x3004))+~E(x3003,x3004)),
   inference(rename_variables,[],[10])).
cnf(302,plain,
   (E(f20(x3021,x3022,x3023),f20(x3021,x3022,x3024))+~E(x3023,x3024)),
   inference(rename_variables,[],[10])).
cnf(305,plain,
   (E(f17(x3051,x3052),f17(x3053,x3052))+~E(x3051,x3053)),
   inference(rename_variables,[],[11])).
cnf(307,plain,
   (E(f17(x3071,x3072),f17(x3073,x3072))+~E(x3071,x3073)),
   inference(rename_variables,[],[11])).
cnf(309,plain,
   (E(f17(x3091,x3092),f17(x3093,x3092))+~E(x3091,x3093)),
   inference(rename_variables,[],[11])).
cnf(312,plain,
   (E(f17(x3121,x3122),f17(x3121,x3123))+~E(x3122,x3123)),
   inference(rename_variables,[],[12])).
cnf(314,plain,
   (E(f17(x3141,x3142),f17(x3141,x3143))+~E(x3142,x3143)),
   inference(rename_variables,[],[12])).
cnf(316,plain,
   (E(f17(x3161,x3162),f17(x3161,x3163))+~E(x3162,x3163)),
   inference(rename_variables,[],[12])).
cnf(319,plain,
   (E(f15(x3191,x3192),f15(x3193,x3192))+~E(x3191,x3193)),
   inference(rename_variables,[],[13])).
cnf(321,plain,
   (E(f15(x3211,x3212),f15(x3213,x3212))+~E(x3211,x3213)),
   inference(rename_variables,[],[13])).
cnf(323,plain,
   (E(f15(x3231,x3232),f15(x3233,x3232))+~E(x3231,x3233)),
   inference(rename_variables,[],[13])).
cnf(326,plain,
   (E(f15(x3261,x3262),f15(x3261,x3263))+~E(x3262,x3263)),
   inference(rename_variables,[],[14])).
cnf(328,plain,
   (E(f15(x3281,x3282),f15(x3281,x3283))+~E(x3282,x3283)),
   inference(rename_variables,[],[14])).
cnf(330,plain,
   (E(f15(x3301,x3302),f15(x3301,x3303))+~E(x3302,x3303)),
   inference(rename_variables,[],[14])).
cnf(333,plain,
   (E(f19(x3331,x3332,x3333),f19(x3334,x3332,x3333))+~E(x3331,x3334)),
   inference(rename_variables,[],[15])).
cnf(335,plain,
   (E(f19(x3351,x3352,x3353),f19(x3354,x3352,x3353))+~E(x3351,x3354)),
   inference(rename_variables,[],[15])).
cnf(337,plain,
   (E(f19(x3371,x3372,x3373),f19(x3374,x3372,x3373))+~E(x3371,x3374)),
   inference(rename_variables,[],[15])).
cnf(340,plain,
   (E(f19(x3401,x3402,x3403),f19(x3401,x3404,x3403))+~E(x3402,x3404)),
   inference(rename_variables,[],[16])).
cnf(342,plain,
   (E(f19(x3421,x3422,x3423),f19(x3421,x3424,x3423))+~E(x3422,x3424)),
   inference(rename_variables,[],[16])).
cnf(344,plain,
   (E(f19(x3441,x3442,x3443),f19(x3441,x3444,x3443))+~E(x3442,x3444)),
   inference(rename_variables,[],[16])).
cnf(347,plain,
   (E(f19(x3471,x3472,x3473),f19(x3471,x3472,x3474))+~E(x3473,x3474)),
   inference(rename_variables,[],[17])).
cnf(349,plain,
   (E(f19(x3491,x3492,x3493),f19(x3491,x3492,x3494))+~E(x3493,x3494)),
   inference(rename_variables,[],[17])).
cnf(351,plain,
   (E(f19(x3511,x3512,x3513),f19(x3511,x3512,x3514))+~E(x3513,x3514)),
   inference(rename_variables,[],[17])).
cnf(354,plain,
   (E(f21(x3541,x3542,x3543),f21(x3544,x3542,x3543))+~E(x3541,x3544)),
   inference(rename_variables,[],[18])).
cnf(356,plain,
   (E(f21(x3561,x3562,x3563),f21(x3564,x3562,x3563))+~E(x3561,x3564)),
   inference(rename_variables,[],[18])).
cnf(358,plain,
   (E(f21(x3581,x3582,x3583),f21(x3584,x3582,x3583))+~E(x3581,x3584)),
   inference(rename_variables,[],[18])).
cnf(361,plain,
   (E(f21(x3611,x3612,x3613),f21(x3611,x3614,x3613))+~E(x3612,x3614)),
   inference(rename_variables,[],[19])).
cnf(363,plain,
   (E(f21(x3631,x3632,x3633),f21(x3631,x3634,x3633))+~E(x3632,x3634)),
   inference(rename_variables,[],[19])).
cnf(365,plain,
   (E(f21(x3651,x3652,x3653),f21(x3651,x3654,x3653))+~E(x3652,x3654)),
   inference(rename_variables,[],[19])).
cnf(368,plain,
   (E(f21(x3681,x3682,x3683),f21(x3681,x3682,x3684))+~E(x3683,x3684)),
   inference(rename_variables,[],[20])).
cnf(370,plain,
   (E(f21(x3701,x3702,x3703),f21(x3701,x3702,x3704))+~E(x3703,x3704)),
   inference(rename_variables,[],[20])).
cnf(372,plain,
   (E(f21(x3721,x3722,x3723),f21(x3721,x3722,x3724))+~E(x3723,x3724)),
   inference(rename_variables,[],[20])).
cnf(375,plain,
   (E(f16(x3751,x3752),f16(x3753,x3752))+~E(x3751,x3753)),
   inference(rename_variables,[],[21])).
cnf(377,plain,
   (E(f16(x3771,x3772),f16(x3773,x3772))+~E(x3771,x3773)),
   inference(rename_variables,[],[21])).
cnf(379,plain,
   (E(f16(x3791,x3792),f16(x3793,x3792))+~E(x3791,x3793)),
   inference(rename_variables,[],[21])).
cnf(382,plain,
   (E(f16(x3821,x3822),f16(x3821,x3823))+~E(x3822,x3823)),
   inference(rename_variables,[],[22])).
cnf(384,plain,
   (E(f16(x3841,x3842),f16(x3841,x3843))+~E(x3842,x3843)),
   inference(rename_variables,[],[22])).
cnf(386,plain,
   (E(f16(x3861,x3862),f16(x3861,x3863))+~E(x3862,x3863)),
   inference(rename_variables,[],[22])).
cnf(389,plain,
   (E(f18(x3891,x3892),f18(x3893,x3892))+~E(x3891,x3893)),
   inference(rename_variables,[],[23])).
cnf(391,plain,
   (E(f18(x3911,x3912),f18(x3913,x3912))+~E(x3911,x3913)),
   inference(rename_variables,[],[23])).
cnf(393,plain,
   (E(f18(x3931,x3932),f18(x3933,x3932))+~E(x3931,x3933)),
   inference(rename_variables,[],[23])).
cnf(396,plain,
   (E(f18(x3961,x3962),f18(x3961,x3963))+~E(x3962,x3963)),
   inference(rename_variables,[],[24])).
cnf(398,plain,
   (E(f18(x3981,x3982),f18(x3981,x3983))+~E(x3982,x3983)),
   inference(rename_variables,[],[24])).
cnf(400,plain,
   (E(f18(x4001,x4002),f18(x4001,x4003))+~E(x4002,x4003)),
   inference(rename_variables,[],[24])).
cnf(403,plain,
   (E(f14(x4031),f14(x4032))+~E(x4031,x4032)),
   inference(rename_variables,[],[25])).
cnf(405,plain,
   (E(f14(x4051),f14(x4052))+~E(x4051,x4052)),
   inference(rename_variables,[],[25])).
cnf(407,plain,
   (E(f14(x4071),f14(x4072))+~E(x4071,x4072)),
   inference(rename_variables,[],[25])).
cnf(410,plain,
   (E(x4101,a2)+~P1(x4101)),
   inference(rename_variables,[],[57])).
cnf(412,plain,
   (E(x4121,a2)+~P1(x4121)),
   inference(rename_variables,[],[57])).
cnf(416,plain,
   (E(x4161,a2)+~P4(x4161,a2)),
   inference(rename_variables,[],[61])).
cnf(420,plain,
   (~P1(x4201)+~P13(x4202,x4201)),
   inference(rename_variables,[],[65])).
cnf(422,plain,
   (~P1(x4221)+~P13(x4222,x4221)),
   inference(rename_variables,[],[65])).
cnf(426,plain,
   (~P13(x4261,x4262)+~P13(x4262,x4261)),
   inference(rename_variables,[],[74])).
cnf(428,plain,
   (~P13(x4281,x4282)+~P13(x4282,x4281)),
   inference(rename_variables,[],[74])).
cnf(430,plain,
   (~P13(x4301,x4302)+~P13(x4302,x4301)),
   inference(rename_variables,[],[74])).
cnf(433,plain,
   (~P1(f10(x4331,x4332))+P1(x4332)),
   inference(rename_variables,[],[78])).
cnf(435,plain,
   (~P1(f10(x4351,x4352))+P1(x4352)),
   inference(rename_variables,[],[78])).
cnf(437,plain,
   (~P1(f10(x4371,x4372))+P1(x4372)),
   inference(rename_variables,[],[78])).
cnf(440,plain,
   (~P1(f10(x4401,x4402))+P1(x4401)),
   inference(rename_variables,[],[79])).
cnf(442,plain,
   (~P1(f10(x4421,x4422))+P1(x4421)),
   inference(rename_variables,[],[79])).
cnf(444,plain,
   (~P1(f10(x4441,x4442))+P1(x4441)),
   inference(rename_variables,[],[79])).
cnf(447,plain,
   (P13(x4471,x4472)+~P13(x4471,f9(x4472,x4473))),
   inference(rename_variables,[],[121])).
cnf(449,plain,
   (P13(x4491,x4492)+~P13(x4491,f9(x4492,x4493))),
   inference(rename_variables,[],[121])).
cnf(451,plain,
   (P13(x4511,x4512)+~P13(x4511,f9(x4512,x4513))),
   inference(rename_variables,[],[121])).
cnf(454,plain,
   (~P13(x4541,x4542)+P13(x4541,f10(x4543,x4542))),
   inference(rename_variables,[],[122])).
cnf(456,plain,
   (~P13(x4561,x4562)+P13(x4561,f10(x4563,x4562))),
   inference(rename_variables,[],[122])).
cnf(458,plain,
   (~P13(x4581,x4582)+P13(x4581,f10(x4583,x4582))),
   inference(rename_variables,[],[122])).
cnf(461,plain,
   (~P13(x4611,x4612)+P13(x4611,f10(x4612,x4613))),
   inference(rename_variables,[],[123])).
cnf(463,plain,
   (~P13(x4631,x4632)+P13(x4631,f10(x4632,x4633))),
   inference(rename_variables,[],[123])).
cnf(465,plain,
   (~P13(x4651,x4652)+P13(x4651,f10(x4652,x4653))),
   inference(rename_variables,[],[123])).
cnf(468,plain,
   (~P13(x4681,x4682)+~P13(x4681,f9(x4683,x4682))),
   inference(rename_variables,[],[124])).
cnf(470,plain,
   (~P13(x4701,x4702)+~P13(x4701,f9(x4703,x4702))),
   inference(rename_variables,[],[124])).
cnf(472,plain,
   (~P13(x4721,x4722)+~P13(x4721,f9(x4723,x4722))),
   inference(rename_variables,[],[124])).
cnf(475,plain,
   (P13(x4751,x4752)+~P13(x4751,f9(x4753,f9(x4753,x4752)))),
   inference(rename_variables,[],[127])).
cnf(477,plain,
   (P13(x4771,x4772)+~P13(x4771,f9(x4773,f9(x4773,x4772)))),
   inference(rename_variables,[],[127])).
cnf(479,plain,
   (P13(x4791,x4792)+~P13(x4791,f9(x4793,f9(x4793,x4792)))),
   inference(rename_variables,[],[127])).
cnf(482,plain,
   (~P4(x4821,x4822)+E(x4821,x4822)+P12(x4821,x4822)),
   inference(rename_variables,[],[73])).
cnf(486,plain,
   (~P4(x4861,x4862)+E(x4861,x4862)+~P4(x4862,x4861)),
   inference(rename_variables,[],[77])).
cnf(488,plain,
   (~P4(x4881,x4882)+E(x4881,x4882)+~P4(x4882,x4881)),
   inference(rename_variables,[],[77])).
cnf(490,plain,
   (~P4(x4901,x4902)+E(x4901,x4902)+~P4(x4902,x4901)),
   inference(rename_variables,[],[77])).
cnf(493,plain,
   (~P13(x4931,x4932)+~P4(x4932,x4933)+P13(x4931,x4933)),
   inference(rename_variables,[],[83])).
cnf(495,plain,
   (~P13(x4951,x4952)+~P4(x4952,x4953)+P13(x4951,x4953)),
   inference(rename_variables,[],[83])).
cnf(497,plain,
   (~P13(x4971,x4972)+~P4(x4972,x4973)+P13(x4971,x4973)),
   inference(rename_variables,[],[83])).
cnf(500,plain,
   (~P4(x5001,x5002)+~P4(x5003,x5001)+P4(x5003,x5002)),
   inference(rename_variables,[],[84])).
cnf(502,plain,
   (~P4(x5021,x5022)+~P4(x5023,x5021)+P4(x5023,x5022)),
   inference(rename_variables,[],[84])).
cnf(504,plain,
   (~P4(x5041,x5042)+~P4(x5043,x5041)+P4(x5043,x5042)),
   inference(rename_variables,[],[84])).
cnf(507,plain,
   (~P13(x5071,x5072)+~P7(x5072,x5073)+~P13(x5071,x5073)),
   inference(rename_variables,[],[91])).
cnf(509,plain,
   (~P13(x5091,x5092)+~P7(x5092,x5093)+~P13(x5091,x5093)),
   inference(rename_variables,[],[91])).
cnf(511,plain,
   (~P13(x5111,x5112)+~P7(x5112,x5113)+~P13(x5111,x5113)),
   inference(rename_variables,[],[91])).
cnf(514,plain,
   (P4(f10(x5141,x5142),x5143)+~P4(x5142,x5143)+~P4(x5141,x5143)),
   inference(rename_variables,[],[98])).
cnf(516,plain,
   (P4(f10(x5161,x5162),x5163)+~P4(x5162,x5163)+~P4(x5161,x5163)),
   inference(rename_variables,[],[98])).
cnf(518,plain,
   (P4(f10(x5181,x5182),x5183)+~P4(x5182,x5183)+~P4(x5181,x5183)),
   inference(rename_variables,[],[98])).
cnf(521,plain,
   (P4(x5211,f9(x5212,f9(x5212,x5213)))+~P4(x5211,x5213)+~P4(x5211,x5212)),
   inference(rename_variables,[],[105])).
cnf(523,plain,
   (P4(x5231,f9(x5232,f9(x5232,x5233)))+~P4(x5231,x5233)+~P4(x5231,x5232)),
   inference(rename_variables,[],[105])).
cnf(525,plain,
   (P4(x5251,f9(x5252,f9(x5252,x5253)))+~P4(x5251,x5253)+~P4(x5251,x5252)),
   inference(rename_variables,[],[105])).
cnf(528,plain,
   (~P4(x5281,x5282)+P4(x5283,x5282)+~E(x5281,x5283)),
   inference(rename_variables,[],[29])).
cnf(530,plain,
   (~P4(x5301,x5302)+P4(x5303,x5302)+~E(x5301,x5303)),
   inference(rename_variables,[],[29])).
cnf(532,plain,
   (~P4(x5321,x5322)+P4(x5323,x5322)+~E(x5321,x5323)),
   inference(rename_variables,[],[29])).
cnf(535,plain,
   (~P4(x5351,x5352)+P4(x5351,x5353)+~E(x5352,x5353)),
   inference(rename_variables,[],[30])).
cnf(537,plain,
   (~P4(x5371,x5372)+P4(x5371,x5373)+~E(x5372,x5373)),
   inference(rename_variables,[],[30])).
cnf(539,plain,
   (~P4(x5391,x5392)+P4(x5391,x5393)+~E(x5392,x5393)),
   inference(rename_variables,[],[30])).
cnf(542,plain,
   (~P7(x5421,x5422)+P7(x5423,x5422)+~E(x5421,x5423)),
   inference(rename_variables,[],[31])).
cnf(544,plain,
   (~P7(x5441,x5442)+P7(x5443,x5442)+~E(x5441,x5443)),
   inference(rename_variables,[],[31])).
cnf(546,plain,
   (~P7(x5461,x5462)+P7(x5463,x5462)+~E(x5461,x5463)),
   inference(rename_variables,[],[31])).
cnf(549,plain,
   (~P7(x5491,x5492)+P7(x5491,x5493)+~E(x5492,x5493)),
   inference(rename_variables,[],[32])).
cnf(551,plain,
   (~P7(x5511,x5512)+P7(x5511,x5513)+~E(x5512,x5513)),
   inference(rename_variables,[],[32])).
cnf(553,plain,
   (~P7(x5531,x5532)+P7(x5531,x5533)+~E(x5532,x5533)),
   inference(rename_variables,[],[32])).
cnf(556,plain,
   (~E(x5561,x5562)+E(x5563,x5562)+~E(x5563,x5561)),
   inference(rename_variables,[],[3])).
cnf(558,plain,
   (~E(x5581,x5582)+E(x5583,x5582)+~E(x5583,x5581)),
   inference(rename_variables,[],[3])).
cnf(560,plain,
   (~E(x5601,x5602)+E(x5603,x5602)+~E(x5603,x5601)),
   inference(rename_variables,[],[3])).
cnf(563,plain,
   (~E(x5631,x5632)+~P1(x5631)+P1(x5632)),
   inference(rename_variables,[],[26])).
cnf(565,plain,
   (~E(x5651,x5652)+~P1(x5651)+P1(x5652)),
   inference(rename_variables,[],[26])).
cnf(567,plain,
   (~E(x5671,x5672)+~P1(x5671)+P1(x5672)),
   inference(rename_variables,[],[26])).
cnf(570,plain,
   (~P12(x5701,x5702)+P12(x5703,x5702)+~E(x5701,x5703)),
   inference(rename_variables,[],[33])).
cnf(572,plain,
   (~P12(x5721,x5722)+P12(x5723,x5722)+~E(x5721,x5723)),
   inference(rename_variables,[],[33])).
cnf(574,plain,
   (~P12(x5741,x5742)+P12(x5743,x5742)+~E(x5741,x5743)),
   inference(rename_variables,[],[33])).
cnf(577,plain,
   (~P12(x5771,x5772)+P12(x5771,x5773)+~E(x5772,x5773)),
   inference(rename_variables,[],[34])).
cnf(579,plain,
   (~P12(x5791,x5792)+P12(x5791,x5793)+~E(x5792,x5793)),
   inference(rename_variables,[],[34])).
cnf(581,plain,
   (~P12(x5811,x5812)+P12(x5811,x5813)+~E(x5812,x5813)),
   inference(rename_variables,[],[34])).
cnf(584,plain,
   (~E(x5841,f9(x5842,x5843))+~P13(x5844,x5841)+P13(x5844,x5842)),
   inference(rename_variables,[],[85])).
cnf(586,plain,
   (~E(x5861,f9(x5862,x5863))+~P13(x5864,x5861)+P13(x5864,x5862)),
   inference(rename_variables,[],[85])).
cnf(588,plain,
   (~E(x5881,f9(x5882,x5883))+~P13(x5884,x5881)+P13(x5884,x5882)),
   inference(rename_variables,[],[85])).
cnf(591,plain,
   (~E(x5911,f10(x5912,x5913))+~P13(x5914,x5913)+P13(x5914,x5911)),
   inference(rename_variables,[],[86])).
cnf(593,plain,
   (~E(x5931,f10(x5932,x5933))+~P13(x5934,x5933)+P13(x5934,x5931)),
   inference(rename_variables,[],[86])).
cnf(595,plain,
   (~E(x5951,f10(x5952,x5953))+~P13(x5954,x5953)+P13(x5954,x5951)),
   inference(rename_variables,[],[86])).
cnf(598,plain,
   (~E(x5981,f10(x5982,x5983))+~P13(x5984,x5982)+P13(x5984,x5981)),
   inference(rename_variables,[],[87])).
cnf(600,plain,
   (~E(x6001,f10(x6002,x6003))+~P13(x6004,x6002)+P13(x6004,x6001)),
   inference(rename_variables,[],[87])).
cnf(602,plain,
   (~E(x6021,f10(x6022,x6023))+~P13(x6024,x6022)+P13(x6024,x6021)),
   inference(rename_variables,[],[87])).
cnf(605,plain,
   (~E(x6051,f9(x6052,x6053))+~P13(x6054,x6051)+~P13(x6054,x6053)),
   inference(rename_variables,[],[92])).
cnf(607,plain,
   (~E(x6071,f9(x6072,x6073))+~P13(x6074,x6071)+~P13(x6074,x6073)),
   inference(rename_variables,[],[92])).
cnf(609,plain,
   (~E(x6091,f9(x6092,x6093))+~P13(x6094,x6091)+~P13(x6094,x6093)),
   inference(rename_variables,[],[92])).
cnf(614,plain,
   (~E(x6141,f9(x6142,f9(x6142,x6143)))+~P13(x6144,x6141)+P13(x6144,x6143)),
   inference(rename_variables,[],[100])).
cnf(616,plain,
   (~E(x6161,f9(x6162,f9(x6162,x6163)))+~P13(x6164,x6161)+P13(x6164,x6163)),
   inference(rename_variables,[],[100])).
cnf(618,plain,
   (~E(x6181,f9(x6182,f9(x6182,x6183)))+~P13(x6184,x6181)+P13(x6184,x6183)),
   inference(rename_variables,[],[100])).
cnf(621,plain,
   (P13(x6211,x6212)+P13(x6211,x6213)+~P13(x6211,f10(x6213,x6212))),
   inference(rename_variables,[],[125])).
cnf(623,plain,
   (P13(x6231,x6232)+P13(x6231,x6233)+~P13(x6231,f10(x6233,x6232))),
   inference(rename_variables,[],[125])).
cnf(625,plain,
   (P13(x6251,x6252)+P13(x6251,x6253)+~P13(x6251,f10(x6253,x6252))),
   inference(rename_variables,[],[125])).
cnf(627,plain,
   ($false),
   inference(scs_inference,[],[37,38,55,40,43,119,47,48,56,44,45,41,42,35,36,54,49,52,50,51,39,76,130,132,134,67,137,139,141,71,144,72,148,150,152,81,155,157,82,161,88,165,89,169,171,173,90,176,178,95,182,184,99,188,190,192,104,195,106,199,201,203,107,206,59,210,212,214,60,217,219,221,63,224,226,228,64,231,233,235,69,238,80,242,244,246,2,249,251,253,4,256,258,260,5,263,265,267,6,270,272,274,7,277,279,281,8,284,286,288,9,291,293,295,10,298,300,302,11,305,307,309,12,312,314,316,13,319,321,323,14,326,328,330,15,333,335,337,16,340,342,344,17,347,349,351,18,354,356,358,19,361,363,365,20,368,370,372,21,375,377,379,22,382,384,386,23,389,391,393,24,396,398,400,25,403,405,407,57,410,412,61,416,65,420,422,74,426,428,430,78,433,435,437,79,440,442,444,121,447,449,451,122,454,456,458,123,461,463,465,124,468,470,472,127,475,477,479,73,482,77,486,488,490,83,493,495,497,84,500,502,504,91,507,509,511,98,514,516,518,105,521,523,525,29,528,530,532,30,535,537,539,31,542,544,546,32,549,551,553,3,556,558,560,26,563,565,567,33,570,572,574,34,577,579,581,85,584,586,588,86,591,593,595,87,598,600,602,92,605,607,609,97,100,614,616,618,125,621,623,625,126]),
   ['proof']).
% SZS output end Proof

CSE_E 1.0

Feng Cao (Yang Xu, Stephan Schulz, Jun Liu, Shuwei Chen, Xingxing He, Xiaomei Zhong, Peng Xu, Qinghua Liu, Huimin Fu, Jian Zhong, Guanfeng Wu, Xiaodong Guan, Zhenming Song)
Southwest Jiaotong University, China
DHBW Stuttgart, Germany (Stephan Schulz)
Ulster University, United Kingdom (Jun Liu)

Sample proof for SEU140+2

% SZS status Theorem for theBenchmark.p
% SZS output start Proof
fof(t63_xboole_1, conjecture, (![X1]:![X2]:![X3]:((subset(X1,X2)&disjoint(X2,X3))=>disjoint(X1,X3))), file('/export/starexec/sandbox2/benchmark/theBenchmark.p', t63_xboole_1)).
fof(symmetry_r1_xboole_0, axiom, (![X1]:![X2]:(disjoint(X1,X2)=>disjoint(X2,X1))), file('/export/starexec/sandbox2/benchmark/theBenchmark.p', symmetry_r1_xboole_0)).
fof(t1_xboole_1, lemma, (![X1]:![X2]:![X3]:((subset(X1,X2)&subset(X2,X3))=>subset(X1,X3))), file('/export/starexec/sandbox2/benchmark/theBenchmark.p', t1_xboole_1)).
fof(t40_xboole_1, lemma, (![X1]:![X2]:set_difference(set_union2(X1,X2),X2)=set_difference(X1,X2)), file('/export/starexec/sandbox2/benchmark/theBenchmark.p', t40_xboole_1)).
fof(commutativity_k2_xboole_0, axiom, (![X1]:![X2]:set_union2(X1,X2)=set_union2(X2,X1)), file('/export/starexec/sandbox2/benchmark/theBenchmark.p', commutativity_k2_xboole_0)).
fof(t2_boole, axiom, (![X1]:set_intersection2(X1,empty_set)=empty_set), file('/export/starexec/sandbox2/benchmark/theBenchmark.p', t2_boole)).
fof(t48_xboole_1, lemma, (![X1]:![X2]:set_difference(X1,set_difference(X1,X2))=set_intersection2(X1,X2)), file('/export/starexec/sandbox2/benchmark/theBenchmark.p', t48_xboole_1)).
fof(t3_xboole_0, lemma, (![X1]:![X2]:(~((~(disjoint(X1,X2))&![X3]:~((in(X3,X1)&in(X3,X2)))))&~((?[X3]:(in(X3,X1)&in(X3,X2))&disjoint(X1,X2))))), file('/export/starexec/sandbox2/benchmark/theBenchmark.p', t3_xboole_0)).
fof(d4_xboole_0, axiom, (![X1]:![X2]:![X3]:(X3=set_difference(X1,X2)<=>![X4]:(in(X4,X3)<=>(in(X4,X1)&~(in(X4,X2)))))), file('/export/starexec/sandbox2/benchmark/theBenchmark.p', d4_xboole_0)).
fof(l32_xboole_1, lemma, (![X1]:![X2]:(set_difference(X1,X2)=empty_set<=>subset(X1,X2))), file('/export/starexec/sandbox2/benchmark/theBenchmark.p', l32_xboole_1)).
fof(d7_xboole_0, axiom, (![X1]:![X2]:(disjoint(X1,X2)<=>set_intersection2(X1,X2)=empty_set)), file('/export/starexec/sandbox2/benchmark/theBenchmark.p', d7_xboole_0)).
fof(t39_xboole_1, lemma, (![X1]:![X2]:set_union2(X1,set_difference(X2,X1))=set_union2(X1,X2)), file('/export/starexec/sandbox2/benchmark/theBenchmark.p', t39_xboole_1)).
fof(t3_boole, axiom, (![X1]:set_difference(X1,empty_set)=X1), file('/export/starexec/sandbox2/benchmark/theBenchmark.p', t3_boole)).
fof(commutativity_k3_xboole_0, axiom, (![X1]:![X2]:set_intersection2(X1,X2)=set_intersection2(X2,X1)), file('/export/starexec/sandbox2/benchmark/theBenchmark.p', commutativity_k3_xboole_0)).
fof(t36_xboole_1, lemma, (![X1]:![X2]:subset(set_difference(X1,X2),X1)), file('/export/starexec/sandbox2/benchmark/theBenchmark.p', t36_xboole_1)).
fof(t12_xboole_1, lemma, (![X1]:![X2]:(subset(X1,X2)=>set_union2(X1,X2)=X2)), file('/export/starexec/sandbox2/benchmark/theBenchmark.p', t12_xboole_1)).
fof(t1_boole, axiom, (![X1]:set_union2(X1,empty_set)=X1), file('/export/starexec/sandbox2/benchmark/theBenchmark.p', t1_boole)).
fof(c_0_17, negated_conjecture, (~(![X1]:![X2]:![X3]:((subset(X1,X2)&disjoint(X2,X3))=>disjoint(X1,X3)))), inference(assume_negation,[status(cth)],[t63_xboole_1])).
fof(c_0_18, plain, (![X3]:![X4]:(~disjoint(X3,X4)|disjoint(X4,X3))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[symmetry_r1_xboole_0])])).
fof(c_0_19, negated_conjecture, (((subset(esk11_0,esk12_0)&disjoint(esk12_0,esk13_0))&~disjoint(esk11_0,esk13_0))), inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_17])])])).
fof(c_0_20, lemma, (![X4]:![X5]:![X6]:((~subset(X4,X5)|~subset(X5,X6))|subset(X4,X6))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[t1_xboole_1])])).
fof(c_0_21, lemma, (![X3]:![X4]:set_difference(set_union2(X3,X4),X4)=set_difference(X3,X4)), inference(variable_rename,[status(thm)],[t40_xboole_1])).
fof(c_0_22, plain, (![X3]:![X4]:set_union2(X3,X4)=set_union2(X4,X3)), inference(variable_rename,[status(thm)],[commutativity_k2_xboole_0])).
fof(c_0_23, plain, (![X2]:set_intersection2(X2,empty_set)=empty_set), inference(variable_rename,[status(thm)],[t2_boole])).
fof(c_0_24, lemma, (![X3]:![X4]:set_difference(X3,set_difference(X3,X4))=set_intersection2(X3,X4)), inference(variable_rename,[status(thm)],[t48_xboole_1])).
fof(c_0_25, lemma, (![X4]:![X5]:![X4]:![X5]:![X7]:(((in(esk9_2(X4,X5),X4)|disjoint(X4,X5))&(in(esk9_2(X4,X5),X5)|disjoint(X4,X5)))&((~in(X7,X4)|~in(X7,X5))|~disjoint(X4,X5)))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[t3_xboole_0])])])])])])])])).
cnf(c_0_26,plain,(disjoint(X1,X2)|~disjoint(X2,X1)), inference(split_conjunct,[status(thm)],[c_0_18])).
cnf(c_0_27,negated_conjecture,(disjoint(esk12_0,esk13_0)), inference(split_conjunct,[status(thm)],[c_0_19])).
fof(c_0_28, plain, (![X5]:![X6]:![X7]:![X8]:![X8]:![X5]:![X6]:![X7]:(((((in(X8,X5)|~in(X8,X7))|X7!=set_difference(X5,X6))&((~in(X8,X6)|~in(X8,X7))|X7!=set_difference(X5,X6)))&(((~in(X8,X5)|in(X8,X6))|in(X8,X7))|X7!=set_difference(X5,X6)))&(((~in(esk5_3(X5,X6,X7),X7)|(~in(esk5_3(X5,X6,X7),X5)|in(esk5_3(X5,X6,X7),X6)))|X7=set_difference(X5,X6))&(((in(esk5_3(X5,X6,X7),X5)|in(esk5_3(X5,X6,X7),X7))|X7=set_difference(X5,X6))&((~in(esk5_3(X5,X6,X7),X6)|in(esk5_3(X5,X6,X7),X7))|X7=set_difference(X5,X6)))))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[d4_xboole_0])])])])])])])])).
fof(c_0_29, lemma, (![X3]:![X4]:![X3]:![X4]:((set_difference(X3,X4)!=empty_set|subset(X3,X4))&(~subset(X3,X4)|set_difference(X3,X4)=empty_set))), inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[l32_xboole_1])])])])).
cnf(c_0_30,lemma,(subset(X1,X2)|~subset(X3,X2)|~subset(X1,X3)), inference(split_conjunct,[status(thm)],[c_0_20])).
cnf(c_0_31,negated_conjecture,(subset(esk11_0,esk12_0)), inference(split_conjunct,[status(thm)],[c_0_19])).
fof(c_0_32, plain, (![X3]:![X4]:![X3]:![X4]:((~disjoint(X3,X4)|set_intersection2(X3,X4)=empty_set)&(set_intersection2(X3,X4)!=empty_set|disjoint(X3,X4)))), inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[d7_xboole_0])])])])).
cnf(c_0_33,lemma,(set_difference(set_union2(X1,X2),X2)=set_difference(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_21])).
cnf(c_0_34,plain,(set_union2(X1,X2)=set_union2(X2,X1)), inference(split_conjunct,[status(thm)],[c_0_22])).
fof(c_0_35, lemma, (![X3]:![X4]:set_union2(X3,set_difference(X4,X3))=set_union2(X3,X4)), inference(variable_rename,[status(thm)],[t39_xboole_1])).
cnf(c_0_36,plain,(set_intersection2(X1,empty_set)=empty_set), inference(split_conjunct,[status(thm)],[c_0_23])).
cnf(c_0_37,lemma,(set_difference(X1,set_difference(X1,X2))=set_intersection2(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_24])).
fof(c_0_38, plain, (![X2]:set_difference(X2,empty_set)=X2), inference(variable_rename,[status(thm)],[t3_boole])).
cnf(c_0_39,lemma,(~disjoint(X1,X2)|~in(X3,X2)|~in(X3,X1)), inference(split_conjunct,[status(thm)],[c_0_25])).
cnf(c_0_40,negated_conjecture,(disjoint(esk13_0,esk12_0)), inference(spm,[status(thm)],[c_0_26, c_0_27])).
cnf(c_0_41,plain,(in(X4,X2)|X1!=set_difference(X2,X3)|~in(X4,X1)), inference(split_conjunct,[status(thm)],[c_0_28])).
fof(c_0_42, plain, (![X3]:![X4]:set_intersection2(X3,X4)=set_intersection2(X4,X3)), inference(variable_rename,[status(thm)],[commutativity_k3_xboole_0])).
cnf(c_0_43,lemma,(set_difference(X1,X2)=empty_set|~subset(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_29])).
cnf(c_0_44,negated_conjecture,(subset(X1,esk12_0)|~subset(X1,esk11_0)), inference(spm,[status(thm)],[c_0_30, c_0_31])).
fof(c_0_45, lemma, (![X3]:![X4]:subset(set_difference(X3,X4),X3)), inference(variable_rename,[status(thm)],[t36_xboole_1])).
fof(c_0_46, lemma, (![X3]:![X4]:(~subset(X3,X4)|set_union2(X3,X4)=X4)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[t12_xboole_1])])).
cnf(c_0_47,plain,(disjoint(X1,X2)|set_intersection2(X1,X2)!=empty_set), inference(split_conjunct,[status(thm)],[c_0_32])).
cnf(c_0_48,lemma,(set_difference(set_union2(X1,X2),X1)=set_difference(X2,X1)), inference(spm,[status(thm)],[c_0_33, c_0_34])).
cnf(c_0_49,lemma,(set_union2(X1,set_difference(X2,X1))=set_union2(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_35])).
cnf(c_0_50,plain,(set_difference(X1,set_difference(X1,empty_set))=empty_set), inference(rw,[status(thm)],[c_0_36, c_0_37])).
cnf(c_0_51,plain,(set_difference(X1,empty_set)=X1), inference(split_conjunct,[status(thm)],[c_0_38])).
cnf(c_0_52,negated_conjecture,(~in(X1,esk12_0)|~in(X1,esk13_0)), inference(spm,[status(thm)],[c_0_39, c_0_40])).
cnf(c_0_53,lemma,(disjoint(X1,X2)|in(esk9_2(X1,X2),X2)), inference(split_conjunct,[status(thm)],[c_0_25])).
cnf(c_0_54,plain,(in(X1,X2)|~in(X1,set_difference(X2,X3))), inference(er,[status(thm)],[c_0_41])).
cnf(c_0_55,lemma,(disjoint(X1,X2)|in(esk9_2(X1,X2),X1)), inference(split_conjunct,[status(thm)],[c_0_25])).
cnf(c_0_56,plain,(set_intersection2(X1,X2)=set_intersection2(X2,X1)), inference(split_conjunct,[status(thm)],[c_0_42])).
cnf(c_0_57,lemma,(set_difference(X1,esk12_0)=empty_set|~subset(X1,esk11_0)), inference(spm,[status(thm)],[c_0_43, c_0_44])).
cnf(c_0_58,lemma,(subset(set_difference(X1,X2),X1)), inference(split_conjunct,[status(thm)],[c_0_45])).
cnf(c_0_59,plain,(set_intersection2(X1,X2)=empty_set|~disjoint(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_32])).
fof(c_0_60, plain, (![X2]:set_union2(X2,empty_set)=X2), inference(variable_rename,[status(thm)],[t1_boole])).
cnf(c_0_61,lemma,(set_union2(X1,X2)=X2|~subset(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_46])).
cnf(c_0_62,plain,(disjoint(X1,X2)|set_difference(X1,set_difference(X1,X2))!=empty_set), inference(rw,[status(thm)],[c_0_47, c_0_37])).
cnf(c_0_63,lemma,(set_difference(set_difference(X1,X2),X2)=set_difference(X1,X2)), inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_48, c_0_49]), c_0_48])).
cnf(c_0_64,plain,(set_difference(X1,X1)=empty_set), inference(rw,[status(thm)],[c_0_50, c_0_51])).
cnf(c_0_65,lemma,(disjoint(X1,esk13_0)|~in(esk9_2(X1,esk13_0),esk12_0)), inference(spm,[status(thm)],[c_0_52, c_0_53])).
cnf(c_0_66,lemma,(disjoint(set_difference(X1,X2),X3)|in(esk9_2(set_difference(X1,X2),X3),X1)), inference(spm,[status(thm)],[c_0_54, c_0_55])).
cnf(c_0_67,plain,(set_difference(X1,set_difference(X1,X2))=set_difference(X2,set_difference(X2,X1))), inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_56, c_0_37]), c_0_37])).
cnf(c_0_68,lemma,(set_difference(set_difference(esk11_0,X1),esk12_0)=empty_set), inference(spm,[status(thm)],[c_0_57, c_0_58])).
cnf(c_0_69,plain,(set_difference(X1,set_difference(X1,X2))=empty_set|~disjoint(X1,X2)), inference(rw,[status(thm)],[c_0_59, c_0_37])).
cnf(c_0_70,plain,(set_union2(X1,empty_set)=X1), inference(split_conjunct,[status(thm)],[c_0_60])).
cnf(c_0_71,lemma,(set_union2(X1,set_difference(X1,X2))=X1), inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_61, c_0_58]), c_0_34])).
cnf(c_0_72,lemma,(disjoint(set_difference(X1,X2),X2)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_62, c_0_63]), c_0_64])])).
cnf(c_0_73,lemma,(disjoint(set_difference(esk12_0,X1),esk13_0)), inference(spm,[status(thm)],[c_0_65, c_0_66])).
cnf(c_0_74,lemma,(set_difference(esk12_0,set_difference(esk12_0,set_difference(esk11_0,X1)))=set_difference(esk11_0,X1)), inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_67, c_0_68]), c_0_51])).
cnf(c_0_75,lemma,(set_difference(X1,X2)=X1|~disjoint(X1,X2)), inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_49, c_0_69]), c_0_70]), c_0_34]), c_0_71])).
cnf(c_0_76,lemma,(disjoint(X1,set_difference(X2,X1))), inference(spm,[status(thm)],[c_0_26, c_0_72])).
cnf(c_0_77,lemma,(disjoint(set_difference(esk11_0,X1),esk13_0)), inference(spm,[status(thm)],[c_0_73, c_0_74])).
cnf(c_0_78,lemma,(set_difference(X1,set_difference(X2,X1))=X1), inference(spm,[status(thm)],[c_0_75, c_0_76])).
cnf(c_0_79,negated_conjecture,(~disjoint(esk11_0,esk13_0)), inference(split_conjunct,[status(thm)],[c_0_19])).
cnf(c_0_80,lemma,($false), inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_77, c_0_78]), c_0_79]), ['proof']).
% SZS output end Proof

CVC4 1.6pre

Andrew Reynolds
University of Iowa, USA

Sample proof for DAT013=1

------- cvc4-tfa casc j9 : DAT013=1.p at ...
--- Run --cbqi-all --purify-triggers --full-saturate-quant at 15...
% SZS status Theorem for DAT013=1
% SZS output start Proof for DAT013=1
(skolem (let ((_let_0 (* (- 1) X))) (let ((_let_1 (* (- 1) BOUND_VARIABLE_391))) (forall ((U array) (V Int) (W Int) (BOUND_VARIABLE_391 Int)) (or (not (forall ((X Int)) (or (>= (+ V _let_0) 1) (not (>= (+ W _let_0) 0)) (>= (read U X) 1)) )) (>= (+ V _let_1) (- 2)) (not (>= (+ W _let_1) 0)) (>= (read U BOUND_VARIABLE_391) 1)) )))
  ( skv_5 skv_6 skv_7 skv_8 )
)
(instantiation (forall ((X Int)) (or (not (>= (+ X (* (- 1) skv_6)) 0)) (>= (+ X (* (- 1) skv_7)) 1) (>= (read skv_5 X) 1)) )
  ( skv_8 )
)
% SZS output end Proof for DAT013=1

Sample proof for SEU140+2

------- cvc4-fof casc j9 : SEU140+2.p at ...
--- Run --decision=internal --simplification=none --no-inst-no-entail --no-quant-cf --full-saturate-quant at 20...
% SZS status Theorem for SEU140+2
% SZS output start Proof for SEU140+2
(skolem (forall ((A $$unsorted)) (not (empty A)) )
  ( skv_1 )
)
(skolem (forall ((A $$unsorted)) (empty A) )
  ( skv_2 )
)
(skolem (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (or (not (subset A B)) (not (disjoint B C)) (disjoint A C)) )
  ( skv_3 skv_4 skv_5 )
)
(skolem (forall ((C $$unsorted)) (or (not (in C skv_3)) (not (in C skv_5))) )
  ( skv_6 )
)
(skolem (forall ((C $$unsorted)) (not (in C (set_intersection2 skv_3 skv_5))) )
  ( skv_7 )
)
(instantiation (forall ((A $$unsorted) (B $$unsorted)) (= (= A B) (and (subset A B) (subset B A))) )
  ( skv_3, skv_4 )
  ( skv_4, skv_3 )
)
(instantiation (forall ((A $$unsorted) (B $$unsorted)) (= (proper_subset A B) (and (subset A B) (not (= A B)))) )
  ( skv_3, skv_4 )
  ( skv_4, skv_3 )
)
(instantiation (forall ((A $$unsorted) (B $$unsorted)) (subset (set_intersection2 A B) A) )
  ( skv_3, skv_4 )
  ( skv_3, skv_5 )
  ( skv_4, skv_5 )
)
(instantiation (forall ((A $$unsorted) (B $$unsorted)) (subset (set_difference A B) A) )
  ( skv_3, skv_4 )
  ( skv_4, skv_3 )
)
(instantiation (forall ((A $$unsorted) (B $$unsorted)) (subset A (set_union2 A B)) )
  ( skv_3, skv_4 )
  ( skv_3, (set_difference skv_4 skv_3) )
)
(instantiation (forall ((A $$unsorted) (B $$unsorted)) (or (not (in A B)) (not (in B A))) )
  ( skv_3, skv_6 )
  ( skv_5, skv_6 )
  ( (set_intersection2 skv_3 skv_5), skv_7 )
  ( skv_6, skv_3 )
  ( skv_6, skv_5 )
  ( skv_7, (set_intersection2 skv_3 skv_5) )
)
(instantiation (forall ((A $$unsorted) (B $$unsorted)) (or (not (proper_subset A B)) (not (proper_subset B A))) )
  ( skv_3, skv_4 )
  ( skv_4, skv_3 )
)
(instantiation (forall ((A $$unsorted) (B $$unsorted)) (= (set_union2 B A) (set_union2 A B)) )
  ( skv_3, skv_4 )
  ( skv_3, (set_difference skv_4 skv_3) )
  ( skv_4, skv_3 )
  ( (set_difference skv_4 skv_3), skv_3 )
)
(instantiation (forall ((A $$unsorted) (B $$unsorted)) (= (set_intersection2 B A) (set_intersection2 A B)) )
  ( skv_3, skv_4 )
  ( skv_3, skv_5 )
  ( skv_4, skv_3 )
  ( skv_4, skv_5 )
  ( skv_5, skv_3 )
  ( skv_5, skv_4 )
)
(instantiation (forall ((A $$unsorted) (B $$unsorted)) (= (subset A B) (forall ((C $$unsorted)) (or (not (in C A)) (in C B)) )) )
  ( skv_3, skv_4 )
  ( skv_4, skv_3 )
)
(instantiation (forall ((A $$unsorted) (B $$unsorted)) (= (disjoint A B) (= empty_set (set_intersection2 A B))) )
  ( skv_3, skv_4 )
  ( skv_3, skv_5 )
  ( skv_4, skv_5 )
  ( skv_5, skv_3 )
  ( skv_5, skv_4 )
)
(instantiation (forall ((A $$unsorted) (B $$unsorted)) (or (empty A) (not (empty (set_union2 A B)))) )
  ( skv_3, skv_4 )
  ( skv_3, (set_difference skv_4 skv_3) )
)
(instantiation (forall ((A $$unsorted) (B $$unsorted)) (or (empty A) (not (empty (set_union2 B A)))) )
  ( skv_4, skv_3 )
  ( (set_difference skv_4 skv_3), skv_3 )
)
(instantiation (forall ((A $$unsorted) (B $$unsorted)) (= (= empty_set (set_difference A B)) (subset A B)) )
  ( skv_3, skv_4 )
  ( skv_4, skv_3 )
)
(instantiation (forall ((A $$unsorted) (B $$unsorted)) (or (not (disjoint A B)) (disjoint B A)) )
  ( skv_3, skv_5 )
  ( skv_4, skv_5 )
  ( skv_5, skv_3 )
  ( skv_5, skv_4 )
)
(instantiation (forall ((A $$unsorted) (B $$unsorted)) (or (not (subset A B)) (= B (set_union2 A B))) )
  ( skv_3, skv_4 )
  ( skv_3, (set_difference skv_4 skv_3) )
)
(instantiation (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (or (not (subset A B)) (not (subset A C)) (subset A (set_intersection2 B C))) )
  ( skv_4, skv_3, skv_4 )
)
(instantiation (forall ((A $$unsorted) (B $$unsorted)) (or (not (subset A B)) (= A (set_intersection2 A B))) )
  ( skv_3, skv_4 )
  ( skv_3, skv_5 )
  ( skv_4, skv_5 )
)
(instantiation (forall ((A $$unsorted) (B $$unsorted)) (= (set_union2 A B) (set_union2 A (set_difference B A))) )
  ( skv_3, skv_4 )
  ( skv_4, skv_3 )
)
(instantiation (forall ((A $$unsorted) (B $$unsorted)) (or (disjoint A B) (not (forall ((C $$unsorted)) (or (not (in C A)) (not (in C B))) ))) )
  ( skv_3, skv_5 )
  ( skv_5, skv_3 )
)
(instantiation (forall ((A $$unsorted) (B $$unsorted) (BOUND_VARIABLE_836 $$unsorted)) (or (not (disjoint A B)) (not (in BOUND_VARIABLE_836 A)) (not (in BOUND_VARIABLE_836 B))) )
  ( skv_5, skv_4, skv_6 )
)
(instantiation (forall ((A $$unsorted) (B $$unsorted)) (= (set_difference A B) (set_difference (set_union2 A B) B)) )
  ( skv_3, skv_4 )
  ( skv_3, (set_difference skv_4 skv_3) )
)
(instantiation (forall ((A $$unsorted) (B $$unsorted)) (or (not (subset A B)) (= B (set_union2 A (set_difference B A)))) )
  ( skv_3, skv_4 )
  ( skv_4, skv_3 )
)
(instantiation (forall ((A $$unsorted) (B $$unsorted)) (= (set_intersection2 A B) (set_difference A (set_difference A B))) )
  ( skv_3, skv_4 )
  ( skv_3, skv_5 )
  ( skv_4, skv_5 )
)
(instantiation (forall ((A $$unsorted) (B $$unsorted)) (or (disjoint A B) (not (forall ((C $$unsorted)) (not (in C (set_intersection2 A B))) ))) )
  ( skv_3, skv_5 )
  ( skv_5, skv_3 )
)
(instantiation (forall ((A $$unsorted) (B $$unsorted) (BOUND_VARIABLE_878 $$unsorted)) (or (not (in BOUND_VARIABLE_878 (set_intersection2 A B))) (not (disjoint A B))) )
  ( skv_3, skv_4, skv_6 )
  ( skv_3, skv_5, skv_7 )
)
(instantiation (forall ((A $$unsorted) (B $$unsorted)) (or (not (subset A B)) (not (proper_subset B A))) )
  ( skv_3, skv_4 )
  ( skv_4, skv_3 )
)
(instantiation (forall ((A $$unsorted)) (or (not (empty A)) (= empty_set A)) )
  ( empty_set )
  ( skv_1 )
)
(instantiation (forall ((A $$unsorted) (B $$unsorted)) (or (not (in A B)) (not (empty B))) )
  ( skv_6, skv_3 )
  ( skv_6, skv_5 )
  ( skv_7, (set_intersection2 skv_3 skv_5) )
)
(instantiation (forall ((A $$unsorted) (B $$unsorted)) (or (not (empty A)) (= A B) (not (empty B))) )
  ( empty_set, empty_set )
  ( empty_set, skv_1 )
  ( skv_1, empty_set )
  ( skv_1, skv_1 )
)
(instantiation (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (or (not (subset A B)) (not (subset C B)) (subset (set_union2 A C) B)) )
  ( skv_3, skv_3, (set_difference skv_4 skv_3) )
)
(instantiation (forall ((C $$unsorted)) (or (not (in C skv_3)) (in C skv_4)) )
  ( skv_6 )
)
% SZS output end Proof for SEU140+2

Sample proof for NLP042+1

------- cvc4-fnt casc j9 : NLP042+1.p at ...
--- Run --finite-model-find --uf-ss=no-minimal --sort-inference at 30...
% SZS status CounterSatisfiable for NLP042+1
% SZS output start FiniteModel for NLP042+1
(define-fun actual_world ((BOUND_VARIABLE_7812 $$unsorted)) Bool true)
; cardinality of $$unsorted is 1
(declare-sort $$unsorted 0)
; rep: @uc___unsorted_0
; cardinality of it_2_$$unsorted is 4
(declare-sort it_2_$$unsorted 0)
; rep: @uc_it_2___unsorted_0
; rep: @uc_it_2___unsorted_1
; rep: @uc_it_2___unsorted_2
; rep: @uc_it_2___unsorted_3
(define-fun io_woman_1 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_0 $x2)))
(define-fun io_female_2 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_0 $x2)))
(define-fun io_human_person_3 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_0 $x2)))
(define-fun io_animate_4 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_0 $x2)))
(define-fun io_human_5 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_0 $x2)))
(define-fun io_organism_6 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_0 $x2)))
(define-fun io_living_7 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_0 $x2)))
(define-fun io_impartial_8 ((BOUND_VARIABLE_7835 $$unsorted) (BOUND_VARIABLE_7836 it_2_$$unsorted)) Bool true)
(define-fun io_entity_9 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (ite (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_0 $x2)) true (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_2 $x2))))
(define-fun io_mia_forename_10 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_1 $x2)))
(define-fun io_forename_11 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_1 $x2)))
(define-fun io_abstraction_12 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_1 $x2)))
(define-fun io_unisex_13 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (ite (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_1 $x2)) true (ite (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_2 $x2)) true (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_3 $x2)))))
(define-fun io_general_14 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_1 $x2)))
(define-fun io_nonhuman_15 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_1 $x2)))
(define-fun io_thing_16 ((BOUND_VARIABLE_7835 $$unsorted) (BOUND_VARIABLE_7836 it_2_$$unsorted)) Bool true)
(define-fun io_relation_17 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_1 $x2)))
(define-fun io_relname_18 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_1 $x2)))
(define-fun io_object_19 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_2 $x2)))
(define-fun io_nonliving_20 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_2 $x2)))
(define-fun io_existent_21 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (ite (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_0 $x2)) true (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_2 $x2))))
(define-fun io_specific_22 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (ite (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_0 $x2)) true (ite (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_2 $x2)) true (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_3 $x2)))))
(define-fun io_substance_matter_23 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_2 $x2)))
(define-fun io_food_24 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_2 $x2)))
(define-fun io_beverage_25 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_2 $x2)))
(define-fun io_shake_beverage_26 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_2 $x2)))
(define-fun io_order_27 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_3 $x2)))
(define-fun io_event_28 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_3 $x2)))
(define-fun io_eventuality_29 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_3 $x2)))
(define-fun io_nonexistent_30 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_3 $x2)))
(define-fun io_singleton_31 ((BOUND_VARIABLE_7835 $$unsorted) (BOUND_VARIABLE_7836 it_2_$$unsorted)) Bool true)
(define-fun io_act_32 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_3 $x2)))
(define-fun io_of_33 ((BOUND_VARIABLE_7893 $$unsorted) (BOUND_VARIABLE_7894 it_2_$$unsorted) (BOUND_VARIABLE_7895 it_2_$$unsorted)) Bool true)
(define-fun io_nonreflexive_34 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_3 $x2)))
(define-fun io_agent_35 (($x1 $$unsorted) ($x2 it_2_$$unsorted) ($x3 it_2_$$unsorted)) Bool (ite (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_3 $x2) (= @uc_it_2___unsorted_2 $x3)) false (ite (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_3 $x2) (= @uc_it_2___unsorted_1 $x3)) false (not (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_3 $x2) (= @uc_it_2___unsorted_3 $x3))))))
(define-fun io_patient_36 (($x1 $$unsorted) ($x2 it_2_$$unsorted) ($x3 it_2_$$unsorted)) Bool (not (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_3 $x2) (= @uc_it_2___unsorted_0 $x3))))
(define-fun io_past_37 ((BOUND_VARIABLE_7835 $$unsorted) (BOUND_VARIABLE_7836 it_2_$$unsorted)) Bool true)
% SZS output end FiniteModel for NLP042+1

Sample proof for SWV017+1

------- cvc4-fnt casc j9 : SWV017+1.p at ...
--- Run --finite-model-find --uf-ss=no-minimal --sort-inference at 30...
% SZS status Satisfiable for SWV017+1
% SZS output start FiniteModel for SWV017+1
(define-fun at () $$unsorted @uc___unsorted_0)
(define-fun t () $$unsorted @uc___unsorted_0)
(define-fun a_holds ((BOUND_VARIABLE_1960 $$unsorted)) Bool true)
(define-fun a () $$unsorted @uc___unsorted_0)
(define-fun b () $$unsorted @uc___unsorted_0)
(define-fun an_a_nonce () $$unsorted @uc___unsorted_0)
(define-fun bt () $$unsorted @uc___unsorted_0)
(define-fun b_holds ((BOUND_VARIABLE_1960 $$unsorted)) Bool true)
(define-fun t_holds ((BOUND_VARIABLE_1960 $$unsorted)) Bool true)
(define-fun intruder_holds ((BOUND_VARIABLE_1960 $$unsorted)) Bool true)
(define-fun an_intruder_nonce () $$unsorted @uc___unsorted_0)
; cardinality of $$unsorted is 1
(declare-sort $$unsorted 0)
; rep: @uc___unsorted_0
; cardinality of it_4_$$unsorted is 2
(declare-sort it_4_$$unsorted 0)
; rep: @uc_it_4___unsorted_0
; rep: @uc_it_4___unsorted_1
(define-fun io_key_3 ((BOUND_VARIABLE_1969 it_4_$$unsorted) (BOUND_VARIABLE_1970 it_4_$$unsorted)) $$unsorted @uc___unsorted_0)
(define-fun io_party_of_protocol_5 ((BOUND_VARIABLE_1977 it_4_$$unsorted)) Bool true)
; cardinality of it_19_$$unsorted is 1
(declare-sort it_19_$$unsorted 0)
; rep: @uc_it_19___unsorted_0
(define-fun io_pair_8 ((BOUND_VARIABLE_1986 it_4_$$unsorted) (BOUND_VARIABLE_1987 it_4_$$unsorted)) it_4_$$unsorted @uc_it_4___unsorted_0)
(define-fun io_sent_9 ((BOUND_VARIABLE_2002 it_4_$$unsorted) (BOUND_VARIABLE_2003 it_4_$$unsorted) (BOUND_VARIABLE_2004 it_4_$$unsorted)) it_19_$$unsorted @uc_it_19___unsorted_0)
(define-fun io_message_10 ((BOUND_VARIABLE_2013 it_19_$$unsorted)) Bool true)
(define-fun io_a_stored_11 ((BOUND_VARIABLE_1977 it_4_$$unsorted)) Bool true)
(define-fun io_quadruple_12 ((BOUND_VARIABLE_2026 it_4_$$unsorted) (BOUND_VARIABLE_2027 it_4_$$unsorted) (BOUND_VARIABLE_2028 it_4_$$unsorted) (BOUND_VARIABLE_2029 it_4_$$unsorted)) it_4_$$unsorted @uc_it_4___unsorted_0)
(define-fun io_encrypt_13 ((BOUND_VARIABLE_1986 it_4_$$unsorted) (BOUND_VARIABLE_1987 it_4_$$unsorted)) it_4_$$unsorted @uc_it_4___unsorted_0)
(define-fun io_triple_14 ((BOUND_VARIABLE_2044 it_4_$$unsorted) (BOUND_VARIABLE_2045 it_4_$$unsorted) (BOUND_VARIABLE_2046 it_4_$$unsorted)) it_4_$$unsorted @uc_it_4___unsorted_0)
(define-fun io_fresh_to_b_16 ((BOUND_VARIABLE_1977 it_4_$$unsorted)) Bool true)
(define-fun io_generate_b_nonce_17 ((BOUND_VARIABLE_2053 it_4_$$unsorted)) it_4_$$unsorted @uc_it_4___unsorted_0)
(define-fun io_generate_expiration_time_18 ((BOUND_VARIABLE_2053 it_4_$$unsorted)) it_4_$$unsorted @uc_it_4___unsorted_0)
(define-fun io_b_stored_19 ((BOUND_VARIABLE_1977 it_4_$$unsorted)) Bool true)
(define-fun io_a_key_20 ((BOUND_VARIABLE_1977 it_4_$$unsorted)) Bool (= @uc_it_4___unsorted_1 BOUND_VARIABLE_1977))
(define-fun io_a_nonce_21 ((BOUND_VARIABLE_1977 it_4_$$unsorted)) Bool (= @uc_it_4___unsorted_0 BOUND_VARIABLE_1977))
(define-fun io_generate_key_22 ((BOUND_VARIABLE_2053 it_4_$$unsorted)) it_4_$$unsorted @uc_it_4___unsorted_1)
(define-fun io_intruder_message_23 ((BOUND_VARIABLE_1977 it_4_$$unsorted)) Bool true)
(define-fun io_fresh_intruder_nonce_25 ((BOUND_VARIABLE_1977 it_4_$$unsorted)) Bool true)
(define-fun io_generate_intruder_nonce_26 ((BOUND_VARIABLE_2053 it_4_$$unsorted)) it_4_$$unsorted @uc_it_4___unsorted_0)
% SZS output end FiniteModel for SWV017+1

E 2.2pre

Stephan Schulz
DHBW Stuttgart, Germany

Sample proof for SEU140+2

# SZS status Theorem
# SZS output start CNFRefutation
fof(t63_xboole_1, conjecture, ![X1, X2, X3]:((subset(X1,X2)&disjoint(X2,X3))=>disjoint(X1,X3)), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SEU140+2.p', t63_xboole_1)).
fof(d4_xboole_0, axiom, ![X1, X2, X3]:(X3=set_difference(X1,X2)<=>![X4]:(in(X4,X3)<=>(in(X4,X1)&~(in(X4,X2))))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SEU140+2.p', d4_xboole_0)).
fof(commutativity_k3_xboole_0, axiom, ![X1, X2]:set_intersection2(X1,X2)=set_intersection2(X2,X1), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SEU140+2.p', commutativity_k3_xboole_0)).
fof(t48_xboole_1, lemma, ![X1, X2]:set_difference(X1,set_difference(X1,X2))=set_intersection2(X1,X2), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SEU140+2.p', t48_xboole_1)).
fof(t40_xboole_1, lemma, ![X1, X2]:set_difference(set_union2(X1,X2),X2)=set_difference(X1,X2), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SEU140+2.p', t40_xboole_1)).
fof(commutativity_k2_xboole_0, axiom, ![X1, X2]:set_union2(X1,X2)=set_union2(X2,X1), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SEU140+2.p', commutativity_k2_xboole_0)).
fof(l32_xboole_1, lemma, ![X1, X2]:(set_difference(X1,X2)=empty_set<=>subset(X1,X2)), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SEU140+2.p', l32_xboole_1)).
fof(t7_xboole_1, lemma, ![X1, X2]:subset(X1,set_union2(X1,X2)), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SEU140+2.p', t7_xboole_1)).
fof(symmetry_r1_xboole_0, axiom, ![X1, X2]:(disjoint(X1,X2)=>disjoint(X2,X1)), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SEU140+2.p', symmetry_r1_xboole_0)).
fof(t3_xboole_0, lemma, ![X1, X2]:(~((~(disjoint(X1,X2))&![X3]:~((in(X3,X1)&in(X3,X2)))))&~((?[X3]:(in(X3,X1)&in(X3,X2))&disjoint(X1,X2)))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SEU140+2.p', t3_xboole_0)).
fof(t3_boole, axiom, ![X1]:set_difference(X1,empty_set)=X1, file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SEU140+2.p', t3_boole)).
fof(t39_xboole_1, lemma, ![X1, X2]:set_union2(X1,set_difference(X2,X1))=set_union2(X1,X2), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SEU140+2.p', t39_xboole_1)).
fof(t1_boole, axiom, ![X1]:set_union2(X1,empty_set)=X1, file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SEU140+2.p', t1_boole)).
fof(c_0_13, negated_conjecture, ~(![X1, X2, X3]:((subset(X1,X2)&disjoint(X2,X3))=>disjoint(X1,X3))), inference(assume_negation,[status(cth)],[t63_xboole_1])).
fof(c_0_14, plain, ![X32, X33, X34, X35, X35, X32, X33, X34]:((((in(X35,X32)|~in(X35,X34)|X34!=set_difference(X32,X33))&(~in(X35,X33)|~in(X35,X34)|X34!=set_difference(X32,X33)))&(~in(X35,X32)|in(X35,X33)|in(X35,X34)|X34!=set_difference(X32,X33)))&((~in(esk5_3(X32,X33,X34),X34)|(~in(esk5_3(X32,X33,X34),X32)|in(esk5_3(X32,X33,X34),X33))|X34=set_difference(X32,X33))&((in(esk5_3(X32,X33,X34),X32)|in(esk5_3(X32,X33,X34),X34)|X34=set_difference(X32,X33))&(~in(esk5_3(X32,X33,X34),X33)|in(esk5_3(X32,X33,X34),X34)|X34=set_difference(X32,X33))))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[d4_xboole_0])])])])])])])])).
fof(c_0_15, plain, ![X11, X12]:set_intersection2(X11,X12)=set_intersection2(X12,X11), inference(variable_rename,[status(thm)],[commutativity_k3_xboole_0])).
fof(c_0_16, lemma, ![X99, X100]:set_difference(X99,set_difference(X99,X100))=set_intersection2(X99,X100), inference(variable_rename,[status(thm)],[t48_xboole_1])).
fof(c_0_17, lemma, ![X95, X96]:set_difference(set_union2(X95,X96),X96)=set_difference(X95,X96), inference(variable_rename,[status(thm)],[t40_xboole_1])).
fof(c_0_18, plain, ![X9, X10]:set_union2(X9,X10)=set_union2(X10,X9), inference(variable_rename,[status(thm)],[commutativity_k2_xboole_0])).
fof(c_0_19, lemma, ![X51, X52, X51, X52]:((set_difference(X51,X52)!=empty_set|subset(X51,X52))&(~subset(X51,X52)|set_difference(X51,X52)=empty_set)), inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[l32_xboole_1])])])])).
fof(c_0_20, lemma, ![X114, X115]:subset(X114,set_union2(X114,X115)), inference(variable_rename,[status(thm)],[t7_xboole_1])).
fof(c_0_21, plain, ![X57, X58]:(~disjoint(X57,X58)|disjoint(X58,X57)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[symmetry_r1_xboole_0])])).
fof(c_0_22, negated_conjecture, ((subset(esk11_0,esk12_0)&disjoint(esk12_0,esk13_0))&~disjoint(esk11_0,esk13_0)), inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_13])])])).
cnf(c_0_23, plain, (in(X1,X2)|~in(X1,X3)|X3!=set_difference(X2,X4)), inference(split_conjunct,[status(thm)],[c_0_14])).
fof(c_0_24, lemma, ![X90, X91, X90, X91, X93]:(((in(esk9_2(X90,X91),X90)|disjoint(X90,X91))&(in(esk9_2(X90,X91),X91)|disjoint(X90,X91)))&(~in(X93,X90)|~in(X93,X91)|~disjoint(X90,X91))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[t3_xboole_0])])])])])])])])).
cnf(c_0_25, plain, (set_intersection2(X1,X2)=set_intersection2(X2,X1)), inference(split_conjunct,[status(thm)],[c_0_15])).
cnf(c_0_26, lemma, (set_difference(X1,set_difference(X1,X2))=set_intersection2(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_16])).
cnf(c_0_27, lemma, (set_difference(set_union2(X1,X2),X2)=set_difference(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_17])).
cnf(c_0_28, plain, (set_union2(X1,X2)=set_union2(X2,X1)), inference(split_conjunct,[status(thm)],[c_0_18])).
cnf(c_0_29, lemma, (set_difference(X1,X2)=empty_set|~subset(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_19])).
cnf(c_0_30, lemma, (subset(X1,set_union2(X1,X2))), inference(split_conjunct,[status(thm)],[c_0_20])).
fof(c_0_31, plain, ![X89]:set_difference(X89,empty_set)=X89, inference(variable_rename,[status(thm)],[t3_boole])).
cnf(c_0_32, plain, (disjoint(X2,X1)|~disjoint(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_21])).
cnf(c_0_33, negated_conjecture, (disjoint(esk12_0,esk13_0)), inference(split_conjunct,[status(thm)],[c_0_22])).
cnf(c_0_34, plain, (in(X1,X2)|~in(X1,set_difference(X2,X3))), inference(er,[status(thm)],[c_0_23])).
cnf(c_0_35, lemma, (in(esk9_2(X1,X2),X2)|disjoint(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_24])).
cnf(c_0_36, plain, (set_difference(X1,set_difference(X1,X2))=set_difference(X2,set_difference(X2,X1))), inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_25, c_0_26]), c_0_26])).
cnf(c_0_37, lemma, (set_difference(set_union2(X1,X2),X1)=set_difference(X2,X1)), inference(spm,[status(thm)],[c_0_27, c_0_28])).
cnf(c_0_38, lemma, (set_difference(X1,set_union2(X1,X2))=empty_set), inference(spm,[status(thm)],[c_0_29, c_0_30])).
cnf(c_0_39, plain, (set_difference(X1,empty_set)=X1), inference(split_conjunct,[status(thm)],[c_0_31])).
fof(c_0_40, lemma, ![X87, X88]:set_union2(X87,set_difference(X88,X87))=set_union2(X87,X88), inference(variable_rename,[status(thm)],[t39_xboole_1])).
cnf(c_0_41, negated_conjecture, (subset(esk11_0,esk12_0)), inference(split_conjunct,[status(thm)],[c_0_22])).
fof(c_0_42, plain, ![X66]:set_union2(X66,empty_set)=X66, inference(variable_rename,[status(thm)],[t1_boole])).
cnf(c_0_43, lemma, (~in(X1,X2)|~in(X1,X3)|~disjoint(X2,X3)), inference(split_conjunct,[status(thm)],[c_0_24])).
cnf(c_0_44, negated_conjecture, (disjoint(esk13_0,esk12_0)), inference(spm,[status(thm)],[c_0_32, c_0_33])).
cnf(c_0_45, lemma, (disjoint(X1,set_difference(X2,X3))|in(esk9_2(X1,set_difference(X2,X3)),X2)), inference(spm,[status(thm)],[c_0_34, c_0_35])).
cnf(c_0_46, lemma, (set_difference(set_union2(X1,X2),set_difference(X2,X1))=X1), inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_36, c_0_37]), c_0_38]), c_0_39])).
cnf(c_0_47, lemma, (set_union2(X1,set_difference(X2,X1))=set_union2(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_40])).
cnf(c_0_48, negated_conjecture, (set_difference(esk11_0,esk12_0)=empty_set), inference(spm,[status(thm)],[c_0_29, c_0_41])).
cnf(c_0_49, plain, (set_union2(X1,empty_set)=X1), inference(split_conjunct,[status(thm)],[c_0_42])).
cnf(c_0_50, negated_conjecture, (~in(X1,esk12_0)|~in(X1,esk13_0)), inference(spm,[status(thm)],[c_0_43, c_0_44])).
cnf(c_0_51, lemma, (in(esk9_2(X1,X2),X1)|disjoint(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_24])).
cnf(c_0_52, lemma, (disjoint(X1,X2)|in(esk9_2(X1,X2),set_union2(X2,X3))), inference(spm,[status(thm)],[c_0_45, c_0_46])).
cnf(c_0_53, negated_conjecture, (set_union2(esk11_0,esk12_0)=esk12_0), inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_47, c_0_48]), c_0_49]), c_0_28])).
cnf(c_0_54, lemma, (disjoint(esk13_0,X1)|~in(esk9_2(esk13_0,X1),esk12_0)), inference(spm,[status(thm)],[c_0_50, c_0_51])).
cnf(c_0_55, negated_conjecture, (disjoint(X1,esk11_0)|in(esk9_2(X1,esk11_0),esk12_0)), inference(spm,[status(thm)],[c_0_52, c_0_53])).
cnf(c_0_56, negated_conjecture, (disjoint(esk13_0,esk11_0)), inference(spm,[status(thm)],[c_0_54, c_0_55])).
cnf(c_0_57, negated_conjecture, (~disjoint(esk11_0,esk13_0)), inference(split_conjunct,[status(thm)],[c_0_22])).
cnf(c_0_58, negated_conjecture, ($false), inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_32, c_0_56]), c_0_57]), ['proof']).
# SZS output end CNFRefutation

