% SZS status Theorem for theBenchmark % SZS output start Proof %ClaNum:116(EqnAxiom:34) %VarNum:421(SingletonVarNum:165) %MaxLitNum:4 %MaxfuncDepth:2 %SharedTerms:12 %goalClause: 37 38 55 %singleGoalClaCount:3 [35]P1(a2) [36]P1(a3) [37]P4(a5,a6) [38]P7(a6,a8) [54]~P1(a11) [55]~P7(a5,a8) [40]P4(a2,x401) [43]P4(x431,x431) [56]~P12(x561,x561) [39]E(f9(a2,x391),a2) [41]E(f10(x411,a2),x411) [42]E(f9(x421,a2),x421) [44]E(f10(x441,x441),x441) [46]E(f9(x461,f9(x461,a2)),a2) [49]E(f9(x491,f9(x491,x491)),x491) [45]E(f10(x451,x452),f10(x452,x451)) [47]P4(x471,f10(x471,x472)) [48]P4(f9(x481,x482),x481) [50]E(f10(x501,f9(x502,x501)),f10(x501,x502)) [51]E(f9(f10(x511,x512),x512),f9(x511,x512)) [52]E(f9(x521,f9(x521,x522)),f9(x522,f9(x522,x521))) [57]~P1(x571)+E(x571,a2) [61]~P4(x611,a2)+E(x611,a2) [62]P13(f14(x621),x621)+E(x621,a2) [59]~E(x592,x591)+P4(x591,x592) [60]~E(x601,x602)+P4(x601,x602) [63]~P13(x632,x631)+~E(x631,a2) [64]~P12(x641,x642)+~E(x641,x642) [65]~P1(x651)+~P13(x652,x651) [70]~P12(x701,x702)+P4(x701,x702) [71]~P7(x712,x711)+P7(x711,x712) [74]~P13(x742,x741)+~P13(x741,x742) [75]~P12(x752,x751)+~P12(x751,x752) [76]~P4(x762,x761)+~P12(x761,x762) [67]~P4(x671,x672)+E(f9(x671,x672),a2) [69]P4(x691,x692)+~E(f9(x691,x692),a2) [72]~P4(x721,x722)+E(f10(x721,x722),x722) [78]P1(x781)+~P1(f10(x782,x781)) [79]P1(x791)+~P1(f10(x791,x792)) [80]P4(x801,x802)+P13(f15(x801,x802),x801) [81]P7(x811,x812)+P13(f16(x811,x812),x812) [82]P7(x821,x822)+P13(f16(x821,x822),x821) [96]P4(x961,x962)+~P13(f15(x961,x962),x962) [88]~P7(x881,x882)+E(f9(x881,f9(x881,x882)),a2) [89]~P4(x891,x892)+E(f10(x891,f9(x892,x891)),x892) [90]~P4(x901,x902)+E(f9(x901,f9(x901,x902)),x901) [95]P7(x951,x952)+~E(f9(x951,f9(x951,x952)),a2) [104]P7(x1041,x1042)+P13(f18(x1041,x1042),f9(x1041,f9(x1041,x1042))) [99]~P4(x991,x993)+P4(f9(x991,x992),f9(x993,x992)) [106]~P7(x1061,x1062)+~P13(x1063,f9(x1061,f9(x1061,x1062))) [107]~P4(x1071,x1073)+P4(f9(x1071,f9(x1071,x1072)),f9(x1073,f9(x1073,x1072))) [58]~P1(x582)+~P1(x581)+E(x581,x582) [73]P12(x731,x732)+~P4(x731,x732)+E(x731,x732) [77]~P4(x772,x771)+~P4(x771,x772)+E(x771,x772) [97]E(x971,x972)+P13(f17(x971,x972),x972)+P13(f17(x971,x972),x971) [103]E(x1031,x1032)+~P13(f17(x1031,x1032),x1032)+~P13(f17(x1031,x1032),x1031) [83]~P4(x833,x832)+P13(x831,x832)+~P13(x831,x833) [84]~P4(x841,x843)+P4(x841,x842)+~P4(x843,x842) [91]~P7(x913,x912)+~P13(x911,x912)+~P13(x911,x913) [98]~P4(x982,x983)+~P4(x981,x983)+P4(f10(x981,x982),x983) [108]P13(f19(x1082,x1083,x1081),x1082)+P13(f19(x1082,x1083,x1081),x1081)+E(x1081,f9(x1082,x1083)) [111]P13(f19(x1112,x1113,x1111),x1111)+~P13(f19(x1112,x1113,x1111),x1113)+E(x1111,f9(x1112,x1113)) [113]~P13(f21(x1132,x1133,x1131),x1133)+~P13(f21(x1132,x1133,x1131),x1131)+E(x1131,f10(x1132,x1133)) [114]~P13(f21(x1142,x1143,x1141),x1142)+~P13(f21(x1142,x1143,x1141),x1141)+E(x1141,f10(x1142,x1143)) [105]~P4(x1051,x1053)+~P4(x1051,x1052)+P4(x1051,f9(x1052,f9(x1052,x1053))) [109]P13(f20(x1092,x1093,x1091),x1093)+P13(f20(x1092,x1093,x1091),x1091)+E(x1091,f9(x1092,f9(x1092,x1093))) [110]P13(f20(x1102,x1103,x1101),x1102)+P13(f20(x1102,x1103,x1101),x1101)+E(x1101,f9(x1102,f9(x1102,x1103))) [85]~P13(x851,x853)+P13(x851,x852)+~E(x853,f9(x852,x854)) [86]~P13(x861,x864)+P13(x861,x862)+~E(x862,f10(x863,x864)) [87]~P13(x871,x873)+P13(x871,x872)+~E(x872,f10(x873,x874)) [92]~P13(x924,x921)+~P13(x924,x923)+~E(x921,f9(x922,x923)) [100]~P13(x1001,x1003)+P13(x1001,x1002)+~E(x1003,f9(x1004,f9(x1004,x1002))) [112]P13(f21(x1122,x1123,x1121),x1123)+P13(f21(x1122,x1123,x1121),x1122)+P13(f21(x1122,x1123,x1121),x1121)+E(x1121,f10(x1122,x1123)) [115]P13(f19(x1152,x1153,x1151),x1153)+~P13(f19(x1152,x1153,x1151),x1152)+~P13(f19(x1152,x1153,x1151),x1151)+E(x1151,f9(x1152,x1153)) [116]~P13(f20(x1162,x1163,x1161),x1163)+~P13(f20(x1162,x1163,x1161),x1162)+~P13(f20(x1162,x1163,x1161),x1161)+E(x1161,f9(x1162,f9(x1162,x1163))) [93]~P13(x931,x934)+P13(x931,x932)+P13(x931,x933)+~E(x934,f10(x933,x932)) [94]~P13(x941,x944)+P13(x941,x942)+P13(x941,x943)+~E(x943,f9(x944,x942)) [102]~P13(x1021,x1024)+~P13(x1021,x1023)+P13(x1021,x1022)+~E(x1022,f9(x1023,f9(x1023,x1024))) %EqnAxiom [1]E(x11,x11) [2]E(x22,x21)+~E(x21,x22) [3]E(x31,x33)+~E(x31,x32)+~E(x32,x33) [4]~E(x41,x42)+E(f9(x41,x43),f9(x42,x43)) [5]~E(x51,x52)+E(f9(x53,x51),f9(x53,x52)) [6]~E(x61,x62)+E(f10(x61,x63),f10(x62,x63)) [7]~E(x71,x72)+E(f10(x73,x71),f10(x73,x72)) [8]~E(x81,x82)+E(f20(x81,x83,x84),f20(x82,x83,x84)) [9]~E(x91,x92)+E(f20(x93,x91,x94),f20(x93,x92,x94)) [10]~E(x101,x102)+E(f20(x103,x104,x101),f20(x103,x104,x102)) [11]~E(x111,x112)+E(f17(x111,x113),f17(x112,x113)) [12]~E(x121,x122)+E(f17(x123,x121),f17(x123,x122)) [13]~E(x131,x132)+E(f15(x131,x133),f15(x132,x133)) [14]~E(x141,x142)+E(f15(x143,x141),f15(x143,x142)) [15]~E(x151,x152)+E(f19(x151,x153,x154),f19(x152,x153,x154)) [16]~E(x161,x162)+E(f19(x163,x161,x164),f19(x163,x162,x164)) [17]~E(x171,x172)+E(f19(x173,x174,x171),f19(x173,x174,x172)) [18]~E(x181,x182)+E(f21(x181,x183,x184),f21(x182,x183,x184)) [19]~E(x191,x192)+E(f21(x193,x191,x194),f21(x193,x192,x194)) [20]~E(x201,x202)+E(f21(x203,x204,x201),f21(x203,x204,x202)) [21]~E(x211,x212)+E(f16(x211,x213),f16(x212,x213)) [22]~E(x221,x222)+E(f16(x223,x221),f16(x223,x222)) [23]~E(x231,x232)+E(f18(x231,x233),f18(x232,x233)) [24]~E(x241,x242)+E(f18(x243,x241),f18(x243,x242)) [25]~E(x251,x252)+E(f14(x251),f14(x252)) [26]~P1(x261)+P1(x262)+~E(x261,x262) [27]P13(x272,x273)+~E(x271,x272)+~P13(x271,x273) [28]P13(x283,x282)+~E(x281,x282)+~P13(x283,x281) [29]P4(x292,x293)+~E(x291,x292)+~P4(x291,x293) [30]P4(x303,x302)+~E(x301,x302)+~P4(x303,x301) [31]P7(x312,x313)+~E(x311,x312)+~P7(x311,x313) [32]P7(x323,x322)+~E(x321,x322)+~P7(x323,x321) [33]P12(x332,x333)+~E(x331,x332)+~P12(x331,x333) [34]P12(x343,x342)+~E(x341,x342)+~P12(x343,x341) %------------------------------------------- cnf(119,plain, (~P13(x1191,a2)), inference(equality_inference,[],[63])). cnf(121,plain, (~P13(x1211,f9(x1212,x1213))+P13(x1211,x1212)), inference(equality_inference,[],[85])). cnf(122,plain, (~P13(x1221,x1222)+P13(x1221,f10(x1223,x1222))), inference(equality_inference,[],[86])). cnf(123,plain, (~P13(x1231,x1232)+P13(x1231,f10(x1232,x1233))), inference(equality_inference,[],[87])). cnf(124,plain, (~P13(x1241,f9(x1242,x1243))+~P13(x1241,x1243)), inference(equality_inference,[],[92])). cnf(125,plain, (~P13(x1251,f10(x1252,x1253))+P13(x1251,x1253)+P13(x1251,x1252)), inference(equality_inference,[],[93])). cnf(126,plain, (~P13(x1261,x1262)+P13(x1261,x1263)+P13(x1261,f9(x1262,x1263))), inference(equality_inference,[],[94])). cnf(127,plain, (~P13(x1271,f9(x1272,f9(x1272,x1273)))+P13(x1271,x1273)), inference(equality_inference,[],[100])). cnf(130,plain, (~P12(x1301,x1302)+~P4(x1302,x1301)), inference(rename_variables,[],[76])). cnf(132,plain, (~P12(x1321,x1322)+~P4(x1322,x1321)), inference(rename_variables,[],[76])). cnf(134,plain, (~P12(x1341,x1342)+~P4(x1342,x1341)), inference(rename_variables,[],[76])). cnf(137,plain, (E(f9(x1371,x1372),a2)+~P4(x1371,x1372)), inference(rename_variables,[],[67])). cnf(139,plain, (E(f9(x1391,x1392),a2)+~P4(x1391,x1392)), inference(rename_variables,[],[67])). cnf(141,plain, (E(f9(x1411,x1412),a2)+~P4(x1411,x1412)), inference(rename_variables,[],[67])). cnf(144,plain, (P7(x1441,x1442)+~P7(x1442,x1441)), inference(rename_variables,[],[71])). cnf(148,plain, (E(f10(x1481,x1482),x1482)+~P4(x1481,x1482)), inference(rename_variables,[],[72])). cnf(150,plain, (E(f10(x1501,x1502),x1502)+~P4(x1501,x1502)), inference(rename_variables,[],[72])). cnf(152,plain, (E(f10(x1521,x1522),x1522)+~P4(x1521,x1522)), inference(rename_variables,[],[72])). cnf(155,plain, (P13(f16(x1551,x1552),x1552)+P7(x1551,x1552)), inference(rename_variables,[],[81])). cnf(157,plain, (P13(f16(x1571,x1572),x1572)+P7(x1571,x1572)), inference(rename_variables,[],[81])). cnf(161,plain, (P13(f16(x1611,x1612),x1611)+P7(x1611,x1612)), inference(rename_variables,[],[82])). cnf(165,plain, (E(f9(x1651,f9(x1651,x1652)),a2)+~P7(x1651,x1652)), inference(rename_variables,[],[88])). cnf(169,plain, (E(f10(x1691,f9(x1692,x1691)),x1692)+~P4(x1691,x1692)), inference(rename_variables,[],[89])). cnf(171,plain, (E(f10(x1711,f9(x1712,x1711)),x1712)+~P4(x1711,x1712)), inference(rename_variables,[],[89])). cnf(173,plain, (E(f10(x1731,f9(x1732,x1731)),x1732)+~P4(x1731,x1732)), inference(rename_variables,[],[89])). cnf(176,plain, (E(f9(x1761,f9(x1761,x1762)),x1761)+~P4(x1761,x1762)), inference(rename_variables,[],[90])). cnf(178,plain, (E(f9(x1781,f9(x1781,x1782)),x1781)+~P4(x1781,x1782)), inference(rename_variables,[],[90])). cnf(182,plain, (~E(f9(x1821,f9(x1821,x1822)),a2)+P7(x1821,x1822)), inference(rename_variables,[],[95])). cnf(184,plain, (~E(f9(x1841,f9(x1841,x1842)),a2)+P7(x1841,x1842)), inference(rename_variables,[],[95])). cnf(188,plain, (P4(f9(x1881,x1882),f9(x1883,x1882))+~P4(x1881,x1883)), inference(rename_variables,[],[99])). cnf(190,plain, (P4(f9(x1901,x1902),f9(x1903,x1902))+~P4(x1901,x1903)), inference(rename_variables,[],[99])). cnf(192,plain, (P4(f9(x1921,x1922),f9(x1923,x1922))+~P4(x1921,x1923)), inference(rename_variables,[],[99])). cnf(195,plain, (P13(f18(x1951,x1952),f9(x1951,f9(x1951,x1952)))+P7(x1951,x1952)), inference(rename_variables,[],[104])). cnf(199,plain, (~P13(x1991,f9(x1992,f9(x1992,x1993)))+~P7(x1992,x1993)), inference(rename_variables,[],[106])). cnf(201,plain, (~P13(x2011,f9(x2012,f9(x2012,x2013)))+~P7(x2012,x2013)), inference(rename_variables,[],[106])). cnf(203,plain, (~P13(x2031,f9(x2032,f9(x2032,x2033)))+~P7(x2032,x2033)), inference(rename_variables,[],[106])). cnf(206,plain, (P4(f9(x2061,f9(x2061,x2062)),f9(x2063,f9(x2063,x2062)))+~P4(x2061,x2063)), inference(rename_variables,[],[107])). cnf(210,plain, (P4(x2101,x2102)+~E(x2102,x2101)), inference(rename_variables,[],[59])). cnf(212,plain, (P4(x2121,x2122)+~E(x2122,x2121)), inference(rename_variables,[],[59])). cnf(214,plain, (P4(x2141,x2142)+~E(x2142,x2141)), inference(rename_variables,[],[59])). cnf(217,plain, (P4(x2171,x2172)+~E(x2171,x2172)), inference(rename_variables,[],[60])). cnf(219,plain, (P4(x2191,x2192)+~E(x2191,x2192)), inference(rename_variables,[],[60])). cnf(221,plain, (P4(x2211,x2212)+~E(x2211,x2212)), inference(rename_variables,[],[60])). cnf(224,plain, (~E(x2241,a2)+~P13(x2242,x2241)), inference(rename_variables,[],[63])). cnf(226,plain, (~E(x2261,a2)+~P13(x2262,x2261)), inference(rename_variables,[],[63])). cnf(228,plain, (~E(x2281,a2)+~P13(x2282,x2281)), inference(rename_variables,[],[63])). cnf(231,plain, (~E(x2311,x2312)+~P12(x2311,x2312)), inference(rename_variables,[],[64])). cnf(233,plain, (~E(x2331,x2332)+~P12(x2331,x2332)), inference(rename_variables,[],[64])). cnf(235,plain, (~E(x2351,x2352)+~P12(x2351,x2352)), inference(rename_variables,[],[64])). cnf(238,plain, (~E(f9(x2381,x2382),a2)+P4(x2381,x2382)), inference(rename_variables,[],[69])). cnf(242,plain, (P13(f15(x2421,x2422),x2421)+P4(x2421,x2422)), inference(rename_variables,[],[80])). cnf(244,plain, (P13(f15(x2441,x2442),x2441)+P4(x2441,x2442)), inference(rename_variables,[],[80])). cnf(246,plain, (P13(f15(x2461,x2462),x2461)+P4(x2461,x2462)), inference(rename_variables,[],[80])). cnf(249,plain, (~E(x2491,x2492)+E(x2492,x2491)), inference(rename_variables,[],[2])). cnf(251,plain, (~E(x2511,x2512)+E(x2512,x2511)), inference(rename_variables,[],[2])). cnf(253,plain, (~E(x2531,x2532)+E(x2532,x2531)), inference(rename_variables,[],[2])). cnf(256,plain, (E(f9(x2561,x2562),f9(x2563,x2562))+~E(x2561,x2563)), inference(rename_variables,[],[4])). cnf(258,plain, (E(f9(x2581,x2582),f9(x2583,x2582))+~E(x2581,x2583)), inference(rename_variables,[],[4])). cnf(260,plain, (E(f9(x2601,x2602),f9(x2603,x2602))+~E(x2601,x2603)), inference(rename_variables,[],[4])). cnf(263,plain, (E(f9(x2631,x2632),f9(x2631,x2633))+~E(x2632,x2633)), inference(rename_variables,[],[5])). cnf(265,plain, (E(f9(x2651,x2652),f9(x2651,x2653))+~E(x2652,x2653)), inference(rename_variables,[],[5])). cnf(267,plain, (E(f9(x2671,x2672),f9(x2671,x2673))+~E(x2672,x2673)), inference(rename_variables,[],[5])). cnf(270,plain, (E(f10(x2701,x2702),f10(x2703,x2702))+~E(x2701,x2703)), inference(rename_variables,[],[6])). cnf(272,plain, (E(f10(x2721,x2722),f10(x2723,x2722))+~E(x2721,x2723)), inference(rename_variables,[],[6])). cnf(274,plain, (E(f10(x2741,x2742),f10(x2743,x2742))+~E(x2741,x2743)), inference(rename_variables,[],[6])). cnf(277,plain, (E(f10(x2771,x2772),f10(x2771,x2773))+~E(x2772,x2773)), inference(rename_variables,[],[7])). cnf(279,plain, (E(f10(x2791,x2792),f10(x2791,x2793))+~E(x2792,x2793)), inference(rename_variables,[],[7])). cnf(281,plain, (E(f10(x2811,x2812),f10(x2811,x2813))+~E(x2812,x2813)), inference(rename_variables,[],[7])). cnf(284,plain, (E(f20(x2841,x2842,x2843),f20(x2844,x2842,x2843))+~E(x2841,x2844)), inference(rename_variables,[],[8])). cnf(286,plain, (E(f20(x2861,x2862,x2863),f20(x2864,x2862,x2863))+~E(x2861,x2864)), inference(rename_variables,[],[8])). cnf(288,plain, (E(f20(x2881,x2882,x2883),f20(x2884,x2882,x2883))+~E(x2881,x2884)), inference(rename_variables,[],[8])). cnf(291,plain, (E(f20(x2911,x2912,x2913),f20(x2911,x2914,x2913))+~E(x2912,x2914)), inference(rename_variables,[],[9])). cnf(293,plain, (E(f20(x2931,x2932,x2933),f20(x2931,x2934,x2933))+~E(x2932,x2934)), inference(rename_variables,[],[9])). cnf(295,plain, (E(f20(x2951,x2952,x2953),f20(x2951,x2954,x2953))+~E(x2952,x2954)), inference(rename_variables,[],[9])). cnf(298,plain, (E(f20(x2981,x2982,x2983),f20(x2981,x2982,x2984))+~E(x2983,x2984)), inference(rename_variables,[],[10])). cnf(300,plain, (E(f20(x3001,x3002,x3003),f20(x3001,x3002,x3004))+~E(x3003,x3004)), inference(rename_variables,[],[10])). cnf(302,plain, (E(f20(x3021,x3022,x3023),f20(x3021,x3022,x3024))+~E(x3023,x3024)), inference(rename_variables,[],[10])). cnf(305,plain, (E(f17(x3051,x3052),f17(x3053,x3052))+~E(x3051,x3053)), inference(rename_variables,[],[11])). cnf(307,plain, (E(f17(x3071,x3072),f17(x3073,x3072))+~E(x3071,x3073)), inference(rename_variables,[],[11])). cnf(309,plain, (E(f17(x3091,x3092),f17(x3093,x3092))+~E(x3091,x3093)), inference(rename_variables,[],[11])). cnf(312,plain, (E(f17(x3121,x3122),f17(x3121,x3123))+~E(x3122,x3123)), inference(rename_variables,[],[12])). cnf(314,plain, (E(f17(x3141,x3142),f17(x3141,x3143))+~E(x3142,x3143)), inference(rename_variables,[],[12])). cnf(316,plain, (E(f17(x3161,x3162),f17(x3161,x3163))+~E(x3162,x3163)), inference(rename_variables,[],[12])). cnf(319,plain, (E(f15(x3191,x3192),f15(x3193,x3192))+~E(x3191,x3193)), inference(rename_variables,[],[13])). cnf(321,plain, (E(f15(x3211,x3212),f15(x3213,x3212))+~E(x3211,x3213)), inference(rename_variables,[],[13])). cnf(323,plain, (E(f15(x3231,x3232),f15(x3233,x3232))+~E(x3231,x3233)), inference(rename_variables,[],[13])). cnf(326,plain, (E(f15(x3261,x3262),f15(x3261,x3263))+~E(x3262,x3263)), inference(rename_variables,[],[14])). cnf(328,plain, (E(f15(x3281,x3282),f15(x3281,x3283))+~E(x3282,x3283)), inference(rename_variables,[],[14])). cnf(330,plain, (E(f15(x3301,x3302),f15(x3301,x3303))+~E(x3302,x3303)), inference(rename_variables,[],[14])). cnf(333,plain, (E(f19(x3331,x3332,x3333),f19(x3334,x3332,x3333))+~E(x3331,x3334)), inference(rename_variables,[],[15])). cnf(335,plain, (E(f19(x3351,x3352,x3353),f19(x3354,x3352,x3353))+~E(x3351,x3354)), inference(rename_variables,[],[15])). cnf(337,plain, (E(f19(x3371,x3372,x3373),f19(x3374,x3372,x3373))+~E(x3371,x3374)), inference(rename_variables,[],[15])). cnf(340,plain, (E(f19(x3401,x3402,x3403),f19(x3401,x3404,x3403))+~E(x3402,x3404)), inference(rename_variables,[],[16])). cnf(342,plain, (E(f19(x3421,x3422,x3423),f19(x3421,x3424,x3423))+~E(x3422,x3424)), inference(rename_variables,[],[16])). cnf(344,plain, (E(f19(x3441,x3442,x3443),f19(x3441,x3444,x3443))+~E(x3442,x3444)), inference(rename_variables,[],[16])). cnf(347,plain, (E(f19(x3471,x3472,x3473),f19(x3471,x3472,x3474))+~E(x3473,x3474)), inference(rename_variables,[],[17])). cnf(349,plain, (E(f19(x3491,x3492,x3493),f19(x3491,x3492,x3494))+~E(x3493,x3494)), inference(rename_variables,[],[17])). cnf(351,plain, (E(f19(x3511,x3512,x3513),f19(x3511,x3512,x3514))+~E(x3513,x3514)), inference(rename_variables,[],[17])). cnf(354,plain, (E(f21(x3541,x3542,x3543),f21(x3544,x3542,x3543))+~E(x3541,x3544)), inference(rename_variables,[],[18])). cnf(356,plain, (E(f21(x3561,x3562,x3563),f21(x3564,x3562,x3563))+~E(x3561,x3564)), inference(rename_variables,[],[18])). cnf(358,plain, (E(f21(x3581,x3582,x3583),f21(x3584,x3582,x3583))+~E(x3581,x3584)), inference(rename_variables,[],[18])). cnf(361,plain, (E(f21(x3611,x3612,x3613),f21(x3611,x3614,x3613))+~E(x3612,x3614)), inference(rename_variables,[],[19])). cnf(363,plain, (E(f21(x3631,x3632,x3633),f21(x3631,x3634,x3633))+~E(x3632,x3634)), inference(rename_variables,[],[19])). cnf(365,plain, (E(f21(x3651,x3652,x3653),f21(x3651,x3654,x3653))+~E(x3652,x3654)), inference(rename_variables,[],[19])). cnf(368,plain, (E(f21(x3681,x3682,x3683),f21(x3681,x3682,x3684))+~E(x3683,x3684)), inference(rename_variables,[],[20])). cnf(370,plain, (E(f21(x3701,x3702,x3703),f21(x3701,x3702,x3704))+~E(x3703,x3704)), inference(rename_variables,[],[20])). cnf(372,plain, (E(f21(x3721,x3722,x3723),f21(x3721,x3722,x3724))+~E(x3723,x3724)), inference(rename_variables,[],[20])). cnf(375,plain, (E(f16(x3751,x3752),f16(x3753,x3752))+~E(x3751,x3753)), inference(rename_variables,[],[21])). cnf(377,plain, (E(f16(x3771,x3772),f16(x3773,x3772))+~E(x3771,x3773)), inference(rename_variables,[],[21])). cnf(379,plain, (E(f16(x3791,x3792),f16(x3793,x3792))+~E(x3791,x3793)), inference(rename_variables,[],[21])). cnf(382,plain, (E(f16(x3821,x3822),f16(x3821,x3823))+~E(x3822,x3823)), inference(rename_variables,[],[22])). cnf(384,plain, (E(f16(x3841,x3842),f16(x3841,x3843))+~E(x3842,x3843)), inference(rename_variables,[],[22])). cnf(386,plain, (E(f16(x3861,x3862),f16(x3861,x3863))+~E(x3862,x3863)), inference(rename_variables,[],[22])). cnf(389,plain, (E(f18(x3891,x3892),f18(x3893,x3892))+~E(x3891,x3893)), inference(rename_variables,[],[23])). cnf(391,plain, (E(f18(x3911,x3912),f18(x3913,x3912))+~E(x3911,x3913)), inference(rename_variables,[],[23])). cnf(393,plain, (E(f18(x3931,x3932),f18(x3933,x3932))+~E(x3931,x3933)), inference(rename_variables,[],[23])). cnf(396,plain, (E(f18(x3961,x3962),f18(x3961,x3963))+~E(x3962,x3963)), inference(rename_variables,[],[24])). cnf(398,plain, (E(f18(x3981,x3982),f18(x3981,x3983))+~E(x3982,x3983)), inference(rename_variables,[],[24])). cnf(400,plain, (E(f18(x4001,x4002),f18(x4001,x4003))+~E(x4002,x4003)), inference(rename_variables,[],[24])). cnf(403,plain, (E(f14(x4031),f14(x4032))+~E(x4031,x4032)), inference(rename_variables,[],[25])). cnf(405,plain, (E(f14(x4051),f14(x4052))+~E(x4051,x4052)), inference(rename_variables,[],[25])). cnf(407,plain, (E(f14(x4071),f14(x4072))+~E(x4071,x4072)), inference(rename_variables,[],[25])). cnf(410,plain, (E(x4101,a2)+~P1(x4101)), inference(rename_variables,[],[57])). cnf(412,plain, (E(x4121,a2)+~P1(x4121)), inference(rename_variables,[],[57])). cnf(416,plain, (E(x4161,a2)+~P4(x4161,a2)), inference(rename_variables,[],[61])). cnf(420,plain, (~P1(x4201)+~P13(x4202,x4201)), inference(rename_variables,[],[65])). cnf(422,plain, (~P1(x4221)+~P13(x4222,x4221)), inference(rename_variables,[],[65])). cnf(426,plain, (~P13(x4261,x4262)+~P13(x4262,x4261)), inference(rename_variables,[],[74])). cnf(428,plain, (~P13(x4281,x4282)+~P13(x4282,x4281)), inference(rename_variables,[],[74])). cnf(430,plain, (~P13(x4301,x4302)+~P13(x4302,x4301)), inference(rename_variables,[],[74])). cnf(433,plain, (~P1(f10(x4331,x4332))+P1(x4332)), inference(rename_variables,[],[78])). cnf(435,plain, (~P1(f10(x4351,x4352))+P1(x4352)), inference(rename_variables,[],[78])). cnf(437,plain, (~P1(f10(x4371,x4372))+P1(x4372)), inference(rename_variables,[],[78])). cnf(440,plain, (~P1(f10(x4401,x4402))+P1(x4401)), inference(rename_variables,[],[79])). cnf(442,plain, (~P1(f10(x4421,x4422))+P1(x4421)), inference(rename_variables,[],[79])). cnf(444,plain, (~P1(f10(x4441,x4442))+P1(x4441)), inference(rename_variables,[],[79])). cnf(447,plain, (P13(x4471,x4472)+~P13(x4471,f9(x4472,x4473))), inference(rename_variables,[],[121])). cnf(449,plain, (P13(x4491,x4492)+~P13(x4491,f9(x4492,x4493))), inference(rename_variables,[],[121])). cnf(451,plain, (P13(x4511,x4512)+~P13(x4511,f9(x4512,x4513))), inference(rename_variables,[],[121])). cnf(454,plain, (~P13(x4541,x4542)+P13(x4541,f10(x4543,x4542))), inference(rename_variables,[],[122])). cnf(456,plain, (~P13(x4561,x4562)+P13(x4561,f10(x4563,x4562))), inference(rename_variables,[],[122])). cnf(458,plain, (~P13(x4581,x4582)+P13(x4581,f10(x4583,x4582))), inference(rename_variables,[],[122])). cnf(461,plain, (~P13(x4611,x4612)+P13(x4611,f10(x4612,x4613))), inference(rename_variables,[],[123])). cnf(463,plain, (~P13(x4631,x4632)+P13(x4631,f10(x4632,x4633))), inference(rename_variables,[],[123])). cnf(465,plain, (~P13(x4651,x4652)+P13(x4651,f10(x4652,x4653))), inference(rename_variables,[],[123])). cnf(468,plain, (~P13(x4681,x4682)+~P13(x4681,f9(x4683,x4682))), inference(rename_variables,[],[124])). cnf(470,plain, (~P13(x4701,x4702)+~P13(x4701,f9(x4703,x4702))), inference(rename_variables,[],[124])). cnf(472,plain, (~P13(x4721,x4722)+~P13(x4721,f9(x4723,x4722))), inference(rename_variables,[],[124])). cnf(475,plain, (P13(x4751,x4752)+~P13(x4751,f9(x4753,f9(x4753,x4752)))), inference(rename_variables,[],[127])). cnf(477,plain, (P13(x4771,x4772)+~P13(x4771,f9(x4773,f9(x4773,x4772)))), inference(rename_variables,[],[127])). cnf(479,plain, (P13(x4791,x4792)+~P13(x4791,f9(x4793,f9(x4793,x4792)))), inference(rename_variables,[],[127])). cnf(482,plain, (~P4(x4821,x4822)+E(x4821,x4822)+P12(x4821,x4822)), inference(rename_variables,[],[73])). cnf(486,plain, (~P4(x4861,x4862)+E(x4861,x4862)+~P4(x4862,x4861)), inference(rename_variables,[],[77])). cnf(488,plain, (~P4(x4881,x4882)+E(x4881,x4882)+~P4(x4882,x4881)), inference(rename_variables,[],[77])). cnf(490,plain, (~P4(x4901,x4902)+E(x4901,x4902)+~P4(x4902,x4901)), inference(rename_variables,[],[77])). cnf(493,plain, (~P13(x4931,x4932)+~P4(x4932,x4933)+P13(x4931,x4933)), inference(rename_variables,[],[83])). cnf(495,plain, (~P13(x4951,x4952)+~P4(x4952,x4953)+P13(x4951,x4953)), inference(rename_variables,[],[83])). cnf(497,plain, (~P13(x4971,x4972)+~P4(x4972,x4973)+P13(x4971,x4973)), inference(rename_variables,[],[83])). cnf(500,plain, (~P4(x5001,x5002)+~P4(x5003,x5001)+P4(x5003,x5002)), inference(rename_variables,[],[84])). cnf(502,plain, (~P4(x5021,x5022)+~P4(x5023,x5021)+P4(x5023,x5022)), inference(rename_variables,[],[84])). cnf(504,plain, (~P4(x5041,x5042)+~P4(x5043,x5041)+P4(x5043,x5042)), inference(rename_variables,[],[84])). cnf(507,plain, (~P13(x5071,x5072)+~P7(x5072,x5073)+~P13(x5071,x5073)), inference(rename_variables,[],[91])). cnf(509,plain, (~P13(x5091,x5092)+~P7(x5092,x5093)+~P13(x5091,x5093)), inference(rename_variables,[],[91])). cnf(511,plain, (~P13(x5111,x5112)+~P7(x5112,x5113)+~P13(x5111,x5113)), inference(rename_variables,[],[91])). cnf(514,plain, (P4(f10(x5141,x5142),x5143)+~P4(x5142,x5143)+~P4(x5141,x5143)), inference(rename_variables,[],[98])). cnf(516,plain, (P4(f10(x5161,x5162),x5163)+~P4(x5162,x5163)+~P4(x5161,x5163)), inference(rename_variables,[],[98])). cnf(518,plain, (P4(f10(x5181,x5182),x5183)+~P4(x5182,x5183)+~P4(x5181,x5183)), inference(rename_variables,[],[98])). cnf(521,plain, (P4(x5211,f9(x5212,f9(x5212,x5213)))+~P4(x5211,x5213)+~P4(x5211,x5212)), inference(rename_variables,[],[105])). cnf(523,plain, (P4(x5231,f9(x5232,f9(x5232,x5233)))+~P4(x5231,x5233)+~P4(x5231,x5232)), inference(rename_variables,[],[105])). cnf(525,plain, (P4(x5251,f9(x5252,f9(x5252,x5253)))+~P4(x5251,x5253)+~P4(x5251,x5252)), inference(rename_variables,[],[105])). cnf(528,plain, (~P4(x5281,x5282)+P4(x5283,x5282)+~E(x5281,x5283)), inference(rename_variables,[],[29])). cnf(530,plain, (~P4(x5301,x5302)+P4(x5303,x5302)+~E(x5301,x5303)), inference(rename_variables,[],[29])). cnf(532,plain, (~P4(x5321,x5322)+P4(x5323,x5322)+~E(x5321,x5323)), inference(rename_variables,[],[29])). cnf(535,plain, (~P4(x5351,x5352)+P4(x5351,x5353)+~E(x5352,x5353)), inference(rename_variables,[],[30])). cnf(537,plain, (~P4(x5371,x5372)+P4(x5371,x5373)+~E(x5372,x5373)), inference(rename_variables,[],[30])). cnf(539,plain, (~P4(x5391,x5392)+P4(x5391,x5393)+~E(x5392,x5393)), inference(rename_variables,[],[30])). cnf(542,plain, (~P7(x5421,x5422)+P7(x5423,x5422)+~E(x5421,x5423)), inference(rename_variables,[],[31])). cnf(544,plain, (~P7(x5441,x5442)+P7(x5443,x5442)+~E(x5441,x5443)), inference(rename_variables,[],[31])). cnf(546,plain, (~P7(x5461,x5462)+P7(x5463,x5462)+~E(x5461,x5463)), inference(rename_variables,[],[31])). cnf(549,plain, (~P7(x5491,x5492)+P7(x5491,x5493)+~E(x5492,x5493)), inference(rename_variables,[],[32])). cnf(551,plain, (~P7(x5511,x5512)+P7(x5511,x5513)+~E(x5512,x5513)), inference(rename_variables,[],[32])). cnf(553,plain, (~P7(x5531,x5532)+P7(x5531,x5533)+~E(x5532,x5533)), inference(rename_variables,[],[32])). cnf(556,plain, (~E(x5561,x5562)+E(x5563,x5562)+~E(x5563,x5561)), inference(rename_variables,[],[3])). cnf(558,plain, (~E(x5581,x5582)+E(x5583,x5582)+~E(x5583,x5581)), inference(rename_variables,[],[3])). cnf(560,plain, (~E(x5601,x5602)+E(x5603,x5602)+~E(x5603,x5601)), inference(rename_variables,[],[3])). cnf(563,plain, (~E(x5631,x5632)+~P1(x5631)+P1(x5632)), inference(rename_variables,[],[26])). cnf(565,plain, (~E(x5651,x5652)+~P1(x5651)+P1(x5652)), inference(rename_variables,[],[26])). cnf(567,plain, (~E(x5671,x5672)+~P1(x5671)+P1(x5672)), inference(rename_variables,[],[26])). cnf(570,plain, (~P12(x5701,x5702)+P12(x5703,x5702)+~E(x5701,x5703)), inference(rename_variables,[],[33])). cnf(572,plain, (~P12(x5721,x5722)+P12(x5723,x5722)+~E(x5721,x5723)), inference(rename_variables,[],[33])). cnf(574,plain, (~P12(x5741,x5742)+P12(x5743,x5742)+~E(x5741,x5743)), inference(rename_variables,[],[33])). cnf(577,plain, (~P12(x5771,x5772)+P12(x5771,x5773)+~E(x5772,x5773)), inference(rename_variables,[],[34])). cnf(579,plain, (~P12(x5791,x5792)+P12(x5791,x5793)+~E(x5792,x5793)), inference(rename_variables,[],[34])). cnf(581,plain, (~P12(x5811,x5812)+P12(x5811,x5813)+~E(x5812,x5813)), inference(rename_variables,[],[34])). cnf(584,plain, (~E(x5841,f9(x5842,x5843))+~P13(x5844,x5841)+P13(x5844,x5842)), inference(rename_variables,[],[85])). cnf(586,plain, (~E(x5861,f9(x5862,x5863))+~P13(x5864,x5861)+P13(x5864,x5862)), inference(rename_variables,[],[85])). cnf(588,plain, (~E(x5881,f9(x5882,x5883))+~P13(x5884,x5881)+P13(x5884,x5882)), inference(rename_variables,[],[85])). cnf(591,plain, (~E(x5911,f10(x5912,x5913))+~P13(x5914,x5913)+P13(x5914,x5911)), inference(rename_variables,[],[86])). cnf(593,plain, (~E(x5931,f10(x5932,x5933))+~P13(x5934,x5933)+P13(x5934,x5931)), inference(rename_variables,[],[86])). cnf(595,plain, (~E(x5951,f10(x5952,x5953))+~P13(x5954,x5953)+P13(x5954,x5951)), inference(rename_variables,[],[86])). cnf(598,plain, (~E(x5981,f10(x5982,x5983))+~P13(x5984,x5982)+P13(x5984,x5981)), inference(rename_variables,[],[87])). cnf(600,plain, (~E(x6001,f10(x6002,x6003))+~P13(x6004,x6002)+P13(x6004,x6001)), inference(rename_variables,[],[87])). cnf(602,plain, (~E(x6021,f10(x6022,x6023))+~P13(x6024,x6022)+P13(x6024,x6021)), inference(rename_variables,[],[87])). cnf(605,plain, (~E(x6051,f9(x6052,x6053))+~P13(x6054,x6051)+~P13(x6054,x6053)), inference(rename_variables,[],[92])). cnf(607,plain, (~E(x6071,f9(x6072,x6073))+~P13(x6074,x6071)+~P13(x6074,x6073)), inference(rename_variables,[],[92])). cnf(609,plain, (~E(x6091,f9(x6092,x6093))+~P13(x6094,x6091)+~P13(x6094,x6093)), inference(rename_variables,[],[92])). cnf(614,plain, (~E(x6141,f9(x6142,f9(x6142,x6143)))+~P13(x6144,x6141)+P13(x6144,x6143)), inference(rename_variables,[],[100])). cnf(616,plain, (~E(x6161,f9(x6162,f9(x6162,x6163)))+~P13(x6164,x6161)+P13(x6164,x6163)), inference(rename_variables,[],[100])). cnf(618,plain, (~E(x6181,f9(x6182,f9(x6182,x6183)))+~P13(x6184,x6181)+P13(x6184,x6183)), inference(rename_variables,[],[100])). cnf(621,plain, (P13(x6211,x6212)+P13(x6211,x6213)+~P13(x6211,f10(x6213,x6212))), inference(rename_variables,[],[125])). cnf(623,plain, (P13(x6231,x6232)+P13(x6231,x6233)+~P13(x6231,f10(x6233,x6232))), inference(rename_variables,[],[125])). cnf(625,plain, (P13(x6251,x6252)+P13(x6251,x6253)+~P13(x6251,f10(x6253,x6252))), inference(rename_variables,[],[125])). cnf(627,plain, ($false), inference(scs_inference,[],[37,38,55,40,43,119,47,48,56,44,45,41,42,35,36,54,49,52,50,51,39,76,130,132,134,67,137,139,141,71,144,72,148,150,152,81,155,157,82,161,88,165,89,169,171,173,90,176,178,95,182,184,99,188,190,192,104,195,106,199,201,203,107,206,59,210,212,214,60,217,219,221,63,224,226,228,64,231,233,235,69,238,80,242,244,246,2,249,251,253,4,256,258,260,5,263,265,267,6,270,272,274,7,277,279,281,8,284,286,288,9,291,293,295,10,298,300,302,11,305,307,309,12,312,314,316,13,319,321,323,14,326,328,330,15,333,335,337,16,340,342,344,17,347,349,351,18,354,356,358,19,361,363,365,20,368,370,372,21,375,377,379,22,382,384,386,23,389,391,393,24,396,398,400,25,403,405,407,57,410,412,61,416,65,420,422,74,426,428,430,78,433,435,437,79,440,442,444,121,447,449,451,122,454,456,458,123,461,463,465,124,468,470,472,127,475,477,479,73,482,77,486,488,490,83,493,495,497,84,500,502,504,91,507,509,511,98,514,516,518,105,521,523,525,29,528,530,532,30,535,537,539,31,542,544,546,32,549,551,553,3,556,558,560,26,563,565,567,33,570,572,574,34,577,579,581,85,584,586,588,86,591,593,595,87,598,600,602,92,605,607,609,97,100,614,616,618,125,621,623,625,126]), ['proof']). % SZS output end Proof
% SZS status Theorem for theBenchmark % SZS output start Proof %ClaNum:116(EqnAxiom:34) %VarNum:421(SingletonVarNum:165) %MaxLitNum:4 %MaxfuncDepth:2 %SharedTerms:12 %goalClause: 37 38 55 %singleGoalClaCount:3 [35]P1(a2) [36]P1(a3) [37]P4(a5,a6) [38]P7(a6,a8) [54]~P1(a11) [55]~P7(a5,a8) [40]P4(a2,x401) [43]P4(x431,x431) [56]~P12(x561,x561) [39]E(f9(a2,x391),a2) [41]E(f10(x411,a2),x411) [42]E(f9(x421,a2),x421) [44]E(f10(x441,x441),x441) [46]E(f9(x461,f9(x461,a2)),a2) [49]E(f9(x491,f9(x491,x491)),x491) [45]E(f10(x451,x452),f10(x452,x451)) [47]P4(x471,f10(x471,x472)) [48]P4(f9(x481,x482),x481) [50]E(f10(x501,f9(x502,x501)),f10(x501,x502)) [51]E(f9(f10(x511,x512),x512),f9(x511,x512)) [52]E(f9(x521,f9(x521,x522)),f9(x522,f9(x522,x521))) [57]~P1(x571)+E(x571,a2) [61]~P4(x611,a2)+E(x611,a2) [62]P13(f14(x621),x621)+E(x621,a2) [59]~E(x592,x591)+P4(x591,x592) [60]~E(x601,x602)+P4(x601,x602) [63]~P13(x632,x631)+~E(x631,a2) [64]~P12(x641,x642)+~E(x641,x642) [65]~P1(x651)+~P13(x652,x651) [70]~P12(x701,x702)+P4(x701,x702) [71]~P7(x712,x711)+P7(x711,x712) [74]~P13(x742,x741)+~P13(x741,x742) [75]~P12(x752,x751)+~P12(x751,x752) [76]~P4(x762,x761)+~P12(x761,x762) [67]~P4(x671,x672)+E(f9(x671,x672),a2) [69]P4(x691,x692)+~E(f9(x691,x692),a2) [72]~P4(x721,x722)+E(f10(x721,x722),x722) [78]P1(x781)+~P1(f10(x782,x781)) [79]P1(x791)+~P1(f10(x791,x792)) [80]P4(x801,x802)+P13(f15(x801,x802),x801) [81]P7(x811,x812)+P13(f16(x811,x812),x812) [82]P7(x821,x822)+P13(f16(x821,x822),x821) [96]P4(x961,x962)+~P13(f15(x961,x962),x962) [88]~P7(x881,x882)+E(f9(x881,f9(x881,x882)),a2) [89]~P4(x891,x892)+E(f10(x891,f9(x892,x891)),x892) [90]~P4(x901,x902)+E(f9(x901,f9(x901,x902)),x901) [95]P7(x951,x952)+~E(f9(x951,f9(x951,x952)),a2) [104]P7(x1041,x1042)+P13(f18(x1041,x1042),f9(x1041,f9(x1041,x1042))) [99]~P4(x991,x993)+P4(f9(x991,x992),f9(x993,x992)) [106]~P7(x1061,x1062)+~P13(x1063,f9(x1061,f9(x1061,x1062))) [107]~P4(x1071,x1073)+P4(f9(x1071,f9(x1071,x1072)),f9(x1073,f9(x1073,x1072))) [58]~P1(x582)+~P1(x581)+E(x581,x582) [73]P12(x731,x732)+~P4(x731,x732)+E(x731,x732) [77]~P4(x772,x771)+~P4(x771,x772)+E(x771,x772) [97]E(x971,x972)+P13(f17(x971,x972),x972)+P13(f17(x971,x972),x971) [103]E(x1031,x1032)+~P13(f17(x1031,x1032),x1032)+~P13(f17(x1031,x1032),x1031) [83]~P4(x833,x832)+P13(x831,x832)+~P13(x831,x833) [84]~P4(x841,x843)+P4(x841,x842)+~P4(x843,x842) [91]~P7(x913,x912)+~P13(x911,x912)+~P13(x911,x913) [98]~P4(x982,x983)+~P4(x981,x983)+P4(f10(x981,x982),x983) [108]P13(f19(x1082,x1083,x1081),x1082)+P13(f19(x1082,x1083,x1081),x1081)+E(x1081,f9(x1082,x1083)) [111]P13(f19(x1112,x1113,x1111),x1111)+~P13(f19(x1112,x1113,x1111),x1113)+E(x1111,f9(x1112,x1113)) [113]~P13(f21(x1132,x1133,x1131),x1133)+~P13(f21(x1132,x1133,x1131),x1131)+E(x1131,f10(x1132,x1133)) [114]~P13(f21(x1142,x1143,x1141),x1142)+~P13(f21(x1142,x1143,x1141),x1141)+E(x1141,f10(x1142,x1143)) [105]~P4(x1051,x1053)+~P4(x1051,x1052)+P4(x1051,f9(x1052,f9(x1052,x1053))) [109]P13(f20(x1092,x1093,x1091),x1093)+P13(f20(x1092,x1093,x1091),x1091)+E(x1091,f9(x1092,f9(x1092,x1093))) [110]P13(f20(x1102,x1103,x1101),x1102)+P13(f20(x1102,x1103,x1101),x1101)+E(x1101,f9(x1102,f9(x1102,x1103))) [85]~P13(x851,x853)+P13(x851,x852)+~E(x853,f9(x852,x854)) [86]~P13(x861,x864)+P13(x861,x862)+~E(x862,f10(x863,x864)) [87]~P13(x871,x873)+P13(x871,x872)+~E(x872,f10(x873,x874)) [92]~P13(x924,x921)+~P13(x924,x923)+~E(x921,f9(x922,x923)) [100]~P13(x1001,x1003)+P13(x1001,x1002)+~E(x1003,f9(x1004,f9(x1004,x1002))) [112]P13(f21(x1122,x1123,x1121),x1123)+P13(f21(x1122,x1123,x1121),x1122)+P13(f21(x1122,x1123,x1121),x1121)+E(x1121,f10(x1122,x1123)) [115]P13(f19(x1152,x1153,x1151),x1153)+~P13(f19(x1152,x1153,x1151),x1152)+~P13(f19(x1152,x1153,x1151),x1151)+E(x1151,f9(x1152,x1153)) [116]~P13(f20(x1162,x1163,x1161),x1163)+~P13(f20(x1162,x1163,x1161),x1162)+~P13(f20(x1162,x1163,x1161),x1161)+E(x1161,f9(x1162,f9(x1162,x1163))) [93]~P13(x931,x934)+P13(x931,x932)+P13(x931,x933)+~E(x934,f10(x933,x932)) [94]~P13(x941,x944)+P13(x941,x942)+P13(x941,x943)+~E(x943,f9(x944,x942)) [102]~P13(x1021,x1024)+~P13(x1021,x1023)+P13(x1021,x1022)+~E(x1022,f9(x1023,f9(x1023,x1024))) %EqnAxiom [1]E(x11,x11) [2]E(x22,x21)+~E(x21,x22) [3]E(x31,x33)+~E(x31,x32)+~E(x32,x33) [4]~E(x41,x42)+E(f9(x41,x43),f9(x42,x43)) [5]~E(x51,x52)+E(f9(x53,x51),f9(x53,x52)) [6]~E(x61,x62)+E(f10(x61,x63),f10(x62,x63)) [7]~E(x71,x72)+E(f10(x73,x71),f10(x73,x72)) [8]~E(x81,x82)+E(f20(x81,x83,x84),f20(x82,x83,x84)) [9]~E(x91,x92)+E(f20(x93,x91,x94),f20(x93,x92,x94)) [10]~E(x101,x102)+E(f20(x103,x104,x101),f20(x103,x104,x102)) [11]~E(x111,x112)+E(f17(x111,x113),f17(x112,x113)) [12]~E(x121,x122)+E(f17(x123,x121),f17(x123,x122)) [13]~E(x131,x132)+E(f15(x131,x133),f15(x132,x133)) [14]~E(x141,x142)+E(f15(x143,x141),f15(x143,x142)) [15]~E(x151,x152)+E(f19(x151,x153,x154),f19(x152,x153,x154)) [16]~E(x161,x162)+E(f19(x163,x161,x164),f19(x163,x162,x164)) [17]~E(x171,x172)+E(f19(x173,x174,x171),f19(x173,x174,x172)) [18]~E(x181,x182)+E(f21(x181,x183,x184),f21(x182,x183,x184)) [19]~E(x191,x192)+E(f21(x193,x191,x194),f21(x193,x192,x194)) [20]~E(x201,x202)+E(f21(x203,x204,x201),f21(x203,x204,x202)) [21]~E(x211,x212)+E(f16(x211,x213),f16(x212,x213)) [22]~E(x221,x222)+E(f16(x223,x221),f16(x223,x222)) [23]~E(x231,x232)+E(f18(x231,x233),f18(x232,x233)) [24]~E(x241,x242)+E(f18(x243,x241),f18(x243,x242)) [25]~E(x251,x252)+E(f14(x251),f14(x252)) [26]~P1(x261)+P1(x262)+~E(x261,x262) [27]P13(x272,x273)+~E(x271,x272)+~P13(x271,x273) [28]P13(x283,x282)+~E(x281,x282)+~P13(x283,x281) [29]P4(x292,x293)+~E(x291,x292)+~P4(x291,x293) [30]P4(x303,x302)+~E(x301,x302)+~P4(x303,x301) [31]P7(x312,x313)+~E(x311,x312)+~P7(x311,x313) [32]P7(x323,x322)+~E(x321,x322)+~P7(x323,x321) [33]P12(x332,x333)+~E(x331,x332)+~P12(x331,x333) [34]P12(x343,x342)+~E(x341,x342)+~P12(x343,x341) %------------------------------------------- cnf(119,plain, (~P13(x1191,a2)), inference(equality_inference,[],[63])). cnf(121,plain, (~P13(x1211,f9(x1212,x1213))+P13(x1211,x1212)), inference(equality_inference,[],[85])). cnf(122,plain, (~P13(x1221,x1222)+P13(x1221,f10(x1223,x1222))), inference(equality_inference,[],[86])). cnf(123,plain, (~P13(x1231,x1232)+P13(x1231,f10(x1232,x1233))), inference(equality_inference,[],[87])). cnf(124,plain, (~P13(x1241,f9(x1242,x1243))+~P13(x1241,x1243)), inference(equality_inference,[],[92])). cnf(125,plain, (~P13(x1251,f10(x1252,x1253))+P13(x1251,x1253)+P13(x1251,x1252)), inference(equality_inference,[],[93])). cnf(126,plain, (~P13(x1261,x1262)+P13(x1261,x1263)+P13(x1261,f9(x1262,x1263))), inference(equality_inference,[],[94])). cnf(127,plain, (~P13(x1271,f9(x1272,f9(x1272,x1273)))+P13(x1271,x1273)), inference(equality_inference,[],[100])). cnf(130,plain, (~P12(x1301,x1302)+~P4(x1302,x1301)), inference(rename_variables,[],[76])). cnf(132,plain, (~P12(x1321,x1322)+~P4(x1322,x1321)), inference(rename_variables,[],[76])). cnf(134,plain, (~P12(x1341,x1342)+~P4(x1342,x1341)), inference(rename_variables,[],[76])). cnf(137,plain, (E(f9(x1371,x1372),a2)+~P4(x1371,x1372)), inference(rename_variables,[],[67])). cnf(139,plain, (E(f9(x1391,x1392),a2)+~P4(x1391,x1392)), inference(rename_variables,[],[67])). cnf(141,plain, (E(f9(x1411,x1412),a2)+~P4(x1411,x1412)), inference(rename_variables,[],[67])). cnf(144,plain, (P7(x1441,x1442)+~P7(x1442,x1441)), inference(rename_variables,[],[71])). cnf(148,plain, (E(f10(x1481,x1482),x1482)+~P4(x1481,x1482)), inference(rename_variables,[],[72])). cnf(150,plain, (E(f10(x1501,x1502),x1502)+~P4(x1501,x1502)), inference(rename_variables,[],[72])). cnf(152,plain, (E(f10(x1521,x1522),x1522)+~P4(x1521,x1522)), inference(rename_variables,[],[72])). cnf(155,plain, (P13(f16(x1551,x1552),x1552)+P7(x1551,x1552)), inference(rename_variables,[],[81])). cnf(157,plain, (P13(f16(x1571,x1572),x1572)+P7(x1571,x1572)), inference(rename_variables,[],[81])). cnf(161,plain, (P13(f16(x1611,x1612),x1611)+P7(x1611,x1612)), inference(rename_variables,[],[82])). cnf(165,plain, (E(f9(x1651,f9(x1651,x1652)),a2)+~P7(x1651,x1652)), inference(rename_variables,[],[88])). cnf(169,plain, (E(f10(x1691,f9(x1692,x1691)),x1692)+~P4(x1691,x1692)), inference(rename_variables,[],[89])). cnf(171,plain, (E(f10(x1711,f9(x1712,x1711)),x1712)+~P4(x1711,x1712)), inference(rename_variables,[],[89])). cnf(173,plain, (E(f10(x1731,f9(x1732,x1731)),x1732)+~P4(x1731,x1732)), inference(rename_variables,[],[89])). cnf(176,plain, (E(f9(x1761,f9(x1761,x1762)),x1761)+~P4(x1761,x1762)), inference(rename_variables,[],[90])). cnf(178,plain, (E(f9(x1781,f9(x1781,x1782)),x1781)+~P4(x1781,x1782)), inference(rename_variables,[],[90])). cnf(182,plain, (~E(f9(x1821,f9(x1821,x1822)),a2)+P7(x1821,x1822)), inference(rename_variables,[],[95])). cnf(184,plain, (~E(f9(x1841,f9(x1841,x1842)),a2)+P7(x1841,x1842)), inference(rename_variables,[],[95])). cnf(188,plain, (P4(f9(x1881,x1882),f9(x1883,x1882))+~P4(x1881,x1883)), inference(rename_variables,[],[99])). cnf(190,plain, (P4(f9(x1901,x1902),f9(x1903,x1902))+~P4(x1901,x1903)), inference(rename_variables,[],[99])). cnf(192,plain, (P4(f9(x1921,x1922),f9(x1923,x1922))+~P4(x1921,x1923)), inference(rename_variables,[],[99])). cnf(195,plain, (P13(f18(x1951,x1952),f9(x1951,f9(x1951,x1952)))+P7(x1951,x1952)), inference(rename_variables,[],[104])). cnf(199,plain, (~P13(x1991,f9(x1992,f9(x1992,x1993)))+~P7(x1992,x1993)), inference(rename_variables,[],[106])). cnf(201,plain, (~P13(x2011,f9(x2012,f9(x2012,x2013)))+~P7(x2012,x2013)), inference(rename_variables,[],[106])). cnf(203,plain, (~P13(x2031,f9(x2032,f9(x2032,x2033)))+~P7(x2032,x2033)), inference(rename_variables,[],[106])). cnf(206,plain, (P4(f9(x2061,f9(x2061,x2062)),f9(x2063,f9(x2063,x2062)))+~P4(x2061,x2063)), inference(rename_variables,[],[107])). cnf(210,plain, (P4(x2101,x2102)+~E(x2102,x2101)), inference(rename_variables,[],[59])). cnf(212,plain, (P4(x2121,x2122)+~E(x2122,x2121)), inference(rename_variables,[],[59])). cnf(214,plain, (P4(x2141,x2142)+~E(x2142,x2141)), inference(rename_variables,[],[59])). cnf(217,plain, (P4(x2171,x2172)+~E(x2171,x2172)), inference(rename_variables,[],[60])). cnf(219,plain, (P4(x2191,x2192)+~E(x2191,x2192)), inference(rename_variables,[],[60])). cnf(221,plain, (P4(x2211,x2212)+~E(x2211,x2212)), inference(rename_variables,[],[60])). cnf(224,plain, (~E(x2241,a2)+~P13(x2242,x2241)), inference(rename_variables,[],[63])). cnf(226,plain, (~E(x2261,a2)+~P13(x2262,x2261)), inference(rename_variables,[],[63])). cnf(228,plain, (~E(x2281,a2)+~P13(x2282,x2281)), inference(rename_variables,[],[63])). cnf(231,plain, (~E(x2311,x2312)+~P12(x2311,x2312)), inference(rename_variables,[],[64])). cnf(233,plain, (~E(x2331,x2332)+~P12(x2331,x2332)), inference(rename_variables,[],[64])). cnf(235,plain, (~E(x2351,x2352)+~P12(x2351,x2352)), inference(rename_variables,[],[64])). cnf(238,plain, (~E(f9(x2381,x2382),a2)+P4(x2381,x2382)), inference(rename_variables,[],[69])). cnf(242,plain, (P13(f15(x2421,x2422),x2421)+P4(x2421,x2422)), inference(rename_variables,[],[80])). cnf(244,plain, (P13(f15(x2441,x2442),x2441)+P4(x2441,x2442)), inference(rename_variables,[],[80])). cnf(246,plain, (P13(f15(x2461,x2462),x2461)+P4(x2461,x2462)), inference(rename_variables,[],[80])). cnf(249,plain, (~E(x2491,x2492)+E(x2492,x2491)), inference(rename_variables,[],[2])). cnf(251,plain, (~E(x2511,x2512)+E(x2512,x2511)), inference(rename_variables,[],[2])). cnf(253,plain, (~E(x2531,x2532)+E(x2532,x2531)), inference(rename_variables,[],[2])). cnf(256,plain, (E(f9(x2561,x2562),f9(x2563,x2562))+~E(x2561,x2563)), inference(rename_variables,[],[4])). cnf(258,plain, (E(f9(x2581,x2582),f9(x2583,x2582))+~E(x2581,x2583)), inference(rename_variables,[],[4])). cnf(260,plain, (E(f9(x2601,x2602),f9(x2603,x2602))+~E(x2601,x2603)), inference(rename_variables,[],[4])). cnf(263,plain, (E(f9(x2631,x2632),f9(x2631,x2633))+~E(x2632,x2633)), inference(rename_variables,[],[5])). cnf(265,plain, (E(f9(x2651,x2652),f9(x2651,x2653))+~E(x2652,x2653)), inference(rename_variables,[],[5])). cnf(267,plain, (E(f9(x2671,x2672),f9(x2671,x2673))+~E(x2672,x2673)), inference(rename_variables,[],[5])). cnf(270,plain, (E(f10(x2701,x2702),f10(x2703,x2702))+~E(x2701,x2703)), inference(rename_variables,[],[6])). cnf(272,plain, (E(f10(x2721,x2722),f10(x2723,x2722))+~E(x2721,x2723)), inference(rename_variables,[],[6])). cnf(274,plain, (E(f10(x2741,x2742),f10(x2743,x2742))+~E(x2741,x2743)), inference(rename_variables,[],[6])). cnf(277,plain, (E(f10(x2771,x2772),f10(x2771,x2773))+~E(x2772,x2773)), inference(rename_variables,[],[7])). cnf(279,plain, (E(f10(x2791,x2792),f10(x2791,x2793))+~E(x2792,x2793)), inference(rename_variables,[],[7])). cnf(281,plain, (E(f10(x2811,x2812),f10(x2811,x2813))+~E(x2812,x2813)), inference(rename_variables,[],[7])). cnf(284,plain, (E(f20(x2841,x2842,x2843),f20(x2844,x2842,x2843))+~E(x2841,x2844)), inference(rename_variables,[],[8])). cnf(286,plain, (E(f20(x2861,x2862,x2863),f20(x2864,x2862,x2863))+~E(x2861,x2864)), inference(rename_variables,[],[8])). cnf(288,plain, (E(f20(x2881,x2882,x2883),f20(x2884,x2882,x2883))+~E(x2881,x2884)), inference(rename_variables,[],[8])). cnf(291,plain, (E(f20(x2911,x2912,x2913),f20(x2911,x2914,x2913))+~E(x2912,x2914)), inference(rename_variables,[],[9])). cnf(293,plain, (E(f20(x2931,x2932,x2933),f20(x2931,x2934,x2933))+~E(x2932,x2934)), inference(rename_variables,[],[9])). cnf(295,plain, (E(f20(x2951,x2952,x2953),f20(x2951,x2954,x2953))+~E(x2952,x2954)), inference(rename_variables,[],[9])). cnf(298,plain, (E(f20(x2981,x2982,x2983),f20(x2981,x2982,x2984))+~E(x2983,x2984)), inference(rename_variables,[],[10])). cnf(300,plain, (E(f20(x3001,x3002,x3003),f20(x3001,x3002,x3004))+~E(x3003,x3004)), inference(rename_variables,[],[10])). cnf(302,plain, (E(f20(x3021,x3022,x3023),f20(x3021,x3022,x3024))+~E(x3023,x3024)), inference(rename_variables,[],[10])). cnf(305,plain, (E(f17(x3051,x3052),f17(x3053,x3052))+~E(x3051,x3053)), inference(rename_variables,[],[11])). cnf(307,plain, (E(f17(x3071,x3072),f17(x3073,x3072))+~E(x3071,x3073)), inference(rename_variables,[],[11])). cnf(309,plain, (E(f17(x3091,x3092),f17(x3093,x3092))+~E(x3091,x3093)), inference(rename_variables,[],[11])). cnf(312,plain, (E(f17(x3121,x3122),f17(x3121,x3123))+~E(x3122,x3123)), inference(rename_variables,[],[12])). cnf(314,plain, (E(f17(x3141,x3142),f17(x3141,x3143))+~E(x3142,x3143)), inference(rename_variables,[],[12])). cnf(316,plain, (E(f17(x3161,x3162),f17(x3161,x3163))+~E(x3162,x3163)), inference(rename_variables,[],[12])). cnf(319,plain, (E(f15(x3191,x3192),f15(x3193,x3192))+~E(x3191,x3193)), inference(rename_variables,[],[13])). cnf(321,plain, (E(f15(x3211,x3212),f15(x3213,x3212))+~E(x3211,x3213)), inference(rename_variables,[],[13])). cnf(323,plain, (E(f15(x3231,x3232),f15(x3233,x3232))+~E(x3231,x3233)), inference(rename_variables,[],[13])). cnf(326,plain, (E(f15(x3261,x3262),f15(x3261,x3263))+~E(x3262,x3263)), inference(rename_variables,[],[14])). cnf(328,plain, (E(f15(x3281,x3282),f15(x3281,x3283))+~E(x3282,x3283)), inference(rename_variables,[],[14])). cnf(330,plain, (E(f15(x3301,x3302),f15(x3301,x3303))+~E(x3302,x3303)), inference(rename_variables,[],[14])). cnf(333,plain, (E(f19(x3331,x3332,x3333),f19(x3334,x3332,x3333))+~E(x3331,x3334)), inference(rename_variables,[],[15])). cnf(335,plain, (E(f19(x3351,x3352,x3353),f19(x3354,x3352,x3353))+~E(x3351,x3354)), inference(rename_variables,[],[15])). cnf(337,plain, (E(f19(x3371,x3372,x3373),f19(x3374,x3372,x3373))+~E(x3371,x3374)), inference(rename_variables,[],[15])). cnf(340,plain, (E(f19(x3401,x3402,x3403),f19(x3401,x3404,x3403))+~E(x3402,x3404)), inference(rename_variables,[],[16])). cnf(342,plain, (E(f19(x3421,x3422,x3423),f19(x3421,x3424,x3423))+~E(x3422,x3424)), inference(rename_variables,[],[16])). cnf(344,plain, (E(f19(x3441,x3442,x3443),f19(x3441,x3444,x3443))+~E(x3442,x3444)), inference(rename_variables,[],[16])). cnf(347,plain, (E(f19(x3471,x3472,x3473),f19(x3471,x3472,x3474))+~E(x3473,x3474)), inference(rename_variables,[],[17])). cnf(349,plain, (E(f19(x3491,x3492,x3493),f19(x3491,x3492,x3494))+~E(x3493,x3494)), inference(rename_variables,[],[17])). cnf(351,plain, (E(f19(x3511,x3512,x3513),f19(x3511,x3512,x3514))+~E(x3513,x3514)), inference(rename_variables,[],[17])). cnf(354,plain, (E(f21(x3541,x3542,x3543),f21(x3544,x3542,x3543))+~E(x3541,x3544)), inference(rename_variables,[],[18])). cnf(356,plain, (E(f21(x3561,x3562,x3563),f21(x3564,x3562,x3563))+~E(x3561,x3564)), inference(rename_variables,[],[18])). cnf(358,plain, (E(f21(x3581,x3582,x3583),f21(x3584,x3582,x3583))+~E(x3581,x3584)), inference(rename_variables,[],[18])). cnf(361,plain, (E(f21(x3611,x3612,x3613),f21(x3611,x3614,x3613))+~E(x3612,x3614)), inference(rename_variables,[],[19])). cnf(363,plain, (E(f21(x3631,x3632,x3633),f21(x3631,x3634,x3633))+~E(x3632,x3634)), inference(rename_variables,[],[19])). cnf(365,plain, (E(f21(x3651,x3652,x3653),f21(x3651,x3654,x3653))+~E(x3652,x3654)), inference(rename_variables,[],[19])). cnf(368,plain, (E(f21(x3681,x3682,x3683),f21(x3681,x3682,x3684))+~E(x3683,x3684)), inference(rename_variables,[],[20])). cnf(370,plain, (E(f21(x3701,x3702,x3703),f21(x3701,x3702,x3704))+~E(x3703,x3704)), inference(rename_variables,[],[20])). cnf(372,plain, (E(f21(x3721,x3722,x3723),f21(x3721,x3722,x3724))+~E(x3723,x3724)), inference(rename_variables,[],[20])). cnf(375,plain, (E(f16(x3751,x3752),f16(x3753,x3752))+~E(x3751,x3753)), inference(rename_variables,[],[21])). cnf(377,plain, (E(f16(x3771,x3772),f16(x3773,x3772))+~E(x3771,x3773)), inference(rename_variables,[],[21])). cnf(379,plain, (E(f16(x3791,x3792),f16(x3793,x3792))+~E(x3791,x3793)), inference(rename_variables,[],[21])). cnf(382,plain, (E(f16(x3821,x3822),f16(x3821,x3823))+~E(x3822,x3823)), inference(rename_variables,[],[22])). cnf(384,plain, (E(f16(x3841,x3842),f16(x3841,x3843))+~E(x3842,x3843)), inference(rename_variables,[],[22])). cnf(386,plain, (E(f16(x3861,x3862),f16(x3861,x3863))+~E(x3862,x3863)), inference(rename_variables,[],[22])). cnf(389,plain, (E(f18(x3891,x3892),f18(x3893,x3892))+~E(x3891,x3893)), inference(rename_variables,[],[23])). cnf(391,plain, (E(f18(x3911,x3912),f18(x3913,x3912))+~E(x3911,x3913)), inference(rename_variables,[],[23])). cnf(393,plain, (E(f18(x3931,x3932),f18(x3933,x3932))+~E(x3931,x3933)), inference(rename_variables,[],[23])). cnf(396,plain, (E(f18(x3961,x3962),f18(x3961,x3963))+~E(x3962,x3963)), inference(rename_variables