Sample solution for NLP042+1

# SZS status CounterSatisfiable
# SZS output start Saturation
fof(ax26, axiom, (![X1]:![X2]:(beverage(X1,X2)=>food(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax26)).
fof(ax27, axiom, (![X1]:![X2]:(shake_beverage(X1,X2)=>beverage(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax27)).
fof(co1, conjecture, (~(?[X1]:(actual_world(X1)&?[X2]:?[X3]:?[X4]:?[X5]:((((((((((of(X1,X3,X2)&woman(X1,X2))&mia_forename(X1,X3))&forename(X1,X3))&shake_beverage(X1,X4))&event(X1,X5))&agent(X1,X5,X2))&patient(X1,X5,X4))&past(X1,X5))&nonreflexive(X1,X5))&order(X1,X5))))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', co1)).
fof(ax41, axiom, (![X1]:![X2]:(specific(X1,X2)=>~(general(X1,X2)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax41)).
fof(ax11, axiom, (![X1]:![X2]:(abstraction(X1,X2)=>general(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax11)).
fof(ax15, axiom, (![X1]:![X2]:(relname(X1,X2)=>relation(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax15)).
fof(ax16, axiom, (![X1]:![X2]:(forename(X1,X2)=>relname(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax16)).
fof(ax42, axiom, (![X1]:![X2]:(unisex(X1,X2)=>~(female(X1,X2)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax42)).
fof(ax1, axiom, (![X1]:![X2]:(woman(X1,X2)=>female(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax1)).
fof(ax25, axiom, (![X1]:![X2]:(food(X1,X2)=>substance_matter(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax25)).
fof(ax6, axiom, (![X1]:![X2]:(organism(X1,X2)=>entity(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax6)).
fof(ax7, axiom, (![X1]:![X2]:(human_person(X1,X2)=>organism(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax7)).
fof(ax8, axiom, (![X1]:![X2]:(woman(X1,X2)=>human_person(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax8)).
fof(ax38, axiom, (![X1]:![X2]:(existent(X1,X2)=>~(nonexistent(X1,X2)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax38)).
fof(ax30, axiom, (![X1]:![X2]:(eventuality(X1,X2)=>nonexistent(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax30)).
fof(ax31, axiom, (![X1]:![X2]:(eventuality(X1,X2)=>specific(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax31)).
fof(ax34, axiom, (![X1]:![X2]:(event(X1,X2)=>eventuality(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax34)).
fof(ax21, axiom, (![X1]:![X2]:(entity(X1,X2)=>specific(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax21)).
fof(ax14, axiom, (![X1]:![X2]:(relation(X1,X2)=>abstraction(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax14)).
fof(ax24, axiom, (![X1]:![X2]:(substance_matter(X1,X2)=>object(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax24)).
fof(ax40, axiom, (![X1]:![X2]:(nonliving(X1,X2)=>~(living(X1,X2)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax40)).
fof(ax4, axiom, (![X1]:![X2]:(organism(X1,X2)=>living(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax4)).
fof(ax37, axiom, (![X1]:![X2]:(animate(X1,X2)=>~(nonliving(X1,X2)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax37)).
fof(ax2, axiom, (![X1]:![X2]:(human_person(X1,X2)=>animate(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax2)).
fof(ax39, axiom, (![X1]:![X2]:(nonhuman(X1,X2)=>~(human(X1,X2)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax39)).
fof(ax12, axiom, (![X1]:![X2]:(abstraction(X1,X2)=>nonhuman(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax12)).
fof(ax44, axiom, (![X1]:![X2]:![X3]:![X4]:(((nonreflexive(X1,X2)&agent(X1,X2,X3))&patient(X1,X2,X4))=>X3!=X4)), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax44)).
fof(ax20, axiom, (![X1]:![X2]:(entity(X1,X2)=>existent(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax20)).
fof(ax10, axiom, (![X1]:![X2]:(abstraction(X1,X2)=>unisex(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax10)).
fof(ax43, axiom, (![X1]:![X2]:![X3]:(((entity(X1,X2)&forename(X1,X3))&of(X1,X3,X2))=>~(?[X4]:((forename(X1,X4)&X4!=X3)&of(X1,X4,X2))))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax43)).
fof(ax19, axiom, (![X1]:![X2]:(object(X1,X2)=>nonliving(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax19)).
fof(ax3, axiom, (![X1]:![X2]:(human_person(X1,X2)=>human(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax3)).
fof(ax29, axiom, (![X1]:![X2]:(eventuality(X1,X2)=>unisex(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax29)).
fof(ax17, axiom, (![X1]:![X2]:(object(X1,X2)=>unisex(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax17)).
fof(ax23, axiom, (![X1]:![X2]:(object(X1,X2)=>entity(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax23)).
fof(ax32, axiom, (![X1]:![X2]:(thing(X1,X2)=>singleton(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax32)).
fof(ax33, axiom, (![X1]:![X2]:(eventuality(X1,X2)=>thing(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax33)).
fof(ax13, axiom, (![X1]:![X2]:(abstraction(X1,X2)=>thing(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax13)).
fof(ax22, axiom, (![X1]:![X2]:(entity(X1,X2)=>thing(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax22)).
fof(ax18, axiom, (![X1]:![X2]:(object(X1,X2)=>impartial(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax18)).
fof(ax5, axiom, (![X1]:![X2]:(organism(X1,X2)=>impartial(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax5)).
fof(ax36, axiom, (![X1]:![X2]:(order(X1,X2)=>act(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax36)).
fof(ax35, axiom, (![X1]:![X2]:(act(X1,X2)=>event(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax35)).
fof(ax28, axiom, (![X1]:![X2]:(order(X1,X2)=>event(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax28)).
fof(ax9, axiom, (![X1]:![X2]:(mia_forename(X1,X2)=>forename(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax9)).
fof(c_0_45, plain, (![X3]:![X4]:(~beverage(X3,X4)|food(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax26])])).
fof(c_0_46, plain, (![X3]:![X4]:(~shake_beverage(X3,X4)|beverage(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax27])])).
fof(c_0_47, negated_conjecture, (~(~(?[X1]:(actual_world(X1)&?[X2]:?[X3]:?[X4]:?[X5]:((((((((((of(X1,X3,X2)&woman(X1,X2))&mia_forename(X1,X3))&forename(X1,X3))&shake_beverage(X1,X4))&event(X1,X5))&agent(X1,X5,X2))&patient(X1,X5,X4))&past(X1,X5))&nonreflexive(X1,X5))&order(X1,X5)))))), inference(assume_negation,[status(cth)],[co1])).
fof(c_0_48, plain, (![X3]:![X4]:(~specific(X3,X4)|~general(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[ax41])])])).
fof(c_0_49, plain, (![X3]:![X4]:(~abstraction(X3,X4)|general(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax11])])).
fof(c_0_50, plain, (![X3]:![X4]:(~relname(X3,X4)|relation(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax15])])).
fof(c_0_51, plain, (![X3]:![X4]:(~forename(X3,X4)|relname(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax16])])).
fof(c_0_52, plain, (![X3]:![X4]:(~unisex(X3,X4)|~female(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[ax42])])])).
fof(c_0_53, plain, (![X3]:![X4]:(~woman(X3,X4)|female(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax1])])).
fof(c_0_54, plain, (![X3]:![X4]:(~food(X3,X4)|substance_matter(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax25])])).
cnf(c_0_55,plain,(food(X1,X2)|~beverage(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_45]), ['final']).
cnf(c_0_56,plain,(beverage(X1,X2)|~shake_beverage(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_46]), ['final']).
fof(c_0_57, plain, (![X3]:![X4]:(~organism(X3,X4)|entity(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax6])])).
fof(c_0_58, plain, (![X3]:![X4]:(~human_person(X3,X4)|organism(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax7])])).
fof(c_0_59, plain, (![X3]:![X4]:(~woman(X3,X4)|human_person(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax8])])).
fof(c_0_60, negated_conjecture, ((actual_world(esk1_0)&((((((((((of(esk1_0,esk3_0,esk2_0)&woman(esk1_0,esk2_0))&mia_forename(esk1_0,esk3_0))&forename(esk1_0,esk3_0))&shake_beverage(esk1_0,esk4_0))&event(esk1_0,esk5_0))&agent(esk1_0,esk5_0,esk2_0))&patient(esk1_0,esk5_0,esk4_0))&past(esk1_0,esk5_0))&nonreflexive(esk1_0,esk5_0))&order(esk1_0,esk5_0)))), inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_47])])])])])).
fof(c_0_61, plain, (![X3]:![X4]:(~existent(X3,X4)|~nonexistent(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[ax38])])])).
fof(c_0_62, plain, (![X3]:![X4]:(~eventuality(X3,X4)|nonexistent(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax30])])).
cnf(c_0_63,plain,(~general(X1,X2)|~specific(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_48]), ['final']).
cnf(c_0_64,plain,(general(X1,X2)|~abstraction(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_49]), ['final']).
fof(c_0_65, plain, (![X3]:![X4]:(~eventuality(X3,X4)|specific(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax31])])).
fof(c_0_66, plain, (![X3]:![X4]:(~event(X3,X4)|eventuality(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax34])])).
fof(c_0_67, plain, (![X3]:![X4]:(~entity(X3,X4)|specific(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax21])])).
fof(c_0_68, plain, (![X3]:![X4]:(~relation(X3,X4)|abstraction(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax14])])).
cnf(c_0_69,plain,(relation(X1,X2)|~relname(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_50]), ['final']).
cnf(c_0_70,plain,(relname(X1,X2)|~forename(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_51]), ['final']).
cnf(c_0_71,plain,(~female(X1,X2)|~unisex(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_52]), ['final']).
cnf(c_0_72,plain,(female(X1,X2)|~woman(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_53]), ['final']).
fof(c_0_73, plain, (![X3]:![X4]:(~substance_matter(X3,X4)|object(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax24])])).
cnf(c_0_74,plain,(substance_matter(X1,X2)|~food(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_54]), ['final']).
cnf(c_0_75,plain,(food(X1,X2)|~shake_beverage(X1,X2)), inference(spm,[status(thm)],[c_0_55, c_0_56]), ['final']).
cnf(c_0_76,plain,(entity(X1,X2)|~organism(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_57]), ['final']).
cnf(c_0_77,plain,(organism(X1,X2)|~human_person(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_58]), ['final']).
cnf(c_0_78,plain,(human_person(X1,X2)|~woman(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_59]), ['final']).
cnf(c_0_79,negated_conjecture,(woman(esk1_0,esk2_0)), inference(split_conjunct,[status(thm)],[c_0_60]), ['final']).
fof(c_0_80, plain, (![X3]:![X4]:(~nonliving(X3,X4)|~living(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[ax40])])])).
fof(c_0_81, plain, (![X3]:![X4]:(~organism(X3,X4)|living(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax4])])).
fof(c_0_82, plain, (![X3]:![X4]:(~animate(X3,X4)|~nonliving(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[ax37])])])).
fof(c_0_83, plain, (![X3]:![X4]:(~human_person(X3,X4)|animate(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax2])])).
fof(c_0_84, plain, (![X3]:![X4]:(~nonhuman(X3,X4)|~human(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[ax39])])])).
fof(c_0_85, plain, (![X3]:![X4]:(~abstraction(X3,X4)|nonhuman(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax12])])).
fof(c_0_86, plain, (![X5]:![X6]:![X7]:![X8]:(((~nonreflexive(X5,X6)|~agent(X5,X6,X7))|~patient(X5,X6,X8))|X7!=X8)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax44])])).
cnf(c_0_87,plain,(~nonexistent(X1,X2)|~existent(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_61]), ['final']).
cnf(c_0_88,plain,(nonexistent(X1,X2)|~eventuality(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_62]), ['final']).
fof(c_0_89, plain, (![X3]:![X4]:(~entity(X3,X4)|existent(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax20])])).
cnf(c_0_90,plain,(~specific(X1,X2)|~abstraction(X1,X2)), inference(spm,[status(thm)],[c_0_63, c_0_64]), ['final']).
cnf(c_0_91,plain,(specific(X1,X2)|~eventuality(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_65]), ['final']).
cnf(c_0_92,plain,(eventuality(X1,X2)|~event(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_66]), ['final']).
cnf(c_0_93,negated_conjecture,(event(esk1_0,esk5_0)), inference(split_conjunct,[status(thm)],[c_0_60]), ['final']).
cnf(c_0_94,plain,(specific(X1,X2)|~entity(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_67]), ['final']).
cnf(c_0_95,plain,(abstraction(X1,X2)|~relation(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_68]), ['final']).
cnf(c_0_96,plain,(relation(X1,X2)|~forename(X1,X2)), inference(spm,[status(thm)],[c_0_69, c_0_70]), ['final']).
cnf(c_0_97,plain,(~unisex(X1,X2)|~woman(X1,X2)), inference(spm,[status(thm)],[c_0_71, c_0_72]), ['final']).
fof(c_0_98, plain, (![X3]:![X4]:(~abstraction(X3,X4)|unisex(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax10])])).
cnf(c_0_99,plain,(object(X1,X2)|~substance_matter(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_73]), ['final']).
cnf(c_0_100,plain,(substance_matter(X1,X2)|~shake_beverage(X1,X2)), inference(spm,[status(thm)],[c_0_74, c_0_75]), ['final']).
fof(c_0_101, plain, (![X5]:![X6]:![X7]:![X8]:(((~entity(X5,X6)|~forename(X5,X7))|~of(X5,X7,X6))|((~forename(X5,X8)|X8=X7)|~of(X5,X8,X6)))), inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax43])])])])])).
cnf(c_0_102,plain,(entity(X1,X2)|~human_person(X1,X2)), inference(spm,[status(thm)],[c_0_76, c_0_77]), ['final']).
cnf(c_0_103,negated_conjecture,(human_person(esk1_0,esk2_0)), inference(spm,[status(thm)],[c_0_78, c_0_79]), ['final']).
cnf(c_0_104,plain,(~living(X1,X2)|~nonliving(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_80]), ['final']).
cnf(c_0_105,plain,(living(X1,X2)|~organism(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_81]), ['final']).
fof(c_0_106, plain, (![X3]:![X4]:(~object(X3,X4)|nonliving(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax19])])).
cnf(c_0_107,plain,(~nonliving(X1,X2)|~animate(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_82]), ['final']).
cnf(c_0_108,plain,(animate(X1,X2)|~human_person(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_83]), ['final']).
cnf(c_0_109,plain,(~human(X1,X2)|~nonhuman(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_84]), ['final']).
cnf(c_0_110,plain,(nonhuman(X1,X2)|~abstraction(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_85]), ['final']).
fof(c_0_111, plain, (![X3]:![X4]:(~human_person(X3,X4)|human(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax3])])).
cnf(c_0_112,plain,(X1!=X2|~patient(X3,X4,X2)|~agent(X3,X4,X1)|~nonreflexive(X3,X4)), inference(split_conjunct,[status(thm)],[c_0_86])).
cnf(c_0_113,plain,(~eventuality(X1,X2)|~existent(X1,X2)), inference(spm,[status(thm)],[c_0_87, c_0_88]), ['final']).
cnf(c_0_114,plain,(existent(X1,X2)|~entity(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_89]), ['final']).
cnf(c_0_115,plain,(~eventuality(X1,X2)|~abstraction(X1,X2)), inference(spm,[status(thm)],[c_0_90, c_0_91]), ['final']).
cnf(c_0_116,negated_conjecture,(eventuality(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_92, c_0_93]), ['final']).
cnf(c_0_117,plain,(~abstraction(X1,X2)|~entity(X1,X2)), inference(spm,[status(thm)],[c_0_90, c_0_94]), ['final']).
cnf(c_0_118,plain,(abstraction(X1,X2)|~forename(X1,X2)), inference(spm,[status(thm)],[c_0_95, c_0_96]), ['final']).
fof(c_0_119, plain, (![X3]:![X4]:(~eventuality(X3,X4)|unisex(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax29])])).
fof(c_0_120, plain, (![X3]:![X4]:(~object(X3,X4)|unisex(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax17])])).
cnf(c_0_121,negated_conjecture,(~unisex(esk1_0,esk2_0)), inference(spm,[status(thm)],[c_0_97, c_0_79]), ['final']).
cnf(c_0_122,plain,(unisex(X1,X2)|~abstraction(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_98]), ['final']).
fof(c_0_123, plain, (![X3]:![X4]:(~object(X3,X4)|entity(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax23])])).
cnf(c_0_124,plain,(object(X1,X2)|~shake_beverage(X1,X2)), inference(spm,[status(thm)],[c_0_99, c_0_100]), ['final']).
cnf(c_0_125,negated_conjecture,(shake_beverage(esk1_0,esk4_0)), inference(split_conjunct,[status(thm)],[c_0_60]), ['final']).
cnf(c_0_126,plain,(X2=X4|~of(X1,X2,X3)|~forename(X1,X2)|~of(X1,X4,X3)|~forename(X1,X4)|~entity(X1,X3)), inference(split_conjunct,[status(thm)],[c_0_101]), ['final']).
cnf(c_0_127,negated_conjecture,(of(esk1_0,esk3_0,esk2_0)), inference(split_conjunct,[status(thm)],[c_0_60]), ['final']).
cnf(c_0_128,negated_conjecture,(forename(esk1_0,esk3_0)), inference(split_conjunct,[status(thm)],[c_0_60]), ['final']).
cnf(c_0_129,negated_conjecture,(entity(esk1_0,esk2_0)), inference(spm,[status(thm)],[c_0_102, c_0_103]), ['final']).
fof(c_0_130, plain, (![X3]:![X4]:(~thing(X3,X4)|singleton(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax32])])).
cnf(c_0_131,plain,(~nonliving(X1,X2)|~organism(X1,X2)), inference(spm,[status(thm)],[c_0_104, c_0_105]), ['final']).
cnf(c_0_132,plain,(nonliving(X1,X2)|~object(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_106]), ['final']).
cnf(c_0_133,plain,(~nonliving(X1,X2)|~human_person(X1,X2)), inference(spm,[status(thm)],[c_0_107, c_0_108]), ['final']).
fof(c_0_134, plain, (![X3]:![X4]:(~eventuality(X3,X4)|thing(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax33])])).
fof(c_0_135, plain, (![X3]:![X4]:(~abstraction(X3,X4)|thing(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax13])])).
fof(c_0_136, plain, (![X3]:![X4]:(~entity(X3,X4)|thing(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax22])])).
cnf(c_0_137,plain,(~abstraction(X1,X2)|~human(X1,X2)), inference(spm,[status(thm)],[c_0_109, c_0_110]), ['final']).
cnf(c_0_138,plain,(human(X1,X2)|~human_person(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_111]), ['final']).
fof(c_0_139, plain, (![X3]:![X4]:(~object(X3,X4)|impartial(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax18])])).
fof(c_0_140, plain, (![X3]:![X4]:(~organism(X3,X4)|impartial(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax5])])).
fof(c_0_141, plain, (![X3]:![X4]:(~order(X3,X4)|act(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax36])])).
fof(c_0_142, plain, (![X3]:![X4]:(~act(X3,X4)|event(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax35])])).
fof(c_0_143, plain, (![X3]:![X4]:(~order(X3,X4)|event(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax28])])).
fof(c_0_144, plain, (![X3]:![X4]:(~mia_forename(X3,X4)|forename(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax9])])).
cnf(c_0_145,plain,(~patient(X1,X2,X3)|~agent(X1,X2,X3)|~nonreflexive(X1,X2)), inference(er,[status(thm)],[c_0_112]), ['final']).
cnf(c_0_146,negated_conjecture,(patient(esk1_0,esk5_0,esk4_0)), inference(split_conjunct,[status(thm)],[c_0_60]), ['final']).
cnf(c_0_147,negated_conjecture,(nonreflexive(esk1_0,esk5_0)), inference(split_conjunct,[status(thm)],[c_0_60]), ['final']).
cnf(c_0_148,plain,(~eventuality(X1,X2)|~entity(X1,X2)), inference(spm,[status(thm)],[c_0_113, c_0_114]), ['final']).
cnf(c_0_149,negated_conjecture,(~abstraction(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_115, c_0_116]), ['final']).
cnf(c_0_150,plain,(~forename(X1,X2)|~entity(X1,X2)), inference(spm,[status(thm)],[c_0_117, c_0_118]), ['final']).
cnf(c_0_151,plain,(unisex(X1,X2)|~eventuality(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_119]), ['final']).
cnf(c_0_152,plain,(unisex(X1,X2)|~object(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_120]), ['final']).
cnf(c_0_153,negated_conjecture,(~abstraction(esk1_0,esk2_0)), inference(spm,[status(thm)],[c_0_121, c_0_122]), ['final']).
cnf(c_0_154,plain,(entity(X1,X2)|~object(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_123]), ['final']).
cnf(c_0_155,negated_conjecture,(object(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_124, c_0_125]), ['final']).
cnf(c_0_156,negated_conjecture,(X1=esk3_0|~of(esk1_0,X1,esk2_0)|~forename(esk1_0,X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_126, c_0_127]), c_0_128]), c_0_129])]), ['final']).
cnf(c_0_157,plain,(singleton(X1,X2)|~thing(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_130]), ['final']).
cnf(c_0_158,plain,(~object(X1,X2)|~organism(X1,X2)), inference(spm,[status(thm)],[c_0_131, c_0_132]), ['final']).
cnf(c_0_159,plain,(~object(X1,X2)|~human_person(X1,X2)), inference(spm,[status(thm)],[c_0_133, c_0_132]), ['final']).
cnf(c_0_160,plain,(thing(X1,X2)|~eventuality(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_134]), ['final']).
cnf(c_0_161,plain,(thing(X1,X2)|~abstraction(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_135]), ['final']).
cnf(c_0_162,plain,(thing(X1,X2)|~entity(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_136]), ['final']).
cnf(c_0_163,plain,(~abstraction(X1,X2)|~human_person(X1,X2)), inference(spm,[status(thm)],[c_0_137, c_0_138]), ['final']).
cnf(c_0_164,plain,(impartial(X1,X2)|~object(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_139]), ['final']).
cnf(c_0_165,plain,(impartial(X1,X2)|~organism(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_140]), ['final']).
cnf(c_0_166,plain,(act(X1,X2)|~order(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_141]), ['final']).
cnf(c_0_167,plain,(event(X1,X2)|~act(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_142]), ['final']).
cnf(c_0_168,plain,(event(X1,X2)|~order(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_143]), ['final']).
cnf(c_0_169,plain,(forename(X1,X2)|~mia_forename(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_144]), ['final']).
cnf(c_0_170,negated_conjecture,(~agent(esk1_0,esk5_0,esk4_0)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_145, c_0_146]), c_0_147])]), ['final']).
cnf(c_0_171,negated_conjecture,(~entity(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_148, c_0_116]), ['final']).
cnf(c_0_172,negated_conjecture,(~forename(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_149, c_0_118]), ['final']).
cnf(c_0_173,negated_conjecture,(~entity(esk1_0,esk3_0)), inference(spm,[status(thm)],[c_0_150, c_0_128]), ['final']).
cnf(c_0_174,negated_conjecture,(~eventuality(esk1_0,esk2_0)), inference(spm,[status(thm)],[c_0_121, c_0_151]), ['final']).
cnf(c_0_175,negated_conjecture,(~object(esk1_0,esk2_0)), inference(spm,[status(thm)],[c_0_121, c_0_152]), ['final']).
cnf(c_0_176,negated_conjecture,(~forename(esk1_0,esk2_0)), inference(spm,[status(thm)],[c_0_153, c_0_118]), ['final']).
cnf(c_0_177,negated_conjecture,(entity(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_154, c_0_155]), ['final']).
cnf(c_0_178,negated_conjecture,(agent(esk1_0,esk5_0,esk2_0)), inference(split_conjunct,[status(thm)],[c_0_60]), ['final']).
cnf(c_0_179,negated_conjecture,(past(esk1_0,esk5_0)), inference(split_conjunct,[status(thm)],[c_0_60]), ['final']).
cnf(c_0_180,negated_conjecture,(order(esk1_0,esk5_0)), inference(split_conjunct,[status(thm)],[c_0_60]), ['final']).
cnf(c_0_181,negated_conjecture,(mia_forename(esk1_0,esk3_0)), inference(split_conjunct,[status(thm)],[c_0_60]), ['final']).
cnf(c_0_182,negated_conjecture,(actual_world(esk1_0)), inference(split_conjunct,[status(thm)],[c_0_60]), ['final']).
# SZS output end Saturation

Sample solution for SWV017+1

# SZS status Satisfiable
# SZS output start Saturation
fof(server_t_generates_key, axiom, (![X1]:![X2]:![X3]:![X4]:![X5]:![X6]:![X7]:((((message(sent(X1,t,triple(X1,X2,encrypt(triple(X3,X4,X5),X6))))&t_holds(key(X6,X1)))&t_holds(key(X7,X3)))&a_nonce(X4))=>message(sent(t,X3,triple(encrypt(quadruple(X1,X4,generate_key(X4),X5),X7),encrypt(triple(X3,generate_key(X4),X5),X6),X2))))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', server_t_generates_key)).
fof(b_creates_freash_nonces_in_time, axiom, (![X1]:![X2]:((message(sent(X1,b,pair(X1,X2)))&fresh_to_b(X2))=>(message(sent(b,t,triple(b,generate_b_nonce(X2),encrypt(triple(X1,X2,generate_expiration_time(X2)),bt))))&b_stored(pair(X1,X2))))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', b_creates_freash_nonces_in_time)).
fof(intruder_message_sent, axiom, (![X1]:![X2]:![X3]:(((intruder_message(X1)&party_of_protocol(X2))&party_of_protocol(X3))=>message(sent(X2,X3,X1)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', intruder_message_sent)).
fof(t_holds_key_bt_for_b, axiom, (t_holds(key(bt,b))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', t_holds_key_bt_for_b)).
fof(intruder_can_record, axiom, (![X1]:![X2]:![X3]:(message(sent(X1,X2,X3))=>intruder_message(X3))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', intruder_can_record)).
fof(a_sent_message_i_to_b, axiom, (message(sent(a,b,pair(a,an_a_nonce)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', a_sent_message_i_to_b)).
fof(nonce_a_is_fresh_to_b, axiom, (fresh_to_b(an_a_nonce)), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', nonce_a_is_fresh_to_b)).
fof(b_is_party_of_protocol, axiom, (party_of_protocol(b)), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', b_is_party_of_protocol)).
fof(intruder_composes_pairs, axiom, (![X1]:![X2]:((intruder_message(X1)&intruder_message(X2))=>intruder_message(pair(X1,X2)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', intruder_composes_pairs)).
fof(a_forwards_secure, axiom, (![X1]:![X2]:![X3]:![X4]:![X5]:![X6]:((message(sent(t,a,triple(encrypt(quadruple(X5,X6,X3,X2),at),X4,X1)))&a_stored(pair(X5,X6)))=>(message(sent(a,X5,pair(X4,encrypt(X1,X3))))&a_holds(key(X3,X5))))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', a_forwards_secure)).
fof(t_holds_key_at_for_a, axiom, (t_holds(key(at,a))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', t_holds_key_at_for_a)).
fof(intruder_decomposes_triples, axiom, (![X1]:![X2]:![X3]:(intruder_message(triple(X1,X2,X3))=>((intruder_message(X1)&intruder_message(X2))&intruder_message(X3)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', intruder_decomposes_triples)).
fof(a_stored_message_i, axiom, (a_stored(pair(b,an_a_nonce))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', a_stored_message_i)).
fof(an_a_nonce_is_a_nonce, axiom, (a_nonce(an_a_nonce)), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', an_a_nonce_is_a_nonce)).
fof(t_is_party_of_protocol, axiom, (party_of_protocol(t)), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', t_is_party_of_protocol)).
fof(intruder_composes_triples, axiom, (![X1]:![X2]:![X3]:(((intruder_message(X1)&intruder_message(X2))&intruder_message(X3))=>intruder_message(triple(X1,X2,X3)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', intruder_composes_triples)).
fof(b_accepts_secure_session_key, axiom, (![X2]:![X4]:![X5]:(((message(sent(X4,b,pair(encrypt(triple(X4,X2,generate_expiration_time(X5)),bt),encrypt(generate_b_nonce(X5),X2))))&a_key(X2))&b_stored(pair(X4,X5)))=>b_holds(key(X2,X4)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', b_accepts_secure_session_key)).
fof(a_is_party_of_protocol, axiom, (party_of_protocol(a)), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', a_is_party_of_protocol)).
fof(intruder_key_encrypts, axiom, (![X1]:![X2]:![X3]:(((intruder_message(X1)&intruder_holds(key(X2,X3)))&party_of_protocol(X3))=>intruder_message(encrypt(X1,X2)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', intruder_key_encrypts)).
fof(intruder_holds_key, axiom, (![X2]:![X3]:((intruder_message(X2)&party_of_protocol(X3))=>intruder_holds(key(X2,X3)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', intruder_holds_key)).
fof(intruder_decomposes_pairs, axiom, (![X1]:![X2]:(intruder_message(pair(X1,X2))=>(intruder_message(X1)&intruder_message(X2)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', intruder_decomposes_pairs)).
fof(generated_keys_are_keys, axiom, (![X1]:a_key(generate_key(X1))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', generated_keys_are_keys)).
fof(fresh_intruder_nonces_are_fresh_to_b, axiom, (![X1]:(fresh_intruder_nonce(X1)=>(fresh_to_b(X1)&intruder_message(X1)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', fresh_intruder_nonces_are_fresh_to_b)).
fof(can_generate_more_fresh_intruder_nonces, axiom, (![X1]:(fresh_intruder_nonce(X1)=>fresh_intruder_nonce(generate_intruder_nonce(X1)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', can_generate_more_fresh_intruder_nonces)).
fof(intruder_composes_quadruples, axiom, (![X1]:![X2]:![X3]:![X4]:((((intruder_message(X1)&intruder_message(X2))&intruder_message(X3))&intruder_message(X4))=>intruder_message(quadruple(X1,X2,X3,X4)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', intruder_composes_quadruples)).
fof(intruder_interception, axiom, (![X1]:![X2]:![X3]:(((intruder_message(encrypt(X1,X2))&intruder_holds(key(X2,X3)))&party_of_protocol(X3))=>intruder_message(X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', intruder_interception)).
fof(intruder_decomposes_quadruples, axiom, (![X1]:![X2]:![X3]:![X4]:(intruder_message(quadruple(X1,X2,X3,X4))=>(((intruder_message(X1)&intruder_message(X2))&intruder_message(X3))&intruder_message(X4)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', intruder_decomposes_quadruples)).
fof(nothing_is_a_nonce_and_a_key, axiom, (![X1]:~((a_key(X1)&a_nonce(X1)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', nothing_is_a_nonce_and_a_key)).
fof(generated_keys_are_not_nonces, axiom, (![X1]:~(a_nonce(generate_key(X1)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', generated_keys_are_not_nonces)).
fof(generated_times_and_nonces_are_nonces, axiom, (![X1]:(a_nonce(generate_expiration_time(X1))&a_nonce(generate_b_nonce(X1)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', generated_times_and_nonces_are_nonces)).
fof(an_intruder_nonce_is_a_fresh_intruder_nonce, axiom, (fresh_intruder_nonce(an_intruder_nonce)), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', an_intruder_nonce_is_a_fresh_intruder_nonce)).
fof(b_hold_key_bt_for_t, axiom, (b_holds(key(bt,t))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', b_hold_key_bt_for_t)).
fof(a_holds_key_at_for_t, axiom, (a_holds(key(at,t))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', a_holds_key_at_for_t)).
fof(c_0_33, plain, (![X8]:![X9]:![X10]:![X11]:![X12]:![X13]:![X14]:((((~message(sent(X8,t,triple(X8,X9,encrypt(triple(X10,X11,X12),X13))))|~t_holds(key(X13,X8)))|~t_holds(key(X14,X10)))|~a_nonce(X11))|message(sent(t,X10,triple(encrypt(quadruple(X8,X11,generate_key(X11),X12),X14),encrypt(triple(X10,generate_key(X11),X12),X13),X9))))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[server_t_generates_key])])).
fof(c_0_34, plain, (![X3]:![X4]:((message(sent(b,t,triple(b,generate_b_nonce(X4),encrypt(triple(X3,X4,generate_expiration_time(X4)),bt))))|(~message(sent(X3,b,pair(X3,X4)))|~fresh_to_b(X4)))&(b_stored(pair(X3,X4))|(~message(sent(X3,b,pair(X3,X4)))|~fresh_to_b(X4))))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[b_creates_freash_nonces_in_time])])])).
fof(c_0_35, plain, (![X4]:![X5]:![X6]:(((~intruder_message(X4)|~party_of_protocol(X5))|~party_of_protocol(X6))|message(sent(X5,X6,X4)))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_message_sent])])).
cnf(c_0_36,plain,(message(sent(t,X1,triple(encrypt(quadruple(X2,X3,generate_key(X3),X4),X5),encrypt(triple(X1,generate_key(X3),X4),X6),X7)))|~a_nonce(X3)|~t_holds(key(X5,X1))|~t_holds(key(X6,X2))|~message(sent(X2,t,triple(X2,X7,encrypt(triple(X1,X3,X4),X6))))), inference(split_conjunct,[status(thm)],[c_0_33]), ['final']).
cnf(c_0_37,plain,(t_holds(key(bt,b))), inference(split_conjunct,[status(thm)],[t_holds_key_bt_for_b]), ['final']).
fof(c_0_38, plain, (![X4]:![X5]:![X6]:(~message(sent(X4,X5,X6))|intruder_message(X6))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_can_record])])).
cnf(c_0_39,plain,(message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X2,X1,generate_expiration_time(X1)),bt))))|~fresh_to_b(X1)|~message(sent(X2,b,pair(X2,X1)))), inference(split_conjunct,[status(thm)],[c_0_34]), ['final']).
cnf(c_0_40,plain,(message(sent(a,b,pair(a,an_a_nonce)))), inference(split_conjunct,[status(thm)],[a_sent_message_i_to_b]), ['final']).
cnf(c_0_41,plain,(fresh_to_b(an_a_nonce)), inference(split_conjunct,[status(thm)],[nonce_a_is_fresh_to_b]), ['final']).
cnf(c_0_42,plain,(message(sent(X1,X2,X3))|~party_of_protocol(X2)|~party_of_protocol(X1)|~intruder_message(X3)), inference(split_conjunct,[status(thm)],[c_0_35]), ['final']).
cnf(c_0_43,plain,(party_of_protocol(b)), inference(split_conjunct,[status(thm)],[b_is_party_of_protocol]), ['final']).
fof(c_0_44, plain, (![X3]:![X4]:((~intruder_message(X3)|~intruder_message(X4))|intruder_message(pair(X3,X4)))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_composes_pairs])])).
fof(c_0_45, plain, (![X7]:![X8]:![X9]:![X10]:![X11]:![X12]:((message(sent(a,X11,pair(X10,encrypt(X7,X9))))|(~message(sent(t,a,triple(encrypt(quadruple(X11,X12,X9,X8),at),X10,X7)))|~a_stored(pair(X11,X12))))&(a_holds(key(X9,X11))|(~message(sent(t,a,triple(encrypt(quadruple(X11,X12,X9,X8),at),X10,X7)))|~a_stored(pair(X11,X12)))))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[a_forwards_secure])])])])])).
cnf(c_0_46,plain,(message(sent(t,X1,triple(encrypt(quadruple(b,X2,generate_key(X2),X3),X4),encrypt(triple(X1,generate_key(X2),X3),bt),X5)))|~a_nonce(X2)|~t_holds(key(X4,X1))|~message(sent(b,t,triple(b,X5,encrypt(triple(X1,X2,X3),bt))))), inference(spm,[status(thm)],[c_0_36, c_0_37]), ['final']).
cnf(c_0_47,plain,(t_holds(key(at,a))), inference(split_conjunct,[status(thm)],[t_holds_key_at_for_a]), ['final']).
fof(c_0_48, plain, (![X4]:![X5]:![X6]:(((intruder_message(X4)|~intruder_message(triple(X4,X5,X6)))&(intruder_message(X5)|~intruder_message(triple(X4,X5,X6))))&(intruder_message(X6)|~intruder_message(triple(X4,X5,X6))))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_decomposes_triples])])])).
cnf(c_0_49,plain,(intruder_message(X1)|~message(sent(X2,X3,X1))), inference(split_conjunct,[status(thm)],[c_0_38]), ['final']).
cnf(c_0_50,plain,(message(sent(b,t,triple(b,generate_b_nonce(an_a_nonce),encrypt(triple(a,an_a_nonce,generate_expiration_time(an_a_nonce)),bt))))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_39, c_0_40]), c_0_41])]), ['final']).
cnf(c_0_51,plain,(b_stored(pair(X2,X1))|~fresh_to_b(X1)|~message(sent(X2,b,pair(X2,X1)))), inference(split_conjunct,[status(thm)],[c_0_34]), ['final']).
cnf(c_0_52,plain,(message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X2,X1,generate_expiration_time(X1)),bt))))|~intruder_message(pair(X2,X1))|~fresh_to_b(X1)|~party_of_protocol(X2)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_39, c_0_42]), c_0_43])]), ['final']).
cnf(c_0_53,plain,(intruder_message(pair(X1,X2))|~intruder_message(X2)|~intruder_message(X1)), inference(split_conjunct,[status(thm)],[c_0_44]), ['final']).
cnf(c_0_54,plain,(message(sent(a,X1,pair(X5,encrypt(X6,X3))))|~a_stored(pair(X1,X2))|~message(sent(t,a,triple(encrypt(quadruple(X1,X2,X3,X4),at),X5,X6)))), inference(split_conjunct,[status(thm)],[c_0_45]), ['final']).
cnf(c_0_55,plain,(a_stored(pair(b,an_a_nonce))), inference(split_conjunct,[status(thm)],[a_stored_message_i]), ['final']).
cnf(c_0_56,plain,(message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),bt),X3)))|~a_nonce(X1)|~message(sent(b,t,triple(b,X3,encrypt(triple(a,X1,X2),bt))))), inference(spm,[status(thm)],[c_0_46, c_0_47]), ['final']).
cnf(c_0_57,plain,(a_nonce(an_a_nonce)), inference(split_conjunct,[status(thm)],[an_a_nonce_is_a_nonce]), ['final']).
cnf(c_0_58,plain,(party_of_protocol(t)), inference(split_conjunct,[status(thm)],[t_is_party_of_protocol]), ['final']).
fof(c_0_59, plain, (![X4]:![X5]:![X6]:(((~intruder_message(X4)|~intruder_message(X5))|~intruder_message(X6))|intruder_message(triple(X4,X5,X6)))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_composes_triples])])).
cnf(c_0_60,plain,(intruder_message(X1)|~intruder_message(triple(X1,X2,X3))), inference(split_conjunct,[status(thm)],[c_0_48]), ['final']).
cnf(c_0_61,plain,(intruder_message(triple(b,generate_b_nonce(an_a_nonce),encrypt(triple(a,an_a_nonce,generate_expiration_time(an_a_nonce)),bt)))), inference(spm,[status(thm)],[c_0_49, c_0_50]), ['final']).
fof(c_0_62, plain, (![X6]:![X7]:![X8]:(((~message(sent(X7,b,pair(encrypt(triple(X7,X6,generate_expiration_time(X8)),bt),encrypt(generate_b_nonce(X8),X6))))|~a_key(X6))|~b_stored(pair(X7,X8)))|b_holds(key(X6,X7)))), inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[b_accepts_secure_session_key])])])])).
cnf(c_0_63,plain,(b_stored(pair(X1,X2))|~intruder_message(pair(X1,X2))|~fresh_to_b(X2)|~party_of_protocol(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_51, c_0_42]), c_0_43])]), ['final']).
cnf(c_0_64,plain,(message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),bt),X3)))|~a_nonce(X1)|~message(sent(b,t,triple(b,X3,encrypt(triple(b,X1,X2),bt))))), inference(spm,[status(thm)],[c_0_46, c_0_37]), ['final']).
cnf(c_0_65,plain,(message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X2,X1,generate_expiration_time(X1)),bt))))|~intruder_message(X1)|~intruder_message(X2)|~fresh_to_b(X1)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_52, c_0_53]), ['final']).
cnf(c_0_66,plain,(message(sent(a,b,pair(X1,encrypt(X2,X3))))|~message(sent(t,a,triple(encrypt(quadruple(b,an_a_nonce,X3,X4),at),X1,X2)))), inference(spm,[status(thm)],[c_0_54, c_0_55]), ['final']).
cnf(c_0_67,plain,(party_of_protocol(a)), inference(split_conjunct,[status(thm)],[a_is_party_of_protocol]), ['final']).
cnf(c_0_68,plain,(message(sent(t,a,triple(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at),encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),generate_b_nonce(an_a_nonce))))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_56, c_0_50]), c_0_57])]), ['final']).
cnf(c_0_69,plain,(message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),bt),X3)))|~intruder_message(triple(b,X3,encrypt(triple(a,X1,X2),bt)))|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_56, c_0_42]), c_0_58]), c_0_43])]), ['final']).
cnf(c_0_70,plain,(intruder_message(triple(X1,X2,X3))|~intruder_message(X3)|~intruder_message(X2)|~intruder_message(X1)), inference(split_conjunct,[status(thm)],[c_0_59]), ['final']).
cnf(c_0_71,plain,(intruder_message(b)), inference(spm,[status(thm)],[c_0_60, c_0_61]), ['final']).
cnf(c_0_72,plain,(intruder_message(X3)|~intruder_message(triple(X1,X2,X3))), inference(split_conjunct,[status(thm)],[c_0_48]), ['final']).
cnf(c_0_73,plain,(b_holds(key(X1,X2))|~b_stored(pair(X2,X3))|~a_key(X1)|~message(sent(X2,b,pair(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt),encrypt(generate_b_nonce(X3),X1))))), inference(split_conjunct,[status(thm)],[c_0_62]), ['final']).
cnf(c_0_74,plain,(b_stored(pair(X1,X2))|~intruder_message(X2)|~intruder_message(X1)|~fresh_to_b(X2)|~party_of_protocol(X1)), inference(spm,[status(thm)],[c_0_63, c_0_53]), ['final']).
fof(c_0_75, plain, (![X4]:![X5]:![X6]:(((~intruder_message(X4)|~intruder_holds(key(X5,X6)))|~party_of_protocol(X6))|intruder_message(encrypt(X4,X5)))), inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_key_encrypts])])])])).
fof(c_0_76, plain, (![X4]:![X5]:((~intruder_message(X4)|~party_of_protocol(X5))|intruder_holds(key(X4,X5)))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_holds_key])])).
fof(c_0_77, plain, (![X3]:![X4]:((intruder_message(X3)|~intruder_message(pair(X3,X4)))&(intruder_message(X4)|~intruder_message(pair(X3,X4))))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_decomposes_pairs])])])).
cnf(c_0_78,plain,(message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),bt),X3)))|~intruder_message(triple(b,X3,encrypt(triple(b,X1,X2),bt)))|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_64, c_0_42]), c_0_58]), c_0_43])]), ['final']).
cnf(c_0_79,plain,(intruder_message(triple(b,generate_b_nonce(X1),encrypt(triple(X2,X1,generate_expiration_time(X1)),bt)))|~intruder_message(X1)|~intruder_message(X2)|~fresh_to_b(X1)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_49, c_0_65]), ['final']).
cnf(c_0_80,plain,(message(sent(a,b,pair(X1,encrypt(X2,X3))))|~intruder_message(triple(encrypt(quadruple(b,an_a_nonce,X3,X4),at),X1,X2))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_66, c_0_42]), c_0_67]), c_0_58])]), ['final']).
cnf(c_0_81,plain,(intruder_message(triple(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at),encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),generate_b_nonce(an_a_nonce)))), inference(spm,[status(thm)],[c_0_49, c_0_68]), ['final']).
cnf(c_0_82,plain,(b_stored(pair(a,an_a_nonce))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_51, c_0_40]), c_0_41])]), ['final']).
cnf(c_0_83,plain,(message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),bt),X3)))|~intruder_message(encrypt(triple(a,X1,X2),bt))|~intruder_message(X3)|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_69, c_0_70]), c_0_71])]), ['final']).
cnf(c_0_84,plain,(intruder_message(encrypt(triple(a,an_a_nonce,generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_72, c_0_61]), ['final']).
cnf(c_0_85,plain,(b_holds(key(X1,X2))|~intruder_message(X3)|~intruder_message(X2)|~a_key(X1)|~fresh_to_b(X3)|~message(sent(X2,b,pair(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt),encrypt(generate_b_nonce(X3),X1))))|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_73, c_0_74]), ['final']).
cnf(c_0_86,plain,(intruder_message(encrypt(X1,X2))|~party_of_protocol(X3)|~intruder_holds(key(X2,X3))|~intruder_message(X1)), inference(split_conjunct,[status(thm)],[c_0_75]), ['final']).
cnf(c_0_87,plain,(intruder_holds(key(X1,X2))|~party_of_protocol(X2)|~intruder_message(X1)), inference(split_conjunct,[status(thm)],[c_0_76]), ['final']).
cnf(c_0_88,plain,(intruder_message(X1)|~intruder_message(pair(X1,X2))), inference(split_conjunct,[status(thm)],[c_0_77]), ['final']).
cnf(c_0_89,plain,(intruder_message(pair(a,an_a_nonce))), inference(spm,[status(thm)],[c_0_49, c_0_40]), ['final']).
cnf(c_0_90,plain,(message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),bt),X3)))|~intruder_message(encrypt(triple(b,X1,X2),bt))|~intruder_message(X3)|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_78, c_0_70]), c_0_71])]), ['final']).
cnf(c_0_91,plain,(intruder_message(encrypt(triple(X1,X2,generate_expiration_time(X2)),bt))|~intruder_message(X2)|~intruder_message(X1)|~fresh_to_b(X2)|~party_of_protocol(X1)), inference(spm,[status(thm)],[c_0_72, c_0_79]), ['final']).
cnf(c_0_92,plain,(message(sent(a,b,pair(X1,encrypt(X2,X3))))|~intruder_message(encrypt(quadruple(b,an_a_nonce,X3,X4),at))|~intruder_message(X2)|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_80, c_0_70]), ['final']).
cnf(c_0_93,plain,(intruder_message(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at))), inference(spm,[status(thm)],[c_0_60, c_0_81]), ['final']).
cnf(c_0_94,plain,(b_holds(key(X1,a))|~a_key(X1)|~message(sent(a,b,pair(encrypt(triple(a,X1,generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),X1))))), inference(spm,[status(thm)],[c_0_73, c_0_82]), ['final']).
cnf(c_0_95,plain,(message(sent(a,b,pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))))), inference(spm,[status(thm)],[c_0_66, c_0_68]), ['final']).
cnf(c_0_96,plain,(message(sent(t,a,triple(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at),encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),X1)))|~intruder_message(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_83, c_0_84]), c_0_57])]), ['final']).
cnf(c_0_97,plain,(b_holds(key(X1,X2))|~intruder_message(pair(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt),encrypt(generate_b_nonce(X3),X1)))|~intruder_message(X3)|~intruder_message(X2)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_85, c_0_42]), c_0_43])]), ['final']).
cnf(c_0_98,plain,(intruder_message(encrypt(X1,X2))|~intruder_message(X1)|~intruder_message(X2)|~party_of_protocol(X3)), inference(spm,[status(thm)],[c_0_86, c_0_87])).
cnf(c_0_99,plain,(message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),bt),encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt),generate_b_nonce(X1))))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_64, c_0_65]), c_0_71]), c_0_43])]), ['final']).
cnf(c_0_100,plain,(intruder_message(a)), inference(spm,[status(thm)],[c_0_88, c_0_89]), ['final']).
cnf(c_0_101,plain,(message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),bt),encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt),X2)))|~intruder_message(X2)|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_90, c_0_91]), c_0_71]), c_0_43])]), ['final']).
cnf(c_0_102,plain,(message(sent(t,X1,triple(encrypt(quadruple(a,X2,generate_key(X2),X3),X4),encrypt(triple(X1,generate_key(X2),X3),at),X5)))|~a_nonce(X2)|~t_holds(key(X4,X1))|~message(sent(a,t,triple(a,X5,encrypt(triple(X1,X2,X3),at))))), inference(spm,[status(thm)],[c_0_36, c_0_47]), ['final']).
cnf(c_0_103,plain,(message(sent(a,b,pair(X1,encrypt(X2,generate_key(an_a_nonce)))))|~intruder_message(X2)|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_92, c_0_93]), ['final']).
fof(c_0_104, plain, (![X2]:a_key(generate_key(X2))), inference(variable_rename,[status(thm)],[generated_keys_are_keys])).
cnf(c_0_105,plain,(intruder_message(X2)|~intruder_message(triple(X1,X2,X3))), inference(split_conjunct,[status(thm)],[c_0_48]), ['final']).
cnf(c_0_106,plain,(b_holds(key(X1,a))|~intruder_message(pair(encrypt(triple(a,X1,generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),X1)))|~a_key(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_94, c_0_42]), c_0_43]), c_0_67])]), ['final']).
cnf(c_0_107,plain,(a_holds(key(X3,X1))|~a_stored(pair(X1,X2))|~message(sent(t,a,triple(encrypt(quadruple(X1,X2,X3,X4),at),X5,X6)))), inference(split_conjunct,[status(thm)],[c_0_45]), ['final']).
cnf(c_0_108,plain,(intruder_message(X2)|~intruder_message(pair(X1,X2))), inference(split_conjunct,[status(thm)],[c_0_77]), ['final']).
cnf(c_0_109,plain,(intruder_message(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce))))), inference(spm,[status(thm)],[c_0_49, c_0_95]), ['final']).
cnf(c_0_110,plain,(message(sent(a,b,pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(X1,generate_key(an_a_nonce)))))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_66, c_0_96]), ['final']).
cnf(c_0_111,plain,(b_holds(key(X1,X2))|~intruder_message(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt))|~intruder_message(encrypt(generate_b_nonce(X3),X1))|~intruder_message(X3)|~intruder_message(X2)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_97, c_0_53]), ['final']).
cnf(c_0_112,plain,(intruder_message(encrypt(X1,X2))|~intruder_message(X1)|~intruder_message(X2)), inference(spm,[status(thm)],[c_0_98, c_0_43]), ['final']).
cnf(c_0_113,plain,(intruder_message(triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),bt),encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt),generate_b_nonce(X1)))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_49, c_0_99]), ['final']).
cnf(c_0_114,plain,(message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),at),encrypt(triple(a,generate_key(X1),generate_expiration_time(X1)),bt),generate_b_nonce(X1))))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_56, c_0_65]), c_0_100]), c_0_67])]), ['final']).
cnf(c_0_115,plain,(intruder_message(triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),bt),encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt),X2))|~intruder_message(X2)|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_49, c_0_101]), ['final']).
cnf(c_0_116,plain,(message(sent(t,a,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),at),X3)))|~a_nonce(X1)|~message(sent(a,t,triple(a,X3,encrypt(triple(a,X1,X2),at))))), inference(spm,[status(thm)],[c_0_102, c_0_47]), ['final']).
cnf(c_0_117,plain,(message(sent(t,b,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),at),X3)))|~a_nonce(X1)|~message(sent(a,t,triple(a,X3,encrypt(triple(b,X1,X2),at))))), inference(spm,[status(thm)],[c_0_102, c_0_37]), ['final']).
cnf(c_0_118,plain,(intruder_message(pair(X1,encrypt(X2,generate_key(an_a_nonce))))|~intruder_message(X2)|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_49, c_0_103]), ['final']).
cnf(c_0_119,plain,(a_key(generate_key(X1))), inference(split_conjunct,[status(thm)],[c_0_104]), ['final']).
cnf(c_0_120,plain,(intruder_message(generate_b_nonce(X1))|~intruder_message(X1)|~intruder_message(X2)|~fresh_to_b(X1)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_105, c_0_79]), ['final']).
cnf(c_0_121,plain,(b_holds(key(X1,a))|~intruder_message(encrypt(triple(a,X1,generate_expiration_time(an_a_nonce)),bt))|~intruder_message(encrypt(generate_b_nonce(an_a_nonce),X1))|~a_key(X1)), inference(spm,[status(thm)],[c_0_106, c_0_53]), ['final']).
cnf(c_0_122,plain,(a_holds(key(X1,b))|~message(sent(t,a,triple(encrypt(quadruple(b,an_a_nonce,X1,X2),at),X3,X4)))), inference(spm,[status(thm)],[c_0_107, c_0_55]), ['final']).
cnf(c_0_123,plain,(intruder_message(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))), inference(spm,[status(thm)],[c_0_108, c_0_109]), ['final']).
cnf(c_0_124,plain,(intruder_message(an_a_nonce)), inference(spm,[status(thm)],[c_0_108, c_0_89]), ['final']).
fof(c_0_125, plain, (![X2]:((fresh_to_b(X2)|~fresh_intruder_nonce(X2))&(intruder_message(X2)|~fresh_intruder_nonce(X2)))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[fresh_intruder_nonces_are_fresh_to_b])])])).
cnf(c_0_126,plain,(intruder_message(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(X1,generate_key(an_a_nonce))))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_49, c_0_110]), ['final']).
cnf(c_0_127,plain,(b_holds(key(X1,X2))|~intruder_message(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt))|~intruder_message(generate_b_nonce(X3))|~intruder_message(X3)|~intruder_message(X2)|~intruder_message(X1)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_111, c_0_112]), ['final']).
cnf(c_0_128,plain,(intruder_message(generate_b_nonce(X1))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_72, c_0_113]), ['final']).
cnf(c_0_129,plain,(intruder_message(triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),at),encrypt(triple(a,generate_key(X1),generate_expiration_time(X1)),bt),generate_b_nonce(X1)))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_49, c_0_114]), ['final']).
cnf(c_0_130,plain,(intruder_message(encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt))|~intruder_message(X2)|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_105, c_0_115])).
cnf(c_0_131,plain,(message(sent(t,a,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),at),X3)))|~intruder_message(triple(a,X3,encrypt(triple(a,X1,X2),at)))|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_116, c_0_42]), c_0_58]), c_0_67])]), ['final']).
cnf(c_0_132,plain,(message(sent(t,b,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),at),X3)))|~intruder_message(triple(a,X3,encrypt(triple(b,X1,X2),at)))|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_117, c_0_42]), c_0_58]), c_0_67])]), ['final']).
cnf(c_0_133,plain,(b_holds(key(generate_key(an_a_nonce),X1))|~intruder_message(encrypt(triple(X1,generate_key(an_a_nonce),generate_expiration_time(X2)),bt))|~intruder_message(X2)|~intruder_message(X1)|~fresh_to_b(X2)|~party_of_protocol(X1)), inference(csr,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_97, c_0_118]), c_0_119])]), c_0_120]), ['final']).
cnf(c_0_134,plain,(intruder_message(generate_b_nonce(an_a_nonce))), inference(spm,[status(thm)],[c_0_105, c_0_61]), ['final']).
cnf(c_0_135,plain,(b_holds(key(X1,a))|~intruder_message(encrypt(triple(a,X1,generate_expiration_time(an_a_nonce)),bt))|~intruder_message(generate_b_nonce(an_a_nonce))|~intruder_message(X1)|~a_key(X1)), inference(spm,[status(thm)],[c_0_121, c_0_112])).
cnf(c_0_136,plain,(a_holds(key(X1,b))|~intruder_message(triple(encrypt(quadruple(b,an_a_nonce,X1,X2),at),X3,X4))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_122, c_0_42]), c_0_67]), c_0_58])]), ['final']).
fof(c_0_137, plain, (![X2]:(~fresh_intruder_nonce(X2)|fresh_intruder_nonce(generate_intruder_nonce(X2)))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[can_generate_more_fresh_intruder_nonces])])).
cnf(c_0_138,plain,(b_holds(key(generate_key(an_a_nonce),X1))|~intruder_message(encrypt(triple(X1,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))|~intruder_message(X1)|~party_of_protocol(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_111, c_0_123]), c_0_124]), c_0_119]), c_0_41])]), ['final']).
cnf(c_0_139,plain,(message(sent(b,t,triple(b,generate_b_nonce(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce))),encrypt(triple(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)),generate_expiration_time(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))),bt))))|~fresh_to_b(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_52, c_0_109]), ['final']).
cnf(c_0_140,plain,(fresh_to_b(X1)|~fresh_intruder_nonce(X1)), inference(split_conjunct,[status(thm)],[c_0_125]), ['final']).
cnf(c_0_141,plain,(message(sent(b,t,triple(b,generate_b_nonce(encrypt(X1,generate_key(an_a_nonce))),encrypt(triple(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(X1,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X1,generate_key(an_a_nonce)))),bt))))|~intruder_message(X1)|~fresh_to_b(encrypt(X1,generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_52, c_0_126]), ['final']).
cnf(c_0_142,plain,(message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),at),encrypt(triple(a,generate_key(X1),generate_expiration_time(X1)),bt),X2)))|~intruder_message(X2)|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_83, c_0_91]), c_0_100]), c_0_67])]), ['final']).
cnf(c_0_143,plain,(b_holds(key(X1,X2))|~intruder_message(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt))|~intruder_message(X3)|~intruder_message(X2)|~intruder_message(X1)|~a_nonce(X3)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_127, c_0_128]), ['final']).
cnf(c_0_144,plain,(intruder_message(encrypt(triple(a,generate_key(X1),generate_expiration_time(X1)),bt))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_105, c_0_129]), ['final']).
cnf(c_0_145,plain,(intruder_message(encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_130, c_0_81]), ['final']).
cnf(c_0_146,plain,(intruder_message(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),bt))|~intruder_message(X2)|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_60, c_0_115])).
cnf(c_0_147,plain,(message(sent(b,t,triple(b,generate_b_nonce(encrypt(X1,generate_key(an_a_nonce))),encrypt(triple(X2,encrypt(X1,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X1,generate_key(an_a_nonce)))),bt))))|~intruder_message(X1)|~intruder_message(X2)|~fresh_to_b(encrypt(X1,generate_key(an_a_nonce)))|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_52, c_0_118]), ['final']).
cnf(c_0_148,plain,(b_stored(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(X1,generate_key(an_a_nonce))))|~intruder_message(X1)|~fresh_to_b(encrypt(X1,generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_63, c_0_126]), ['final']).
cnf(c_0_149,plain,(message(sent(t,a,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),at),X3)))|~intruder_message(encrypt(triple(a,X1,X2),at))|~intruder_message(X3)|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_131, c_0_70]), c_0_100])]), ['final']).
cnf(c_0_150,plain,(message(sent(t,b,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),at),X3)))|~intruder_message(encrypt(triple(b,X1,X2),at))|~intruder_message(X3)|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_132, c_0_70]), c_0_100])]), ['final']).
cnf(c_0_151,plain,(message(sent(b,t,triple(b,generate_b_nonce(encrypt(X1,generate_key(an_a_nonce))),encrypt(triple(a,encrypt(X1,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X1,generate_key(an_a_nonce)))),bt))))|~intruder_message(X1)|~fresh_to_b(encrypt(X1,generate_key(an_a_nonce)))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_39, c_0_103]), c_0_100])]), ['final']).
cnf(c_0_152,plain,(b_stored(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce))))|~fresh_to_b(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_63, c_0_109]), ['final']).
cnf(c_0_153,plain,(b_holds(key(generate_key(an_a_nonce),X1))|~intruder_message(generate_key(an_a_nonce))|~intruder_message(X1)|~fresh_to_b(generate_key(an_a_nonce))|~party_of_protocol(X1)), inference(spm,[status(thm)],[c_0_133, c_0_91]), ['final']).
cnf(c_0_154,plain,(intruder_message(X1)|~fresh_intruder_nonce(X1)), inference(split_conjunct,[status(thm)],[c_0_125]), ['final']).
cnf(c_0_155,plain,(b_stored(pair(X1,encrypt(X2,generate_key(an_a_nonce))))|~intruder_message(X2)|~intruder_message(X1)|~fresh_to_b(encrypt(X2,generate_key(an_a_nonce)))|~party_of_protocol(X1)), inference(spm,[status(thm)],[c_0_63, c_0_118]), ['final']).
cnf(c_0_156,plain,(b_stored(pair(a,encrypt(X1,generate_key(an_a_nonce))))|~intruder_message(X1)|~fresh_to_b(encrypt(X1,generate_key(an_a_nonce)))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_51, c_0_103]), c_0_100])]), ['final']).
cnf(c_0_157,plain,(intruder_message(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)|~intruder_message(X2)), inference(spm,[status(thm)],[c_0_108, c_0_118])).
cnf(c_0_158,plain,(b_holds(key(X1,X2))|~intruder_message(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt))|~intruder_message(X3)|~intruder_message(X2)|~intruder_message(X1)|~intruder_message(X4)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)|~party_of_protocol(X4)), inference(spm,[status(thm)],[c_0_127, c_0_120]), ['final']).
cnf(c_0_159,plain,(b_holds(key(X1,X2))|~intruder_message(encrypt(triple(X2,X1,generate_expiration_time(an_a_nonce)),bt))|~intruder_message(X2)|~intruder_message(X1)|~a_key(X1)|~party_of_protocol(X2)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_127, c_0_134]), c_0_124]), c_0_41])]), ['final']).
cnf(c_0_160,plain,(b_holds(key(X1,a))|~intruder_message(encrypt(triple(a,X1,generate_expiration_time(an_a_nonce)),bt))|~intruder_message(X1)|~a_key(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_135, c_0_134])]), ['final']).
cnf(c_0_161,plain,(a_holds(key(X1,b))|~intruder_message(encrypt(quadruple(b,an_a_nonce,X1,X2),at))|~intruder_message(X3)|~intruder_message(X4)), inference(spm,[status(thm)],[c_0_136, c_0_70]), ['final']).
fof(c_0_162, plain, (![X5]:![X6]:![X7]:![X8]:((((~intruder_message(X5)|~intruder_message(X6))|~intruder_message(X7))|~intruder_message(X8))|intruder_message(quadruple(X5,X6,X7,X8)))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_composes_quadruples])])).
fof(c_0_163, plain, (![X4]:![X5]:![X6]:(((~intruder_message(encrypt(X4,X5))|~intruder_holds(key(X5,X6)))|~party_of_protocol(X6))|intruder_message(X5))), inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_interception])])])])).
fof(c_0_164, plain, (![X5]:![X6]:![X7]:![X8]:((((intruder_message(X5)|~intruder_message(quadruple(X5,X6,X7,X8)))&(intruder_message(X6)|~intruder_message(quadruple(X5,X6,X7,X8))))&(intruder_message(X7)|~intruder_message(quadruple(X5,X6,X7,X8))))&(intruder_message(X8)|~intruder_message(quadruple(X5,X6,X7,X8))))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_decomposes_quadruples])])])).
cnf(c_0_165,plain,(fresh_intruder_nonce(generate_intruder_nonce(X1))|~fresh_intruder_nonce(X1)), inference(split_conjunct,[status(thm)],[c_0_137]), ['final']).
fof(c_0_166, plain, (![X2]:(~a_key(X2)|~a_nonce(X2))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[nothing_is_a_nonce_and_a_key])])).
fof(c_0_167, plain, (![X2]:~a_nonce(generate_key(X2))), inference(variable_rename,[status(thm)],[inference(fof_simplification,[status(thm)],[generated_keys_are_not_nonces])])).
cnf(c_0_168,plain,(b_holds(key(generate_key(an_a_nonce),b))|~intruder_message(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_138, c_0_130]), c_0_71]), c_0_43]), c_0_124]), c_0_57]), c_0_41])])).
fof(c_0_169, plain, (![X2]:![X2]:(a_nonce(generate_expiration_time(X2))&a_nonce(generate_b_nonce(X2)))), inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[generated_times_and_nonces_are_nonces])])])).
cnf(c_0_170,plain,(fresh_intruder_nonce(an_intruder_nonce)), inference(split_conjunct,[status(thm)],[an_intruder_nonce_is_a_fresh_intruder_nonce]), ['final']).
cnf(c_0_171,plain,(message(sent(b,t,triple(b,generate_b_nonce(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce))),encrypt(triple(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)),generate_expiration_time(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))),bt))))|~fresh_intruder_nonce(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_139, c_0_140]), ['final']).
cnf(c_0_172,plain,(message(sent(b,t,triple(b,generate_b_nonce(encrypt(X1,generate_key(an_a_nonce))),encrypt(triple(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(X1,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X1,generate_key(an_a_nonce)))),bt))))|~fresh_intruder_nonce(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_141, c_0_140]), ['final']).
cnf(c_0_173,plain,(intruder_message(triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),at),encrypt(triple(a,generate_key(X1),generate_expiration_time(X1)),bt),X2))|~intruder_message(X2)|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_49, c_0_142]), ['final']).
cnf(c_0_174,plain,(intruder_message(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),at))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_60, c_0_129]), ['final']).
cnf(c_0_175,plain,(b_holds(key(generate_key(X1),a))|~intruder_message(generate_key(X1))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_143, c_0_144]), c_0_100]), c_0_119]), c_0_67])]), ['final']).
cnf(c_0_176,plain,(b_holds(key(X1,X2))|~intruder_message(triple(X2,X1,generate_expiration_time(X3)))|~intruder_message(bt)|~intruder_message(X3)|~a_nonce(X3)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)), inference(csr,[status(thm)],[inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_143, c_0_112]), c_0_105]), c_0_60]), ['final']).
cnf(c_0_177,plain,(b_holds(key(generate_key(X1),b))|~intruder_message(generate_key(X1))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_143, c_0_145]), c_0_71]), c_0_119]), c_0_43])]), ['final']).
cnf(c_0_178,plain,(intruder_message(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),bt))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_146, c_0_81]), ['final']).
cnf(c_0_179,plain,(message(sent(b,t,triple(b,generate_b_nonce(encrypt(X1,generate_key(an_a_nonce))),encrypt(triple(X2,encrypt(X1,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X1,generate_key(an_a_nonce)))),bt))))|~fresh_intruder_nonce(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)|~intruder_message(X2)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_147, c_0_140]), ['final']).
cnf(c_0_180,plain,(b_stored(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(X1,generate_key(an_a_nonce))))|~fresh_intruder_nonce(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_148, c_0_140]), ['final']).
cnf(c_0_181,plain,(intruder_message(triple(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at),encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),X1))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_49, c_0_96]), ['final']).
cnf(c_0_182,plain,(message(sent(t,a,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),at),X3)))|~intruder_message(triple(a,X1,X2))|~intruder_message(at)|~intruder_message(X3)|~a_nonce(X1)), inference(spm,[status(thm)],[c_0_149, c_0_112]), ['final']).
cnf(c_0_183,plain,(message(sent(t,b,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),at),X3)))|~intruder_message(triple(b,X1,X2))|~intruder_message(at)|~intruder_message(X3)|~a_nonce(X1)), inference(spm,[status(thm)],[c_0_150, c_0_112]), ['final']).
cnf(c_0_184,plain,(message(sent(b,t,triple(b,generate_b_nonce(encrypt(X1,generate_key(an_a_nonce))),encrypt(triple(a,encrypt(X1,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X1,generate_key(an_a_nonce)))),bt))))|~fresh_intruder_nonce(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_151, c_0_140]), ['final']).
cnf(c_0_185,plain,(message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),bt),X3)))|~intruder_message(triple(a,X1,X2))|~intruder_message(bt)|~intruder_message(X3)|~a_nonce(X1)), inference(spm,[status(thm)],[c_0_83, c_0_112]), ['final']).
cnf(c_0_186,plain,(b_stored(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce))))|~fresh_intruder_nonce(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_152, c_0_140]), ['final']).
cnf(c_0_187,plain,(b_holds(key(generate_key(an_a_nonce),X1))|~intruder_message(triple(X1,generate_key(an_a_nonce),generate_expiration_time(X2)))|~intruder_message(bt)|~intruder_message(X2)|~fresh_to_b(X2)|~party_of_protocol(X1)), inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_133, c_0_112]), c_0_60]), ['final']).
cnf(c_0_188,plain,(b_holds(key(generate_key(an_a_nonce),X1))|~fresh_intruder_nonce(generate_key(an_a_nonce))|~intruder_message(X1)|~party_of_protocol(X1)), inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_153, c_0_140]), c_0_154]), ['final']).
cnf(c_0_189,plain,(b_stored(pair(X1,encrypt(X2,generate_key(an_a_nonce))))|~fresh_intruder_nonce(encrypt(X2,generate_key(an_a_nonce)))|~intruder_message(X2)|~intruder_message(X1)|~party_of_protocol(X1)), inference(spm,[status(thm)],[c_0_155, c_0_140]), ['final']).
cnf(c_0_190,plain,(b_stored(pair(a,encrypt(X1,generate_key(an_a_nonce))))|~fresh_intruder_nonce(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_156, c_0_140]), ['final']).
cnf(c_0_191,plain,(intruder_message(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_157, c_0_81]), ['final']).
cnf(c_0_192,plain,(b_holds(key(generate_key(an_a_nonce),X1))|~intruder_message(triple(X1,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)))|~intruder_message(bt)|~party_of_protocol(X1)), inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_138, c_0_112]), c_0_60]), ['final']).
cnf(c_0_193,plain,(message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),bt),X3)))|~intruder_message(triple(b,X1,X2))|~intruder_message(bt)|~intruder_message(X3)|~a_nonce(X1)), inference(spm,[status(thm)],[c_0_90, c_0_112]), ['final']).
cnf(c_0_194,plain,(b_holds(key(X1,X2))|~intruder_message(triple(X2,X1,generate_expiration_time(X3)))|~intruder_message(bt)|~intruder_message(X3)|~intruder_message(X4)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)|~party_of_protocol(X4)), inference(csr,[status(thm)],[inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_158, c_0_112]), c_0_105]), c_0_60]), ['final']).
cnf(c_0_195,plain,(b_holds(key(X1,X2))|~intruder_message(X1)|~intruder_message(X2)|~intruder_message(X3)|~a_key(X1)|~fresh_to_b(X1)|~party_of_protocol(X2)|~party_of_protocol(X3)), inference(spm,[status(thm)],[c_0_158, c_0_91]), ['final']).
cnf(c_0_196,plain,(b_holds(key(an_a_nonce,X1))|~intruder_message(X1)|~a_key(an_a_nonce)|~party_of_protocol(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_159, c_0_91]), c_0_124]), c_0_41])]), ['final']).
cnf(c_0_197,plain,(b_holds(key(X1,X2))|~intruder_message(triple(X2,X1,generate_expiration_time(an_a_nonce)))|~intruder_message(bt)|~a_key(X1)|~party_of_protocol(X2)), inference(csr,[status(thm)],[inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_159, c_0_112]), c_0_105]), c_0_60]), ['final']).
cnf(c_0_198,plain,(b_holds(key(X1,a))|~intruder_message(triple(a,X1,generate_expiration_time(an_a_nonce)))|~intruder_message(bt)|~a_key(X1)), inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_160, c_0_112]), c_0_105]), ['final']).
cnf(c_0_199,plain,(b_holds(key(an_a_nonce,a))|~a_key(an_a_nonce)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_160, c_0_84]), c_0_124])]), ['final']).
cnf(c_0_200,plain,(message(sent(a,b,pair(X1,encrypt(X2,X3))))|~intruder_message(quadruple(b,an_a_nonce,X3,X4))|~intruder_message(at)|~intruder_message(X2)|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_92, c_0_112]), ['final']).
cnf(c_0_201,plain,(a_holds(key(X1,b))|~intruder_message(quadruple(b,an_a_nonce,X1,X2))|~intruder_message(at)|~intruder_message(X3)|~intruder_message(X4)), inference(spm,[status(thm)],[c_0_161, c_0_112]), ['final']).
cnf(c_0_202,plain,(intruder_message(quadruple(X1,X2,X3,X4))|~intruder_message(X4)|~intruder_message(X3)|~intruder_message(X2)|~intruder_message(X1)), inference(split_conjunct,[status(thm)],[c_0_162]), ['final']).
cnf(c_0_203,plain,(intruder_message(X1)|~party_of_protocol(X2)|~intruder_holds(key(X1,X2))|~intruder_message(encrypt(X3,X1))), inference(split_conjunct,[status(thm)],[c_0_163]), ['final']).
cnf(c_0_204,plain,(intruder_message(X1)|~intruder_message(quadruple(X1,X2,X3,X4))), inference(split_conjunct,[status(thm)],[c_0_164]), ['final']).
cnf(c_0_205,plain,(intruder_message(X2)|~intruder_message(quadruple(X1,X2,X3,X4))), inference(split_conjunct,[status(thm)],[c_0_164]), ['final']).
cnf(c_0_206,plain,(intruder_message(X3)|~intruder_message(quadruple(X1,X2,X3,X4))), inference(split_conjunct,[status(thm)],[c_0_164]), ['final']).
cnf(c_0_207,plain,(intruder_message(X4)|~intruder_message(quadruple(X1,X2,X3,X4))), inference(split_conjunct,[status(thm)],[c_0_164]), ['final']).
cnf(c_0_208,plain,(intruder_message(generate_intruder_nonce(X1))|~fresh_intruder_nonce(X1)), inference(spm,[status(thm)],[c_0_154, c_0_165]), ['final']).
cnf(c_0_209,plain,(~a_nonce(X1)|~a_key(X1)), inference(split_conjunct,[status(thm)],[c_0_166]), ['final']).
cnf(c_0_210,plain,(~a_nonce(generate_key(X1))), inference(split_conjunct,[status(thm)],[c_0_167]), ['final']).
cnf(c_0_211,plain,(b_holds(key(generate_key(an_a_nonce),b))), inference(spm,[status(thm)],[c_0_168, c_0_81]), ['final']).
cnf(c_0_212,plain,(intruder_message(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_88, c_0_109]), ['final']).
cnf(c_0_213,plain,(b_holds(key(generate_key(an_a_nonce),a))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_85, c_0_95]), c_0_124]), c_0_100]), c_0_119]), c_0_41]), c_0_67])]), ['final']).
cnf(c_0_214,plain,(a_holds(key(generate_key(an_a_nonce),b))), inference(spm,[status(thm)],[c_0_122, c_0_68]), ['final']).
cnf(c_0_215,plain,(b_holds(key(bt,t))), inference(split_conjunct,[status(thm)],[b_hold_key_bt_for_t]), ['final']).
cnf(c_0_216,plain,(a_holds(key(at,t))), inference(split_conjunct,[status(thm)],[a_holds_key_at_for_t]), ['final']).
cnf(c_0_217,plain,(a_nonce(generate_expiration_time(X1))), inference(split_conjunct,[status(thm)],[c_0_169]), ['final']).
cnf(c_0_218,plain,(intruder_message(an_intruder_nonce)), inference(spm,[status(thm)],[c_0_154, c_0_170]), ['final']).
cnf(c_0_219,plain,(a_nonce(generate_b_nonce(X1))), inference(split_conjunct,[status(thm)],[c_0_169]), ['final']).
# SZS output end Saturation

Geo-III 2018C

Hans de Nivelle
Nazarbayev University, Kazakhstan

Sample proof for SEU140+2

Couldn't solve it in 300s

Sample proof for PUZ001+1

% SZS output start Refutation for /tmp/SystemOnTPTP529/PUZ001+1.tptp

RuleSystem INPUT:

Initial Rules:
#0: input, references = 4, size of lhs = 1:
   P_agatha-{F}(V0) | EXISTS V1: pppp0-{T}(V1,V0)
      (used 0 times, uses = {})

#1: input, references = 6, size of lhs = 1:
   pppp0-{F}(V0,V1) | killed-{T}(V0,V1)
      (used 0 times, uses = {})

#2: input, references = 4, size of lhs = 1:
   pppp0-{F}(V0,V1) | lives-{T}(V0)
      (used 0 times, uses = {})

#3: input, references = 3, size of lhs = 1:
   P_agatha-{F}(V0) | lives-{T}(V0)
      (used 0 times, uses = {})

#4: input, references = 3, size of lhs = 2:
   P_agatha-{F}(V0), P_butler-{F}(V1) | lives-{T}(V1)
      (used 0 times, uses = {})

#5: input, references = 3, size of lhs = 3:
   P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2) | lives-{T}(V2)
      (used 0 times, uses = {})

#6: input, references = 4, size of lhs = 7:
   P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2), lives-{F}(V3), V3 == V0, V3 == V1, V3 == V2 | FALSE
      (used 0 times, uses = {})

#7: input, references = 4, size of lhs = 4:
   P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2), killed-{F}(V3,V4) | hates-{T}(V3,V4)
      (used 0 times, uses = {})

#8: input, references = 4, size of lhs = 5:
   P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2), killed-{F}(V3,V4), richer-{F}(V3,V4) | FALSE
      (used 0 times, uses = {})

#9: input, references = 4, size of lhs = 5:
   P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2), hates-{F}(V0,V3), hates-{F}(V2,V3) | FALSE
      (used 0 times, uses = {})

#10: input, references = 5, size of lhs = 5:
   P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2), #-{F} V3, V3 == V1 | hates-{T}(V0,V3)
      (used 0 times, uses = {})

#11: input, references = 5, size of lhs = 4:
   P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2), #-{F} V3 | richer-{T}(V3,V0), hates-{T}(V1,V3)
      (used 0 times, uses = {})

#12: input, references = 4, size of lhs = 4:
   P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2), hates-{F}(V0,V3) | hates-{T}(V1,V3)
      (used 0 times, uses = {})

#13: input, references = 4, size of lhs = 4:
   P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2), #-{F} V3 | EXISTS V4: pppp1-{T}(V3,V4)
      (used 0 times, uses = {})

#14: input, references = 4, size of lhs = 2:
   pppp1-{F}(V0,V1), hates-{F}(V0,V1) | FALSE
      (used 0 times, uses = {})

#15: input, references = 4, size of lhs = 3:
   P_agatha-{F}(V1), P_butler-{F}(V1), P_charles-{F}(V2) | FALSE
      (used 0 times, uses = {})

#16: input, references = 4, size of lhs = 4:
   P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2), killed-{F}(V0,V0) | FALSE
      (used 0 times, uses = {})

#17: input, references = 4, size of lhs = 0:
   FALSE | EXISTS V0: P_agatha-{T}(V0)
      (used 0 times, uses = {})

#18: input, references = 4, size of lhs = 0:
   FALSE | EXISTS V0: P_butler-{T}(V0)
      (used 0 times, uses = {})

#19: input, references = 5, size of lhs = 0:
   FALSE | EXISTS V0: P_charles-{T}(V0)
      (used 0 times, uses = {})

number of initial rules = 20

Simplifiers:
#20: unsound, references = 3, size of lhs = 3:
   killed-{F}(V0,V1), killed-{F}(V2,V1), V0 == V2 | FALSE
      (used 0 times, uses = {})

#21: unsound, references = 3, size of lhs = 3:
   killed-{F}(V0,V1), killed-{F}(V2,V3), V1 == V3 | FALSE
      (used 0 times, uses = {})

#22: unsound, references = 3, size of lhs = 3:
   richer-{F}(V0,V1), richer-{F}(V2,V3), V1 == V3 | FALSE
      (used 0 times, uses = {})

#23: unsound, references = 3, size of lhs = 3:
   P_agatha-{F}(V0), P_agatha-{F}(V1), V0 == V1 | FALSE
      (used 0 times, uses = {})

#24: unsound, references = 3, size of lhs = 3:
   P_butler-{F}(V0), P_butler-{F}(V1), V0 == V1 | FALSE
      (used 0 times, uses = {})

#25: unsound, references = 3, size of lhs = 3:
   P_charles-{F}(V0), P_charles-{F}(V1), V0 == V1 | FALSE
      (used 0 times, uses = {})

#26: unsound, references = 3, size of lhs = 3:
   pppp0-{F}(V0,V1), pppp0-{F}(V2,V1), V0 == V2 | FALSE
      (used 0 times, uses = {})

#27: unsound, references = 3, size of lhs = 3:
   pppp0-{F}(V0,V1), pppp0-{F}(V2,V3), V1 == V3 | FALSE
      (used 0 times, uses = {})

#28: unsound, references = 3, size of lhs = 3:
   pppp1-{F}(V0,V1), pppp1-{F}(V0,V3), V1 == V3 | FALSE
      (used 0 times, uses = {})

number of simplifiers = 9

Learnt:
#30: exists( #19, #15 ), references = 2, size of lhs = 2:
   P_agatha-{F}(V0), P_butler-{F}(V0) | FALSE
      (used 0 times, uses = {})

#38: mergings( V0 == V4, V1 == V5, V2 == V6; #34 ), references = 1, size of lhs = 4:
   P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2), killed-{F}(V3,V0) | hates-{T}(V1,V3)
      (used 0 times, uses = {})

#47: mergings( V0 == V7, V1 == V5, V5 == V3, V2 == V6, V6 == V8; #41 ), references = 1, size of lhs = 3:
   P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2) | pppp1-{T}(V1,V1)
      (used 0 times, uses = {})

#49: disj( #11, input ), references = 1, size of lhs = 4:
   P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2), pppp1-{F}(V1,V3) | richer-{T}(V3,V0)
      (used 0 times, uses = {})

#53: mergings( V0 == V2; #51 ), references = 1, size of lhs = 3:
   P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2) | pppp0-{T}(V0,V0), pppp0-{T}(V1,V0), pppp0-{T}(V2,V0)
      (used 0 times, uses = {})

#65: mergings( V0 == V5, V5 == V8, V1 == V3, V3 == V6, V6 == V9, V4 == V7, V7 == V2; #57 ), references = 1, size of lhs = 4:
   P_agatha-{F}(V0), hates-{F}(V0,V0), P_butler-{F}(V1), P_charles-{F}(V2) | pppp0-{T}(V1,V0)
      (used 0 times, uses = {})

#84: mergings( V2 == V4, V4 == V7, V7 == V9, V9 == V11, V11 == V13, V1 == V3, V3 == V5, V5 == V6, V6 == V8, V8 == V10, V10 == V12, V12 == V14; #71 ), references = 1, size of lhs = 3:
   P_agatha-{F}(V0), P_butler-{F}(V1), V0 == V1 | FALSE
      (used 0 times, uses = {})

#91: mergings( V1 == V2, V2 == V3, V3 == V4, V4 == V5, V5 == V6; #85 ), references = 1, size of lhs = 1:
   P_agatha-{F}(V0) | P_butler-{T}(V0)
      (used 0 times, uses = {})

#94: exists( #17, #92 ), references = 1, size of lhs = 0:
   FALSE | FALSE
      (used 0 times, uses = {})

number of learnt formulas = 9


% SZS output end Refutation for /tmp/SystemOnTPTP529/PUZ001+1.tptp

Sample proof for NLP042+1

% SZS output start Model for /tmp/SystemOnTPTP436/NLP042+1.tptp

Interpretation 3:
Guesses:
0 : guesser 1, 0, ( | 1, 0 ), 0, 0s old, 0 lemmas
1 : guesser 4, 2, ( | 1, 2, 0 ), 0, 0s old, 0 lemmas
2 : guesser 17, 15, ( 1 | 2, 0 ), 0, 0s old, 1 lemmas
3 : guesser 29, 26, ( 2, 1 | 3, 0 ), 1, 0s old, 2 lemmas
4 : guesser 45, 41, ( | 0, 3, 2, 4, 1 ), 3, 0s old, 0 lemmas

Elements:
   { E0, E1, E2, E3 }

Atoms:
0 : #-{T} E0                     { }
1 : #-{T} E1                     { 0 }
2 : pppp5-{T}(E1)                     { 0 }
3 : actual_world-{T}(E1)                     { 0 }
4 : pppp4-{T}(E1,E1)                     { 0, 1 }
5 : pppp3-{T}(E1,E1)                     { 0, 1 }
6 : order-{T}(E1,E1)                     { 0, 1 }
7 : nonreflexive-{T}(E1,E1)                     { 0, 1 }
8 : past-{T}(E1,E1)                     { 0, 1 }
9 : event-{T}(E1,E1)                     { 0, 1 }
10 : act-{T}(E1,E1)                     { 0, 1 }
11 : eventuality-{T}(E1,E1)                     { 0, 1 }
12 : unisex-{T}(E1,E1)                     { 0, 1 }
13 : nonexistent-{T}(E1,E1)                     { 0, 1 }
14 : specific-{T}(E1,E1)                     { 0, 1 }
15 : thing-{T}(E1,E1)                     { 0, 1 }
16 : singleton-{T}(E1,E1)                     { 0, 1 }
17 : #-{T} E2                     { 0, 1, 2 }
18 : pppp2-{T}(E1,E2,E1)                     { 0, 1, 2 }
19 : forename-{T}(E1,E2)                     { 0, 1, 2 }
20 : mia_forename-{T}(E1,E2)                     { 0, 1, 2 }
21 : relname-{T}(E1,E2)                     { 0, 1, 2 }
22 : relation-{T}(E1,E2)                     { 0, 1, 2 }
23 : abstraction-{T}(E1,E2)                     { 0, 1, 2 }
24 : unisex-{T}(E1,E2)                     { 0, 1, 2 }
25 : general-{T}(E1,E2)                     { 0, 1, 2 }
26 : nonhuman-{T}(E1,E2)                     { 0, 1, 2 }
27 : thing-{T}(E1,E2)                     { 0, 1, 2 }
28 : singleton-{T}(E1,E2)                     { 0, 1, 2 }
29 : #-{T} E3                     { 0, 1, 3 }
30 : pppp0-{T}(E1,E3,E1)                     { 0, 1, 3 }
31 : patient-{T}(E1,E1,E3)                     { 0, 1, 3 }
32 : shake_beverage-{T}(E1,E3)                     { 0, 1, 3 }
33 : beverage-{T}(E1,E3)                     { 0, 1, 3 }
34 : food-{T}(E1,E3)                     { 0, 1, 3 }
35 : substance_matter-{T}(E1,E3)                     { 0, 1, 3 }
36 : object-{T}(E1,E3)                     { 0, 1, 3 }
37 : unisex-{T}(E1,E3)                     { 0, 1, 3 }
38 : impartial-{T}(E1,E3)                     { 0, 1, 3 }
39 : nonliving-{T}(E1,E3)                     { 0, 1, 3 }
40 : entity-{T}(E1,E3)                     { 0, 1, 3 }
41 : existent-{T}(E1,E3)                     { 0, 1, 3 }
42 : specific-{T}(E1,E3)                     { 0, 1, 3 }
43 : thing-{T}(E1,E3)                     { 0, 1, 3 }
44 : singleton-{T}(E1,E3)                     { 0, 1, 3 }
45 : pppp1-{T}(E1,E0,E2,E1)                     { 0, 1, 2, 4 }
46 : agent-{T}(E1,E1,E0)                     { 0, 1, 2, 4 }
47 : woman-{T}(E1,E0)                     { 0, 1, 2, 4 }
48 : of-{T}(E1,E2,E0)                     { 0, 1, 2, 4 }
49 : female-{T}(E1,E0)                     { 0, 1, 2, 4 }
50 : human_person-{T}(E1,E0)                     { 0, 1, 2, 4 }
51 : animate-{T}(E1,E0)                     { 0, 1, 2, 4 }
52 : human-{T}(E1,E0)                     { 0, 1, 2, 4 }
53 : organism-{T}(E1,E0)                     { 0, 1, 2, 4 }
54 : living-{T}(E1,E0)                     { 0, 1, 2, 4 }
55 : impartial-{T}(E1,E0)                     { 0, 1, 2, 4 }
56 : entity-{T}(E1,E0)                     { 0, 1, 2, 4 }
57 : existent-{T}(E1,E0)                     { 0, 1, 2, 4 }
58 : specific-{T}(E1,E0)                     { 0, 1, 2, 4 }
59 : thing-{T}(E1,E0)                     { 0, 1, 2, 4 }
60 : singleton-{T}(E1,E0)                     { 0, 1, 2, 4 }


% SZS output end Model for /tmp/SystemOnTPTP436/NLP042+1.tptp

Sample proof for SWV017+1

% SZS output start Model for /tmp/SystemOnTPTP484/SWV017+1.tptp

Interpretation 18:
Guesses:
0 : guesser 1, 0, ( | 1, 0 ), 0, 1s old, 0 lemmas
1 : guesser 3, 1, ( | 1, 2, 0 ), 0, 1s old, 0 lemmas
2 : guesser 4, 2, ( | 1, 2, 0 ), 0, 1s old, 0 lemmas
3 : guesser 5, 3, ( | 1, 2, 0 ), 0, 1s old, 0 lemmas
4 : guesser 6, 4, ( | 0, 2, 1 ), 0, 1s old, 0 lemmas
5 : guesser 7, 5, ( | 0, 2, 1 ), 0, 1s old, 0 lemmas
6 : guesser 8, 6, ( | 0, 2, 1 ), 0, 1s old, 0 lemmas
7 : guesser 9, 7, ( | 0, 2, 1 ), 0, 1s old, 0 lemmas
8 : guesser 10, 8, ( | 0, 2, 1 ), 0, 1s old, 0 lemmas
9 : guesser 11, 9, ( | 1, 2, 0 ), 0, 1s old, 0 lemmas
10 : guesser 12, 10, ( | 1, 2, 0 ), 0, 1s old, 0 lemmas
11 : guesser 13, 11, ( | 0, 2, 1 ), 0, 1s old, 0 lemmas
12 : guesser 14, 12, ( | 1, 2, 0 ), 0, 1s old, 0 lemmas
13 : guesser 15, 13, ( | 0, 2, 1 ), 0, 1s old, 0 lemmas
14 : guesser 16, 14, ( | 0, 2, 1 ), 0, 1s old, 0 lemmas
15 : guesser 17, 15, ( | 1, 2, 0 ), 0, 1s old, 0 lemmas
16 : guesser 18, 16, ( | 1, 2, 0 ), 0, 1s old, 0 lemmas
17 : guesser 19, 17, ( 1 | 2, 0 ), 0, 1s old, 2 lemmas
18 : guesser 21, 18, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
19 : guesser 22, 19, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
20 : guesser 23, 20, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
21 : guesser 24, 21, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
22 : guesser 25, 22, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
23 : guesser 26, 23, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
24 : guesser 27, 24, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
25 : guesser 28, 25, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
26 : guesser 29, 26, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
27 : guesser 30, 27, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
28 : guesser 33, 30, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
29 : guesser 34, 31, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
30 : guesser 35, 32, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
31 : guesser 36, 33, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
32 : guesser 37, 34, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
33 : guesser 38, 35, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
34 : guesser 39, 36, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
35 : guesser 40, 37, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
36 : guesser 41, 38, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
37 : guesser 42, 39, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
38 : guesser 43, 40, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
39 : guesser 44, 41, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
40 : guesser 45, 42, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
41 : guesser 46, 43, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
42 : guesser 47, 44, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
43 : guesser 48, 45, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
44 : guesser 49, 46, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
45 : guesser 50, 47, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
46 : guesser 51, 48, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
47 : guesser 52, 49, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
48 : guesser 53, 50, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
49 : guesser 54, 51, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
50 : guesser 55, 52, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
51 : guesser 56, 53, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
52 : guesser 57, 54, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
53 : guesser 58, 55, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
54 : guesser 59, 56, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
55 : guesser 60, 57, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
56 : guesser 61, 58, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
57 : guesser 62, 59, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
58 : guesser 63, 60, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
59 : guesser 64, 61, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
60 : guesser 65, 62, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
61 : guesser 66, 63, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
62 : guesser 67, 64, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
63 : guesser 68, 65, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
64 : guesser 69, 66, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
65 : guesser 70, 67, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
66 : guesser 71, 68, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
67 : guesser 72, 69, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
68 : guesser 73, 70, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
69 : guesser 74, 71, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
70 : guesser 75, 72, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
71 : guesser 76, 73, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
72 : guesser 77, 74, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
73 : guesser 78, 75, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
74 : guesser 79, 76, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
75 : guesser 80, 77, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
76 : guesser 81, 78, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
77 : guesser 82, 79, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
78 : guesser 83, 80, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
79 : guesser 84, 81, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
80 : guesser 85, 82, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
81 : guesser 86, 83, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
82 : guesser 87, 84, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
83 : guesser 88, 85, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
84 : guesser 89, 86, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
85 : guesser 90, 87, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
86 : guesser 91, 88, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
87 : guesser 92, 89, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
88 : guesser 93, 90, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
89 : guesser 94, 91, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
90 : guesser 95, 92, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
91 : guesser 96, 93, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
92 : guesser 122, 119, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
93 : guesser 123, 120, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
94 : guesser 126, 123, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
95 : guesser 127, 124, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
96 : guesser 128, 125, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
97 : guesser 129, 126, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
98 : guesser 130, 127, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
99 : guesser 131, 128, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
100 : guesser 132, 129, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
101 : guesser 133, 130, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
102 : guesser 134, 131, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
103 : guesser 135, 132, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
104 : guesser 136, 133, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
105 : guesser 137, 134, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
106 : guesser 138, 135, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
107 : guesser 139, 136, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
108 : guesser 140, 137, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
109 : guesser 141, 138, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
110 : guesser 142, 139, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
111 : guesser 143, 140, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
112 : guesser 144, 141, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
113 : guesser 145, 142, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
114 : guesser 146, 143, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
115 : guesser 147, 144, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
116 : guesser 148, 145, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
117 : guesser 150, 147, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
118 : guesser 151, 148, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
119 : guesser 152, 149, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
120 : guesser 153, 150, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
121 : guesser 154, 151, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
122 : guesser 155, 152, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
123 : guesser 156, 153, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
124 : guesser 157, 154, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
125 : guesser 158, 155, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
126 : guesser 159, 156, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
127 : guesser 160, 157, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
128 : guesser 161, 158, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
129 : guesser 162, 159, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
130 : guesser 163, 160, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
131 : guesser 164, 161, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
132 : guesser 165, 162, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
133 : guesser 166, 163, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
134 : guesser 167, 164, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
135 : guesser 168, 165, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
136 : guesser 169, 166, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
137 : guesser 170, 167, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
138 : guesser 172, 169, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
139 : guesser 173, 170, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
140 : guesser 174, 171, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
141 : guesser 175, 172, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
142 : guesser 176, 173, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
143 : guesser 177, 174, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
144 : guesser 178, 175, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
145 : guesser 179, 176, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
146 : guesser 180, 177, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
147 : guesser 181, 178, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
148 : guesser 182, 179, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
149 : guesser 183, 180, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
150 : guesser 184, 181, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
151 : guesser 185, 182, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
152 : guesser 186, 183, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
153 : guesser 187, 184, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
154 : guesser 188, 185, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
155 : guesser 189, 186, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
156 : guesser 190, 187, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
157 : guesser 191, 188, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
158 : guesser 192, 189, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
159 : guesser 193, 190, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
160 : guesser 194, 191, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
161 : guesser 195, 192, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
162 : guesser 196, 193, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
163 : guesser 197, 194, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
164 : guesser 198, 195, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
165 : guesser 199, 196, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
166 : guesser 200, 197, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
167 : guesser 201, 198, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
168 : guesser 202, 199, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
169 : guesser 203, 200, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
170 : guesser 204, 201, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
171 : guesser 205, 202, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
172 : guesser 206, 203, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
173 : guesser 207, 204, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
174 : guesser 208, 205, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
175 : guesser 209, 206, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
176 : guesser 210, 207, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
177 : guesser 211, 208, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
178 : guesser 212, 209, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
179 : guesser 213, 210, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
180 : guesser 214, 211, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas

Elements:
   { E0, E1, E2 }

Atoms:
0 : #-{T} E0                     { }
1 : #-{T} E1                     { 0 }
2 : P_at-{T}(E1)                     { 0 }
3 : P_t-{T}(E1)                     { 1 }
4 : P_a-{T}(E1)                     { 2 }
5 : P_b-{T}(E1)                     { 3 }
6 : P_an_a_nonce-{T}(E0)                     { 4 }
7 : P_bt-{T}(E0)                     { 5 }
8 : P_an_intruder_nonce-{T}(E0)                     { 6 }
9 : P_generate_b_nonce-{T}(E0,E0)                     { 7 }
10 : P_generate_expiration_time-{T}(E0,E0)                     { 8 }
11 : P_generate_key-{T}(E0,E1)                     { 9 }
12 : P_generate_intruder_nonce-{T}(E0,E1)                     { 10 }
13 : P_key-{T}(E0,E0,E0)                     { 11 }
14 : P_pair-{T}(E0,E0,E1)                     { 12 }
15 : P_encrypt-{T}(E0,E0,E0)                     { 13 }
16 : P_sent-{T}(E0,E0,E0,E0)                     { 14 }
17 : P_triple-{T}(E0,E0,E0,E1)                     { 15 }
18 : P_quadruple-{T}(E0,E0,E0,E0,E1)                     { 16 }
19 : #-{T} E2                     { 0, 17 }
20 : P_generate_b_nonce-{T}(E1,E2)                     { 0, 17 }
21 : P_generate_expiration_time-{T}(E1,E0)                     { 0, 18 }
22 : P_generate_key-{T}(E1,E1)                     { 0, 19 }
23 : P_generate_intruder_nonce-{T}(E1,E2)                     { 0, 20 }
24 : P_key-{T}(E0,E1,E2)                     { 0, 21 }
25 : P_pair-{T}(E0,E1,E0)                     { 0, 22 }
26 : P_encrypt-{T}(E0,E1,E0)                     { 0, 23 }
27 : P_key-{T}(E1,E0,E1)                     { 0, 24 }
28 : P_pair-{T}(E1,E0,E2)                     { 0, 25 }
29 : P_encrypt-{T}(E1,E0,E2)                     { 0, 26 }
30 : P_key-{T}(E1,E1,E1)                     { 0, 27 }
31 : a_holds-{T}(E1)                     { 0, 1, 27 }
32 : party_of_protocol-{T}(E1)                     { 0, 1, 2, 27 }
33 : P_pair-{T}(E1,E1,E2)                     { 0, 28 }
34 : P_encrypt-{T}(E1,E1,E2)                     { 0, 29 }
35 : P_sent-{T}(E0,E0,E1,E2)                     { 0, 30 }
36 : P_sent-{T}(E0,E1,E0,E0)                     { 0, 31 }
37 : P_triple-{T}(E0,E0,E1,E0)                     { 0, 32 }
38 : P_quadruple-{T}(E0,E0,E0,E1,E1)                     { 0, 33 }
39 : P_sent-{T}(E0,E1,E1,E1)                     { 0, 34 }
40 : P_triple-{T}(E0,E1,E0,E0)                     { 0, 35 }
41 : P_quadruple-{T}(E0,E0,E1,E0,E1)                     { 0, 36 }
42 : P_sent-{T}(E1,E0,E0,E2)                     { 0, 37 }
43 : P_triple-{T}(E0,E1,E1,E2)                     { 0, 38 }
44 : P_quadruple-{T}(E0,E0,E1,E1,E0)                     { 0, 39 }
45 : P_sent-{T}(E1,E0,E1,E0)                     { 0, 40 }
46 : P_triple-{T}(E1,E0,E0,E1)                     { 0, 41 }
47 : P_quadruple-{T}(E0,E1,E0,E0,E1)                     { 0, 42 }
48 : P_sent-{T}(E1,E1,E0,E0)                     { 0, 43 }
49 : P_triple-{T}(E1,E0,E1,E0)                     { 0, 44 }
50 : P_quadruple-{T}(E0,E1,E0,E1,E1)                     { 0, 45 }
51 : P_sent-{T}(E1,E1,E1,E1)                     { 0, 46 }
52 : P_triple-{T}(E1,E1,E0,E2)                     { 0, 47 }
53 : P_quadruple-{T}(E0,E1,E1,E0,E2)                     { 0, 48 }
54 : P_triple-{T}(E1,E1,E1,E1)                     { 0, 49 }
55 : P_quadruple-{T}(E0,E1,E1,E1,E2)                     { 0, 50 }
56 : P_generate_b_nonce-{T}(E2,E0)                     { 0, 17, 51 }
57 : P_quadruple-{T}(E1,E0,E0,E0,E1)                     { 0, 52 }
58 : P_generate_expiration_time-{T}(E2,E0)                     { 0, 17, 53 }
59 : P_generate_key-{T}(E2,E1)                     { 0, 17, 54 }
60 : P_quadruple-{T}(E1,E0,E0,E1,E2)                     { 0, 55 }
61 : P_generate_intruder_nonce-{T}(E2,E2)                     { 0, 17, 56 }
62 : P_key-{T}(E0,E2,E1)                     { 0, 17, 57 }
63 : P_quadruple-{T}(E1,E0,E1,E0,E0)                     { 0, 58 }
64 : P_key-{T}(E1,E2,E0)                     { 0, 17, 59 }
65 : P_pair-{T}(E0,E2,E0)                     { 0, 17, 60 }
66 : P_quadruple-{T}(E1,E0,E1,E1,E1)                     { 0, 61 }
67 : P_key-{T}(E2,E0,E2)                     { 0, 17, 62 }
68 : P_pair-{T}(E1,E2,E1)                     { 0, 17, 63 }
69 : P_quadruple-{T}(E1,E1,E0,E0,E0)                     { 0, 64 }
70 : P_key-{T}(E2,E1,E0)                     { 0, 17, 65 }
71 : P_pair-{T}(E2,E0,E0)                     { 0, 17, 66 }
72 : P_quadruple-{T}(E1,E1,E0,E1,E2)                     { 0, 67 }
73 : P_key-{T}(E2,E2,E0)                     { 0, 17, 68 }
74 : P_pair-{T}(E2,E1,E2)                     { 0, 17, 69 }
75 : P_quadruple-{T}(E1,E1,E1,E0,E0)                     { 0, 70 }
76 : P_pair-{T}(E2,E2,E0)                     { 0, 17, 71 }
77 : P_encrypt-{T}(E0,E2,E0)                     { 0, 17, 72 }
78 : P_quadruple-{T}(E1,E1,E1,E1,E2)                     { 0, 73 }
79 : P_encrypt-{T}(E1,E2,E0)                     { 0, 17, 74 }
80 : P_sent-{T}(E0,E0,E2,E1)                     { 0, 17, 75 }
81 : P_encrypt-{T}(E2,E0,E2)                     { 0, 17, 76 }
82 : P_sent-{T}(E0,E1,E2,E1)                     { 0, 17, 77 }
83 : P_triple-{T}(E0,E0,E2,E2)                     { 0, 17, 78 }
84 : P_encrypt-{T}(E2,E1,E0)                     { 0, 17, 79 }
85 : P_sent-{T}(E0,E2,E0,E1)                     { 0, 17, 80 }
86 : P_triple-{T}(E0,E1,E2,E1)                     { 0, 17, 81 }
87 : P_encrypt-{T}(E2,E2,E1)                     { 0, 17, 82 }
88 : P_sent-{T}(E0,E2,E1,E1)                     { 0, 17, 83 }
89 : P_triple-{T}(E0,E2,E0,E0)                     { 0, 17, 84 }
90 : P_sent-{T}(E0,E2,E2,E0)                     { 0, 17, 85 }
91 : P_triple-{T}(E0,E2,E1,E0)                     { 0, 17, 86 }
92 : P_quadruple-{T}(E0,E0,E0,E2,E0)                     { 0, 17, 87 }
93 : P_sent-{T}(E1,E0,E2,E2)                     { 0, 17, 88 }
94 : P_triple-{T}(E0,E2,E2,E2)                     { 0, 17, 89 }
95 : P_quadruple-{T}(E0,E0,E1,E2,E2)                     { 0, 17, 90 }
96 : P_sent-{T}(E1,E1,E2,E0)                     { 0, 17, 91 }
97 : message-{T}(E0)                     { 0, 1, 2, 3, 4, 17, 25, 27, 91 }
98 : a_stored-{T}(E2)                     { 0, 1, 2, 3, 4, 17, 25, 27, 91 }
99 : b_holds-{T}(E2)                     { 0, 1, 2, 3, 4, 5, 17, 21, 25, 27, 91 }
100 : fresh_to_b-{T}(E0)                     { 0, 1, 2, 3, 4, 5, 17, 21, 25, 27, 91 }
101 : t_holds-{T}(E1)                     { 0, 1, 2, 3, 4, 5, 17, 21, 25, 27, 91 }
102 : t_holds-{T}(E2)                     { 0, 1, 2, 3, 4, 5, 17, 21, 25, 27, 91 }
103 : a_nonce-{T}(E0)                     { 0, 1, 2, 3, 4, 5, 17, 21, 25, 27, 91 }
104 : intruder_message-{T}(E2)                     { 0, 1, 2, 3, 4, 5, 17, 21, 25, 27, 91 }
105 : fresh_intruder_nonce-{T}(E0)                     { 0, 1, 2, 3, 4, 5, 6, 17, 21, 25, 27, 91 }
106 : intruder_message-{T}(E1)                     { 0, 1, 2, 3, 4, 5, 17, 21, 25, 27, 91 }
107 : intruder_message-{T}(E0)                     { 0, 1, 2, 3, 4, 5, 17, 21, 25, 27, 91 }
108 : intruder_holds-{T}(E1)                     { 0, 1, 2, 3, 4, 5, 17, 21, 25, 27, 91 }
109 : a_key-{T}(E1)                     { 0, 1, 2, 3, 4, 5, 9, 17, 21, 25, 27, 91 }
110 : fresh_intruder_nonce-{T}(E1)                     { 0, 1, 2, 3, 4, 5, 6, 10, 17, 21, 25, 27, 91 }
111 : intruder_holds-{T}(E2)                     { 0, 1, 2, 3, 4, 5, 17, 21, 25, 27, 91 }
112 : fresh_to_b-{T}(E1)                     { 0, 1, 2, 3, 4, 5, 6, 10, 17, 21, 25, 27, 91 }
113 : a_nonce-{T}(E2)                     { 0, 1, 2, 3, 4, 5, 17, 18, 21, 25, 27, 91 }
114 : fresh_intruder_nonce-{T}(E2)                     { 0, 1, 2, 3, 4, 5, 6, 10, 17, 20, 21, 25, 27, 91 }
115 : message-{T}(E1)                     { 0, 1, 2, 3, 4, 5, 17, 21, 25, 27, 46, 91 }
116 : fresh_to_b-{T}(E2)                     { 0, 1, 2, 3, 4, 5, 6, 10, 17, 20, 21, 25, 27, 91 }
117 : a_holds-{T}(E2)                     { 0, 1, 2, 3, 4, 13, 17, 21, 23, 25, 27, 28, 35, 43, 64, 91 }
118 : intruder_holds-{T}(E0)                     { 0, 1, 2, 3, 4, 5, 17, 21, 25, 27, 65, 91 }
119 : message-{T}(E2)                     { 0, 1, 2, 3, 4, 5, 9, 15, 17, 21, 25, 27, 31, 32, 35, 36, 37, 62, 72, 74, 91 }
120 : b_stored-{T}(E0)                     { 0, 1, 2, 3, 4, 5, 6, 10, 13, 17, 20, 21, 25, 27, 31, 41, 46, 51, 53, 60, 84, 91 }
121 : b_holds-{T}(E1)                     { 0, 1, 2, 3, 4, 5, 6, 9, 10, 12, 13, 17, 20, 21, 23, 24, 25, 27, 31, 34, 35, 41, 46, 51, 53, 60, 84, 91 }
122 : P_sent-{T}(E1,E2,E0,E2)                     { 0, 17, 92 }
123 : P_triple-{T}(E1,E0,E2,E0)                     { 0, 17, 93 }
124 : b_stored-{T}(E2)                     { 0, 1, 2, 3, 4, 5, 7, 8, 17, 21, 25, 26, 27, 41, 43, 91, 93 }
125 : b_stored-{T}(E1)                     { 0, 1, 2, 3, 4, 5, 7, 8, 12, 15, 17, 21, 25, 26, 27, 34, 43, 46, 91, 93 }
126 : P_sent-{T}(E1,E2,E1,E2)                     { 0, 17, 94 }
127 : P_triple-{T}(E1,E1,E2,E1)                     { 0, 17, 95 }
128 : P_quadruple-{T}(E0,E0,E2,E0,E0)                     { 0, 17, 96 }
129 : P_sent-{T}(E1,E2,E2,E2)                     { 0, 17, 97 }
130 : P_triple-{T}(E1,E2,E0,E2)                     { 0, 17, 98 }
131 : P_quadruple-{T}(E0,E0,E2,E1,E1)                     { 0, 17, 99 }
132 : P_sent-{T}(E2,E0,E0,E0)                     { 0, 17, 100 }
133 : P_triple-{T}(E1,E2,E1,E2)                     { 0, 17, 101 }
134 : P_quadruple-{T}(E0,E0,E2,E2,E2)                     { 0, 17, 102 }
135 : P_sent-{T}(E2,E0,E1,E0)                     { 0, 17, 103 }
136 : P_triple-{T}(E1,E2,E2,E1)                     { 0, 17, 104 }
137 : P_quadruple-{T}(E0,E1,E0,E2,E0)                     { 0, 17, 105 }
138 : P_sent-{T}(E2,E0,E2,E1)                     { 0, 17, 106 }
139 : P_triple-{T}(E2,E0,E0,E2)                     { 0, 17, 107 }
140 : P_quadruple-{T}(E0,E1,E1,E2,E0)                     { 0, 17, 108 }
141 : P_sent-{T}(E2,E1,E0,E2)                     { 0, 17, 109 }
142 : P_triple-{T}(E2,E0,E1,E2)                     { 0, 17, 110 }
143 : P_quadruple-{T}(E0,E1,E2,E0,E0)                     { 0, 17, 111 }
144 : P_sent-{T}(E2,E1,E1,E0)                     { 0, 17, 112 }
145 : P_triple-{T}(E2,E0,E2,E2)                     { 0, 17, 113 }
146 : P_quadruple-{T}(E0,E1,E2,E1,E1)                     { 0, 17, 114 }
147 : P_sent-{T}(E2,E1,E2,E1)                     { 0, 17, 115 }
148 : P_triple-{T}(E2,E1,E0,E2)                     { 0, 17, 116 }
149 : b_holds-{T}(E0)                     { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 15, 17, 20, 21, 23, 25, 27, 31, 32, 35, 36, 37, 41, 46, 51, 53, 59, 60, 62, 66, 72, 74, 76, 84, 91, 109, 116 }
150 : P_sent-{T}(E2,E2,E0,E0)                     { 0, 17, 117 }
151 : P_triple-{T}(E2,E1,E1,E2)                     { 0, 17, 118 }
152 : P_quadruple-{T}(E0,E1,E2,E2,E0)                     { 0, 17, 119 }
153 : P_sent-{T}(E2,E2,E1,E1)                     { 0, 17, 120 }
154 : P_triple-{T}(E2,E1,E2,E2)                     { 0, 17, 121 }
155 : P_quadruple-{T}(E0,E2,E0,E0,E0)                     { 0, 17, 122 }
156 : P_sent-{T}(E2,E2,E2,E0)                     { 0, 17, 123 }
157 : P_triple-{T}(E2,E2,E0,E2)                     { 0, 17, 124 }
158 : P_quadruple-{T}(E0,E2,E0,E1,E2)                     { 0, 17, 125 }
159 : P_triple-{T}(E2,E2,E1,E2)                     { 0, 17, 126 }
160 : P_quadruple-{T}(E0,E2,E0,E2,E0)                     { 0, 17, 127 }
161 : P_triple-{T}(E2,E2,E2,E2)                     { 0, 17, 128 }
162 : P_quadruple-{T}(E0,E2,E1,E0,E1)                     { 0, 17, 129 }
163 : P_quadruple-{T}(E0,E2,E1,E1,E2)                     { 0, 17, 130 }
164 : P_quadruple-{T}(E0,E2,E1,E2,E0)                     { 0, 17, 131 }
165 : P_quadruple-{T}(E0,E2,E2,E0,E0)                     { 0, 17, 132 }
166 : P_quadruple-{T}(E0,E2,E2,E1,E0)                     { 0, 17, 133 }
167 : P_quadruple-{T}(E0,E2,E2,E2,E2)                     { 0, 17, 134 }
168 : P_quadruple-{T}(E1,E0,E0,E2,E2)                     { 0, 17, 135 }
169 : P_quadruple-{T}(E1,E0,E1,E2,E1)                     { 0, 17, 136 }
170 : P_quadruple-{T}(E1,E0,E2,E0,E1)                     { 0, 17, 137 }
171 : a_holds-{T}(E0)                     { 0, 1, 2, 3, 4, 12, 17, 25, 27, 29, 46, 65, 72, 91, 107, 137 }
172 : P_quadruple-{T}(E1,E0,E2,E1,E1)                     { 0, 17, 138 }
173 : P_quadruple-{T}(E1,E0,E2,E2,E2)                     { 0, 17, 139 }
174 : P_quadruple-{T}(E1,E1,E0,E2,E0)                     { 0, 17, 140 }
175 : P_quadruple-{T}(E1,E1,E1,E2,E2)                     { 0, 17, 141 }
176 : P_quadruple-{T}(E1,E1,E2,E0,E0)                     { 0, 17, 142 }
177 : P_quadruple-{T}(E1,E1,E2,E1,E0)                     { 0, 17, 143 }
178 : P_quadruple-{T}(E1,E1,E2,E2,E0)                     { 0, 17, 144 }
179 : P_quadruple-{T}(E1,E2,E0,E0,E1)                     { 0, 17, 145 }
180 : P_quadruple-{T}(E1,E2,E0,E1,E0)                     { 0, 17, 146 }
181 : P_quadruple-{T}(E1,E2,E0,E2,E0)                     { 0, 17, 147 }
182 : P_quadruple-{T}(E1,E2,E1,E0,E1)                     { 0, 17, 148 }
183 : P_quadruple-{T}(E1,E2,E1,E1,E2)                     { 0, 17, 149 }
184 : P_quadruple-{T}(E1,E2,E1,E2,E1)                     { 0, 17, 150 }
185 : P_quadruple-{T}(E1,E2,E2,E0,E0)                     { 0, 17, 151 }
186 : P_quadruple-{T}(E1,E2,E2,E1,E2)                     { 0, 17, 152 }
187 : P_quadruple-{T}(E1,E2,E2,E2,E1)                     { 0, 17, 153 }
188 : P_quadruple-{T}(E2,E0,E0,E0,E0)                     { 0, 17, 154 }
189 : P_quadruple-{T}(E2,E0,E0,E1,E0)                     { 0, 17, 155 }
190 : P_quadruple-{T}(E2,E0,E0,E2,E1)                     { 0, 17, 156 }
191 : P_quadruple-{T}(E2,E0,E1,E0,E2)                     { 0, 17, 157 }
192 : P_quadruple-{T}(E2,E0,E1,E1,E0)                     { 0, 17, 158 }
193 : P_quadruple-{T}(E2,E0,E1,E2,E1)                     { 0, 17, 159 }
194 : P_quadruple-{T}(E2,E0,E2,E0,E1)                     { 0, 17, 160 }
195 : P_quadruple-{T}(E2,E0,E2,E1,E0)                     { 0, 17, 161 }
196 : P_quadruple-{T}(E2,E0,E2,E2,E2)                     { 0, 17, 162 }
197 : P_quadruple-{T}(E2,E1,E0,E0,E2)                     { 0, 17, 163 }
198 : P_quadruple-{T}(E2,E1,E0,E1,E2)                     { 0, 17, 164 }
199 : P_quadruple-{T}(E2,E1,E0,E2,E2)                     { 0, 17, 165 }
200 : P_quadruple-{T}(E2,E1,E1,E0,E0)                     { 0, 17, 166 }
201 : P_quadruple-{T}(E2,E1,E1,E1,E1)                     { 0, 17, 167 }
202 : P_quadruple-{T}(E2,E1,E1,E2,E0)                     { 0, 17, 168 }
203 : P_quadruple-{T}(E2,E1,E2,E0,E0)                     { 0, 17, 169 }
204 : P_quadruple-{T}(E2,E1,E2,E1,E0)                     { 0, 17, 170 }
205 : P_quadruple-{T}(E2,E1,E2,E2,E1)                     { 0, 17, 171 }
206 : P_quadruple-{T}(E2,E2,E0,E0,E2)                     { 0, 17, 172 }
207 : P_quadruple-{T}(E2,E2,E0,E1,E0)                     { 0, 17, 173 }
208 : P_quadruple-{T}(E2,E2,E0,E2,E1)                     { 0, 17, 174 }
209 : P_quadruple-{T}(E2,E2,E1,E0,E1)                     { 0, 17, 175 }
210 : P_quadruple-{T}(E2,E2,E1,E1,E1)                     { 0, 17, 176 }
211 : P_quadruple-{T}(E2,E2,E1,E2,E0)                     { 0, 17, 177 }
212 : P_quadruple-{T}(E2,E2,E2,E0,E0)                     { 0, 17, 178 }
213 : P_quadruple-{T}(E2,E2,E2,E1,E2)                     { 0, 17, 179 }
214 : P_quadruple-{T}(E2,E2,E2,E2,E0)                     { 0, 17, 180 }


% SZS output end Model for /tmp/SystemOnTPTP484/SWV017+1.tptp

Geo-III 2018C

Hans de Nivelle
Nazarbayev University, Kazakhstan

Sample proof for SEU140+2

Couldn't solve it in 300s

Sample proof for PUZ001+1

% SZS output start Refutation for /tmp/SystemOnTPTP529/PUZ001+1.tptp

RuleSystem INPUT:

Initial Rules:
#0: input, references = 4, size of lhs = 1:
   P_agatha-{F}(V0) | EXISTS V1: pppp0-{T}(V1,V0)
      (used 0 times, uses = {})

#1: input, references = 6, size of lhs = 1:
   pppp0-{F}(V0,V1) | killed-{T}(V0,V1)
      (used 0 times, uses = {})

#2: input, references = 4, size of lhs = 1:
   pppp0-{F}(V0,V1) | lives-{T}(V0)
      (used 0 times, uses = {})

#3: input, references = 3, size of lhs = 1:
   P_agatha-{F}(V0) | lives-{T}(V0)
      (used 0 times, uses = {})

#4: input, references = 3, size of lhs = 2:
   P_agatha-{F}(V0), P_butler-{F}(V1) | lives-{T}(V1)
      (used 0 times, uses = {})

#5: input, references = 3, size of lhs = 3:
   P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2) | lives-{T}(V2)
      (used 0 times, uses = {})

#6: input, references = 4, size of lhs = 7:
   P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2), lives-{F}(V3), V3 == V0, V3 == V1, V3 == V2 | FALSE
      (used 0 times, uses = {})

#7: input, references = 4, size of lhs = 4:
   P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2), killed-{F}(V3,V4) | hates-{T}(V3,V4)
      (used 0 times, uses = {})

#8: input, references = 4, size of lhs = 5:
   P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2), killed-{F}(V3,V4), richer-{F}(V3,V4) | FALSE
      (used 0 times, uses = {})

#9: input, references = 4, size of lhs = 5:
   P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2), hates-{F}(V0,V3), hates-{F}(V2,V3) | FALSE
      (used 0 times, uses = {})

#10: input, references = 5, size of lhs = 5:
   P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2), #-{F} V3, V3 == V1 | hates-{T}(V0,V3)
      (used 0 times, uses = {})

#11: input, references = 5, size of lhs = 4:
   P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2), #-{F} V3 | richer-{T}(V3,V0), hates-{T}(V1,V3)
      (used 0 times, uses = {})

#12: input, references = 4, size of lhs = 4:
   P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2), hates-{F}(V0,V3) | hates-{T}(V1,V3)
      (used 0 times, uses = {})

#13: input, references = 4, size of lhs = 4:
   P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2), #-{F} V3 | EXISTS V4: pppp1-{T}(V3,V4)
      (used 0 times, uses = {})

#14: input, references = 4, size of lhs = 2:
   pppp1-{F}(V0,V1), hates-{F}(V0,V1) | FALSE
      (used 0 times, uses = {})

#15: input, references = 4, size of lhs = 3:
   P_agatha-{F}(V1), P_butler-{F}(V1), P_charles-{F}(V2) | FALSE
      (used 0 times, uses = {})

#16: input, references = 4, size of lhs = 4:
   P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2), killed-{F}(V0,V0) | FALSE
      (used 0 times, uses = {})

#17: input, references = 4, size of lhs = 0:
   FALSE | EXISTS V0: P_agatha-{T}(V0)
      (used 0 times, uses = {})

#18: input, references = 4, size of lhs = 0:
   FALSE | EXISTS V0: P_butler-{T}(V0)
      (used 0 times, uses = {})

#19: input, references = 5, size of lhs = 0:
   FALSE | EXISTS V0: P_charles-{T}(V0)
      (used 0 times, uses = {})

number of initial rules = 20

Simplifiers:
#20: unsound, references = 3, size of lhs = 3:
   killed-{F}(V0,V1), killed-{F}(V2,V1), V0 == V2 | FALSE
      (used 0 times, uses = {})

#21: unsound, references = 3, size of lhs = 3:
   killed-{F}(V0,V1), killed-{F}(V2,V3), V1 == V3 | FALSE
      (used 0 times, uses = {})

#22: unsound, references = 3, size of lhs = 3:
   richer-{F}(V0,V1), richer-{F}(V2,V3), V1 == V3 | FALSE
      (used 0 times, uses = {})

#23: unsound, references = 3, size of lhs = 3:
   P_agatha-{F}(V0), P_agatha-{F}(V1), V0 == V1 | FALSE
      (used 0 times, uses = {})

#24: unsound, references = 3, size of lhs = 3:
   P_butler-{F}(V0), P_butler-{F}(V1), V0 == V1 | FALSE
      (used 0 times, uses = {})

#25: unsound, references = 3, size of lhs = 3:
   P_charles-{F}(V0), P_charles-{F}(V1), V0 == V1 | FALSE
      (used 0 times, uses = {})

#26: unsound, references = 3, size of lhs = 3:
   pppp0-{F}(V0,V1), pppp0-{F}(V2,V1), V0 == V2 | FALSE
      (used 0 times, uses = {})

#27: unsound, references = 3, size of lhs = 3:
   pppp0-{F}(V0,V1), pppp0-{F}(V2,V3), V1 == V3 | FALSE
      (used 0 times, uses = {})

#28: unsound, references = 3, size of lhs = 3:
   pppp1-{F}(V0,V1), pppp1-{F}(V0,V3), V1 == V3 | FALSE
      (used 0 times, uses = {})

number of simplifiers = 9

Learnt:
#30: exists( #19, #15 ), references = 2, size of lhs = 2:
   P_agatha-{F}(V0), P_butler-{F}(V0) | FALSE
      (used 0 times, uses = {})

#38: mergings( V0 == V4, V1 == V5, V2 == V6; #34 ), references = 1, size of lhs = 4:
   P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2), killed-{F}(V3,V0) | hates-{T}(V1,V3)
      (used 0 times, uses = {})

#47: mergings( V0 == V7, V1 == V5, V5 == V3, V2 == V6, V6 == V8; #41 ), references = 1, size of lhs = 3:
   P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2) | pppp1-{T}(V1,V1)
      (used 0 times, uses = {})

#49: disj( #11, input ), references = 1, size of lhs = 4:
   P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2), pppp1-{F}(V1,V3) | richer-{T}(V3,V0)
      (used 0 times, uses = {})

#53: mergings( V0 == V2; #51 ), references = 1, size of lhs = 3:
   P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2) | pppp0-{T}(V0,V0), pppp0-{T}(V1,V0), pppp0-{T}(V2,V0)
      (used 0 times, uses = {})

#65: mergings( V0 == V5, V5 == V8, V1 == V3, V3 == V6, V6 == V9, V4 == V7, V7 == V2; #57 ), references = 1, size of lhs = 4:
   P_agatha-{F}(V0), hates-{F}(V0,V0), P_butler-{F}(V1), P_charles-{F}(V2) | pppp0-{T}(V1,V0)
      (used 0 times, uses = {})

#84: mergings( V2 == V4, V4 == V7, V7 == V9, V9 == V11, V11 == V13, V1 == V3, V3 == V5, V5 == V6, V6 == V8, V8 == V10, V10 == V12, V12 == V14; #71 ), references = 1, size of lhs = 3:
   P_agatha-{F}(V0), P_butler-{F}(V1), V0 == V1 | FALSE
      (used 0 times, uses = {})

#91: mergings( V1 == V2, V2 == V3, V3 == V4, V4 == V5, V5 == V6; #85 ), references = 1, size of lhs = 1:
   P_agatha-{F}(V0) | P_butler-{T}(V0)
      (used 0 times, uses = {})

#94: exists( #17, #92 ), references = 1, size of lhs = 0:
   FALSE | FALSE
      (used 0 times, uses = {})

number of learnt formulas = 9


% SZS output end Refutation for /tmp/SystemOnTPTP529/PUZ001+1.tptp

Sample proof for NLP042+1

% SZS output start Model for /tmp/SystemOnTPTP436/NLP042+1.tptp

Interpretation 3:
Guesses:
0 : guesser 1, 0, ( | 1, 0 ), 0, 0s old, 0 lemmas
1 : guesser 4, 2, ( | 1, 2, 0 ), 0, 0s old, 0 lemmas
2 : guesser 17, 15, ( 1 | 2, 0 ), 0, 0s old, 1 lemmas
3 : guesser 29, 26, ( 2, 1 | 3, 0 ), 1, 0s old, 2 lemmas
4 : guesser 45, 41, ( | 0, 3, 2, 4, 1 ), 3, 0s old, 0 lemmas

Elements:
   { E0, E1, E2, E3 }

Atoms:
0 : #-{T} E0                     { }
1 : #-{T} E1                     { 0 }
2 : pppp5-{T}(E1)                     { 0 }
3 : actual_world-{T}(E1)                     { 0 }
4 : pppp4-{T}(E1,E1)                     { 0, 1 }
5 : pppp3-{T}(E1,E1)                     { 0, 1 }
6 : order-{T}(E1,E1)                     { 0, 1 }
7 : nonreflexive-{T}(E1,E1)                     { 0, 1 }
8 : past-{T}(E1,E1)                     { 0, 1 }
9 : event-{T}(E1,E1)                     { 0, 1 }
10 : act-{T}(E1,E1)                     { 0, 1 }
11 : eventuality-{T}(E1,E1)                     { 0, 1 }
12 : unisex-{T}(E1,E1)                     { 0, 1 }
13 : nonexistent-{T}(E1,E1)                     { 0, 1 }
14 : specific-{T}(E1,E1)                     { 0, 1 }
15 : thing-{T}(E1,E1)                     { 0, 1 }
16 : singleton-{T}(E1,E1)                     { 0, 1 }
17 : #-{T} E2                     { 0, 1, 2 }
18 : pppp2-{T}(E1,E2,E1)                     { 0, 1, 2 }
19 : forename-{T}(E1,E2)                     { 0, 1, 2 }
20 : mia_forename-{T}(E1,E2)                     { 0, 1, 2 }
21 : relname-{T}(E1,E2)                     { 0, 1, 2 }
22 : relation-{T}(E1,E2)                     { 0, 1, 2 }
23 : abstraction-{T}(E1,E2)                     { 0, 1, 2 }
24 : unisex-{T}(E1,E2)                     { 0, 1, 2 }
25 : general-{T}(E1,E2)                     { 0, 1, 2 }
26 : nonhuman-{T}(E1,E2)                     { 0, 1, 2 }
27 : thing-{T}(E1,E2)                     { 0, 1, 2 }
28 : singleton-{T}(E1,E2)                     { 0, 1, 2 }
29 : #-{T} E3                     { 0, 1, 3 }
30 : pppp0-{T}(E1,E3,E1)                     { 0, 1, 3 }
31 : patient-{T}(E1,E1,E3)                     { 0, 1, 3 }
32 : shake_beverage-{T}(E1,E3)                     { 0, 1, 3 }
33 : beverage-{T}(E1,E3)                     { 0, 1, 3 }
34 : food-{T}(E1,E3)                     { 0, 1, 3 }
35 : substance_matter-{T}(E1,E3)                     { 0, 1, 3 }
36 : object-{T}(E1,E3)                     { 0, 1, 3 }
37 : unisex-{T}(E1,E3)                     { 0, 1, 3 }
38 : impartial-{T}(E1,E3)                     { 0, 1, 3 }
39 : nonliving-{T}(E1,E3)                     { 0, 1, 3 }
40 : entity-{T}(E1,E3)                     { 0, 1, 3 }
41 : existent-{T}(E1,E3)                     { 0, 1, 3 }
42 : specific-{T}(E1,E3)                     { 0, 1, 3 }
43 : thing-{T}(E1,E3)                     { 0, 1, 3 }
44 : singleton-{T}(E1,E3)                     { 0, 1, 3 }
45 : pppp1-{T}(E1,E0,E2,E1)                     { 0, 1, 2, 4 }
46 : agent-{T}(E1,E1,E0)                     { 0, 1, 2, 4 }
47 : woman-{T}(E1,E0)                     { 0, 1, 2, 4 }
48 : of-{T}(E1,E2,E0)                     { 0, 1, 2, 4 }
49 : female-{T}(E1,E0)                     { 0, 1, 2, 4 }
50 : human_person-{T}(E1,E0)                     { 0, 1, 2, 4 }
51 : animate-{T}(E1,E0)                     { 0, 1, 2, 4 }
52 : human-{T}(E1,E0)                     { 0, 1, 2, 4 }
53 : organism-{T}(E1,E0)                     { 0, 1, 2, 4 }
54 : living-{T}(E1,E0)                     { 0, 1, 2, 4 }
55 : impartial-{T}(E1,E0)                     { 0, 1, 2, 4 }
56 : entity-{T}(E1,E0)                     { 0, 1, 2, 4 }
57 : existent-{T}(E1,E0)                     { 0, 1, 2, 4 }
58 : specific-{T}(E1,E0)                     { 0, 1, 2, 4 }
59 : thing-{T}(E1,E0)                     { 0, 1, 2, 4 }
60 : singleton-{T}(E1,E0)                     { 0, 1, 2, 4 }