,[],[24])). cnf(398,plain, (E(f18(x3981,x3982),f18(x3981,x3983))+~E(x3982,x3983)), inference(rename_variables,[],[24])). cnf(400,plain, (E(f18(x4001,x4002),f18(x4001,x4003))+~E(x4002,x4003)), inference(rename_variables,[],[24])). cnf(403,plain, (E(f14(x4031),f14(x4032))+~E(x4031,x4032)), inference(rename_variables,[],[25])). cnf(405,plain, (E(f14(x4051),f14(x4052))+~E(x4051,x4052)), inference(rename_variables,[],[25])). cnf(407,plain, (E(f14(x4071),f14(x4072))+~E(x4071,x4072)), inference(rename_variables,[],[25])). cnf(410,plain, (E(x4101,a2)+~P1(x4101)), inference(rename_variables,[],[57])). cnf(412,plain, (E(x4121,a2)+~P1(x4121)), inference(rename_variables,[],[57])). cnf(416,plain, (E(x4161,a2)+~P4(x4161,a2)), inference(rename_variables,[],[61])). cnf(420,plain, (~P1(x4201)+~P13(x4202,x4201)), inference(rename_variables,[],[65])). cnf(422,plain, (~P1(x4221)+~P13(x4222,x4221)), inference(rename_variables,[],[65])). cnf(426,plain, (~P13(x4261,x4262)+~P13(x4262,x4261)), inference(rename_variables,[],[74])). cnf(428,plain, (~P13(x4281,x4282)+~P13(x4282,x4281)), inference(rename_variables,[],[74])). cnf(430,plain, (~P13(x4301,x4302)+~P13(x4302,x4301)), inference(rename_variables,[],[74])). cnf(433,plain, (~P1(f10(x4331,x4332))+P1(x4332)), inference(rename_variables,[],[78])). cnf(435,plain, (~P1(f10(x4351,x4352))+P1(x4352)), inference(rename_variables,[],[78])). cnf(437,plain, (~P1(f10(x4371,x4372))+P1(x4372)), inference(rename_variables,[],[78])). cnf(440,plain, (~P1(f10(x4401,x4402))+P1(x4401)), inference(rename_variables,[],[79])). cnf(442,plain, (~P1(f10(x4421,x4422))+P1(x4421)), inference(rename_variables,[],[79])). cnf(444,plain, (~P1(f10(x4441,x4442))+P1(x4441)), inference(rename_variables,[],[79])). cnf(447,plain, (P13(x4471,x4472)+~P13(x4471,f9(x4472,x4473))), inference(rename_variables,[],[121])). cnf(449,plain, (P13(x4491,x4492)+~P13(x4491,f9(x4492,x4493))), inference(rename_variables,[],[121])). cnf(451,plain, (P13(x4511,x4512)+~P13(x4511,f9(x4512,x4513))), inference(rename_variables,[],[121])). cnf(454,plain, (~P13(x4541,x4542)+P13(x4541,f10(x4543,x4542))), inference(rename_variables,[],[122])). cnf(456,plain, (~P13(x4561,x4562)+P13(x4561,f10(x4563,x4562))), inference(rename_variables,[],[122])). cnf(458,plain, (~P13(x4581,x4582)+P13(x4581,f10(x4583,x4582))), inference(rename_variables,[],[122])). cnf(461,plain, (~P13(x4611,x4612)+P13(x4611,f10(x4612,x4613))), inference(rename_variables,[],[123])). cnf(463,plain, (~P13(x4631,x4632)+P13(x4631,f10(x4632,x4633))), inference(rename_variables,[],[123])). cnf(465,plain, (~P13(x4651,x4652)+P13(x4651,f10(x4652,x4653))), inference(rename_variables,[],[123])). cnf(468,plain, (~P13(x4681,x4682)+~P13(x4681,f9(x4683,x4682))), inference(rename_variables,[],[124])). cnf(470,plain, (~P13(x4701,x4702)+~P13(x4701,f9(x4703,x4702))), inference(rename_variables,[],[124])). cnf(472,plain, (~P13(x4721,x4722)+~P13(x4721,f9(x4723,x4722))), inference(rename_variables,[],[124])). cnf(475,plain, (P13(x4751,x4752)+~P13(x4751,f9(x4753,f9(x4753,x4752)))), inference(rename_variables,[],[127])). cnf(477,plain, (P13(x4771,x4772)+~P13(x4771,f9(x4773,f9(x4773,x4772)))), inference(rename_variables,[],[127])). cnf(479,plain, (P13(x4791,x4792)+~P13(x4791,f9(x4793,f9(x4793,x4792)))), inference(rename_variables,[],[127])). cnf(482,plain, (~P4(x4821,x4822)+E(x4821,x4822)+P12(x4821,x4822)), inference(rename_variables,[],[73])). cnf(486,plain, (~P4(x4861,x4862)+E(x4861,x4862)+~P4(x4862,x4861)), inference(rename_variables,[],[77])). cnf(488,plain, (~P4(x4881,x4882)+E(x4881,x4882)+~P4(x4882,x4881)), inference(rename_variables,[],[77])). cnf(490,plain, (~P4(x4901,x4902)+E(x4901,x4902)+~P4(x4902,x4901)), inference(rename_variables,[],[77])). cnf(493,plain, (~P13(x4931,x4932)+~P4(x4932,x4933)+P13(x4931,x4933)), inference(rename_variables,[],[83])). cnf(495,plain, (~P13(x4951,x4952)+~P4(x4952,x4953)+P13(x4951,x4953)), inference(rename_variables,[],[83])). cnf(497,plain, (~P13(x4971,x4972)+~P4(x4972,x4973)+P13(x4971,x4973)), inference(rename_variables,[],[83])). cnf(500,plain, (~P4(x5001,x5002)+~P4(x5003,x5001)+P4(x5003,x5002)), inference(rename_variables,[],[84])). cnf(502,plain, (~P4(x5021,x5022)+~P4(x5023,x5021)+P4(x5023,x5022)), inference(rename_variables,[],[84])). cnf(504,plain, (~P4(x5041,x5042)+~P4(x5043,x5041)+P4(x5043,x5042)), inference(rename_variables,[],[84])). cnf(507,plain, (~P13(x5071,x5072)+~P7(x5072,x5073)+~P13(x5071,x5073)), inference(rename_variables,[],[91])). cnf(509,plain, (~P13(x5091,x5092)+~P7(x5092,x5093)+~P13(x5091,x5093)), inference(rename_variables,[],[91])). cnf(511,plain, (~P13(x5111,x5112)+~P7(x5112,x5113)+~P13(x5111,x5113)), inference(rename_variables,[],[91])). cnf(514,plain, (P4(f10(x5141,x5142),x5143)+~P4(x5142,x5143)+~P4(x5141,x5143)), inference(rename_variables,[],[98])). cnf(516,plain, (P4(f10(x5161,x5162),x5163)+~P4(x5162,x5163)+~P4(x5161,x5163)), inference(rename_variables,[],[98])). cnf(518,plain, (P4(f10(x5181,x5182),x5183)+~P4(x5182,x5183)+~P4(x5181,x5183)), inference(rename_variables,[],[98])). cnf(521,plain, (P4(x5211,f9(x5212,f9(x5212,x5213)))+~P4(x5211,x5213)+~P4(x5211,x5212)), inference(rename_variables,[],[105])). cnf(523,plain, (P4(x5231,f9(x5232,f9(x5232,x5233)))+~P4(x5231,x5233)+~P4(x5231,x5232)), inference(rename_variables,[],[105])). cnf(525,plain, (P4(x5251,f9(x5252,f9(x5252,x5253)))+~P4(x5251,x5253)+~P4(x5251,x5252)), inference(rename_variables,[],[105])). cnf(528,plain, (~P4(x5281,x5282)+P4(x5283,x5282)+~E(x5281,x5283)), inference(rename_variables,[],[29])). cnf(530,plain, (~P4(x5301,x5302)+P4(x5303,x5302)+~E(x5301,x5303)), inference(rename_variables,[],[29])). cnf(532,plain, (~P4(x5321,x5322)+P4(x5323,x5322)+~E(x5321,x5323)), inference(rename_variables,[],[29])). cnf(535,plain, (~P4(x5351,x5352)+P4(x5351,x5353)+~E(x5352,x5353)), inference(rename_variables,[],[30])). cnf(537,plain, (~P4(x5371,x5372)+P4(x5371,x5373)+~E(x5372,x5373)), inference(rename_variables,[],[30])). cnf(539,plain, (~P4(x5391,x5392)+P4(x5391,x5393)+~E(x5392,x5393)), inference(rename_variables,[],[30])). cnf(542,plain, (~P7(x5421,x5422)+P7(x5423,x5422)+~E(x5421,x5423)), inference(rename_variables,[],[31])). cnf(544,plain, (~P7(x5441,x5442)+P7(x5443,x5442)+~E(x5441,x5443)), inference(rename_variables,[],[31])). cnf(546,plain, (~P7(x5461,x5462)+P7(x5463,x5462)+~E(x5461,x5463)), inference(rename_variables,[],[31])). cnf(549,plain, (~P7(x5491,x5492)+P7(x5491,x5493)+~E(x5492,x5493)), inference(rename_variables,[],[32])). cnf(551,plain, (~P7(x5511,x5512)+P7(x5511,x5513)+~E(x5512,x5513)), inference(rename_variables,[],[32])). cnf(553,plain, (~P7(x5531,x5532)+P7(x5531,x5533)+~E(x5532,x5533)), inference(rename_variables,[],[32])). cnf(556,plain, (~E(x5561,x5562)+E(x5563,x5562)+~E(x5563,x5561)), inference(rename_variables,[],[3])). cnf(558,plain, (~E(x5581,x5582)+E(x5583,x5582)+~E(x5583,x5581)), inference(rename_variables,[],[3])). cnf(560,plain, (~E(x5601,x5602)+E(x5603,x5602)+~E(x5603,x5601)), inference(rename_variables,[],[3])). cnf(563,plain, (~E(x5631,x5632)+~P1(x5631)+P1(x5632)), inference(rename_variables,[],[26])). cnf(565,plain, (~E(x5651,x5652)+~P1(x5651)+P1(x5652)), inference(rename_variables,[],[26])). cnf(567,plain, (~E(x5671,x5672)+~P1(x5671)+P1(x5672)), inference(rename_variables,[],[26])). cnf(570,plain, (~P12(x5701,x5702)+P12(x5703,x5702)+~E(x5701,x5703)), inference(rename_variables,[],[33])). cnf(572,plain, (~P12(x5721,x5722)+P12(x5723,x5722)+~E(x5721,x5723)), inference(rename_variables,[],[33])). cnf(574,plain, (~P12(x5741,x5742)+P12(x5743,x5742)+~E(x5741,x5743)), inference(rename_variables,[],[33])). cnf(577,plain, (~P12(x5771,x5772)+P12(x5771,x5773)+~E(x5772,x5773)), inference(rename_variables,[],[34])). cnf(579,plain, (~P12(x5791,x5792)+P12(x5791,x5793)+~E(x5792,x5793)), inference(rename_variables,[],[34])). cnf(581,plain, (~P12(x5811,x5812)+P12(x5811,x5813)+~E(x5812,x5813)), inference(rename_variables,[],[34])). cnf(584,plain, (~E(x5841,f9(x5842,x5843))+~P13(x5844,x5841)+P13(x5844,x5842)), inference(rename_variables,[],[85])). cnf(586,plain, (~E(x5861,f9(x5862,x5863))+~P13(x5864,x5861)+P13(x5864,x5862)), inference(rename_variables,[],[85])). cnf(588,plain, (~E(x5881,f9(x5882,x5883))+~P13(x5884,x5881)+P13(x5884,x5882)), inference(rename_variables,[],[85])). cnf(591,plain, (~E(x5911,f10(x5912,x5913))+~P13(x5914,x5913)+P13(x5914,x5911)), inference(rename_variables,[],[86])). cnf(593,plain, (~E(x5931,f10(x5932,x5933))+~P13(x5934,x5933)+P13(x5934,x5931)), inference(rename_variables,[],[86])). cnf(595,plain, (~E(x5951,f10(x5952,x5953))+~P13(x5954,x5953)+P13(x5954,x5951)), inference(rename_variables,[],[86])). cnf(598,plain, (~E(x5981,f10(x5982,x5983))+~P13(x5984,x5982)+P13(x5984,x5981)), inference(rename_variables,[],[87])). cnf(600,plain, (~E(x6001,f10(x6002,x6003))+~P13(x6004,x6002)+P13(x6004,x6001)), inference(rename_variables,[],[87])). cnf(602,plain, (~E(x6021,f10(x6022,x6023))+~P13(x6024,x6022)+P13(x6024,x6021)), inference(rename_variables,[],[87])). cnf(605,plain, (~E(x6051,f9(x6052,x6053))+~P13(x6054,x6051)+~P13(x6054,x6053)), inference(rename_variables,[],[92])). cnf(607,plain, (~E(x6071,f9(x6072,x6073))+~P13(x6074,x6071)+~P13(x6074,x6073)), inference(rename_variables,[],[92])). cnf(609,plain, (~E(x6091,f9(x6092,x6093))+~P13(x6094,x6091)+~P13(x6094,x6093)), inference(rename_variables,[],[92])). cnf(614,plain, (~E(x6141,f9(x6142,f9(x6142,x6143)))+~P13(x6144,x6141)+P13(x6144,x6143)), inference(rename_variables,[],[100])). cnf(616,plain, (~E(x6161,f9(x6162,f9(x6162,x6163)))+~P13(x6164,x6161)+P13(x6164,x6163)), inference(rename_variables,[],[100])). cnf(618,plain, (~E(x6181,f9(x6182,f9(x6182,x6183)))+~P13(x6184,x6181)+P13(x6184,x6183)), inference(rename_variables,[],[100])). cnf(621,plain, (P13(x6211,x6212)+P13(x6211,x6213)+~P13(x6211,f10(x6213,x6212))), inference(rename_variables,[],[125])). cnf(623,plain, (P13(x6231,x6232)+P13(x6231,x6233)+~P13(x6231,f10(x6233,x6232))), inference(rename_variables,[],[125])). cnf(625,plain, (P13(x6251,x6252)+P13(x6251,x6253)+~P13(x6251,f10(x6253,x6252))), inference(rename_variables,[],[125])). cnf(627,plain, ($false), inference(scs_inference,[],[37,38,55,40,43,119,47,48,56,44,45,41,42,35,36,54,49,52,50,51,39,76,130,132,134,67,137,139,141,71,144,72,148,150,152,81,155,157,82,161,88,165,89,169,171,173,90,176,178,95,182,184,99,188,190,192,104,195,106,199,201,203,107,206,59,210,212,214,60,217,219,221,63,224,226,228,64,231,233,235,69,238,80,242,244,246,2,249,251,253,4,256,258,260,5,263,265,267,6,270,272,274,7,277,279,281,8,284,286,288,9,291,293,295,10,298,300,302,11,305,307,309,12,312,314,316,13,319,321,323,14,326,328,330,15,333,335,337,16,340,342,344,17,347,349,351,18,354,356,358,19,361,363,365,20,368,370,372,21,375,377,379,22,382,384,386,23,389,391,393,24,396,398,400,25,403,405,407,57,410,412,61,416,65,420,422,74,426,428,430,78,433,435,437,79,440,442,444,121,447,449,451,122,454,456,458,123,461,463,465,124,468,470,472,127,475,477,479,73,482,77,486,488,490,83,493,495,497,84,500,502,504,91,507,509,511,98,514,516,518,105,521,523,525,29,528,530,532,30,535,537,539,31,542,544,546,32,549,551,553,3,556,558,560,26,563,565,567,33,570,572,574,34,577,579,581,85,584,586,588,86,591,593,595,87,598,600,602,92,605,607,609,97,100,614,616,618,125,621,623,625,126]), ['proof']). % SZS output end Proof
% SZS status Theorem for theBenchmark.p % SZS output start Proof fof(t63_xboole_1, conjecture, (![X1]:![X2]:![X3]:((subset(X1,X2)&disjoint(X2,X3))=>disjoint(X1,X3))), file('/export/starexec/sandbox2/benchmark/theBenchmark.p', t63_xboole_1)). fof(symmetry_r1_xboole_0, axiom, (![X1]:![X2]:(disjoint(X1,X2)=>disjoint(X2,X1))), file('/export/starexec/sandbox2/benchmark/theBenchmark.p', symmetry_r1_xboole_0)). fof(t1_xboole_1, lemma, (![X1]:![X2]:![X3]:((subset(X1,X2)&subset(X2,X3))=>subset(X1,X3))), file('/export/starexec/sandbox2/benchmark/theBenchmark.p', t1_xboole_1)). fof(t40_xboole_1, lemma, (![X1]:![X2]:set_difference(set_union2(X1,X2),X2)=set_difference(X1,X2)), file('/export/starexec/sandbox2/benchmark/theBenchmark.p', t40_xboole_1)). fof(commutativity_k2_xboole_0, axiom, (![X1]:![X2]:set_union2(X1,X2)=set_union2(X2,X1)), file('/export/starexec/sandbox2/benchmark/theBenchmark.p', commutativity_k2_xboole_0)). fof(t2_boole, axiom, (![X1]:set_intersection2(X1,empty_set)=empty_set), file('/export/starexec/sandbox2/benchmark/theBenchmark.p', t2_boole)). fof(t48_xboole_1, lemma, (![X1]:![X2]:set_difference(X1,set_difference(X1,X2))=set_intersection2(X1,X2)), file('/export/starexec/sandbox2/benchmark/theBenchmark.p', t48_xboole_1)). fof(t3_xboole_0, lemma, (![X1]:![X2]:(~((~(disjoint(X1,X2))&![X3]:~((in(X3,X1)&in(X3,X2)))))&~((?[X3]:(in(X3,X1)&in(X3,X2))&disjoint(X1,X2))))), file('/export/starexec/sandbox2/benchmark/theBenchmark.p', t3_xboole_0)). fof(d4_xboole_0, axiom, (![X1]:![X2]:![X3]:(X3=set_difference(X1,X2)<=>![X4]:(in(X4,X3)<=>(in(X4,X1)&~(in(X4,X2)))))), file('/export/starexec/sandbox2/benchmark/theBenchmark.p', d4_xboole_0)). fof(l32_xboole_1, lemma, (![X1]:![X2]:(set_difference(X1,X2)=empty_set<=>subset(X1,X2))), file('/export/starexec/sandbox2/benchmark/theBenchmark.p', l32_xboole_1)). fof(d7_xboole_0, axiom, (![X1]:![X2]:(disjoint(X1,X2)<=>set_intersection2(X1,X2)=empty_set)), file('/export/starexec/sandbox2/benchmark/theBenchmark.p', d7_xboole_0)). fof(t39_xboole_1, lemma, (![X1]:![X2]:set_union2(X1,set_difference(X2,X1))=set_union2(X1,X2)), file('/export/starexec/sandbox2/benchmark/theBenchmark.p', t39_xboole_1)). fof(t3_boole, axiom, (![X1]:set_difference(X1,empty_set)=X1), file('/export/starexec/sandbox2/benchmark/theBenchmark.p', t3_boole)). fof(commutativity_k3_xboole_0, axiom, (![X1]:![X2]:set_intersection2(X1,X2)=set_intersection2(X2,X1)), file('/export/starexec/sandbox2/benchmark/theBenchmark.p', commutativity_k3_xboole_0)). fof(t36_xboole_1, lemma, (![X1]:![X2]:subset(set_difference(X1,X2),X1)), file('/export/starexec/sandbox2/benchmark/theBenchmark.p', t36_xboole_1)). fof(t12_xboole_1, lemma, (![X1]:![X2]:(subset(X1,X2)=>set_union2(X1,X2)=X2)), file('/export/starexec/sandbox2/benchmark/theBenchmark.p', t12_xboole_1)). fof(t1_boole, axiom, (![X1]:set_union2(X1,empty_set)=X1), file('/export/starexec/sandbox2/benchmark/theBenchmark.p', t1_boole)). fof(c_0_17, negated_conjecture, (~(![X1]:![X2]:![X3]:((subset(X1,X2)&disjoint(X2,X3))=>disjoint(X1,X3)))), inference(assume_negation,[status(cth)],[t63_xboole_1])). fof(c_0_18, plain, (![X3]:![X4]:(~disjoint(X3,X4)|disjoint(X4,X3))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[symmetry_r1_xboole_0])])). fof(c_0_19, negated_conjecture, (((subset(esk11_0,esk12_0)&disjoint(esk12_0,esk13_0))&~disjoint(esk11_0,esk13_0))), inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_17])])])). fof(c_0_20, lemma, (![X4]:![X5]:![X6]:((~subset(X4,X5)|~subset(X5,X6))|subset(X4,X6))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[t1_xboole_1])])). fof(c_0_21, lemma, (![X3]:![X4]:set_difference(set_union2(X3,X4),X4)=set_difference(X3,X4)), inference(variable_rename,[status(thm)],[t40_xboole_1])). fof(c_0_22, plain, (![X3]:![X4]:set_union2(X3,X4)=set_union2(X4,X3)), inference(variable_rename,[status(thm)],[commutativity_k2_xboole_0])). fof(c_0_23, plain, (![X2]:set_intersection2(X2,empty_set)=empty_set), inference(variable_rename,[status(thm)],[t2_boole])). fof(c_0_24, lemma, (![X3]:![X4]:set_difference(X3,set_difference(X3,X4))=set_intersection2(X3,X4)), inference(variable_rename,[status(thm)],[t48_xboole_1])). fof(c_0_25, lemma, (![X4]:![X5]:![X4]:![X5]:![X7]:(((in(esk9_2(X4,X5),X4)|disjoint(X4,X5))&(in(esk9_2(X4,X5),X5)|disjoint(X4,X5)))&((~in(X7,X4)|~in(X7,X5))|~disjoint(X4,X5)))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[t3_xboole_0])])])])])])])])). cnf(c_0_26,plain,(disjoint(X1,X2)|~disjoint(X2,X1)), inference(split_conjunct,[status(thm)],[c_0_18])). cnf(c_0_27,negated_conjecture,(disjoint(esk12_0,esk13_0)), inference(split_conjunct,[status(thm)],[c_0_19])). fof(c_0_28, plain, (![X5]:![X6]:![X7]:![X8]:![X8]:![X5]:![X6]:![X7]:(((((in(X8,X5)|~in(X8,X7))|X7!=set_difference(X5,X6))&((~in(X8,X6)|~in(X8,X7))|X7!=set_difference(X5,X6)))&(((~in(X8,X5)|in(X8,X6))|in(X8,X7))|X7!=set_difference(X5,X6)))&(((~in(esk5_3(X5,X6,X7),X7)|(~in(esk5_3(X5,X6,X7),X5)|in(esk5_3(X5,X6,X7),X6)))|X7=set_difference(X5,X6))&(((in(esk5_3(X5,X6,X7),X5)|in(esk5_3(X5,X6,X7),X7))|X7=set_difference(X5,X6))&((~in(esk5_3(X5,X6,X7),X6)|in(esk5_3(X5,X6,X7),X7))|X7=set_difference(X5,X6)))))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[d4_xboole_0])])])])])])])])). fof(c_0_29, lemma, (![X3]:![X4]:![X3]:![X4]:((set_difference(X3,X4)!=empty_set|subset(X3,X4))&(~subset(X3,X4)|set_difference(X3,X4)=empty_set))), inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[l32_xboole_1])])])])). cnf(c_0_30,lemma,(subset(X1,X2)|~subset(X3,X2)|~subset(X1,X3)), inference(split_conjunct,[status(thm)],[c_0_20])). cnf(c_0_31,negated_conjecture,(subset(esk11_0,esk12_0)), inference(split_conjunct,[status(thm)],[c_0_19])). fof(c_0_32, plain, (![X3]:![X4]:![X3]:![X4]:((~disjoint(X3,X4)|set_intersection2(X3,X4)=empty_set)&(set_intersection2(X3,X4)!=empty_set|disjoint(X3,X4)))), inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[d7_xboole_0])])])])). cnf(c_0_33,lemma,(set_difference(set_union2(X1,X2),X2)=set_difference(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_21])). cnf(c_0_34,plain,(set_union2(X1,X2)=set_union2(X2,X1)), inference(split_conjunct,[status(thm)],[c_0_22])). fof(c_0_35, lemma, (![X3]:![X4]:set_union2(X3,set_difference(X4,X3))=set_union2(X3,X4)), inference(variable_rename,[status(thm)],[t39_xboole_1])). cnf(c_0_36,plain,(set_intersection2(X1,empty_set)=empty_set), inference(split_conjunct,[status(thm)],[c_0_23])). cnf(c_0_37,lemma,(set_difference(X1,set_difference(X1,X2))=set_intersection2(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_24])). fof(c_0_38, plain, (![X2]:set_difference(X2,empty_set)=X2), inference(variable_rename,[status(thm)],[t3_boole])). cnf(c_0_39,lemma,(~disjoint(X1,X2)|~in(X3,X2)|~in(X3,X1)), inference(split_conjunct,[status(thm)],[c_0_25])). cnf(c_0_40,negated_conjecture,(disjoint(esk13_0,esk12_0)), inference(spm,[status(thm)],[c_0_26, c_0_27])). cnf(c_0_41,plain,(in(X4,X2)|X1!=set_difference(X2,X3)|~in(X4,X1)), inference(split_conjunct,[status(thm)],[c_0_28])). fof(c_0_42, plain, (![X3]:![X4]:set_intersection2(X3,X4)=set_intersection2(X4,X3)), inference(variable_rename,[status(thm)],[commutativity_k3_xboole_0])). cnf(c_0_43,lemma,(set_difference(X1,X2)=empty_set|~subset(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_29])). cnf(c_0_44,negated_conjecture,(subset(X1,esk12_0)|~subset(X1,esk11_0)), inference(spm,[status(thm)],[c_0_30, c_0_31])). fof(c_0_45, lemma, (![X3]:![X4]:subset(set_difference(X3,X4),X3)), inference(variable_rename,[status(thm)],[t36_xboole_1])). fof(c_0_46, lemma, (![X3]:![X4]:(~subset(X3,X4)|set_union2(X3,X4)=X4)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[t12_xboole_1])])). cnf(c_0_47,plain,(disjoint(X1,X2)|set_intersection2(X1,X2)!=empty_set), inference(split_conjunct,[status(thm)],[c_0_32])). cnf(c_0_48,lemma,(set_difference(set_union2(X1,X2),X1)=set_difference(X2,X1)), inference(spm,[status(thm)],[c_0_33, c_0_34])). cnf(c_0_49,lemma,(set_union2(X1,set_difference(X2,X1))=set_union2(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_35])). cnf(c_0_50,plain,(set_difference(X1,set_difference(X1,empty_set))=empty_set), inference(rw,[status(thm)],[c_0_36, c_0_37])). cnf(c_0_51,plain,(set_difference(X1,empty_set)=X1), inference(split_conjunct,[status(thm)],[c_0_38])). cnf(c_0_52,negated_conjecture,(~in(X1,esk12_0)|~in(X1,esk13_0)), inference(spm,[status(thm)],[c_0_39, c_0_40])). cnf(c_0_53,lemma,(disjoint(X1,X2)|in(esk9_2(X1,X2),X2)), inference(split_conjunct,[status(thm)],[c_0_25])). cnf(c_0_54,plain,(in(X1,X2)|~in(X1,set_difference(X2,X3))), inference(er,[status(thm)],[c_0_41])). cnf(c_0_55,lemma,(disjoint(X1,X2)|in(esk9_2(X1,X2),X1)), inference(split_conjunct,[status(thm)],[c_0_25])). cnf(c_0_56,plain,(set_intersection2(X1,X2)=set_intersection2(X2,X1)), inference(split_conjunct,[status(thm)],[c_0_42])). cnf(c_0_57,lemma,(set_difference(X1,esk12_0)=empty_set|~subset(X1,esk11_0)), inference(spm,[status(thm)],[c_0_43, c_0_44])). cnf(c_0_58,lemma,(subset(set_difference(X1,X2),X1)), inference(split_conjunct,[status(thm)],[c_0_45])). cnf(c_0_59,plain,(set_intersection2(X1,X2)=empty_set|~disjoint(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_32])). fof(c_0_60, plain, (![X2]:set_union2(X2,empty_set)=X2), inference(variable_rename,[status(thm)],[t1_boole])). cnf(c_0_61,lemma,(set_union2(X1,X2)=X2|~subset(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_46])). cnf(c_0_62,plain,(disjoint(X1,X2)|set_difference(X1,set_difference(X1,X2))!=empty_set), inference(rw,[status(thm)],[c_0_47, c_0_37])). cnf(c_0_63,lemma,(set_difference(set_difference(X1,X2),X2)=set_difference(X1,X2)), inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_48, c_0_49]), c_0_48])). cnf(c_0_64,plain,(set_difference(X1,X1)=empty_set), inference(rw,[status(thm)],[c_0_50, c_0_51])). cnf(c_0_65,lemma,(disjoint(X1,esk13_0)|~in(esk9_2(X1,esk13_0),esk12_0)), inference(spm,[status(thm)],[c_0_52, c_0_53])). cnf(c_0_66,lemma,(disjoint(set_difference(X1,X2),X3)|in(esk9_2(set_difference(X1,X2),X3),X1)), inference(spm,[status(thm)],[c_0_54, c_0_55])). cnf(c_0_67,plain,(set_difference(X1,set_difference(X1,X2))=set_difference(X2,set_difference(X2,X1))), inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_56, c_0_37]), c_0_37])). cnf(c_0_68,lemma,(set_difference(set_difference(esk11_0,X1),esk12_0)=empty_set), inference(spm,[status(thm)],[c_0_57, c_0_58])). cnf(c_0_69,plain,(set_difference(X1,set_difference(X1,X2))=empty_set|~disjoint(X1,X2)), inference(rw,[status(thm)],[c_0_59, c_0_37])). cnf(c_0_70,plain,(set_union2(X1,empty_set)=X1), inference(split_conjunct,[status(thm)],[c_0_60])). cnf(c_0_71,lemma,(set_union2(X1,set_difference(X1,X2))=X1), inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_61, c_0_58]), c_0_34])). cnf(c_0_72,lemma,(disjoint(set_difference(X1,X2),X2)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_62, c_0_63]), c_0_64])])). cnf(c_0_73,lemma,(disjoint(set_difference(esk12_0,X1),esk13_0)), inference(spm,[status(thm)],[c_0_65, c_0_66])). cnf(c_0_74,lemma,(set_difference(esk12_0,set_difference(esk12_0,set_difference(esk11_0,X1)))=set_difference(esk11_0,X1)), inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_67, c_0_68]), c_0_51])). cnf(c_0_75,lemma,(set_difference(X1,X2)=X1|~disjoint(X1,X2)), inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_49, c_0_69]), c_0_70]), c_0_34]), c_0_71])). cnf(c_0_76,lemma,(disjoint(X1,set_difference(X2,X1))), inference(spm,[status(thm)],[c_0_26, c_0_72])). cnf(c_0_77,lemma,(disjoint(set_difference(esk11_0,X1),esk13_0)), inference(spm,[status(thm)],[c_0_73, c_0_74])). cnf(c_0_78,lemma,(set_difference(X1,set_difference(X2,X1))=X1), inference(spm,[status(thm)],[c_0_75, c_0_76])). cnf(c_0_79,negated_conjecture,(~disjoint(esk11_0,esk13_0)), inference(split_conjunct,[status(thm)],[c_0_19])). cnf(c_0_80,lemma,($false), inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_77, c_0_78]), c_0_79]), ['proof']). % SZS output end Proof
------- cvc4-tfa casc j9 : DAT013=1.p at ... --- Run --cbqi-all --purify-triggers --full-saturate-quant at 15... % SZS status Theorem for DAT013=1 % SZS output start Proof for DAT013=1 (skolem (let ((_let_0 (* (- 1) X))) (let ((_let_1 (* (- 1) BOUND_VARIABLE_391))) (forall ((U array) (V Int) (W Int) (BOUND_VARIABLE_391 Int)) (or (not (forall ((X Int)) (or (>= (+ V _let_0) 1) (not (>= (+ W _let_0) 0)) (>= (read U X) 1)) )) (>= (+ V _let_1) (- 2)) (not (>= (+ W _let_1) 0)) (>= (read U BOUND_VARIABLE_391) 1)) ))) ( skv_5 skv_6 skv_7 skv_8 ) ) (instantiation (forall ((X Int)) (or (not (>= (+ X (* (- 1) skv_6)) 0)) (>= (+ X (* (- 1) skv_7)) 1) (>= (read skv_5 X) 1)) ) ( skv_8 ) ) % SZS output end Proof for DAT013=1