% SZS output end Model for /tmp/SystemOnTPTP436/NLP042+1.tptp

Sample proof for SWV017+1

% SZS output start Model for /tmp/SystemOnTPTP484/SWV017+1.tptp

Interpretation 18:
Guesses:
0 : guesser 1, 0, ( | 1, 0 ), 0, 1s old, 0 lemmas
1 : guesser 3, 1, ( | 1, 2, 0 ), 0, 1s old, 0 lemmas
2 : guesser 4, 2, ( | 1, 2, 0 ), 0, 1s old, 0 lemmas
3 : guesser 5, 3, ( | 1, 2, 0 ), 0, 1s old, 0 lemmas
4 : guesser 6, 4, ( | 0, 2, 1 ), 0, 1s old, 0 lemmas
5 : guesser 7, 5, ( | 0, 2, 1 ), 0, 1s old, 0 lemmas
6 : guesser 8, 6, ( | 0, 2, 1 ), 0, 1s old, 0 lemmas
7 : guesser 9, 7, ( | 0, 2, 1 ), 0, 1s old, 0 lemmas
8 : guesser 10, 8, ( | 0, 2, 1 ), 0, 1s old, 0 lemmas
9 : guesser 11, 9, ( | 1, 2, 0 ), 0, 1s old, 0 lemmas
10 : guesser 12, 10, ( | 1, 2, 0 ), 0, 1s old, 0 lemmas
11 : guesser 13, 11, ( | 0, 2, 1 ), 0, 1s old, 0 lemmas
12 : guesser 14, 12, ( | 1, 2, 0 ), 0, 1s old, 0 lemmas
13 : guesser 15, 13, ( | 0, 2, 1 ), 0, 1s old, 0 lemmas
14 : guesser 16, 14, ( | 0, 2, 1 ), 0, 1s old, 0 lemmas
15 : guesser 17, 15, ( | 1, 2, 0 ), 0, 1s old, 0 lemmas
16 : guesser 18, 16, ( | 1, 2, 0 ), 0, 1s old, 0 lemmas
17 : guesser 19, 17, ( 1 | 2, 0 ), 0, 1s old, 2 lemmas
18 : guesser 21, 18, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
19 : guesser 22, 19, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
20 : guesser 23, 20, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
21 : guesser 24, 21, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
22 : guesser 25, 22, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
23 : guesser 26, 23, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
24 : guesser 27, 24, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
25 : guesser 28, 25, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
26 : guesser 29, 26, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
27 : guesser 30, 27, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
28 : guesser 33, 30, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
29 : guesser 34, 31, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
30 : guesser 35, 32, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
31 : guesser 36, 33, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
32 : guesser 37, 34, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
33 : guesser 38, 35, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
34 : guesser 39, 36, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
35 : guesser 40, 37, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
36 : guesser 41, 38, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
37 : guesser 42, 39, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
38 : guesser 43, 40, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
39 : guesser 44, 41, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
40 : guesser 45, 42, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
41 : guesser 46, 43, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
42 : guesser 47, 44, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
43 : guesser 48, 45, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
44 : guesser 49, 46, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
45 : guesser 50, 47, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
46 : guesser 51, 48, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
47 : guesser 52, 49, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
48 : guesser 53, 50, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
49 : guesser 54, 51, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
50 : guesser 55, 52, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
51 : guesser 56, 53, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
52 : guesser 57, 54, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
53 : guesser 58, 55, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
54 : guesser 59, 56, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
55 : guesser 60, 57, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
56 : guesser 61, 58, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
57 : guesser 62, 59, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
58 : guesser 63, 60, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
59 : guesser 64, 61, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
60 : guesser 65, 62, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
61 : guesser 66, 63, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
62 : guesser 67, 64, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
63 : guesser 68, 65, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
64 : guesser 69, 66, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
65 : guesser 70, 67, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
66 : guesser 71, 68, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
67 : guesser 72, 69, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
68 : guesser 73, 70, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
69 : guesser 74, 71, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
70 : guesser 75, 72, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
71 : guesser 76, 73, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
72 : guesser 77, 74, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
73 : guesser 78, 75, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
74 : guesser 79, 76, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
75 : guesser 80, 77, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
76 : guesser 81, 78, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
77 : guesser 82, 79, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
78 : guesser 83, 80, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
79 : guesser 84, 81, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
80 : guesser 85, 82, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
81 : guesser 86, 83, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
82 : guesser 87, 84, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
83 : guesser 88, 85, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
84 : guesser 89, 86, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
85 : guesser 90, 87, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
86 : guesser 91, 88, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
87 : guesser 92, 89, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
88 : guesser 93, 90, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
89 : guesser 94, 91, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
90 : guesser 95, 92, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
91 : guesser 96, 93, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
92 : guesser 122, 119, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
93 : guesser 123, 120, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
94 : guesser 126, 123, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
95 : guesser 127, 124, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
96 : guesser 128, 125, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
97 : guesser 129, 126, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
98 : guesser 130, 127, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
99 : guesser 131, 128, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
100 : guesser 132, 129, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
101 : guesser 133, 130, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
102 : guesser 134, 131, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
103 : guesser 135, 132, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
104 : guesser 136, 133, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
105 : guesser 137, 134, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
106 : guesser 138, 135, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
107 : guesser 139, 136, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
108 : guesser 140, 137, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
109 : guesser 141, 138, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
110 : guesser 142, 139, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
111 : guesser 143, 140, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
112 : guesser 144, 141, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
113 : guesser 145, 142, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
114 : guesser 146, 143, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
115 : guesser 147, 144, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
116 : guesser 148, 145, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
117 : guesser 150, 147, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
118 : guesser 151, 148, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
119 : guesser 152, 149, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
120 : guesser 153, 150, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
121 : guesser 154, 151, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
122 : guesser 155, 152, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
123 : guesser 156, 153, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
124 : guesser 157, 154, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
125 : guesser 158, 155, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
126 : guesser 159, 156, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
127 : guesser 160, 157, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
128 : guesser 161, 158, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
129 : guesser 162, 159, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
130 : guesser 163, 160, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
131 : guesser 164, 161, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
132 : guesser 165, 162, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
133 : guesser 166, 163, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
134 : guesser 167, 164, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
135 : guesser 168, 165, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
136 : guesser 169, 166, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
137 : guesser 170, 167, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
138 : guesser 172, 169, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
139 : guesser 173, 170, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
140 : guesser 174, 171, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
141 : guesser 175, 172, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
142 : guesser 176, 173, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
143 : guesser 177, 174, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
144 : guesser 178, 175, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
145 : guesser 179, 176, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
146 : guesser 180, 177, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
147 : guesser 181, 178, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
148 : guesser 182, 179, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
149 : guesser 183, 180, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
150 : guesser 184, 181, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
151 : guesser 185, 182, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
152 : guesser 186, 183, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
153 : guesser 187, 184, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
154 : guesser 188, 185, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
155 : guesser 189, 186, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
156 : guesser 190, 187, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
157 : guesser 191, 188, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
158 : guesser 192, 189, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
159 : guesser 193, 190, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
160 : guesser 194, 191, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
161 : guesser 195, 192, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
162 : guesser 196, 193, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
163 : guesser 197, 194, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
164 : guesser 198, 195, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
165 : guesser 199, 196, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
166 : guesser 200, 197, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
167 : guesser 201, 198, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
168 : guesser 202, 199, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
169 : guesser 203, 200, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
170 : guesser 204, 201, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
171 : guesser 205, 202, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
172 : guesser 206, 203, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
173 : guesser 207, 204, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
174 : guesser 208, 205, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
175 : guesser 209, 206, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
176 : guesser 210, 207, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas
177 : guesser 211, 208, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
178 : guesser 212, 209, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas
179 : guesser 213, 210, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas
180 : guesser 214, 211, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas

Elements:
   { E0, E1, E2 }

Atoms:
0 : #-{T} E0                     { }
1 : #-{T} E1                     { 0 }
2 : P_at-{T}(E1)                     { 0 }
3 : P_t-{T}(E1)                     { 1 }
4 : P_a-{T}(E1)                     { 2 }
5 : P_b-{T}(E1)                     { 3 }
6 : P_an_a_nonce-{T}(E0)                     { 4 }
7 : P_bt-{T}(E0)                     { 5 }
8 : P_an_intruder_nonce-{T}(E0)                     { 6 }
9 : P_generate_b_nonce-{T}(E0,E0)                     { 7 }
10 : P_generate_expiration_time-{T}(E0,E0)                     { 8 }
11 : P_generate_key-{T}(E0,E1)                     { 9 }
12 : P_generate_intruder_nonce-{T}(E0,E1)                     { 10 }
13 : P_key-{T}(E0,E0,E0)                     { 11 }
14 : P_pair-{T}(E0,E0,E1)                     { 12 }
15 : P_encrypt-{T}(E0,E0,E0)                     { 13 }
16 : P_sent-{T}(E0,E0,E0,E0)                     { 14 }
17 : P_triple-{T}(E0,E0,E0,E1)                     { 15 }
18 : P_quadruple-{T}(E0,E0,E0,E0,E1)                     { 16 }
19 : #-{T} E2                     { 0, 17 }
20 : P_generate_b_nonce-{T}(E1,E2)                     { 0, 17 }
21 : P_generate_expiration_time-{T}(E1,E0)                     { 0, 18 }
22 : P_generate_key-{T}(E1,E1)                     { 0, 19 }
23 : P_generate_intruder_nonce-{T}(E1,E2)                     { 0, 20 }
24 : P_key-{T}(E0,E1,E2)                     { 0, 21 }
25 : P_pair-{T}(E0,E1,E0)                     { 0, 22 }
26 : P_encrypt-{T}(E0,E1,E0)                     { 0, 23 }
27 : P_key-{T}(E1,E0,E1)                     { 0, 24 }
28 : P_pair-{T}(E1,E0,E2)                     { 0, 25 }
29 : P_encrypt-{T}(E1,E0,E2)                     { 0, 26 }
30 : P_key-{T}(E1,E1,E1)                     { 0, 27 }
31 : a_holds-{T}(E1)                     { 0, 1, 27 }
32 : party_of_protocol-{T}(E1)                     { 0, 1, 2, 27 }
33 : P_pair-{T}(E1,E1,E2)                     { 0, 28 }
34 : P_encrypt-{T}(E1,E1,E2)                     { 0, 29 }
35 : P_sent-{T}(E0,E0,E1,E2)                     { 0, 30 }
36 : P_sent-{T}(E0,E1,E0,E0)                     { 0, 31 }
37 : P_triple-{T}(E0,E0,E1,E0)                     { 0, 32 }
38 : P_quadruple-{T}(E0,E0,E0,E1,E1)                     { 0, 33 }
39 : P_sent-{T}(E0,E1,E1,E1)                     { 0, 34 }
40 : P_triple-{T}(E0,E1,E0,E0)                     { 0, 35 }
41 : P_quadruple-{T}(E0,E0,E1,E0,E1)                     { 0, 36 }
42 : P_sent-{T}(E1,E0,E0,E2)                     { 0, 37 }
43 : P_triple-{T}(E0,E1,E1,E2)                     { 0, 38 }
44 : P_quadruple-{T}(E0,E0,E1,E1,E0)                     { 0, 39 }
45 : P_sent-{T}(E1,E0,E1,E0)                     { 0, 40 }
46 : P_triple-{T}(E1,E0,E0,E1)                     { 0, 41 }
47 : P_quadruple-{T}(E0,E1,E0,E0,E1)                     { 0, 42 }
48 : P_sent-{T}(E1,E1,E0,E0)                     { 0, 43 }
49 : P_triple-{T}(E1,E0,E1,E0)                     { 0, 44 }
50 : P_quadruple-{T}(E0,E1,E0,E1,E1)                     { 0, 45 }
51 : P_sent-{T}(E1,E1,E1,E1)                     { 0, 46 }
52 : P_triple-{T}(E1,E1,E0,E2)                     { 0, 47 }
53 : P_quadruple-{T}(E0,E1,E1,E0,E2)                     { 0, 48 }
54 : P_triple-{T}(E1,E1,E1,E1)                     { 0, 49 }
55 : P_quadruple-{T}(E0,E1,E1,E1,E2)                     { 0, 50 }
56 : P_generate_b_nonce-{T}(E2,E0)                     { 0, 17, 51 }
57 : P_quadruple-{T}(E1,E0,E0,E0,E1)                     { 0, 52 }
58 : P_generate_expiration_time-{T}(E2,E0)                     { 0, 17, 53 }
59 : P_generate_key-{T}(E2,E1)                     { 0, 17, 54 }
60 : P_quadruple-{T}(E1,E0,E0,E1,E2)                     { 0, 55 }
61 : P_generate_intruder_nonce-{T}(E2,E2)                     { 0, 17, 56 }
62 : P_key-{T}(E0,E2,E1)                     { 0, 17, 57 }
63 : P_quadruple-{T}(E1,E0,E1,E0,E0)                     { 0, 58 }
64 : P_key-{T}(E1,E2,E0)                     { 0, 17, 59 }
65 : P_pair-{T}(E0,E2,E0)                     { 0, 17, 60 }
66 : P_quadruple-{T}(E1,E0,E1,E1,E1)                     { 0, 61 }
67 : P_key-{T}(E2,E0,E2)                     { 0, 17, 62 }
68 : P_pair-{T}(E1,E2,E1)                     { 0, 17, 63 }
69 : P_quadruple-{T}(E1,E1,E0,E0,E0)                     { 0, 64 }
70 : P_key-{T}(E2,E1,E0)                     { 0, 17, 65 }
71 : P_pair-{T}(E2,E0,E0)                     { 0, 17, 66 }
72 : P_quadruple-{T}(E1,E1,E0,E1,E2)                     { 0, 67 }
73 : P_key-{T}(E2,E2,E0)                     { 0, 17, 68 }
74 : P_pair-{T}(E2,E1,E2)                     { 0, 17, 69 }
75 : P_quadruple-{T}(E1,E1,E1,E0,E0)                     { 0, 70 }
76 : P_pair-{T}(E2,E2,E0)                     { 0, 17, 71 }
77 : P_encrypt-{T}(E0,E2,E0)                     { 0, 17, 72 }
78 : P_quadruple-{T}(E1,E1,E1,E1,E2)                     { 0, 73 }
79 : P_encrypt-{T}(E1,E2,E0)                     { 0, 17, 74 }
80 : P_sent-{T}(E0,E0,E2,E1)                     { 0, 17, 75 }
81 : P_encrypt-{T}(E2,E0,E2)                     { 0, 17, 76 }
82 : P_sent-{T}(E0,E1,E2,E1)                     { 0, 17, 77 }
83 : P_triple-{T}(E0,E0,E2,E2)                     { 0, 17, 78 }
84 : P_encrypt-{T}(E2,E1,E0)                     { 0, 17, 79 }
85 : P_sent-{T}(E0,E2,E0,E1)                     { 0, 17, 80 }
86 : P_triple-{T}(E0,E1,E2,E1)                     { 0, 17, 81 }
87 : P_encrypt-{T}(E2,E2,E1)                     { 0, 17, 82 }
88 : P_sent-{T}(E0,E2,E1,E1)                     { 0, 17, 83 }
89 : P_triple-{T}(E0,E2,E0,E0)                     { 0, 17, 84 }
90 : P_sent-{T}(E0,E2,E2,E0)                     { 0, 17, 85 }
91 : P_triple-{T}(E0,E2,E1,E0)                     { 0, 17, 86 }
92 : P_quadruple-{T}(E0,E0,E0,E2,E0)                     { 0, 17, 87 }
93 : P_sent-{T}(E1,E0,E2,E2)                     { 0, 17, 88 }
94 : P_triple-{T}(E0,E2,E2,E2)                     { 0, 17, 89 }
95 : P_quadruple-{T}(E0,E0,E1,E2,E2)                     { 0, 17, 90 }
96 : P_sent-{T}(E1,E1,E2,E0)                     { 0, 17, 91 }
97 : message-{T}(E0)                     { 0, 1, 2, 3, 4, 17, 25, 27, 91 }
98 : a_stored-{T}(E2)                     { 0, 1, 2, 3, 4, 17, 25, 27, 91 }
99 : b_holds-{T}(E2)                     { 0, 1, 2, 3, 4, 5, 17, 21, 25, 27, 91 }
100 : fresh_to_b-{T}(E0)                     { 0, 1, 2, 3, 4, 5, 17, 21, 25, 27, 91 }
101 : t_holds-{T}(E1)                     { 0, 1, 2, 3, 4, 5, 17, 21, 25, 27, 91 }
102 : t_holds-{T}(E2)                     { 0, 1, 2, 3, 4, 5, 17, 21, 25, 27, 91 }
103 : a_nonce-{T}(E0)                     { 0, 1, 2, 3, 4, 5, 17, 21, 25, 27, 91 }
104 : intruder_message-{T}(E2)                     { 0, 1, 2, 3, 4, 5, 17, 21, 25, 27, 91 }
105 : fresh_intruder_nonce-{T}(E0)                     { 0, 1, 2, 3, 4, 5, 6, 17, 21, 25, 27, 91 }
106 : intruder_message-{T}(E1)                     { 0, 1, 2, 3, 4, 5, 17, 21, 25, 27, 91 }
107 : intruder_message-{T}(E0)                     { 0, 1, 2, 3, 4, 5, 17, 21, 25, 27, 91 }
108 : intruder_holds-{T}(E1)                     { 0, 1, 2, 3, 4, 5, 17, 21, 25, 27, 91 }
109 : a_key-{T}(E1)                     { 0, 1, 2, 3, 4, 5, 9, 17, 21, 25, 27, 91 }
110 : fresh_intruder_nonce-{T}(E1)                     { 0, 1, 2, 3, 4, 5, 6, 10, 17, 21, 25, 27, 91 }
111 : intruder_holds-{T}(E2)                     { 0, 1, 2, 3, 4, 5, 17, 21, 25, 27, 91 }
112 : fresh_to_b-{T}(E1)                     { 0, 1, 2, 3, 4, 5, 6, 10, 17, 21, 25, 27, 91 }
113 : a_nonce-{T}(E2)                     { 0, 1, 2, 3, 4, 5, 17, 18, 21, 25, 27, 91 }
114 : fresh_intruder_nonce-{T}(E2)                     { 0, 1, 2, 3, 4, 5, 6, 10, 17, 20, 21, 25, 27, 91 }
115 : message-{T}(E1)                     { 0, 1, 2, 3, 4, 5, 17, 21, 25, 27, 46, 91 }
116 : fresh_to_b-{T}(E2)                     { 0, 1, 2, 3, 4, 5, 6, 10, 17, 20, 21, 25, 27, 91 }
117 : a_holds-{T}(E2)                     { 0, 1, 2, 3, 4, 13, 17, 21, 23, 25, 27, 28, 35, 43, 64, 91 }
118 : intruder_holds-{T}(E0)                     { 0, 1, 2, 3, 4, 5, 17, 21, 25, 27, 65, 91 }
119 : message-{T}(E2)                     { 0, 1, 2, 3, 4, 5, 9, 15, 17, 21, 25, 27, 31, 32, 35, 36, 37, 62, 72, 74, 91 }
120 : b_stored-{T}(E0)                     { 0, 1, 2, 3, 4, 5, 6, 10, 13, 17, 20, 21, 25, 27, 31, 41, 46, 51, 53, 60, 84, 91 }
121 : b_holds-{T}(E1)                     { 0, 1, 2, 3, 4, 5, 6, 9, 10, 12, 13, 17, 20, 21, 23, 24, 25, 27, 31, 34, 35, 41, 46, 51, 53, 60, 84, 91 }
122 : P_sent-{T}(E1,E2,E0,E2)                     { 0, 17, 92 }
123 : P_triple-{T}(E1,E0,E2,E0)                     { 0, 17, 93 }
124 : b_stored-{T}(E2)                     { 0, 1, 2, 3, 4, 5, 7, 8, 17, 21, 25, 26, 27, 41, 43, 91, 93 }
125 : b_stored-{T}(E1)                     { 0, 1, 2, 3, 4, 5, 7, 8, 12, 15, 17, 21, 25, 26, 27, 34, 43, 46, 91, 93 }
126 : P_sent-{T}(E1,E2,E1,E2)                     { 0, 17, 94 }
127 : P_triple-{T}(E1,E1,E2,E1)                     { 0, 17, 95 }
128 : P_quadruple-{T}(E0,E0,E2,E0,E0)                     { 0, 17, 96 }
129 : P_sent-{T}(E1,E2,E2,E2)                     { 0, 17, 97 }
130 : P_triple-{T}(E1,E2,E0,E2)                     { 0, 17, 98 }
131 : P_quadruple-{T}(E0,E0,E2,E1,E1)                     { 0, 17, 99 }
132 : P_sent-{T}(E2,E0,E0,E0)                     { 0, 17, 100 }
133 : P_triple-{T}(E1,E2,E1,E2)                     { 0, 17, 101 }
134 : P_quadruple-{T}(E0,E0,E2,E2,E2)                     { 0, 17, 102 }
135 : P_sent-{T}(E2,E0,E1,E0)                     { 0, 17, 103 }
136 : P_triple-{T}(E1,E2,E2,E1)                     { 0, 17, 104 }
137 : P_quadruple-{T}(E0,E1,E0,E2,E0)                     { 0, 17, 105 }
138 : P_sent-{T}(E2,E0,E2,E1)                     { 0, 17, 106 }
139 : P_triple-{T}(E2,E0,E0,E2)                     { 0, 17, 107 }
140 : P_quadruple-{T}(E0,E1,E1,E2,E0)                     { 0, 17, 108 }
141 : P_sent-{T}(E2,E1,E0,E2)                     { 0, 17, 109 }
142 : P_triple-{T}(E2,E0,E1,E2)                     { 0, 17, 110 }
143 : P_quadruple-{T}(E0,E1,E2,E0,E0)                     { 0, 17, 111 }
144 : P_sent-{T}(E2,E1,E1,E0)                     { 0, 17, 112 }
145 : P_triple-{T}(E2,E0,E2,E2)                     { 0, 17, 113 }
146 : P_quadruple-{T}(E0,E1,E2,E1,E1)                     { 0, 17, 114 }
147 : P_sent-{T}(E2,E1,E2,E1)                     { 0, 17, 115 }
148 : P_triple-{T}(E2,E1,E0,E2)                     { 0, 17, 116 }
149 : b_holds-{T}(E0)                     { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 15, 17, 20, 21, 23, 25, 27, 31, 32, 35, 36, 37, 41, 46, 51, 53, 59, 60, 62, 66, 72, 74, 76, 84, 91, 109, 116 }
150 : P_sent-{T}(E2,E2,E0,E0)                     { 0, 17, 117 }
151 : P_triple-{T}(E2,E1,E1,E2)                     { 0, 17, 118 }
152 : P_quadruple-{T}(E0,E1,E2,E2,E0)                     { 0, 17, 119 }
153 : P_sent-{T}(E2,E2,E1,E1)                     { 0, 17, 120 }
154 : P_triple-{T}(E2,E1,E2,E2)                     { 0, 17, 121 }
155 : P_quadruple-{T}(E0,E2,E0,E0,E0)                     { 0, 17, 122 }
156 : P_sent-{T}(E2,E2,E2,E0)                     { 0, 17, 123 }
157 : P_triple-{T}(E2,E2,E0,E2)                     { 0, 17, 124 }
158 : P_quadruple-{T}(E0,E2,E0,E1,E2)                     { 0, 17, 125 }
159 : P_triple-{T}(E2,E2,E1,E2)                     { 0, 17, 126 }
160 : P_quadruple-{T}(E0,E2,E0,E2,E0)                     { 0, 17, 127 }
161 : P_triple-{T}(E2,E2,E2,E2)                     { 0, 17, 128 }
162 : P_quadruple-{T}(E0,E2,E1,E0,E1)                     { 0, 17, 129 }
163 : P_quadruple-{T}(E0,E2,E1,E1,E2)                     { 0, 17, 130 }
164 : P_quadruple-{T}(E0,E2,E1,E2,E0)                     { 0, 17, 131 }
165 : P_quadruple-{T}(E0,E2,E2,E0,E0)                     { 0, 17, 132 }
166 : P_quadruple-{T}(E0,E2,E2,E1,E0)                     { 0, 17, 133 }
167 : P_quadruple-{T}(E0,E2,E2,E2,E2)                     { 0, 17, 134 }
168 : P_quadruple-{T}(E1,E0,E0,E2,E2)                     { 0, 17, 135 }
169 : P_quadruple-{T}(E1,E0,E1,E2,E1)                     { 0, 17, 136 }
170 : P_quadruple-{T}(E1,E0,E2,E0,E1)                     { 0, 17, 137 }
171 : a_holds-{T}(E0)                     { 0, 1, 2, 3, 4, 12, 17, 25, 27, 29, 46, 65, 72, 91, 107, 137 }
172 : P_quadruple-{T}(E1,E0,E2,E1,E1)                     { 0, 17, 138 }
173 : P_quadruple-{T}(E1,E0,E2,E2,E2)                     { 0, 17, 139 }
174 : P_quadruple-{T}(E1,E1,E0,E2,E0)                     { 0, 17, 140 }
175 : P_quadruple-{T}(E1,E1,E1,E2,E2)                     { 0, 17, 141 }
176 : P_quadruple-{T}(E1,E1,E2,E0,E0)                     { 0, 17, 142 }
177 : P_quadruple-{T}(E1,E1,E2,E1,E0)                     { 0, 17, 143 }
178 : P_quadruple-{T}(E1,E1,E2,E2,E0)                     { 0, 17, 144 }
179 : P_quadruple-{T}(E1,E2,E0,E0,E1)                     { 0, 17, 145 }
180 : P_quadruple-{T}(E1,E2,E0,E1,E0)                     { 0, 17, 146 }
181 : P_quadruple-{T}(E1,E2,E0,E2,E0)                     { 0, 17, 147 }
182 : P_quadruple-{T}(E1,E2,E1,E0,E1)                     { 0, 17, 148 }
183 : P_quadruple-{T}(E1,E2,E1,E1,E2)                     { 0, 17, 149 }
184 : P_quadruple-{T}(E1,E2,E1,E2,E1)                     { 0, 17, 150 }
185 : P_quadruple-{T}(E1,E2,E2,E0,E0)                     { 0, 17, 151 }
186 : P_quadruple-{T}(E1,E2,E2,E1,E2)                     { 0, 17, 152 }
187 : P_quadruple-{T}(E1,E2,E2,E2,E1)                     { 0, 17, 153 }
188 : P_quadruple-{T}(E2,E0,E0,E0,E0)                     { 0, 17, 154 }
189 : P_quadruple-{T}(E2,E0,E0,E1,E0)                     { 0, 17, 155 }
190 : P_quadruple-{T}(E2,E0,E0,E2,E1)                     { 0, 17, 156 }
191 : P_quadruple-{T}(E2,E0,E1,E0,E2)                     { 0, 17, 157 }
192 : P_quadruple-{T}(E2,E0,E1,E1,E0)                     { 0, 17, 158 }
193 : P_quadruple-{T}(E2,E0,E1,E2,E1)                     { 0, 17, 159 }
194 : P_quadruple-{T}(E2,E0,E2,E0,E1)                     { 0, 17, 160 }
195 : P_quadruple-{T}(E2,E0,E2,E1,E0)                     { 0, 17, 161 }
196 : P_quadruple-{T}(E2,E0,E2,E2,E2)                     { 0, 17, 162 }
197 : P_quadruple-{T}(E2,E1,E0,E0,E2)                     { 0, 17, 163 }
198 : P_quadruple-{T}(E2,E1,E0,E1,E2)                     { 0, 17, 164 }
199 : P_quadruple-{T}(E2,E1,E0,E2,E2)                     { 0, 17, 165 }
200 : P_quadruple-{T}(E2,E1,E1,E0,E0)                     { 0, 17, 166 }
201 : P_quadruple-{T}(E2,E1,E1,E1,E1)                     { 0, 17, 167 }
202 : P_quadruple-{T}(E2,E1,E1,E2,E0)                     { 0, 17, 168 }
203 : P_quadruple-{T}(E2,E1,E2,E0,E0)                     { 0, 17, 169 }
204 : P_quadruple-{T}(E2,E1,E2,E1,E0)                     { 0, 17, 170 }
205 : P_quadruple-{T}(E2,E1,E2,E2,E1)                     { 0, 17, 171 }
206 : P_quadruple-{T}(E2,E2,E0,E0,E2)                     { 0, 17, 172 }
207 : P_quadruple-{T}(E2,E2,E0,E1,E0)                     { 0, 17, 173 }
208 : P_quadruple-{T}(E2,E2,E0,E2,E1)                     { 0, 17, 174 }
209 : P_quadruple-{T}(E2,E2,E1,E0,E1)                     { 0, 17, 175 }
210 : P_quadruple-{T}(E2,E2,E1,E1,E1)                     { 0, 17, 176 }
211 : P_quadruple-{T}(E2,E2,E1,E2,E0)                     { 0, 17, 177 }
212 : P_quadruple-{T}(E2,E2,E2,E0,E0)                     { 0, 17, 178 }
213 : P_quadruple-{T}(E2,E2,E2,E1,E2)                     { 0, 17, 179 }
214 : P_quadruple-{T}(E2,E2,E2,E2,E0)                     { 0, 17, 180 }


% SZS output end Model for /tmp/SystemOnTPTP484/SWV017+1.tptp

Grackle 0.1

Jan Jakubuv
Czech Technical University in Prague, Czech Republic

Sample solution for SEU140+2

# SZS status Theorem
# SZS output start CNFRefutation
fof(t63_xboole_1, conjecture, (![X1]:![X2]:![X3]:((subset(X1,X2)&disjoint(X2,X3))=>disjoint(X1,X3))), file('/tmp/SystemOnTPTP24518/SEU140+2.tptp', t63_xboole_1)).
fof(symmetry_r1_xboole_0, axiom, (![X1]:![X2]:(disjoint(X1,X2)=>disjoint(X2,X1))), file('/tmp/SystemOnTPTP24518/SEU140+2.tptp', symmetry_r1_xboole_0)).
fof(t1_xboole_1, lemma, (![X1]:![X2]:![X3]:((subset(X1,X2)&subset(X2,X3))=>subset(X1,X3))), file('/tmp/SystemOnTPTP24518/SEU140+2.tptp', t1_xboole_1)).
fof(t40_xboole_1, lemma, (![X1]:![X2]:set_difference(set_union2(X1,X2),X2)=set_difference(X1,X2)), file('/tmp/SystemOnTPTP24518/SEU140+2.tptp', t40_xboole_1)).
fof(commutativity_k2_xboole_0, axiom, (![X1]:![X2]:set_union2(X1,X2)=set_union2(X2,X1)), file('/tmp/SystemOnTPTP24518/SEU140+2.tptp', commutativity_k2_xboole_0)).
fof(t2_boole, axiom, (![X1]:set_intersection2(X1,empty_set)=empty_set), file('/tmp/SystemOnTPTP24518/SEU140+2.tptp', t2_boole)).
fof(t48_xboole_1, lemma, (![X1]:![X2]:set_difference(X1,set_difference(X1,X2))=set_intersection2(X1,X2)), file('/tmp/SystemOnTPTP24518/SEU140+2.tptp', t48_xboole_1)).
fof(t3_xboole_0, lemma, (![X1]:![X2]:(~((~(disjoint(X1,X2))&![X3]:~((in(X3,X1)&in(X3,X2)))))&~((?[X3]:(in(X3,X1)&in(X3,X2))&disjoint(X1,X2))))), file('/tmp/SystemOnTPTP24518/SEU140+2.tptp', t3_xboole_0)).
fof(d4_xboole_0, axiom, (![X1]:![X2]:![X3]:(X3=set_difference(X1,X2)<=>![X4]:(in(X4,X3)<=>(in(X4,X1)&~(in(X4,X2)))))), file('/tmp/SystemOnTPTP24518/SEU140+2.tptp', d4_xboole_0)).
fof(l32_xboole_1, lemma, (![X1]:![X2]:(set_difference(X1,X2)=empty_set<=>subset(X1,X2))), file('/tmp/SystemOnTPTP24518/SEU140+2.tptp', l32_xboole_1)).
fof(d7_xboole_0, axiom, (![X1]:![X2]:(disjoint(X1,X2)<=>set_intersection2(X1,X2)=empty_set)), file('/tmp/SystemOnTPTP24518/SEU140+2.tptp', d7_xboole_0)).
fof(t39_xboole_1, lemma, (![X1]:![X2]:set_union2(X1,set_difference(X2,X1))=set_union2(X1,X2)), file('/tmp/SystemOnTPTP24518/SEU140+2.tptp', t39_xboole_1)).
fof(t3_boole, axiom, (![X1]:set_difference(X1,empty_set)=X1), file('/tmp/SystemOnTPTP24518/SEU140+2.tptp', t3_boole)).
fof(commutativity_k3_xboole_0, axiom, (![X1]:![X2]:set_intersection2(X1,X2)=set_intersection2(X2,X1)), file('/tmp/SystemOnTPTP24518/SEU140+2.tptp', commutativity_k3_xboole_0)).
fof(t36_xboole_1, lemma, (![X1]:![X2]:subset(set_difference(X1,X2),X1)), file('/tmp/SystemOnTPTP24518/SEU140+2.tptp', t36_xboole_1)).
fof(t12_xboole_1, lemma, (![X1]:![X2]:(subset(X1,X2)=>set_union2(X1,X2)=X2)), file('/tmp/SystemOnTPTP24518/SEU140+2.tptp', t12_xboole_1)).
fof(t1_boole, axiom, (![X1]:set_union2(X1,empty_set)=X1), file('/tmp/SystemOnTPTP24518/SEU140+2.tptp', t1_boole)).
fof(c_0_17, negated_conjecture, (~(![X1]:![X2]:![X3]:((subset(X1,X2)&disjoint(X2,X3))=>disjoint(X1,X3)))), inference(assume_negation,[status(cth)],[t63_xboole_1])).
fof(c_0_18, plain, (![X3]:![X4]:(~disjoint(X3,X4)|disjoint(X4,X3))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[symmetry_r1_xboole_0])])).
fof(c_0_19, negated_conjecture, (((subset(esk11_0,esk12_0)&disjoint(esk12_0,esk13_0))&~disjoint(esk11_0,esk13_0))), inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_17])])])).
fof(c_0_20, lemma, (![X4]:![X5]:![X6]:((~subset(X4,X5)|~subset(X5,X6))|subset(X4,X6))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[t1_xboole_1])])).
fof(c_0_21, lemma, (![X3]:![X4]:set_difference(set_union2(X3,X4),X4)=set_difference(X3,X4)), inference(variable_rename,[status(thm)],[t40_xboole_1])).
fof(c_0_22, plain, (![X3]:![X4]:set_union2(X3,X4)=set_union2(X4,X3)), inference(variable_rename,[status(thm)],[commutativity_k2_xboole_0])).
fof(c_0_23, plain, (![X2]:set_intersection2(X2,empty_set)=empty_set), inference(variable_rename,[status(thm)],[t2_boole])).
fof(c_0_24, lemma, (![X3]:![X4]:set_difference(X3,set_difference(X3,X4))=set_intersection2(X3,X4)), inference(variable_rename,[status(thm)],[t48_xboole_1])).
fof(c_0_25, lemma, (![X4]:![X5]:![X4]:![X5]:![X7]:(((in(esk9_2(X4,X5),X4)|disjoint(X4,X5))&(in(esk9_2(X4,X5),X5)|disjoint(X4,X5)))&((~in(X7,X4)|~in(X7,X5))|~disjoint(X4,X5)))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[t3_xboole_0])])])])])])])])).
cnf(c_0_26,plain,(disjoint(X1,X2)|~disjoint(X2,X1)), inference(split_conjunct,[status(thm)],[c_0_18])).
cnf(c_0_27,negated_conjecture,(disjoint(esk12_0,esk13_0)), inference(split_conjunct,[status(thm)],[c_0_19])).
fof(c_0_28, plain, (![X5]:![X6]:![X7]:![X8]:![X8]:![X5]:![X6]:![X7]:(((((in(X8,X5)|~in(X8,X7))|X7!=set_difference(X5,X6))&((~in(X8,X6)|~in(X8,X7))|X7!=set_difference(X5,X6)))&(((~in(X8,X5)|in(X8,X6))|in(X8,X7))|X7!=set_difference(X5,X6)))&(((~in(esk5_3(X5,X6,X7),X7)|(~in(esk5_3(X5,X6,X7),X5)|in(esk5_3(X5,X6,X7),X6)))|X7=set_difference(X5,X6))&(((in(esk5_3(X5,X6,X7),X5)|in(esk5_3(X5,X6,X7),X7))|X7=set_difference(X5,X6))&((~in(esk5_3(X5,X6,X7),X6)|in(esk5_3(X5,X6,X7),X7))|X7=set_difference(X5,X6)))))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[d4_xboole_0])])])])])])])])).
fof(c_0_29, lemma, (![X3]:![X4]:![X3]:![X4]:((set_difference(X3,X4)!=empty_set|subset(X3,X4))&(~subset(X3,X4)|set_difference(X3,X4)=empty_set))), inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[l32_xboole_1])])])])).
cnf(c_0_30,lemma,(subset(X1,X2)|~subset(X3,X2)|~subset(X1,X3)), inference(split_conjunct,[status(thm)],[c_0_20])).
cnf(c_0_31,negated_conjecture,(subset(esk11_0,esk12_0)), inference(split_conjunct,[status(thm)],[c_0_19])).
fof(c_0_32, plain, (![X3]:![X4]:![X3]:![X4]:((~disjoint(X3,X4)|set_intersection2(X3,X4)=empty_set)&(set_intersection2(X3,X4)!=empty_set|disjoint(X3,X4)))), inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[d7_xboole_0])])])])).
cnf(c_0_33,lemma,(set_difference(set_union2(X1,X2),X2)=set_difference(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_21])).
cnf(c_0_34,plain,(set_union2(X1,X2)=set_union2(X2,X1)), inference(split_conjunct,[status(thm)],[c_0_22])).
fof(c_0_35, lemma, (![X3]:![X4]:set_union2(X3,set_difference(X4,X3))=set_union2(X3,X4)), inference(variable_rename,[status(thm)],[t39_xboole_1])).
cnf(c_0_36,plain,(set_intersection2(X1,empty_set)=empty_set), inference(split_conjunct,[status(thm)],[c_0_23])).
cnf(c_0_37,lemma,(set_difference(X1,set_difference(X1,X2))=set_intersection2(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_24])).
fof(c_0_38, plain, (![X2]:set_difference(X2,empty_set)=X2), inference(variable_rename,[status(thm)],[t3_boole])).
cnf(c_0_39,lemma,(~disjoint(X1,X2)|~in(X3,X2)|~in(X3,X1)), inference(split_conjunct,[status(thm)],[c_0_25])).
cnf(c_0_40,negated_conjecture,(disjoint(esk13_0,esk12_0)), inference(spm,[status(thm)],[c_0_26, c_0_27])).
cnf(c_0_41,plain,(in(X4,X2)|X1!=set_difference(X2,X3)|~in(X4,X1)), inference(split_conjunct,[status(thm)],[c_0_28])).
fof(c_0_42, plain, (![X3]:![X4]:set_intersection2(X3,X4)=set_intersection2(X4,X3)), inference(variable_rename,[status(thm)],[commutativity_k3_xboole_0])).
cnf(c_0_43,lemma,(set_difference(X1,X2)=empty_set|~subset(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_29])).
cnf(c_0_44,negated_conjecture,(subset(X1,esk12_0)|~subset(X1,esk11_0)), inference(spm,[status(thm)],[c_0_30, c_0_31])).
fof(c_0_45, lemma, (![X3]:![X4]:subset(set_difference(X3,X4),X3)), inference(variable_rename,[status(thm)],[t36_xboole_1])).
fof(c_0_46, lemma, (![X3]:![X4]:(~subset(X3,X4)|set_union2(X3,X4)=X4)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[t12_xboole_1])])).
cnf(c_0_47,plain,(disjoint(X1,X2)|set_intersection2(X1,X2)!=empty_set), inference(split_conjunct,[status(thm)],[c_0_32])).
cnf(c_0_48,lemma,(set_difference(set_union2(X1,X2),X1)=set_difference(X2,X1)), inference(spm,[status(thm)],[c_0_33, c_0_34])).
cnf(c_0_49,lemma,(set_union2(X1,set_difference(X2,X1))=set_union2(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_35])).
cnf(c_0_50,plain,(set_difference(X1,set_difference(X1,empty_set))=empty_set), inference(rw,[status(thm)],[c_0_36, c_0_37])).
cnf(c_0_51,plain,(set_difference(X1,empty_set)=X1), inference(split_conjunct,[status(thm)],[c_0_38])).
cnf(c_0_52,negated_conjecture,(~in(X1,esk12_0)|~in(X1,esk13_0)), inference(spm,[status(thm)],[c_0_39, c_0_40])).
cnf(c_0_53,lemma,(disjoint(X1,X2)|in(esk9_2(X1,X2),X2)), inference(split_conjunct,[status(thm)],[c_0_25])).
cnf(c_0_54,plain,(in(X1,X2)|~in(X1,set_difference(X2,X3))), inference(er,[status(thm)],[c_0_41])).
cnf(c_0_55,lemma,(disjoint(X1,X2)|in(esk9_2(X1,X2),X1)), inference(split_conjunct,[status(thm)],[c_0_25])).
cnf(c_0_56,plain,(set_intersection2(X1,X2)=set_intersection2(X2,X1)), inference(split_conjunct,[status(thm)],[c_0_42])).
cnf(c_0_57,lemma,(set_difference(X1,esk12_0)=empty_set|~subset(X1,esk11_0)), inference(spm,[status(thm)],[c_0_43, c_0_44])).
cnf(c_0_58,lemma,(subset(set_difference(X1,X2),X1)), inference(split_conjunct,[status(thm)],[c_0_45])).
cnf(c_0_59,plain,(set_intersection2(X1,X2)=empty_set|~disjoint(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_32])).
fof(c_0_60, plain, (![X2]:set_union2(X2,empty_set)=X2), inference(variable_rename,[status(thm)],[t1_boole])).
cnf(c_0_61,lemma,(set_union2(X1,X2)=X2|~subset(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_46])).
cnf(c_0_62,plain,(disjoint(X1,X2)|set_difference(X1,set_difference(X1,X2))!=empty_set), inference(rw,[status(thm)],[c_0_47, c_0_37])).
cnf(c_0_63,lemma,(set_difference(set_difference(X1,X2),X2)=set_difference(X1,X2)), inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_48, c_0_49]), c_0_48])).
cnf(c_0_64,plain,(set_difference(X1,X1)=empty_set), inference(rw,[status(thm)],[c_0_50, c_0_51])).
cnf(c_0_65,lemma,(disjoint(X1,esk13_0)|~in(esk9_2(X1,esk13_0),esk12_0)), inference(spm,[status(thm)],[c_0_52, c_0_53])).
cnf(c_0_66,lemma,(disjoint(set_difference(X1,X2),X3)|in(esk9_2(set_difference(X1,X2),X3),X1)), inference(spm,[status(thm)],[c_0_54, c_0_55])).
cnf(c_0_67,plain,(set_difference(X1,set_difference(X1,X2))=set_difference(X2,set_difference(X2,X1))), inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_56, c_0_37]), c_0_37])).
cnf(c_0_68,lemma,(set_difference(set_difference(esk11_0,X1),esk12_0)=empty_set), inference(spm,[status(thm)],[c_0_57, c_0_58])).
cnf(c_0_69,plain,(set_difference(X1,set_difference(X1,X2))=empty_set|~disjoint(X1,X2)), inference(rw,[status(thm)],[c_0_59, c_0_37])).
cnf(c_0_70,plain,(set_union2(X1,empty_set)=X1), inference(split_conjunct,[status(thm)],[c_0_60])).
cnf(c_0_71,lemma,(set_union2(X1,set_difference(X1,X2))=X1), inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_61, c_0_58]), c_0_34])).
cnf(c_0_72,lemma,(disjoint(set_difference(X1,X2),X2)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_62, c_0_63]), c_0_64])])).
cnf(c_0_73,lemma,(disjoint(set_difference(esk12_0,X1),esk13_0)), inference(spm,[status(thm)],[c_0_65, c_0_66])).
cnf(c_0_74,lemma,(set_difference(esk12_0,set_difference(esk12_0,set_difference(esk11_0,X1)))=set_difference(esk11_0,X1)), inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_67, c_0_68]), c_0_51])).
cnf(c_0_75,lemma,(set_difference(X1,X2)=X1|~disjoint(X1,X2)), inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_49, c_0_69]), c_0_70]), c_0_34]), c_0_71])).
cnf(c_0_76,lemma,(disjoint(X1,set_difference(X2,X1))), inference(spm,[status(thm)],[c_0_26, c_0_72])).
cnf(c_0_77,lemma,(disjoint(set_difference(esk11_0,X1),esk13_0)), inference(spm,[status(thm)],[c_0_73, c_0_74])).
cnf(c_0_78,lemma,(set_difference(X1,set_difference(X2,X1))=X1), inference(spm,[status(thm)],[c_0_75, c_0_76])).
cnf(c_0_79,negated_conjecture,(~disjoint(esk11_0,esk13_0)), inference(split_conjunct,[status(thm)],[c_0_19])).
cnf(c_0_80,lemma,($false), inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_77, c_0_78]), c_0_79]), ['proof']).
# SZS output end CNFRefutation

iProver 2.6

Konstantin Korovin
University of Manchester, United Kingdom

Sample solution for SEU140+2

% SZS status Theorem


% SZS output start CNFRefutation

fof(f8,axiom,(
  ! [X0,X1] : (subset(X0,X1) <=> ! [X2] : (in(X2,X0) => in(X2,X1)))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/SEU/SEU140+2.p',unknown)).

fof(f77,plain,(
  ! [X0,X1] : (subset(X0,X1) <=> ! [X2] : (~in(X2,X0) | in(X2,X1)))),
  inference(ennf_transformation,[],[f8])).

fof(f113,plain,(
  ! [X0,X1] : ((~subset(X0,X1) | ! [X2] : (~in(X2,X0) | in(X2,X1))) & (? [X2] : (in(X2,X0) & ~in(X2,X1)) | subset(X0,X1)))),
  inference(nnf_transformation,[],[f77])).

fof(f115,plain,(
  ! [X0,X1] : ((~subset(X0,X1) | ! [X3] : (~in(X3,X0) | in(X3,X1))) & ((in(sK2(X1,X0),X0) & ~in(sK2(X1,X0),X1)) | subset(X0,X1)))),
  inference(skolemisation,[status(esa)],[f114])).
fof(f114,plain,(
  ! [X0,X1] : ((~subset(X0,X1) | ! [X3] : (~in(X3,X0) | in(X3,X1))) & (? [X2] : (in(X2,X0) & ~in(X2,X1)) | subset(X0,X1)))),
  inference(rectify,[],[f113])).

fof(f149,plain,(
  ( ! [X0,X3,X1] : (in(X3,X1) | ~in(X3,X0) | ~subset(X0,X1)) )),
  inference(cnf_transformation,[],[f115])).

fof(f43,axiom,(
  ! [X0,X1] : (~(~disjoint(X0,X1) & ! [X2] : ~(in(X2,X0) & in(X2,X1))) & ~(? [X2] : (in(X2,X0) & in(X2,X1)) & disjoint(X0,X1)))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/SEU/SEU140+2.p',unknown)).

fof(f70,plain,(
  ! [X0,X1] : (~(~disjoint(X0,X1) & ! [X3] : ~(in(X3,X0) & in(X3,X1))) & ~(? [X2] : (in(X2,X0) & in(X2,X1)) & disjoint(X0,X1)))),
  inference(rectify,[],[f43])).

fof(f71,plain,(
  ! [X0,X1] : (~(~disjoint(X0,X1) & ! [X3] : ~(in(X3,X0) & in(X3,X1))) & ~(? [X2] : (in(X2,X0) & in(X2,X1)) & disjoint(X0,X1)))),
  inference(flattening,[],[f70])).

fof(f131,plain,(
  ! [X0,X1] : ((disjoint(X0,X1) | (in(sK8(X1,X0),X0) & in(sK8(X1,X0),X1))) & (! [X2] : (~in(X2,X0) | ~in(X2,X1)) | ~disjoint(X0,X1)))),
  inference(skolemisation,[status(esa)],[f92])).
fof(f92,plain,(
  ! [X0,X1] : ((disjoint(X0,X1) | ? [X3] : (in(X3,X0) & in(X3,X1))) & (! [X2] : (~in(X2,X0) | ~in(X2,X1)) | ~disjoint(X0,X1)))),
  inference(ennf_transformation,[],[f71])).

fof(f198,plain,(
  ( ! [X2,X0,X1] : (~disjoint(X0,X1) | ~in(X2,X1) | ~in(X2,X0)) )),
  inference(cnf_transformation,[],[f131])).

fof(f196,plain,(
  ( ! [X0,X1] : (in(sK8(X1,X0),X0) | disjoint(X0,X1)) )),
  inference(cnf_transformation,[],[f131])).

fof(f197,plain,(
  ( ! [X0,X1] : (in(sK8(X1,X0),X1) | disjoint(X0,X1)) )),
  inference(cnf_transformation,[],[f131])).

fof(f51,conjecture,(
  ! [X0,X1,X2] : ((subset(X0,X1) & disjoint(X1,X2)) => disjoint(X0,X2))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/SEU/SEU140+2.p',unknown)).

fof(f52,negated_conjecture,(
  ~! [X0,X1,X2] : ((subset(X0,X1) & disjoint(X1,X2)) => disjoint(X0,X2))),
  inference(negated_conjecture,[],[f51])).

fof(f97,plain,(
  ? [X0,X1,X2] : ((subset(X0,X1) & disjoint(X1,X2)) & ~disjoint(X0,X2))),
  inference(ennf_transformation,[],[f52])).

fof(f133,plain,(
  subset(sK10,sK11) & disjoint(sK11,sK12) & ~disjoint(sK10,sK12)),
  inference(skolemisation,[status(esa)],[f98])).
fof(f98,plain,(
  ? [X0,X1,X2] : (subset(X0,X1) & disjoint(X1,X2) & ~disjoint(X0,X2))),
  inference(flattening,[],[f97])).

fof(f209,plain,(
  ~disjoint(sK10,sK12)),
  inference(cnf_transformation,[],[f133])).

fof(f208,plain,(
  disjoint(sK11,sK12)),
  inference(cnf_transformation,[],[f133])).

fof(f207,plain,(
  subset(sK10,sK11)),
  inference(cnf_transformation,[],[f133])).

cnf(c_17,plain,
    ( ~ in(X0_$i,X1_$i) | in(X0_$i,X2_$i) | ~ subset(X1_$i,X2_$i) ),
    inference(cnf_transformation,[],[f149]) ).

cnf(c_262,plain,
    ( ~ in(sK8(sK12,sK10),sK10)
    | in(sK8(sK12,sK10),X0_$i)
    | ~ subset(sK10,X0_$i) ),
    inference(instantiation,[status(thm)],[c_17]) ).

cnf(c_835,plain,
    ( ~ in(sK8(sK12,sK10),sK10)
    | in(sK8(sK12,sK10),sK11)
    | ~ subset(sK10,sK11) ),
    inference(instantiation,[status(thm)],[c_262]) ).

cnf(c_62,plain,
    ( ~ in(X0_$i,X1_$i) | ~ in(X0_$i,X2_$i) | ~ disjoint(X2_$i,X1_$i) ),
    inference(cnf_transformation,[],[f198]) ).

cnf(c_243,plain,
    ( ~ in(sK8(sK12,sK10),sK12)
    | ~ in(sK8(sK12,sK10),X0_$i)
    | ~ disjoint(X0_$i,sK12) ),
    inference(instantiation,[status(thm)],[c_62]) ).

cnf(c_760,plain,
    ( ~ in(sK8(sK12,sK10),sK12)
    | ~ in(sK8(sK12,sK10),sK11)
    | ~ disjoint(sK11,sK12) ),
    inference(instantiation,[status(thm)],[c_243]) ).

cnf(c_64,plain,
    ( in(sK8(X0_$i,X1_$i),X1_$i) | disjoint(X1_$i,X0_$i) ),
    inference(cnf_transformation,[],[f196]) ).

cnf(c_210,plain,
    ( in(sK8(sK12,sK10),sK10) | disjoint(sK10,sK12) ),
    inference(instantiation,[status(thm)],[c_64]) ).

cnf(c_63,plain,
    ( in(sK8(X0_$i,X1_$i),X0_$i) | disjoint(X1_$i,X0_$i) ),
    inference(cnf_transformation,[],[f197]) ).

cnf(c_209,plain,
    ( in(sK8(sK12,sK10),sK12) | disjoint(sK10,sK12) ),
    inference(instantiation,[status(thm)],[c_63]) ).

cnf(c_72,negated_conjecture,
    ( ~ disjoint(sK10,sK12) ),
    inference(cnf_transformation,[],[f209]) ).

cnf(c_73,negated_conjecture,
    ( disjoint(sK11,sK12) ),
    inference(cnf_transformation,[],[f208]) ).

cnf(c_74,negated_conjecture,
    ( subset(sK10,sK11) ),
    inference(cnf_transformation,[],[f207]) ).

cnf(contradiction,plain,
    ( $false ),
    inference(minisat,
              [status(thm)],
              [c_835,c_760,c_210,c_209,c_72,c_73,c_74]) ).


% SZS output end CNFRefutation

Sample solution for NLP042+1

% SZS status CounterSatisfiable


% SZS output start Saturation

fof(f43,axiom,(
  ! [X0,X1,X2] : ((entity(X0,X1) & forename(X0,X2) & of(X0,X2,X1)) => ~? [X3] : (forename(X0,X3) & X2 != X3 & of(X0,X3,X1)))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f98,plain,(
  ! [X0,X1,X2] : ((~entity(X0,X1) | ~forename(X0,X2) | ~of(X0,X2,X1)) | ! [X3] : (~forename(X0,X3) | X2 = X3 | ~of(X0,X3,X1)))),
  inference(ennf_transformation,[],[f43])).

fof(f99,plain,(
  ! [X0,X1,X2] : (~entity(X0,X1) | ~forename(X0,X2) | ~of(X0,X2,X1) | ! [X3] : (~forename(X0,X3) | X2 = X3 | ~of(X0,X3,X1)))),
  inference(flattening,[],[f98])).

fof(f139,plain,(
  ( ! [X2,X0,X3,X1] : (~of(X0,X3,X1) | X2 = X3 | ~forename(X0,X3) | ~of(X0,X2,X1) | ~forename(X0,X2) | ~entity(X0,X1)) )),
  inference(cnf_transformation,[],[f99])).

fof(f45,conjecture,(
  ~? [X0] : (actual_world(X0) & ? [X1,X2,X3,X4] : (of(X0,X2,X1) & woman(X0,X1) & mia_forename(X0,X2) & forename(X0,X2) & shake_beverage(X0,X3) & event(X0,X4) & agent(X0,X4,X1) & patient(X0,X4,X3) & past(X0,X4) & nonreflexive(X0,X4) & order(X0,X4)))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f46,negated_conjecture,(
  ~~? [X0] : (actual_world(X0) & ? [X1,X2,X3,X4] : (of(X0,X2,X1) & woman(X0,X1) & mia_forename(X0,X2) & forename(X0,X2) & shake_beverage(X0,X3) & event(X0,X4) & agent(X0,X4,X1) & patient(X0,X4,X3) & past(X0,X4) & nonreflexive(X0,X4) & order(X0,X4)))),
  inference(negated_conjecture,[],[f45])).

fof(f53,plain,(
  ? [X0] : (actual_world(X0) & ? [X1,X2,X3,X4] : (of(X0,X2,X1) & woman(X0,X1) & mia_forename(X0,X2) & forename(X0,X2) & shake_beverage(X0,X3) & event(X0,X4) & agent(X0,X4,X1) & patient(X0,X4,X3) & past(X0,X4) & nonreflexive(X0,X4) & order(X0,X4)))),
  inference(flattening,[],[f46])).

fof(f54,plain,(
  ? [X0] : (actual_world(X0) & ? [X1,X2,X3,X4] : (of(X0,X2,X1) & woman(X0,X1) & mia_forename(X0,X2) & forename(X0,X2) & shake_beverage(X0,X3) & event(X0,X4) & agent(X0,X4,X1) & patient(X0,X4,X3) & nonreflexive(X0,X4) & order(X0,X4)))),
  inference(pure_predicate_removal,[],[f53])).

fof(f102,plain,(
  of(sK0,sK2,sK1) & woman(sK0,sK1) & mia_forename(sK0,sK2) & forename(sK0,sK2) & shake_beverage(sK0,sK3) & event(sK0,sK4) & agent(sK0,sK4,sK1) & patient(sK0,sK4,sK3) & nonreflexive(sK0,sK4) & order(sK0,sK4)),
  inference(skolemisation,[status(esa)],[f55])).
fof(f55,plain,(
  ? [X0,X1,X2,X3,X4] : (of(X0,X2,X1) & woman(X0,X1) & mia_forename(X0,X2) & forename(X0,X2) & shake_beverage(X0,X3) & event(X0,X4) & agent(X0,X4,X1) & patient(X0,X4,X3) & nonreflexive(X0,X4) & order(X0,X4))),
  inference(pure_predicate_removal,[],[f54])).

fof(f141,plain,(
  of(sK0,sK2,sK1)),
  inference(cnf_transformation,[],[f102])).

fof(f144,plain,(
  forename(sK0,sK2)),
  inference(cnf_transformation,[],[f102])).

fof(f44,axiom,(
  ! [X0,X1,X2,X3] : ((nonreflexive(X0,X1) & agent(X0,X1,X2) & patient(X0,X1,X3)) => X2 != X3)),
  file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f100,plain,(
  ! [X0,X1,X2,X3] : ((~nonreflexive(X0,X1) | ~agent(X0,X1,X2) | ~patient(X0,X1,X3)) | X2 != X3)),
  inference(ennf_transformation,[],[f44])).

fof(f101,plain,(
  ! [X0,X1,X2,X3] : (~nonreflexive(X0,X1) | ~agent(X0,X1,X2) | ~patient(X0,X1,X3) | X2 != X3)),
  inference(flattening,[],[f100])).

fof(f140,plain,(
  ( ! [X2,X0,X3,X1] : (X2 != X3 | ~patient(X0,X1,X3) | ~agent(X0,X1,X2) | ~nonreflexive(X0,X1)) )),
  inference(cnf_transformation,[],[f101])).

fof(f151,plain,(
  ( ! [X0,X3,X1] : (~patient(X0,X1,X3) | ~agent(X0,X1,X3) | ~nonreflexive(X0,X1)) )),
  inference(equality_resolution,[],[f140])).

fof(f147,plain,(
  agent(sK0,sK4,sK1)),
  inference(cnf_transformation,[],[f102])).

fof(f149,plain,(
  nonreflexive(sK0,sK4)),
  inference(cnf_transformation,[],[f102])).

fof(f27,axiom,(
  ! [X0,X1] : (shake_beverage(X0,X1) => beverage(X0,X1))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f84,plain,(
  ! [X0,X1] : (~shake_beverage(X0,X1) | beverage(X0,X1))),
  inference(ennf_transformation,[],[f27])).

fof(f125,plain,(
  ( ! [X0,X1] : (beverage(X0,X1) | ~shake_beverage(X0,X1)) )),
  inference(cnf_transformation,[],[f84])).

fof(f26,axiom,(
  ! [X0,X1] : (beverage(X0,X1) => food(X0,X1))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f83,plain,(
  ! [X0,X1] : (~beverage(X0,X1) | food(X0,X1))),
  inference(ennf_transformation,[],[f26])).

fof(f124,plain,(
  ( ! [X0,X1] : (food(X0,X1) | ~beverage(X0,X1)) )),
  inference(cnf_transformation,[],[f83])).

fof(f25,axiom,(
  ! [X0,X1] : (food(X0,X1) => substance_matter(X0,X1))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f82,plain,(
  ! [X0,X1] : (~food(X0,X1) | substance_matter(X0,X1))),
  inference(ennf_transformation,[],[f25])).

fof(f123,plain,(
  ( ! [X0,X1] : (substance_matter(X0,X1) | ~food(X0,X1)) )),
  inference(cnf_transformation,[],[f82])).

fof(f24,axiom,(
  ! [X0,X1] : (substance_matter(X0,X1) => object(X0,X1))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f81,plain,(
  ! [X0,X1] : (~substance_matter(X0,X1) | object(X0,X1))),
  inference(ennf_transformation,[],[f24])).

fof(f122,plain,(
  ( ! [X0,X1] : (object(X0,X1) | ~substance_matter(X0,X1)) )),
  inference(cnf_transformation,[],[f81])).

fof(f8,axiom,(
  ! [X0,X1] : (woman(X0,X1) => human_person(X0,X1))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f68,plain,(
  ! [X0,X1] : (~woman(X0,X1) | human_person(X0,X1))),
  inference(ennf_transformation,[],[f8])).

fof(f109,plain,(
  ( ! [X0,X1] : (human_person(X0,X1) | ~woman(X0,X1)) )),
  inference(cnf_transformation,[],[f68])).

fof(f19,axiom,(
  ! [X0,X1] : (object(X0,X1) => nonliving(X0,X1))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f77,plain,(
  ! [X0,X1] : (~object(X0,X1) | nonliving(X0,X1))),
  inference(ennf_transformation,[],[f19])).

fof(f118,plain,(
  ( ! [X0,X1] : (nonliving(X0,X1) | ~object(X0,X1)) )),
  inference(cnf_transformation,[],[f77])).

fof(f2,axiom,(
  ! [X0,X1] : (human_person(X0,X1) => animate(X0,X1))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f63,plain,(
  ! [X0,X1] : (~human_person(X0,X1) | animate(X0,X1))),
  inference(ennf_transformation,[],[f2])).

fof(f104,plain,(
  ( ! [X0,X1] : (animate(X0,X1) | ~human_person(X0,X1)) )),
  inference(cnf_transformation,[],[f63])).

fof(f37,axiom,(
  ! [X0,X1] : (animate(X0,X1) => ~nonliving(X0,X1))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f47,plain,(
  ! [X0,X1] : (animate(X0,X1) => ~nonliving(X0,X1))),
  inference(flattening,[],[f37])).

fof(f92,plain,(
  ! [X0,X1] : (~animate(X0,X1) | ~nonliving(X0,X1))),
  inference(ennf_transformation,[],[f47])).

fof(f133,plain,(
  ( ! [X0,X1] : (~nonliving(X0,X1) | ~animate(X0,X1)) )),
  inference(cnf_transformation,[],[f92])).

fof(f145,plain,(
  shake_beverage(sK0,sK3)),
  inference(cnf_transformation,[],[f102])).

fof(f16,axiom,(
  ! [X0,X1] : (forename(X0,X1) => relname(X0,X1))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f75,plain,(
  ! [X0,X1] : (~forename(X0,X1) | relname(X0,X1))),
  inference(ennf_transformation,[],[f16])).

fof(f116,plain,(
  ( ! [X0,X1] : (relname(X0,X1) | ~forename(X0,X1)) )),
  inference(cnf_transformation,[],[f75])).

fof(f15,axiom,(
  ! [X0,X1] : (relname(X0,X1) => relation(X0,X1))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f74,plain,(
  ! [X0,X1] : (~relname(X0,X1) | relation(X0,X1))),
  inference(ennf_transformation,[],[f15])).

fof(f115,plain,(
  ( ! [X0,X1] : (relation(X0,X1) | ~relname(X0,X1)) )),
  inference(cnf_transformation,[],[f74])).

fof(f14,axiom,(
  ! [X0,X1] : (relation(X0,X1) => abstraction(X0,X1))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f73,plain,(
  ! [X0,X1] : (~relation(X0,X1) | abstraction(X0,X1))),
  inference(ennf_transformation,[],[f14])).

fof(f114,plain,(
  ( ! [X0,X1] : (abstraction(X0,X1) | ~relation(X0,X1)) )),
  inference(cnf_transformation,[],[f73])).

fof(f21,axiom,(
  ! [X0,X1] : (entity(X0,X1) => specific(X0,X1))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f79,plain,(
  ! [X0,X1] : (~entity(X0,X1) | specific(X0,X1))),
  inference(ennf_transformation,[],[f21])).

fof(f120,plain,(
  ( ! [X0,X1] : (specific(X0,X1) | ~entity(X0,X1)) )),
  inference(cnf_transformation,[],[f79])).

fof(f11,axiom,(
  ! [X0,X1] : (abstraction(X0,X1) => general(X0,X1))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f71,plain,(
  ! [X0,X1] : (~abstraction(X0,X1) | general(X0,X1))),
  inference(ennf_transformation,[],[f11])).

fof(f112,plain,(
  ( ! [X0,X1] : (general(X0,X1) | ~abstraction(X0,X1)) )),
  inference(cnf_transformation,[],[f71])).

fof(f41,axiom,(
  ! [X0,X1] : (specific(X0,X1) => ~general(X0,X1))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f51,plain,(
  ! [X0,X1] : (specific(X0,X1) => ~general(X0,X1))),
  inference(flattening,[],[f41])).

fof(f96,plain,(
  ! [X0,X1] : (~specific(X0,X1) | ~general(X0,X1))),
  inference(ennf_transformation,[],[f51])).

fof(f137,plain,(
  ( ! [X0,X1] : (~general(X0,X1) | ~specific(X0,X1)) )),
  inference(cnf_transformation,[],[f96])).

fof(f7,axiom,(
  ! [X0,X1] : (human_person(X0,X1) => organism(X0,X1))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f67,plain,(
  ! [X0,X1] : (~human_person(X0,X1) | organism(X0,X1))),
  inference(ennf_transformation,[],[f7])).

fof(f108,plain,(
  ( ! [X0,X1] : (organism(X0,X1) | ~human_person(X0,X1)) )),
  inference(cnf_transformation,[],[f67])).

fof(f6,axiom,(
  ! [X0,X1] : (organism(X0,X1) => entity(X0,X1))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f66,plain,(
  ! [X0,X1] : (~organism(X0,X1) | entity(X0,X1))),
  inference(ennf_transformation,[],[f6])).

fof(f107,plain,(
  ( ! [X0,X1] : (entity(X0,X1) | ~organism(X0,X1)) )),
  inference(cnf_transformation,[],[f66])).

fof(f34,axiom,(
  ! [X0,X1] : (event(X0,X1) => eventuality(X0,X1))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f89,plain,(
  ! [X0,X1] : (~event(X0,X1) | eventuality(X0,X1))),
  inference(ennf_transformation,[],[f34])).

fof(f130,plain,(
  ( ! [X0,X1] : (eventuality(X0,X1) | ~event(X0,X1)) )),
  inference(cnf_transformation,[],[f89])).

fof(f31,axiom,(
  ! [X0,X1] : (eventuality(X0,X1) => specific(X0,X1))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f88,plain,(
  ! [X0,X1] : (~eventuality(X0,X1) | specific(X0,X1))),
  inference(ennf_transformation,[],[f31])).

fof(f129,plain,(
  ( ! [X0,X1] : (specific(X0,X1) | ~eventuality(X0,X1)) )),
  inference(cnf_transformation,[],[f88])).

fof(f146,plain,(
  event(sK0,sK4)),
  inference(cnf_transformation,[],[f102])).

fof(f30,axiom,(
  ! [X0,X1] : (eventuality(X0,X1) => nonexistent(X0,X1))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f87,plain,(
  ! [X0,X1] : (~eventuality(X0,X1) | nonexistent(X0,X1))),
  inference(ennf_transformation,[],[f30])).

fof(f128,plain,(
  ( ! [X0,X1] : (nonexistent(X0,X1) | ~eventuality(X0,X1)) )),
  inference(cnf_transformation,[],[f87])).

fof(f20,axiom,(
  ! [X0,X1] : (entity(X0,X1) => existent(X0,X1))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f78,plain,(
  ! [X0,X1] : (~entity(X0,X1) | existent(X0,X1))),
  inference(ennf_transformation,[],[f20])).

fof(f119,plain,(
  ( ! [X0,X1] : (existent(X0,X1) | ~entity(X0,X1)) )),
  inference(cnf_transformation,[],[f78])).

fof(f38,axiom,(
  ! [X0,X1] : (existent(X0,X1) => ~nonexistent(X0,X1))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f48,plain,(
  ! [X0,X1] : (existent(X0,X1) => ~nonexistent(X0,X1))),
  inference(flattening,[],[f38])).

fof(f93,plain,(
  ! [X0,X1] : (~existent(X0,X1) | ~nonexistent(X0,X1))),
  inference(ennf_transformation,[],[f48])).

fof(f134,plain,(
  ( ! [X0,X1] : (~nonexistent(X0,X1) | ~existent(X0,X1)) )),
  inference(cnf_transformation,[],[f93])).

fof(f23,axiom,(
  ! [X0,X1] : (object(X0,X1) => entity(X0,X1))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f80,plain,(
  ! [X0,X1] : (~object(X0,X1) | entity(X0,X1))),
  inference(ennf_transformation,[],[f23])).

fof(f121,plain,(
  ( ! [X0,X1] : (entity(X0,X1) | ~object(X0,X1)) )),
  inference(cnf_transformation,[],[f80])).

fof(f9,axiom,(
  ! [X0,X1] : (mia_forename(X0,X1) => forename(X0,X1))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f69,plain,(
  ! [X0,X1] : (~mia_forename(X0,X1) | forename(X0,X1))),
  inference(ennf_transformation,[],[f9])).

fof(f110,plain,(
  ( ! [X0,X1] : (forename(X0,X1) | ~mia_forename(X0,X1)) )),
  inference(cnf_transformation,[],[f69])).

fof(f28,axiom,(
  ! [X0,X1] : (order(X0,X1) => event(X0,X1))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f85,plain,(
  ! [X0,X1] : (~order(X0,X1) | event(X0,X1))),
  inference(ennf_transformation,[],[f28])).

fof(f126,plain,(
  ( ! [X0,X1] : (event(X0,X1) | ~order(X0,X1)) )),
  inference(cnf_transformation,[],[f85])).

fof(f12,axiom,(
  ! [X0,X1] : (abstraction(X0,X1) => nonhuman(X0,X1))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f72,plain,(
  ! [X0,X1] : (~abstraction(X0,X1) | nonhuman(X0,X1))),
  inference(ennf_transformation,[],[f12])).

fof(f113,plain,(
  ( ! [X0,X1] : (nonhuman(X0,X1) | ~abstraction(X0,X1)) )),
  inference(cnf_transformation,[],[f72])).

fof(f3,axiom,(
  ! [X0,X1] : (human_person(X0,X1) => human(X0,X1))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f64,plain,(
  ! [X0,X1] : (~human_person(X0,X1) | human(X0,X1))),
  inference(ennf_transformation,[],[f3])).

fof(f105,plain,(
  ( ! [X0,X1] : (human(X0,X1) | ~human_person(X0,X1)) )),
  inference(cnf_transformation,[],[f64])).

fof(f39,axiom,(
  ! [X0,X1] : (nonhuman(X0,X1) => ~human(X0,X1))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f49,plain,(
  ! [X0,X1] : (nonhuman(X0,X1) => ~human(X0,X1))),
  inference(flattening,[],[f39])).

fof(f94,plain,(
  ! [X0,X1] : (~nonhuman(X0,X1) | ~human(X0,X1))),
  inference(ennf_transformation,[],[f49])).

fof(f135,plain,(
  ( ! [X0,X1] : (~human(X0,X1) | ~nonhuman(X0,X1)) )),
  inference(cnf_transformation,[],[f94])).

fof(f29,axiom,(
  ! [X0,X1] : (eventuality(X0,X1) => unisex(X0,X1))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f86,plain,(
  ! [X0,X1] : (~eventuality(X0,X1) | unisex(X0,X1))),
  inference(ennf_transformation,[],[f29])).

fof(f127,plain,(
  ( ! [X0,X1] : (unisex(X0,X1) | ~eventuality(X0,X1)) )),
  inference(cnf_transformation,[],[f86])).

fof(f1,axiom,(
  ! [X0,X1] : (woman(X0,X1) => female(X0,X1))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f62,plain,(
  ! [X0,X1] : (~woman(X0,X1) | female(X0,X1))),
  inference(ennf_transformation,[],[f1])).

fof(f103,plain,(
  ( ! [X0,X1] : (female(X0,X1) | ~woman(X0,X1)) )),
  inference(cnf_transformation,[],[f62])).

fof(f42,axiom,(
  ! [X0,X1] : (unisex(X0,X1) => ~female(X0,X1))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f52,plain,(
  ! [X0,X1] : (unisex(X0,X1) => ~female(X0,X1))),
  inference(flattening,[],[f42])).

fof(f97,plain,(
  ! [X0,X1] : (~unisex(X0,X1) | ~female(X0,X1))),
  inference(ennf_transformation,[],[f52])).

fof(f138,plain,(
  ( ! [X0,X1] : (~female(X0,X1) | ~unisex(X0,X1)) )),
  inference(cnf_transformation,[],[f97])).

fof(f142,plain,(
  woman(sK0,sK1)),
  inference(cnf_transformation,[],[f102])).

fof(f143,plain,(
  mia_forename(sK0,sK2)),
  inference(cnf_transformation,[],[f102])).

fof(f148,plain,(
  patient(sK0,sK4,sK3)),
  inference(cnf_transformation,[],[f102])).

fof(f150,plain,(
  order(sK0,sK4)),
  inference(cnf_transformation,[],[f102])).

cnf(c_36,plain,
    ( ~ entity(X0_$i,X1_$i)
    | ~ forename(X0_$i,X2_$i)
    | ~ forename(X0_$i,X3_$i)
    | ~ of(X0_$i,X2_$i,X1_$i)
    | ~ of(X0_$i,X3_$i,X1_$i)
    | X3_$i = X2_$i ),
    inference(cnf_transformation,[],[f139]) ).

cnf(c_495,plain,
    ( ~ entity(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i)
    | ~ forename(X0_$$iProver_event_1_$i,X1_$$iProver_event_2_$i)
    | ~ forename(X0_$$iProver_event_1_$i,X2_$$iProver_event_2_$i)
    | ~ of(X0_$$iProver_event_1_$i,X1_$$iProver_event_2_$i,X0_$$iProver_event_2_$i)
    | ~ of(X0_$$iProver_event_1_$i,X2_$$iProver_event_2_$i,X0_$$iProver_event_2_$i)
    | X2_$$iProver_event_2_$i = X1_$$iProver_event_2_$i ),
    inference(subtyping,[status(esa)],[c_36]) ).

cnf(c_47,negated_conjecture,
    ( of(sK0,sK2,sK1) ),
    inference(cnf_transformation,[],[f141]) ).

cnf(c_484,negated_conjecture,
    ( of(sK0,sK2,sK1) ),
    inference(subtyping,[status(esa)],[c_47]) ).

cnf(c_649,plain,
    ( ~ entity(sK0,sK1)
    | ~ forename(sK0,sK2)
    | ~ forename(sK0,X0_$$iProver_event_2_$i)
    | ~ of(sK0,X0_$$iProver_event_2_$i,sK1)
    | sK2 = X0_$$iProver_event_2_$i ),
    inference(resolution,[status(thm)],[c_495,c_484]) ).

cnf(c_44,negated_conjecture,
    ( forename(sK0,sK2) ),
    inference(cnf_transformation,[],[f144]) ).

cnf(c_650,plain,
    ( ~ entity(sK0,sK1)
    | ~ forename(sK0,X0_$$iProver_event_2_$i)
    | ~ of(sK0,X0_$$iProver_event_2_$i,sK1)
    | sK2 = X0_$$iProver_event_2_$i ),
    inference(global_propositional_subsumption,[status(thm)],[c_649,c_44]) ).

cnf(c_663,plain,
    ( ~ entity(sK0,sK1) | ~ forename(sK0,sK2) | sK2 = sK2 ),
    inference(resolution,[status(thm)],[c_650,c_484]) ).

cnf(c_664,plain,
    ( ~ entity(sK0,sK1) | sK2 = sK2 ),
    inference(global_propositional_subsumption,[status(thm)],[c_663,c_44]) ).

cnf(c_498,plain,
    ( X0_$$iProver_event_2_$i = X0_$$iProver_event_2_$i ),
    theory(equality) ).

cnf(c_667,plain,
    ( sK2 = sK2 ),
    inference(forward_subsumption_resolution,[status(thm)],[c_664,c_498]) ).

cnf(c_508,plain,
    ( agent(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i,X1_$$iProver_event_2_$i)
    | ~ agent(X0_$$iProver_event_1_$i,X2_$$iProver_event_2_$i,X3_$$iProver_event_2_$i)
    | X0_$$iProver_event_2_$i != X2_$$iProver_event_2_$i
    | X1_$$iProver_event_2_$i != X3_$$iProver_event_2_$i ),
    theory(equality) ).

cnf(c_684,plain,
    ( agent(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i,sK2)
    | ~ agent(X0_$$iProver_event_1_$i,X1_$$iProver_event_2_$i,sK2)
    | X0_$$iProver_event_2_$i != X1_$$iProver_event_2_$i ),
    inference(resolution,[status(thm)],[c_667,c_508]) ).

cnf(c_507,plain,
    ( patient(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i,X1_$$iProver_event_2_$i)
    | ~ patient(X0_$$iProver_event_1_$i,X2_$$iProver_event_2_$i,X3_$$iProver_event_2_$i)
    | X0_$$iProver_event_2_$i != X2_$$iProver_event_2_$i
    | X1_$$iProver_event_2_$i != X3_$$iProver_event_2_$i ),
    theory(equality) ).

cnf(c_683,plain,
    ( patient(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i,sK2)
    | ~ patient(X0_$$iProver_event_1_$i,X1_$$iProver_event_2_$i,sK2)
    | X0_$$iProver_event_2_$i != X1_$$iProver_event_2_$i ),
    inference(resolution,[status(thm)],[c_667,c_507]) ).

cnf(c_506,plain,
    ( of(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i,X1_$$iProver_event_2_$i)
    | ~ of(X0_$$iProver_event_1_$i,X2_$$iProver_event_2_$i,X3_$$iProver_event_2_$i)
    | X0_$$iProver_event_2_$i != X2_$$iProver_event_2_$i
    | X1_$$iProver_event_2_$i != X3_$$iProver_event_2_$i ),
    theory(equality) ).

cnf(c_682,plain,
    ( of(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i,sK2)
    | ~ of(X0_$$iProver_event_1_$i,X1_$$iProver_event_2_$i,sK2)
    | X0_$$iProver_event_2_$i != X1_$$iProver_event_2_$i ),
    inference(resolution,[status(thm)],[c_667,c_506]) ).

cnf(c_499,plain,
    ( X0_$$iProver_event_2_$i != X1_$$iProver_event_2_$i
    | X2_$$iProver_event_2_$i != X1_$$iProver_event_2_$i
    | X2_$$iProver_event_2_$i = X0_$$iProver_event_2_$i ),
    theory(equality) ).

cnf(c_671,plain,
    ( sK2 = X0_$$iProver_event_2_$i | X0_$$iProver_event_2_$i != sK2 ),
    inference(resolution,[status(thm)],[c_667,c_499]) ).

cnf(c_638,plain,
    ( agent(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i,X1_$$iProver_event_2_$i)
    | ~ agent(X0_$$iProver_event_1_$i,X2_$$iProver_event_2_$i,X1_$$iProver_event_2_$i)
    | X0_$$iProver_event_2_$i != X2_$$iProver_event_2_$i ),
    inference(resolution,[status(thm)],[c_508,c_498]) ).

cnf(c_629,plain,
    ( patient(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i,X1_$$iProver_event_2_$i)
    | ~ patient(X0_$$iProver_event_1_$i,X2_$$iProver_event_2_$i,X1_$$iProver_event_2_$i)
    | X0_$$iProver_event_2_$i != X2_$$iProver_event_2_$i ),
    inference(resolution,[status(thm)],[c_507,c_498]) ).

cnf(c_620,plain,
    ( ~ of(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i,X1_$$iProver_event_2_$i)
    | of(X0_$$iProver_event_1_$i,X2_$$iProver_event_2_$i,X1_$$iProver_event_2_$i)
    | X2_$$iProver_event_2_$i != X0_$$iProver_event_2_$i ),
    inference(resolution,[status(thm)],[c_506,c_498]) ).

cnf(c_612,plain,
    ( X0_$$iProver_event_2_$i != X1_$$iProver_event_2_$i
    | X1_$$iProver_event_2_$i = X0_$$iProver_event_2_$i ),
    inference(resolution,[status(thm)],[c_499,c_498]) ).

cnf(c_37,plain,
    ( ~ patient(X0_$i,X1_$i,X2_$i)
    | ~ agent(X0_$i,X1_$i,X2_$i)
    | ~ nonreflexive(X0_$i,X1_$i) ),
    inference(cnf_transformation,[],[f151]) ).

cnf(c_494,plain,
    ( ~ patient(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i,X1_$$iProver_event_2_$i)
    | ~ agent(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i,X1_$$iProver_event_2_$i)
    | ~ nonreflexive(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) ),
    inference(subtyping,[status(esa)],[c_37]) ).

cnf(c_41,negated_conjecture,
    ( agent(sK0,sK4,sK1) ),
    inference(cnf_transformation,[],[f147]) ).

cnf(c_490,negated_conjecture,
    ( agent(sK0,sK4,sK1) ),
    inference(subtyping,[status(esa)],[c_41]) ).

cnf(c_604,plain,
    ( ~ patient(sK0,sK4,sK1) | ~ nonreflexive(sK0,sK4) ),
    inference(resolution,[status(thm)],[c_494,c_490]) ).

cnf(c_39,negated_conjecture,
    ( nonreflexive(sK0,sK4) ),
    inference(cnf_transformation,[],[f149]) ).

cnf(c_605,plain,
    ( ~ patient(sK0,sK4,sK1) ),
    inference(global_propositional_subsumption,[status(thm)],[c_604,c_39]) ).

cnf(c_22,plain,
    ( beverage(X0_$i,X1_$i) | ~ shake_beverage(X0_$i,X1_$i) ),
    inference(cnf_transformation,[],[f125]) ).

cnf(c_21,plain,
    ( food(X0_$i,X1_$i) | ~ beverage(X0_$i,X1_$i) ),
    inference(cnf_transformation,[],[f124]) ).

cnf(c_20,plain,
    ( substance_matter(X0_$i,X1_$i) | ~ food(X0_$i,X1_$i) ),
    inference(cnf_transformation,[],[f123]) ).

cnf(c_19,plain,
    ( object(X0_$i,X1_$i) | ~ substance_matter(X0_$i,X1_$i) ),
    inference(cnf_transformation,[],[f122]) ).

cnf(c_176,plain,
    ( object(X0_$i,X1_$i) | ~ food(X0_$i,X1_$i) ),
    inference(resolution,[status(thm)],[c_20,c_19]) ).

cnf(c_186,plain,
    ( object(X0_$i,X1_$i) | ~ beverage(X0_$i,X1_$i) ),
    inference(resolution,[status(thm)],[c_21,c_176]) ).

cnf(c_196,plain,
    ( object(X0_$i,X1_$i) | ~ shake_beverage(X0_$i,X1_$i) ),
    inference(resolution,[status(thm)],[c_22,c_186]) ).

cnf(c_6,plain,
    ( ~ woman(X0_$i,X1_$i) | human_person(X0_$i,X1_$i) ),
    inference(cnf_transformation,[],[f109]) ).

cnf(c_15,plain,
    ( ~ object(X0_$i,X1_$i) | nonliving(X0_$i,X1_$i) ),
    inference(cnf_transformation,[],[f118]) ).

cnf(c_1,plain,
    ( animate(X0_$i,X1_$i) | ~ human_person(X0_$i,X1_$i) ),
    inference(cnf_transformation,[],[f104]) ).

cnf(c_30,plain,
    ( ~ animate(X0_$i,X1_$i) | ~ nonliving(X0_$i,X1_$i) ),
    inference(cnf_transformation,[],[f133]) ).

cnf(c_96,plain,
    ( ~ human_person(X0_$i,X1_$i) | ~ nonliving(X0_$i,X1_$i) ),
    inference(resolution,[status(thm)],[c_1,c_30]) ).

cnf(c_228,plain,
    ( ~ human_person(X0_$i,X1_$i) | ~ object(X0_$i,X1_$i) ),
    inference(resolution,[status(thm)],[c_15,c_96]) ).

cnf(c_258,plain,
    ( ~ woman(X0_$i,X1_$i) | ~ object(X0_$i,X1_$i) ),
    inference(resolution,[status(thm)],[c_6,c_228]) ).

cnf(c_300,plain,
    ( ~ woman(X0_$i,X1_$i) | ~ shake_beverage(X0_$i,X1_$i) ),
    inference(resolution,[status(thm)],[c_196,c_258]) ).

cnf(c_482,plain,
    ( ~ woman(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i)
    | ~ shake_beverage(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) ),
    inference(subtyping,[status(esa)],[c_300]) ).

cnf(c_43,negated_conjecture,
    ( shake_beverage(sK0,sK3) ),
    inference(cnf_transformation,[],[f145]) ).

cnf(c_488,negated_conjecture,
    ( shake_beverage(sK0,sK3) ),
    inference(subtyping,[status(esa)],[c_43]) ).

cnf(c_575,plain,
    ( ~ woman(sK0,sK3) ),
    inference(resolution,[status(thm)],[c_482,c_488]) ).

cnf(c_13,plain,
    ( ~ forename(X0_$i,X1_$i) | relname(X0_$i,X1_$i) ),
    inference(cnf_transformation,[],[f116]) ).

cnf(c_12,plain,
    ( relation(X0_$i,X1_$i) | ~ relname(X0_$i,X1_$i) ),
    inference(cnf_transformation,[],[f115]) ).

cnf(c_11,plain,
    ( abstraction(X0_$i,X1_$i) | ~ relation(X0_$i,X1_$i) ),
    inference(cnf_transformation,[],[f114]) ).

cnf(c_146,plain,
    ( abstraction(X0_$i,X1_$i) | ~ relname(X0_$i,X1_$i) ),
    inference(resolution,[status(thm)],[c_12,c_11]) ).

cnf(c_156,plain,
    ( ~ forename(X0_$i,X1_$i) | abstraction(X0_$i,X1_$i) ),
    inference(resolution,[status(thm)],[c_13,c_146]) ).

cnf(c_17,plain,
    ( ~ entity(X0_$i,X1_$i) | specific(X0_$i,X1_$i) ),
    inference(cnf_transformation,[],[f120]) ).

cnf(c_9,plain,
    ( ~ abstraction(X0_$i,X1_$i) | general(X0_$i,X1_$i) ),
    inference(cnf_transformation,[],[f112]) ).

cnf(c_34,plain,
    ( ~ general(X0_$i,X1_$i) | ~ specific(X0_$i,X1_$i) ),
    inference(cnf_transformation,[],[f137]) ).

cnf(c_126,plain,
    ( ~ abstraction(X0_$i,X1_$i) | ~ specific(X0_$i,X1_$i) ),
    inference(resolution,[status(thm)],[c_9,c_34]) ).

cnf(c_246,plain,
    ( ~ entity(X0_$i,X1_$i) | ~ abstraction(X0_$i,X1_$i) ),
    inference(resolution,[status(thm)],[c_17,c_126]) ).

cnf(c_328,plain,
    ( ~ entity(X0_$i,X1_$i) | ~ forename(X0_$i,X1_$i) ),
    inference(resolution,[status(thm)],[c_156,c_246]) ).

cnf(c_479,plain,
    ( ~ entity(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i)
    | ~ forename(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) ),
    inference(subtyping,[status(esa)],[c_328]) ).

cnf(c_487,negated_conjecture,
    ( forename(sK0,sK2) ),
    inference(subtyping,[status(esa)],[c_44]) ).

cnf(c_566,plain,
    ( ~ entity(sK0,sK2) ),
    inference(resolution,[status(thm)],[c_479,c_487]) ).

cnf(c_5,plain,
    ( ~ human_person(X0_$i,X1_$i) | organism(X0_$i,X1_$i) ),
    inference(cnf_transformation,[],[f108]) ).

cnf(c_4,plain,
    ( ~ organism(X0_$i,X1_$i) | entity(X0_$i,X1_$i) ),
    inference(cnf_transformation,[],[f107]) ).

cnf(c_218,plain,
    ( ~ human_person(X0_$i,X1_$i) | entity(X0_$i,X1_$i) ),
    inference(resolution,[status(thm)],[c_5,c_4]) ).

cnf(c_266,plain,
    ( ~ woman(X0_$i,X1_$i) | entity(X0_$i,X1_$i) ),
    inference(resolution,[status(thm)],[c_6,c_218]) ).

cnf(c_483,plain,
    ( ~ woman(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i)
    | entity(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) ),
    inference(subtyping,[status(esa)],[c_266]) ).

cnf(c_568,plain,
    ( ~ woman(sK0,sK2) ),
    inference(resolution,[status(thm)],[c_566,c_483]) ).

cnf(c_27,plain,
    ( ~ event(X0_$i,X1_$i) | eventuality(X0_$i,X1_$i) ),
    inference(cnf_transformation,[],[f130]) ).

cnf(c_26,plain,
    ( specific(X0_$i,X1_$i) | ~ eventuality(X0_$i,X1_$i) ),
    inference(cnf_transformation,[],[f129]) ).

cnf(c_238,plain,
    ( ~ abstraction(X0_$i,X1_$i) | ~ eventuality(X0_$i,X1_$i) ),
    inference(resolution,[status(thm)],[c_26,c_126]) ).

cnf(c_336,plain,
    ( ~ forename(X0_$i,X1_$i) | ~ eventuality(X0_$i,X1_$i) ),
    inference(resolution,[status(thm)],[c_156,c_238]) ).

cnf(c_350,plain,
    ( ~ forename(X0_$i,X1_$i) | ~ event(X0_$i,X1_$i) ),
    inference(resolution,[status(thm)],[c_27,c_336]) ).

cnf(c_478,plain,
    ( ~ forename(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i)
    | ~ event(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) ),
    inference(subtyping,[status(esa)],[c_350]) ).

cnf(c_42,negated_conjecture,
    ( event(sK0,sK4) ),
    inference(cnf_transformation,[],[f146]) ).

cnf(c_489,negated_conjecture,
    ( event(sK0,sK4) ),
    inference(subtyping,[status(esa)],[c_42]) ).

cnf(c_562,plain,
    ( ~ forename(sK0,sK4) ),
    inference(resolution,[status(thm)],[c_478,c_489]) ).

cnf(c_25,plain,
    ( ~ eventuality(X0_$i,X1_$i) | nonexistent(X0_$i,X1_$i) ),
    inference(cnf_transformation,[],[f128]) ).

cnf(c_16,plain,
    ( ~ entity(X0_$i,X1_$i) | existent(X0_$i,X1_$i) ),
    inference(cnf_transformation,[],[f119]) ).

cnf(c_31,plain,
    ( ~ existent(X0_$i,X1_$i) | ~ nonexistent(X0_$i,X1_$i) ),
    inference(cnf_transformation,[],[f134]) ).

cnf(c_166,plain,
    ( ~ entity(X0_$i,X1_$i) | ~ nonexistent(X0_$i,X1_$i) ),
    inference(resolution,[status(thm)],[c_16,c_31]) ).

cnf(c_206,plain,
    ( ~ entity(X0_$i,X1_$i) | ~ eventuality(X0_$i,X1_$i) ),
    inference(resolution,[status(thm)],[c_25,c_166]) ).

cnf(c_366,plain,
    ( ~ entity(X0_$i,X1_$i) | ~ event(X0_$i,X1_$i) ),
    inference(resolution,[status(thm)],[c_27,c_206]) ).

cnf(c_476,plain,
    ( ~ entity(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i)
    | ~ event(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) ),
    inference(subtyping,[status(esa)],[c_366]) ).

cnf(c_549,plain,
    ( ~ entity(sK0,sK4) ),
    inference(resolution,[status(thm)],[c_476,c_489]) ).

cnf(c_551,plain,
    ( ~ woman(sK0,sK4) ),
    inference(resolution,[status(thm)],[c_549,c_483]) ).

cnf(c_18,plain,
    ( entity(X0_$i,X1_$i) | ~ object(X0_$i,X1_$i) ),
    inference(cnf_transformation,[],[f121]) ).

cnf(c_308,plain,
    ( entity(X0_$i,X1_$i) | ~ shake_beverage(X0_$i,X1_$i) ),
    inference(resolution,[status(thm)],[c_196,c_18]) ).

cnf(c_481,plain,
    ( entity(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i)
    | ~ shake_beverage(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) ),
    inference(subtyping,[status(esa)],[c_308]) ).

cnf(c_537,plain,
    ( entity(sK0,sK3) ),
    inference(resolution,[status(thm)],[c_481,c_488]) ).

cnf(c_509,plain,
    ( ~ nonreflexive(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i)
    | nonreflexive(X0_$$iProver_event_1_$i,X1_$$iProver_event_2_$i)
    | X1_$$iProver_event_2_$i != X0_$$iProver_event_2_$i ),
    theory(equality) ).

cnf(c_505,plain,
    ( ~ order(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i)
    | order(X0_$$iProver_event_1_$i,X1_$$iProver_event_2_$i)
    | X1_$$iProver_event_2_$i != X0_$$iProver_event_2_$i ),
    theory(equality) ).

cnf(c_504,plain,
    ( ~ event(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i)
    | event(X0_$$iProver_event_1_$i,X1_$$iProver_event_2_$i)
    | X1_$$iProver_event_2_$i != X0_$$iProver_event_2_$i ),
    theory(equality) ).

cnf(c_503,plain,
    ( ~ shake_beverage(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i)
    | shake_beverage(X0_$$iProver_event_1_$i,X1_$$iProver_event_2_$i)
    | X1_$$iProver_event_2_$i != X0_$$iProver_event_2_$i ),
    theory(equality) ).

cnf(c_502,plain,
    ( ~ mia_forename(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i)
    | mia_forename(X0_$$iProver_event_1_$i,X1_$$iProver_event_2_$i)
    | X1_$$iProver_event_2_$i != X0_$$iProver_event_2_$i ),
    theory(equality) ).

cnf(c_501,plain,
    ( ~ forename(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i)
    | forename(X0_$$iProver_event_1_$i,X1_$$iProver_event_2_$i)
    | X1_$$iProver_event_2_$i != X0_$$iProver_event_2_$i ),
    theory(equality) ).

cnf(c_500,plain,
    ( ~ woman(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i)
    | woman(X0_$$iProver_event_1_$i,X1_$$iProver_event_2_$i)
    | X1_$$iProver_event_2_$i != X0_$$iProver_event_2_$i ),
    theory(equality) ).

cnf(c_7,plain,
    ( forename(X0_$i,X1_$i) | ~ mia_forename(X0_$i,X1_$i) ),
    inference(cnf_transformation,[],[f110]) ).

cnf(c_497,plain,
    ( forename(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i)
    | ~ mia_forename(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) ),
    inference(subtyping,[status(esa)],[c_7]) ).

cnf(c_23,plain,
    ( event(X0_$i,X1_$i) | ~ order(X0_$i,X1_$i) ),
    inference(cnf_transformation,[],[f126]) ).

cnf(c_496,plain,
    ( event(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i)
    | ~ order(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) ),
    inference(subtyping,[status(esa)],[c_23]) ).

cnf(c_10,plain,
    ( ~ abstraction(X0_$i,X1_$i) | nonhuman(X0_$i,X1_$i) ),
    inference(cnf_transformation,[],[f113]) ).

cnf(c_2,plain,
    ( ~ human_person(X0_$i,X1_$i) | human(X0_$i,X1_$i) ),
    inference(cnf_transformation,[],[f105]) ).

cnf(c_32,plain,
    ( ~ human(X0_$i,X1_$i) | ~ nonhuman(X0_$i,X1_$i) ),
    inference(cnf_transformation,[],[f135]) ).

cnf(c_106,plain,
    ( ~ human_person(X0_$i,X1_$i) | ~ nonhuman(X0_$i,X1_$i) ),
    inference(resolution,[status(thm)],[c_2,c_32]) ).

cnf(c_136,plain,
    ( ~ human_person(X0_$i,X1_$i) | ~ abstraction(X0_$i,X1_$i) ),
    inference(resolution,[status(thm)],[c_10,c_106]) ).

cnf(c_274,plain,
    ( ~ woman(X0_$i,X1_$i) | ~ abstraction(X0_$i,X1_$i) ),
    inference(resolution,[status(thm)],[c_6,c_136]) ).

cnf(c_320,plain,
    ( ~ woman(X0_$i,X1_$i) | ~ forename(X0_$i,X1_$i) ),
    inference(resolution,[status(thm)],[c_156,c_274]) ).

cnf(c_480,plain,
    ( ~ woman(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i)
    | ~ forename(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) ),
    inference(subtyping,[status(esa)],[c_320]) ).

cnf(c_24,plain,
    ( unisex(X0_$i,X1_$i) | ~ eventuality(X0_$i,X1_$i) ),
    inference(cnf_transformation,[],[f127]) ).

cnf(c_0,plain,
    ( female(X0_$i,X1_$i) | ~ woman(X0_$i,X1_$i) ),
    inference(cnf_transformation,[],[f103]) ).

cnf(c_35,plain,
    ( ~ female(X0_$i,X1_$i) | ~ unisex(X0_$i,X1_$i) ),
    inference(cnf_transformation,[],[f138]) ).

cnf(c_86,plain,
    ( ~ woman(X0_$i,X1_$i) | ~ unisex(X0_$i,X1_$i) ),
    inference(resolution,[status(thm)],[c_0,c_35]) ).

cnf(c_288,plain,
    ( ~ woman(X0_$i,X1_$i) | ~ eventuality(X0_$i,X1_$i) ),
    inference(resolution,[status(thm)],[c_24,c_86]) ).

cnf(c_358,plain,
    ( ~ woman(X0_$i,X1_$i) | ~ event(X0_$i,X1_$i) ),
    inference(resolution,[status(thm)],[c_27,c_288]) ).

cnf(c_477,plain,
    ( ~ woman(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i)
    | ~ event(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) ),
    inference(subtyping,[status(esa)],[c_358]) ).

cnf(c_46,negated_conjecture,
    ( woman(sK0,sK1) ),
    inference(cnf_transformation,[],[f142]) ).

cnf(c_485,negated_conjecture,
    ( woman(sK0,sK1) ),
    inference(subtyping,[status(esa)],[c_46]) ).

cnf(c_45,negated_conjecture,
    ( mia_forename(sK0,sK2) ),
    inference(cnf_transformation,[],[f143]) ).

cnf(c_486,negated_conjecture,
    ( mia_forename(sK0,sK2) ),
    inference(subtyping,[status(esa)],[c_45]) ).

cnf(c_40,negated_conjecture,
    ( patient(sK0,sK4,sK3) ),
    inference(cnf_transformation,[],[f148]) ).

cnf(c_491,negated_conjecture,
    ( patient(sK0,sK4,sK3) ),
    inference(subtyping,[status(esa)],[c_40]) ).

cnf(c_492,negated_conjecture,
    ( nonreflexive(sK0,sK4) ),
    inference(subtyping,[status(esa)],[c_39]) ).

cnf(c_38,negated_conjecture,
    ( order(sK0,sK4) ),
    inference(cnf_transformation,[],[f150]) ).

cnf(c_493,negated_conjecture,
    ( order(sK0,sK4) ),
    inference(subtyping,[status(esa)],[c_38]) ).


% SZS output end Saturation

Sample solution for SWV017+1

% SZS status Satisfiable


% SZS output start Saturation

fof(f9,axiom,(
  ! [X0,X1] : ((message(sent(X0,b,pair(X0,X1))) & fresh_to_b(X1)) => (message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X0,X1,generate_expiration_time(X1)),bt)))) & b_stored(pair(X0,X1))))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f39,plain,(
  ! [X0,X1] : ((message(sent(X0,b,pair(X0,X1))) & fresh_to_b(X1)) => message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X0,X1,generate_expiration_time(X1)),bt)))))),
  inference(pure_predicate_removal,[],[f9])).

fof(f44,plain,(
  ! [X0,X1] : ((~message(sent(X0,b,pair(X0,X1))) | ~fresh_to_b(X1)) | message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X0,X1,generate_expiration_time(X1)),bt)))))),
  inference(ennf_transformation,[],[f39])).

fof(f45,plain,(
  ! [X0,X1] : (~message(sent(X0,b,pair(X0,X1))) | ~fresh_to_b(X1) | message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X0,X1,generate_expiration_time(X1)),bt)))))),
  inference(flattening,[],[f44])).

fof(f75,plain,(
  ( ! [X0,X1] : (message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X0,X1,generate_expiration_time(X1)),bt)))) | ~fresh_to_b(X1) | ~message(sent(X0,b,pair(X0,X1)))) )),
  inference(cnf_transformation,[],[f45])).

fof(f14,axiom,(
  ! [X0,X1,X2,X3,X4,X5,X6] : ((message(sent(X0,t,triple(X0,X1,encrypt(triple(X2,X3,X4),X5)))) & t_holds(key(X5,X0)) & t_holds(key(X6,X2)) & a_nonce(X3)) => message(sent(t,X2,triple(encrypt(quadruple(X0,X3,generate_key(X3),X4),X6),encrypt(triple(X2,generate_key(X3),X4),X5),X1))))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f46,plain,(
  ! [X0,X1,X2,X3,X4,X5,X6] : ((~message(sent(X0,t,triple(X0,X1,encrypt(triple(X2,X3,X4),X5)))) | ~t_holds(key(X5,X0)) | ~t_holds(key(X6,X2)) | ~a_nonce(X3)) | message(sent(t,X2,triple(encrypt(quadruple(X0,X3,generate_key(X3),X4),X6),encrypt(triple(X2,generate_key(X3),X4),X5),X1))))),
  inference(ennf_transformation,[],[f14])).

fof(f47,plain,(
  ! [X0,X1,X2,X3,X4,X5,X6] : (~message(sent(X0,t,triple(X0,X1,encrypt(triple(X2,X3,X4),X5)))) | ~t_holds(key(X5,X0)) | ~t_holds(key(X6,X2)) | ~a_nonce(X3) | message(sent(t,X2,triple(encrypt(quadruple(X0,X3,generate_key(X3),X4),X6),encrypt(triple(X2,generate_key(X3),X4),X5),X1))))),
  inference(flattening,[],[f46])).

fof(f79,plain,(
  ( ! [X6,X4,X2,X0,X5,X3,X1] : (message(sent(t,X2,triple(encrypt(quadruple(X0,X3,generate_key(X3),X4),X6),encrypt(triple(X2,generate_key(X3),X4),X5),X1))) | ~a_nonce(X3) | ~t_holds(key(X6,X2)) | ~t_holds(key(X5,X0)) | ~message(sent(X0,t,triple(X0,X1,encrypt(triple(X2,X3,X4),X5))))) )),
  inference(cnf_transformation,[],[f47])).

fof(f15,axiom,(
  ! [X0,X1,X2] : (message(sent(X0,X1,X2)) => intruder_message(X2))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f48,plain,(
  ! [X0,X1,X2] : (~message(sent(X0,X1,X2)) | intruder_message(X2))),
  inference(ennf_transformation,[],[f15])).

fof(f80,plain,(
  ( ! [X2,X0,X1] : (intruder_message(X2) | ~message(sent(X0,X1,X2))) )),
  inference(cnf_transformation,[],[f48])).

fof(f16,axiom,(
  ! [X0,X1] : (intruder_message(pair(X0,X1)) => (intruder_message(X0) & intruder_message(X1)))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f49,plain,(
  ! [X0,X1] : (~intruder_message(pair(X0,X1)) | (intruder_message(X0) & intruder_message(X1)))),
  inference(ennf_transformation,[],[f16])).

fof(f82,plain,(
  ( ! [X0,X1] : (intruder_message(X1) | ~intruder_message(pair(X0,X1))) )),
  inference(cnf_transformation,[],[f49])).

fof(f81,plain,(
  ( ! [X0,X1] : (intruder_message(X0) | ~intruder_message(pair(X0,X1))) )),
  inference(cnf_transformation,[],[f49])).

fof(f17,axiom,(
  ! [X0,X1,X2] : (intruder_message(triple(X0,X1,X2)) => (intruder_message(X0) & intruder_message(X1) & intruder_message(X2)))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f50,plain,(
  ! [X0,X1,X2] : (~intruder_message(triple(X0,X1,X2)) | (intruder_message(X0) & intruder_message(X1) & intruder_message(X2)))),
  inference(ennf_transformation,[],[f17])).

fof(f85,plain,(
  ( ! [X2,X0,X1] : (intruder_message(X2) | ~intruder_message(triple(X0,X1,X2))) )),
  inference(cnf_transformation,[],[f50])).

fof(f84,plain,(
  ( ! [X2,X0,X1] : (intruder_message(X1) | ~intruder_message(triple(X0,X1,X2))) )),
  inference(cnf_transformation,[],[f50])).

fof(f83,plain,(
  ( ! [X2,X0,X1] : (intruder_message(X0) | ~intruder_message(triple(X0,X1,X2))) )),
  inference(cnf_transformation,[],[f50])).

fof(f18,axiom,(
  ! [X0,X1,X2,X3] : (intruder_message(quadruple(X0,X1,X2,X3)) => (intruder_message(X0) & intruder_message(X1) & intruder_message(X2) & intruder_message(X3)))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f51,plain,(
  ! [X0,X1,X2,X3] : (~intruder_message(quadruple(X0,X1,X2,X3)) | (intruder_message(X0) & intruder_message(X1) & intruder_message(X2) & intruder_message(X3)))),
  inference(ennf_transformation,[],[f18])).

fof(f89,plain,(
  ( ! [X2,X0,X3,X1] : (intruder_message(X3) | ~intruder_message(quadruple(X0,X1,X2,X3))) )),
  inference(cnf_transformation,[],[f51])).

fof(f88,plain,(
  ( ! [X2,X0,X3,X1] : (intruder_message(X2) | ~intruder_message(quadruple(X0,X1,X2,X3))) )),
  inference(cnf_transformation,[],[f51])).

fof(f87,plain,(
  ( ! [X2,X0,X3,X1] : (intruder_message(X1) | ~intruder_message(quadruple(X0,X1,X2,X3))) )),
  inference(cnf_transformation,[],[f51])).

fof(f86,plain,(
  ( ! [X2,X0,X3,X1] : (intruder_message(X0) | ~intruder_message(quadruple(X0,X1,X2,X3))) )),
  inference(cnf_transformation,[],[f51])).

fof(f19,axiom,(
  ! [X0,X1] : ((intruder_message(X0) & intruder_message(X1)) => intruder_message(pair(X0,X1)))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f52,plain,(
  ! [X0,X1] : ((~intruder_message(X0) | ~intruder_message(X1)) | intruder_message(pair(X0,X1)))),
  inference(ennf_transformation,[],[f19])).

fof(f53,plain,(
  ! [X0,X1] : (~intruder_message(X0) | ~intruder_message(X1) | intruder_message(pair(X0,X1)))),
  inference(flattening,[],[f52])).

fof(f90,plain,(
  ( ! [X0,X1] : (intruder_message(pair(X0,X1)) | ~intruder_message(X1) | ~intruder_message(X0)) )),
  inference(cnf_transformation,[],[f53])).

fof(f20,axiom,(
  ! [X0,X1,X2] : ((intruder_message(X0) & intruder_message(X1) & intruder_message(X2)) => intruder_message(triple(X0,X1,X2)))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f54,plain,(
  ! [X0,X1,X2] : ((~intruder_message(X0) | ~intruder_message(X1) | ~intruder_message(X2)) | intruder_message(triple(X0,X1,X2)))),
  inference(ennf_transformation,[],[f20])).

fof(f55,plain,(
  ! [X0,X1,X2] : (~intruder_message(X0) | ~intruder_message(X1) | ~intruder_message(X2) | intruder_message(triple(X0,X1,X2)))),
  inference(flattening,[],[f54])).

fof(f91,plain,(
  ( ! [X2,X0,X1] : (intruder_message(triple(X0,X1,X2)) | ~intruder_message(X2) | ~intruder_message(X1) | ~intruder_message(X0)) )),
  inference(cnf_transformation,[],[f55])).

fof(f21,axiom,(
  ! [X0,X1,X2,X3] : ((intruder_message(X0) & intruder_message(X1) & intruder_message(X2) & intruder_message(X3)) => intruder_message(quadruple(X0,X1,X2,X3)))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f56,plain,(
  ! [X0,X1,X2,X3] : ((~intruder_message(X0) | ~intruder_message(X1) | ~intruder_message(X2) | ~intruder_message(X3)) | intruder_message(quadruple(X0,X1,X2,X3)))),
  inference(ennf_transformation,[],[f21])).

fof(f57,plain,(
  ! [X0,X1,X2,X3] : (~intruder_message(X0) | ~intruder_message(X1) | ~intruder_message(X2) | ~intruder_message(X3) | intruder_message(quadruple(X0,X1,X2,X3)))),
  inference(flattening,[],[f56])).

fof(f92,plain,(
  ( ! [X2,X0,X3,X1] : (intruder_message(quadruple(X0,X1,X2,X3)) | ~intruder_message(X3) | ~intruder_message(X2) | ~intruder_message(X1) | ~intruder_message(X0)) )),
  inference(cnf_transformation,[],[f57])).

fof(f23,axiom,(
  ! [X0,X1,X2] : ((intruder_message(X0) & party_of_protocol(X1) & party_of_protocol(X2)) => message(sent(X1,X2,X0)))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f60,plain,(
  ! [X0,X1,X2] : ((~intruder_message(X0) | ~party_of_protocol(X1) | ~party_of_protocol(X2)) | message(sent(X1,X2,X0)))),
  inference(ennf_transformation,[],[f23])).

fof(f61,plain,(
  ! [X0,X1,X2] : (~intruder_message(X0) | ~party_of_protocol(X1) | ~party_of_protocol(X2) | message(sent(X1,X2,X0)))),
  inference(flattening,[],[f60])).

fof(f94,plain,(
  ( ! [X2,X0,X1] : (message(sent(X1,X2,X0)) | ~party_of_protocol(X2) | ~party_of_protocol(X1) | ~intruder_message(X0)) )),
  inference(cnf_transformation,[],[f61])).

fof(f27,axiom,(
  ! [X0] : ~a_nonce(generate_key(X0))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f36,plain,(
  ! [X0] : ~a_nonce(generate_key(X0))),
  inference(flattening,[],[f27])).

fof(f98,plain,(
  ( ! [X0] : (~a_nonce(generate_key(X0))) )),
  inference(cnf_transformation,[],[f36])).

fof(f28,axiom,(
  ! [X0] : (a_nonce(generate_expiration_time(X0)) & a_nonce(generate_b_nonce(X0)))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f100,plain,(
  ( ! [X0] : (a_nonce(generate_b_nonce(X0))) )),
  inference(cnf_transformation,[],[f28])).

fof(f99,plain,(
  ( ! [X0] : (a_nonce(generate_expiration_time(X0))) )),
  inference(cnf_transformation,[],[f28])).

fof(f32,axiom,(
  ! [X0] : (fresh_intruder_nonce(X0) => fresh_intruder_nonce(generate_intruder_nonce(X0)))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f67,plain,(
  ! [X0] : (~fresh_intruder_nonce(X0) | fresh_intruder_nonce(generate_intruder_nonce(X0)))),
  inference(ennf_transformation,[],[f32])).

fof(f104,plain,(
  ( ! [X0] : (fresh_intruder_nonce(generate_intruder_nonce(X0)) | ~fresh_intruder_nonce(X0)) )),
  inference(cnf_transformation,[],[f67])).

fof(f33,axiom,(
  ! [X0] : (fresh_intruder_nonce(X0) => (fresh_to_b(X0) & intruder_message(X0)))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f68,plain,(
  ! [X0] : (~fresh_intruder_nonce(X0) | (fresh_to_b(X0) & intruder_message(X0)))),
  inference(ennf_transformation,[],[f33])).

fof(f106,plain,(
  ( ! [X0] : (intruder_message(X0) | ~fresh_intruder_nonce(X0)) )),
  inference(cnf_transformation,[],[f68])).

fof(f105,plain,(
  ( ! [X0] : (fresh_to_b(X0) | ~fresh_intruder_nonce(X0)) )),
  inference(cnf_transformation,[],[f68])).

fof(f4,axiom,(
  a_stored(pair(b,an_a_nonce))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f71,plain,(
  a_stored(pair(b,an_a_nonce))),
  inference(cnf_transformation,[],[f4])).

fof(f5,axiom,(
  ! [X0,X1,X2,X3,X4,X5] : ((message(sent(t,a,triple(encrypt(quadruple(X4,X5,X2,X1),at),X3,X0))) & a_stored(pair(X4,X5))) => (message(sent(a,X4,pair(X3,encrypt(X0,X2)))) & a_holds(key(X2,X4))))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f40,plain,(
  ! [X0,X1,X2,X3,X4,X5] : ((message(sent(t,a,triple(encrypt(quadruple(X4,X5,X2,X1),at),X3,X0))) & a_stored(pair(X4,X5))) => message(sent(a,X4,pair(X3,encrypt(X0,X2)))))),
  inference(pure_predicate_removal,[],[f5])).

fof(f42,plain,(
  ! [X0,X1,X2,X3,X4,X5] : ((~message(sent(t,a,triple(encrypt(quadruple(X4,X5,X2,X1),at),X3,X0))) | ~a_stored(pair(X4,X5))) | message(sent(a,X4,pair(X3,encrypt(X0,X2)))))),
  inference(ennf_transformation,[],[f40])).

fof(f43,plain,(
  ! [X0,X1,X2,X3,X4,X5] : (~message(sent(t,a,triple(encrypt(quadruple(X4,X5,X2,X1),at),X3,X0))) | ~a_stored(pair(X4,X5)) | message(sent(a,X4,pair(X3,encrypt(X0,X2)))))),
  inference(flattening,[],[f42])).

fof(f72,plain,(
  ( ! [X4,X2,X0,X5,X3,X1] : (message(sent(a,X4,pair(X3,encrypt(X0,X2)))) | ~a_stored(pair(X4,X5)) | ~message(sent(t,a,triple(encrypt(quadruple(X4,X5,X2,X1),at),X3,X0)))) )),
  inference(cnf_transformation,[],[f43])).

fof(f25,axiom,(
  ! [X0,X1,X2] : ((intruder_message(X0) & intruder_holds(key(X1,X2)) & party_of_protocol(X2)) => intruder_message(encrypt(X0,X1)))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f64,plain,(
  ! [X0,X1,X2] : ((~intruder_message(X0) | ~intruder_holds(key(X1,X2)) | ~party_of_protocol(X2)) | intruder_message(encrypt(X0,X1)))),
  inference(ennf_transformation,[],[f25])).

fof(f65,plain,(
  ! [X0,X1,X2] : (~intruder_message(X0) | ~intruder_holds(key(X1,X2)) | ~party_of_protocol(X2) | intruder_message(encrypt(X0,X1)))),
  inference(flattening,[],[f64])).

fof(f96,plain,(
  ( ! [X2,X0,X1] : (intruder_message(encrypt(X0,X1)) | ~party_of_protocol(X2) | ~intruder_holds(key(X1,X2)) | ~intruder_message(X0)) )),
  inference(cnf_transformation,[],[f65])).

fof(f24,axiom,(
  ! [X1,X2] : ((intruder_message(X1) & party_of_protocol(X2)) => intruder_holds(key(X1,X2)))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f35,plain,(
  ! [X0,X1] : ((intruder_message(X0) & party_of_protocol(X1)) => intruder_holds(key(X0,X1)))),
  inference(rectify,[],[f24])).

fof(f62,plain,(
  ! [X0,X1] : ((~intruder_message(X0) | ~party_of_protocol(X1)) | intruder_holds(key(X0,X1)))),
  inference(ennf_transformation,[],[f35])).

fof(f63,plain,(
  ! [X0,X1] : (~intruder_message(X0) | ~party_of_protocol(X1) | intruder_holds(key(X0,X1)))),
  inference(flattening,[],[f62])).

fof(f95,plain,(
  ( ! [X0,X1] : (intruder_holds(key(X0,X1)) | ~party_of_protocol(X1) | ~intruder_message(X0)) )),
  inference(cnf_transformation,[],[f63])).

fof(f31,axiom,(
  fresh_intruder_nonce(an_intruder_nonce)),
  file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f103,plain,(
  fresh_intruder_nonce(an_intruder_nonce)),
  inference(cnf_transformation,[],[f31])).

fof(f26,axiom,(
  a_nonce(an_a_nonce)),
  file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f97,plain,(
  a_nonce(an_a_nonce)),
  inference(cnf_transformation,[],[f26])).

fof(f13,axiom,(
  party_of_protocol(t)),
  file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f78,plain,(
  party_of_protocol(t)),
  inference(cnf_transformation,[],[f13])).

fof(f12,axiom,(
  t_holds(key(bt,b))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f77,plain,(
  t_holds(key(bt,b))),
  inference(cnf_transformation,[],[f12])).

fof(f11,axiom,(
  t_holds(key(at,a))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f76,plain,(
  t_holds(key(at,a))),
  inference(cnf_transformation,[],[f11])).

fof(f8,axiom,(
  fresh_to_b(an_a_nonce)),
  file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f74,plain,(
  fresh_to_b(an_a_nonce)),
  inference(cnf_transformation,[],[f8])).

fof(f7,axiom,(
  party_of_protocol(b)),
  file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f73,plain,(
  party_of_protocol(b)),
  inference(cnf_transformation,[],[f7])).

fof(f3,axiom,(
  message(sent(a,b,pair(a,an_a_nonce)))),
  file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f70,plain,(
  message(sent(a,b,pair(a,an_a_nonce)))),
  inference(cnf_transformation,[],[f3])).

fof(f2,axiom,(
  party_of_protocol(a)),
  file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f69,plain,(
  party_of_protocol(a)),
  inference(cnf_transformation,[],[f2])).

cnf(c_6,plain,
    ( message(sent(b,t,triple(b,generate_b_nonce(X0_$i),encrypt(triple(X1_$i,X0_$i,generate_expiration_time(X0_$i)),bt))))
    | ~ message(sent(X1_$i,b,pair(X1_$i,X0_$i)))
    | ~ fresh_to_b(X0_$i) ),
    inference(cnf_transformation,[],[f75]) ).

cnf(c_233,plain,
    ( message(sent(b,t,triple(b,generate_b_nonce(X0_$$iProver_fresh_intruder_nonce_1_$i),encrypt(triple(X1_$$iProver_fresh_intruder_nonce_1_$i,X0_$$iProver_fresh_intruder_nonce_1_$i,generate_expiration_time(X0_$$iProver_fresh_intruder_nonce_1_$i)),bt))))
    | ~ message(sent(X1_$$iProver_fresh_intruder_nonce_1_$i,b,pair(X1_$$iProver_fresh_intruder_nonce_1_$i,X0_$$iProver_fresh_intruder_nonce_1_$i)))
    | ~ fresh_to_b(X0_$$iProver_fresh_intruder_nonce_1_$i) ),
    inference(subtyping,[status(esa)],[c_6]) ).

cnf(c_10,plain,
    ( message(sent(t,X0_$i,triple(encrypt(quadruple(X1_$i,X2_$i,generate_key(X2_$i),X3_$i),X4_$i),encrypt(triple(X0_$i,generate_key(X2_$i),X3_$i),X5_$i),X6_$i)))
    | ~ message(sent(X1_$i,t,triple(X1_$i,X6_$i,encrypt(triple(X0_$i,X2_$i,X3_$i),X5_$i))))
    | ~ t_holds(key(X4_$i,X0_$i))
    | ~ t_holds(key(X5_$i,X1_$i))
    | ~ a_nonce(X2_$i) ),
    inference(cnf_transformation,[],[f79]) ).

cnf(c_229,plain,
    ( message(sent(t,X0_$$iProver_fresh_intruder_nonce_1_$i,triple(encrypt(quadruple(X1_$$iProver_fresh_intruder_nonce_1_$i,X2_$$iProver_fresh_intruder_nonce_1_$i,generate_key(X2_$$iProver_fresh_intruder_nonce_1_$i),X3_$$iProver_fresh_intruder_nonce_1_$i),X4_$$iProver_fresh_intruder_nonce_1_$i),encrypt(triple(X0_$$iProver_fresh_intruder_nonce_1_$i,generate_key(X2_$$iProver_fresh_intruder_nonce_1_$i),X3_$$iProver_fresh_intruder_nonce_1_$i),X5_$$iProver_fresh_intruder_nonce_1_$i),X6_$$iProver_fresh_intruder_nonce_1_$i)))
    | ~ message(sent(X1_$$iProver_fresh_intruder_nonce_1_$i,t,triple(X1_$$iProver_fresh_intruder_nonce_1_$i,X6_$$iProver_fresh_intruder_nonce_1_$i,encrypt(triple(X0_$$iProver_fresh_intruder_nonce_1_$i,X2_$$iProver_fresh_intruder_nonce_1_$i,X3_$$iProver_fresh_intruder_nonce_1_$i),X5_$$iProver_fresh_intruder_nonce_1_$i))))
    | ~ t_holds(key(X4_$$iProver_fresh_intruder_nonce_1_$i,X0_$$iProver_fresh_intruder_nonce_1_$i))
    | ~ t_holds(key(X5_$$iProver_fresh_intruder_nonce_1_$i,X1_$$iProver_fresh_intruder_nonce_1_$i))
    | ~ a_nonce(X2_$$iProver_fresh_intruder_nonce_1_$i) ),
    inference(subtyping,[status(esa)],[c_10]) ).

cnf(c_11,plain,
    ( ~ message(sent(X0_$i,X1_$i,X2_$i)) | intruder_message(X2_$i) ),
    inference(cnf_transformation,[],[f80]) ).

cnf(c_228,plain,
    ( ~ message(sent(X0_$$iProver_fresh_intruder_nonce_1_$i,X1_$$iProver_fresh_intruder_nonce_1_$i,X2_$$iProver_fresh_intruder_nonce_1_$i))
    | intruder_message(X2_$$iProver_fresh_intruder_nonce_1_$i) ),
    inference(subtyping,[status(esa)],[c_11]) ).

cnf(c_12,plain,
    ( ~ intruder_message(pair(X0_$i,X1_$i)) | intruder_message(X1_$i) ),
    inference(cnf_transformation,[],[f82]) ).

cnf(c_227,plain,
    ( ~ intruder_message(pair(X0_$$iProver_fresh_intruder_nonce_1_$i,X1_$$iProver_fresh_intruder_nonce_1_$i))
    | intruder_message(X1_$$iProver_fresh_intruder_nonce_1_$i) ),
    inference(subtyping,[status(esa)],[c_12]) ).

cnf(c_13,plain,
    ( ~ intruder_message(pair(X0_$i,X1_$i)) | intruder_message(X0_$i) ),
    inference(cnf_transformation,[],[f81]) ).

cnf(c_226,plain,
    ( ~ intruder_message(pair(X0_$$iProver_fresh_intruder_nonce_1_$i,X1_$$iProver_fresh_intruder_nonce_1_$i))
    | intruder_message(X0_$$iProver_fresh_intruder_nonce_1_$i) ),
    inference(subtyping,[status(esa)],[c_13]) ).

cnf(c_14,plain,
    ( ~ intruder_message(triple(X0_$i,X1_$i,X2_$i))
    | intruder_message(X2_$i) ),
    inference(cnf_transformation,[],[f85]) ).

cnf(c_225,plain,
    ( ~ intruder_message(triple(X0_$$iProver_fresh_intruder_nonce_1_$i,X1_$$iProver_fresh_intruder_nonce_1_$i,X2_$$iProver_fresh_intruder_nonce_1_$i))
    | intruder_message(X2_$$iProver_fresh_intruder_nonce_1_$i) ),
    inference(subtyping,[status(esa)],[c_14]) ).

cnf(c_15,plain,
    ( ~ intruder_message(triple(X0_$i,X1_$i,X2_$i))
    | intruder_message(X1_$i) ),
    inference(cnf_transformation,[],[f84]) ).

cnf(c_224,plain,
    ( ~ intruder_message(triple(X0_$$iProver_fresh_intruder_nonce_1_$i,X1_$$iProver_fresh_intruder_nonce_1_$i,X2_$$iProver_fresh_intruder_nonce_1_$i))
    | intruder_message(X1_$$iProver_fresh_intruder_nonce_1_$i) ),
    inference(subtyping,[status(esa)],[c_15]) ).

cnf(c_16,plain,
    ( ~ intruder_message(triple(X0_$i,X1_$i,X2_$i))
    | intruder_message(X0_$i) ),
    inference(cnf_transformation,[],[f83]) ).

cnf(c_223,plain,
    ( ~ intruder_message(triple(X0_$$iProver_fresh_intruder_nonce_1_$i,X1_$$iProver_fresh_intruder_nonce_1_$i,X2_$$iProver_fresh_intruder_nonce_1_$i))
    | intruder_message(X0_$$iProver_fresh_intruder_nonce_1_$i) ),
    inference(subtyping,[status(esa)],[c_16]) ).

cnf(c_17,plain,
    ( ~ intruder_message(quadruple(X0_$i,X1_$i,X2_$i,X3_$i))
    | intruder_message(X3_$i) ),
    inference(cnf_transformation,[],[f89]) ).

cnf(c_222,plain,
    ( ~ intruder_message(quadruple(X0_$$iProver_fresh_intruder_nonce_1_$i,X1_$$iProver_fresh_intruder_nonce_1_$i,X2_$$iProver_fresh_intruder_nonce_1_$i,X3_$$iProver_fresh_intruder_nonce_1_$i))
    | intruder_message(X3_$$iProver_fresh_intruder_nonce_1_$i) ),
    inference(subtyping,[status(esa)],[c_17]) ).

cnf(c_18,plain,
    ( ~ intruder_message(quadruple(X0_$i,X1_$i,X2_$i,X3_$i))
    | intruder_message(X2_$i) ),
    inference(cnf_transformation,[],[f88]) ).

cnf(c_221,plain,
    ( ~ intruder_message(quadruple(X0_$$iProver_fresh_intruder_nonce_1_$i,X1_$$iProver_fresh_intruder_nonce_1_$i,X2_$$iProver_fresh_intruder_nonce_1_$i,X3_$$iProver_fresh_intruder_nonce_1_$i))
    | intruder_message(X2_$$iProver_fresh_intruder_nonce_1_$i) ),
    inference(subtyping,[status(esa)],[c_18]) ).

cnf(c_19,plain,
    ( ~ intruder_message(quadruple(X0_$i,X1_$i,X2_$i,X3_$i))
    | intruder_message(X1_$i) ),
    inference(cnf_transformation,[],[f87]) ).

cnf(c_220,plain,
    ( ~ intruder_message(quadruple(X0_$$iProver_fresh_intruder_nonce_1_$i,X1_$$iProver_fresh_intruder_nonce_1_$i,X2_$$iProver_fresh_intruder_nonce_1_$i,X3_$$iProver_fresh_intruder_nonce_1_$i))
    | intruder_message(X1_$$iProver_fresh_intruder_nonce_1_$i) ),
    inference(subtyping,[status(esa)],[c_19]) ).

cnf(c_20,plain,
    ( ~ intruder_message(quadruple(X0_$i,X1_$i,X2_$i,X3_$i))
    | intruder_message(X0_$i) ),
    inference(cnf_transformation,[],[f86]) ).

cnf(c_219,plain,
    ( ~ intruder_message(quadruple(X0_$$iProver_fresh_intruder_nonce_1_$i,X1_$$iProver_fresh_intruder_nonce_1_$i,X2_$$iProver_fresh_intruder_nonce_1_$i,X3_$$iProver_fresh_intruder_nonce_1_$i))
    | intruder_message(X0_$$iProver_fresh_intruder_nonce_1_$i) ),
    inference(subtyping,[status(esa)],[c_20]) ).

cnf(c_21,plain,
    ( intruder_message(pair(X0_$i,X1_$i))
    | ~ intruder_message(X1_$i)
    | ~ intruder_message(X0_$i) ),
    inference(cnf_transformation,[],[f90]) ).

cnf(c_218,plain,
    ( intruder_message(pair(X0_$$iProver_fresh_intruder_nonce_1_$i,X1_$$iProver_fresh_intruder_nonce_1_$i))
    | ~ intruder_message(X1_$$iProver_fresh_intruder_nonce_1_$i)
    | ~ intruder_message(X0_$$iProver_fresh_intruder_nonce_1_$i) ),
    inference(subtyping,[status(esa)],[c_21]) ).

cnf(c_22,plain,
    ( intruder_message(triple(X0_$i,X1_$i,X2_$i))
    | ~ intruder_message(X1_$i)
    | ~ intruder_message(X0_$i)
    | ~ intruder_message(X2_$i) ),
    inference(cnf_transformation,[],[f91]) ).

cnf(c_217,plain,
    ( intruder_message(triple(X0_$$iProver_fresh_intruder_nonce_1_$i,X1_$$iProver_fresh_intruder_nonce_1_$i,X2_$$iProver_fresh_intruder_nonce_1_$i))
    | ~ intruder_message(X1_$$iProver_fresh_intruder_nonce_1_$i)
    | ~ intruder_message(X0_$$iProver_fresh_intruder_nonce_1_$i)
    | ~ intruder_message(X2_$$iProver_fresh_intruder_nonce_1_$i) ),
    inference(subtyping,[status(esa)],[c_22]) ).

cnf(c_23,plain,
    ( intruder_message(quadruple(X0_$i,X1_$i,X2_$i,X3_$i))
    | ~ intruder_message(X1_$i)
    | ~ intruder_message(X0_$i)
    | ~ intruder_message(X3_$i)
    | ~ intruder_message(X2_$i) ),
    inference(cnf_transformation,[],[f92]) ).

cnf(c_216,plain,
    ( intruder_message(quadruple(X0_$$iProver_fresh_intruder_nonce_1_$i,X1_$$iProver_fresh_intruder_nonce_1_$i,X2_$$iProver_fresh_intruder_nonce_1_$i,X3_$$iProver_fresh_intruder_nonce_1_$i))
    | ~ intruder_message(X1_$$iProver_fresh_intruder_nonce_1_$i)
    | ~ intruder_message(X0_$$iProver_fresh_intruder_nonce_1_$i)
    | ~ intruder_message(X2_$$iProver_fresh_intruder_nonce_1_$i)
    | ~ intruder_message(X3_$$iProver_fresh_intruder_nonce_1_$i) ),
    inference(subtyping,[status(esa)],[c_23]) ).

cnf(c_25,plain,
    ( ~ party_of_protocol(X0_$i)
    | ~ party_of_protocol(X1_$i)
    | message(sent(X1_$i,X0_$i,X2_$i))
    | ~ intruder_message(X2_$i) ),
    inference(cnf_transformation,[],[f94]) ).

cnf(c_215,plain,
    ( ~ party_of_protocol(X0_$$iProver_fresh_intruder_nonce_1_$i)
    | ~ party_of_protocol(X1_$$iProver_fresh_intruder_nonce_1_$i)
    | message(sent(X1_$$iProver_fresh_intruder_nonce_1_$i,X0_$$iProver_fresh_intruder_nonce_1_$i,X2_$$iProver_fresh_intruder_nonce_1_$i))
    | ~ intruder_message(X2_$$iProver_fresh_intruder_nonce_1_$i) ),
    inference(subtyping,[status(esa)],[c_25]) ).

cnf(c_29,plain,
    ( ~ a_nonce(generate_key(X0_$i)) ),
    inference(cnf_transformation,[],[f98]) ).

cnf(c_213,plain,
    ( ~ a_nonce(generate_key(X0_$$iProver_fresh_intruder_nonce_1_$i)) ),
    inference(subtyping,[status(esa)],[c_29]) ).

cnf(c_30,plain,
    ( a_nonce(generate_b_nonce(X0_$i)) ),
    inference(cnf_transformation,[],[f100]) ).

cnf(c_212,plain,
    ( a_nonce(generate_b_nonce(X0_$$iProver_fresh_intruder_nonce_1_$i)) ),
    inference(subtyping,[status(esa)],[c_30]) ).

cnf(c_31,plain,
    ( a_nonce(generate_expiration_time(X0_$i)) ),
    inference(cnf_transformation,[],[f99]) ).

cnf(c_211,plain,
    ( a_nonce(generate_expiration_time(X0_$$iProver_fresh_intruder_nonce_1_$i)) ),
    inference(subtyping,[status(esa)],[c_31]) ).

cnf(c_35,plain,
    ( fresh_intruder_nonce(generate_intruder_nonce(X0_$i))
    | ~ fresh_intruder_nonce(X0_$i) ),
    inference(cnf_transformation,[],[f104]) ).

cnf(c_209,plain,
    ( fresh_intruder_nonce(generate_intruder_nonce(X0_$$iProver_fresh_intruder_nonce_1_$i))
    | ~ fresh_intruder_nonce(X0_$$iProver_fresh_intruder_nonce_1_$i) ),
    inference(subtyping,[status(esa)],[c_35]) ).

cnf(c_36,plain,
    ( intruder_message(X0_$i) | ~ fresh_intruder_nonce(X0_$i) ),
    inference(cnf_transformation,[],[f106]) ).

cnf(c_208,plain,
    ( intruder_message(X0_$$iProver_fresh_intruder_nonce_1_$i)
    | ~ fresh_intruder_nonce(X0_$$iProver_fresh_intruder_nonce_1_$i) ),
    inference(subtyping,[status(esa)],[c_36]) ).

cnf(c_37,plain,
    ( fresh_to_b(X0_$i) | ~ fresh_intruder_nonce(X0_$i) ),
    inference(cnf_transformation,[],[f105]) ).

cnf(c_207,plain,
    ( fresh_to_b(X0_$$iProver_fresh_intruder_nonce_1_$i)
    | ~ fresh_intruder_nonce(X0_$$iProver_fresh_intruder_nonce_1_$i) ),
    inference(subtyping,[status(esa)],[c_37]) ).

cnf(c_2,plain,
    ( a_stored(pair(b,an_a_nonce)) ),
    inference(cnf_transformation,[],[f71]) ).

cnf(c_3,plain,
    ( message(sent(a,X0_$i,pair(X1_$i,encrypt(X2_$i,X3_$i))))
    | ~ message(sent(t,a,triple(encrypt(quadruple(X0_$i,X4_$i,X3_$i,X5_$i),at),X1_$i,X2_$i)))
    | ~ a_stored(pair(X0_$i,X4_$i)) ),
    inference(cnf_transformation,[],[f72]) ).

cnf(c_61,plain,
    ( message(sent(a,b,pair(X0_$i,encrypt(X1_$i,X2_$i))))
    | ~ message(sent(t,a,triple(encrypt(quadruple(b,an_a_nonce,X2_$i,X3_$i),at),X0_$i,X1_$i))) ),
    inference(resolution,[status(thm)],[c_2,c_3]) ).

cnf(c_206,plain,
    ( message(sent(a,b,pair(X0_$$iProver_fresh_intruder_nonce_1_$i,encrypt(X1_$$iProver_fresh_intruder_nonce_1_$i,X2_$$iProver_fresh_intruder_nonce_1_$i))))
    | ~ message(sent(t,a,triple(encrypt(quadruple(b,an_a_nonce,X2_$$iProver_fresh_intruder_nonce_1_$i,X3_$$iProver_fresh_intruder_nonce_1_$i),at),X0_$$iProver_fresh_intruder_nonce_1_$i,X1_$$iProver_fresh_intruder_nonce_1_$i))) ),
    inference(subtyping,[status(esa)],[c_61]) ).

cnf(c_27,plain,
    ( ~ party_of_protocol(X0_$i)
    | intruder_message(encrypt(X1_$i,X2_$i))
    | ~ intruder_message(X1_$i)
    | ~ intruder_holds(key(X2_$i,X0_$i)) ),
    inference(cnf_transformation,[],[f96]) ).

cnf(c_26,plain,
    ( ~ party_of_protocol(X0_$i)
    | ~ intruder_message(X1_$i)
    | intruder_holds(key(X1_$i,X0_$i)) ),
    inference(cnf_transformation,[],[f95]) ).

cnf(c_95,plain,
    ( ~ party_of_protocol(X0_$i)
    | intruder_message(encrypt(X1_$i,X2_$i))
    | ~ intruder_message(X2_$i)
    | ~ intruder_message(X1_$i) ),
    inference(resolution,[status(thm)],[c_27,c_26]) ).

cnf(c_168,plain,
    ( ~ party_of_protocol(X0_$i) | ~ sP0_iProver_split ),
    inference(splitting,
              [splitting(split),new_symbols(definition,[~ sP0_iProver_split])],
              [c_95]) ).

cnf(c_205,plain,
    ( ~ party_of_protocol(X0_$$iProver_fresh_intruder_nonce_1_$i)
    | ~ sP0_iProver_split ),
    inference(subtyping,[status(esa)],[c_168]) ).

cnf(c_169,plain,
    ( intruder_message(encrypt(X0_$i,X1_$i))
    | ~ intruder_message(X1_$i)
    | ~ intruder_message(X0_$i)
    | sP0_iProver_split ),
    inference(splitting,[splitting(split),new_symbols(definition,[])],[c_95]) ).

cnf(c_204,plain,
    ( intruder_message(encrypt(X0_$$iProver_fresh_intruder_nonce_1_$i,X1_$$iProver_fresh_intruder_nonce_1_$i))
    | ~ intruder_message(X1_$$iProver_fresh_intruder_nonce_1_$i)
    | ~ intruder_message(X0_$$iProver_fresh_intruder_nonce_1_$i)
    | sP0_iProver_split ),
    inference(subtyping,[status(esa)],[c_169]) ).

cnf(c_34,plain,
    ( fresh_intruder_nonce(an_intruder_nonce) ),
    inference(cnf_transformation,[],[f103]) ).

cnf(c_210,plain,
    ( fresh_intruder_nonce(an_intruder_nonce) ),
    inference(subtyping,[status(esa)],[c_34]) ).

cnf(c_28,plain,
    ( a_nonce(an_a_nonce) ),
    inference(cnf_transformation,[],[f97]) ).

cnf(c_214,plain,
    ( a_nonce(an_a_nonce) ),
    inference(subtyping,[status(esa)],[c_28]) ).

cnf(c_9,plain,
    ( party_of_protocol(t) ),
    inference(cnf_transformation,[],[f78]) ).

cnf(c_230,plain,
    ( party_of_protocol(t) ),
    inference(subtyping,[status(esa)],[c_9]) ).

cnf(c_8,plain,
    ( t_holds(key(bt,b)) ),
    inference(cnf_transformation,[],[f77]) ).

cnf(c_231,plain,
    ( t_holds(key(bt,b)) ),
    inference(subtyping,[status(esa)],[c_8]) ).

cnf(c_7,plain,
    ( t_holds(key(at,a)) ),
    inference(cnf_transformation,[],[f76]) ).

cnf(c_232,plain,
    ( t_holds(key(at,a)) ),
    inference(subtyping,[status(esa)],[c_7]) ).

cnf(c_5,plain,
    ( fresh_to_b(an_a_nonce) ),
    inference(cnf_transformation,[],[f74]) ).

cnf(c_234,plain,
    ( fresh_to_b(an_a_nonce) ),
    inference(subtyping,[status(esa)],[c_5]) ).

cnf(c_4,plain,
    ( party_of_protocol(b) ),
    inference(cnf_transformation,[],[f73]) ).

cnf(c_235,plain,
    ( party_of_protocol(b) ),
    inference(subtyping,[status(esa)],[c_4]) ).

cnf(c_1,plain,
    ( message(sent(a,b,pair(a,an_a_nonce))) ),
    inference(cnf_transformation,[],[f70]) ).

cnf(c_236,plain,
    ( message(sent(a,b,pair(a,an_a_nonce))) ),
    inference(subtyping,[status(esa)],[c_1]) ).

cnf(c_0,plain,
    ( party_of_protocol(a) ),
    inference(cnf_transformation,[],[f69]) ).

cnf(c_237,plain,
    ( party_of_protocol(a) ),
    inference(subtyping,[status(esa)],[c_0]) ).