------- cvc4-fof casc j9 : SEU140+2.p at ... --- Run --decision=internal --simplification=none --no-inst-no-entail --no-quant-cf --full-saturate-quant at 20... % SZS status Theorem for SEU140+2 % SZS output start Proof for SEU140+2 (skolem (forall ((A $$unsorted)) (not (empty A)) ) ( skv_1 ) ) (skolem (forall ((A $$unsorted)) (empty A) ) ( skv_2 ) ) (skolem (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (or (not (subset A B)) (not (disjoint B C)) (disjoint A C)) ) ( skv_3 skv_4 skv_5 ) ) (skolem (forall ((C $$unsorted)) (or (not (in C skv_3)) (not (in C skv_5))) ) ( skv_6 ) ) (skolem (forall ((C $$unsorted)) (not (in C (set_intersection2 skv_3 skv_5))) ) ( skv_7 ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted)) (= (= A B) (and (subset A B) (subset B A))) ) ( skv_3, skv_4 ) ( skv_4, skv_3 ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted)) (= (proper_subset A B) (and (subset A B) (not (= A B)))) ) ( skv_3, skv_4 ) ( skv_4, skv_3 ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted)) (subset (set_intersection2 A B) A) ) ( skv_3, skv_4 ) ( skv_3, skv_5 ) ( skv_4, skv_5 ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted)) (subset (set_difference A B) A) ) ( skv_3, skv_4 ) ( skv_4, skv_3 ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted)) (subset A (set_union2 A B)) ) ( skv_3, skv_4 ) ( skv_3, (set_difference skv_4 skv_3) ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted)) (or (not (in A B)) (not (in B A))) ) ( skv_3, skv_6 ) ( skv_5, skv_6 ) ( (set_intersection2 skv_3 skv_5), skv_7 ) ( skv_6, skv_3 ) ( skv_6, skv_5 ) ( skv_7, (set_intersection2 skv_3 skv_5) ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted)) (or (not (proper_subset A B)) (not (proper_subset B A))) ) ( skv_3, skv_4 ) ( skv_4, skv_3 ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted)) (= (set_union2 B A) (set_union2 A B)) ) ( skv_3, skv_4 ) ( skv_3, (set_difference skv_4 skv_3) ) ( skv_4, skv_3 ) ( (set_difference skv_4 skv_3), skv_3 ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted)) (= (set_intersection2 B A) (set_intersection2 A B)) ) ( skv_3, skv_4 ) ( skv_3, skv_5 ) ( skv_4, skv_3 ) ( skv_4, skv_5 ) ( skv_5, skv_3 ) ( skv_5, skv_4 ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted)) (= (subset A B) (forall ((C $$unsorted)) (or (not (in C A)) (in C B)) )) ) ( skv_3, skv_4 ) ( skv_4, skv_3 ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted)) (= (disjoint A B) (= empty_set (set_intersection2 A B))) ) ( skv_3, skv_4 ) ( skv_3, skv_5 ) ( skv_4, skv_5 ) ( skv_5, skv_3 ) ( skv_5, skv_4 ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted)) (or (empty A) (not (empty (set_union2 A B)))) ) ( skv_3, skv_4 ) ( skv_3, (set_difference skv_4 skv_3) ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted)) (or (empty A) (not (empty (set_union2 B A)))) ) ( skv_4, skv_3 ) ( (set_difference skv_4 skv_3), skv_3 ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted)) (= (= empty_set (set_difference A B)) (subset A B)) ) ( skv_3, skv_4 ) ( skv_4, skv_3 ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted)) (or (not (disjoint A B)) (disjoint B A)) ) ( skv_3, skv_5 ) ( skv_4, skv_5 ) ( skv_5, skv_3 ) ( skv_5, skv_4 ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted)) (or (not (subset A B)) (= B (set_union2 A B))) ) ( skv_3, skv_4 ) ( skv_3, (set_difference skv_4 skv_3) ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (or (not (subset A B)) (not (subset A C)) (subset A (set_intersection2 B C))) ) ( skv_4, skv_3, skv_4 ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted)) (or (not (subset A B)) (= A (set_intersection2 A B))) ) ( skv_3, skv_4 ) ( skv_3, skv_5 ) ( skv_4, skv_5 ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted)) (= (set_union2 A B) (set_union2 A (set_difference B A))) ) ( skv_3, skv_4 ) ( skv_4, skv_3 ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted)) (or (disjoint A B) (not (forall ((C $$unsorted)) (or (not (in C A)) (not (in C B))) ))) ) ( skv_3, skv_5 ) ( skv_5, skv_3 ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted) (BOUND_VARIABLE_836 $$unsorted)) (or (not (disjoint A B)) (not (in BOUND_VARIABLE_836 A)) (not (in BOUND_VARIABLE_836 B))) ) ( skv_5, skv_4, skv_6 ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted)) (= (set_difference A B) (set_difference (set_union2 A B) B)) ) ( skv_3, skv_4 ) ( skv_3, (set_difference skv_4 skv_3) ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted)) (or (not (subset A B)) (= B (set_union2 A (set_difference B A)))) ) ( skv_3, skv_4 ) ( skv_4, skv_3 ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted)) (= (set_intersection2 A B) (set_difference A (set_difference A B))) ) ( skv_3, skv_4 ) ( skv_3, skv_5 ) ( skv_4, skv_5 ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted)) (or (disjoint A B) (not (forall ((C $$unsorted)) (not (in C (set_intersection2 A B))) ))) ) ( skv_3, skv_5 ) ( skv_5, skv_3 ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted) (BOUND_VARIABLE_878 $$unsorted)) (or (not (in BOUND_VARIABLE_878 (set_intersection2 A B))) (not (disjoint A B))) ) ( skv_3, skv_4, skv_6 ) ( skv_3, skv_5, skv_7 ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted)) (or (not (subset A B)) (not (proper_subset B A))) ) ( skv_3, skv_4 ) ( skv_4, skv_3 ) ) (instantiation (forall ((A $$unsorted)) (or (not (empty A)) (= empty_set A)) ) ( empty_set ) ( skv_1 ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted)) (or (not (in A B)) (not (empty B))) ) ( skv_6, skv_3 ) ( skv_6, skv_5 ) ( skv_7, (set_intersection2 skv_3 skv_5) ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted)) (or (not (empty A)) (= A B) (not (empty B))) ) ( empty_set, empty_set ) ( empty_set, skv_1 ) ( skv_1, empty_set ) ( skv_1, skv_1 ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (or (not (subset A B)) (not (subset C B)) (subset (set_union2 A C) B)) ) ( skv_3, skv_3, (set_difference skv_4 skv_3) ) ) (instantiation (forall ((C $$unsorted)) (or (not (in C skv_3)) (in C skv_4)) ) ( skv_6 ) ) % SZS output end Proof for SEU140+2
------- cvc4-fnt casc j9 : NLP042+1.p at ... --- Run --finite-model-find --uf-ss=no-minimal --sort-inference at 30... % SZS status CounterSatisfiable for NLP042+1 % SZS output start FiniteModel for NLP042+1 (define-fun actual_world ((BOUND_VARIABLE_7812 $$unsorted)) Bool true) ; cardinality of $$unsorted is 1 (declare-sort $$unsorted 0) ; rep: @uc___unsorted_0 ; cardinality of it_2_$$unsorted is 4 (declare-sort it_2_$$unsorted 0) ; rep: @uc_it_2___unsorted_0 ; rep: @uc_it_2___unsorted_1 ; rep: @uc_it_2___unsorted_2 ; rep: @uc_it_2___unsorted_3 (define-fun io_woman_1 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_0 $x2))) (define-fun io_female_2 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_0 $x2))) (define-fun io_human_person_3 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_0 $x2))) (define-fun io_animate_4 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_0 $x2))) (define-fun io_human_5 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_0 $x2))) (define-fun io_organism_6 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_0 $x2))) (define-fun io_living_7 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_0 $x2))) (define-fun io_impartial_8 ((BOUND_VARIABLE_7835 $$unsorted) (BOUND_VARIABLE_7836 it_2_$$unsorted)) Bool true) (define-fun io_entity_9 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (ite (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_0 $x2)) true (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_2 $x2)))) (define-fun io_mia_forename_10 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_1 $x2))) (define-fun io_forename_11 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_1 $x2))) (define-fun io_abstraction_12 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_1 $x2))) (define-fun io_unisex_13 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (ite (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_1 $x2)) true (ite (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_2 $x2)) true (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_3 $x2))))) (define-fun io_general_14 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_1 $x2))) (define-fun io_nonhuman_15 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_1 $x2))) (define-fun io_thing_16 ((BOUND_VARIABLE_7835 $$unsorted) (BOUND_VARIABLE_7836 it_2_$$unsorted)) Bool true) (define-fun io_relation_17 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_1 $x2))) (define-fun io_relname_18 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_1 $x2))) (define-fun io_object_19 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_2 $x2))) (define-fun io_nonliving_20 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_2 $x2))) (define-fun io_existent_21 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (ite (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_0 $x2)) true (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_2 $x2)))) (define-fun io_specific_22 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (ite (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_0 $x2)) true (ite (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_2 $x2)) true (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_3 $x2))))) (define-fun io_substance_matter_23 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_2 $x2))) (define-fun io_food_24 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_2 $x2))) (define-fun io_beverage_25 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_2 $x2))) (define-fun io_shake_beverage_26 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_2 $x2))) (define-fun io_order_27 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_3 $x2))) (define-fun io_event_28 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_3 $x2))) (define-fun io_eventuality_29 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_3 $x2))) (define-fun io_nonexistent_30 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_3 $x2))) (define-fun io_singleton_31 ((BOUND_VARIABLE_7835 $$unsorted) (BOUND_VARIABLE_7836 it_2_$$unsorted)) Bool true) (define-fun io_act_32 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_3 $x2))) (define-fun io_of_33 ((BOUND_VARIABLE_7893 $$unsorted) (BOUND_VARIABLE_7894 it_2_$$unsorted) (BOUND_VARIABLE_7895 it_2_$$unsorted)) Bool true) (define-fun io_nonreflexive_34 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_3 $x2))) (define-fun io_agent_35 (($x1 $$unsorted) ($x2 it_2_$$unsorted) ($x3 it_2_$$unsorted)) Bool (ite (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_3 $x2) (= @uc_it_2___unsorted_2 $x3)) false (ite (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_3 $x2) (= @uc_it_2___unsorted_1 $x3)) false (not (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_3 $x2) (= @uc_it_2___unsorted_3 $x3)))))) (define-fun io_patient_36 (($x1 $$unsorted) ($x2 it_2_$$unsorted) ($x3 it_2_$$unsorted)) Bool (not (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_3 $x2) (= @uc_it_2___unsorted_0 $x3)))) (define-fun io_past_37 ((BOUND_VARIABLE_7835 $$unsorted) (BOUND_VARIABLE_7836 it_2_$$unsorted)) Bool true) % SZS output end FiniteModel for NLP042+1
------- cvc4-fnt casc j9 : SWV017+1.p at ... --- Run --finite-model-find --uf-ss=no-minimal --sort-inference at 30... % SZS status Satisfiable for SWV017+1 % SZS output start FiniteModel for SWV017+1 (define-fun at () $$unsorted @uc___unsorted_0) (define-fun t () $$unsorted @uc___unsorted_0) (define-fun a_holds ((BOUND_VARIABLE_1960 $$unsorted)) Bool true) (define-fun a () $$unsorted @uc___unsorted_0) (define-fun b () $$unsorted @uc___unsorted_0) (define-fun an_a_nonce () $$unsorted @uc___unsorted_0) (define-fun bt () $$unsorted @uc___unsorted_0) (define-fun b_holds ((BOUND_VARIABLE_1960 $$unsorted)) Bool true) (define-fun t_holds ((BOUND_VARIABLE_1960 $$unsorted)) Bool true) (define-fun intruder_holds ((BOUND_VARIABLE_1960 $$unsorted)) Bool true) (define-fun an_intruder_nonce () $$unsorted @uc___unsorted_0) ; cardinality of $$unsorted is 1 (declare-sort $$unsorted 0) ; rep: @uc___unsorted_0 ; cardinality of it_4_$$unsorted is 2 (declare-sort it_4_$$unsorted 0) ; rep: @uc_it_4___unsorted_0 ; rep: @uc_it_4___unsorted_1 (define-fun io_key_3 ((BOUND_VARIABLE_1969 it_4_$$unsorted) (BOUND_VARIABLE_1970 it_4_$$unsorted)) $$unsorted @uc___unsorted_0) (define-fun io_party_of_protocol_5 ((BOUND_VARIABLE_1977 it_4_$$unsorted)) Bool true) ; cardinality of it_19_$$unsorted is 1 (declare-sort it_19_$$unsorted 0) ; rep: @uc_it_19___unsorted_0 (define-fun io_pair_8 ((BOUND_VARIABLE_1986 it_4_$$unsorted) (BOUND_VARIABLE_1987 it_4_$$unsorted)) it_4_$$unsorted @uc_it_4___unsorted_0) (define-fun io_sent_9 ((BOUND_VARIABLE_2002 it_4_$$unsorted) (BOUND_VARIABLE_2003 it_4_$$unsorted) (BOUND_VARIABLE_2004 it_4_$$unsorted)) it_19_$$unsorted @uc_it_19___unsorted_0) (define-fun io_message_10 ((BOUND_VARIABLE_2013 it_19_$$unsorted)) Bool true) (define-fun io_a_stored_11 ((BOUND_VARIABLE_1977 it_4_$$unsorted)) Bool true) (define-fun io_quadruple_12 ((BOUND_VARIABLE_2026 it_4_$$unsorted) (BOUND_VARIABLE_2027 it_4_$$unsorted) (BOUND_VARIABLE_2028 it_4_$$unsorted) (BOUND_VARIABLE_2029 it_4_$$unsorted)) it_4_$$unsorted @uc_it_4___unsorted_0) (define-fun io_encrypt_13 ((BOUND_VARIABLE_1986 it_4_$$unsorted) (BOUND_VARIABLE_1987 it_4_$$unsorted)) it_4_$$unsorted @uc_it_4___unsorted_0) (define-fun io_triple_14 ((BOUND_VARIABLE_2044 it_4_$$unsorted) (BOUND_VARIABLE_2045 it_4_$$unsorted) (BOUND_VARIABLE_2046 it_4_$$unsorted)) it_4_$$unsorted @uc_it_4___unsorted_0) (define-fun io_fresh_to_b_16 ((BOUND_VARIABLE_1977 it_4_$$unsorted)) Bool true) (define-fun io_generate_b_nonce_17 ((BOUND_VARIABLE_2053 it_4_$$unsorted)) it_4_$$unsorted @uc_it_4___unsorted_0) (define-fun io_generate_expiration_time_18 ((BOUND_VARIABLE_2053 it_4_$$unsorted)) it_4_$$unsorted @uc_it_4___unsorted_0) (define-fun io_b_stored_19 ((BOUND_VARIABLE_1977 it_4_$$unsorted)) Bool true) (define-fun io_a_key_20 ((BOUND_VARIABLE_1977 it_4_$$unsorted)) Bool (= @uc_it_4___unsorted_1 BOUND_VARIABLE_1977)) (define-fun io_a_nonce_21 ((BOUND_VARIABLE_1977 it_4_$$unsorted)) Bool (= @uc_it_4___unsorted_0 BOUND_VARIABLE_1977)) (define-fun io_generate_key_22 ((BOUND_VARIABLE_2053 it_4_$$unsorted)) it_4_$$unsorted @uc_it_4___unsorted_1) (define-fun io_intruder_message_23 ((BOUND_VARIABLE_1977 it_4_$$unsorted)) Bool true) (define-fun io_fresh_intruder_nonce_25 ((BOUND_VARIABLE_1977 it_4_$$unsorted)) Bool true) (define-fun io_generate_intruder_nonce_26 ((BOUND_VARIABLE_2053 it_4_$$unsorted)) it_4_$$unsorted @uc_it_4___unsorted_0) % SZS output end FiniteModel for SWV017+1
# SZS status Theorem # SZS output start CNFRefutation fof(t63_xboole_1, conjecture, ![X1, X2, X3]:((subset(X1,X2)&disjoint(X2,X3))=>disjoint(X1,X3)), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SEU140+2.p', t63_xboole_1)). fof(d4_xboole_0, axiom, ![X1, X2, X3]:(X3=set_difference(X1,X2)<=>![X4]:(in(X4,X3)<=>(in(X4,X1)&~(in(X4,X2))))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SEU140+2.p', d4_xboole_0)). fof(commutativity_k3_xboole_0, axiom, ![X1, X2]:set_intersection2(X1,X2)=set_intersection2(X2,X1), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SEU140+2.p', commutativity_k3_xboole_0)). fof(t48_xboole_1, lemma, ![X1, X2]:set_difference(X1,set_difference(X1,X2))=set_intersection2(X1,X2), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SEU140+2.p', t48_xboole_1)). fof(t40_xboole_1, lemma, ![X1, X2]:set_difference(set_union2(X1,X2),X2)=set_difference(X1,X2), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SEU140+2.p', t40_xboole_1)). fof(commutativity_k2_xboole_0, axiom, ![X1, X2]:set_union2(X1,X2)=set_union2(X2,X1), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SEU140+2.p', commutativity_k2_xboole_0)). fof(l32_xboole_1, lemma, ![X1, X2]:(set_difference(X1,X2)=empty_set<=>subset(X1,X2)), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SEU140+2.p', l32_xboole_1)). fof(t7_xboole_1, lemma, ![X1, X2]:subset(X1,set_union2(X1,X2)), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SEU140+2.p', t7_xboole_1)). fof(symmetry_r1_xboole_0, axiom, ![X1, X2]:(disjoint(X1,X2)=>disjoint(X2,X1)), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SEU140+2.p', symmetry_r1_xboole_0)). fof(t3_xboole_0, lemma, ![X1, X2]:(~((~(disjoint(X1,X2))&![X3]:~((in(X3,X1)&in(X3,X2)))))&~((?[X3]:(in(X3,X1)&in(X3,X2))&disjoint(X1,X2)))), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SEU140+2.p', t3_xboole_0)). fof(t3_boole, axiom, ![X1]:set_difference(X1,empty_set)=X1, file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SEU140+2.p', t3_boole)). fof(t39_xboole_1, lemma, ![X1, X2]:set_union2(X1,set_difference(X2,X1))=set_union2(X1,X2), file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SEU140+2.p', t39_xboole_1)). fof(t1_boole, axiom, ![X1]:set_union2(X1,empty_set)=X1, file('/Users/schulz/EPROVER/TPTP_6.0.0_FLAT/SEU140+2.p', t1_boole)). fof(c_0_13, negated_conjecture, ~(![X1, X2, X3]:((subset(X1,X2)&disjoint(X2,X3))=>disjoint(X1,X3))), inference(assume_negation,[status(cth)],[t63_xboole_1])). fof(c_0_14, plain, ![X32, X33, X34, X35, X35, X32, X33, X34]:((((in(X35,X32)|~in(X35,X34)|X34!=set_difference(X32,X33))&(~in(X35,X33)|~in(X35,X34)|X34!=set_difference(X32,X33)))&(~in(X35,X32)|in(X35,X33)|in(X35,X34)|X34!=set_difference(X32,X33)))&((~in(esk5_3(X32,X33,X34),X34)|(~in(esk5_3(X32,X33,X34),X32)|in(esk5_3(X32,X33,X34),X33))|X34=set_difference(X32,X33))&((in(esk5_3(X32,X33,X34),X32)|in(esk5_3(X32,X33,X34),X34)|X34=set_difference(X32,X33))&(~in(esk5_3(X32,X33,X34),X33)|in(esk5_3(X32,X33,X34),X34)|X34=set_difference(X32,X33))))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[d4_xboole_0])])])])])])])])). fof(c_0_15, plain, ![X11, X12]:set_intersection2(X11,X12)=set_intersection2(X12,X11), inference(variable_rename,[status(thm)],[commutativity_k3_xboole_0])). fof(c_0_16, lemma, ![X99, X100]:set_difference(X99,set_difference(X99,X100))=set_intersection2(X99,X100), inference(variable_rename,[status(thm)],[t48_xboole_1])). fof(c_0_17, lemma, ![X95, X96]:set_difference(set_union2(X95,X96),X96)=set_difference(X95,X96), inference(variable_rename,[status(thm)],[t40_xboole_1])). fof(c_0_18, plain, ![X9, X10]:set_union2(X9,X10)=set_union2(X10,X9), inference(variable_rename,[status(thm)],[commutativity_k2_xboole_0])). fof(c_0_19, lemma, ![X51, X52, X51, X52]:((set_difference(X51,X52)!=empty_set|subset(X51,X52))&(~subset(X51,X52)|set_difference(X51,X52)=empty_set)), inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[l32_xboole_1])])])])). fof(c_0_20, lemma, ![X114, X115]:subset(X114,set_union2(X114,X115)), inference(variable_rename,[status(thm)],[t7_xboole_1])). fof(c_0_21, plain, ![X57, X58]:(~disjoint(X57,X58)|disjoint(X58,X57)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[symmetry_r1_xboole_0])])). fof(c_0_22, negated_conjecture, ((subset(esk11_0,esk12_0)&disjoint(esk12_0,esk13_0))&~disjoint(esk11_0,esk13_0)), inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_13])])])). cnf(c_0_23, plain, (in(X1,X2)|~in(X1,X3)|X3!=set_difference(X2,X4)), inference(split_conjunct,[status(thm)],[c_0_14])). fof(c_0_24, lemma, ![X90, X91, X90, X91, X93]:(((in(esk9_2(X90,X91),X90)|disjoint(X90,X91))&(in(esk9_2(X90,X91),X91)|disjoint(X90,X91)))&(~in(X93,X90)|~in(X93,X91)|~disjoint(X90,X91))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[t3_xboole_0])])])])])])])])). cnf(c_0_25, plain, (set_intersection2(X1,X2)=set_intersection2(X2,X1)), inference(split_conjunct,[status(thm)],[c_0_15])). cnf(c_0_26, lemma, (set_difference(X1,set_difference(X1,X2))=set_intersection2(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_16])). cnf(c_0_27, lemma, (set_difference(set_union2(X1,X2),X2)=set_difference(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_17])). cnf(c_0_28, plain, (set_union2(X1,X2)=set_union2(X2,X1)), inference(split_conjunct,[status(thm)],[c_0_18])). cnf(c_0_29, lemma, (set_difference(X1,X2)=empty_set|~subset(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_19])). cnf(c_0_30, lemma, (subset(X1,set_union2(X1,X2))), inference(split_conjunct,[status(thm)],[c_0_20])). fof(c_0_31, plain, ![X89]:set_difference(X89,empty_set)=X89, inference(variable_rename,[status(thm)],[t3_boole])). cnf(c_0_32, plain, (disjoint(X2,X1)|~disjoint(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_21])). cnf(c_0_33, negated_conjecture, (disjoint(esk12_0,esk13_0)), inference(split_conjunct,[status(thm)],[c_0_22])). cnf(c_0_34, plain, (in(X1,X2)|~in(X1,set_difference(X2,X3))), inference(er,[status(thm)],[c_0_23])). cnf(c_0_35, lemma, (in(esk9_2(X1,X2),X2)|disjoint(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_24])). cnf(c_0_36, plain, (set_difference(X1,set_difference(X1,X2))=set_difference(X2,set_difference(X2,X1))), inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_25, c_0_26]), c_0_26])). cnf(c_0_37, lemma, (set_difference(set_union2(X1,X2),X1)=set_difference(X2,X1)), inference(spm,[status(thm)],[c_0_27, c_0_28])). cnf(c_0_38, lemma, (set_difference(X1,set_union2(X1,X2))=empty_set), inference(spm,[status(thm)],[c_0_29, c_0_30])). cnf(c_0_39, plain, (set_difference(X1,empty_set)=X1), inference(split_conjunct,[status(thm)],[c_0_31])). fof(c_0_40, lemma, ![X87, X88]:set_union2(X87,set_difference(X88,X87))=set_union2(X87,X88), inference(variable_rename,[status(thm)],[t39_xboole_1])). cnf(c_0_41, negated_conjecture, (subset(esk11_0,esk12_0)), inference(split_conjunct,[status(thm)],[c_0_22])). fof(c_0_42, plain, ![X66]:set_union2(X66,empty_set)=X66, inference(variable_rename,[status(thm)],[t1_boole])). cnf(c_0_43, lemma, (~in(X1,X2)|~in(X1,X3)|~disjoint(X2,X3)), inference(split_conjunct,[status(thm)],[c_0_24])). cnf(c_0_44, negated_conjecture, (disjoint(esk13_0,esk12_0)), inference(spm,[status(thm)],[c_0_32, c_0_33])). cnf(c_0_45, lemma, (disjoint(X1,set_difference(X2,X3))|in(esk9_2(X1,set_difference(X2,X3)),X2)), inference(spm,[status(thm)],[c_0_34, c_0_35])). cnf(c_0_46, lemma, (set_difference(set_union2(X1,X2),set_difference(X2,X1))=X1), inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_36, c_0_37]), c_0_38]), c_0_39])). cnf(c_0_47, lemma, (set_union2(X1,set_difference(X2,X1))=set_union2(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_40])). cnf(c_0_48, negated_conjecture, (set_difference(esk11_0,esk12_0)=empty_set), inference(spm,[status(thm)],[c_0_29, c_0_41])). cnf(c_0_49, plain, (set_union2(X1,empty_set)=X1), inference(split_conjunct,[status(thm)],[c_0_42])). cnf(c_0_50, negated_conjecture, (~in(X1,esk12_0)|~in(X1,esk13_0)), inference(spm,[status(thm)],[c_0_43, c_0_44])). cnf(c_0_51, lemma, (in(esk9_2(X1,X2),X1)|disjoint(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_24])). cnf(c_0_52, lemma, (disjoint(X1,X2)|in(esk9_2(X1,X2),set_union2(X2,X3))), inference(spm,[status(thm)],[c_0_45, c_0_46])). cnf(c_0_53, negated_conjecture, (set_union2(esk11_0,esk12_0)=esk12_0), inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_47, c_0_48]), c_0_49]), c_0_28])). cnf(c_0_54, lemma, (disjoint(esk13_0,X1)|~in(esk9_2(esk13_0,X1),esk12_0)), inference(spm,[status(thm)],[c_0_50, c_0_51])). cnf(c_0_55, negated_conjecture, (disjoint(X1,esk11_0)|in(esk9_2(X1,esk11_0),esk12_0)), inference(spm,[status(thm)],[c_0_52, c_0_53])). cnf(c_0_56, negated_conjecture, (disjoint(esk13_0,esk11_0)), inference(spm,[status(thm)],[c_0_54, c_0_55])). cnf(c_0_57, negated_conjecture, (~disjoint(esk11_0,esk13_0)), inference(split_conjunct,[status(thm)],[c_0_22])). cnf(c_0_58, negated_conjecture, ($false), inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_32, c_0_56]), c_0_57]), ['proof']). # SZS output end CNFRefutation
# SZS status CounterSatisfiable # SZS output start Saturation fof(ax26, axiom, (![X1]:![X2]:(beverage(X1,X2)=>food(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax26)). fof(ax27, axiom, (![X1]:![X2]:(shake_beverage(X1,X2)=>beverage(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax27)). fof(co1, conjecture, (~(?[X1]:(actual_world(X1)&?[X2]:?[X3]:?[X4]:?[X5]:((((((((((of(X1,X3,X2)&woman(X1,X2))&mia_forename(X1,X3))&forename(X1,X3))&shake_beverage(X1,X4))&event(X1,X5))&agent(X1,X5,X2))&patient(X1,X5,X4))&past(X1,X5))&nonreflexive(X1,X5))&order(X1,X5))))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', co1)). fof(ax41, axiom, (![X1]:![X2]:(specific(X1,X2)=>~(general(X1,X2)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax41)). fof(ax11, axiom, (![X1]:![X2]:(abstraction(X1,X2)=>general(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax11)). fof(ax15, axiom, (![X1]:![X2]:(relname(X1,X2)=>relation(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax15)). fof(ax16, axiom, (![X1]:![X2]:(forename(X1,X2)=>relname(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax16)). fof(ax42, axiom, (![X1]:![X2]:(unisex(X1,X2)=>~(female(X1,X2)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax42)). fof(ax1, axiom, (![X1]:![X2]:(woman(X1,X2)=>female(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax1)). fof(ax25, axiom, (![X1]:![X2]:(food(X1,X2)=>substance_matter(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax25)). fof(ax6, axiom, (![X1]:![X2]:(organism(X1,X2)=>entity(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax6)). fof(ax7, axiom, (![X1]:![X2]:(human_person(X1,X2)=>organism(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax7)). fof(ax8, axiom, (![X1]:![X2]:(woman(X1,X2)=>human_person(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax8)). fof(ax38, axiom, (![X1]:![X2]:(existent(X1,X2)=>~(nonexistent(X1,X2)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax38)). fof(ax30, axiom, (![X1]:![X2]:(eventuality(X1,X2)=>nonexistent(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax30)). fof(ax31, axiom, (![X1]:![X2]:(eventuality(X1,X2)=>specific(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax31)). fof(ax34, axiom, (![X1]:![X2]:(event(X1,X2)=>eventuality(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax34)). fof(ax21, axiom, (![X1]:![X2]:(entity(X1,X2)=>specific(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax21)). fof(ax14, axiom, (![X1]:![X2]:(relation(X1,X2)=>abstraction(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax14)). fof(ax24, axiom, (![X1]:![X2]:(substance_matter(X1,X2)=>object(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax24)). fof(ax40, axiom, (![X1]:![X2]:(nonliving(X1,X2)=>~(living(X1,X2)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax40)). fof(ax4, axiom, (![X1]:![X2]:(organism(X1,X2)=>living(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax4)). fof(ax37, axiom, (![X1]:![X2]:(animate(X1,X2)=>~(nonliving(X1,X2)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax37)). fof(ax2, axiom, (![X1]:![X2]:(human_person(X1,X2)=>animate(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax2)). fof(ax39, axiom, (![X1]:![X2]:(nonhuman(X1,X2)=>~(human(X1,X2)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax39)). fof(ax12, axiom, (![X1]:![X2]:(abstraction(X1,X2)=>nonhuman(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax12)). fof(ax44, axiom, (![X1]:![X2]:![X3]:![X4]:(((nonreflexive(X1,X2)&agent(X1,X2,X3))&patient(X1,X2,X4))=>X3!=X4)), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax44)). fof(ax20, axiom, (![X1]:![X2]:(entity(X1,X2)=>existent(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax20)). fof(ax10, axiom, (![X1]:![X2]:(abstraction(X1,X2)=>unisex(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax10)). fof(ax43, axiom, (![X1]:![X2]:![X3]:(((entity(X1,X2)&forename(X1,X3))&of(X1,X3,X2))=>~(?[X4]:((forename(X1,X4)&X4!=X3)&of(X1,X4,X2))))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax43)). fof(ax19, axiom, (![X1]:![X2]:(object(X1,X2)=>nonliving(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax19)). fof(ax3, axiom, (![X1]:![X2]:(human_person(X1,X2)=>human(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax3)). fof(ax29, axiom, (![X1]:![X2]:(eventuality(X1,X2)=>unisex(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax29)). fof(ax17, axiom, (![X1]:![X2]:(object(X1,X2)=>unisex(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax17)). fof(ax23, axiom, (![X1]:![X2]:(object(X1,X2)=>entity(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax23)). fof(ax32, axiom, (![X1]:![X2]:(thing(X1,X2)=>singleton(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax32)). fof(ax33, axiom, (![X1]:![X2]:(eventuality(X1,X2)=>thing(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax33)). fof(ax13, axiom, (![X1]:![X2]:(abstraction(X1,X2)=>thing(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax13)). fof(ax22, axiom, (![X1]:![X2]:(entity(X1,X2)=>thing(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax22)). fof(ax18, axiom, (![X1]:![X2]:(object(X1,X2)=>impartial(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax18)). fof(ax5, axiom, (![X1]:![X2]:(organism(X1,X2)=>impartial(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax5)). fof(ax36, axiom, (![X1]:![X2]:(order(X1,X2)=>act(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax36)). fof(ax35, axiom, (![X1]:![X2]:(act(X1,X2)=>event(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax35)). fof(ax28, axiom, (![X1]:![X2]:(order(X1,X2)=>event(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax28)). fof(ax9, axiom, (![X1]:![X2]:(mia_forename(X1,X2)=>forename(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax9)). fof(c_0_45, plain, (![X3]:![X4]:(~beverage(X3,X4)|food(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax26])])). fof(c_0_46, plain, (![X3]:![X4]:(~shake_beverage(X3,X4)|beverage(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax27])])). fof(c_0_47, negated_conjecture, (~(~(?[X1]:(actual_world(X1)&?[X2]:?[X3]:?[X4]:?[X5]:((((((((((of(X1,X3,X2)&woman(X1,X2))&mia_forename(X1,X3))&forename(X1,X3))&shake_beverage(X1,X4))&event(X1,X5))&agent(X1,X5,X2))&patient(X1,X5,X4))&past(X1,X5))&nonreflexive(X1,X5))&order(X1,X5)))))), inference(assume_negation,[status(cth)],[co1])). fof(c_0_48, plain, (![X3]:![X4]:(~specific(X3,X4)|~general(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[ax41])])])). fof(c_0_49, plain, (![X3]:![X4]:(~abstraction(X3,X4)|general(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax11])])). fof(c_0_50, plain, (![X3]:![X4]:(~relname(X3,X4)|relation(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax15])])). fof(c_0_51, plain, (![X3]:![X4]:(~forename(X3,X4)|relname(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax16])])). fof(c_0_52, plain, (![X3]:![X4]:(~unisex(X3,X4)|~female(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[ax42])])])). fof(c_0_53, plain, (![X3]:![X4]:(~woman(X3,X4)|female(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax1])])). fof(c_0_54, plain, (![X3]:![X4]:(~food(X3,X4)|substance_matter(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax25])])). cnf(c_0_55,plain,(food(X1,X2)|~beverage(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_45]), ['final']). cnf(c_0_56,plain,(beverage(X1,X2)|~shake_beverage(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_46]), ['final']). fof(c_0_57, plain, (![X3]:![X4]:(~organism(X3,X4)|entity(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax6])])). fof(c_0_58, plain, (![X3]:![X4]:(~human_person(X3,X4)|organism(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax7])])). fof(c_0_59, plain, (![X3]:![X4]:(~woman(X3,X4)|human_person(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax8])])). fof(c_0_60, negated_conjecture, ((actual_world(esk1_0)&((((((((((of(esk1_0,esk3_0,esk2_0)&woman(esk1_0,esk2_0))&mia_forename(esk1_0,esk3_0))&forename(esk1_0,esk3_0))&shake_beverage(esk1_0,esk4_0))&event(esk1_0,esk5_0))&agent(esk1_0,esk5_0,esk2_0))&patient(esk1_0,esk5_0,esk4_0))&past(esk1_0,esk5_0))&nonreflexive(esk1_0,esk5_0))&order(esk1_0,esk5_0)))), inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_47])])])])])). fof(c_0_61, plain, (![X3]:![X4]:(~existent(X3,X4)|~nonexistent(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[ax38])])])). fof(c_0_62, plain, (![X3]:![X4]:(~eventuality(X3,X4)|nonexistent(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax30])])). cnf(c_0_63,plain,(~general(X1,X2)|~specific(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_48]), ['final']). cnf(c_0_64,plain,(general(X1,X2)|~abstraction(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_49]), ['final']). fof(c_0_65, plain, (![X3]:![X4]:(~eventuality(X3,X4)|specific(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax31])])). fof(c_0_66, plain, (![X3]:![X4]:(~event(X3,X4)|eventuality(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax34])])). fof(c_0_67, plain, (![X3]:![X4]:(~entity(X3,X4)|specific(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax21])])). fof(c_0_68, plain, (![X3]:![X4]:(~relation(X3,X4)|abstraction(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax14])])). cnf(c_0_69,plain,(relation(X1,X2)|~relname(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_50]), ['final']). cnf(c_0_70,plain,(relname(X1,X2)|~forename(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_51]), ['final']). cnf(c_0_71,plain,(~female(X1,X2)|~unisex(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_52]), ['final']). cnf(c_0_72,plain,(female(X1,X2)|~woman(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_53]), ['final']). fof(c_0_73, plain, (![X3]:![X4]:(~substance_matter(X3,X4)|object(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax24])])). cnf(c_0_74,plain,(substance_matter(X1,X2)|~food(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_54]), ['final']). cnf(c_0_75,plain,(food(X1,X2)|~shake_beverage(X1,X2)), inference(spm,[status(thm)],[c_0_55, c_0_56]), ['final']). cnf(c_0_76,plain,(entity(X1,X2)|~organism(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_57]), ['final']). cnf(c_0_77,plain,(organism(X1,X2)|~human_person(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_58]), ['final']). cnf(c_0_78,plain,(human_person(X1,X2)|~woman(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_59]), ['final']). cnf(c_0_79,negated_conjecture,(woman(esk1_0,esk2_0)), inference(split_conjunct,[status(thm)],[c_0_60]), ['final']). fof(c_0_80, plain, (![X3]:![X4]:(~nonliving(X3,X4)|~living(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[ax40])])])). fof(c_0_81, plain, (![X3]:![X4]:(~organism(X3,X4)|living(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax4])])). fof(c_0_82, plain, (![X3]:![X4]:(~animate(X3,X4)|~nonliving(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[ax37])])])). fof(c_0_83, plain, (![X3]:![X4]:(~human_person(X3,X4)|animate(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax2])])). fof(c_0_84, plain, (![X3]:![X4]:(~nonhuman(X3,X4)|~human(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[ax39])])])). fof(c_0_85, plain, (![X3]:![X4]:(~abstraction(X3,X4)|nonhuman(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax12])])). fof(c_0_86, plain, (![X5]:![X6]:![X7]:![X8]:(((~nonreflexive(X5,X6)|~agent(X5,X6,X7))|~patient(X5,X6,X8))|X7!=X8)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax44])])). cnf(c_0_87,plain,(~nonexistent(X1,X2)|~existent(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_61]), ['final']). cnf(c_0_88,plain,(nonexistent(X1,X2)|~eventuality(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_62]), ['final']). fof(c_0_89, plain, (![X3]:![X4]:(~entity(X3,X4)|existent(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax20])])). cnf(c_0_90,plain,(~specific(X1,X2)|~abstraction(X1,X2)), inference(spm,[status(thm)],[c_0_63, c_0_64]), ['final']). cnf(c_0_91,plain,(specific(X1,X2)|~eventuality(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_65]), ['final']). cnf(c_0_92,plain,(eventuality(X1,X2)|~event(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_66]), ['final']). cnf(c_0_93,negated_conjecture,(event(esk1_0,esk5_0)), inference(split_conjunct,[status(thm)],[c_0_60]), ['final']). cnf(c_0_94,plain,(specific(X1,X2)|~entity(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_67]), ['final']). cnf(c_0_95,plain,(abstraction(X1,X2)|~relation(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_68]), ['final']). cnf(c_0_96,plain,(relation(X1,X2)|~forename(X1,X2)), inference(spm,[status(thm)],[c_0_69, c_0_70]), ['final']). cnf(c_0_97,plain,(~unisex(X1,X2)|~woman(X1,X2)), inference(spm,[status(thm)],[c_0_71, c_0_72]), ['final']). fof(c_0_98, plain, (![X3]:![X4]:(~abstraction(X3,X4)|unisex(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax10])])). cnf(c_0_99,plain,(object(X1,X2)|~substance_matter(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_73]), ['final']). cnf(c_0_100,plain,(substance_matter(X1,X2)|~shake_beverage(X1,X2)), inference(spm,[status(thm)],[c_0_74, c_0_75]), ['final']). fof(c_0_101, plain, (![X5]:![X6]:![X7]:![X8]:(((~entity(X5,X6)|~forename(X5,X7))|~of(X5,X7,X6))|((~forename(X5,X8)|X8=X7)|~of(X5,X8,X6)))), inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax43])])])])])). cnf(c_0_102,plain,(entity(X1,X2)|~human_person(X1,X2)), inference(spm,[status(thm)],[c_0_76, c_0_77]), ['final']). cnf(c_0_103,negated_conjecture,(human_person(esk1_0,esk2_0)), inference(spm,[status(thm)],[c_0_78, c_0_79]), ['final']). cnf(c_0_104,plain,(~living(X1,X2)|~nonliving(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_80]), ['final']). cnf(c_0_105,plain,(living(X1,X2)|~organism(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_81]), ['final']). fof(c_0_106, plain, (![X3]:![X4]:(~object(X3,X4)|nonliving(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax19])])). cnf(c_0_107,plain,(~nonliving(X1,X2)|~animate(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_82]), ['final']). cnf(c_0_108,plain,(animate(X1,X2)|~human_person(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_83]), ['final']). cnf(c_0_109,plain,(~human(X1,X2)|~nonhuman(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_84]), ['final']). cnf(c_0_110,plain,(nonhuman(X1,X2)|~abstraction(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_85]), ['final']). fof(c_0_111, plain, (![X3]:![X4]:(~human_person(X3,X4)|human(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax3])])). cnf(c_0_112,plain,(X1!=X2|~patient(X3,X4,X2)|~agent(X3,X4,X1)|~nonreflexive(X3,X4)), inference(split_conjunct,[status(thm)],[c_0_86])). cnf(c_0_113,plain,(~eventuality(X1,X2)|~existent(X1,X2)), inference(spm,[status(thm)],[c_0_87, c_0_88]), ['final']). cnf(c_0_114,plain,(existent(X1,X2)|~entity(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_89]), ['final']). cnf(c_0_115,plain,(~eventuality(X1,X2)|~abstraction(X1,X2)), inference(spm,[status(thm)],[c_0_90, c_0_91]), ['final']). cnf(c_0_116,negated_conjecture,(eventuality(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_92, c_0_93]), ['final']). cnf(c_0_117,plain,(~abstraction(X1,X2)|~entity(X1,X2)), inference(spm,[status(thm)],[c_0_90, c_0_94]), ['final']). cnf(c_0_118,plain,(abstraction(X1,X2)|~forename(X1,X2)), inference(spm,[status(thm)],[c_0_95, c_0_96]), ['final']). fof(c_0_119, plain, (![X3]:![X4]:(~eventuality(X3,X4)|unisex(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax29])])). fof(c_0_120, plain, (![X3]:![X4]:(~object(X3,X4)|unisex(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax17])])). cnf(c_0_121,negated_conjecture,(~unisex(esk1_0,esk2_0)), inference(spm,[status(thm)],[c_0_97, c_0_79]), ['final']). cnf(c_0_122,plain,(unisex(X1,X2)|~abstraction(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_98]), ['final']). fof(c_0_123, plain, (![X3]:![X4]:(~object(X3,X4)|entity(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax23])])). cnf(c_0_124,plain,(object(X1,X2)|~shake_beverage(X1,X2)), inference(spm,[status(thm)],[c_0_99, c_0_100]), ['final']). cnf(c_0_125,negated_conjecture,(shake_beverage(esk1_0,esk4_0)), inference(split_conjunct,[status(thm)],[c_0_60]), ['final']). cnf(c_0_126,plain,(X2=X4|~of(X1,X2,X3)|~forename(X1,X2)|~of(X1,X4,X3)|~forename(X1,X4)|~entity(X1,X3)), inference(split_conjunct,[status(thm)],[c_0_101]), ['final']). cnf(c_0_127,negated_conjecture,(of(esk1_0,esk3_0,esk2_0)), inference(split_conjunct,[status(thm)],[c_0_60]), ['final']). cnf(c_0_128,negated_conjecture,(forename(esk1_0,esk3_0)), inference(split_conjunct,[status(thm)],[c_0_60]), ['final']). cnf(c_0_129,negated_conjecture,(entity(esk1_0,esk2_0)), inference(spm,[status(thm)],[c_0_102, c_0_103]), ['final']). fof(c_0_130, plain, (![X3]:![X4]:(~thing(X3,X4)|singleton(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax32])])). cnf(c_0_131,plain,(~nonliving(X1,X2)|~organism(X1,X2)), inference(spm,[status(thm)],[c_0_104, c_0_105]), ['final']). cnf(c_0_132,plain,(nonliving(X1,X2)|~object(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_106]), ['final']). cnf(c_0_133,plain,(~nonliving(X1,X2)|~human_person(X1,X2)), inference(spm,[status(thm)],[c_0_107, c_0_108]), ['final']). fof(c_0_134, plain, (![X3]:![X4]:(~eventuality(X3,X4)|thing(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax33])])). fof(c_0_135, plain, (![X3]:![X4]:(~abstraction(X3,X4)|thing(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax13])])). fof(c_0_136, plain, (![X3]:![X4]:(~entity(X3,X4)|thing(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax22])])). cnf(c_0_137,plain,(~abstraction(X1,X2)|~human(X1,X2)), inference(spm,[status(thm)],[c_0_109, c_0_110]), ['final']). cnf(c_0_138,plain,(human(X1,X2)|~human_person(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_111]), ['final']). fof(c_0_139, plain, (![X3]:![X4]:(~object(X3,X4)|impartial(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax18])])). fof(c_0_140, plain, (![X3]:![X4]:(~organism(X3,X4)|impartial(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax5])])). fof(c_0_141, plain, (![X3]:![X4]:(~order(X3,X4)|act(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax36])])). fof(c_0_142, plain, (![X3]:![X4]:(~act(X3,X4)|event(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax35])])). fof(c_0_143, plain, (![X3]:![X4]:(~order(X3,X4)|event(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax28])])). fof(c_0_144, plain, (![X3]:![X4]:(~mia_forename(X3,X4)|forename(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax9])])). cnf(c_0_145,plain,(~patient(X1,X2,X3)|~agent(X1,X2,X3)|~nonreflexive(X1,X2)), inference(er,[status(thm)],[c_0_112]), ['final']). cnf(c_0_146,negated_conjecture,(patient(esk1_0,esk5_0,esk4_0)), inference(split_conjunct,[status(thm)],[c_0_60]), ['final']). cnf(c_0_147,negated_conjecture,(nonreflexive(esk1_0,esk5_0)), inference(split_conjunct,[status(thm)],[c_0_60]), ['final']). cnf(c_0_148,plain,(~eventuality(X1,X2)|~entity(X1,X2)), inference(spm,[status(thm)],[c_0_113, c_0_114]), ['final']). cnf(c_0_149,negated_conjecture,(~abstraction(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_115, c_0_116]), ['final']). cnf(c_0_150,plain,(~forename(X1,X2)|~entity(X1,X2)), inference(spm,[status(thm)],[c_0_117, c_0_118]), ['final']). cnf(c_0_151,plain,(unisex(X1,X2)|~eventuality(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_119]), ['final']). cnf(c_0_152,plain,(unisex(X1,X2)|~object(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_120]), ['final']). cnf(c_0_153,negated_conjecture,(~abstraction(esk1_0,esk2_0)), inference(spm,[status(thm)],[c_0_121, c_0_122]), ['final']). cnf(c_0_154,plain,(entity(X1,X2)|~object(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_123]), ['final']). cnf(c_0_155,negated_conjecture,(object(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_124, c_0_125]), ['final']). cnf(c_0_156,negated_conjecture,(X1=esk3_0|~of(esk1_0,X1,esk2_0)|~forename(esk1_0,X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_126, c_0_127]), c_0_128]), c_0_129])]), ['final']). cnf(c_0_157,plain,(singleton(X1,X2)|~thing(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_130]), ['final']). cnf(c_0_158,plain,(~object(X1,X2)|~organism(X1,X2)), inference(spm,[status(thm)],[c_0_131, c_0_132]), ['final']). cnf(c_0_159,plain,(~object(X1,X2)|~human_person(X1,X2)), inference(spm,[status(thm)],[c_0_133, c_0_132]), ['final']). cnf(c_0_160,plain,(thing(X1,X2)|~eventuality(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_134]), ['final']). cnf(c_0_161,plain,(thing(X1,X2)|~abstraction(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_135]), ['final']). cnf(c_0_162,plain,(thing(X1,X2)|~entity(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_136]), ['final']). cnf(c_0_163,plain,(~abstraction(X1,X2)|~human_person(X1,X2)), inference(spm,[status(thm)],[c_0_137, c_0_138]), ['final']). cnf(c_0_164,plain,(impartial(X1,X2)|~object(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_139]), ['final']). cnf(c_0_165,plain,(impartial(X1,X2)|~organism(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_140]), ['final']). cnf(c_0_166,plain,(act(X1,X2)|~order(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_141]), ['final']). cnf(c_0_167,plain,(event(X1,X2)|~act(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_142]), ['final']). cnf(c_0_168,plain,(event(X1,X2)|~order(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_143]), ['final']). cnf(c_0_169,plain,(forename(X1,X2)|~mia_forename(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_144]), ['final']). cnf(c_0_170,negated_conjecture,(~agent(esk1_0,esk5_0,esk4_0)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_145, c_0_146]), c_0_147])]), ['final']). cnf(c_0_171,negated_conjecture,(~entity(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_148, c_0_116]), ['final']). cnf(c_0_172,negated_conjecture,(~forename(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_149, c_0_118]), ['final']). cnf(c_0_173,negated_conjecture,(~entity(esk1_0,esk3_0)), inference(spm,[status(thm)],[c_0_150, c_0_128]), ['final']). cnf(c_0_174,negated_conjecture,(~eventuality(esk1_0,esk2_0)), inference(spm,[status(thm)],[c_0_121, c_0_151]), ['final']). cnf(c_0_175,negated_conjecture,(~object(esk1_0,esk2_0)), inference(spm,[status(thm)],[c_0_121, c_0_152]), ['final']). cnf(c_0_176,negated_conjecture,(~forename(esk1_0,esk2_0)), inference(spm,[status(thm)],[c_0_153, c_0_118]), ['final']). cnf(c_0_177,negated_conjecture,(entity(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_154, c_0_155]), ['final']). cnf(c_0_178,negated_conjecture,(agent(esk1_0,esk5_0,esk2_0)), inference(split_conjunct,[status(thm)],[c_0_60]), ['final']). cnf(c_0_179,negated_conjecture,(past(esk1_0,esk5_0)), inference(split_conjunct,[status(thm)],[c_0_60]), ['final']). cnf(c_0_180,negated_conjecture,(order(esk1_0,esk5_0)), inference(split_conjunct,[status(thm)],[c_0_60]), ['final']). cnf(c_0_181,negated_conjecture,(mia_forename(esk1_0,esk3_0)), inference(split_conjunct,[status(thm)],[c_0_60]), ['final']). cnf(c_0_182,negated_conjecture,(actual_world(esk1_0)), inference(split_conjunct,[status(thm)],[c_0_60]), ['final']). # SZS output end Saturation
# SZS status Satisfiable # SZS output start Saturation