% SZS output end Saturation

leanCoP 2.2

Jens Otten
University of Oslo, Norway

Sample solution for SEU140+2

% SZS status Theorem for SEU140+2.p
% SZS output start Proof for SEU140+2.p

%-----------------------------------------------------
fof(t63_xboole_1,conjecture,! [_63308,_63311,_63314] : (subset(_63308,_63311) & disjoint(_63311,_63314) => disjoint(_63308,_63314)),file('SEU140+2.p',t63_xboole_1)).
fof(d3_tarski,axiom,! [_63543,_63546] : (subset(_63543,_63546) <=> ! [_63564] : (in(_63564,_63543) => in(_63564,_63546))),file('SEU140+2.p',d3_tarski)).
fof(t3_xboole_0,lemma,! [_63793,_63796] : (~ (~ disjoint(_63793,_63796) & ! [_63818] : ~ (in(_63818,_63793) & in(_63818,_63796))) & ~ (? [_63818] : (in(_63818,_63793) & in(_63818,_63796)) & disjoint(_63793,_63796))),file('SEU140+2.p',t3_xboole_0)).

cnf(1,plain,[-(subset(11^[],12^[]))],clausify(t63_xboole_1)).
cnf(2,plain,[-(disjoint(12^[],13^[]))],clausify(t63_xboole_1)).
cnf(3,plain,[disjoint(11^[],13^[])],clausify(t63_xboole_1)).
cnf(4,plain,[subset(_29177,_29233),in(_29347,_29177),-(in(_29347,_29233))],clausify(d3_tarski)).
cnf(5,plain,[-(disjoint(_40265,_40352)),-(in(9^[_40352,_40265],_40265))],clausify(t3_xboole_0)).
cnf(6,plain,[-(disjoint(_40265,_40352)),-(in(9^[_40352,_40265],_40352))],clausify(t3_xboole_0)).
cnf(7,plain,[disjoint(_40265,_40352),in(_40769,_40265),in(_40769,_40352)],clausify(t3_xboole_0)).

cnf('1',plain,[disjoint(12^[],13^[]),in(9^[13^[],11^[]],12^[]),in(9^[13^[],11^[]],13^[])],start(7,bind([[_40265,_40769,_40352],[12^[],9^[13^[],11^[]],13^[]]]))).
cnf('1.1',plain,[-(disjoint(12^[],13^[]))],extension(2)).
cnf('1.2',plain,[-(in(9^[13^[],11^[]],12^[])),subset(11^[],12^[]),in(9^[13^[],11^[]],11^[])],extension(4,bind([[_29233,_29347,_29177],[12^[],9^[13^[],11^[]],11^[]]]))).
cnf('1.2.1',plain,[-(subset(11^[],12^[]))],extension(1)).
cnf('1.2.2',plain,[-(in(9^[13^[],11^[]],11^[])),-(disjoint(11^[],13^[]))],extension(5,bind([[_40265,_40352],[11^[],13^[]]]))).
cnf('1.2.2.1',plain,[disjoint(11^[],13^[])],extension(3)).
cnf('1.3',plain,[-(in(9^[13^[],11^[]],13^[])),-(disjoint(11^[],13^[]))],extension(6,bind([[_40265,_40352],[11^[],13^[]]]))).
cnf('1.3.1',plain,[disjoint(11^[],13^[])],extension(3)).
%-----------------------------------------------------

% SZS output end Proof for SEU140+2.p

LEO-II 1.7.0

Max Wisniewski
Freie Universität Berlin, Germany

Sample solution for SET014^4

 No.of.Axioms: 0

 Length.of.Defs: 2223

 Contains.Choice.Funs: false
(rf:0,axioms:0,ps:3,u:6,ude:false,rLeibEQ:true,rAndEQ:true,use_choice:true,use_extuni:true,use_extcnf_combined:true,expand_extuni:false,foatp:e,atp_timeout:7,atp_calls_frequency:10,ordering:none,proof_output:1,protocol_output:false,clause_count:2,loop_count:0,foatp_calls:0,translation:fof_full)
********************************
*   All subproblems solved!    *
********************************
% SZS status Theorem for /home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p : (rf:0,axioms:2,ps:3,u:6,ude:false,rLeibEQ:true,rAndEQ:true,use_choice:true,use_extuni:true,use_extcnf_combined:true,expand_extuni:false,foatp:e,atp_timeout:7,atp_calls_frequency:10,ordering:none,proof_output:1,protocol_output:false,clause_count:28,loop_count:0,foatp_calls:1,translation:fof_full)

%**** Beginning of derivation protocol ****
% SZS output start CNFRefutation
 thf(tp_complement,type,(complement: (($i>$o)>($i>$o)))).
 thf(tp_disjoint,type,(disjoint: (($i>$o)>(($i>$o)>$o)))).
 thf(tp_emptyset,type,(emptyset: ($i>$o))).
 thf(tp_excl_union,type,(excl_union: (($i>$o)>(($i>$o)>($i>$o))))).
 thf(tp_in,type,(in: ($i>(($i>$o)>$o)))).
 thf(tp_intersection,type,(intersection: (($i>$o)>(($i>$o)>($i>$o))))).
 thf(tp_is_a,type,(is_a: ($i>(($i>$o)>$o)))).
 thf(tp_meets,type,(meets: (($i>$o)>(($i>$o)>$o)))).
 thf(tp_misses,type,(misses: (($i>$o)>(($i>$o)>$o)))).
 thf(tp_sK1_X,type,(sK1_X: ($i>$o))).
 thf(tp_sK2_SY0,type,(sK2_SY0: ($i>$o))).
 thf(tp_sK3_SY2,type,(sK3_SY2: ($i>$o))).
 thf(tp_sK4_SX0,type,(sK4_SX0: $i)).
 thf(tp_setminus,type,(setminus: (($i>$o)>(($i>$o)>($i>$o))))).
 thf(tp_singleton,type,(singleton: ($i>($i>$o)))).
 thf(tp_subset,type,(subset: (($i>$o)>(($i>$o)>$o)))).
 thf(tp_union,type,(union: (($i>$o)>(($i>$o)>($i>$o))))).
 thf(tp_unord_pair,type,(unord_pair: ($i>($i>($i>$o))))).
 thf(complement,definition,(complement = (^[X:($i>$o),U:$i]: (~ (X@U)))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',complement)).
 thf(disjoint,definition,(disjoint = (^[X:($i>$o),Y:($i>$o)]: (((intersection@X)@Y) = emptyset))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',disjoint)).
 thf(emptyset,definition,(emptyset = (^[X:$i]: $false)),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',emptyset)).
 thf(excl_union,definition,(excl_union = (^[X:($i>$o),Y:($i>$o),U:$i]: (((X@U) & (~ (Y@U))) | ((~ (X@U)) & (Y@U))))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',excl_union)).
 thf(in,definition,(in = (^[X:$i,M:($i>$o)]: (M@X))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',in)).
 thf(intersection,definition,(intersection = (^[X:($i>$o),Y:($i>$o),U:$i]: ((X@U) & (Y@U)))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',intersection)).
 thf(is_a,definition,(is_a = (^[X:$i,M:($i>$o)]: (M@X))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',is_a)).
 thf(meets,definition,(meets = (^[X:($i>$o),Y:($i>$o)]: (?[U:$i]: ((X@U) & (Y@U))))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',meets)).
 thf(misses,definition,(misses = (^[X:($i>$o),Y:($i>$o)]: (~ (?[U:$i]: ((X@U) & (Y@U)))))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',misses)).
 thf(setminus,definition,(setminus = (^[X:($i>$o),Y:($i>$o),U:$i]: ((X@U) & (~ (Y@U))))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',setminus)).
 thf(singleton,definition,(singleton = (^[X:$i,U:$i]: (U = X))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',singleton)).
 thf(subset,definition,(subset = (^[X:($i>$o),Y:($i>$o)]: (![U:$i]: ((X@U) => (Y@U))))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',subset)).
 thf(union,definition,(union = (^[X:($i>$o),Y:($i>$o),U:$i]: ((X@U) | (Y@U)))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',union)).
 thf(unord_pair,definition,(unord_pair = (^[X:$i,Y:$i,U:$i]: ((U = X) | (U = Y)))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',unord_pair)).
 thf(1,conjecture,(![X:($i>$o),Y:($i>$o),A:($i>$o)]: ((((subset@X)@A) & ((subset@Y)@A)) => ((subset@((union@X)@Y))@A))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',thm)).
 thf(2,negated_conjecture,(((![X:($i>$o),Y:($i>$o),A:($i>$o)]: ((((subset@X)@A) & ((subset@Y)@A)) => ((subset@((union@X)@Y))@A)))=$false)),inference(negate_conjecture,[status(cth)],[1])).
 thf(3,plain,(((![SY0:($i>$o),SY1:($i>$o)]: ((((subset@sK1_X)@SY1) & ((subset@SY0)@SY1)) => ((subset@((union@sK1_X)@SY0))@SY1)))=$false)),inference(extcnf_forall_neg,[status(esa)],[2])).
 thf(4,plain,(((![SY2:($i>$o)]: ((((subset@sK1_X)@SY2) & ((subset@sK2_SY0)@SY2)) => ((subset@((union@sK1_X)@sK2_SY0))@SY2)))=$false)),inference(extcnf_forall_neg,[status(esa)],[3])).
 thf(5,plain,((((((subset@sK1_X)@sK3_SY2) & ((subset@sK2_SY0)@sK3_SY2)) => ((subset@((union@sK1_X)@sK2_SY0))@sK3_SY2))=$false)),inference(extcnf_forall_neg,[status(esa)],[4])).
 thf(6,plain,((((subset@sK1_X)@sK3_SY2)=$true)),inference(standard_cnf,[status(thm)],[5])).
 thf(7,plain,((((subset@sK2_SY0)@sK3_SY2)=$true)),inference(standard_cnf,[status(thm)],[5])).
 thf(8,plain,((((subset@((union@sK1_X)@sK2_SY0))@sK3_SY2)=$false)),inference(standard_cnf,[status(thm)],[5])).
 thf(9,plain,(((~ ((subset@((union@sK1_X)@sK2_SY0))@sK3_SY2))=$true)),inference(polarity_switch,[status(thm)],[8])).
 thf(10,plain,((((subset@sK2_SY0)@sK3_SY2)=$true)),inference(copy,[status(thm)],[7])).
 thf(11,plain,((((subset@sK1_X)@sK3_SY2)=$true)),inference(copy,[status(thm)],[6])).
 thf(12,plain,(((~ ((subset@((union@sK1_X)@sK2_SY0))@sK3_SY2))=$true)),inference(copy,[status(thm)],[9])).
 thf(13,plain,(((~ (![SX0:$i]: ((~ ((sK1_X@SX0) | (sK2_SY0@SX0))) | (sK3_SY2@SX0))))=$true)),inference(unfold_def,[status(thm)],[12,complement,disjoint,emptyset,excl_union,in,intersection,is_a,meets,misses,setminus,singleton,subset,union,unord_pair])).
 thf(14,plain,(((![SX0:$i]: ((~ (sK1_X@SX0)) | (sK3_SY2@SX0)))=$true)),inference(unfold_def,[status(thm)],[11,complement,disjoint,emptyset,excl_union,in,intersection,is_a,meets,misses,setminus,singleton,subset,union,unord_pair])).
 thf(15,plain,(((![SX0:$i]: ((~ (sK2_SY0@SX0)) | (sK3_SY2@SX0)))=$true)),inference(unfold_def,[status(thm)],[10,complement,disjoint,emptyset,excl_union,in,intersection,is_a,meets,misses,setminus,singleton,subset,union,unord_pair])).
 thf(16,plain,(((![SX0:$i]: ((~ ((sK1_X@SX0) | (sK2_SY0@SX0))) | (sK3_SY2@SX0)))=$false)),inference(extcnf_not_pos,[status(thm)],[13])).
 thf(17,plain,(![SV1:$i]: ((((~ (sK1_X@SV1)) | (sK3_SY2@SV1))=$true))),inference(extcnf_forall_pos,[status(thm)],[14])).
 thf(18,plain,(![SV2:$i]: ((((~ (sK2_SY0@SV2)) | (sK3_SY2@SV2))=$true))),inference(extcnf_forall_pos,[status(thm)],[15])).
 thf(19,plain,((((~ ((sK1_X@sK4_SX0) | (sK2_SY0@sK4_SX0))) | (sK3_SY2@sK4_SX0))=$false)),inference(extcnf_forall_neg,[status(esa)],[16])).
 thf(20,plain,(![SV1:$i]: (((~ (sK1_X@SV1))=$true) | ((sK3_SY2@SV1)=$true))),inference(extcnf_or_pos,[status(thm)],[17])).
 thf(21,plain,(![SV2:$i]: (((~ (sK2_SY0@SV2))=$true) | ((sK3_SY2@SV2)=$true))),inference(extcnf_or_pos,[status(thm)],[18])).
 thf(22,plain,(((~ ((sK1_X@sK4_SX0) | (sK2_SY0@sK4_SX0)))=$false)),inference(extcnf_or_neg,[status(thm)],[19])).
 thf(23,plain,(((sK3_SY2@sK4_SX0)=$false)),inference(extcnf_or_neg,[status(thm)],[19])).
 thf(24,plain,(![SV1:$i]: (((sK1_X@SV1)=$false) | ((sK3_SY2@SV1)=$true))),inference(extcnf_not_pos,[status(thm)],[20])).
 thf(25,plain,(![SV2:$i]: (((sK2_SY0@SV2)=$false) | ((sK3_SY2@SV2)=$true))),inference(extcnf_not_pos,[status(thm)],[21])).
 thf(26,plain,((((sK1_X@sK4_SX0) | (sK2_SY0@sK4_SX0))=$true)),inference(extcnf_not_neg,[status(thm)],[22])).
 thf(27,plain,(((sK1_X@sK4_SX0)=$true) | ((sK2_SY0@sK4_SX0)=$true)),inference(extcnf_or_pos,[status(thm)],[26])).
 thf(28,plain,((($false)=$true)),inference(fo_atp_e,[status(thm)],[23,27,25,24])).
 thf(29,plain,($false),inference(solved_all_splits,[solved_all_splits(join,[])],[28])).
% SZS output end CNFRefutation

%**** End of derivation protocol ****
%**** no. of clauses in derivation: 29 ****
%**** clause counter: 28 ****

% SZS status Theorem for /home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p : (rf:0,axioms:2,ps:3,u:6,ude:false,rLeibEQ:true,rAndEQ:true,use_choice:true,use_extuni:true,use_extcnf_combined:true,expand_extuni:false,foatp:e,atp_timeout:7,atp_calls_frequency:10,ordering:none,proof_output:1,protocol_output:false,clause_count:28,loop_count:0,foatp_calls:1,translation:fof_full)

Leo-III 1.3

Alexander Steen
Freie Universität Berlin, Germany

Sample solution for SET014^4

% SZS status Theorem for TPTP/Problems/SET/SET014^4.p : 1602 ms resp. 691 ms w/o parsing
% SZS output start CNFRefutation for TPTP/Problems/SET/SET014^4.p
thf(union_type, type, union: (($i > $o) > (($i > $o) > ($i > $o)))).
thf(union_def, definition, (union = (^ [A:($i > $o),B:($i > $o),C:$i]: ((A @ C) | (B @ C))))).
thf(subset_type, type, subset: (($i > $o) > (($i > $o) > $o))).
thf(subset_def, definition, (subset = (^ [A:($i > $o),B:($i > $o)]: ! [C:$i]: ((A @ C) => (B @ C))))).
thf(sk1_type, type, sk1: ($i > $o)).
thf(sk2_type, type, sk2: ($i > $o)).
thf(sk3_type, type, sk3: ($i > $o)).
thf(sk4_type, type, sk4: $i).
thf(1,conjecture,((! [A:($i > $o),B:($i > $o),C:($i > $o)]: (((subset @ A @ C) & (subset @ B @ C)) => (subset @ (union @ A @ B) @ C)))),file('TPTP/Problems/SET/SET014^4.p',thm)).
thf(2,negated_conjecture,((~ (! [A:($i > $o),B:($i > $o),C:($i > $o)]: (((subset @ A @ C) & (subset @ B @ C)) => (subset @ (union @ A @ B) @ C))))),inference(neg_conjecture,[status(cth)],[1])).
thf(3,plain,((~ (! [A:($i > $o),B:($i > $o),C:($i > $o)]: ((! [D:$i]: ((A @ D) => (C @ D)) & ! [D:$i]: ((B @ D) => (C @ D))) => (! [D:$i]: (((A @ D) | (B @ D)) => (C @ D))))))),inference(defexp_and_simp_and_etaexpand,[status(thm)],[2])).
thf(5,plain,((sk1 @ sk4) | (sk2 @ sk4)),inference(cnf,[status(esa)],[3])).
thf(7,plain,(! [A:$i] : ((~ (sk1 @ A)) | (sk3 @ A))),inference(cnf,[status(esa)],[3])).
thf(4,plain,((~ (sk3 @ sk4))),inference(cnf,[status(esa)],[3])).
thf(9,plain,(! [A:$i] : ((~ (sk1 @ A)) | ((sk3 @ A) != (sk3 @ sk4)))),inference(paramod_ordered,[status(thm)],[7,4])).
thf(10,plain,((~ (sk1 @ sk4))),inference(pattern_uni,[status(thm)],[9:[bind(A, $thf(sk4))]])).
thf(11,plain,($false | (sk2 @ sk4)),inference(rewrite,[status(thm)],[5,10])).
thf(12,plain,((sk2 @ sk4)),inference(simp,[status(thm)],[11])).
thf(6,plain,(! [A:$i] : ((~ (sk2 @ A)) | (sk3 @ A))),inference(cnf,[status(esa)],[3])).
thf(8,plain,(! [A:$i] : ((~ (sk2 @ A)) | (sk3 @ A))),inference(simp,[status(thm)],[6])).
thf(13,plain,(! [A:$i] : ((~ (sk2 @ A)) | ((sk3 @ A) != (sk3 @ sk4)))),inference(paramod_ordered,[status(thm)],[8,4])).
thf(14,plain,((~ (sk2 @ sk4))),inference(pattern_uni,[status(thm)],[13:[bind(A, $thf(sk4))]])).
thf(15,plain,($false),inference(rewrite,[status(thm)],[12,14])).
thf(16,plain,($false),inference(simp,[status(thm)],[15])).
% SZS output end CNFRefutation for TPTP/Problems/SET/SET014^4.p

MaLARea 0.6

Josef Urban
Czech Technical University in Prague, Czech Republic

Sample solution for SEU140+2

# SZS status Theorem
# SZS output start CNFRefutation
fof(t63_xboole_1, conjecture, (![X1]:![X2]:![X3]:((subset(X1,X2)&disjoint(X2,X3))=>disjoint(X1,X3))), file('/tmp/SystemOnTPTP4890/SEU140+2.tptp', t63_xboole_1)).
fof(symmetry_r1_xboole_0, axiom, (![X1]:![X2]:(disjoint(X1,X2)=>disjoint(X2,X1))), file('/tmp/SystemOnTPTP4890/SEU140+2.tptp', symmetry_r1_xboole_0)).
fof(t1_xboole_1, lemma, (![X1]:![X2]:![X3]:((subset(X1,X2)&subset(X2,X3))=>subset(X1,X3))), file('/tmp/SystemOnTPTP4890/SEU140+2.tptp', t1_xboole_1)).
fof(t40_xboole_1, lemma, (![X1]:![X2]:set_difference(set_union2(X1,X2),X2)=set_difference(X1,X2)), file('/tmp/SystemOnTPTP4890/SEU140+2.tptp', t40_xboole_1)).
fof(commutativity_k2_xboole_0, axiom, (![X1]:![X2]:set_union2(X1,X2)=set_union2(X2,X1)), file('/tmp/SystemOnTPTP4890/SEU140+2.tptp', commutativity_k2_xboole_0)).
fof(t2_boole, axiom, (![X1]:set_intersection2(X1,empty_set)=empty_set), file('/tmp/SystemOnTPTP4890/SEU140+2.tptp', t2_boole)).
fof(t48_xboole_1, lemma, (![X1]:![X2]:set_difference(X1,set_difference(X1,X2))=set_intersection2(X1,X2)), file('/tmp/SystemOnTPTP4890/SEU140+2.tptp', t48_xboole_1)).
fof(t3_xboole_0, lemma, (![X1]:![X2]:(~((~(disjoint(X1,X2))&![X3]:~((in(X3,X1)&in(X3,X2)))))&~((?[X3]:(in(X3,X1)&in(X3,X2))&disjoint(X1,X2))))), file('/tmp/SystemOnTPTP4890/SEU140+2.tptp', t3_xboole_0)).
fof(d4_xboole_0, axiom, (![X1]:![X2]:![X3]:(X3=set_difference(X1,X2)<=>![X4]:(in(X4,X3)<=>(in(X4,X1)&~(in(X4,X2)))))), file('/tmp/SystemOnTPTP4890/SEU140+2.tptp', d4_xboole_0)).
fof(l32_xboole_1, lemma, (![X1]:![X2]:(set_difference(X1,X2)=empty_set<=>subset(X1,X2))), file('/tmp/SystemOnTPTP4890/SEU140+2.tptp', l32_xboole_1)).
fof(d7_xboole_0, axiom, (![X1]:![X2]:(disjoint(X1,X2)<=>set_intersection2(X1,X2)=empty_set)), file('/tmp/SystemOnTPTP4890/SEU140+2.tptp', d7_xboole_0)).
fof(t39_xboole_1, lemma, (![X1]:![X2]:set_union2(X1,set_difference(X2,X1))=set_union2(X1,X2)), file('/tmp/SystemOnTPTP4890/SEU140+2.tptp', t39_xboole_1)).
fof(t3_boole, axiom, (![X1]:set_difference(X1,empty_set)=X1), file('/tmp/SystemOnTPTP4890/SEU140+2.tptp', t3_boole)).
fof(commutativity_k3_xboole_0, axiom, (![X1]:![X2]:set_intersection2(X1,X2)=set_intersection2(X2,X1)), file('/tmp/SystemOnTPTP4890/SEU140+2.tptp', commutativity_k3_xboole_0)).
fof(t36_xboole_1, lemma, (![X1]:![X2]:subset(set_difference(X1,X2),X1)), file('/tmp/SystemOnTPTP4890/SEU140+2.tptp', t36_xboole_1)).
fof(t12_xboole_1, lemma, (![X1]:![X2]:(subset(X1,X2)=>set_union2(X1,X2)=X2)), file('/tmp/SystemOnTPTP4890/SEU140+2.tptp', t12_xboole_1)).
fof(t1_boole, axiom, (![X1]:set_union2(X1,empty_set)=X1), file('/tmp/SystemOnTPTP4890/SEU140+2.tptp', t1_boole)).
fof(c_0_17, negated_conjecture, (~(![X1]:![X2]:![X3]:((subset(X1,X2)&disjoint(X2,X3))=>disjoint(X1,X3)))), inference(assume_negation,[status(cth)],[t63_xboole_1])).
fof(c_0_18, plain, (![X3]:![X4]:(~disjoint(X3,X4)|disjoint(X4,X3))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[symmetry_r1_xboole_0])])).
fof(c_0_19, negated_conjecture, (((subset(esk11_0,esk12_0)&disjoint(esk12_0,esk13_0))&~disjoint(esk11_0,esk13_0))), inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_17])])])).
fof(c_0_20, lemma, (![X4]:![X5]:![X6]:((~subset(X4,X5)|~subset(X5,X6))|subset(X4,X6))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[t1_xboole_1])])).
fof(c_0_21, lemma, (![X3]:![X4]:set_difference(set_union2(X3,X4),X4)=set_difference(X3,X4)), inference(variable_rename,[status(thm)],[t40_xboole_1])).
fof(c_0_22, plain, (![X3]:![X4]:set_union2(X3,X4)=set_union2(X4,X3)), inference(variable_rename,[status(thm)],[commutativity_k2_xboole_0])).
fof(c_0_23, plain, (![X2]:set_intersection2(X2,empty_set)=empty_set), inference(variable_rename,[status(thm)],[t2_boole])).
fof(c_0_24, lemma, (![X3]:![X4]:set_difference(X3,set_difference(X3,X4))=set_intersection2(X3,X4)), inference(variable_rename,[status(thm)],[t48_xboole_1])).
fof(c_0_25, lemma, (![X4]:![X5]:![X4]:![X5]:![X7]:(((in(esk9_2(X4,X5),X4)|disjoint(X4,X5))&(in(esk9_2(X4,X5),X5)|disjoint(X4,X5)))&((~in(X7,X4)|~in(X7,X5))|~disjoint(X4,X5)))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[t3_xboole_0])])])])])])])])).
cnf(c_0_26,plain,(disjoint(X1,X2)|~disjoint(X2,X1)), inference(split_conjunct,[status(thm)],[c_0_18])).
cnf(c_0_27,negated_conjecture,(disjoint(esk12_0,esk13_0)), inference(split_conjunct,[status(thm)],[c_0_19])).
fof(c_0_28, plain, (![X5]:![X6]:![X7]:![X8]:![X8]:![X5]:![X6]:![X7]:(((((in(X8,X5)|~in(X8,X7))|X7!=set_difference(X5,X6))&((~in(X8,X6)|~in(X8,X7))|X7!=set_difference(X5,X6)))&(((~in(X8,X5)|in(X8,X6))|in(X8,X7))|X7!=set_difference(X5,X6)))&(((~in(esk5_3(X5,X6,X7),X7)|(~in(esk5_3(X5,X6,X7),X5)|in(esk5_3(X5,X6,X7),X6)))|X7=set_difference(X5,X6))&(((in(esk5_3(X5,X6,X7),X5)|in(esk5_3(X5,X6,X7),X7))|X7=set_difference(X5,X6))&((~in(esk5_3(X5,X6,X7),X6)|in(esk5_3(X5,X6,X7),X7))|X7=set_difference(X5,X6)))))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[d4_xboole_0])])])])])])])])).
fof(c_0_29, lemma, (![X3]:![X4]:![X3]:![X4]:((set_difference(X3,X4)!=empty_set|subset(X3,X4))&(~subset(X3,X4)|set_difference(X3,X4)=empty_set))), inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[l32_xboole_1])])])])).
cnf(c_0_30,lemma,(subset(X1,X2)|~subset(X3,X2)|~subset(X1,X3)), inference(split_conjunct,[status(thm)],[c_0_20])).
cnf(c_0_31,negated_conjecture,(subset(esk11_0,esk12_0)), inference(split_conjunct,[status(thm)],[c_0_19])).
fof(c_0_32, plain, (![X3]:![X4]:![X3]:![X4]:((~disjoint(X3,X4)|set_intersection2(X3,X4)=empty_set)&(set_intersection2(X3,X4)!=empty_set|disjoint(X3,X4)))), inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[d7_xboole_0])])])])).
cnf(c_0_33,lemma,(set_difference(set_union2(X1,X2),X2)=set_difference(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_21])).
cnf(c_0_34,plain,(set_union2(X1,X2)=set_union2(X2,X1)), inference(split_conjunct,[status(thm)],[c_0_22])).
fof(c_0_35, lemma, (![X3]:![X4]:set_union2(X3,set_difference(X4,X3))=set_union2(X3,X4)), inference(variable_rename,[status(thm)],[t39_xboole_1])).
cnf(c_0_36,plain,(set_intersection2(X1,empty_set)=empty_set), inference(split_conjunct,[status(thm)],[c_0_23])).
cnf(c_0_37,lemma,(set_difference(X1,set_difference(X1,X2))=set_intersection2(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_24])).
fof(c_0_38, plain, (![X2]:set_difference(X2,empty_set)=X2), inference(variable_rename,[status(thm)],[t3_boole])).
cnf(c_0_39,lemma,(~disjoint(X1,X2)|~in(X3,X2)|~in(X3,X1)), inference(split_conjunct,[status(thm)],[c_0_25])).
cnf(c_0_40,negated_conjecture,(disjoint(esk13_0,esk12_0)), inference(spm,[status(thm)],[c_0_26, c_0_27])).
cnf(c_0_41,plain,(in(X4,X2)|X1!=set_difference(X2,X3)|~in(X4,X1)), inference(split_conjunct,[status(thm)],[c_0_28])).
fof(c_0_42, plain, (![X3]:![X4]:set_intersection2(X3,X4)=set_intersection2(X4,X3)), inference(variable_rename,[status(thm)],[commutativity_k3_xboole_0])).
cnf(c_0_43,lemma,(set_difference(X1,X2)=empty_set|~subset(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_29])).
cnf(c_0_44,negated_conjecture,(subset(X1,esk12_0)|~subset(X1,esk11_0)), inference(spm,[status(thm)],[c_0_30, c_0_31])).
fof(c_0_45, lemma, (![X3]:![X4]:subset(set_difference(X3,X4),X3)), inference(variable_rename,[status(thm)],[t36_xboole_1])).
fof(c_0_46, lemma, (![X3]:![X4]:(~subset(X3,X4)|set_union2(X3,X4)=X4)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[t12_xboole_1])])).
cnf(c_0_47,plain,(disjoint(X1,X2)|set_intersection2(X1,X2)!=empty_set), inference(split_conjunct,[status(thm)],[c_0_32])).
cnf(c_0_48,lemma,(set_difference(set_union2(X1,X2),X1)=set_difference(X2,X1)), inference(spm,[status(thm)],[c_0_33, c_0_34])).
cnf(c_0_49,lemma,(set_union2(X1,set_difference(X2,X1))=set_union2(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_35])).
cnf(c_0_50,plain,(set_difference(X1,set_difference(X1,empty_set))=empty_set), inference(rw,[status(thm)],[c_0_36, c_0_37])).
cnf(c_0_51,plain,(set_difference(X1,empty_set)=X1), inference(split_conjunct,[status(thm)],[c_0_38])).
cnf(c_0_52,negated_conjecture,(~in(X1,esk12_0)|~in(X1,esk13_0)), inference(spm,[status(thm)],[c_0_39, c_0_40])).
cnf(c_0_53,lemma,(disjoint(X1,X2)|in(esk9_2(X1,X2),X2)), inference(split_conjunct,[status(thm)],[c_0_25])).
cnf(c_0_54,plain,(in(X1,X2)|~in(X1,set_difference(X2,X3))), inference(er,[status(thm)],[c_0_41])).
cnf(c_0_55,lemma,(disjoint(X1,X2)|in(esk9_2(X1,X2),X1)), inference(split_conjunct,[status(thm)],[c_0_25])).
cnf(c_0_56,plain,(set_intersection2(X1,X2)=set_intersection2(X2,X1)), inference(split_conjunct,[status(thm)],[c_0_42])).
cnf(c_0_57,lemma,(set_difference(X1,esk12_0)=empty_set|~subset(X1,esk11_0)), inference(spm,[status(thm)],[c_0_43, c_0_44])).
cnf(c_0_58,lemma,(subset(set_difference(X1,X2),X1)), inference(split_conjunct,[status(thm)],[c_0_45])).
cnf(c_0_59,plain,(set_intersection2(X1,X2)=empty_set|~disjoint(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_32])).
fof(c_0_60, plain, (![X2]:set_union2(X2,empty_set)=X2), inference(variable_rename,[status(thm)],[t1_boole])).
cnf(c_0_61,lemma,(set_union2(X1,X2)=X2|~subset(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_46])).
cnf(c_0_62,plain,(disjoint(X1,X2)|set_difference(X1,set_difference(X1,X2))!=empty_set), inference(rw,[status(thm)],[c_0_47, c_0_37])).
cnf(c_0_63,lemma,(set_difference(set_difference(X1,X2),X2)=set_difference(X1,X2)), inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_48, c_0_49]), c_0_48])).
cnf(c_0_64,plain,(set_difference(X1,X1)=empty_set), inference(rw,[status(thm)],[c_0_50, c_0_51])).
cnf(c_0_65,lemma,(disjoint(X1,esk13_0)|~in(esk9_2(X1,esk13_0),esk12_0)), inference(spm,[status(thm)],[c_0_52, c_0_53])).
cnf(c_0_66,lemma,(disjoint(set_difference(X1,X2),X3)|in(esk9_2(set_difference(X1,X2),X3),X1)), inference(spm,[status(thm)],[c_0_54, c_0_55])).
cnf(c_0_67,plain,(set_difference(X1,set_difference(X1,X2))=set_difference(X2,set_difference(X2,X1))), inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_56, c_0_37]), c_0_37])).
cnf(c_0_68,lemma,(set_difference(set_difference(esk11_0,X1),esk12_0)=empty_set), inference(spm,[status(thm)],[c_0_57, c_0_58])).
cnf(c_0_69,plain,(set_difference(X1,set_difference(X1,X2))=empty_set|~disjoint(X1,X2)), inference(rw,[status(thm)],[c_0_59, c_0_37])).
cnf(c_0_70,plain,(set_union2(X1,empty_set)=X1), inference(split_conjunct,[status(thm)],[c_0_60])).
cnf(c_0_71,lemma,(set_union2(X1,set_difference(X1,X2))=X1), inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_61, c_0_58]), c_0_34])).
cnf(c_0_72,lemma,(disjoint(set_difference(X1,X2),X2)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_62, c_0_63]), c_0_64])])).
cnf(c_0_73,lemma,(disjoint(set_difference(esk12_0,X1),esk13_0)), inference(spm,[status(thm)],[c_0_65, c_0_66])).
cnf(c_0_74,lemma,(set_difference(esk12_0,set_difference(esk12_0,set_difference(esk11_0,X1)))=set_difference(esk11_0,X1)), inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_67, c_0_68]), c_0_51])).
cnf(c_0_75,lemma,(set_difference(X1,X2)=X1|~disjoint(X1,X2)), inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_49, c_0_69]), c_0_70]), c_0_34]), c_0_71])).
cnf(c_0_76,lemma,(disjoint(X1,set_difference(X2,X1))), inference(spm,[status(thm)],[c_0_26, c_0_72])).
cnf(c_0_77,lemma,(disjoint(set_difference(esk11_0,X1),esk13_0)), inference(spm,[status(thm)],[c_0_73, c_0_74])).
cnf(c_0_78,lemma,(set_difference(X1,set_difference(X2,X1))=X1), inference(spm,[status(thm)],[c_0_75, c_0_76])).
cnf(c_0_79,negated_conjecture,(~disjoint(esk11_0,esk13_0)), inference(split_conjunct,[status(thm)],[c_0_19])).
cnf(c_0_80,lemma,($false), inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_77, c_0_78]), c_0_79]), ['proof']).
# SZS output end CNFRefutation

nanoCoP---1.1

Jens Otten
University of Oslo, Norway

Sample solution for SEU140+2

% SZS status Theorem for SEU140+2.p
% SZS output start Proof for SEU140+2.p

- the following list represents a non-clausal connection proof
  (a tree in which each node is labelled with a nested clause)
- I^V is a skolem term f_I(V) for variable list V
- (I^K)^V:C is the (nested) clause C with index (I^K)^V, in which
  I is the unique index of C, K distinguishes different copies
  of C, and V is the list of (instantiated) variables in C

[(505 ^ 0) ^ [587 ^ [], 586 ^ []] : [disjoint(586 ^ [], 587 ^ []), 506 ^ 0 : [(507 ^ 0) ^ [499 ^ [587 ^ [], 585 ^ []]] : [in(499 ^ [587 ^ [], 585 ^ []], 586 ^ []), in(499 ^ [587 ^ [], 585 ^ []], 587 ^ [])]]], [(591 ^ 1) ^ [] : [-(disjoint(586 ^ [], 587 ^ []))]], [(163 ^ 3) ^ [586 ^ [], set_difference(586 ^ [], 585 ^ []), 585 ^ []] : [-(in(499 ^ [587 ^ [], 585 ^ []], 586 ^ [])), 166 ^ 3 : [(177 ^ 3) ^ [499 ^ [587 ^ [], 585 ^ []]] : [178 ^ 3 : [(179 ^ 3) ^ [] : [in(499 ^ [587 ^ [], 585 ^ []], 585 ^ [])], (181 ^ 3) ^ [] : [in(499 ^ [587 ^ [], 585 ^ []], set_difference(586 ^ [], 585 ^ []))]]]], 586 ^ [] = set_union2(585 ^ [], set_difference(586 ^ [], 585 ^ []))], [(496 ^ 8) ^ [587 ^ [], 585 ^ []] : [-(in(499 ^ [587 ^ [], 585 ^ []], 585 ^ [])), 500 ^ 8 : [(501 ^ 8) ^ [] : []], -(disjoint(585 ^ [], 587 ^ []))], [(593 ^ 9) ^ [] : [disjoint(585 ^ [], 587 ^ [])]]], [(523 ^ 4) ^ [586 ^ [], 585 ^ []] : [-(586 ^ [] = set_union2(585 ^ [], set_difference(586 ^ [], 585 ^ []))), subset(585 ^ [], 586 ^ [])], [(589 ^ 5) ^ [] : [-(subset(585 ^ [], 586 ^ []))]]]], [(496 ^ 3) ^ [587 ^ [], 585 ^ []] : [-(in(499 ^ [587 ^ [], 585 ^ []], 587 ^ [])), 500 ^ 3 : [(503 ^ 3) ^ [] : []], -(disjoint(585 ^ [], 587 ^ []))], [(593 ^ 4) ^ [] : [disjoint(585 ^ [], 587 ^ [])]]]]

% SZS output end Proof for SEU140+2.p

Princess 170717

Philipp Rümmer
Uppsala University, Sweden

Sample solution for DAT013=1

% SZS status Theorem for DAT013=1
% SZS output start Proof for DAT013=1
Assumptions after simplification:
---------------------------------

  (co1)
   ? [v0: $int] :  ? [v1: $int] :  ? [v2: $int] : (in_array(v0) &  ! [v3: $int] :
     ! [v4: $int] : ( ~ ($lesseq(v4, 0) |  ~ ($lesseq(v3, v2)) |  ~ ($lesseq(v1,
            v3)) |  ~ (read(v0, v3) = v4)) &  ? [v3: $int] :  ? [v4: $int] :
      ($lesseq(v4, 0)$lesseq(v3, v2) & $lesseq(3, $difference(v3, v1)) & read(v0,
          v3) = v4))

Further assumptions not needed in the proof:
--------------------------------------------
ax1, ax2

Those formulas are unsatisfiable:
---------------------------------

Begin of proof
| 
| DELTA: instantiating (co1) with fresh symbols all_4_0, all_4_1, all_4_2 gives:
|   (1)  in_array(all_4_2) &  ! [v0: $int] :  ! [v1: $int] : ( ~ ($lesseq(v1, 0)
|            |  ~ ($lesseq(v0, all_4_0)) |  ~ ($lesseq(all_4_1, v0)) |  ~
|            (read(all_4_2, v0) = v1)) &  ? [v0: $int] :  ? [v1: $int] :
|          ($lesseq(v1, 0)$lesseq(v0, all_4_0) & $lesseq(3, $difference(v0,
|                all_4_1)) & read(all_4_2, v0) = v1)
| 
| ALPHA: (1) implies:
|   (2)   ! [v0: $int] :  ! [v1: $int] : ( ~ ($lesseq(v1, 0) |  ~ ($lesseq(v0,
|                all_4_0)) |  ~ ($lesseq(all_4_1, v0)) |  ~ (read(all_4_2, v0) =
|              v1))
|   (3)   ? [v0: $int] :  ? [v1: $int] : ($lesseq(v1, 0)$lesseq(v0, all_4_0) &
|          $lesseq(3, $difference(v0, all_4_1)) & read(all_4_2, v0) = v1)
| 
| DELTA: instantiating (3) with fresh symbols all_9_0, all_9_1 gives:
|   (4)  $lesseq(all_9_0, 0)$lesseq(all_9_1, all_4_0) & $lesseq(3,
|          $difference(all_9_1, all_4_1)) & read(all_4_2, all_9_1) = all_9_0
| 
| ALPHA: (4) implies:
|   (5)  $lesseq(3, $difference(all_9_1, all_4_1))
|   (6)  $lesseq(all_9_1, all_4_0)
|   (7)  $lesseq(all_9_0, 0)
|   (8)  read(all_4_2, all_9_1) = all_9_0
| 
| GROUND_INST: instantiating (2) with all_9_0, all_9_1, simplifying with (8)
|              gives:
|   (9)   ~ ($lesseq(all_9_0, 0) |  ~ ($lesseq(all_9_1, all_4_0)) |  ~
|          ($lesseq(all_4_1, all_9_1))
| 
| BETA: splitting (9) gives:
| 
| Case 1:
| | 
| |   (10)  $lesseq(1, all_9_0)
| | 
| | COMBINE_INEQS: (7), (10) imply:
| |   (11)  $lesseq(0, -1)
| | 
| | CLOSE: (11) is inconsistent.
| | 
| Case 2:
| | 
| |   (12)   ~ ($lesseq(all_9_1, all_4_0)) |  ~ ($lesseq(all_4_1, all_9_1))
| | 
| | BETA: splitting (12) gives:
| | 
| | Case 1:
| | | 
| | |   (13)  $lesseq(1, $difference(all_9_1, all_4_0))
| | | 
| | | COMBINE_INEQS: (6), (13) imply:
| | |   (14)  $lesseq(0, -1)
| | | 
| | | CLOSE: (14) is inconsistent.
| | | 
| | Case 2:
| | | 
| | |   (15)  $lesseq(1, $difference(all_4_1, all_9_1))
| | | 
| | | COMBINE_INEQS: (5), (15) imply:
| | |   (16)  $lesseq(0, -1)
| | | 
| | | CLOSE: (16) is inconsistent.
| | | 
| | End of split
| | 
| End of split
| 
End of proof
% SZS output end Proof for DAT013=1

Prover9 1109a

William McCune, Bob Veroff
University of New Mexico, USA

Sample solution for SEU140+2

8 (all A all B (subset(A,B) <-> (all C (in(C,A) -> in(C,B))))) # label(d3_tarski) # label(axiom) # label(non_clause).  [assumption].
26 (all A all B (disjoint(A,B) -> disjoint(B,A))) # label(symmetry_r1_xboole_0) # label(axiom) # label(non_clause).  [assumption].
42 (all A all B (-(-disjoint(A,B) & (all C -(in(C,A) & in(C,B)))) & -((exists C (in(C,A) & in(C,B))) & disjoint(A,B)))) # label(t3_xboole_0) # label(lemma) # label(non_clause).  [assumption].
55 -(all A all B all C (subset(A,B) & disjoint(B,C) -> disjoint(A,C))) # label(t63_xboole_1) # label(negated_conjecture) # label(non_clause).  [assumption].
60 subset(c3,c4) # label(t63_xboole_1) # label(negated_conjecture).  [clausify(55)].
61 disjoint(c4,c5) # label(t63_xboole_1) # label(negated_conjecture).  [clausify(55)].
75 disjoint(A,B) | in(f7(A,B),A) # label(t3_xboole_0) # label(lemma).  [clausify(42)].
76 disjoint(A,B) | in(f7(A,B),B) # label(t3_xboole_0) # label(lemma).  [clausify(42)].
92 -disjoint(c3,c5) # label(t63_xboole_1) # label(negated_conjecture).  [clausify(55)].
101 -in(A,B) | -in(A,C) | -disjoint(B,C) # label(t3_xboole_0) # label(lemma).  [clausify(42)].
109 -disjoint(A,B) | disjoint(B,A) # label(symmetry_r1_xboole_0) # label(axiom).  [clausify(26)].
123 -subset(A,B) | -in(C,A) | in(C,B) # label(d3_tarski) # label(axiom).  [clausify(8)].
273 -disjoint(c5,c3).  [ur(109,b,92,a)].
300 -in(A,c3) | in(A,c4).  [resolve(123,a,60,a)].
959 in(f7(c5,c3),c3).  [resolve(273,a,76,a)].
960 in(f7(c5,c3),c5).  [resolve(273,a,75,a)].
1084 -in(f7(c5,c3),c4).  [ur(101,b,960,a,c,61,a)].
1292 $F.  [resolve(300,a,959,a),unit_del(a,1084)].

Satallax 3.2

Michael Färber
Universität Innsbruck, Austria

Sample solution for SET014^4

% SZS output start Proof
thf(ty_$i, type, $i : $tType).
thf(ty_eigen__2, type, eigen__2 : ($i>$o)).
thf(ty_eigen__1, type, eigen__1 : ($i>$o)).
thf(ty_eigen__0, type, eigen__0 : ($i>$o)).
thf(ty_eigen__3, type, eigen__3 : $i).
thf(sP1,plain,(sP1 <=> (eigen__0 @ eigen__3),introduced(definition,[new_symbols(
definition,[sP1])]))).
thf(sP2,plain,(sP2 <=> (sP1 => (eigen__2 @ eigen__3)),introduced(definition,[new
_symbols(definition,[sP2])]))).
thf(sP3,plain,(sP3 <=> (eigen__1 @ eigen__3),introduced(definition,[new_symbols(
definition,[sP3])]))).
thf(sP4,plain,(sP4 <=> (sP3 => (eigen__2 @ eigen__3)),introduced(definition,[new
_symbols(definition,[sP4])]))).
thf(sP5,plain,(sP5 <=> (![X1:$i]:((eigen__1 @ X1) => (eigen__2 @ X1))),introduce
d(definition,[new_symbols(definition,[sP5])]))).
thf(sP6,plain,(sP6 <=> (eigen__2 @ eigen__3),introduced(definition,[new_symbols(
definition,[sP6])]))).
thf(sP7,plain,(sP7 <=> (![X1:$i]:((eigen__0 @ X1) => (eigen__2 @ X1))),introduce
d(definition,[new_symbols(definition,[sP7])]))).
thf(def_in,definition,(in = (^[X1:$i]:(^[X2:$i>$o]:(X2 @ X1))))).
thf(def_is_a,definition,(is_a = (^[X1:$i]:(^[X2:$i>$o]:(X2 @ X1))))).
thf(def_emptyset,definition,(emptyset = (^[X1:$i]:$false))).
thf(def_unord_pair,definition,(unord_pair = (^[X1:$i]:(^[X2:$i]:(^[X3:$i]:((~((X
3 = X1))) => (X3 = X2))))))).
thf(def_singleton,definition,(singleton = (^[X1:$i]:(^[X2:$i]:(X2 = X1))))).
thf(def_union,definition,(union = (^[X1:$i>$o]:(^[X2:$i>$o]:(^[X3:$i]:((~((X1 @
X3))) => (X2 @ X3))))))).
thf(def_excl_union,definition,(excl_union = (^[X1:$i>$o]:(^[X2:$i>$o]:(^[X3:$i]:
(((X1 @ X3) => (X2 @ X3)) => (~(((~((X1 @ X3))) => (~((X2 @ X3)))))))))))).
thf(def_intersection,definition,(intersection = (^[X1:$i>$o]:(^[X2:$i>$o]:(^[X3:
$i]:(~(((X1 @ X3) => (~((X2 @ X3))))))))))).
thf(def_setminus,definition,(setminus = (^[X1:$i>$o]:(^[X2:$i>$o]:(^[X3:$i]:(~((
(X1 @ X3) => (X2 @ X3))))))))).
thf(def_complement,definition,(complement = (^[X1:$i>$o]:(^[X2:$i]:(~((X1 @ X2))
))))).
thf(def_disjoint,definition,(disjoint = (^[X1:$i>$o]:(^[X2:$i>$o]:(((intersectio
n @ X1) @ X2) = emptyset))))).
thf(def_subset,definition,(subset = (^[X1:$i>$o]:(^[X2:$i>$o]:(![X3:$i]:((X1 @ X
3) => (X2 @ X3))))))).
thf(def_meets,definition,(meets = (^[X1:$i>$o]:(^[X2:$i>$o]:(~((![X3:$i]:((X1 @
X3) => (~((X2 @ X3))))))))))).
thf(def_misses,definition,(misses = (^[X1:$i>$o]:(^[X2:$i>$o]:(![X3:$i]:((X1 @ X
3) => (~((X2 @ X3))))))))).
thf(thm,conjecture,(![X1:$i>$o]:(![X2:$i>$o]:(![X3:$i>$o]:((~(((![X4:$i]:((X1 @
X4) => (X3 @ X4))) => (~((![X4:$i]:((X2 @ X4) => (X3 @ X4)))))))) => (![X4:$i]:(
((~((X1 @ X4))) => (X2 @ X4)) => (X3 @ X4)))))))).
thf(h0,negated_conjecture,(~((![X1:$i>$o]:(![X2:$i>$o]:(![X3:$i>$o]:((~(((![X4:$
i]:((X1 @ X4) => (X3 @ X4))) => (~((![X4:$i]:((X2 @ X4) => (X3 @ X4)))))))) => (
![X4:$i]:(((~((X1 @ X4))) => (X2 @ X4)) => (X3 @ X4))))))))),inference(assume_ne
gation,[status(cth)],[thm])).
thf(h1,assumption,(~((![X1:$i>$o]:(![X2:$i>$o]:((~(((![X3:$i]:((eigen__0 @ X3) =
> (X2 @ X3))) => (~((![X3:$i]:((X1 @ X3) => (X2 @ X3)))))))) => (![X3:$i]:(((~((
eigen__0 @ X3))) => (X1 @ X3)) => (X2 @ X3)))))))),introduced(assumption,[])).
thf(h2,assumption,(~((![X1:$i>$o]:((~(((![X2:$i]:((eigen__0 @ X2) => (X1 @ X2)))
 => (~((![X2:$i]:((eigen__1 @ X2) => (X1 @ X2)))))))) => (![X2:$i]:(((~((eigen__
0 @ X2))) => (eigen__1 @ X2)) => (X1 @ X2))))))),introduced(assumption,[])).
thf(h3,assumption,(~(((~((sP7 => (~(sP5))))) => (![X1:$i]:(((~((eigen__0 @ X1)))
 => (eigen__1 @ X1)) => (eigen__2 @ X1)))))),introduced(assumption,[])).
thf(h4,assumption,(~((sP7 => (~(sP5))))),introduced(assumption,[])).
thf(h5,assumption,(~((![X1:$i]:(((~((eigen__0 @ X1))) => (eigen__1 @ X1)) => (ei
gen__2 @ X1))))),introduced(assumption,[])).
thf(h6,assumption,sP7,introduced(assumption,[])).
thf(h7,assumption,sP5,introduced(assumption,[])).
thf(h8,assumption,(~((((~(sP1)) => sP3) => sP6))),introduced(assumption,[])).
thf(h9,assumption,((~(sP1)) => sP3),introduced(assumption,[])).
thf(h10,assumption,(~(sP6)),introduced(assumption,[])).
thf(h11,assumption,sP1,introduced(assumption,[])).
thf(h12,assumption,sP3,introduced(assumption,[])).
thf(1,plain,((~(sP2) | ~(sP1)) | sP6),inference(prop_rule,[status(thm)],[])).
thf(2,plain,(~(sP7) | sP2),inference(all_rule,[status(thm)],[])).
thf(3,plain,$false,inference(prop_unsat,[status(thm),assumptions([h11,h9,h10,h8,
h6,h7,h4,h5,h3,h2,h1,h0])],[h10,h11,h6,1,2])).
thf(4,plain,((~(sP4) | ~(sP3)) | sP6),inference(prop_rule,[status(thm)],[])).
thf(5,plain,(~(sP5) | sP4),inference(all_rule,[status(thm)],[])).
thf(6,plain,$false,inference(prop_unsat,[status(thm),assumptions([h12,h9,h10,h8,
h6,h7,h4,h5,h3,h2,h1,h0])],[h10,h12,h7,4,5])).
thf(7,plain,$false,inference(tab_imp,[status(thm),assumptions([h9,h10,h8,h6,h7,h
4,h5,h3,h2,h1,h0]),tab_imp(discharge,[h11]),tab_imp(discharge,[h12])],[h9,3,6,h1
1,h12])).
thf(8,plain,$false,inference(tab_negimp,[status(thm),assumptions([h8,h6,h7,h4,h5
,h3,h2,h1,h0]),tab_negimp(discharge,[h9,h10])],[h8,7,h9,h10])).
thf(9,plain,$false,inference(tab_negall,[status(thm),assumptions([h6,h7,h4,h5,h3
,h2,h1,h0]),tab_negall(discharge,[h8]),tab_negall(eigenvar,eigen__3)],[h5,8,h8])
).
thf(10,plain,$false,inference(tab_negimp,[status(thm),assumptions([h4,h5,h3,h2,h
1,h0]),tab_negimp(discharge,[h6,h7])],[h4,9,h6,h7])).
thf(11,plain,$false,inference(tab_negimp,[status(thm),assumptions([h3,h2,h1,h0])
,tab_negimp(discharge,[h4,h5])],[h3,10,h4,h5])).
thf(12,plain,$false,inference(tab_negall,[status(thm),assumptions([h2,h1,h0]),ta
b_negall(discharge,[h3]),tab_negall(eigenvar,eigen__2)],[h2,11,h3])).
thf(13,plain,$false,inference(tab_negall,[status(thm),assumptions([h1,h0]),tab_n
egall(discharge,[h2]),tab_negall(eigenvar,eigen__1)],[h1,12,h2])).
thf(14,plain,$false,inference(tab_negall,[status(thm),assumptions([h0]),tab_nega
ll(discharge,[h1]),tab_negall(eigenvar,eigen__0)],[h0,13,h1])).
% SZS output end Proof

Satallax 3.3

Michael Färber
Universität Innsbruck, Austria

Sample solution for SET014^4

% SZS output start Proof
thf(ty_$i, type, $i : $tType).
thf(ty_eigen__2, type, eigen__2 : ($i>$o)).
thf(ty_eigen__1, type, eigen__1 : ($i>$o)).
thf(ty_eigen__0, type, eigen__0 : ($i>$o)).
thf(ty_eigen__3, type, eigen__3 : $i).
thf(sP1,plain,(sP1 <=> (eigen__0 @ eigen__3),introduced(definition,[new_symbols(definition,[sP1])]))).
thf(sP2,plain,(sP2 <=> (sP1 => (eigen__2 @ eigen__3)),introduced(definition,[new_symbols(definition,[sP2])]))).
thf(sP3,plain,(sP3 <=> (eigen__1 @ eigen__3),introduced(definition,[new_symbols(definition,[sP3])]))).
thf(sP4,plain,(sP4 <=> (sP3 => (eigen__2 @ eigen__3)),introduced(definition,[new_symbols(definition,[sP4])]))).
thf(sP5,plain,(sP5 <=> (![X1:$i]:((eigen__1 @ X1) => (eigen__2 @ X1))),introduced(definition,[new_symbols(definition,[sP5])]))).
thf(sP6,plain,(sP6 <=> (eigen__2 @ eigen__3),introduced(definition,[new_symbols(definition,[sP6])]))).
thf(sP7,plain,(sP7 <=> (![X1:$i]:((eigen__0 @ X1) => (eigen__2 @ X1))),introduced(definition,[new_symbols(definition,[sP7])]))).
thf(def_in,definition,(in = (^[X1:$i]:(^[X2:$i>$o]:(X2 @ X1))))).
thf(def_is_a,definition,(is_a = (^[X1:$i]:(^[X2:$i>$o]:(X2 @ X1))))).
thf(def_emptyset,definition,(emptyset = (^[X1:$i]:$false))).
thf(def_unord_pair,definition,(unord_pair = (^[X1:$i]:(^[X2:$i]:(^[X3:$i]:((~((X3 = X1))) => (X3 = X2))))))).
thf(def_singleton,definition,(singleton = (^[X1:$i]:(^[X2:$i]:(X2 = X1))))).
thf(def_union,definition,(union = (^[X1:$i>$o]:(^[X2:$i>$o]:(^[X3:$i]:((~((X1 @ X3))) => (X2 @ X3))))))).
thf(def_excl_union,definition,(excl_union = (^[X1:$i>$o]:(^[X2:$i>$o]:(^[X3:$i]:(((X1 @ X3) => (X2 @ X3)) => (~(((~((X1 @ X3))) => (~((X2 @ X3)))))))))))).
thf(def_intersection,definition,(intersection = (^[X1:$i>$o]:(^[X2:$i>$o]:(^[X3:$i]:(~(((X1 @ X3) => (~((X2 @ X3))))))))))).
thf(def_setminus,definition,(setminus = (^[X1:$i>$o]:(^[X2:$i>$o]:(^[X3:$i]:(~(((X1 @ X3) => (X2 @ X3))))))))).
thf(def_complement,definition,(complement = (^[X1:$i>$o]:(^[X2:$i]:(~((X1 @ X2))))))).
thf(def_disjoint,definition,(disjoint = (^[X1:$i>$o]:(^[X2:$i>$o]:(((intersection @ X1) @ X2) = emptyset))))).
thf(def_subset,definition,(subset = (^[X1:$i>$o]:(^[X2:$i>$o]:(![X3:$i]:((X1 @ X3) => (X2 @ X3))))))).
thf(def_meets,definition,(meets = (^[X1:$i>$o]:(^[X2:$i>$o]:(~((![X3:$i]:((X1 @ X3) => (~((X2 @ X3))))))))))).
thf(def_misses,definition,(misses = (^[X1:$i>$o]:(^[X2:$i>$o]:(![X3:$i]:((X1 @ X3) => (~((X2 @ X3))))))))).
thf(thm,conjecture,(![X1:$i>$o]:(![X2:$i>$o]:(![X3:$i>$o]:((~(((![X4:$i]:((X1 @ X4) => (X3 @ X4))) => (~((![X4:$i]:((X2 @ X4) => (X3 @ X4)))))))) => (![X4:$i]:(((~((X1 @ X4))) => (X2 @ X4)) => (X3 @ X4)))))))).
thf(h0,negated_conjecture,(~((![X1:$i>$o]:(![X2:$i>$o]:(![X3:$i>$o]:((~(((![X4:$i]:((X1 @ X4) => (X3 @ X4))) => (~((![X4:$i]:((X2 @ X4) => (X3 @ X4)))))))) => (![X4:$i]:(((~((X1 @ X4))) => (X2 @ X4)) => (X3 @ X4))))))))),inference(assume_negation,[status(cth)],[thm])).
thf(h1,assumption,(~((![X1:$i>$o]:(![X2:$i>$o]:((~(((![X3:$i]:((eigen__0 @ X3) => (X2 @ X3))) => (~((![X3:$i]:((X1 @ X3) => (X2 @ X3)))))))) => (![X3:$i]:(((~((eigen__0 @ X3))) => (X1 @ X3)) => (X2 @ X3)))))))),introduced(assumption,[])).
thf(h2,assumption,(~((![X1:$i>$o]:((~(((![X2:$i]:((eigen__0 @ X2) => (X1 @ X2))) => (~((![X2:$i]:((eigen__1 @ X2) => (X1 @ X2)))))))) => (![X2:$i]:(((~((eigen__0 @ X2))) => (eigen__1 @ X2)) => (X1 @ X2))))))),introduced(assumption,[])).
thf(h3,assumption,(~(((~((sP7 => (~(sP5))))) => (![X1:$i]:(((~((eigen__0 @ X1))) => (eigen__1 @ X1)) => (eigen__2 @ X1)))))),introduced(assumption,[])).
thf(h4,assumption,(~((sP7 => (~(sP5))))),introduced(assumption,[])).
thf(h5,assumption,(~((![X1:$i]:(((~((eigen__0 @ X1))) => (eigen__1 @ X1)) => (eigen__2 @ X1))))),introduced(assumption,[])).
thf(h6,assumption,sP7,introduced(assumption,[])).
thf(h7,assumption,sP5,introduced(assumption,[])).
thf(h8,assumption,(~((((~(sP1)) => sP3) => sP6))),introduced(assumption,[])).
thf(h9,assumption,((~(sP1)) => sP3),introduced(assumption,[])).
thf(h10,assumption,(~(sP6)),introduced(assumption,[])).
thf(h11,assumption,sP1,introduced(assumption,[])).
thf(h12,assumption,sP3,introduced(assumption,[])).
thf(1,plain,((~(sP2) | ~(sP1)) | sP6),inference(prop_rule,[status(thm)],[])).
thf(2,plain,(~(sP7) | sP2),inference(all_rule,[status(thm)],[])).
thf(3,plain,$false,inference(prop_unsat,[status(thm),assumptions([h11,h9,h10,h8,h6,h7,h4,h5,h3,h2,h1,h0])],[h10,h11,h6,1,2])).
thf(4,plain,((~(sP4) | ~(sP3)) | sP6),inference(prop_rule,[status(thm)],[])).
thf(5,plain,(~(sP5) | sP4),inference(all_rule,[status(thm)],[])).
thf(6,plain,$false,inference(prop_unsat,[status(thm),assumptions([h12,h9,h10,h8,h6,h7,h4,h5,h3,h2,h1,h0])],[h10,h12,h7,4,5])).
thf(7,plain,$false,inference(tab_imp,[status(thm),assumptions([h9,h10,h8,h6,h7,h4,h5,h3,h2,h1,h0]),tab_imp(discharge,[h11]),tab_imp(discharge,[h12])],[h9,3,6,h11,h12])).
thf(8,plain,$false,inference(tab_negimp,[status(thm),assumptions([h8,h6,h7,h4,h5,h3,h2,h1,h0]),tab_negimp(discharge,[h9,h10])],[h8,7,h9,h10])).
thf(9,plain,$false,inference(tab_negall,[status(thm),assumptions([h6,h7,h4,h5,h3,h2,h1,h0]),tab_negall(discharge,[h8]),tab_negall(eigenvar,eigen__3)],[h5,8,h8])).
thf(10,plain,$false,inference(tab_negimp,[status(thm),assumptions([h4,h5,h3,h2,h1,h0]),tab_negimp(discharge,[h6,h7])],[h4,9,h6,h7])).
thf(11,plain,$false,inference(tab_negimp,[status(thm),assumptions([h3,h2,h1,h0]),tab_negimp(discharge,[h4,h5])],[h3,10,h4,h5])).
thf(12,plain,$false,inference(tab_negall,[status(thm),assumptions([h2,h1,h0]),tab_negall(discharge,[h3]),tab_negall(eigenvar,eigen__2)],[h2,11,h3])).
thf(13,plain,$false,inference(tab_negall,[status(thm),assumptions([h1,h0]),tab_negall(discharge,[h2]),tab_negall(eigenvar,eigen__1)],[h1,12,h2])).
thf(14,plain,$false,inference(tab_negall,[status(thm),assumptions([h0]),tab_negall(discharge,[h1]),tab_negall(eigenvar,eigen__0)],[h0,13,h1])).
% SZS output end Proof

Twee 2.2

Nick Smallbone
Chalmers University of Technology, Sweden

Sample solution for SEU140+2

% SZS status Theorem

% SZS output start Derivation

Take the following subset of the input axioms:
  fof(commutativity_k3_xboole_0, axiom,
      ![A, B]: set_intersection2(A, B)=set_intersection2(B, A)).
  fof(d10_xboole_0, axiom,
      ![A, B]: (A=B <=> (subset(A, B) & subset(B, A)))).
  fof(d7_xboole_0, axiom,
      ![A, B]: (disjoint(A, B) <=> set_intersection2(A, B)=empty_set)).
  fof(symmetry_r1_xboole_0, axiom,
      ![A, B]: (disjoint(A, B) => disjoint(B, A))).
  fof(t26_xboole_1, lemma,
      ![A, B, C]:
        (subset(A, B)
           => subset(set_intersection2(A, C), set_intersection2(B, C)))).
  fof(t2_xboole_1, lemma, ![A]: subset(empty_set, A)).
  fof(t63_xboole_1, conjecture,
      ![A, B, C]: ((subset(A, B) & disjoint(B, C)) => disjoint(A, C))).