fof(server_t_generates_key, axiom, (![X1]:![X2]:![X3]:![X4]:![X5]:![X6]:![X7]:((((message(sent(X1,t,triple(X1,X2,encrypt(triple(X3,X4,X5),X6))))&t_holds(key(X6,X1)))&t_holds(key(X7,X3)))&a_nonce(X4))=>message(sent(t,X3,triple(encrypt(quadruple(X1,X4,generate_key(X4),X5),X7),encrypt(triple(X3,generate_key(X4),X5),X6),X2))))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', server_t_generates_key)). fof(b_creates_freash_nonces_in_time, axiom, (![X1]:![X2]:((message(sent(X1,b,pair(X1,X2)))&fresh_to_b(X2))=>(message(sent(b,t,triple(b,generate_b_nonce(X2),encrypt(triple(X1,X2,generate_expiration_time(X2)),bt))))&b_stored(pair(X1,X2))))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', b_creates_freash_nonces_in_time)). fof(intruder_message_sent, axiom, (![X1]:![X2]:![X3]:(((intruder_message(X1)&party_of_protocol(X2))&party_of_protocol(X3))=>message(sent(X2,X3,X1)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', intruder_message_sent)). fof(t_holds_key_bt_for_b, axiom, (t_holds(key(bt,b))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', t_holds_key_bt_for_b)). fof(intruder_can_record, axiom, (![X1]:![X2]:![X3]:(message(sent(X1,X2,X3))=>intruder_message(X3))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', intruder_can_record)). fof(a_sent_message_i_to_b, axiom, (message(sent(a,b,pair(a,an_a_nonce)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', a_sent_message_i_to_b)). fof(nonce_a_is_fresh_to_b, axiom, (fresh_to_b(an_a_nonce)), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', nonce_a_is_fresh_to_b)). fof(b_is_party_of_protocol, axiom, (party_of_protocol(b)), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', b_is_party_of_protocol)). fof(intruder_composes_pairs, axiom, (![X1]:![X2]:((intruder_message(X1)&intruder_message(X2))=>intruder_message(pair(X1,X2)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', intruder_composes_pairs)). fof(a_forwards_secure, axiom, (![X1]:![X2]:![X3]:![X4]:![X5]:![X6]:((message(sent(t,a,triple(encrypt(quadruple(X5,X6,X3,X2),at),X4,X1)))&a_stored(pair(X5,X6)))=>(message(sent(a,X5,pair(X4,encrypt(X1,X3))))&a_holds(key(X3,X5))))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', a_forwards_secure)). fof(t_holds_key_at_for_a, axiom, (t_holds(key(at,a))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', t_holds_key_at_for_a)). fof(intruder_decomposes_triples, axiom, (![X1]:![X2]:![X3]:(intruder_message(triple(X1,X2,X3))=>((intruder_message(X1)&intruder_message(X2))&intruder_message(X3)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', intruder_decomposes_triples)). fof(a_stored_message_i, axiom, (a_stored(pair(b,an_a_nonce))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', a_stored_message_i)). fof(an_a_nonce_is_a_nonce, axiom, (a_nonce(an_a_nonce)), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', an_a_nonce_is_a_nonce)). fof(t_is_party_of_protocol, axiom, (party_of_protocol(t)), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', t_is_party_of_protocol)). fof(intruder_composes_triples, axiom, (![X1]:![X2]:![X3]:(((intruder_message(X1)&intruder_message(X2))&intruder_message(X3))=>intruder_message(triple(X1,X2,X3)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', intruder_composes_triples)). fof(b_accepts_secure_session_key, axiom, (![X2]:![X4]:![X5]:(((message(sent(X4,b,pair(encrypt(triple(X4,X2,generate_expiration_time(X5)),bt),encrypt(generate_b_nonce(X5),X2))))&a_key(X2))&b_stored(pair(X4,X5)))=>b_holds(key(X2,X4)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', b_accepts_secure_session_key)). fof(a_is_party_of_protocol, axiom, (party_of_protocol(a)), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', a_is_party_of_protocol)). fof(intruder_key_encrypts, axiom, (![X1]:![X2]:![X3]:(((intruder_message(X1)&intruder_holds(key(X2,X3)))&party_of_protocol(X3))=>intruder_message(encrypt(X1,X2)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', intruder_key_encrypts)). fof(intruder_holds_key, axiom, (![X2]:![X3]:((intruder_message(X2)&party_of_protocol(X3))=>intruder_holds(key(X2,X3)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', intruder_holds_key)). fof(intruder_decomposes_pairs, axiom, (![X1]:![X2]:(intruder_message(pair(X1,X2))=>(intruder_message(X1)&intruder_message(X2)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', intruder_decomposes_pairs)). fof(generated_keys_are_keys, axiom, (![X1]:a_key(generate_key(X1))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', generated_keys_are_keys)). fof(fresh_intruder_nonces_are_fresh_to_b, axiom, (![X1]:(fresh_intruder_nonce(X1)=>(fresh_to_b(X1)&intruder_message(X1)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', fresh_intruder_nonces_are_fresh_to_b)). fof(can_generate_more_fresh_intruder_nonces, axiom, (![X1]:(fresh_intruder_nonce(X1)=>fresh_intruder_nonce(generate_intruder_nonce(X1)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', can_generate_more_fresh_intruder_nonces)). fof(intruder_composes_quadruples, axiom, (![X1]:![X2]:![X3]:![X4]:((((intruder_message(X1)&intruder_message(X2))&intruder_message(X3))&intruder_message(X4))=>intruder_message(quadruple(X1,X2,X3,X4)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', intruder_composes_quadruples)). fof(intruder_interception, axiom, (![X1]:![X2]:![X3]:(((intruder_message(encrypt(X1,X2))&intruder_holds(key(X2,X3)))&party_of_protocol(X3))=>intruder_message(X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', intruder_interception)). fof(intruder_decomposes_quadruples, axiom, (![X1]:![X2]:![X3]:![X4]:(intruder_message(quadruple(X1,X2,X3,X4))=>(((intruder_message(X1)&intruder_message(X2))&intruder_message(X3))&intruder_message(X4)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', intruder_decomposes_quadruples)). fof(nothing_is_a_nonce_and_a_key, axiom, (![X1]:~((a_key(X1)&a_nonce(X1)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', nothing_is_a_nonce_and_a_key)). fof(generated_keys_are_not_nonces, axiom, (![X1]:~(a_nonce(generate_key(X1)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', generated_keys_are_not_nonces)). fof(generated_times_and_nonces_are_nonces, axiom, (![X1]:(a_nonce(generate_expiration_time(X1))&a_nonce(generate_b_nonce(X1)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', generated_times_and_nonces_are_nonces)). fof(an_intruder_nonce_is_a_fresh_intruder_nonce, axiom, (fresh_intruder_nonce(an_intruder_nonce)), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', an_intruder_nonce_is_a_fresh_intruder_nonce)). fof(b_hold_key_bt_for_t, axiom, (b_holds(key(bt,t))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', b_hold_key_bt_for_t)). fof(a_holds_key_at_for_t, axiom, (a_holds(key(at,t))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', a_holds_key_at_for_t)). fof(c_0_33, plain, (![X8]:![X9]:![X10]:![X11]:![X12]:![X13]:![X14]:((((~message(sent(X8,t,triple(X8,X9,encrypt(triple(X10,X11,X12),X13))))|~t_holds(key(X13,X8)))|~t_holds(key(X14,X10)))|~a_nonce(X11))|message(sent(t,X10,triple(encrypt(quadruple(X8,X11,generate_key(X11),X12),X14),encrypt(triple(X10,generate_key(X11),X12),X13),X9))))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[server_t_generates_key])])). fof(c_0_34, plain, (![X3]:![X4]:((message(sent(b,t,triple(b,generate_b_nonce(X4),encrypt(triple(X3,X4,generate_expiration_time(X4)),bt))))|(~message(sent(X3,b,pair(X3,X4)))|~fresh_to_b(X4)))&(b_stored(pair(X3,X4))|(~message(sent(X3,b,pair(X3,X4)))|~fresh_to_b(X4))))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[b_creates_freash_nonces_in_time])])])). fof(c_0_35, plain, (![X4]:![X5]:![X6]:(((~intruder_message(X4)|~party_of_protocol(X5))|~party_of_protocol(X6))|message(sent(X5,X6,X4)))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_message_sent])])). cnf(c_0_36,plain,(message(sent(t,X1,triple(encrypt(quadruple(X2,X3,generate_key(X3),X4),X5),encrypt(triple(X1,generate_key(X3),X4),X6),X7)))|~a_nonce(X3)|~t_holds(key(X5,X1))|~t_holds(key(X6,X2))|~message(sent(X2,t,triple(X2,X7,encrypt(triple(X1,X3,X4),X6))))), inference(split_conjunct,[status(thm)],[c_0_33]), ['final']). cnf(c_0_37,plain,(t_holds(key(bt,b))), inference(split_conjunct,[status(thm)],[t_holds_key_bt_for_b]), ['final']). fof(c_0_38, plain, (![X4]:![X5]:![X6]:(~message(sent(X4,X5,X6))|intruder_message(X6))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_can_record])])). cnf(c_0_39,plain,(message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X2,X1,generate_expiration_time(X1)),bt))))|~fresh_to_b(X1)|~message(sent(X2,b,pair(X2,X1)))), inference(split_conjunct,[status(thm)],[c_0_34]), ['final']). cnf(c_0_40,plain,(message(sent(a,b,pair(a,an_a_nonce)))), inference(split_conjunct,[status(thm)],[a_sent_message_i_to_b]), ['final']). cnf(c_0_41,plain,(fresh_to_b(an_a_nonce)), inference(split_conjunct,[status(thm)],[nonce_a_is_fresh_to_b]), ['final']). cnf(c_0_42,plain,(message(sent(X1,X2,X3))|~party_of_protocol(X2)|~party_of_protocol(X1)|~intruder_message(X3)), inference(split_conjunct,[status(thm)],[c_0_35]), ['final']). cnf(c_0_43,plain,(party_of_protocol(b)), inference(split_conjunct,[status(thm)],[b_is_party_of_protocol]), ['final']). fof(c_0_44, plain, (![X3]:![X4]:((~intruder_message(X3)|~intruder_message(X4))|intruder_message(pair(X3,X4)))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_composes_pairs])])). fof(c_0_45, plain, (![X7]:![X8]:![X9]:![X10]:![X11]:![X12]:((message(sent(a,X11,pair(X10,encrypt(X7,X9))))|(~message(sent(t,a,triple(encrypt(quadruple(X11,X12,X9,X8),at),X10,X7)))|~a_stored(pair(X11,X12))))&(a_holds(key(X9,X11))|(~message(sent(t,a,triple(encrypt(quadruple(X11,X12,X9,X8),at),X10,X7)))|~a_stored(pair(X11,X12)))))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[a_forwards_secure])])])])])). cnf(c_0_46,plain,(message(sent(t,X1,triple(encrypt(quadruple(b,X2,generate_key(X2),X3),X4),encrypt(triple(X1,generate_key(X2),X3),bt),X5)))|~a_nonce(X2)|~t_holds(key(X4,X1))|~message(sent(b,t,triple(b,X5,encrypt(triple(X1,X2,X3),bt))))), inference(spm,[status(thm)],[c_0_36, c_0_37]), ['final']). cnf(c_0_47,plain,(t_holds(key(at,a))), inference(split_conjunct,[status(thm)],[t_holds_key_at_for_a]), ['final']). fof(c_0_48, plain, (![X4]:![X5]:![X6]:(((intruder_message(X4)|~intruder_message(triple(X4,X5,X6)))&(intruder_message(X5)|~intruder_message(triple(X4,X5,X6))))&(intruder_message(X6)|~intruder_message(triple(X4,X5,X6))))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_decomposes_triples])])])). cnf(c_0_49,plain,(intruder_message(X1)|~message(sent(X2,X3,X1))), inference(split_conjunct,[status(thm)],[c_0_38]), ['final']). cnf(c_0_50,plain,(message(sent(b,t,triple(b,generate_b_nonce(an_a_nonce),encrypt(triple(a,an_a_nonce,generate_expiration_time(an_a_nonce)),bt))))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_39, c_0_40]), c_0_41])]), ['final']). cnf(c_0_51,plain,(b_stored(pair(X2,X1))|~fresh_to_b(X1)|~message(sent(X2,b,pair(X2,X1)))), inference(split_conjunct,[status(thm)],[c_0_34]), ['final']). cnf(c_0_52,plain,(message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X2,X1,generate_expiration_time(X1)),bt))))|~intruder_message(pair(X2,X1))|~fresh_to_b(X1)|~party_of_protocol(X2)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_39, c_0_42]), c_0_43])]), ['final']). cnf(c_0_53,plain,(intruder_message(pair(X1,X2))|~intruder_message(X2)|~intruder_message(X1)), inference(split_conjunct,[status(thm)],[c_0_44]), ['final']). cnf(c_0_54,plain,(message(sent(a,X1,pair(X5,encrypt(X6,X3))))|~a_stored(pair(X1,X2))|~message(sent(t,a,triple(encrypt(quadruple(X1,X2,X3,X4),at),X5,X6)))), inference(split_conjunct,[status(thm)],[c_0_45]), ['final']). cnf(c_0_55,plain,(a_stored(pair(b,an_a_nonce))), inference(split_conjunct,[status(thm)],[a_stored_message_i]), ['final']). cnf(c_0_56,plain,(message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),bt),X3)))|~a_nonce(X1)|~message(sent(b,t,triple(b,X3,encrypt(triple(a,X1,X2),bt))))), inference(spm,[status(thm)],[c_0_46, c_0_47]), ['final']). cnf(c_0_57,plain,(a_nonce(an_a_nonce)), inference(split_conjunct,[status(thm)],[an_a_nonce_is_a_nonce]), ['final']). cnf(c_0_58,plain,(party_of_protocol(t)), inference(split_conjunct,[status(thm)],[t_is_party_of_protocol]), ['final']). fof(c_0_59, plain, (![X4]:![X5]:![X6]:(((~intruder_message(X4)|~intruder_message(X5))|~intruder_message(X6))|intruder_message(triple(X4,X5,X6)))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_composes_triples])])). cnf(c_0_60,plain,(intruder_message(X1)|~intruder_message(triple(X1,X2,X3))), inference(split_conjunct,[status(thm)],[c_0_48]), ['final']). cnf(c_0_61,plain,(intruder_message(triple(b,generate_b_nonce(an_a_nonce),encrypt(triple(a,an_a_nonce,generate_expiration_time(an_a_nonce)),bt)))), inference(spm,[status(thm)],[c_0_49, c_0_50]), ['final']). fof(c_0_62, plain, (![X6]:![X7]:![X8]:(((~message(sent(X7,b,pair(encrypt(triple(X7,X6,generate_expiration_time(X8)),bt),encrypt(generate_b_nonce(X8),X6))))|~a_key(X6))|~b_stored(pair(X7,X8)))|b_holds(key(X6,X7)))), inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[b_accepts_secure_session_key])])])])). cnf(c_0_63,plain,(b_stored(pair(X1,X2))|~intruder_message(pair(X1,X2))|~fresh_to_b(X2)|~party_of_protocol(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_51, c_0_42]), c_0_43])]), ['final']). cnf(c_0_64,plain,(message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),bt),X3)))|~a_nonce(X1)|~message(sent(b,t,triple(b,X3,encrypt(triple(b,X1,X2),bt))))), inference(spm,[status(thm)],[c_0_46, c_0_37]), ['final']). cnf(c_0_65,plain,(message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X2,X1,generate_expiration_time(X1)),bt))))|~intruder_message(X1)|~intruder_message(X2)|~fresh_to_b(X1)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_52, c_0_53]), ['final']). cnf(c_0_66,plain,(message(sent(a,b,pair(X1,encrypt(X2,X3))))|~message(sent(t,a,triple(encrypt(quadruple(b,an_a_nonce,X3,X4),at),X1,X2)))), inference(spm,[status(thm)],[c_0_54, c_0_55]), ['final']). cnf(c_0_67,plain,(party_of_protocol(a)), inference(split_conjunct,[status(thm)],[a_is_party_of_protocol]), ['final']). cnf(c_0_68,plain,(message(sent(t,a,triple(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at),encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),generate_b_nonce(an_a_nonce))))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_56, c_0_50]), c_0_57])]), ['final']). cnf(c_0_69,plain,(message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),bt),X3)))|~intruder_message(triple(b,X3,encrypt(triple(a,X1,X2),bt)))|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_56, c_0_42]), c_0_58]), c_0_43])]), ['final']). cnf(c_0_70,plain,(intruder_message(triple(X1,X2,X3))|~intruder_message(X3)|~intruder_message(X2)|~intruder_message(X1)), inference(split_conjunct,[status(thm)],[c_0_59]), ['final']). cnf(c_0_71,plain,(intruder_message(b)), inference(spm,[status(thm)],[c_0_60, c_0_61]), ['final']). cnf(c_0_72,plain,(intruder_message(X3)|~intruder_message(triple(X1,X2,X3))), inference(split_conjunct,[status(thm)],[c_0_48]), ['final']). cnf(c_0_73,plain,(b_holds(key(X1,X2))|~b_stored(pair(X2,X3))|~a_key(X1)|~message(sent(X2,b,pair(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt),encrypt(generate_b_nonce(X3),X1))))), inference(split_conjunct,[status(thm)],[c_0_62]), ['final']). cnf(c_0_74,plain,(b_stored(pair(X1,X2))|~intruder_message(X2)|~intruder_message(X1)|~fresh_to_b(X2)|~party_of_protocol(X1)), inference(spm,[status(thm)],[c_0_63, c_0_53]), ['final']). fof(c_0_75, plain, (![X4]:![X5]:![X6]:(((~intruder_message(X4)|~intruder_holds(key(X5,X6)))|~party_of_protocol(X6))|intruder_message(encrypt(X4,X5)))), inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_key_encrypts])])])])). fof(c_0_76, plain, (![X4]:![X5]:((~intruder_message(X4)|~party_of_protocol(X5))|intruder_holds(key(X4,X5)))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_holds_key])])). fof(c_0_77, plain, (![X3]:![X4]:((intruder_message(X3)|~intruder_message(pair(X3,X4)))&(intruder_message(X4)|~intruder_message(pair(X3,X4))))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_decomposes_pairs])])])). cnf(c_0_78,plain,(message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),bt),X3)))|~intruder_message(triple(b,X3,encrypt(triple(b,X1,X2),bt)))|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_64, c_0_42]), c_0_58]), c_0_43])]), ['final']). cnf(c_0_79,plain,(intruder_message(triple(b,generate_b_nonce(X1),encrypt(triple(X2,X1,generate_expiration_time(X1)),bt)))|~intruder_message(X1)|~intruder_message(X2)|~fresh_to_b(X1)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_49, c_0_65]), ['final']). cnf(c_0_80,plain,(message(sent(a,b,pair(X1,encrypt(X2,X3))))|~intruder_message(triple(encrypt(quadruple(b,an_a_nonce,X3,X4),at),X1,X2))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_66, c_0_42]), c_0_67]), c_0_58])]), ['final']). cnf(c_0_81,plain,(intruder_message(triple(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at),encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),generate_b_nonce(an_a_nonce)))), inference(spm,[status(thm)],[c_0_49, c_0_68]), ['final']). cnf(c_0_82,plain,(b_stored(pair(a,an_a_nonce))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_51, c_0_40]), c_0_41])]), ['final']). cnf(c_0_83,plain,(message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),bt),X3)))|~intruder_message(encrypt(triple(a,X1,X2),bt))|~intruder_message(X3)|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_69, c_0_70]), c_0_71])]), ['final']). cnf(c_0_84,plain,(intruder_message(encrypt(triple(a,an_a_nonce,generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_72, c_0_61]), ['final']). cnf(c_0_85,plain,(b_holds(key(X1,X2))|~intruder_message(X3)|~intruder_message(X2)|~a_key(X1)|~fresh_to_b(X3)|~message(sent(X2,b,pair(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt),encrypt(generate_b_nonce(X3),X1))))|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_73, c_0_74]), ['final']). cnf(c_0_86,plain,(intruder_message(encrypt(X1,X2))|~party_of_protocol(X3)|~intruder_holds(key(X2,X3))|~intruder_message(X1)), inference(split_conjunct,[status(thm)],[c_0_75]), ['final']). cnf(c_0_87,plain,(intruder_holds(key(X1,X2))|~party_of_protocol(X2)|~intruder_message(X1)), inference(split_conjunct,[status(thm)],[c_0_76]), ['final']). cnf(c_0_88,plain,(intruder_message(X1)|~intruder_message(pair(X1,X2))), inference(split_conjunct,[status(thm)],[c_0_77]), ['final']). cnf(c_0_89,plain,(intruder_message(pair(a,an_a_nonce))), inference(spm,[status(thm)],[c_0_49, c_0_40]), ['final']). cnf(c_0_90,plain,(message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),bt),X3)))|~intruder_message(encrypt(triple(b,X1,X2),bt))|~intruder_message(X3)|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_78, c_0_70]), c_0_71])]), ['final']). cnf(c_0_91,plain,(intruder_message(encrypt(triple(X1,X2,generate_expiration_time(X2)),bt))|~intruder_message(X2)|~intruder_message(X1)|~fresh_to_b(X2)|~party_of_protocol(X1)), inference(spm,[status(thm)],[c_0_72, c_0_79]), ['final']). cnf(c_0_92,plain,(message(sent(a,b,pair(X1,encrypt(X2,X3))))|~intruder_message(encrypt(quadruple(b,an_a_nonce,X3,X4),at))|~intruder_message(X2)|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_80, c_0_70]), ['final']). cnf(c_0_93,plain,(intruder_message(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at))), inference(spm,[status(thm)],[c_0_60, c_0_81]), ['final']). cnf(c_0_94,plain,(b_holds(key(X1,a))|~a_key(X1)|~message(sent(a,b,pair(encrypt(triple(a,X1,generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),X1))))), inference(spm,[status(thm)],[c_0_73, c_0_82]), ['final']). cnf(c_0_95,plain,(message(sent(a,b,pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))))), inference(spm,[status(thm)],[c_0_66, c_0_68]), ['final']). cnf(c_0_96,plain,(message(sent(t,a,triple(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at),encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),X1)))|~intruder_message(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_83, c_0_84]), c_0_57])]), ['final']). cnf(c_0_97,plain,(b_holds(key(X1,X2))|~intruder_message(pair(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt),encrypt(generate_b_nonce(X3),X1)))|~intruder_message(X3)|~intruder_message(X2)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_85, c_0_42]), c_0_43])]), ['final']). cnf(c_0_98,plain,(intruder_message(encrypt(X1,X2))|~intruder_message(X1)|~intruder_message(X2)|~party_of_protocol(X3)), inference(spm,[status(thm)],[c_0_86, c_0_87])). cnf(c_0_99,plain,(message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),bt),encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt),generate_b_nonce(X1))))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_64, c_0_65]), c_0_71]), c_0_43])]), ['final']). cnf(c_0_100,plain,(intruder_message(a)), inference(spm,[status(thm)],[c_0_88, c_0_89]), ['final']). cnf(c_0_101,plain,(message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),bt),encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt),X2)))|~intruder_message(X2)|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_90, c_0_91]), c_0_71]), c_0_43])]), ['final']). cnf(c_0_102,plain,(message(sent(t,X1,triple(encrypt(quadruple(a,X2,generate_key(X2),X3),X4),encrypt(triple(X1,generate_key(X2),X3),at),X5)))|~a_nonce(X2)|~t_holds(key(X4,X1))|~message(sent(a,t,triple(a,X5,encrypt(triple(X1,X2,X3),at))))), inference(spm,[status(thm)],[c_0_36, c_0_47]), ['final']). cnf(c_0_103,plain,(message(sent(a,b,pair(X1,encrypt(X2,generate_key(an_a_nonce)))))|~intruder_message(X2)|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_92, c_0_93]), ['final']). fof(c_0_104, plain, (![X2]:a_key(generate_key(X2))), inference(variable_rename,[status(thm)],[generated_keys_are_keys])). cnf(c_0_105,plain,(intruder_message(X2)|~intruder_message(triple(X1,X2,X3))), inference(split_conjunct,[status(thm)],[c_0_48]), ['final']). cnf(c_0_106,plain,(b_holds(key(X1,a))|~intruder_message(pair(encrypt(triple(a,X1,generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),X1)))|~a_key(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_94, c_0_42]), c_0_43]), c_0_67])]), ['final']). cnf(c_0_107,plain,(a_holds(key(X3,X1))|~a_stored(pair(X1,X2))|~message(sent(t,a,triple(encrypt(quadruple(X1,X2,X3,X4),at),X5,X6)))), inference(split_conjunct,[status(thm)],[c_0_45]), ['final']). cnf(c_0_108,plain,(intruder_message(X2)|~intruder_message(pair(X1,X2))), inference(split_conjunct,[status(thm)],[c_0_77]), ['final']). cnf(c_0_109,plain,(intruder_message(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce))))), inference(spm,[status(thm)],[c_0_49, c_0_95]), ['final']). cnf(c_0_110,plain,(message(sent(a,b,pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(X1,generate_key(an_a_nonce)))))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_66, c_0_96]), ['final']). cnf(c_0_111,plain,(b_holds(key(X1,X2))|~intruder_message(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt))|~intruder_message(encrypt(generate_b_nonce(X3),X1))|~intruder_message(X3)|~intruder_message(X2)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_97, c_0_53]), ['final']). cnf(c_0_112,plain,(intruder_message(encrypt(X1,X2))|~intruder_message(X1)|~intruder_message(X2)), inference(spm,[status(thm)],[c_0_98, c_0_43]), ['final']). cnf(c_0_113,plain,(intruder_message(triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),bt),encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt),generate_b_nonce(X1)))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_49, c_0_99]), ['final']). cnf(c_0_114,plain,(message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),at),encrypt(triple(a,generate_key(X1),generate_expiration_time(X1)),bt),generate_b_nonce(X1))))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_56, c_0_65]), c_0_100]), c_0_67])]), ['final']). cnf(c_0_115,plain,(intruder_message(triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),bt),encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt),X2))|~intruder_message(X2)|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_49, c_0_101]), ['final']). cnf(c_0_116,plain,(message(sent(t,a,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),at),X3)))|~a_nonce(X1)|~message(sent(a,t,triple(a,X3,encrypt(triple(a,X1,X2),at))))), inference(spm,[status(thm)],[c_0_102, c_0_47]), ['final']). cnf(c_0_117,plain,(message(sent(t,b,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),at),X3)))|~a_nonce(X1)|~message(sent(a,t,triple(a,X3,encrypt(triple(b,X1,X2),at))))), inference(spm,[status(thm)],[c_0_102, c_0_37]), ['final']). cnf(c_0_118,plain,(intruder_message(pair(X1,encrypt(X2,generate_key(an_a_nonce))))|~intruder_message(X2)|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_49, c_0_103]), ['final']). cnf(c_0_119,plain,(a_key(generate_key(X1))), inference(split_conjunct,[status(thm)],[c_0_104]), ['final']). cnf(c_0_120,plain,(intruder_message(generate_b_nonce(X1))|~intruder_message(X1)|~intruder_message(X2)|~fresh_to_b(X1)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_105, c_0_79]), ['final']). cnf(c_0_121,plain,(b_holds(key(X1,a))|~intruder_message(encrypt(triple(a,X1,generate_expiration_time(an_a_nonce)),bt))|~intruder_message(encrypt(generate_b_nonce(an_a_nonce),X1))|~a_key(X1)), inference(spm,[status(thm)],[c_0_106, c_0_53]), ['final']). cnf(c_0_122,plain,(a_holds(key(X1,b))|~message(sent(t,a,triple(encrypt(quadruple(b,an_a_nonce,X1,X2),at),X3,X4)))), inference(spm,[status(thm)],[c_0_107, c_0_55]), ['final']). cnf(c_0_123,plain,(intruder_message(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))), inference(spm,[status(thm)],[c_0_108, c_0_109]), ['final']). cnf(c_0_124,plain,(intruder_message(an_a_nonce)), inference(spm,[status(thm)],[c_0_108, c_0_89]), ['final']). fof(c_0_125, plain, (![X2]:((fresh_to_b(X2)|~fresh_intruder_nonce(X2))&(intruder_message(X2)|~fresh_intruder_nonce(X2)))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[fresh_intruder_nonces_are_fresh_to_b])])])). cnf(c_0_126,plain,(intruder_message(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(X1,generate_key(an_a_nonce))))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_49, c_0_110]), ['final']). cnf(c_0_127,plain,(b_holds(key(X1,X2))|~intruder_message(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt))|~intruder_message(generate_b_nonce(X3))|~intruder_message(X3)|~intruder_message(X2)|~intruder_message(X1)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_111, c_0_112]), ['final']). cnf(c_0_128,plain,(intruder_message(generate_b_nonce(X1))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_72, c_0_113]), ['final']). cnf(c_0_129,plain,(intruder_message(triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),at),encrypt(triple(a,generate_key(X1),generate_expiration_time(X1)),bt),generate_b_nonce(X1)))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_49, c_0_114]), ['final']). cnf(c_0_130,plain,(intruder_message(encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt))|~intruder_message(X2)|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_105, c_0_115])). cnf(c_0_131,plain,(message(sent(t,a,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),at),X3)))|~intruder_message(triple(a,X3,encrypt(triple(a,X1,X2),at)))|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_116, c_0_42]), c_0_58]), c_0_67])]), ['final']). cnf(c_0_132,plain,(message(sent(t,b,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),at),X3)))|~intruder_message(triple(a,X3,encrypt(triple(b,X1,X2),at)))|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_117, c_0_42]), c_0_58]), c_0_67])]), ['final']). cnf(c_0_133,plain,(b_holds(key(generate_key(an_a_nonce),X1))|~intruder_message(encrypt(triple(X1,generate_key(an_a_nonce),generate_expiration_time(X2)),bt))|~intruder_message(X2)|~intruder_message(X1)|~fresh_to_b(X2)|~party_of_protocol(X1)), inference(csr,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_97, c_0_118]), c_0_119])]), c_0_120]), ['final']). cnf(c_0_134,plain,(intruder_message(generate_b_nonce(an_a_nonce))), inference(spm,[status(thm)],[c_0_105, c_0_61]), ['final']). cnf(c_0_135,plain,(b_holds(key(X1,a))|~intruder_message(encrypt(triple(a,X1,generate_expiration_time(an_a_nonce)),bt))|~intruder_message(generate_b_nonce(an_a_nonce))|~intruder_message(X1)|~a_key(X1)), inference(spm,[status(thm)],[c_0_121, c_0_112])). cnf(c_0_136,plain,(a_holds(key(X1,b))|~intruder_message(triple(encrypt(quadruple(b,an_a_nonce,X1,X2),at),X3,X4))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_122, c_0_42]), c_0_67]), c_0_58])]), ['final']). fof(c_0_137, plain, (![X2]:(~fresh_intruder_nonce(X2)|fresh_intruder_nonce(generate_intruder_nonce(X2)))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[can_generate_more_fresh_intruder_nonces])])). cnf(c_0_138,plain,(b_holds(key(generate_key(an_a_nonce),X1))|~intruder_message(encrypt(triple(X1,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))|~intruder_message(X1)|~party_of_protocol(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_111, c_0_123]), c_0_124]), c_0_119]), c_0_41])]), ['final']). cnf(c_0_139,plain,(message(sent(b,t,triple(b,generate_b_nonce(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce))),encrypt(triple(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)),generate_expiration_time(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))),bt))))|~fresh_to_b(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_52, c_0_109]), ['final']). cnf(c_0_140,plain,(fresh_to_b(X1)|~fresh_intruder_nonce(X1)), inference(split_conjunct,[status(thm)],[c_0_125]), ['final']). cnf(c_0_141,plain,(message(sent(b,t,triple(b,generate_b_nonce(encrypt(X1,generate_key(an_a_nonce))),encrypt(triple(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(X1,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X1,generate_key(an_a_nonce)))),bt))))|~intruder_message(X1)|~fresh_to_b(encrypt(X1,generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_52, c_0_126]), ['final']). cnf(c_0_142,plain,(message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),at),encrypt(triple(a,generate_key(X1),generate_expiration_time(X1)),bt),X2)))|~intruder_message(X2)|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_83, c_0_91]), c_0_100]), c_0_67])]), ['final']). cnf(c_0_143,plain,(b_holds(key(X1,X2))|~intruder_message(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt))|~intruder_message(X3)|~intruder_message(X2)|~intruder_message(X1)|~a_nonce(X3)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_127, c_0_128]), ['final']). cnf(c_0_144,plain,(intruder_message(encrypt(triple(a,generate_key(X1),generate_expiration_time(X1)),bt))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_105, c_0_129]), ['final']). cnf(c_0_145,plain,(intruder_message(encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_130, c_0_81]), ['final']). cnf(c_0_146,plain,(intruder_message(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),bt))|~intruder_message(X2)|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_60, c_0_115])). cnf(c_0_147,plain,(message(sent(b,t,triple(b,generate_b_nonce(encrypt(X1,generate_key(an_a_nonce))),encrypt(triple(X2,encrypt(X1,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X1,generate_key(an_a_nonce)))),bt))))|~intruder_message(X1)|~intruder_message(X2)|~fresh_to_b(encrypt(X1,generate_key(an_a_nonce)))|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_52, c_0_118]), ['final']). cnf(c_0_148,plain,(b_stored(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(X1,generate_key(an_a_nonce))))|~intruder_message(X1)|~fresh_to_b(encrypt(X1,generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_63, c_0_126]), ['final']). cnf(c_0_149,plain,(message(sent(t,a,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),at),X3)))|~intruder_message(encrypt(triple(a,X1,X2),at))|~intruder_message(X3)|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_131, c_0_70]), c_0_100])]), ['final']). cnf(c_0_150,plain,(message(sent(t,b,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),at),X3)))|~intruder_message(encrypt(triple(b,X1,X2),at))|~intruder_message(X3)|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_132, c_0_70]), c_0_100])]), ['final']). cnf(c_0_151,plain,(message(sent(b,t,triple(b,generate_b_nonce(encrypt(X1,generate_key(an_a_nonce))),encrypt(triple(a,encrypt(X1,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X1,generate_key(an_a_nonce)))),bt))))|~intruder_message(X1)|~fresh_to_b(encrypt(X1,generate_key(an_a_nonce)))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_39, c_0_103]), c_0_100])]), ['final']). cnf(c_0_152,plain,(b_stored(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce))))|~fresh_to_b(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_63, c_0_109]), ['final']). cnf(c_0_153,plain,(b_holds(key(generate_key(an_a_nonce),X1))|~intruder_message(generate_key(an_a_nonce))|~intruder_message(X1)|~fresh_to_b(generate_key(an_a_nonce))|~party_of_protocol(X1)), inference(spm,[status(thm)],[c_0_133, c_0_91]), ['final']). cnf(c_0_154,plain,(intruder_message(X1)|~fresh_intruder_nonce(X1)), inference(split_conjunct,[status(thm)],[c_0_125]), ['final']). cnf(c_0_155,plain,(b_stored(pair(X1,encrypt(X2,generate_key(an_a_nonce))))|~intruder_message(X2)|~intruder_message(X1)|~fresh_to_b(encrypt(X2,generate_key(an_a_nonce)))|~party_of_protocol(X1)), inference(spm,[status(thm)],[c_0_63, c_0_118]), ['final']). cnf(c_0_156,plain,(b_stored(pair(a,encrypt(X1,generate_key(an_a_nonce))))|~intruder_message(X1)|~fresh_to_b(encrypt(X1,generate_key(an_a_nonce)))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_51, c_0_103]), c_0_100])]), ['final']). cnf(c_0_157,plain,(intruder_message(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)|~intruder_message(X2)), inference(spm,[status(thm)],[c_0_108, c_0_118])). cnf(c_0_158,plain,(b_holds(key(X1,X2))|~intruder_message(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt))|~intruder_message(X3)|~intruder_message(X2)|~intruder_message(X1)|~intruder_message(X4)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)|~party_of_protocol(X4)), inference(spm,[status(thm)],[c_0_127, c_0_120]), ['final']). cnf(c_0_159,plain,(b_holds(key(X1,X2))|~intruder_message(encrypt(triple(X2,X1,generate_expiration_time(an_a_nonce)),bt))|~intruder_message(X2)|~intruder_message(X1)|~a_key(X1)|~party_of_protocol(X2)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_127, c_0_134]), c_0_124]), c_0_41])]), ['final']). cnf(c_0_160,plain,(b_holds(key(X1,a))|~intruder_message(encrypt(triple(a,X1,generate_expiration_time(an_a_nonce)),bt))|~intruder_message(X1)|~a_key(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_135, c_0_134])]), ['final']). cnf(c_0_161,plain,(a_holds(key(X1,b))|~intruder_message(encrypt(quadruple(b,an_a_nonce,X1,X2),at))|~intruder_message(X3)|~intruder_message(X4)), inference(spm,[status(thm)],[c_0_136, c_0_70]), ['final']). fof(c_0_162, plain, (![X5]:![X6]:![X7]:![X8]:((((~intruder_message(X5)|~intruder_message(X6))|~intruder_message(X7))|~intruder_message(X8))|intruder_message(quadruple(X5,X6,X7,X8)))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_composes_quadruples])])). fof(c_0_163, plain, (![X4]:![X5]:![X6]:(((~intruder_message(encrypt(X4,X5))|~intruder_holds(key(X5,X6)))|~party_of_protocol(X6))|intruder_message(X5))), inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_interception])])])])). fof(c_0_164, plain, (![X5]:![X6]:![X7]:![X8]:((((intruder_message(X5)|~intruder_message(quadruple(X5,X6,X7,X8)))&(intruder_message(X6)|~intruder_message(quadruple(X5,X6,X7,X8))))&(intruder_message(X7)|~intruder_message(quadruple(X5,X6,X7,X8))))&(intruder_message(X8)|~intruder_message(quadruple(X5,X6,X7,X8))))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_decomposes_quadruples])])])). cnf(c_0_165,plain,(fresh_intruder_nonce(generate_intruder_nonce(X1))|~fresh_intruder_nonce(X1)), inference(split_conjunct,[status(thm)],[c_0_137]), ['final']). fof(c_0_166, plain, (![X2]:(~a_key(X2)|~a_nonce(X2))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[nothing_is_a_nonce_and_a_key])])). fof(c_0_167, plain, (![X2]:~a_nonce(generate_key(X2))), inference(variable_rename,[status(thm)],[inference(fof_simplification,[status(thm)],[generated_keys_are_not_nonces])])). cnf(c_0_168,plain,(b_holds(key(generate_key(an_a_nonce),b))|~intruder_message(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_138, c_0_130]), c_0_71]), c_0_43]), c_0_124]), c_0_57]), c_0_41])])). fof(c_0_169, plain, (![X2]:![X2]:(a_nonce(generate_expiration_time(X2))&a_nonce(generate_b_nonce(X2)))), inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[generated_times_and_nonces_are_nonces])])])). cnf(c_0_170,plain,(fresh_intruder_nonce(an_intruder_nonce)), inference(split_conjunct,[status(thm)],[an_intruder_nonce_is_a_fresh_intruder_nonce]), ['final']). cnf(c_0_171,plain,(message(sent(b,t,triple(b,generate_b_nonce(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce))),encrypt(triple(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)),generate_expiration_time(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))),bt))))|~fresh_intruder_nonce(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_139, c_0_140]), ['final']). cnf(c_0_172,plain,(message(sent(b,t,triple(b,generate_b_nonce(encrypt(X1,generate_key(an_a_nonce))),encrypt(triple(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(X1,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X1,generate_key(an_a_nonce)))),bt))))|~fresh_intruder_nonce(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_141, c_0_140]), ['final']). cnf(c_0_173,plain,(intruder_message(triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),at),encrypt(triple(a,generate_key(X1),generate_expiration_time(X1)),bt),X2))|~intruder_message(X2)|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_49, c_0_142]), ['final']). cnf(c_0_174,plain,(intruder_message(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),at))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_60, c_0_129]), ['final']). cnf(c_0_175,plain,(b_holds(key(generate_key(X1),a))|~intruder_message(generate_key(X1))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_143, c_0_144]), c_0_100]), c_0_119]), c_0_67])]), ['final']). cnf(c_0_176,plain,(b_holds(key(X1,X2))|~intruder_message(triple(X2,X1,generate_expiration_time(X3)))|~intruder_message(bt)|~intruder_message(X3)|~a_nonce(X3)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)), inference(csr,[status(thm)],[inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_143, c_0_112]), c_0_105]), c_0_60]), ['final']). cnf(c_0_177,plain,(b_holds(key(generate_key(X1),b))|~intruder_message(generate_key(X1))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_143, c_0_145]), c_0_71]), c_0_119]), c_0_43])]), ['final']). cnf(c_0_178,plain,(intruder_message(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),bt))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_146, c_0_81]), ['final']). cnf(c_0_179,plain,(message(sent(b,t,triple(b,generate_b_nonce(encrypt(X1,generate_key(an_a_nonce))),encrypt(triple(X2,encrypt(X1,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X1,generate_key(an_a_nonce)))),bt))))|~fresh_intruder_nonce(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)|~intruder_message(X2)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_147, c_0_140]), ['final']). cnf(c_0_180,plain,(b_stored(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(X1,generate_key(an_a_nonce))))|~fresh_intruder_nonce(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_148, c_0_140]), ['final']). cnf(c_0_181,plain,(intruder_message(triple(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at),encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),X1))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_49, c_0_96]), ['final']). cnf(c_0_182,plain,(message(sent(t,a,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),at),X3)))|~intruder_message(triple(a,X1,X2))|~intruder_message(at)|~intruder_message(X3)|~a_nonce(X1)), inference(spm,[status(thm)],[c_0_149, c_0_112]), ['final']). cnf(c_0_183,plain,(message(sent(t,b,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),at),X3)))|~intruder_message(triple(b,X1,X2))|~intruder_message(at)|~intruder_message(X3)|~a_nonce(X1)), inference(spm,[status(thm)],[c_0_150, c_0_112]), ['final']). cnf(c_0_184,plain,(message(sent(b,t,triple(b,generate_b_nonce(encrypt(X1,generate_key(an_a_nonce))),encrypt(triple(a,encrypt(X1,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X1,generate_key(an_a_nonce)))),bt))))|~fresh_intruder_nonce(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_151, c_0_140]), ['final']). cnf(c_0_185,plain,(message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),bt),X3)))|~intruder_message(triple(a,X1,X2))|~intruder_message(bt)|~intruder_message(X3)|~a_nonce(X1)), inference(spm,[status(thm)],[c_0_83, c_0_112]), ['final']). cnf(c_0_186,plain,(b_stored(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce))))|~fresh_intruder_nonce(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_152, c_0_140]), ['final']). cnf(c_0_187,plain,(b_holds(key(generate_key(an_a_nonce),X1))|~intruder_message(triple(X1,generate_key(an_a_nonce),generate_expiration_time(X2)))|~intruder_message(bt)|~intruder_message(X2)|~fresh_to_b(X2)|~party_of_protocol(X1)), inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_133, c_0_112]), c_0_60]), ['final']). cnf(c_0_188,plain,(b_holds(key(generate_key(an_a_nonce),X1))|~fresh_intruder_nonce(generate_key(an_a_nonce))|~intruder_message(X1)|~party_of_protocol(X1)), inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_153, c_0_140]), c_0_154]), ['final']). cnf(c_0_189,plain,(b_stored(pair(X1,encrypt(X2,generate_key(an_a_nonce))))|~fresh_intruder_nonce(encrypt(X2,generate_key(an_a_nonce)))|~intruder_message(X2)|~intruder_message(X1)|~party_of_protocol(X1)), inference(spm,[status(thm)],[c_0_155, c_0_140]), ['final']). cnf(c_0_190,plain,(b_stored(pair(a,encrypt(X1,generate_key(an_a_nonce))))|~fresh_intruder_nonce(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_156, c_0_140]), ['final']). cnf(c_0_191,plain,(intruder_message(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_157, c_0_81]), ['final']). cnf(c_0_192,plain,(b_holds(key(generate_key(an_a_nonce),X1))|~intruder_message(triple(X1,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)))|~intruder_message(bt)|~party_of_protocol(X1)), inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_138, c_0_112]), c_0_60]), ['final']). cnf(c_0_193,plain,(message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),bt),X3)))|~intruder_message(triple(b,X1,X2))|~intruder_message(bt)|~intruder_message(X3)|~a_nonce(X1)), inference(spm,[status(thm)],[c_0_90, c_0_112]), ['final']). cnf(c_0_194,plain,(b_holds(key(X1,X2))|~intruder_message(triple(X2,X1,generate_expiration_time(X3)))|~intruder_message(bt)|~intruder_message(X3)|~intruder_message(X4)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)|~party_of_protocol(X4)), inference(csr,[status(thm)],[inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_158, c_0_112]), c_0_105]), c_0_60]), ['final']). cnf(c_0_195,plain,(b_holds(key(X1,X2))|~intruder_message(X1)|~intruder_message(X2)|~intruder_message(X3)|~a_key(X1)|~fresh_to_b(X1)|~party_of_protocol(X2)|~party_of_protocol(X3)), inference(spm,[status(thm)],[c_0_158, c_0_91]), ['final']). cnf(c_0_196,plain,(b_holds(key(an_a_nonce,X1))|~intruder_message(X1)|~a_key(an_a_nonce)|~party_of_protocol(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_159, c_0_91]), c_0_124]), c_0_41])]), ['final']). cnf(c_0_197,plain,(b_holds(key(X1,X2))|~intruder_message(triple(X2,X1,generate_expiration_time(an_a_nonce)))|~intruder_message(bt)|~a_key(X1)|~party_of_protocol(X2)), inference(csr,[status(thm)],[inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_159, c_0_112]), c_0_105]), c_0_60]), ['final']). cnf(c_0_198,plain,(b_holds(key(X1,a))|~intruder_message(triple(a,X1,generate_expiration_time(an_a_nonce)))|~intruder_message(bt)|~a_key(X1)), inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_160, c_0_112]), c_0_105]), ['final']). cnf(c_0_199,plain,(b_holds(key(an_a_nonce,a))|~a_key(an_a_nonce)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_160, c_0_84]), c_0_124])]), ['final']). cnf(c_0_200,plain,(message(sent(a,b,pair(X1,encrypt(X2,X3))))|~intruder_message(quadruple(b,an_a_nonce,X3,X4))|~intruder_message(at)|~intruder_message(X2)|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_92, c_0_112]), ['final']). cnf(c_0_201,plain,(a_holds(key(X1,b))|~intruder_message(quadruple(b,an_a_nonce,X1,X2))|~intruder_message(at)|~intruder_message(X3)|~intruder_message(X4)), inference(spm,[status(thm)],[c_0_161, c_0_112]), ['final']). cnf(c_0_202,plain,(intruder_message(quadruple(X1,X2,X3,X4))|~intruder_message(X4)|~intruder_message(X3)|~intruder_message(X2)|~intruder_message(X1)), inference(split_conjunct,[status(thm)],[c_0_162]), ['final']). cnf(c_0_203,plain,(intruder_message(X1)|~party_of_protocol(X2)|~intruder_holds(key(X1,X2))|~intruder_message(encrypt(X3,X1))), inference(split_conjunct,[status(thm)],[c_0_163]), ['final']). cnf(c_0_204,plain,(intruder_message(X1)|~intruder_message(quadruple(X1,X2,X3,X4))), inference(split_conjunct,[status(thm)],[c_0_164]), ['final']). cnf(c_0_205,plain,(intruder_message(X2)|~intruder_message(quadruple(X1,X2,X3,X4))), inference(split_conjunct,[status(thm)],[c_0_164]), ['final']). cnf(c_0_206,plain,(intruder_message(X3)|~intruder_message(quadruple(X1,X2,X3,X4))), inference(split_conjunct,[status(thm)],[c_0_164]), ['final']). cnf(c_0_207,plain,(intruder_message(X4)|~intruder_message(quadruple(X1,X2,X3,X4))), inference(split_conjunct,[status(thm)],[c_0_164]), ['final']). cnf(c_0_208,plain,(intruder_message(generate_intruder_nonce(X1))|~fresh_intruder_nonce(X1)), inference(spm,[status(thm)],[c_0_154, c_0_165]), ['final']). cnf(c_0_209,plain,(~a_nonce(X1)|~a_key(X1)), inference(split_conjunct,[status(thm)],[c_0_166]), ['final']). cnf(c_0_210,plain,(~a_nonce(generate_key(X1))), inference(split_conjunct,[status(thm)],[c_0_167]), ['final']). cnf(c_0_211,plain,(b_holds(key(generate_key(an_a_nonce),b))), inference(spm,[status(thm)],[c_0_168, c_0_81]), ['final']). cnf(c_0_212,plain,(intruder_message(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_88, c_0_109]), ['final']). cnf(c_0_213,plain,(b_holds(key(generate_key(an_a_nonce),a))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_85, c_0_95]), c_0_124]), c_0_100]), c_0_119]), c_0_41]), c_0_67])]), ['final']). cnf(c_0_214,plain,(a_holds(key(generate_key(an_a_nonce),b))), inference(spm,[status(thm)],[c_0_122, c_0_68]), ['final']). cnf(c_0_215,plain,(b_holds(key(bt,t))), inference(split_conjunct,[status(thm)],[b_hold_key_bt_for_t]), ['final']). cnf(c_0_216,plain,(a_holds(key(at,t))), inference(split_conjunct,[status(thm)],[a_holds_key_at_for_t]), ['final']). cnf(c_0_217,plain,(a_nonce(generate_expiration_time(X1))), inference(split_conjunct,[status(thm)],[c_0_169]), ['final']). cnf(c_0_218,plain,(intruder_message(an_intruder_nonce)), inference(spm,[status(thm)],[c_0_154, c_0_170]), ['final']). cnf(c_0_219,plain,(a_nonce(generate_b_nonce(X1))), inference(split_conjunct,[status(thm)],[c_0_169]), ['final']). # SZS output end Saturation
Couldn't solve it in 300s