Now clausify the problem and encode Horn clauses using $$ifeq;
see http://www.cse.chalmers.se/~nicsma/papers/horn.pdf for details.
a=b => c=d becomes $$ifeq(a,b,c,d)=d, plus an axiom $$ifeq(X,X,Y,Z)=Y.
A predicate p(X) is encoded as p(X)=$$true (this is sound, because the
input problem has no model of domain size 1).

The encoding turns the above axioms into the following unit equations and goals:

Axiom 1 (ifeq_axiom): $$ifeq3(X, X, Y, Z) = Y.
Axiom 2 (ifeq_axiom): $$ifeq2(X, X, Y, Z) = Y.
Axiom 3 (ifeq_axiom): $$ifeq(X, X, Y, Z) = Y.
Axiom 5 (commutativity_k3_xboole_0): set_intersection2(X, Y) = set_intersection2(Y, X).
Axiom 6 (d10_xboole_0_1): $$ifeq2(subset(X, Y), $$true2, $$ifeq2(subset(Y, X), $$true2, Y, X), X) = X.
Axiom 25 (d7_xboole_0_1): $$ifeq2(disjoint(X, Y), $$true2, set_intersection2(X, Y), empty_set) = empty_set.
Axiom 26 (d7_xboole_0): $$ifeq3(set_intersection2(X, Y), empty_set, disjoint(X, Y), $$true2) = $$true2.
Axiom 37 (symmetry_r1_xboole_0): $$ifeq(disjoint(X, Y), $$true2, disjoint(Y, X), $$true2) = $$true2.
Axiom 43 (t26_xboole_1): $$ifeq(subset(X, Y), $$true2, subset(set_intersection2(X, Z), set_intersection2(Y, Z)), $$true2) = $$true2.
Axiom 47 (t2_xboole_1): subset(empty_set, X) = $$true2.
Axiom 63 (t63_xboole_1): subset(sK1_t63_xboole_1_A, sK3_t63_xboole_1_B) = $$true2.
Axiom 64 (t63_xboole_1_1): disjoint(sK3_t63_xboole_1_B, sK2_t63_xboole_1_C) = $$true2.

Goal 1 (t63_xboole_1_2): disjoint(sK1_t63_xboole_1_A, sK2_t63_xboole_1_C) = $$true2.
Proof:
  disjoint(sK1_t63_xboole_1_A, sK2_t63_xboole_1_C)
= { by axiom 3 (ifeq_axiom) }
  $$ifeq($$true2, $$true2, disjoint(sK1_t63_xboole_1_A, sK2_t63_xboole_1_C), $$true2)
= { by axiom 26 (d7_xboole_0) }
  $$ifeq($$ifeq3(set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A), empty_set, disjoint(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A), $$true2), $$true2, disjoint(sK1_t63_xboole_1_A, sK2_t63_xboole_1_C), $$true2)
= { by axiom 6 (d10_xboole_0_1) }
  $$ifeq($$ifeq3($$ifeq2(subset(set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A), empty_set), $$true2, $$ifeq2(subset(empty_set, set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), $$true2, empty_set, set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), empty_set, disjoint(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A), $$true2), $$true2, disjoint(sK1_t63_xboole_1_A, sK2_t63_xboole_1_C), $$true2)
= { by axiom 5 (commutativity_k3_xboole_0) }
  $$ifeq($$ifeq3($$ifeq2(subset(set_intersection2(sK1_t63_xboole_1_A, sK2_t63_xboole_1_C), empty_set), $$true2, $$ifeq2(subset(empty_set, set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), $$true2, empty_set, set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), empty_set, disjoint(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A), $$true2), $$true2, disjoint(sK1_t63_xboole_1_A, sK2_t63_xboole_1_C), $$true2)
= { by axiom 25 (d7_xboole_0_1) }
  $$ifeq($$ifeq3($$ifeq2(subset(set_intersection2(sK1_t63_xboole_1_A, sK2_t63_xboole_1_C), $$ifeq2(disjoint(sK3_t63_xboole_1_B, sK2_t63_xboole_1_C), $$true2, set_intersection2(sK3_t63_xboole_1_B, sK2_t63_xboole_1_C), empty_set)), $$true2, $$ifeq2(subset(empty_set, set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), $$true2, empty_set, set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), empty_set, disjoint(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A), $$true2), $$true2, disjoint(sK1_t63_xboole_1_A, sK2_t63_xboole_1_C), $$true2)
= { by axiom 64 (t63_xboole_1_1) }
  $$ifeq($$ifeq3($$ifeq2(subset(set_intersection2(sK1_t63_xboole_1_A, sK2_t63_xboole_1_C), $$ifeq2($$true2, $$true2, set_intersection2(sK3_t63_xboole_1_B, sK2_t63_xboole_1_C), empty_set)), $$true2, $$ifeq2(subset(empty_set, set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), $$true2, empty_set, set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), empty_set, disjoint(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A), $$true2), $$true2, disjoint(sK1_t63_xboole_1_A, sK2_t63_xboole_1_C), $$true2)
= { by axiom 2 (ifeq_axiom) }
  $$ifeq($$ifeq3($$ifeq2(subset(set_intersection2(sK1_t63_xboole_1_A, sK2_t63_xboole_1_C), set_intersection2(sK3_t63_xboole_1_B, sK2_t63_xboole_1_C)), $$true2, $$ifeq2(subset(empty_set, set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), $$true2, empty_set, set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), empty_set, disjoint(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A), $$true2), $$true2, disjoint(sK1_t63_xboole_1_A, sK2_t63_xboole_1_C), $$true2)
= { by axiom 3 (ifeq_axiom) }
  $$ifeq($$ifeq3($$ifeq2($$ifeq($$true2, $$true2, subset(set_intersection2(sK1_t63_xboole_1_A, sK2_t63_xboole_1_C), set_intersection2(sK3_t63_xboole_1_B, sK2_t63_xboole_1_C)), $$true2), $$true2, $$ifeq2(subset(empty_set, set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), $$true2, empty_set, set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), empty_set, disjoint(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A), $$true2), $$true2, disjoint(sK1_t63_xboole_1_A, sK2_t63_xboole_1_C), $$true2)
= { by axiom 63 (t63_xboole_1) }
  $$ifeq($$ifeq3($$ifeq2($$ifeq(subset(sK1_t63_xboole_1_A, sK3_t63_xboole_1_B), $$true2, subset(set_intersection2(sK1_t63_xboole_1_A, sK2_t63_xboole_1_C), set_intersection2(sK3_t63_xboole_1_B, sK2_t63_xboole_1_C)), $$true2), $$true2, $$ifeq2(subset(empty_set, set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), $$true2, empty_set, set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), empty_set, disjoint(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A), $$true2), $$true2, disjoint(sK1_t63_xboole_1_A, sK2_t63_xboole_1_C), $$true2)
= { by axiom 43 (t26_xboole_1) }
  $$ifeq($$ifeq3($$ifeq2($$true2, $$true2, $$ifeq2(subset(empty_set, set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), $$true2, empty_set, set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), empty_set, disjoint(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A), $$true2), $$true2, disjoint(sK1_t63_xboole_1_A, sK2_t63_xboole_1_C), $$true2)
= { by axiom 2 (ifeq_axiom) }
  $$ifeq($$ifeq3($$ifeq2(subset(empty_set, set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), $$true2, empty_set, set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), empty_set, disjoint(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A), $$true2), $$true2, disjoint(sK1_t63_xboole_1_A, sK2_t63_xboole_1_C), $$true2)
= { by axiom 47 (t2_xboole_1) }
  $$ifeq($$ifeq3($$ifeq2($$true2, $$true2, empty_set, set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), empty_set, disjoint(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A), $$true2), $$true2, disjoint(sK1_t63_xboole_1_A, sK2_t63_xboole_1_C), $$true2)
= { by axiom 2 (ifeq_axiom) }
  $$ifeq($$ifeq3(empty_set, empty_set, disjoint(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A), $$true2), $$true2, disjoint(sK1_t63_xboole_1_A, sK2_t63_xboole_1_C), $$true2)
= { by axiom 1 (ifeq_axiom) }
  $$ifeq(disjoint(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A), $$true2, disjoint(sK1_t63_xboole_1_A, sK2_t63_xboole_1_C), $$true2)
= { by axiom 37 (symmetry_r1_xboole_0) }
  $$true2
% SZS output end Derivation

Vampire 4.0

Giles Reger
University of Manchester, United Kingdom

Sample solution for SEU140+2

% SZS status Theorem for SEU140+2
% SZS output start Proof for SEU140+2
fof(f6,axiom,(
  ! [X0] : (empty_set = X0 <=> ! [X1] : ~in(X1,X0))),
  file('/tmp/SystemOnTPTP11775/SEU140+2.tptp',d1_xboole_0)).
fof(f8,axiom,(
  ! [X0,X1] : (subset(X0,X1) <=> ! [X2] : (in(X2,X0) => in(X2,X1)))),
  file('/tmp/SystemOnTPTP11775/SEU140+2.tptp',d3_tarski)).
fof(f9,axiom,(
  ! [X0,X1,X2] : (set_intersection2(X0,X1) = X2 <=> ! [X3] : (in(X3,X2) <=> (in(X3,X0) & in(X3,X1))))),
  file('/tmp/SystemOnTPTP11775/SEU140+2.tptp',d3_xboole_0)).
fof(f11,axiom,(
  ! [X0,X1] : (disjoint(X0,X1) <=> set_intersection2(X0,X1) = empty_set)),
  file('/tmp/SystemOnTPTP11775/SEU140+2.tptp',d7_xboole_0)).
fof(f43,axiom,(
  ! [X0,X1] : (~(~disjoint(X0,X1) & ! [X2] : ~(in(X2,X0) & in(X2,X1))) & ~(? [X2] : (in(X2,X0) & in(X2,X1)) & disjoint(X0,X1)))),
  file('/tmp/SystemOnTPTP11775/SEU140+2.tptp',t3_xboole_0)).
fof(f51,conjecture,(
  ! [X0,X1,X2] : ((subset(X0,X1) & disjoint(X1,X2)) => disjoint(X0,X2))),
  file('/tmp/SystemOnTPTP11775/SEU140+2.tptp',t63_xboole_1)).
fof(f52,negated_conjecture,(
  ~! [X0,X1,X2] : ((subset(X0,X1) & disjoint(X1,X2)) => disjoint(X0,X2))),
  inference(negated_conjecture,[],[f51])).
fof(f60,plain,(
  ! [X0,X1] : (~(~disjoint(X0,X1) & ! [X3] : ~(in(X3,X0) & in(X3,X1))) & ~(? [X2] : (in(X2,X0) & in(X2,X1)) & disjoint(X0,X1)))),
  inference(rectify,[],[f43])).
fof(f61,plain,(
  ! [X0,X1] : (~(~disjoint(X0,X1) & ! [X3] : ~(in(X3,X0) & in(X3,X1))) & ~(? [X2] : (in(X2,X0) & in(X2,X1)) & disjoint(X0,X1)))),
  inference(flattening,[],[f60])).
fof(f63,plain,(
  ! [X0] : (empty_set = X0 <=> ! [X1] : ~in(X1,X0))),
  inference(flattening,[],[f6])).
fof(f74,plain,(
  ? [X0,X1,X2] : ((subset(X0,X1) & disjoint(X1,X2)) & ~disjoint(X0,X2))),
  inference(ennf_transformation,[],[f52])).
fof(f75,plain,(
  ? [X0,X1,X2] : (subset(X0,X1) & disjoint(X1,X2) & ~disjoint(X0,X2))),
  inference(flattening,[],[f74])).
fof(f78,plain,(
  ! [X0,X1] : ((disjoint(X0,X1) | ? [X3] : (in(X3,X0) & in(X3,X1))) & (! [X2] : (~in(X2,X0) | ~in(X2,X1)) | ~disjoint(X0,X1)))),
  inference(ennf_transformation,[],[f61])).
fof(f96,plain,(
  ! [X0,X1] : (subset(X0,X1) <=> ! [X2] : (~in(X2,X0) | in(X2,X1)))),
  inference(ennf_transformation,[],[f8])).
fof(f101,plain,(
  subset(sK0,sK1) & disjoint(sK1,sK2) & ~disjoint(sK0,sK2)),
  inference(skolemisation,[status(esa),new_symbols(skolem,[sK0,sK1,sK2])],[f75])).
fof(f103,plain,(
  ! [X0,X1] : ((disjoint(X0,X1) | (in(sK4(X1,X0),X0) & in(sK4(X1,X0),X1))) & (! [X2] : (~in(X2,X0) | ~in(X2,X1)) | ~disjoint(X0,X1)))),
  inference(skolemisation,[status(esa),new_symbols(skolem,[sK4])],[f78])).
fof(f106,plain,(
  ! [X0,X1] : ((~disjoint(X0,X1) | set_intersection2(X0,X1) = empty_set) & (set_intersection2(X0,X1) != empty_set | disjoint(X0,X1)))),
  inference(nnf_transformation,[],[f11])).
fof(f109,plain,(
  ! [X0] : ((empty_set != X0 | ! [X1] : ~in(X1,X0)) & (? [X1] : in(X1,X0) | empty_set = X0))),
  inference(nnf_transformation,[],[f63])).
fof(f110,plain,(
  ! [X0] : ((empty_set != X0 | ! [X2] : ~in(X2,X0)) & (? [X1] : in(X1,X0) | empty_set = X0))),
  inference(rectify,[],[f109])).
fof(f111,plain,(
  ! [X0] : ((empty_set != X0 | ! [X2] : ~in(X2,X0)) & (in(sK5(X0),X0) | empty_set = X0))),
  inference(skolemisation,[status(esa),new_symbols(skolem,[sK5])],[f110])).
fof(f116,plain,(
  ! [X0,X1,X2] : ((set_intersection2(X0,X1) != X2 | ! [X3] : ((~in(X3,X2) | (in(X3,X0) & in(X3,X1))) & ((~in(X3,X0) | ~in(X3,X1)) | in(X3,X2)))) & (? [X3] : ((in(X3,X2) | (in(X3,X0) & in(X3,X1))) & (~in(X3,X2) | (~in(X3,X0) | ~in(X3,X1)))) | set_intersection2(X0,X1) = X2))),
  inference(nnf_transformation,[],[f9])).
fof(f117,plain,(
  ! [X0,X1,X2] : ((set_intersection2(X0,X1) != X2 | ! [X3] : ((~in(X3,X2) | (in(X3,X0) & in(X3,X1))) & (~in(X3,X0) | ~in(X3,X1) | in(X3,X2)))) & (? [X3] : ((in(X3,X2) | (in(X3,X0) & in(X3,X1))) & (~in(X3,X2) | ~in(X3,X0) | ~in(X3,X1))) | set_intersection2(X0,X1) = X2))),
  inference(flattening,[],[f116])).
fof(f118,plain,(
  ! [X0,X1,X2] : ((set_intersection2(X0,X1) != X2 | ! [X4] : ((~in(X4,X2) | (in(X4,X0) & in(X4,X1))) & (~in(X4,X0) | ~in(X4,X1) | in(X4,X2)))) & (? [X3] : ((in(X3,X2) | (in(X3,X0) & in(X3,X1))) & (~in(X3,X2) | ~in(X3,X0) | ~in(X3,X1))) | set_intersection2(X0,X1) = X2))),
  inference(rectify,[],[f117])).
fof(f119,plain,(
  ! [X0,X1,X2] : ((set_intersection2(X0,X1) != X2 | ! [X4] : ((~in(X4,X2) | (in(X4,X0) & in(X4,X1))) & (~in(X4,X0) | ~in(X4,X1) | in(X4,X2)))) & (((in(sK7(X2,X1,X0),X2) | (in(sK7(X2,X1,X0),X0) & in(sK7(X2,X1,X0),X1))) & (~in(sK7(X2,X1,X0),X2) | ~in(sK7(X2,X1,X0),X0) | ~in(sK7(X2,X1,X0),X1))) | set_intersection2(X0,X1) = X2))),
  inference(skolemisation,[status(esa),new_symbols(skolem,[sK7])],[f118])).
fof(f124,plain,(
  ! [X0,X1] : ((~subset(X0,X1) | ! [X2] : (~in(X2,X0) | in(X2,X1))) & (? [X2] : (in(X2,X0) & ~in(X2,X1)) | subset(X0,X1)))),
  inference(nnf_transformation,[],[f96])).
fof(f125,plain,(
  ! [X0,X1] : ((~subset(X0,X1) | ! [X3] : (~in(X3,X0) | in(X3,X1))) & (? [X2] : (in(X2,X0) & ~in(X2,X1)) | subset(X0,X1)))),
  inference(rectify,[],[f124])).
fof(f126,plain,(
  ! [X0,X1] : ((~subset(X0,X1) | ! [X3] : (~in(X3,X0) | in(X3,X1))) & ((in(sK9(X1,X0),X0) & ~in(sK9(X1,X0),X1)) | subset(X0,X1)))),
  inference(skolemisation,[status(esa),new_symbols(skolem,[sK9])],[f125])).
fof(f133,plain,(
  subset(sK0,sK1)),
  inference(cnf_transformation,[],[f101])).
fof(f134,plain,(
  disjoint(sK1,sK2)),
  inference(cnf_transformation,[],[f101])).
fof(f135,plain,(
  ~disjoint(sK0,sK2)),
  inference(cnf_transformation,[],[f101])).
fof(f146,plain,(
  ( ! [X0,X1] : (in(sK4(X1,X0),X0) | disjoint(X0,X1)) )),
  inference(cnf_transformation,[],[f103])).
fof(f147,plain,(
  ( ! [X0,X1] : (in(sK4(X1,X0),X1) | disjoint(X0,X1)) )),
  inference(cnf_transformation,[],[f103])).
fof(f162,plain,(
  ( ! [X0,X1] : (set_intersection2(X0,X1) = empty_set | ~disjoint(X0,X1)) )),
  inference(cnf_transformation,[],[f106])).
fof(f169,plain,(
  ( ! [X2,X0] : (~in(X2,X0) | empty_set != X0) )),
  inference(cnf_transformation,[],[f111])).
fof(f189,plain,(
  ( ! [X4,X2,X0,X1] : (in(X4,X2) | ~in(X4,X1) | ~in(X4,X0) | set_intersection2(X0,X1) != X2) )),
  inference(cnf_transformation,[],[f119])).
fof(f202,plain,(
  ( ! [X0,X3,X1] : (~subset(X0,X1) | ~in(X3,X0) | in(X3,X1)) )),
  inference(cnf_transformation,[],[f126])).
fof(f218,plain,(
  ( ! [X2] : (~in(X2,empty_set)) )),
  inference(equality_resolution,[],[f169])).
fof(f222,plain,(
  ( ! [X4,X0,X1] : (in(X4,set_intersection2(X0,X1)) | ~in(X4,X1) | ~in(X4,X0)) )),
  inference(equality_resolution,[],[f189])).
fof(f234,plain,(
  set_intersection2(sK1,sK2) = empty_set),
  inference(unit_resulting_resolution,[],[f134,f162])).
fof(f467,plain,(
  in(sK4(sK2,sK0),sK0)),
  inference(unit_resulting_resolution,[],[f135,f146])).
fof(f480,plain,(
  in(sK4(sK2,sK0),sK1)),
  inference(unit_resulting_resolution,[],[f133,f467,f202])).
fof(f513,plain,(
  in(sK4(sK2,sK0),sK2)),
  inference(unit_resulting_resolution,[],[f135,f147])).
fof(f857,plain,(
  in(sK4(sK2,sK0),set_intersection2(sK1,sK2))),
  inference(unit_resulting_resolution,[],[f513,f480,f222])).
fof(f865,plain,(
  in(sK4(sK2,sK0),empty_set)),
  inference(forward_demodulation,[],[f857,f234])).
fof(f866,plain,(
  $false),
  inference(subsumption_resolution,[],[f865,f218])).
% SZS output end Proof for SEU140+2

Vampire 4.1

Giles Reger
University of Manchester, United Kingdom

Sample solution for DAT013=1

tff(type_def_6, type, array: $tType).
tff(func_def_0, type, read: (array * $int) > $int).
tff(func_def_1, type, write: (array * $int * $int) > array).
tff(func_def_7, type, sK0: array).
tff(func_def_8, type, sK1: $int).
tff(func_def_9, type, sK2: $int).
tff(func_def_10, type, sK3: $int).
tff(f3,conjecture,(
  ! [X0 : array,X1 : $int,X2 : $int] : (! [X3 : $int] : (($lesseq(X3,X2) & $lesseq(X1,X3)) => $greater(read(X0,X3),0)) => ! [X4 : $int] : (($lesseq(X4,X2) & $lesseq($sum(X1,3),X4)) => $greater(read(X0,X4),0)))),
  file('/Users/giles/TPTP/TPTP-v6.2.0/Problems/DAT/DAT013=1.p',unknown)).
tff(f4,negated_conjecture,(
  ~! [X0 : array,X1 : $int,X2 : $int] : (! [X3 : $int] : (($lesseq(X3,X2) & $lesseq(X1,X3)) => $greater(read(X0,X3),0)) => ! [X4 : $int] : (($lesseq(X4,X2) & $lesseq($sum(X1,3),X4)) => $greater(read(X0,X4),0)))),
  inference(negated_conjecture,[],[f3])).
tff(f6,plain,(
  ~! [X0 : array,X1 : $int,X2 : $int] : (! [X3 : $int] : ((~$less(X2,X3) & ~$less(X3,X1)) => $less(0,read(X0,X3))) => ! [X4 : $int] : ((~$less(X2,X4) & ~$less(X4,$sum(X1,3))) => $less(0,read(X0,X4))))),
  inference(evaluation,[],[f4])).
tff(f7,plain,(
  ( ! [X0:$int,X1:$int] : ($sum(X0,X1) = $sum(X1,X0)) )),
  introduced(theory_axiom,[])).
tff(f9,plain,(
  ( ! [X0:$int] : ($sum(X0,0) = X0) )),
  introduced(theory_axiom,[])).
tff(f12,plain,(
  ( ! [X0:$int] : (~$less(X0,X0)) )),
  introduced(theory_axiom,[])).
tff(f13,plain,(
  ( ! [X2:$int,X0:$int,X1:$int] : (~$less(X1,X2) | ~$less(X0,X1) | $less(X0,X2)) )),
  introduced(theory_axiom,[])).
tff(f14,plain,(
  ( ! [X0:$int,X1:$int] : ($less(X1,X0) | $less(X0,X1) | X0 = X1) )),
  introduced(theory_axiom,[])).
tff(f15,plain,(
  ( ! [X2:$int,X0:$int,X1:$int] : ($less($sum(X0,X2),$sum(X1,X2)) | ~$less(X0,X1)) )),
  introduced(theory_axiom,[])).
tff(f20,plain,(
  ? [X0 : array,X1 : $int,X2 : $int] : (? [X4 : $int] : (~$less(0,read(X0,X4)) & (~$less(X2,X4) & ~$less(X4,$sum(X1,3)))) & ! [X3 : $int] : ($less(0,read(X0,X3)) | ($less(X2,X3) | $less(X3,X1))))),
  inference(ennf_transformation,[],[f6])).
tff(f21,plain,(
  ? [X0 : array,X1 : $int,X2 : $int] : (? [X4 : $int] : (~$less(0,read(X0,X4)) & ~$less(X2,X4) & ~$less(X4,$sum(X1,3))) & ! [X3 : $int] : ($less(0,read(X0,X3)) | $less(X2,X3) | $less(X3,X1)))),
  inference(flattening,[],[f20])).
tff(f22,plain,(
  ? [X0 : array,X1 : $int,X2 : $int] : (? [X3 : $int] : (~$less(0,read(X0,X3)) & ~$less(X2,X3) & ~$less(X3,$sum(X1,3))) & ! [X4 : $int] : ($less(0,read(X0,X4)) | $less(X2,X4) | $less(X4,X1)))),
  inference(rectify,[],[f21])).
tff(f23,plain,(
  ? [X0 : array,X1 : $int,X2 : $int] : (? [X3 : $int] : (~$less(0,read(X0,X3)) & ~$less(X2,X3) & ~$less(X3,$sum(X1,3))) & ! [X4 : $int] : ($less(0,read(X0,X4)) | $less(X2,X4) | $less(X4,X1))) => (? [X3 : $int] : (~$less(0,read(sK0,X3)) & ~$less(sK2,X3) & ~$less(X3,$sum(sK1,3))) & ! [X4 : $int] : ($less(0,read(sK0,X4)) | $less(sK2,X4) | $less(X4,sK1)))),
  introduced(choice_axiom,[])).
tff(f24,plain,(
  ( ! [X2:$int,X0:array,X1:$int] : (? [X3 : $int] : (~$less(0,read(X0,X3)) & ~$less(X2,X3) & ~$less(X3,$sum(X1,3))) => (~$less(0,read(X0,sK3)) & ~$less(X2,sK3) & ~$less(sK3,$sum(X1,3)))) )),
  introduced(choice_axiom,[])).
tff(f25,plain,(
  (~$less(0,read(sK0,sK3)) & ~$less(sK2,sK3) & ~$less(sK3,$sum(sK1,3))) & ! [X4 : $int] : ($less(0,read(sK0,X4)) | $less(sK2,X4) | $less(X4,sK1))),
  inference(skolemisation,[status(esa),new_symbols(skolem,[sK0,sK1,sK2,sK3])],[f22,f24,f23])).
tff(f29,plain,(
  ( ! [X4:$int] : ($less(0,read(sK0,X4)) | $less(sK2,X4) | $less(X4,sK1)) )),
  inference(cnf_transformation,[],[f25])).
tff(f30,plain,(
  ~$less(sK3,$sum(sK1,3))),
  inference(cnf_transformation,[],[f25])).
tff(f31,plain,(
  ~$less(sK2,sK3)),
  inference(cnf_transformation,[],[f25])).
tff(f32,plain,(
  ~$less(0,read(sK0,sK3))),
  inference(cnf_transformation,[],[f25])).
tff(f33,plain,(
  ~$less(sK3,$sum(3,sK1))),
  inference(forward_demodulation,[],[f30,f7])).
tff(f98,plain,(
  $less($sum(3,sK1),sK3) | $sum(3,sK1) = sK3),
  inference(resolution,[],[f14,f33])).
tff(f131,plain,(
  spl4_8 <=> $sum(3,sK1) = sK3),
  introduced(AVATAR_definition,[new_symbols(naming,[spl4_8])])).
tff(f132,plain,(
  $sum(3,sK1) = sK3 | ~spl4_8),
  inference(AVATAR_component_clause,[],[f131])).
tff(f137,plain,(
  spl4_10 <=> $less($sum(3,sK1),sK3)),
  introduced(AVATAR_definition,[new_symbols(naming,[spl4_10])])).
tff(f138,plain,(
  $less($sum(3,sK1),sK3) | ~spl4_10),
  inference(AVATAR_component_clause,[],[f137])).
tff(f142,plain,(
  spl4_8 | spl4_10),
  inference(AVATAR_split_clause,[],[f98,f137,f131])).
tff(f172,plain,(
  ( ! [X6:$int,X4:$int,X5:$int] : ($less($sum(X5,X4),$sum(X6,X5)) | ~$less(X4,X6)) )),
  inference(superposition,[],[f15,f7])).
tff(f489,plain,(
  ( ! [X6:$int,X7:$int] : ($less(X6,$sum(X7,X6)) | ~$less(0,X7)) )),
  inference(superposition,[],[f172,f9])).
tff(f659,plain,(
  $less(sK2,sK3) | $less(sK3,sK1)),
  inference(resolution,[],[f29,f32])).
tff(f662,plain,(
  $less(sK3,sK1)),
  inference(subsumption_resolution,[],[f659,f31])).
tff(f664,plain,(
  ( ! [X0:$int] : (~$less(X0,sK3) | $less(X0,sK1)) )),
  inference(resolution,[],[f662,f13])).
tff(f673,plain,(
  ( ! [X4:$int] : ($less($sum(sK1,X4),sK3) | ~$less(X4,3)) ) | ~spl4_8),
  inference(superposition,[],[f172,f132])).
tff(f2473,plain,(
  $less(sK1,sK3) | ~$less(0,3) | ~spl4_8),
  inference(superposition,[],[f673,f9])).
tff(f2478,plain,(
  $less(sK1,sK3) | ~spl4_8),
  inference(evaluation,[],[f2473])).
tff(f2480,plain,(
  $less(sK1,sK1) | ~spl4_8),
  inference(resolution,[],[f2478,f664])).
tff(f2484,plain,(
  $false | ~spl4_8),
  inference(subsumption_resolution,[],[f2480,f12])).
tff(f2485,plain,(
  ~spl4_8),
  inference(AVATAR_contradiction_clause,[],[f2484,f131])).
tff(f2513,plain,(
  ( ! [X2:$int] : (~$less(X2,$sum(3,sK1)) | $less(X2,sK3)) ) | ~spl4_10),
  inference(resolution,[],[f138,f13])).
tff(f2962,plain,(
  ~$less(0,3) | $less(sK1,sK3) | ~spl4_10),
  inference(resolution,[],[f489,f2513])).
tff(f2989,plain,(
  $less(sK1,sK3) | ~spl4_10),
  inference(evaluation,[],[f2962])).
tff(f2991,plain,(
  $less(sK1,sK1) | ~spl4_10),
  inference(resolution,[],[f2989,f664])).
tff(f2995,plain,(
  $false | ~spl4_10),
  inference(subsumption_resolution,[],[f2991,f12])).
tff(f2996,plain,(
  ~spl4_10),
  inference(AVATAR_contradiction_clause,[],[f2995,f137])).
tff(f2997,plain,(
  $false),
  inference(AVATAR_sat_refutation,[],[f142,f2485,f2996])).

Sample solution for NLP042+1

# SZS output start Saturation.
tff(u283,axiom,
    (![X1, X0] : ((~woman(X0,X1) | human_person(X0,X1))))).

tff(u282,axiom,
    (![X1, X0] : ((~woman(X0,X1) | female(X0,X1))))).

tff(u281,negated_conjecture,
    woman(sK0,sK1)).

tff(u280,negated_conjecture,
    ~female(sK0,sK4)).

tff(u279,negated_conjecture,
    ~female(sK0,sK2)).

tff(u278,negated_conjecture,
    ~female(sK0,sK3)).

tff(u277,negated_conjecture,
    female(sK0,sK1)).

tff(u276,axiom,
    (![X1, X0] : ((~human_person(X0,X1) | organism(X0,X1))))).

tff(u275,axiom,
    (![X1, X0] : ((~human_person(X0,X1) | human(X0,X1))))).

tff(u274,axiom,
    (![X1, X0] : ((~human_person(X0,X1) | animate(X0,X1))))).

tff(u273,negated_conjecture,
    human_person(sK0,sK1)).

tff(u272,negated_conjecture,
    ~animate(sK0,sK3)).

tff(u271,negated_conjecture,
    animate(sK0,sK1)).

tff(u270,negated_conjecture,
    ~human(sK0,sK2)).

tff(u269,negated_conjecture,
    human(sK0,sK1)).

tff(u268,axiom,
    (![X1, X0] : ((~organism(X0,X1) | entity(X0,X1))))).

tff(u267,axiom,
    (![X1, X0] : ((~organism(X0,X1) | living(X0,X1))))).

tff(u266,negated_conjecture,
    organism(sK0,sK1)).

tff(u265,negated_conjecture,
    ~living(sK0,sK3)).

tff(u264,negated_conjecture,
    living(sK0,sK1)).

tff(u263,axiom,
    (![X1, X0] : ((~entity(X0,X1) | specific(X0,X1))))).

tff(u262,axiom,
    (![X1, X0] : ((~entity(X0,X1) | existent(X0,X1))))).

tff(u261,negated_conjecture,
    entity(sK0,sK1)).

tff(u260,negated_conjecture,
    entity(sK0,sK3)).

tff(u259,axiom,
    (![X1, X0] : ((~mia_forename(X0,X1) | forename(X0,X1))))).

tff(u258,negated_conjecture,
    mia_forename(sK0,sK2)).

tff(u257,axiom,
    (![X1, X0] : ((~forename(X0,X1) | relname(X0,X1))))).

tff(u256,negated_conjecture,
    forename(sK0,sK2)).

tff(u255,axiom,
    (![X1, X0] : ((~abstraction(X0,X1) | nonhuman(X0,X1))))).

tff(u254,axiom,
    (![X1, X0] : ((~abstraction(X0,X1) | general(X0,X1))))).

tff(u253,axiom,
    (![X1, X0] : ((~abstraction(X0,X1) | unisex(X0,X1))))).

tff(u252,negated_conjecture,
    abstraction(sK0,sK2)).

tff(u251,axiom,
    (![X1, X0] : ((~unisex(X0,X1) | ~female(X0,X1))))).

tff(u250,negated_conjecture,
    unisex(sK0,sK2)).

tff(u249,negated_conjecture,
    unisex(sK0,sK4)).

tff(u248,negated_conjecture,
    unisex(sK0,sK3)).

tff(u247,negated_conjecture,
    ~general(sK0,sK4)).

tff(u246,negated_conjecture,
    ~general(sK0,sK1)).

tff(u245,negated_conjecture,
    ~general(sK0,sK3)).

tff(u244,negated_conjecture,
    general(sK0,sK2)).

tff(u243,axiom,
    (![X1, X0] : ((~nonhuman(X0,X1) | ~human(X0,X1))))).

tff(u242,negated_conjecture,
    nonhuman(sK0,sK2)).

tff(u241,axiom,
    (![X1, X0] : ((~relation(X0,X1) | abstraction(X0,X1))))).

tff(u240,negated_conjecture,
    relation(sK0,sK2)).

tff(u239,axiom,
    (![X1, X0] : ((~relname(X0,X1) | relation(X0,X1))))).

tff(u238,negated_conjecture,
    relname(sK0,sK2)).

tff(u237,axiom,
    (![X1, X0] : ((~object(X0,X1) | entity(X0,X1))))).

tff(u236,axiom,
    (![X1, X0] : ((~object(X0,X1) | nonliving(X0,X1))))).

tff(u235,axiom,
    (![X1, X0] : ((~object(X0,X1) | unisex(X0,X1))))).

tff(u234,negated_conjecture,
    object(sK0,sK3)).

tff(u233,axiom,
    (![X1, X0] : ((~nonliving(X0,X1) | ~living(X0,X1))))).

tff(u232,axiom,
    (![X1, X0] : ((~nonliving(X0,X1) | ~animate(X0,X1))))).

tff(u231,negated_conjecture,
    nonliving(sK0,sK3)).

tff(u230,negated_conjecture,
    ~existent(sK0,sK4)).

tff(u229,negated_conjecture,
    existent(sK0,sK1)).

tff(u228,negated_conjecture,
    existent(sK0,sK3)).

tff(u227,axiom,
    (![X1, X0] : ((~specific(X0,X1) | ~general(X0,X1))))).

tff(u226,negated_conjecture,
    specific(sK0,sK1)).

tff(u225,negated_conjecture,
    specific(sK0,sK4)).

tff(u224,negated_conjecture,
    specific(sK0,sK3)).

tff(u223,axiom,
    (![X1, X0] : ((~substance_matter(X0,X1) | object(X0,X1))))).

tff(u222,negated_conjecture,
    substance_matter(sK0,sK3)).

tff(u221,axiom,
    (![X1, X0] : ((~food(X0,X1) | substance_matter(X0,X1))))).

tff(u220,negated_conjecture,
    food(sK0,sK3)).

tff(u219,axiom,
    (![X1, X0] : ((~beverage(X0,X1) | food(X0,X1))))).

tff(u218,negated_conjecture,
    beverage(sK0,sK3)).

tff(u217,axiom,
    (![X1, X0] : ((~shake_beverage(X0,X1) | beverage(X0,X1))))).

tff(u216,negated_conjecture,
    shake_beverage(sK0,sK3)).

tff(u215,axiom,
    (![X1, X0] : ((~order(X0,X1) | act(X0,X1))))).

tff(u214,axiom,
    (![X1, X0] : ((~order(X0,X1) | event(X0,X1))))).

tff(u213,negated_conjecture,
    order(sK0,sK4)).

tff(u212,axiom,
    (![X1, X0] : ((~event(X0,X1) | eventuality(X0,X1))))).

tff(u211,negated_conjecture,
    event(sK0,sK4)).

tff(u210,axiom,
    (![X1, X0] : ((~eventuality(X0,X1) | specific(X0,X1))))).

tff(u209,axiom,
    (![X1, X0] : ((~eventuality(X0,X1) | nonexistent(X0,X1))))).

tff(u208,axiom,
    (![X1, X0] : ((~eventuality(X0,X1) | unisex(X0,X1))))).

tff(u207,negated_conjecture,
    eventuality(sK0,sK4)).

tff(u206,axiom,
    (![X1, X0] : ((~nonexistent(X0,X1) | ~existent(X0,X1))))).

tff(u205,negated_conjecture,
    nonexistent(sK0,sK4)).

tff(u204,axiom,
    (![X1, X0] : ((~act(X0,X1) | event(X0,X1))))).

tff(u203,negated_conjecture,
    act(sK0,sK4)).

tff(u202,axiom,
    (![X1, X3, X0, X2] : ((~of(X0,X3,X1) | (X2 = X3) | ~forename(X0,X3) | ~of(X0,X2,X1) | ~forename(X0,X2) | ~entity(X0,X1))))).

tff(u201,negated_conjecture,
    (![X0] : ((~of(sK0,X0,sK1) | (sK2 = X0) | ~forename(sK0,X0))))).

tff(u200,negated_conjecture,
    of(sK0,sK2,sK1)).

tff(u199,negated_conjecture,
    nonreflexive(sK0,sK4)).

tff(u198,negated_conjecture,
    ~agent(sK0,sK4,sK3)).

tff(u197,negated_conjecture,
    agent(sK0,sK4,sK1)).

tff(u196,axiom,
    (![X1, X3, X0] : ((~patient(X0,X1,X3) | ~agent(X0,X1,X3) | ~nonreflexive(X0,X1))))).

tff(u195,negated_conjecture,
    patient(sK0,sK4,sK3)).

# SZS output end Saturation.

Sample solution for SWV017+1

tff(declare$i,type,$i:$tType).
tff(declare_$i1,type,at:$i).
tff(declare_$i2,type,an_a_nonce:$i).
tff(finite_domain,axiom,
      ! [X:$i] : (
         X = at | X = an_a_nonce
      ) ).

tff(distinct_domain,axiom,
         at != an_a_nonce
).

tff(declare_t,type,t:$i).
tff(t_definition,axiom,t = at).
tff(declare_a,type,a:$i).
tff(a_definition,axiom,a = at).
tff(declare_b,type,b:$i).
tff(b_definition,axiom,b = at).
tff(declare_bt,type,bt:$i).
tff(bt_definition,axiom,bt = an_a_nonce).
tff(declare_an_intruder_nonce,type,an_intruder_nonce:$i).
tff(an_intruder_nonce_definition,axiom,an_intruder_nonce = an_a_nonce).
tff(declare_key,type,key: $i * $i > $i).
tff(function_key,axiom,
           key(at,at) = at
         & key(at,an_a_nonce) = at
         & key(an_a_nonce,at) = at
         & key(an_a_nonce,an_a_nonce) = an_a_nonce

).

tff(declare_pair,type,pair: $i * $i > $i).
tff(function_pair,axiom,
           pair(at,at) = at
         & pair(at,an_a_nonce) = an_a_nonce
         & pair(an_a_nonce,at) = at
         & pair(an_a_nonce,an_a_nonce) = at

).

tff(declare_sent,type,sent: $i * $i * $i > $i).
tff(function_sent,axiom,
           sent(at,at,at) = at
         & sent(at,at,an_a_nonce) = at
         & sent(at,an_a_nonce,at) = at
         & sent(at,an_a_nonce,an_a_nonce) = an_a_nonce
         & sent(an_a_nonce,at,at) = at
         & sent(an_a_nonce,at,an_a_nonce) = at
         & sent(an_a_nonce,an_a_nonce,at) = at
         & sent(an_a_nonce,an_a_nonce,an_a_nonce) = at

).

tff(declare_quadruple,type,quadruple: $i * $i * $i * $i > $i).
tff(function_quadruple,axiom,
           quadruple(at,at,at,at) = at
         & quadruple(at,at,at,an_a_nonce) = at
         & quadruple(at,at,an_a_nonce,at) = at
         & quadruple(at,at,an_a_nonce,an_a_nonce) = at
         & quadruple(at,an_a_nonce,at,at) = at
         & quadruple(at,an_a_nonce,at,an_a_nonce) = at
         & quadruple(at,an_a_nonce,an_a_nonce,at) = at
         & quadruple(at,an_a_nonce,an_a_nonce,an_a_nonce) = at
         & quadruple(an_a_nonce,at,at,at) = at
         & quadruple(an_a_nonce,at,at,an_a_nonce) = an_a_nonce
         & quadruple(an_a_nonce,at,an_a_nonce,at) = an_a_nonce
         & quadruple(an_a_nonce,at,an_a_nonce,an_a_nonce) = an_a_nonce
         & quadruple(an_a_nonce,an_a_nonce,at,at) = an_a_nonce
         & quadruple(an_a_nonce,an_a_nonce,at,an_a_nonce) = at
         & quadruple(an_a_nonce,an_a_nonce,an_a_nonce,at) = an_a_nonce
         & quadruple(an_a_nonce,an_a_nonce,an_a_nonce,an_a_nonce) = an_a_nonce

).

tff(declare_encrypt,type,encrypt: $i * $i > $i).
tff(function_encrypt,axiom,
           encrypt(at,at) = an_a_nonce
         & encrypt(at,an_a_nonce) = an_a_nonce
         & encrypt(an_a_nonce,at) = at
         & encrypt(an_a_nonce,an_a_nonce) = at

).

tff(declare_triple,type,triple: $i * $i * $i > $i).
tff(function_triple,axiom,
           triple(at,at,at) = at
         & triple(at,at,an_a_nonce) = an_a_nonce
         & triple(at,an_a_nonce,at) = at
         & triple(at,an_a_nonce,an_a_nonce) = at
         & triple(an_a_nonce,at,at) = at
         & triple(an_a_nonce,at,an_a_nonce) = an_a_nonce
         & triple(an_a_nonce,an_a_nonce,at) = at
         & triple(an_a_nonce,an_a_nonce,an_a_nonce) = an_a_nonce

).

tff(declare_generate_b_nonce,type,generate_b_nonce: $i > $i).
tff(function_generate_b_nonce,axiom,
           generate_b_nonce(at) = an_a_nonce
         & generate_b_nonce(an_a_nonce) = an_a_nonce

).

tff(declare_generate_expiration_time,type,generate_expiration_time: $i > $i).
tff(function_generate_expiration_time,axiom,
           generate_expiration_time(at) = an_a_nonce
         & generate_expiration_time(an_a_nonce) = an_a_nonce

).

tff(declare_generate_key,type,generate_key: $i > $i).
tff(function_generate_key,axiom,
           generate_key(at) = at
         & generate_key(an_a_nonce) = at

).

tff(declare_generate_intruder_nonce,type,generate_intruder_nonce: $i > $i).
tff(function_generate_intruder_nonce,axiom,
           generate_intruder_nonce(at) = at
         & generate_intruder_nonce(an_a_nonce) = an_a_nonce

).

tff(declare_a_holds,type,a_holds: $i > $o ).
fof(predicate_a_holds,axiom,
           a_holds(at)
         & a_holds(an_a_nonce)

).

tff(declare_party_of_protocol,type,party_of_protocol: $i > $o ).
fof(predicate_party_of_protocol,axiom,
           party_of_protocol(at)
         & party_of_protocol(an_a_nonce)

).

tff(declare_message,type,message: $i > $o ).
fof(predicate_message,axiom,
           message(at)
         & message(an_a_nonce)

).

tff(declare_a_stored,type,a_stored: $i > $o ).
fof(predicate_a_stored,axiom,
           ~a_stored(at)
         & a_stored(an_a_nonce)

).

tff(declare_b_holds,type,b_holds: $i > $o ).
fof(predicate_b_holds,axiom,
           b_holds(at)
         & b_holds(an_a_nonce)

).

tff(declare_fresh_to_b,type,fresh_to_b: $i > $o ).
fof(predicate_fresh_to_b,axiom,
           fresh_to_b(at)
         & fresh_to_b(an_a_nonce)

).

tff(declare_b_stored,type,b_stored: $i > $o ).
fof(predicate_b_stored,axiom,
           b_stored(at)
         & b_stored(an_a_nonce)

).

tff(declare_a_key,type,a_key: $i > $o ).
fof(predicate_a_key,axiom,
           a_key(at)
         & ~a_key(an_a_nonce)

).

tff(declare_t_holds,type,t_holds: $i > $o ).
fof(predicate_t_holds,axiom,
           t_holds(at)
         & ~t_holds(an_a_nonce)

).

tff(declare_a_nonce,type,a_nonce: $i > $o ).
fof(predicate_a_nonce,axiom,
           ~a_nonce(at)
         & a_nonce(an_a_nonce)

).

tff(declare_intruder_message,type,intruder_message: $i > $o ).
fof(predicate_intruder_message,axiom,
           intruder_message(at)
         & intruder_message(an_a_nonce)

).

tff(declare_intruder_holds,type,intruder_holds: $i > $o ).
fof(predicate_intruder_holds,axiom,
           intruder_holds(at)
         & intruder_holds(an_a_nonce)

).

tff(declare_fresh_intruder_nonce,type,fresh_intruder_nonce: $i > $o ).
fof(predicate_fresh_intruder_nonce,axiom,
           ~fresh_intruder_nonce(at)
         & fresh_intruder_nonce(an_a_nonce)

).

Vampire 4.2

Giles Reger
University of Manchester, United Kingdom

Sample solution for DAT013=1

tff(type_def_5, type, array: $tType).
tff(func_def_0, type, read: (array * $int) > $int).
tff(func_def_1, type, write: (array * $int * $int) > array).
tff(func_def_7, type, sK0: array).
tff(func_def_8, type, sK1: $int).
tff(func_def_9, type, sK2: $int).
tff(func_def_10, type, sK3: $int).
tff(f3,conjecture,(
  ! [X0 : array,X1 : $int,X2 : $int] : (! [X3 : $int] : (($lesseq(X3,X2) & $lesseq(X1,X3)) => $greater(read(X0,X3),0)) => ! [X4 : $int] : (($lesseq(X4,X2) & $lesseq($sum(X1,3),X4)) => $greater(read(X0,X4),0)))),
  file('TPTP/TPTP-v6.4.0/Problems/DAT/DAT013=1.p',unknown)).
tff(f4,negated_conjecture,(
  ~! [X0 : array,X1 : $int,X2 : $int] : (! [X3 : $int] : (($lesseq(X3,X2) & $lesseq(X1,X3)) => $greater(read(X0,X3),0)) => ! [X4 : $int] : (($lesseq(X4,X2) & $lesseq($sum(X1,3),X4)) => $greater(read(X0,X4),0)))),
  inference(negated_conjecture,[],[f3])).
tff(f6,plain,(
  ~! [X0 : array,X1 : $int,X2 : $int] : (! [X3 : $int] : ((~$less(X2,X3) & ~$less(X3,X1)) => $less(0,read(X0,X3))) => ! [X4 : $int] : ((~$less(X2,X4) & ~$less(X4,$sum(X1,3))) => $less(0,read(X0,X4))))),
  inference(evaluation,[],[f4])).
tff(f7,plain,(
  ( ! [X0:$int,X1:$int] : ($sum(X0,X1) = $sum(X1,X0)) )),
  introduced(theory_axiom,[])).
tff(f9,plain,(
  ( ! [X0:$int] : ($sum(X0,0) = X0) )),
  introduced(theory_axiom,[])).
tff(f12,plain,(
  ( ! [X0:$int] : (~$less(X0,X0)) )),
  introduced(theory_axiom,[])).
tff(f13,plain,(
  ( ! [X2:$int,X0:$int,X1:$int] : (~$less(X1,X2) | ~$less(X0,X1) | $less(X0,X2)) )),
  introduced(theory_axiom,[])).
tff(f14,plain,(
  ( ! [X0:$int,X1:$int] : ($less(X1,X0) | $less(X0,X1) | X0 = X1) )),
  introduced(theory_axiom,[])).
tff(f15,plain,(
  ( ! [X2:$int,X0:$int,X1:$int] : ($less($sum(X0,X2),$sum(X1,X2)) | ~$less(X0,X1)) )),
  introduced(theory_axiom,[])).
tff(f20,plain,(
  ? [X0 : array,X1 : $int,X2 : $int] : (? [X4 : $int] : (~$less(0,read(X0,X4)) & (~$less(X2,X4) & ~$less(X4,$sum(X1,3)))) & ! [X3 : $int] : ($less(0,read(X0,X3)) | ($less(X2,X3) | $less(X3,X1))))),
  inference(ennf_transformation,[],[f6])).
tff(f21,plain,(
  ? [X0 : array,X1 : $int,X2 : $int] : (? [X4 : $int] : (~$less(0,read(X0,X4)) & ~$less(X2,X4) & ~$less(X4,$sum(X1,3))) & ! [X3 : $int] : ($less(0,read(X0,X3)) | $less(X2,X3) | $less(X3,X1)))),
  inference(flattening,[],[f20])).
tff(f22,plain,(
  ? [X0 : array,X1 : $int,X2 : $int] : (? [X3 : $int] : (~$less(0,read(X0,X3)) & ~$less(X2,X3) & ~$less(X3,$sum(X1,3))) & ! [X4 : $int] : ($less(0,read(X0,X4)) | $less(X2,X4) | $less(X4,X1)))),
  inference(rectify,[],[f21])).
tff(f23,plain,(
  ? [X0 : array,X1 : $int,X2 : $int] : (? [X3 : $int] : (~$less(0,read(X0,X3)) & ~$less(X2,X3) & ~$less(X3,$sum(X1,3))) & ! [X4 : $int] : ($less(0,read(X0,X4)) | $less(X2,X4) | $less(X4,X1))) => (? [X3 : $int] : (~$less(0,read(sK0,X3)) & ~$less(sK2,X3) & ~$less(X3,$sum(sK1,3))) & ! [X4 : $int] : ($less(0,read(sK0,X4)) | $less(sK2,X4) | $less(X4,sK1)))),
  introduced(choice_axiom,[])).
tff(f24,plain,(
  ( ! [X2:$int,X0:array,X1:$int] : (? [X3 : $int] : (~$less(0,read(X0,X3)) & ~$less(X2,X3) & ~$less(X3,$sum(X1,3))) => (~$less(0,read(X0,sK3)) & ~$less(X2,sK3) & ~$less(sK3,$sum(X1,3)))) )),
  introduced(choice_axiom,[])).
tff(f25,plain,(
  (~$less(0,read(sK0,sK3)) & ~$less(sK2,sK3) & ~$less(sK3,$sum(sK1,3))) & ! [X4 : $int] : ($less(0,read(sK0,X4)) | $less(sK2,X4) | $less(X4,sK1))),
  inference(skolemisation,[status(esa),new_symbols(skolem,[sK0,sK1,sK2,sK3])],[f22,f24,f23])).
tff(f29,plain,(
  ( ! [X4:$int] : ($less(0,read(sK0,X4)) | $less(sK2,X4) | $less(X4,sK1)) )),
  inference(cnf_transformation,[],[f25])).
tff(f30,plain,(
  ~$less(sK3,$sum(sK1,3))),
  inference(cnf_transformation,[],[f25])).
tff(f31,plain,(
  ~$less(sK2,sK3)),
  inference(cnf_transformation,[],[f25])).
tff(f32,plain,(
  ~$less(0,read(sK0,sK3))),
  inference(cnf_transformation,[],[f25])).
tff(f33,plain,(
  ~$less(sK3,$sum(3,sK1))),
  inference(forward_demodulation,[],[f30,f7])).
tff(f98,plain,(
  $less($sum(3,sK1),sK3) | $sum(3,sK1) = sK3),
  inference(resolution,[],[f14,f33])).
tff(f131,plain,(
  spl4_8 <=> $sum(3,sK1) = sK3),
  introduced(avatar_definition,[new_symbols(naming,[spl4_8])])).
tff(f132,plain,(
  $sum(3,sK1) = sK3 | ~spl4_8),
  inference(avatar_component_clause,[],[f131])).
tff(f137,plain,(
  spl4_10 <=> $less($sum(3,sK1),sK3)),
  introduced(avatar_definition,[new_symbols(naming,[spl4_10])])).
tff(f138,plain,(
  $less($sum(3,sK1),sK3) | ~spl4_10),
  inference(avatar_component_clause,[],[f137])).
tff(f142,plain,(
  spl4_8 | spl4_10),
  inference(avatar_split_clause,[],[f98,f137,f131])).
tff(f172,plain,(
  ( ! [X6:$int,X4:$int,X5:$int] : ($less($sum(X5,X4),$sum(X6,X5)) | ~$less(X4,X6)) )),
  inference(superposition,[],[f15,f7])).
tff(f489,plain,(
  ( ! [X6:$int,X7:$int] : ($less(X6,$sum(X7,X6)) | ~$less(0,X7)) )),
  inference(superposition,[],[f172,f9])).
tff(f659,plain,(
  $less(sK2,sK3) | $less(sK3,sK1)),
  inference(resolution,[],[f29,f32])).
tff(f662,plain,(
  $less(sK3,sK1)),
  inference(subsumption_resolution,[],[f659,f31])).
tff(f664,plain,(
  ( ! [X0:$int] : (~$less(X0,sK3) | $less(X0,sK1)) )),
  inference(resolution,[],[f662,f13])).
tff(f673,plain,(
  ( ! [X4:$int] : ($less($sum(sK1,X4),sK3) | ~$less(X4,3)) ) | ~spl4_8),
  inference(superposition,[],[f172,f132])).
tff(f2468,plain,(
  $less(sK1,sK3) | ~$less(0,3) | ~spl4_8),
  inference(superposition,[],[f673,f9])).
tff(f2473,plain,(
  $less(sK1,sK3) | ~spl4_8),
  inference(evaluation,[],[f2468])).
tff(f2475,plain,(
  $less(sK1,sK1) | ~spl4_8),
  inference(resolution,[],[f2473,f664])).
tff(f2479,plain,(
  $false | ~spl4_8),
  inference(subsumption_resolution,[],[f2475,f12])).
tff(f2480,plain,(
  ~spl4_8),
  inference(avatar_contradiction_clause,[],[f2479])).
tff(f2508,plain,(
  ( ! [X2:$int] : (~$less(X2,$sum(3,sK1)) | $less(X2,sK3)) ) | ~spl4_10),
  inference(resolution,[],[f138,f13])).
tff(f2961,plain,(
  ~$less(0,3) | $less(sK1,sK3) | ~spl4_10),
  inference(resolution,[],[f489,f2508])).
tff(f2988,plain,(
  $less(sK1,sK3) | ~spl4_10),
  inference(evaluation,[],[f2961])).
tff(f2990,plain,(
  $less(sK1,sK1) | ~spl4_10),
  inference(resolution,[],[f2988,f664])).
tff(f2994,plain,(
  $false | ~spl4_10),
  inference(subsumption_resolution,[],[f2990,f12])).
tff(f2995,plain,(
  ~spl4_10),
  inference(avatar_contradiction_clause,[],[f2994])).
tff(f2996,plain,(
  $false),
  inference(avatar_sat_refutation,[],[f142,f2480,f2995])).

Sample solution for SEU140+2

fof(f3,axiom,(
  ! [X0,X1] : set_union2(X0,X1) = set_union2(X1,X0)),
  file('TPTP/TPTP-v6.4.0/Problems/SEU/SEU140+2.p',unknown)).
fof(f4,axiom,(
  ! [X0,X1] : set_intersection2(X0,X1) = set_intersection2(X1,X0)),
  file('TPTP/TPTP-v6.4.0/Problems/SEU/SEU140+2.p',unknown)).
fof(f10,axiom,(
  ! [X0,X1,X2] : (set_difference(X0,X1) = X2 <=> ! [X3] : (in(X3,X2) <=> (~in(X3,X1) & in(X3,X0))))),
  file('TPTP/TPTP-v6.4.0/Problems/SEU/SEU140+2.p',unknown)).
fof(f11,axiom,(
  ! [X0,X1] : (disjoint(X0,X1) <=> set_intersection2(X0,X1) = empty_set)),
  file('TPTP/TPTP-v6.4.0/Problems/SEU/SEU140+2.p',unknown)).
fof(f20,axiom,(
  ! [X0,X1] : set_union2(X0,X0) = X0),
  file('TPTP/TPTP-v6.4.0/Problems/SEU/SEU140+2.p',unknown)).
fof(f23,axiom,(
  ! [X0,X1] : (empty_set = set_difference(X0,X1) <=> subset(X0,X1))),
  file('TPTP/TPTP-v6.4.0/Problems/SEU/SEU140+2.p',unknown)).
fof(f28,axiom,(
  ! [X0,X1] : (subset(X0,X1) => set_union2(X0,X1) = X1)),
  file('TPTP/TPTP-v6.4.0/Problems/SEU/SEU140+2.p',unknown)).
fof(f31,axiom,(
  ! [X0] : set_union2(X0,empty_set) = X0),
  file('TPTP/TPTP-v6.4.0/Problems/SEU/SEU140+2.p',unknown)).
fof(f39,axiom,(
  ! [X0,X1] : subset(set_difference(X0,X1),X0)),
  file('TPTP/TPTP-v6.4.0/Problems/SEU/SEU140+2.p',unknown)).
fof(f41,axiom,(
  ! [X0,X1] : set_union2(X0,X1) = set_union2(X0,set_difference(X1,X0))),
  file('TPTP/TPTP-v6.4.0/Problems/SEU/SEU140+2.p',unknown)).
fof(f42,axiom,(
  ! [X0] : set_difference(X0,empty_set) = X0),
  file('TPTP/TPTP-v6.4.0/Problems/SEU/SEU140+2.p',unknown)).
fof(f43,axiom,(
  ! [X0,X1] : (~(disjoint(X0,X1) & ? [X2] : (in(X2,X1) & in(X2,X0))) & ~(! [X2] : ~(in(X2,X1) & in(X2,X0)) & ~disjoint(X0,X1)))),
  file('TPTP/TPTP-v6.4.0/Problems/SEU/SEU140+2.p',unknown)).
fof(f45,axiom,(
  ! [X0,X1] : set_difference(X0,X1) = set_difference(set_union2(X0,X1),X1)),
  file('TPTP/TPTP-v6.4.0/Problems/SEU/SEU140+2.p',unknown)).
fof(f47,axiom,(
  ! [X0,X1] : set_intersection2(X0,X1) = set_difference(X0,set_difference(X0,X1))),
  file('TPTP/TPTP-v6.4.0/Problems/SEU/SEU140+2.p',unknown)).
fof(f51,conjecture,(
  ! [X0,X1,X2] : ((disjoint(X1,X2) & subset(X0,X1)) => disjoint(X0,X2))),
  file('TPTP/TPTP-v6.4.0/Problems/SEU/SEU140+2.p',unknown)).
fof(f52,negated_conjecture,(
  ~! [X0,X1,X2] : ((disjoint(X1,X2) & subset(X0,X1)) => disjoint(X0,X2))),
  inference(negated_conjecture,[],[f51])).
fof(f55,axiom,(
  ! [X0,X1] : subset(X0,set_union2(X0,X1))),
  file('TPTP/TPTP-v6.4.0/Problems/SEU/SEU140+2.p',unknown)).
fof(f58,plain,(
  ! [X0] : set_union2(X0,X0) = X0),
  inference(rectify,[],[f20])).
fof(f62,plain,(
  ! [X0,X1] : (~(disjoint(X0,X1) & ? [X2] : (in(X2,X1) & in(X2,X0))) & ~(! [X3] : ~(in(X3,X1) & in(X3,X0)) & ~disjoint(X0,X1)))),
  inference(rectify,[],[f43])).
fof(f73,plain,(
  ! [X0,X1] : (set_union2(X0,X1) = X1 | ~subset(X0,X1))),
  inference(ennf_transformation,[],[f28])).
fof(f82,plain,(
  ! [X0,X1] : ((~disjoint(X0,X1) | ! [X2] : (~in(X2,X1) | ~in(X2,X0))) & (? [X3] : (in(X3,X1) & in(X3,X0)) | disjoint(X0,X1)))),
  inference(ennf_transformation,[],[f62])).
fof(f87,plain,(
  ? [X0,X1,X2] : (~disjoint(X0,X2) & (disjoint(X1,X2) & subset(X0,X1)))),
  inference(ennf_transformation,[],[f52])).
fof(f88,plain,(
  ? [X0,X1,X2] : (~disjoint(X0,X2) & disjoint(X1,X2) & subset(X0,X1))),
  inference(flattening,[],[f87])).
fof(f114,plain,(
  ! [X0,X1,X2] : ((set_difference(X0,X1) = X2 | ? [X3] : (((in(X3,X1) | ~in(X3,X0)) | ~in(X3,X2)) & ((~in(X3,X1) & in(X3,X0)) | in(X3,X2)))) & (! [X3] : ((in(X3,X2) | (in(X3,X1) | ~in(X3,X0))) & ((~in(X3,X1) & in(X3,X0)) | ~in(X3,X2))) | set_difference(X0,X1) != X2))),
  inference(nnf_transformation,[],[f10])).
fof(f115,plain,(
  ! [X0,X1,X2] : ((set_difference(X0,X1) = X2 | ? [X3] : ((in(X3,X1) | ~in(X3,X0) | ~in(X3,X2)) & ((~in(X3,X1) & in(X3,X0)) | in(X3,X2)))) & (! [X3] : ((in(X3,X2) | in(X3,X1) | ~in(X3,X0)) & ((~in(X3,X1) & in(X3,X0)) | ~in(X3,X2))) | set_difference(X0,X1) != X2))),
  inference(flattening,[],[f114])).
fof(f116,plain,(
  ! [X0,X1,X2] : ((set_difference(X0,X1) = X2 | ? [X3] : ((in(X3,X1) | ~in(X3,X0) | ~in(X3,X2)) & ((~in(X3,X1) & in(X3,X0)) | in(X3,X2)))) & (! [X4] : ((in(X4,X2) | in(X4,X1) | ~in(X4,X0)) & ((~in(X4,X1) & in(X4,X0)) | ~in(X4,X2))) | set_difference(X0,X1) != X2))),
  inference(rectify,[],[f115])).
fof(f117,plain,(
  ! [X2,X1,X0] : (? [X3] : ((in(X3,X1) | ~in(X3,X0) | ~in(X3,X2)) & ((~in(X3,X1) & in(X3,X0)) | in(X3,X2))) => ((in(sK4(X0,X1,X2),X1) | ~in(sK4(X0,X1,X2),X0) | ~in(sK4(X0,X1,X2),X2)) & ((~in(sK4(X0,X1,X2),X1) & in(sK4(X0,X1,X2),X0)) | in(sK4(X0,X1,X2),X2))))),
  introduced(choice_axiom,[])).
fof(f118,plain,(
  ! [X0,X1,X2] : ((set_difference(X0,X1) = X2 | ((in(sK4(X0,X1,X2),X1) | ~in(sK4(X0,X1,X2),X0) | ~in(sK4(X0,X1,X2),X2)) & ((~in(sK4(X0,X1,X2),X1) & in(sK4(X0,X1,X2),X0)) | in(sK4(X0,X1,X2),X2)))) & (! [X4] : ((in(X4,X2) | in(X4,X1) | ~in(X4,X0)) & ((~in(X4,X1) & in(X4,X0)) | ~in(X4,X2))) | set_difference(X0,X1) != X2))),
  inference(skolemisation,[status(esa),new_symbols(skolem,[sK4])],[f116,f117])).
fof(f119,plain,(
  ! [X0,X1] : ((disjoint(X0,X1) | set_intersection2(X0,X1) != empty_set) & (set_intersection2(X0,X1) = empty_set | ~disjoint(X0,X1)))),
  inference(nnf_transformation,[],[f11])).
fof(f120,plain,(
  ! [X0,X1] : ((empty_set = set_difference(X0,X1) | ~subset(X0,X1)) & (subset(X0,X1) | empty_set != set_difference(X0,X1)))),
  inference(nnf_transformation,[],[f23])).
fof(f129,plain,(
  ! [X1,X0] : (? [X3] : (in(X3,X1) & in(X3,X0)) => (in(sK8(X0,X1),X1) & in(sK8(X0,X1),X0)))),
  introduced(choice_axiom,[])).
fof(f130,plain,(
  ! [X0,X1] : ((~disjoint(X0,X1) | ! [X2] : (~in(X2,X1) | ~in(X2,X0))) & ((in(sK8(X0,X1),X1) & in(sK8(X0,X1),X0)) | disjoint(X0,X1)))),
  inference(skolemisation,[status(esa),new_symbols(skolem,[sK8])],[f82,f129])).
fof(f133,plain,(
  ? [X0,X1,X2] : (~disjoint(X0,X2) & disjoint(X1,X2) & subset(X0,X1)) => (~disjoint(sK10,sK12) & disjoint(sK11,sK12) & subset(sK10,sK11))),
  introduced(choice_axiom,[])).
fof(f134,plain,(
  ~disjoint(sK10,sK12) & disjoint(sK11,sK12) & subset(sK10,sK11)),
  inference(skolemisation,[status(esa),new_symbols(skolem,[sK10,sK11,sK12])],[f88,f133])).
fof(f137,plain,(
  ( ! [X0,X1] : (set_union2(X0,X1) = set_union2(X1,X0)) )),
  inference(cnf_transformation,[],[f3])).
fof(f138,plain,(
  ( ! [X0,X1] : (set_intersection2(X0,X1) = set_intersection2(X1,X0)) )),
  inference(cnf_transformation,[],[f4])).
fof(f159,plain,(
  ( ! [X4,X2,X0,X1] : (in(X4,X0) | ~in(X4,X2) | set_difference(X0,X1) != X2) )),
  inference(cnf_transformation,[],[f118])).
fof(f160,plain,(
  ( ! [X4,X2,X0,X1] : (~in(X4,X1) | ~in(X4,X2) | set_difference(X0,X1) != X2) )),
  inference(cnf_transformation,[],[f118])).
fof(f165,plain,(
  ( ! [X0,X1] : (set_intersection2(X0,X1) = empty_set | ~disjoint(X0,X1)) )),
  inference(cnf_transformation,[],[f119])).
fof(f171,plain,(
  ( ! [X0] : (set_union2(X0,X0) = X0) )),
  inference(cnf_transformation,[],[f58])).
fof(f175,plain,(
  ( ! [X0,X1] : (~subset(X0,X1) | empty_set = set_difference(X0,X1)) )),
  inference(cnf_transformation,[],[f120])).
fof(f180,plain,(
  ( ! [X0,X1] : (~subset(X0,X1) | set_union2(X0,X1) = X1) )),
  inference(cnf_transformation,[],[f73])).
fof(f183,plain,(
  ( ! [X0] : (set_union2(X0,empty_set) = X0) )),
  inference(cnf_transformation,[],[f31])).
fof(f192,plain,(
  ( ! [X0,X1] : (subset(set_difference(X0,X1),X0)) )),
  inference(cnf_transformation,[],[f39])).
fof(f195,plain,(
  ( ! [X0,X1] : (set_union2(X0,X1) = set_union2(X0,set_difference(X1,X0))) )),
  inference(cnf_transformation,[],[f41])).
fof(f196,plain,(
  ( ! [X0] : (set_difference(X0,empty_set) = X0) )),
  inference(cnf_transformation,[],[f42])).
fof(f197,plain,(
  ( ! [X0,X1] : (in(sK8(X0,X1),X0) | disjoint(X0,X1)) )),
  inference(cnf_transformation,[],[f130])).
fof(f198,plain,(
  ( ! [X0,X1] : (in(sK8(X0,X1),X1) | disjoint(X0,X1)) )),
  inference(cnf_transformation,[],[f130])).
fof(f201,plain,(
  ( ! [X0,X1] : (set_difference(X0,X1) = set_difference(set_union2(X0,X1),X1)) )),
  inference(cnf_transformation,[],[f45])).
fof(f203,plain,(
  ( ! [X0,X1] : (set_intersection2(X0,X1) = set_difference(X0,set_difference(X0,X1))) )),
  inference(cnf_transformation,[],[f47])).
fof(f208,plain,(
  subset(sK10,sK11)),
  inference(cnf_transformation,[],[f134])).
fof(f209,plain,(
  disjoint(sK11,sK12)),
  inference(cnf_transformation,[],[f134])).
fof(f210,plain,(
  ~disjoint(sK10,sK12)),
  inference(cnf_transformation,[],[f134])).
fof(f213,plain,(
  ( ! [X0,X1] : (subset(X0,set_union2(X0,X1))) )),
  inference(cnf_transformation,[],[f55])).
fof(f216,plain,(
  ( ! [X0,X1] : (set_difference(X0,set_difference(X0,X1)) = set_difference(X1,set_difference(X1,X0))) )),
  inference(definition_unfolding,[],[f138,f203,f203])).
fof(f224,plain,(
  ( ! [X0,X1] : (~disjoint(X0,X1) | empty_set = set_difference(X0,set_difference(X0,X1))) )),
  inference(definition_unfolding,[],[f165,f203])).
fof(f243,plain,(
  ( ! [X4,X0,X1] : (~in(X4,set_difference(X0,X1)) | ~in(X4,X1)) )),
  inference(equality_resolution,[],[f160])).
fof(f244,plain,(
  ( ! [X4,X0,X1] : (~in(X4,set_difference(X0,X1)) | in(X4,X0)) )),
  inference(equality_resolution,[],[f159])).
fof(f281,plain,(
  ( ! [X1] : (set_union2(empty_set,X1) = X1) )),
  inference(superposition,[],[f137,f183])).
fof(f286,plain,(
  ( ! [X6,X7] : (subset(X6,set_union2(X7,X6))) )),
  inference(superposition,[],[f213,f137])).
fof(f324,plain,(
  ( ! [X4,X3] : (empty_set = set_difference(X3,set_union2(X4,X3))) )),
  inference(resolution,[],[f175,f286])).
fof(f326,plain,(
  ( ! [X6,X7] : (empty_set = set_difference(set_difference(X6,X7),X6)) )),
  inference(resolution,[],[f175,f192])).
fof(f340,plain,(
  set_union2(sK10,sK11) = sK11),
  inference(resolution,[],[f180,f208])).
fof(f399,plain,(
  ( ! [X10,X8,X9] : (~in(sK8(X8,set_difference(X9,X10)),X10) | disjoint(X8,set_difference(X9,X10))) )),
  inference(resolution,[],[f243,f198])).
fof(f405,plain,(
  ( ! [X4,X2,X3] : (in(sK8(set_difference(X2,X3),X4),X2) | disjoint(set_difference(X2,X3),X4)) )),
  inference(resolution,[],[f244,f197])).
fof(f468,plain,(
  ( ! [X4,X5] : (set_union2(X5,set_union2(X4,X5)) = set_union2(X5,set_difference(X4,X5))) )),
  inference(superposition,[],[f195,f201])).
fof(f477,plain,(
  ( ! [X4,X5] : (set_union2(X5,X4) = set_union2(X5,set_union2(X4,X5))) )),
  inference(forward_demodulation,[],[f468,f195])).
fof(f615,plain,(
  empty_set = set_difference(sK11,set_difference(sK11,sK12))),
  inference(resolution,[],[f224,f209])).
fof(f726,plain,(
  ( ! [X6,X7] : (set_difference(X7,set_difference(X7,set_union2(X6,X7))) = set_difference(set_union2(X6,X7),set_difference(X6,X7))) )),
  inference(superposition,[],[f216,f201])).
fof(f772,plain,(
  ( ! [X6,X7] : (set_difference(X7,empty_set) = set_difference(set_union2(X6,X7),set_difference(X6,X7))) )),
  inference(forward_demodulation,[],[f726,f324])).
fof(f773,plain,(
  ( ! [X6,X7] : (set_difference(set_union2(X6,X7),set_difference(X6,X7)) = X7) )),
  inference(forward_demodulation,[],[f772,f196])).
fof(f1209,plain,(
  set_union2(set_difference(sK11,sK12),empty_set) = set_union2(set_difference(sK11,sK12),sK11)),
  inference(superposition,[],[f195,f615])).
fof(f1226,plain,(
  set_union2(set_difference(sK11,sK12),empty_set) = set_union2(sK11,set_difference(sK11,sK12))),
  inference(forward_demodulation,[],[f1209,f137])).
fof(f1227,plain,(
  set_union2(empty_set,set_difference(sK11,sK12)) = set_union2(sK11,set_difference(sK11,sK12))),
  inference(forward_demodulation,[],[f1226,f137])).
fof(f1228,plain,(
  set_union2(sK11,set_difference(sK11,sK12)) = set_difference(sK11,sK12)),
  inference(forward_demodulation,[],[f1227,f281])).
fof(f1312,plain,(
  ( ! [X10,X11] : (set_union2(X10,empty_set) = set_union2(X10,set_difference(X10,X11))) )),
  inference(superposition,[],[f195,f326])).
fof(f1331,plain,(
  ( ! [X10,X11] : (set_union2(X10,set_difference(X10,X11)) = X10) )),
  inference(forward_demodulation,[],[f1312,f183])).
fof(f1333,plain,(
  set_difference(sK11,sK12) = sK11),
  inference(backward_demodulation,[],[f1331,f1228])).
fof(f2114,plain,(
  set_union2(sK11,sK10) = set_union2(sK11,sK11)),
  inference(superposition,[],[f477,f340])).
fof(f2148,plain,(
  set_union2(sK11,sK10) = sK11),
  inference(forward_demodulation,[],[f2114,f171])).
fof(f2201,plain,(
  set_difference(sK11,set_difference(sK11,sK10)) = sK10),
  inference(superposition,[],[f773,f2148])).
fof(f2214,plain,(
  set_difference(set_union2(sK11,sK12),sK11) = sK12),
  inference(superposition,[],[f773,f1333])).
fof(f4504,plain,(
  ( ! [X4,X2,X3] : (disjoint(set_difference(X2,X3),set_difference(X4,X2)) | disjoint(set_difference(X2,X3),set_difference(X4,X2))) )),
  inference(resolution,[],[f405,f399])).
fof(f4539,plain,(
  ( ! [X4,X2,X3] : (disjoint(set_difference(X2,X3),set_difference(X4,X2))) )),
  inference(duplicate_literal_removal,[],[f4504])).
fof(f4747,plain,(
  ( ! [X41] : (disjoint(sK10,set_difference(X41,sK11))) )),
  inference(superposition,[],[f4539,f2201])).
fof(f4918,plain,(
  disjoint(sK10,sK12)),
  inference(superposition,[],[f4747,f2214])).
fof(f4925,plain,(
  $false),
  inference(subsumption_resolution,[],[f4918,f210])).

Sample solution for NLP042+1

tff(u283,axiom,
    (![X1, X0] : ((~woman(X0,X1) | human_person(X0,X1))))).

tff(u282,axiom,
    (![X1, X0] : ((~woman(X0,X1) | female(X0,X1))))).

tff(u281,negated_conjecture,
    woman(sK0,sK1)).

tff(u280,negated_conjecture,
    ~female(sK0,sK4)).

tff(u279,negated_conjecture,
    ~female(sK0,sK2)).

tff(u278,negated_conjecture,
    ~female(sK0,sK3)).

tff(u277,negated_conjecture,
    female(sK0,sK1)).

tff(u276,axiom,
    (![X1, X0] : ((~human_person(X0,X1) | organism(X0,X1))))).

tff(u275,axiom,
    (![X1, X0] : ((~human_person(X0,X1) | human(X0,X1))))).

tff(u274,axiom,
    (![X1, X0] : ((~human_person(X0,X1) | animate(X0,X1))))).

tff(u273,negated_conjecture,
    human_person(sK0,sK1)).

tff(u272,negated_conjecture,
    ~animate(sK0,sK3)).

tff(u271,negated_conjecture,
    animate(sK0,sK1)).

tff(u270,negated_conjecture,
    ~human(sK0,sK2)).

tff(u269,negated_conjecture,
    human(sK0,sK1)).

tff(u268,axiom,
    (![X1, X0] : ((~organism(X0,X1) | entity(X0,X1))))).

tff(u267,axiom,
    (![X1, X0] : ((~organism(X0,X1) | living(X0,X1))))).

tff(u266,negated_conjecture,
    organism(sK0,sK1)).

tff(u265,negated_conjecture,
    ~living(sK0,sK3)).

tff(u264,negated_conjecture,
    living(sK0,sK1)).

tff(u263,axiom,
    (![X1, X0] : ((~entity(X0,X1) | specific(X0,X1))))).

tff(u262,axiom,
    (![X1, X0] : ((~entity(X0,X1) | existent(X0,X1))))).

tff(u261,negated_conjecture,
    entity(sK0,sK1)).

tff(u260,negated_conjecture,
    entity(sK0,sK3)).

tff(u259,axiom,
    (![X1, X0] : ((~mia_forename(X0,X1) | forename(X0,X1))))).

tff(u258,negated_conjecture,
    mia_forename(sK0,sK2)).

tff(u257,axiom,
    (![X1, X0] : ((~forename(X0,X1) | relname(X0,X1))))).

tff(u256,negated_conjecture,
    forename(sK0,sK2)).

tff(u255,axiom,
    (![X1, X0] : ((~abstraction(X0,X1) | nonhuman(X0,X1))))).

tff(u254,axiom,
    (![X1, X0] : ((~abstraction(X0,X1) | general(X0,X1))))).

tff(u253,axiom,
    (![X1, X0] : ((~abstraction(X0,X1) | unisex(X0,X1))))).

tff(u252,negated_conjecture,
    abstraction(sK0,sK2)).

tff(u251,axiom,
    (![X1, X0] : ((~unisex(X0,X1) | ~female(X0,X1))))).

tff(u250,negated_conjecture,
    unisex(sK0,sK2)).

tff(u249,negated_conjecture,
    unisex(sK0,sK4)).

tff(u248,negated_conjecture,
    unisex(sK0,sK3)).

tff(u247,negated_conjecture,
    ~general(sK0,sK4)).

tff(u246,negated_conjecture,
    ~general(sK0,sK1)).

tff(u245,negated_conjecture,
    ~general(sK0,sK3)).

tff(u244,negated_conjecture,
    general(sK0,sK2)).

tff(u243,axiom,
    (![X1, X0] : ((~nonhuman(X0,X1) | ~human(X0,X1))))).

tff(u242,negated_conjecture,
    nonhuman(sK0,sK2)).

tff(u241,axiom,
    (![X1, X0] : ((~relation(X0,X1) | abstraction(X0,X1))))).

tff(u240,negated_conjecture,
    relation(sK0,sK2)).

tff(u239,axiom,
    (![X1, X0] : ((~relname(X0,X1) | relation(X0,X1))))).

tff(u238,negated_conjecture,
    relname(sK0,sK2)).

tff(u237,axiom,
    (![X1, X0] : ((~object(X0,X1) | entity(X0,X1))))).

tff(u236,axiom,
    (![X1, X0] : ((~object(X0,X1) | nonliving(X0,X1))))).

tff(u235,axiom,
    (![X1, X0] : ((~object(X0,X1) | unisex(X0,X1))))).

tff(u234,negated_conjecture,
    object(sK0,sK3)).

tff(u233,axiom,
    (![X1, X0] : ((~nonliving(X0,X1) | ~living(X0,X1))))).

tff(u232,axiom,
    (![X1, X0] : ((~nonliving(X0,X1) | ~animate(X0,X1))))).

tff(u231,negated_conjecture,
    nonliving(sK0,sK3)).

tff(u230,negated_conjecture,
    ~existent(sK0,sK4)).

tff(u229,negated_conjecture,
    existent(sK0,sK1)).

tff(u228,negated_conjecture,
    existent(sK0,sK3)).

tff(u227,axiom,
    (![X1, X0] : ((~specific(X0,X1) | ~general(X0,X1))))).

tff(u226,negated_conjecture,
    specific(sK0,sK1)).

tff(u225,negated_conjecture,
    specific(sK0,sK4)).

tff(u224,negated_conjecture,
    specific(sK0,sK3)).

tff(u223,axiom,
    (![X1, X0] : ((~substance_matter(X0,X1) | object(X0,X1))))).

tff(u222,negated_conjecture,
    substance_matter(sK0,sK3)).

tff(u221,axiom,
    (![X1, X0] : ((~food(X0,X1) | substance_matter(X0,X1))))).

tff(u220,negated_conjecture,
    food(sK0,sK3)).

tff(u219,axiom,
    (![X1, X0] : ((~beverage(X0,X1) | food(X0,X1))))).

tff(u218,negated_conjecture,
    beverage(sK0,sK3)).

tff(u217,axiom,
    (![X1, X0] : ((~shake_beverage(X0,X1) | beverage(X0,X1))))).

tff(u216,negated_conjecture,
    shake_beverage(sK0,sK3)).

tff(u215,axiom,
    (![X1, X0] : ((~order(X0,X1) | act(X0,X1))))).

tff(u214,axiom,
    (![X1, X0] : ((~order(X0,X1) | event(X0,X1))))).

tff(u213,negated_conjecture,
    order(sK0,sK4)).

tff(u212,axiom,
    (![X1, X0] : ((~event(X0,X1) | eventuality(X0,X1))))).

tff(u211,negated_conjecture,
    event(sK0,sK4)).

tff(u210,axiom,
    (![X1, X0] : ((~eventuality(X0,X1) | specific(X0,X1))))).

tff(u209,axiom,
    (![X1, X0] : ((~eventuality(X0,X1) | nonexistent(X0,X1))))).

tff(u208,axiom,
    (![X1, X0] : ((~eventuality(X0,X1) | unisex(X0,X1))))).

tff(u207,negated_conjecture,
    eventuality(sK0,sK4)).

tff(u206,axiom,
    (![X1, X0] : ((~nonexistent(X0,X1) | ~existent(X0,X1))))).

tff(u205,negated_conjecture,
    nonexistent(sK0,sK4)).

tff(u204,axiom,
    (![X1, X0] : ((~act(X0,X1) | event(X0,X1))))).

tff(u203,negated_conjecture,
    act(sK0,sK4)).

tff(u202,axiom,
    (![X1, X3, X0, X2] : ((~of(X0,X3,X1) | (X2 = X3) | ~forename(X0,X3) | ~of(X0,X2,X1) | ~forename(X0,X2) | ~entity(X0,X1))))).

tff(u201,negated_conjecture,
    (![X0] : ((~of(sK0,X0,sK1) | (sK2 = X0) | ~forename(sK0,X0))))).

tff(u200,negated_conjecture,
    of(sK0,sK2,sK1)).

tff(u199,negated_conjecture,
    nonreflexive(sK0,sK4)).

tff(u198,negated_conjecture,
    ~agent(sK0,sK4,sK3)).

tff(u197,negated_conjecture,
    agent(sK0,sK4,sK1)).

tff(u196,axiom,
    (![X1, X3, X0] : ((~patient(X0,X1,X3) | ~agent(X0,X1,X3) | ~nonreflexive(X0,X1))))).

tff(u195,negated_conjecture,
    patient(sK0,sK4,sK3)).

Sample solution for SWV017+1

tff(declare_$i,type,$i:$tType).
tff(declare_$i1,type,at:$i).
tff(declare_$i2,type,t:$i).
tff(finite_domain,axiom,
      ! [X:$i] : (
         X = at | X = t
      ) ).

tff(distinct_domain,axiom,
         at != t
).

tff(declare_a,type,a:$i).
tff(a_definition,axiom,a = at).
tff(declare_b,type,b:$i).
tff(b_definition,axiom,b = at).
tff(declare_an_a_nonce,type,an_a_nonce:$i).
tff(an_a_nonce_definition,axiom,an_a_nonce = t).
tff(declare_bt,type,bt:$i).
tff(bt_definition,axiom,bt = at).
tff(declare_an_intruder_nonce,type,an_intruder_nonce:$i).
tff(an_intruder_nonce_definition,axiom,an_intruder_nonce = at).
tff(declare_key,type,key: $i * $i > $i).
tff(function_key,axiom,
           key(at,at) = at
         & key(at,t) = t
         & key(t,at) = t
         & key(t,t) = t

).

tff(declare_pair,type,pair: $i * $i > $i).
tff(function_pair,axiom,
           pair(at,at) = at
         & pair(at,t) = t
         & pair(t,at) = at
         & pair(t,t) = at

).

tff(declare_sent,type,sent: $i * $i * $i > $i).
tff(function_sent,axiom,
           sent(at,at,at) = at
         & sent(at,at,t) = at
         & sent(at,t,at) = at
         & sent(at,t,t) = at
         & sent(t,at,at) = at
         & sent(t,at,t) = at
         & sent(t,t,at) = at
         & sent(t,t,t) = at

).

tff(declare_quadruple,type,quadruple: $i * $i * $i * $i > $i).
tff(function_quadruple,axiom,
           quadruple(at,at,at,at) = t
         & quadruple(at,at,at,t) = at
         & quadruple(at,at,t,at) = t
         & quadruple(at,at,t,t) = t
         & quadruple(at,t,at,at) = t
         & quadruple(at,t,at,t) = at
         & quadruple(at,t,t,at) = at
         & quadruple(at,t,t,t) = at
         & quadruple(t,at,at,at) = t
         & quadruple(t,at,at,t) = at
         & quadruple(t,at,t,at) = t
         & quadruple(t,at,t,t) = t
         & quadruple(t,t,at,at) = t
         & quadruple(t,t,at,t) = at
         & quadruple(t,t,t,at) = t
         & quadruple(t,t,t,t) = t

).

tff(declare_encrypt,type,encrypt: $i * $i > $i).
tff(function_encrypt,axiom,
           encrypt(at,at) = at
         & encrypt(at,t) = at
         & encrypt(t,at) = at
         & encrypt(t,t) = t

).

tff(declare_triple,type,triple: $i * $i * $i > $i).
tff(function_triple,axiom,
           triple(at,at,at) = t
         & triple(at,at,t) = at
         & triple(at,t,at) = at
         & triple(at,t,t) = at
         & triple(t,at,at) = t
         & triple(t,at,t) = t
         & triple(t,t,at) = at
         & triple(t,t,t) = at

).

tff(declare_generate_b_nonce,type,generate_b_nonce: $i > $i).
tff(function_generate_b_nonce,axiom,
           generate_b_nonce(at) = t
         & generate_b_nonce(t) = t

).

tff(declare_generate_expiration_time,type,generate_expiration_time: $i > $i).
tff(function_generate_expiration_time,axiom,
           generate_expiration_time(at) = t
         & generate_expiration_time(t) = t

).

tff(declare_generate_key,type,generate_key: $i > $i).
tff(function_generate_key,axiom,
           generate_key(at) = at
         & generate_key(t) = at

).

tff(declare_generate_intruder_nonce,type,generate_intruder_nonce: $i > $i).
tff(function_generate_intruder_nonce,axiom,
           generate_intruder_nonce(at) = at
         & generate_intruder_nonce(t) = t

).

tff(declare_a_holds,type,a_holds: $i > $o ).
tff(predicate_a_holds,axiom,
%         a_holds(at) undefined in model
%         a_holds(t) undefined in model

).

tff(declare_party_of_protocol,type,party_of_protocol: $i > $o ).
tff(predicate_party_of_protocol,axiom,
           party_of_protocol(at)
         & party_of_protocol(t)

).

tff(declare_message,type,message: $i > $o ).
tff(predicate_message,axiom,
           message(at)
         & ~message(t)

).

tff(declare_a_stored,type,a_stored: $i > $o ).
tff(predicate_a_stored,axiom,
           ~a_stored(at)
         & a_stored(t)

).

tff(declare_b_holds,type,b_holds: $i > $o ).
tff(predicate_b_holds,axiom,
%         b_holds(at) undefined in model
%         b_holds(t) undefined in model

).

tff(declare_fresh_to_b,type,fresh_to_b: $i > $o ).
tff(predicate_fresh_to_b,axiom,
           fresh_to_b(at)
         & fresh_to_b(t)

).

tff(declare_b_stored,type,b_stored: $i > $o ).
tff(predicate_b_stored,axiom,
%         b_stored(at) undefined in model
%         b_stored(t) undefined in model

).

tff(declare_a_key,type,a_key: $i > $o ).
tff(predicate_a_key,axiom,
           a_key(at)
         & ~a_key(t)

).

tff(declare_t_holds,type,t_holds: $i > $o ).
tff(predicate_t_holds,axiom,
           t_holds(at)
         & ~t_holds(t)

).

tff(declare_a_nonce,type,a_nonce: $i > $o ).
tff(predicate_a_nonce,axiom,
           ~a_nonce(at)
         & a_nonce(t)

).

tff(declare_intruder_message,type,intruder_message: $i > $o ).
tff(predicate_intruder_message,axiom,
           intruder_message(at)
         & intruder_message(t)

).

tff(declare_intruder_holds,type,intruder_holds: $i > $o ).
tff(predicate_intruder_holds,axiom,
           intruder_holds(at)
         & intruder_holds(t)

).

tff(declare_fresh_intruder_nonce,type,fresh_intruder_nonce: $i > $o ).
tff(predicate_fresh_intruder_nonce,axiom,
           fresh_intruder_nonce(at)
         & ~fresh_intruder_nonce(t)

).

Vampire 4.3

Giles Reger
University of Manchester, United Kingdom

Sample proof for DAT013=1

% SZS output start Proof for DAT013=1
tff(type_def_5, type, array: $tType).
tff(func_def_0, type, read: (array * $int) > $int).
tff(func_def_1, type, write: (array * $int * $int) > array).
tff(func_def_5, type, sK0: array).
tff(func_def_6, type, sK1: $int).
tff(func_def_7, type, sK2: $int).
tff(func_def_8, type, sK3: $int).
tff(f3,conjecture,(
  ! [X0 : array,X1 : $int,X2 : $int] : (! [X3 : $int] : (($lesseq(X3,X2) & $lesseq(X1,X3)) => $greater(read(X0,X3),0)) => ! [X4 : $int] : (($lesseq(X4,X2) & $lesseq($sum(X1,3),X4)) => $greater(read(X0,X4),0)))),
  file('/Users/giles/TPTP/TPTP-v7.0.0/Problems/DAT/DAT013=1.p',co1)).
tff(f4,negated_conjecture,(
  ~! [X0 : array,X1 : $int,X2 : $int] : (! [X3 : $int] : (($lesseq(X3,X2) & $lesseq(X1,X3)) => $greater(read(X0,X3),0)) => ! [X4 : $int] : (($lesseq(X4,X2) & $lesseq($sum(X1,3),X4)) => $greater(read(X0,X4),0)))),
  inference(negated_conjecture,[],[f3])).
tff(f5,plain,(
  ~! [X0 : array,X1 : $int,X2 : $int] : (! [X3 : $int] : ((~$less(X2,X3) & ~$less(X3,X1)) => $less(0,read(X0,X3))) => ! [X4 : $int] : ((~$less(X2,X4) & ~$less(X4,$sum(X1,3))) => $less(0,read(X0,X4))))),
  inference(evaluation,[],[f4])).
tff(f7,plain,(
  ? [X0 : array,X1 : $int,X2 : $int] : (? [X4 : $int] : (~$less(0,read(X0,X4)) & (~$less(X2,X4) & ~$less(X4,$sum(X1,3)))) & ! [X3 : $int] : ($less(0,read(X0,X3)) | ($less(X2,X3) | $less(X3,X1))))),
  inference(ennf_transformation,[],[f5])).
tff(f8,plain,(
  ? [X0 : array,X1 : $int,X2 : $int] : (? [X4 : $int] : (~$less(0,read(X0,X4)) & ~$less(X2,X4) & ~$less(X4,$sum(X1,3))) & ! [X3 : $int] : ($less(0,read(X0,X3)) | $less(X2,X3) | $less(X3,X1)))),
  inference(flattening,[],[f7])).
tff(f9,plain,(
  ~$less(sK3,$sum(sK1,3))),
  inference(cnf_transformation,[],[f8])).
tff(f10,plain,(
  ~$less(sK2,sK3)),
  inference(cnf_transformation,[],[f8])).
tff(f11,plain,(
  ~$less(0,read(sK0,sK3))),
  inference(cnf_transformation,[],[f8])).
tff(f12,plain,(
  ( ! [X3:$int] : ($less(0,read(sK0,X3)) | $less(sK2,X3) | $less(X3,sK1)) )),
  inference(cnf_transformation,[],[f8])).
tff(f19,plain,(
  spl4_1 <=> ~$less(0,read(sK0,sK3))),
  introduced(avatar_definition,[new_symbols(naming,[spl4_1])])).
tff(f20,plain,(
  ~$less(0,read(sK0,sK3)) | ~spl4_1),
  inference(avatar_component_clause,[],[f19])).
tff(f21,plain,(
  ~spl4_1),
  inference(avatar_split_clause,[],[f11,f19])).
tff(f23,plain,(
  spl4_2 <=> $less(sK2,sK3)),
  introduced(avatar_definition,[new_symbols(naming,[spl4_2])])).
tff(f26,plain,(
  spl4_3 <=> ~$less(sK2,sK3)),
  introduced(avatar_definition,[new_symbols(naming,[spl4_3])])).
tff(f28,plain,(
  ~spl4_3),
  inference(avatar_split_clause,[],[f10,f26])).
tff(f33,plain,(
  spl4_5 <=> ~$less(sK3,$sum(sK1,3))),
  introduced(avatar_definition,[new_symbols(naming,[spl4_5])])).
tff(f35,plain,(
  ~spl4_5),
  inference(avatar_split_clause,[],[f9,f33])).
tff(f36,plain,(
  $less(sK2,sK3) | $less(sK3,sK1) | ~spl4_1),
  inference(resolution,[],[f12,f20])).
tff(f41,plain,(
  spl4_6 <=> $less(sK3,sK1)),
  introduced(avatar_definition,[new_symbols(naming,[spl4_6])])).
tff(f43,plain,(
  spl4_6 | spl4_2 | spl4_1),
  inference(avatar_split_clause,[],[f36,f19,f23,f41])).
tff(f44,plain,(
  $false),
  inference(avatar_sat_refutation,[],[f21,f28,f35,f43])).
% SZS output end Proof for DAT013=1

Sample proof for SEU140+2

% SZS output start Proof for SEU140+2
fof(f3,axiom,(
  ! [X0,X1] : set_union2(X0,X1) = set_union2(X1,X0)),
  file('/Users/giles/TPTP/TPTP-v7.0.0/Problems/SEU/SEU140+2.p',commutativity_k2_xboole_0)).
fof(f4,axiom,(
  ! [X0,X1] : set_intersection2(X0,X1) = set_intersection2(X1,X0)),
  file('/Users/giles/TPTP/TPTP-v7.0.0/Problems/SEU/SEU140+2.p',commutativity_k3_xboole_0)).
fof(f5,axiom,(
  ! [X0,X1] : (X0 = X1 <=> (subset(X1,X0) & subset(X0,X1)))),
  file('/Users/giles/TPTP/TPTP-v7.0.0/Problems/SEU/SEU140+2.p',d10_xboole_0)).
fof(f10,axiom,(
  ! [X0,X1,X2] : (set_difference(X0,X1) = X2 <=> ! [X3] : (in(X3,X2) <=> (~in(X3,X1) & in(X3,X0))))),
  file('/Users/giles/TPTP/TPTP-v7.0.0/Problems/SEU/SEU140+2.p',d4_xboole_0)).
fof(f11,axiom,(
  ! [X0,X1] : (disjoint(X0,X1) <=> set_intersection2(X0,X1) = empty_set)),
  file('/Users/giles/TPTP/TPTP-v7.0.0/Problems/SEU/SEU140+2.p',d7_xboole_0)).
fof(f28,axiom,(
  ! [X0,X1] : (subset(X0,X1) => set_union2(X0,X1) = X1)),
  file('/Users/giles/TPTP/TPTP-v7.0.0/Problems/SEU/SEU140+2.p',t12_xboole_1)).
fof(f39,axiom,(
  ! [X0,X1] : subset(set_difference(X0,X1),X0)),
  file('/Users/giles/TPTP/TPTP-v7.0.0/Problems/SEU/SEU140+2.p',t36_xboole_1)).
fof(f40,axiom,(
  ! [X0,X1] : (empty_set = set_difference(X0,X1) <=> subset(X0,X1))),
  file('/Users/giles/TPTP/TPTP-v7.0.0/Problems/SEU/SEU140+2.p',t37_xboole_1)).
fof(f41,axiom,(
  ! [X0,X1] : set_union2(X0,X1) = set_union2(X0,set_difference(X1,X0))),
  file('/Users/giles/TPTP/TPTP-v7.0.0/Problems/SEU/SEU140+2.p',t39_xboole_1)).
fof(f42,axiom,(
  ! [X0] : set_difference(X0,empty_set) = X0),
  file('/Users/giles/TPTP/TPTP-v7.0.0/Problems/SEU/SEU140+2.p',t3_boole)).
fof(f43,axiom,(
  ! [X0,X1] : (~(disjoint(X0,X1) & ? [X2] : (in(X2,X1) & in(X2,X0))) & ~(! [X2] : ~(in(X2,X1) & in(X2,X0)) & ~disjoint(X0,X1)))),
  file('/Users/giles/TPTP/TPTP-v7.0.0/Problems/SEU/SEU140+2.p',t3_xboole_0)).
fof(f45,axiom,(
  ! [X0,X1] : set_difference(X0,X1) = set_difference(set_union2(X0,X1),X1)),
  file('/Users/giles/TPTP/TPTP-v7.0.0/Problems/SEU/SEU140+2.p',t40_xboole_1)).
fof(f47,axiom,(
  ! [X0,X1] : set_intersection2(X0,X1) = set_difference(X0,set_difference(X0,X1))),
  file('/Users/giles/TPTP/TPTP-v7.0.0/Problems/SEU/SEU140+2.p',t48_xboole_1)).
fof(f51,conjecture,(
  ! [X0,X1,X2] : ((disjoint(X1,X2) & subset(X0,X1)) => disjoint(X0,X2))),
  file('/Users/giles/TPTP/TPTP-v7.0.0/Problems/SEU/SEU140+2.p',t63_xboole_1)).
fof(f52,negated_conjecture,(
  ~! [X0,X1,X2] : ((disjoint(X1,X2) & subset(X0,X1)) => disjoint(X0,X2))),
  inference(negated_conjecture,[],[f51])).
fof(f55,axiom,(
  ! [X0,X1] : subset(X0,set_union2(X0,X1))),
  file('/Users/giles/TPTP/TPTP-v7.0.0/Problems/SEU/SEU140+2.p',t7_xboole_1)).
fof(f59,plain,(
  ! [X0,X1] : (~(disjoint(X0,X1) & ? [X2] : (in(X2,X1) & in(X2,X0))) & ~(! [X3] : ~(in(X3,X1) & in(X3,X0)) & ~disjoint(X0,X1)))),
  inference(rectify,[],[f43])).
fof(f65,plain,(
  ? [X0,X1,X2] : (~disjoint(X0,X2) & (disjoint(X1,X2) & subset(X0,X1)))),
  inference(ennf_transformation,[],[f52])).
fof(f66,plain,(
  ? [X0,X1,X2] : (~disjoint(X0,X2) & disjoint(X1,X2) & subset(X0,X1))),
  inference(flattening,[],[f65])).
fof(f69,plain,(
  ! [X0,X1] : ((~disjoint(X0,X1) | ! [X2] : (~in(X2,X1) | ~in(X2,X0))) & (? [X3] : (in(X3,X1) & in(X3,X0)) | disjoint(X0,X1)))),
  inference(ennf_transformation,[],[f59])).
fof(f71,plain,(
  ! [X0,X1] : (set_union2(X0,X1) = X1 | ~subset(X0,X1))),
  inference(ennf_transformation,[],[f28])).
fof(f94,plain,(
  ? [X0,X1,X2] : (~disjoint(X0,X2) & disjoint(X1,X2) & subset(X0,X1)) => (~disjoint(sK0,sK2) & disjoint(sK1,sK2) & subset(sK0,sK1))),
  introduced(choice_axiom,[])).
fof(f95,plain,(
  ~disjoint(sK0,sK2) & disjoint(sK1,sK2) & subset(sK0,sK1)),
  inference(skolemisation,[status(esa),new_symbols(skolem,[sK0,sK1,sK2])],[f66,f94])).
fof(f98,plain,(
  ! [X1,X0] : (? [X3] : (in(X3,X1) & in(X3,X0)) => (in(sK4(X0,X1),X1) & in(sK4(X0,X1),X0)))),
  introduced(choice_axiom,[])).
fof(f99,plain,(
  ! [X0,X1] : ((~disjoint(X0,X1) | ! [X2] : (~in(X2,X1) | ~in(X2,X0))) & ((in(sK4(X0,X1),X1) & in(sK4(X0,X1),X0)) | disjoint(X0,X1)))),
  inference(skolemisation,[status(esa),new_symbols(skolem,[sK4])],[f69,f98])).
fof(f100,plain,(
  ! [X0,X1] : ((empty_set = set_difference(X0,X1) | ~subset(X0,X1)) & (subset(X0,X1) | empty_set != set_difference(X0,X1)))),
  inference(nnf_transformation,[],[f40])).
fof(f109,plain,(
  ! [X0,X1] : ((X0 = X1 | (~subset(X1,X0) | ~subset(X0,X1))) & ((subset(X1,X0) & subset(X0,X1)) | X0 != X1))),
  inference(nnf_transformation,[],[f5])).
fof(f110,plain,(
  ! [X0,X1] : ((X0 = X1 | ~subset(X1,X0) | ~subset(X0,X1)) & ((subset(X1,X0) & subset(X0,X1)) | X0 != X1))),
  inference(flattening,[],[f109])).
fof(f111,plain,(
  ! [X0,X1] : ((disjoint(X0,X1) | set_intersection2(X0,X1) != empty_set) & (set_intersection2(X0,X1) = empty_set | ~disjoint(X0,X1)))),
  inference(nnf_transformation,[],[f11])).
fof(f116,plain,(
  ! [X0,X1,X2] : ((set_difference(X0,X1) = X2 | ? [X3] : (((in(X3,X1) | ~in(X3,X0)) | ~in(X3,X2)) & ((~in(X3,X1) & in(X3,X0)) | in(X3,X2)))) & (! [X3] : ((in(X3,X2) | (in(X3,X1) | ~in(X3,X0))) & ((~in(X3,X1) & in(X3,X0)) | ~in(X3,X2))) | set_difference(X0,X1) != X2))),
  inference(nnf_transformation,[],[f10])).
fof(f117,plain,(
  ! [X0,X1,X2] : ((set_difference(X0,X1) = X2 | ? [X3] : ((in(X3,X1) | ~in(X3,X0) | ~in(X3,X2)) & ((~in(X3,X1) & in(X3,X0)) | in(X3,X2)))) & (! [X3] : ((in(X3,X2) | in(X3,X1) | ~in(X3,X0)) & ((~in(X3,X1) & in(X3,X0)) | ~in(X3,X2))) | set_difference(X0,X1) != X2))),
  inference(flattening,[],[f116])).
fof(f118,plain,(
  ! [X0,X1,X2] : ((set_difference(X0,X1) = X2 | ? [X3] : ((in(X3,X1) | ~in(X3,X0) | ~in(X3,X2)) & ((~in(X3,X1) & in(X3,X0)) | in(X3,X2)))) & (! [X4] : ((in(X4,X2) | in(X4,X1) | ~in(X4,X0)) & ((~in(X4,X1) & in(X4,X0)) | ~in(X4,X2))) | set_difference(X0,X1) != X2))),
  inference(rectify,[],[f117])).
fof(f119,plain,(
  ! [X2,X1,X0] : (? [X3] : ((in(X3,X1) | ~in(X3,X0) | ~in(X3,X2)) & ((~in(X3,X1) & in(X3,X0)) | in(X3,X2))) => ((in(sK8(X0,X1,X2),X1) | ~in(sK8(X0,X1,X2),X0) | ~in(sK8(X0,X1,X2),X2)) & ((~in(sK8(X0,X1,X2),X1) & in(sK8(X0,X1,X2),X0)) | in(sK8(X0,X1,X2),X2))))),
  introduced(choice_axiom,[])).
fof(f120,plain,(
  ! [X0,X1,X2] : ((set_difference(X0,X1) = X2 | ((in(sK8(X0,X1,X2),X1) | ~in(sK8(X0,X1,X2),X0) | ~in(sK8(X0,X1,X2),X2)) & ((~in(sK8(X0,X1,X2),X1) & in(sK8(X0,X1,X2),X0)) | in(sK8(X0,X1,X2),X2)))) & (! [X4] : ((in(X4,X2) | in(X4,X1) | ~in(X4,X0)) & ((~in(X4,X1) & in(X4,X0)) | ~in(X4,X2))) | set_difference(X0,X1) != X2))),
  inference(skolemisation,[status(esa),new_symbols(skolem,[sK8])],[f118,f119])).
fof(f135,plain,(
  subset(sK0,sK1)),
  inference(cnf_transformation,[],[f95])).
fof(f136,plain,(
  disjoint(sK1,sK2)),
  inference(cnf_transformation,[],[f95])).
fof(f137,plain,(
  ~disjoint(sK0,sK2)),
  inference(cnf_transformation,[],[f95])).
fof(f140,plain,(
  ( ! [X0,X1] : (subset(X0,set_union2(X0,X1))) )),
  inference(cnf_transformation,[],[f55])).
fof(f142,plain,(
  ( ! [X0,X1] : (subset(set_difference(X0,X1),X0)) )),
  inference(cnf_transformation,[],[f39])).
fof(f143,plain,(
  ( ! [X0,X1] : (set_union2(X0,X1) = set_union2(X0,set_difference(X1,X0))) )),
  inference(cnf_transformation,[],[f41])).
fof(f144,plain,(
  ( ! [X0,X1] : (set_difference(X0,X1) = set_difference(set_union2(X0,X1),X1)) )),
  inference(cnf_transformation,[],[f45])).
fof(f145,plain,(
  ( ! [X0,X1] : (set_intersection2(X0,X1) = set_difference(X0,set_difference(X0,X1))) )),
  inference(cnf_transformation,[],[f47])).
fof(f148,plain,(
  ( ! [X0,X1] : (in(sK4(X0,X1),X0) | disjoint(X0,X1)) )),
  inference(cnf_transformation,[],[f99])).
fof(f149,plain,(
  ( ! [X0,X1] : (in(sK4(X0,X1),X1) | disjoint(X0,X1)) )),
  inference(cnf_transformation,[],[f99])).
fof(f152,plain,(
  ( ! [X0,X1] : (~subset(X0,X1) | set_union2(X0,X1) = X1) )),
  inference(cnf_transformation,[],[f71])).
fof(f155,plain,(
  ( ! [X0,X1] : (~subset(X0,X1) | empty_set = set_difference(X0,X1)) )),
  inference(cnf_transformation,[],[f100])).
fof(f165,plain,(
  ( ! [X0] : (set_difference(X0,empty_set) = X0) )),
  inference(cnf_transformation,[],[f42])).
fof(f176,plain,(
  ( ! [X0,X1] : (set_union2(X0,X1) = set_union2(X1,X0)) )),
  inference(cnf_transformation,[],[f3])).
fof(f177,plain,(
  ( ! [X0,X1] : (set_intersection2(X0,X1) = set_intersection2(X1,X0)) )),
  inference(cnf_transformation,[],[f4])).
fof(f187,plain,(
  ( ! [X0,X1] : (~subset(X0,X1) | ~subset(X1,X0) | X0 = X1) )),
  inference(cnf_transformation,[],[f110])).
fof(f189,plain,(
  ( ! [X0,X1] : (set_intersection2(X0,X1) = empty_set | ~disjoint(X0,X1)) )),
  inference(cnf_transformation,[],[f111])).
fof(f196,plain,(
  ( ! [X4,X2,X0,X1] : (in(X4,X0) | ~in(X4,X2) | set_difference(X0,X1) != X2) )),
  inference(cnf_transformation,[],[f120])).
fof(f197,plain,(
  ( ! [X4,X2,X0,X1] : (~in(X4,X1) | ~in(X4,X2) | set_difference(X0,X1) != X2) )),
  inference(cnf_transformation,[],[f120])).
fof(f224,plain,(
  ( ! [X0,X1] : (set_difference(X0,set_difference(X0,X1)) = set_difference(X1,set_difference(X1,X0))) )),
  inference(definition_unfolding,[],[f177,f145,f145])).
fof(f226,plain,(
  ( ! [X0,X1] : (~disjoint(X0,X1) | empty_set = set_difference(X0,set_difference(X0,X1))) )),
  inference(definition_unfolding,[],[f189,f145])).
fof(f237,plain,(
  ( ! [X4,X0,X1] : (~in(X4,X1) | ~in(X4,set_difference(X0,X1))) )),
  inference(equality_resolution,[],[f197])).
fof(f238,plain,(
  ( ! [X4,X0,X1] : (~in(X4,set_difference(X0,X1)) | in(X4,X0)) )),
  inference(equality_resolution,[],[f196])).
fof(f291,plain,(
  ( ! [X2,X1] : (set_union2(X1,X2) = set_union2(X1,set_union2(X1,X2))) )),
  inference(resolution,[],[f152,f140])).
fof(f295,plain,(
  set_union2(sK0,sK1) = sK1),
  inference(resolution,[],[f152,f135])).
fof(f316,plain,(
  ( ! [X2,X1] : (empty_set = set_difference(X1,set_union2(X1,X2))) )),
  inference(resolution,[],[f155,f140])).
fof(f333,plain,(
  ( ! [X10,X8,X9] : (~in(sK4(X8,X9),set_difference(X10,X9)) | disjoint(X8,X9)) )),
  inference(resolution,[],[f237,f149])).
fof(f343,plain,(
  ( ! [X4,X2,X3] : (in(sK4(set_difference(X2,X3),X4),X2) | disjoint(set_difference(X2,X3),X4)) )),
  inference(resolution,[],[f238,f148])).
fof(f371,plain,(
  ( ! [X2,X1] : (set_difference(X1,X2) = set_difference(set_union2(X2,X1),X2)) )),
  inference(superposition,[],[f144,f176])).
fof(f373,plain,(
  ( ! [X6,X7] : (set_difference(X6,set_difference(X7,X6)) = set_difference(set_union2(X6,X7),set_difference(X7,X6))) )),
  inference(superposition,[],[f144,f143])).
fof(f561,plain,(
  ( ! [X12,X11] : (subset(set_difference(X12,set_difference(X12,X11)),X11)) )),
  inference(superposition,[],[f142,f224])).
fof(f1382,plain,(
  spl13_24 <=> set_difference(sK1,sK2) = sK1),
  introduced(avatar_definition,[new_symbols(naming,[spl13_24])])).
fof(f1383,plain,(
  set_difference(sK1,sK2) = sK1 | ~spl13_24),
  inference(avatar_component_clause,[],[f1382])).
fof(f1905,plain,(
  empty_set = set_difference(sK1,set_difference(sK1,sK2))),
  inference(resolution,[],[f136,f226])).
fof(f1956,plain,(
  subset(set_difference(sK1,empty_set),set_difference(sK1,sK2))),
  inference(superposition,[],[f561,f1905])).
fof(f1963,plain,(
  subset(sK1,set_difference(sK1,sK2))),
  inference(forward_demodulation,[],[f1956,f165])).
fof(f1989,plain,(
  ~subset(set_difference(sK1,sK2),sK1) | set_difference(sK1,sK2) = sK1),
  inference(resolution,[],[f1963,f187])).
fof(f1996,plain,(
  set_difference(sK1,sK2) = sK1),
  inference(subsumption_resolution,[],[f1989,f142])).
fof(f1997,plain,(
  spl13_24),
  inference(avatar_split_clause,[],[f1996,f1382])).
fof(f2849,plain,(
  ( ! [X2,X0,X1] : (disjoint(set_difference(set_difference(X0,X1),X2),X1) | disjoint(set_difference(set_difference(X0,X1),X2),X1)) )),
  inference(resolution,[],[f343,f333])).
fof(f2875,plain,(
  ( ! [X2,X0,X1] : (disjoint(set_difference(set_difference(X0,X1),X2),X1)) )),
  inference(duplicate_literal_removal,[],[f2849])).
fof(f3339,plain,(
  ( ! [X6,X5] : (set_difference(X5,set_difference(set_union2(X5,X6),X5)) = set_difference(set_union2(X5,X6),set_difference(set_union2(X5,X6),X5))) )),
  inference(superposition,[],[f373,f291])).
fof(f3392,plain,(
  ( ! [X6,X5] : (set_difference(X5,set_difference(X5,set_union2(X5,X6))) = set_difference(X5,set_difference(set_union2(X5,X6),X5))) )),
  inference(forward_demodulation,[],[f3339,f224])).
fof(f3393,plain,(
  ( ! [X6,X5] : (set_difference(X5,set_difference(X6,X5)) = set_difference(X5,set_difference(X5,set_union2(X5,X6)))) )),
  inference(forward_demodulation,[],[f3392,f371])).
fof(f3394,plain,(
  ( ! [X6,X5] : (set_difference(X5,empty_set) = set_difference(X5,set_difference(X6,X5))) )),
  inference(forward_demodulation,[],[f3393,f316])).
fof(f3395,plain,(
  ( ! [X6,X5] : (set_difference(X5,set_difference(X6,X5)) = X5) )),
  inference(forward_demodulation,[],[f3394,f165])).
fof(f8484,plain,(
  ( ! [X35] : (disjoint(set_difference(sK1,X35),sK2)) ) | ~spl13_24),
  inference(superposition,[],[f2875,f1383])).
fof(f8869,plain,(
  ( ! [X6,X7] : (set_difference(set_union2(X6,X7),set_difference(X7,X6)) = X6) )),
  inference(backward_demodulation,[],[f3395,f373])).
fof(f9076,plain,(
  set_difference(sK1,set_difference(sK1,sK0)) = sK0),
  inference(superposition,[],[f8869,f295])).
fof(f9268,plain,(
  disjoint(sK0,sK2) | ~spl13_24),
  inference(superposition,[],[f8484,f9076])).
fof(f9375,plain,(
  $false | ~spl13_24),
  inference(subsumption_resolution,[],[f9268,f137])).
fof(f9376,plain,(
  ~spl13_24),
  inference(avatar_contradiction_clause,[],[f9375])).
fof(f9532,plain,(
  $false),
  inference(avatar_sat_refutation,[],[f1997,f9376])).
% SZS output end Proof for SEU140+2

Sample proof for NLP042+1

% # SZS output start Saturation.
tff(u313,negated_conjecture,
    ~woman(sK0,sK3)).

tff(u312,negated_conjecture,
    ~woman(sK0,sK4)).

tff(u311,negated_conjecture,
    ~woman(sK0,sK2)).

tff(u310,axiom,
    (![X1, X0] : ((~woman(X0,X1) | ~forename(X0,X1))))).

tff(u309,axiom,
    (![X1, X0] : ((~woman(X0,X1) | ~unisex(X0,X1))))).

tff(u308,negated_conjecture,
    woman(sK0,sK1)).

tff(u307,axiom,
    (![X1, X0] : ((~female(X0,X1) | ~unisex(X0,X1))))).

tff(u306,axiom,
    (![X1, X0] : ((female(X0,X1) | ~woman(X0,X1))))).

tff(u305,negated_conjecture,
    ~human_person(sK0,sK3)).

tff(u304,negated_conjecture,
    ~human_person(sK0,sK4)).

tff(u303,negated_conjecture,
    ~human_person(sK0,sK2)).

tff(u302,axiom,
    (![X1, X0] : ((~human_person(X0,X1) | ~forename(X0,X1))))).

tff(u301,axiom,
    (![X1, X0] : ((human_person(X0,X1) | ~woman(X0,X1))))).

tff(u300,negated_conjecture,
    ~animate(sK0,sK3)).

tff(u299,axiom,
    (![X1, X0] : ((animate(X0,X1) | ~human_person(X0,X1))))).

tff(u298,axiom,
    (![X1, X0] : ((~human(X0,X1) | ~forename(X0,X1))))).

tff(u297,axiom,
    (![X1, X0] : ((human(X0,X1) | ~human_person(X0,X1))))).

tff(u296,negated_conjecture,
    ~organism(sK0,sK3)).

tff(u295,negated_conjecture,
    ~organism(sK0,sK4)).

tff(u294,negated_conjecture,
    ~organism(sK0,sK2)).

tff(u293,axiom,
    (![X1, X0] : ((organism(X0,X1) | ~human_person(X0,X1))))).

tff(u292,negated_conjecture,
    ~living(sK0,sK3)).

tff(u291,axiom,
    (![X1, X0] : ((living(X0,X1) | ~organism(X0,X1))))).

tff(u290,negated_conjecture,
    ~entity(sK0,sK4)).

tff(u289,negated_conjecture,
    ~entity(sK0,sK2)).

tff(u288,axiom,
    (![X1, X0] : ((entity(X0,X1) | ~organism(X0,X1))))).

tff(u287,negated_conjecture,
    entity(sK0,sK3)).

tff(u286,negated_conjecture,
    ((~entity(sK0,sK1)) | entity(sK0,sK1))).

tff(u285,axiom,
    (![X1, X0] : ((~mia_forename(X0,X1) | ~entity(X0,X1))))).

tff(u284,negated_conjecture,
    ~mia_forename(sK0,sK1)).

tff(u283,negated_conjecture,
    ~mia_forename(sK0,sK4)).

tff(u282,negated_conjecture,
    mia_forename(sK0,sK2)).

tff(u281,negated_conjecture,
    ~forename(sK0,sK1)).

tff(u280,negated_conjecture,
    ~forename(sK0,sK4)).

tff(u279,axiom,
    (![X1, X0] : ((~forename(X0,X1) | ~entity(X0,X1))))).

tff(u278,negated_conjecture,
    forename(sK0,sK2)).

tff(u277,axiom,
    (![X1, X0] : ((forename(X0,X1) | ~mia_forename(X0,X1))))).

tff(u276,axiom,
    (![X1, X0] : ((~abstraction(X0,X1) | ~entity(X0,X1))))).

tff(u275,axiom,
    (![X1, X0] : ((~abstraction(X0,X1) | nonhuman(X0,X1))))).

tff(u274,negated_conjecture,
    ~abstraction(sK0,sK1)).

tff(u273,negated_conjecture,
    ~abstraction(sK0,sK4)).

tff(u272,axiom,
    (![X1, X0] : ((abstraction(X0,X1) | ~forename(X0,X1))))).

tff(u271,negated_conjecture,
    ~unisex(sK0,sK1)).

tff(u270,axiom,
    (![X1, X0] : ((unisex(X0,X1) | ~abstraction(X0,X1))))).

tff(u269,negated_conjecture,
    unisex(sK0,sK3)).

tff(u268,negated_conjecture,
    unisex(sK0,sK4)).

tff(u267,axiom,
    (![X1, X0] : ((~general(X0,X1) | ~entity(X0,X1))))).

tff(u266,negated_conjecture,
    ~general(sK0,sK4)).

tff(u265,axiom,
    (![X1, X0] : ((general(X0,X1) | ~abstraction(X0,X1))))).

tff(u264,axiom,
    (![X1, X0] : ((~nonhuman(X0,X1) | ~human(X0,X1))))).

tff(u263,axiom,
    (![X1, X0] : ((nonhuman(X0,X1) | ~forename(X0,X1))))).

tff(u262,axiom,
    (![X1, X0] : ((~relation(X0,X1) | abstraction(X0,X1))))).

tff(u261,axiom,
    (![X1, X0] : ((relation(X0,X1) | ~forename(X0,X1))))).

tff(u260,axiom,
    (![X1, X0] : ((~relname(X0,X1) | relation(X0,X1))))).

tff(u259,axiom,
    (![X1, X0] : ((relname(X0,X1) | ~forename(X0,X1))))).

tff(u258,axiom,
    (![X1, X0] : ((~object(X0,X1) | unisex(X0,X1))))).

tff(u257,axiom,
    (![X1, X0] : ((~object(X0,X1) | entity(X0,X1))))).

tff(u256,axiom,
    (![X1, X0] : ((~object(X0,X1) | nonliving(X0,X1))))).

tff(u255,negated_conjecture,
    object(sK0,sK3)).

tff(u254,axiom,
    (![X1, X0] : ((~nonliving(X0,X1) | ~living(X0,X1))))).

tff(u253,axiom,
    (![X1, X0] : ((~nonliving(X0,X1) | ~animate(X0,X1))))).

tff(u252,negated_conjecture,
    nonliving(sK0,sK3)).

tff(u251,negated_conjecture,
    ~existent(sK0,sK4)).

tff(u250,axiom,
    (![X1, X0] : ((existent(X0,X1) | ~entity(X0,X1))))).

tff(u249,axiom,
    (![X1, X0] : ((~specific(X0,X1) | ~general(X0,X1))))).

tff(u248,axiom,
    (![X1, X0] : ((specific(X0,X1) | ~entity(X0,X1))))).

tff(u247,negated_conjecture,
    specific(sK0,sK4)).

tff(u246,axiom,
    (![X1, X0] : ((~substance_matter(X0,X1) | object(X0,X1))))).

tff(u245,negated_conjecture,
    substance_matter(sK0,sK3)).

tff(u244,axiom,
    (![X1, X0] : ((~food(X0,X1) | substance_matter(X0,X1))))).

tff(u243,negated_conjecture,
    food(sK0,sK3)).

tff(u242,axiom,
    (![X1, X0] : ((~beverage(X0,X1) | food(X0,X1))))).

tff(u241,negated_conjecture,
    beverage(sK0,sK3)).

tff(u240,axiom,
    (![X1, X0] : ((~shake_beverage(X0,X1) | beverage(X0,X1))))).

tff(u239,negated_conjecture,
    shake_beverage(sK0,sK3)).

tff(u238,axiom,
    (![X1, X0] : ((~order(X0,X1) | eventuality(X0,X1))))).

tff(u237,negated_conjecture,
    order(sK0,sK4)).

tff(u236,axiom,
    (![X1, X0] : ((~event(X0,X1) | eventuality(X0,X1))))).

tff(u235,negated_conjecture,
    event(sK0,sK4)).

tff(u234,axiom,
    (![X1, X0] : ((event(X0,X1) | ~order(X0,X1))))).

tff(u233,axiom,
    (![X1, X0] : ((~eventuality(X0,X1) | unisex(X0,X1))))).

tff(u232,axiom,
    (![X1, X0] : ((~eventuality(X0,X1) | specific(X0,X1))))).

tff(u231,axiom,
    (![X1, X0] : ((~eventuality(X0,X1) | nonexistent(X0,X1))))).

tff(u230,negated_conjecture,
    eventuality(sK0,sK4)).

tff(u229,axiom,
    (![X1, X0] : ((~nonexistent(X0,X1) | ~existent(X0,X1))))).

tff(u228,negated_conjecture,
    nonexistent(sK0,sK4)).

tff(u227,axiom,
    (![X1, X0] : ((~act(X0,X1) | event(X0,X1))))).

tff(u226,axiom,
    (![X1, X0] : ((act(X0,X1) | ~order(X0,X1))))).

tff(u225,axiom,
    (![X1, X3, X0, X2] : ((~of(X0,X2,X1) | (X2 = X3) | ~forename(X0,X3) | ~of(X0,X3,X1) | ~forename(X0,X2) | ~entity(X0,X1))))).

tff(u224,negated_conjecture,
    ((~(![X0] : ((~of(sK0,X0,sK1) | (sK2 = X0) | ~forename(sK0,X0))))) | (![X0] : ((~of(sK0,X0,sK1) | (sK2 = X0) | ~forename(sK0,X0)))))).

tff(u223,negated_conjecture,
    of(sK0,sK2,sK1)).

tff(u222,axiom,
    (![X1, X3, X0] : ((~nonreflexive(X0,X1) | ~agent(X0,X1,X3) | ~patient(X0,X1,X3))))).

tff(u221,negated_conjecture,
    nonreflexive(sK0,sK4)).

tff(u220,negated_conjecture,
    ~agent(sK0,sK4,sK3)).

tff(u219,negated_conjecture,
    agent(sK0,sK4,sK1)).

tff(u218,negated_conjecture,
    (![X0] : ((~patient(sK0,sK4,X0) | ~agent(sK0,sK4,X0))))).

tff(u217,negated_conjecture,
    patient(sK0,sK4,sK3)).

% # SZS output end Saturation.

Sample proof for SWV017+1

% SZS output start FiniteModel for SWV017+1
tff(declare_$i,type,$i:$tType).
tff(declare_$i1,type,at:$i).
tff(declare_$i2,type,an_a_nonce:$i).
tff(finite_domain,axiom,
      ! [X:$i] : (
         X = at | X = an_a_nonce
      ) ).

tff(distinct_domain,axiom,
         at != an_a_nonce
).

tff(declare_t,type,t:$i).
tff(t_definition,axiom,t = at).
tff(declare_a,type,a:$i).
tff(a_definition,axiom,a = at).
tff(declare_b,type,b:$i).
tff(b_definition,axiom,b = at).
tff(declare_bt,type,bt:$i).
tff(bt_definition,axiom,bt = an_a_nonce).
tff(declare_an_intruder_nonce,type,an_intruder_nonce:$i).
tff(an_intruder_nonce_definition,axiom,an_intruder_nonce = an_a_nonce).
tff(declare_key,type,key: $i * $i > $i).
tff(function_key,axiom,
           key(at,at) = at
         & key(at,an_a_nonce) = at
         & key(an_a_nonce,at) = at
         & key(an_a_nonce,an_a_nonce) = an_a_nonce

).

tff(declare_pair,type,pair: $i * $i > $i).
tff(function_pair,axiom,
           pair(at,at) = at
         & pair(at,an_a_nonce) = an_a_nonce
         & pair(an_a_nonce,at) = at
         & pair(an_a_nonce,an_a_nonce) = at

).

tff(declare_sent,type,sent: $i * $i * $i > $i).
tff(function_sent,axiom,
           sent(at,at,at) = at
         & sent(at,at,an_a_nonce) = at
         & sent(at,an_a_nonce,at) = at
         & sent(at,an_a_nonce,an_a_nonce) = an_a_nonce
         & sent(an_a_nonce,at,at) = at
         & sent(an_a_nonce,at,an_a_nonce) = at
         & sent(an_a_nonce,an_a_nonce,at) = at
         & sent(an_a_nonce,an_a_nonce,an_a_nonce) = at

).

tff(declare_quadruple,type,quadruple: $i * $i * $i * $i > $i).
tff(function_quadruple,axiom,
           quadruple(at,at,at,at) = at
         & quadruple(at,at,at,an_a_nonce) = at
         & quadruple(at,at,an_a_nonce,at) = at
         & quadruple(at,at,an_a_nonce,an_a_nonce) = at
         & quadruple(at,an_a_nonce,at,at) = at
         & quadruple(at,an_a_nonce,at,an_a_nonce) = at
         & quadruple(at,an_a_nonce,an_a_nonce,at) = at
         & quadruple(at,an_a_nonce,an_a_nonce,an_a_nonce) = at
         & quadruple(an_a_nonce,at,at,at) = at
         & quadruple(an_a_nonce,at,at,an_a_nonce) = an_a_nonce
         & quadruple(an_a_nonce,at,an_a_nonce,at) = an_a_nonce
         & quadruple(an_a_nonce,at,an_a_nonce,an_a_nonce) = an_a_nonce
         & quadruple(an_a_nonce,an_a_nonce,at,at) = an_a_nonce
         & quadruple(an_a_nonce,an_a_nonce,at,an_a_nonce) = at
         & quadruple(an_a_nonce,an_a_nonce,an_a_nonce,at) = an_a_nonce
         & quadruple(an_a_nonce,an_a_nonce,an_a_nonce,an_a_nonce) = an_a_nonce

).

tff(declare_encrypt,type,encrypt: $i * $i > $i).
tff(function_encrypt,axiom,
           encrypt(at,at) = an_a_nonce
         & encrypt(at,an_a_nonce) = an_a_nonce
         & encrypt(an_a_nonce,at) = at
         & encrypt(an_a_nonce,an_a_nonce) = at

).

tff(declare_triple,type,triple: $i * $i * $i > $i).
tff(function_triple,axiom,
           triple(at,at,at) = at
         & triple(at,at,an_a_nonce) = an_a_nonce
         & triple(at,an_a_nonce,at) = at
         & triple(at,an_a_nonce,an_a_nonce) = at
         & triple(an_a_nonce,at,at) = at
         & triple(an_a_nonce,at,an_a_nonce) = an_a_nonce
         & triple(an_a_nonce,an_a_nonce,at) = at
         & triple(an_a_nonce,an_a_nonce,an_a_nonce) = an_a_nonce

).

tff(declare_generate_b_nonce,type,generate_b_nonce: $i > $i).
tff(function_generate_b_nonce,axiom,
           generate_b_nonce(at) = an_a_nonce
         & generate_b_nonce(an_a_nonce) = an_a_nonce

).

tff(declare_generate_expiration_time,type,generate_expiration_time: $i > $i).
tff(function_generate_expiration_time,axiom,
           generate_expiration_time(at) = an_a_nonce
         & generate_expiration_time(an_a_nonce) = an_a_nonce

).

tff(declare_generate_key,type,generate_key: $i > $i).
tff(function_generate_key,axiom,
           generate_key(at) = at
         & generate_key(an_a_nonce) = at

).

tff(declare_generate_intruder_nonce,type,generate_intruder_nonce: $i > $i).
tff(function_generate_intruder_nonce,axiom,
           generate_intruder_nonce(at) = at
         & generate_intruder_nonce(an_a_nonce) = an_a_nonce

).

tff(declare_a_holds,type,a_holds: $i > $o ).
tff(predicate_a_holds,axiom,
           a_holds(at)
         & a_holds(an_a_nonce)

).

tff(declare_party_of_protocol,type,party_of_protocol: $i > $o ).
tff(predicate_party_of_protocol,axiom,
           party_of_protocol(at)
         & party_of_protocol(an_a_nonce)

).

tff(declare_message,type,message: $i > $o ).
tff(predicate_message,axiom,
           message(at)
         & message(an_a_nonce)

).

tff(declare_a_stored,type,a_stored: $i > $o ).
tff(predicate_a_stored,axiom,
           ~a_stored(at)
         & a_stored(an_a_nonce)

).

tff(declare_b_holds,type,b_holds: $i > $o ).
tff(predicate_b_holds,axiom,
           b_holds(at)
         & b_holds(an_a_nonce)

).

tff(declare_fresh_to_b,type,fresh_to_b: $i > $o ).
tff(predicate_fresh_to_b,axiom,
           fresh_to_b(at)
         & fresh_to_b(an_a_nonce)

).

tff(declare_b_stored,type,b_stored: $i > $o ).
tff(predicate_b_stored,axiom,
           b_stored(at)
         & b_stored(an_a_nonce)

).

tff(declare_a_key,type,a_key: $i > $o ).
tff(predicate_a_key,axiom,
           a_key(at)
         & ~a_key(an_a_nonce)

).

tff(declare_t_holds,type,t_holds: $i > $o ).
tff(predicate_t_holds,axiom,
           t_holds(at)
         & ~t_holds(an_a_nonce)

).

tff(declare_a_nonce,type,a_nonce: $i > $o ).
tff(predicate_a_nonce,axiom,
           ~a_nonce(at)
         & a_nonce(an_a_nonce)

).

tff(declare_intruder_message,type,intruder_message: $i > $o ).
tff(predicate_intruder_message,axiom,
           intruder_message(at)
         & intruder_message(an_a_nonce)

).

tff(declare_intruder_holds,type,intruder_holds: $i > $o ).
tff(predicate_intruder_holds,axiom,
           intruder_holds(at)
         & intruder_holds(an_a_nonce)

).

tff(declare_fresh_intruder_nonce,type,fresh_intruder_nonce: $i > $o ).
tff(predicate_fresh_intruder_nonce,axiom,
           ~fresh_intruder_nonce(at)
         & fresh_intruder_nonce(an_a_nonce)

).

% SZS output end FiniteModel for SWV017+1