% SZS output start Refutation for /tmp/SystemOnTPTP529/PUZ001+1.tptp RuleSystem INPUT: Initial Rules: #0: input, references = 4, size of lhs = 1: P_agatha-{F}(V0) | EXISTS V1: pppp0-{T}(V1,V0) (used 0 times, uses = {}) #1: input, references = 6, size of lhs = 1: pppp0-{F}(V0,V1) | killed-{T}(V0,V1) (used 0 times, uses = {}) #2: input, references = 4, size of lhs = 1: pppp0-{F}(V0,V1) | lives-{T}(V0) (used 0 times, uses = {}) #3: input, references = 3, size of lhs = 1: P_agatha-{F}(V0) | lives-{T}(V0) (used 0 times, uses = {}) #4: input, references = 3, size of lhs = 2: P_agatha-{F}(V0), P_butler-{F}(V1) | lives-{T}(V1) (used 0 times, uses = {}) #5: input, references = 3, size of lhs = 3: P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2) | lives-{T}(V2) (used 0 times, uses = {}) #6: input, references = 4, size of lhs = 7: P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2), lives-{F}(V3), V3 == V0, V3 == V1, V3 == V2 | FALSE (used 0 times, uses = {}) #7: input, references = 4, size of lhs = 4: P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2), killed-{F}(V3,V4) | hates-{T}(V3,V4) (used 0 times, uses = {}) #8: input, references = 4, size of lhs = 5: P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2), killed-{F}(V3,V4), richer-{F}(V3,V4) | FALSE (used 0 times, uses = {}) #9: input, references = 4, size of lhs = 5: P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2), hates-{F}(V0,V3), hates-{F}(V2,V3) | FALSE (used 0 times, uses = {}) #10: input, references = 5, size of lhs = 5: P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2), #-{F} V3, V3 == V1 | hates-{T}(V0,V3) (used 0 times, uses = {}) #11: input, references = 5, size of lhs = 4: P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2), #-{F} V3 | richer-{T}(V3,V0), hates-{T}(V1,V3) (used 0 times, uses = {}) #12: input, references = 4, size of lhs = 4: P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2), hates-{F}(V0,V3) | hates-{T}(V1,V3) (used 0 times, uses = {}) #13: input, references = 4, size of lhs = 4: P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2), #-{F} V3 | EXISTS V4: pppp1-{T}(V3,V4) (used 0 times, uses = {}) #14: input, references = 4, size of lhs = 2: pppp1-{F}(V0,V1), hates-{F}(V0,V1) | FALSE (used 0 times, uses = {}) #15: input, references = 4, size of lhs = 3: P_agatha-{F}(V1), P_butler-{F}(V1), P_charles-{F}(V2) | FALSE (used 0 times, uses = {}) #16: input, references = 4, size of lhs = 4: P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2), killed-{F}(V0,V0) | FALSE (used 0 times, uses = {}) #17: input, references = 4, size of lhs = 0: FALSE | EXISTS V0: P_agatha-{T}(V0) (used 0 times, uses = {}) #18: input, references = 4, size of lhs = 0: FALSE | EXISTS V0: P_butler-{T}(V0) (used 0 times, uses = {}) #19: input, references = 5, size of lhs = 0: FALSE | EXISTS V0: P_charles-{T}(V0) (used 0 times, uses = {}) number of initial rules = 20 Simplifiers: #20: unsound, references = 3, size of lhs = 3: killed-{F}(V0,V1), killed-{F}(V2,V1), V0 == V2 | FALSE (used 0 times, uses = {}) #21: unsound, references = 3, size of lhs = 3: killed-{F}(V0,V1), killed-{F}(V2,V3), V1 == V3 | FALSE (used 0 times, uses = {}) #22: unsound, references = 3, size of lhs = 3: richer-{F}(V0,V1), richer-{F}(V2,V3), V1 == V3 | FALSE (used 0 times, uses = {}) #23: unsound, references = 3, size of lhs = 3: P_agatha-{F}(V0), P_agatha-{F}(V1), V0 == V1 | FALSE (used 0 times, uses = {}) #24: unsound, references = 3, size of lhs = 3: P_butler-{F}(V0), P_butler-{F}(V1), V0 == V1 | FALSE (used 0 times, uses = {}) #25: unsound, references = 3, size of lhs = 3: P_charles-{F}(V0), P_charles-{F}(V1), V0 == V1 | FALSE (used 0 times, uses = {}) #26: unsound, references = 3, size of lhs = 3: pppp0-{F}(V0,V1), pppp0-{F}(V2,V1), V0 == V2 | FALSE (used 0 times, uses = {}) #27: unsound, references = 3, size of lhs = 3: pppp0-{F}(V0,V1), pppp0-{F}(V2,V3), V1 == V3 | FALSE (used 0 times, uses = {}) #28: unsound, references = 3, size of lhs = 3: pppp1-{F}(V0,V1), pppp1-{F}(V0,V3), V1 == V3 | FALSE (used 0 times, uses = {}) number of simplifiers = 9 Learnt: #30: exists( #19, #15 ), references = 2, size of lhs = 2: P_agatha-{F}(V0), P_butler-{F}(V0) | FALSE (used 0 times, uses = {}) #38: mergings( V0 == V4, V1 == V5, V2 == V6; #34 ), references = 1, size of lhs = 4: P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2), killed-{F}(V3,V0) | hates-{T}(V1,V3) (used 0 times, uses = {}) #47: mergings( V0 == V7, V1 == V5, V5 == V3, V2 == V6, V6 == V8; #41 ), references = 1, size of lhs = 3: P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2) | pppp1-{T}(V1,V1) (used 0 times, uses = {}) #49: disj( #11, input ), references = 1, size of lhs = 4: P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2), pppp1-{F}(V1,V3) | richer-{T}(V3,V0) (used 0 times, uses = {}) #53: mergings( V0 == V2; #51 ), references = 1, size of lhs = 3: P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2) | pppp0-{T}(V0,V0), pppp0-{T}(V1,V0), pppp0-{T}(V2,V0) (used 0 times, uses = {}) #65: mergings( V0 == V5, V5 == V8, V1 == V3, V3 == V6, V6 == V9, V4 == V7, V7 == V2; #57 ), references = 1, size of lhs = 4: P_agatha-{F}(V0), hates-{F}(V0,V0), P_butler-{F}(V1), P_charles-{F}(V2) | pppp0-{T}(V1,V0) (used 0 times, uses = {}) #84: mergings( V2 == V4, V4 == V7, V7 == V9, V9 == V11, V11 == V13, V1 == V3, V3 == V5, V5 == V6, V6 == V8, V8 == V10, V10 == V12, V12 == V14; #71 ), references = 1, size of lhs = 3: P_agatha-{F}(V0), P_butler-{F}(V1), V0 == V1 | FALSE (used 0 times, uses = {}) #91: mergings( V1 == V2, V2 == V3, V3 == V4, V4 == V5, V5 == V6; #85 ), references = 1, size of lhs = 1: P_agatha-{F}(V0) | P_butler-{T}(V0) (used 0 times, uses = {}) #94: exists( #17, #92 ), references = 1, size of lhs = 0: FALSE | FALSE (used 0 times, uses = {}) number of learnt formulas = 9 % SZS output end Refutation for /tmp/SystemOnTPTP529/PUZ001+1.tptp
% SZS output start Model for /tmp/SystemOnTPTP436/NLP042+1.tptp Interpretation 3: Guesses: 0 : guesser 1, 0, ( | 1, 0 ), 0, 0s old, 0 lemmas 1 : guesser 4, 2, ( | 1, 2, 0 ), 0, 0s old, 0 lemmas 2 : guesser 17, 15, ( 1 | 2, 0 ), 0, 0s old, 1 lemmas 3 : guesser 29, 26, ( 2, 1 | 3, 0 ), 1, 0s old, 2 lemmas 4 : guesser 45, 41, ( | 0, 3, 2, 4, 1 ), 3, 0s old, 0 lemmas Elements: { E0, E1, E2, E3 } Atoms: 0 : #-{T} E0 { } 1 : #-{T} E1 { 0 } 2 : pppp5-{T}(E1) { 0 } 3 : actual_world-{T}(E1) { 0 } 4 : pppp4-{T}(E1,E1) { 0, 1 } 5 : pppp3-{T}(E1,E1) { 0, 1 } 6 : order-{T}(E1,E1) { 0, 1 } 7 : nonreflexive-{T}(E1,E1) { 0, 1 } 8 : past-{T}(E1,E1) { 0, 1 } 9 : event-{T}(E1,E1) { 0, 1 } 10 : act-{T}(E1,E1) { 0, 1 } 11 : eventuality-{T}(E1,E1) { 0, 1 } 12 : unisex-{T}(E1,E1) { 0, 1 } 13 : nonexistent-{T}(E1,E1) { 0, 1 } 14 : specific-{T}(E1,E1) { 0, 1 } 15 : thing-{T}(E1,E1) { 0, 1 } 16 : singleton-{T}(E1,E1) { 0, 1 } 17 : #-{T} E2 { 0, 1, 2 } 18 : pppp2-{T}(E1,E2,E1) { 0, 1, 2 } 19 : forename-{T}(E1,E2) { 0, 1, 2 } 20 : mia_forename-{T}(E1,E2) { 0, 1, 2 } 21 : relname-{T}(E1,E2) { 0, 1, 2 } 22 : relation-{T}(E1,E2) { 0, 1, 2 } 23 : abstraction-{T}(E1,E2) { 0, 1, 2 } 24 : unisex-{T}(E1,E2) { 0, 1, 2 } 25 : general-{T}(E1,E2) { 0, 1, 2 } 26 : nonhuman-{T}(E1,E2) { 0, 1, 2 } 27 : thing-{T}(E1,E2) { 0, 1, 2 } 28 : singleton-{T}(E1,E2) { 0, 1, 2 } 29 : #-{T} E3 { 0, 1, 3 } 30 : pppp0-{T}(E1,E3,E1) { 0, 1, 3 } 31 : patient-{T}(E1,E1,E3) { 0, 1, 3 } 32 : shake_beverage-{T}(E1,E3) { 0, 1, 3 } 33 : beverage-{T}(E1,E3) { 0, 1, 3 } 34 : food-{T}(E1,E3) { 0, 1, 3 } 35 : substance_matter-{T}(E1,E3) { 0, 1, 3 } 36 : object-{T}(E1,E3) { 0, 1, 3 } 37 : unisex-{T}(E1,E3) { 0, 1, 3 } 38 : impartial-{T}(E1,E3) { 0, 1, 3 } 39 : nonliving-{T}(E1,E3) { 0, 1, 3 } 40 : entity-{T}(E1,E3) { 0, 1, 3 } 41 : existent-{T}(E1,E3) { 0, 1, 3 } 42 : specific-{T}(E1,E3) { 0, 1, 3 } 43 : thing-{T}(E1,E3) { 0, 1, 3 } 44 : singleton-{T}(E1,E3) { 0, 1, 3 } 45 : pppp1-{T}(E1,E0,E2,E1) { 0, 1, 2, 4 } 46 : agent-{T}(E1,E1,E0) { 0, 1, 2, 4 } 47 : woman-{T}(E1,E0) { 0, 1, 2, 4 } 48 : of-{T}(E1,E2,E0) { 0, 1, 2, 4 } 49 : female-{T}(E1,E0) { 0, 1, 2, 4 } 50 : human_person-{T}(E1,E0) { 0, 1, 2, 4 } 51 : animate-{T}(E1,E0) { 0, 1, 2, 4 } 52 : human-{T}(E1,E0) { 0, 1, 2, 4 } 53 : organism-{T}(E1,E0) { 0, 1, 2, 4 } 54 : living-{T}(E1,E0) { 0, 1, 2, 4 } 55 : impartial-{T}(E1,E0) { 0, 1, 2, 4 } 56 : entity-{T}(E1,E0) { 0, 1, 2, 4 } 57 : existent-{T}(E1,E0) { 0, 1, 2, 4 } 58 : specific-{T}(E1,E0) { 0, 1, 2, 4 } 59 : thing-{T}(E1,E0) { 0, 1, 2, 4 } 60 : singleton-{T}(E1,E0) { 0, 1, 2, 4 } % SZS output end Model for /tmp/SystemOnTPTP436/NLP042+1.tptp
% SZS output start Model for /tmp/SystemOnTPTP484/SWV017+1.tptp Interpretation 18: Guesses: 0 : guesser 1, 0, ( | 1, 0 ), 0, 1s old, 0 lemmas 1 : guesser 3, 1, ( | 1, 2, 0 ), 0, 1s old, 0 lemmas 2 : guesser 4, 2, ( | 1, 2, 0 ), 0, 1s old, 0 lemmas 3 : guesser 5, 3, ( | 1, 2, 0 ), 0, 1s old, 0 lemmas 4 : guesser 6, 4, ( | 0, 2, 1 ), 0, 1s old, 0 lemmas 5 : guesser 7, 5, ( | 0, 2, 1 ), 0, 1s old, 0 lemmas 6 : guesser 8, 6, ( | 0, 2, 1 ), 0, 1s old, 0 lemmas 7 : guesser 9, 7, ( | 0, 2, 1 ), 0, 1s old, 0 lemmas 8 : guesser 10, 8, ( | 0, 2, 1 ), 0, 1s old, 0 lemmas 9 : guesser 11, 9, ( | 1, 2, 0 ), 0, 1s old, 0 lemmas 10 : guesser 12, 10, ( | 1, 2, 0 ), 0, 1s old, 0 lemmas 11 : guesser 13, 11, ( | 0, 2, 1 ), 0, 1s old, 0 lemmas 12 : guesser 14, 12, ( | 1, 2, 0 ), 0, 1s old, 0 lemmas 13 : guesser 15, 13, ( | 0, 2, 1 ), 0, 1s old, 0 lemmas 14 : guesser 16, 14, ( | 0, 2, 1 ), 0, 1s old, 0 lemmas 15 : guesser 17, 15, ( | 1, 2, 0 ), 0, 1s old, 0 lemmas 16 : guesser 18, 16, ( | 1, 2, 0 ), 0, 1s old, 0 lemmas 17 : guesser 19, 17, ( 1 | 2, 0 ), 0, 1s old, 2 lemmas 18 : guesser 21, 18, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 19 : guesser 22, 19, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 20 : guesser 23, 20, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 21 : guesser 24, 21, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 22 : guesser 25, 22, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 23 : guesser 26, 23, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 24 : guesser 27, 24, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 25 : guesser 28, 25, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 26 : guesser 29, 26, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 27 : guesser 30, 27, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 28 : guesser 33, 30, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 29 : guesser 34, 31, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 30 : guesser 35, 32, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 31 : guesser 36, 33, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 32 : guesser 37, 34, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 33 : guesser 38, 35, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 34 : guesser 39, 36, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 35 : guesser 40, 37, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 36 : guesser 41, 38, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 37 : guesser 42, 39, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 38 : guesser 43, 40, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 39 : guesser 44, 41, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 40 : guesser 45, 42, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 41 : guesser 46, 43, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 42 : guesser 47, 44, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 43 : guesser 48, 45, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 44 : guesser 49, 46, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 45 : guesser 50, 47, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 46 : guesser 51, 48, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 47 : guesser 52, 49, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 48 : guesser 53, 50, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 49 : guesser 54, 51, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 50 : guesser 55, 52, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 51 : guesser 56, 53, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 52 : guesser 57, 54, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 53 : guesser 58, 55, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 54 : guesser 59, 56, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 55 : guesser 60, 57, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 56 : guesser 61, 58, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 57 : guesser 62, 59, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 58 : guesser 63, 60, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 59 : guesser 64, 61, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 60 : guesser 65, 62, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 61 : guesser 66, 63, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 62 : guesser 67, 64, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 63 : guesser 68, 65, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 64 : guesser 69, 66, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 65 : guesser 70, 67, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 66 : guesser 71, 68, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 67 : guesser 72, 69, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 68 : guesser 73, 70, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 69 : guesser 74, 71, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 70 : guesser 75, 72, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 71 : guesser 76, 73, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 72 : guesser 77, 74, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 73 : guesser 78, 75, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 74 : guesser 79, 76, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 75 : guesser 80, 77, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 76 : guesser 81, 78, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 77 : guesser 82, 79, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 78 : guesser 83, 80, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 79 : guesser 84, 81, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 80 : guesser 85, 82, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 81 : guesser 86, 83, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 82 : guesser 87, 84, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 83 : guesser 88, 85, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 84 : guesser 89, 86, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 85 : guesser 90, 87, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 86 : guesser 91, 88, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 87 : guesser 92, 89, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 88 : guesser 93, 90, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 89 : guesser 94, 91, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 90 : guesser 95, 92, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 91 : guesser 96, 93, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 92 : guesser 122, 119, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 93 : guesser 123, 120, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 94 : guesser 126, 123, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 95 : guesser 127, 124, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 96 : guesser 128, 125, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 97 : guesser 129, 126, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 98 : guesser 130, 127, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 99 : guesser 131, 128, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 100 : guesser 132, 129, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 101 : guesser 133, 130, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 102 : guesser 134, 131, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 103 : guesser 135, 132, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 104 : guesser 136, 133, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 105 : guesser 137, 134, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 106 : guesser 138, 135, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 107 : guesser 139, 136, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 108 : guesser 140, 137, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 109 : guesser 141, 138, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 110 : guesser 142, 139, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 111 : guesser 143, 140, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 112 : guesser 144, 141, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 113 : guesser 145, 142, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 114 : guesser 146, 143, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 115 : guesser 147, 144, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 116 : guesser 148, 145, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 117 : guesser 150, 147, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 118 : guesser 151, 148, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 119 : guesser 152, 149, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 120 : guesser 153, 150, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 121 : guesser 154, 151, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 122 : guesser 155, 152, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 123 : guesser 156, 153, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 124 : guesser 157, 154, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 125 : guesser 158, 155, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 126 : guesser 159, 156, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 127 : guesser 160, 157, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 128 : guesser 161, 158, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 129 : guesser 162, 159, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 130 : guesser 163, 160, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 131 : guesser 164, 161, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 132 : guesser 165, 162, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 133 : guesser 166, 163, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 134 : guesser 167, 164, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 135 : guesser 168, 165, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 136 : guesser 169, 166, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 137 : guesser 170, 167, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 138 : guesser 172, 169, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 139 : guesser 173, 170, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 140 : guesser 174, 171, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 141 : guesser 175, 172, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 142 : guesser 176, 173, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 143 : guesser 177, 174, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 144 : guesser 178, 175, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 145 : guesser 179, 176, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 146 : guesser 180, 177, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 147 : guesser 181, 178, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 148 : guesser 182, 179, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 149 : guesser 183, 180, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 150 : guesser 184, 181, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 151 : guesser 185, 182, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 152 : guesser 186, 183, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 153 : guesser 187, 184, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 154 : guesser 188, 185, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 155 : guesser 189, 186, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 156 : guesser 190, 187, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 157 : guesser 191, 188, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 158 : guesser 192, 189, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 159 : guesser 193, 190, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 160 : guesser 194, 191, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 161 : guesser 195, 192, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 162 : guesser 196, 193, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 163 : guesser 197, 194, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 164 : guesser 198, 195, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 165 : guesser 199, 196, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 166 : guesser 200, 197, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 167 : guesser 201, 198, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 168 : guesser 202, 199, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 169 : guesser 203, 200, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 170 : guesser 204, 201, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 171 : guesser 205, 202, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 172 : guesser 206, 203, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 173 : guesser 207, 204, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 174 : guesser 208, 205, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 175 : guesser 209, 206, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 176 : guesser 210, 207, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 177 : guesser 211, 208, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 178 : guesser 212, 209, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 179 : guesser 213, 210, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 180 : guesser 214, 211, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas Elements: { E0, E1, E2 } Atoms: 0 : #-{T} E0 { } 1 : #-{T} E1 { 0 } 2 : P_at-{T}(E1) { 0 } 3 : P_t-{T}(E1) { 1 } 4 : P_a-{T}(E1) { 2 } 5 : P_b-{T}(E1) { 3 } 6 : P_an_a_nonce-{T}(E0) { 4 } 7 : P_bt-{T}(E0) { 5 } 8 : P_an_intruder_nonce-{T}(E0) { 6 } 9 : P_generate_b_nonce-{T}(E0,E0) { 7 } 10 : P_generate_expiration_time-{T}(E0,E0) { 8 } 11 : P_generate_key-{T}(E0,E1) { 9 } 12 : P_generate_intruder_nonce-{T}(E0,E1) { 10 } 13 : P_key-{T}(E0,E0,E0) { 11 } 14 : P_pair-{T}(E0,E0,E1) { 12 } 15 : P_encrypt-{T}(E0,E0,E0) { 13 } 16 : P_sent-{T}(E0,E0,E0,E0) { 14 } 17 : P_triple-{T}(E0,E0,E0,E1) { 15 } 18 : P_quadruple-{T}(E0,E0,E0,E0,E1) { 16 } 19 : #-{T} E2 { 0, 17 } 20 : P_generate_b_nonce-{T}(E1,E2) { 0, 17 } 21 : P_generate_expiration_time-{T}(E1,E0) { 0, 18 } 22 : P_generate_key-{T}(E1,E1) { 0, 19 } 23 : P_generate_intruder_nonce-{T}(E1,E2) { 0, 20 } 24 : P_key-{T}(E0,E1,E2) { 0, 21 } 25 : P_pair-{T}(E0,E1,E0) { 0, 22 } 26 : P_encrypt-{T}(E0,E1,E0) { 0, 23 } 27 : P_key-{T}(E1,E0,E1) { 0, 24 } 28 : P_pair-{T}(E1,E0,E2) { 0, 25 } 29 : P_encrypt-{T}(E1,E0,E2) { 0, 26 } 30 : P_key-{T}(E1,E1,E1) { 0, 27 } 31 : a_holds-{T}(E1) { 0, 1, 27 } 32 : party_of_protocol-{T}(E1) { 0, 1, 2, 27 } 33 : P_pair-{T}(E1,E1,E2) { 0, 28 } 34 : P_encrypt-{T}(E1,E1,E2) { 0, 29 } 35 : P_sent-{T}(E0,E0,E1,E2) { 0, 30 } 36 : P_sent-{T}(E0,E1,E0,E0) { 0, 31 } 37 : P_triple-{T}(E0,E0,E1,E0) { 0, 32 } 38 : P_quadruple-{T}(E0,E0,E0,E1,E1) { 0, 33 } 39 : P_sent-{T}(E0,E1,E1,E1) { 0, 34 } 40 : P_triple-{T}(E0,E1,E0,E0) { 0, 35 } 41 : P_quadruple-{T}(E0,E0,E1,E0,E1) { 0, 36 } 42 : P_sent-{T}(E1,E0,E0,E2) { 0, 37 } 43 : P_triple-{T}(E0,E1,E1,E2) { 0, 38 } 44 : P_quadruple-{T}(E0,E0,E1,E1,E0) { 0, 39 } 45 : P_sent-{T}(E1,E0,E1,E0) { 0, 40 } 46 : P_triple-{T}(E1,E0,E0,E1) { 0, 41 } 47 : P_quadruple-{T}(E0,E1,E0,E0,E1) { 0, 42 } 48 : P_sent-{T}(E1,E1,E0,E0) { 0, 43 } 49 : P_triple-{T}(E1,E0,E1,E0) { 0, 44 } 50 : P_quadruple-{T}(E0,E1,E0,E1,E1) { 0, 45 } 51 : P_sent-{T}(E1,E1,E1,E1) { 0, 46 } 52 : P_triple-{T}(E1,E1,E0,E2) { 0, 47 } 53 : P_quadruple-{T}(E0,E1,E1,E0,E2) { 0, 48 } 54 : P_triple-{T}(E1,E1,E1,E1) { 0, 49 } 55 : P_quadruple-{T}(E0,E1,E1,E1,E2) { 0, 50 } 56 : P_generate_b_nonce-{T}(E2,E0) { 0, 17, 51 } 57 : P_quadruple-{T}(E1,E0,E0,E0,E1) { 0, 52 } 58 : P_generate_expiration_time-{T}(E2,E0) { 0, 17, 53 } 59 : P_generate_key-{T}(E2,E1) { 0, 17, 54 } 60 : P_quadruple-{T}(E1,E0,E0,E1,E2) { 0, 55 } 61 : P_generate_intruder_nonce-{T}(E2,E2) { 0, 17, 56 } 62 : P_key-{T}(E0,E2,E1) { 0, 17, 57 } 63 : P_quadruple-{T}(E1,E0,E1,E0,E0) { 0, 58 } 64 : P_key-{T}(E1,E2,E0) { 0, 17, 59 } 65 : P_pair-{T}(E0,E2,E0) { 0, 17, 60 } 66 : P_quadruple-{T}(E1,E0,E1,E1,E1) { 0, 61 } 67 : P_key-{T}(E2,E0,E2) { 0, 17, 62 } 68 : P_pair-{T}(E1,E2,E1) { 0, 17, 63 } 69 : P_quadruple-{T}(E1,E1,E0,E0,E0) { 0, 64 } 70 : P_key-{T}(E2,E1,E0) { 0, 17, 65 } 71 : P_pair-{T}(E2,E0,E0) { 0, 17, 66 } 72 : P_quadruple-{T}(E1,E1,E0,E1,E2) { 0, 67 } 73 : P_key-{T}(E2,E2,E0) { 0, 17, 68 } 74 : P_pair-{T}(E2,E1,E2) { 0, 17, 69 } 75 : P_quadruple-{T}(E1,E1,E1,E0,E0) { 0, 70 } 76 : P_pair-{T}(E2,E2,E0) { 0, 17, 71 } 77 : P_encrypt-{T}(E0,E2,E0) { 0, 17, 72 } 78 : P_quadruple-{T}(E1,E1,E1,E1,E2) { 0, 73 } 79 : P_encrypt-{T}(E1,E2,E0) { 0, 17, 74 } 80 : P_sent-{T}(E0,E0,E2,E1) { 0, 17, 75 } 81 : P_encrypt-{T}(E2,E0,E2) { 0, 17, 76 } 82 : P_sent-{T}(E0,E1,E2,E1) { 0, 17, 77 } 83 : P_triple-{T}(E0,E0,E2,E2) { 0, 17, 78 } 84 : P_encrypt-{T}(E2,E1,E0) { 0, 17, 79 } 85 : P_sent-{T}(E0,E2,E0,E1) { 0, 17, 80 } 86 : P_triple-{T}(E0,E1,E2,E1) { 0, 17, 81 } 87 : P_encrypt-{T}(E2,E2,E1) { 0, 17, 82 } 88 : P_sent-{T}(E0,E2,E1,E1) { 0, 17, 83 } 89 : P_triple-{T}(E0,E2,E0,E0) { 0, 17, 84 } 90 : P_sent-{T}(E0,E2,E2,E0) { 0, 17, 85 } 91 : P_triple-{T}(E0,E2,E1,E0) { 0, 17, 86 } 92 : P_quadruple-{T}(E0,E0,E0,E2,E0) { 0, 17, 87 } 93 : P_sent-{T}(E1,E0,E2,E2) { 0, 17, 88 } 94 : P_triple-{T}(E0,E2,E2,E2) { 0, 17, 89 } 95 : P_quadruple-{T}(E0,E0,E1,E2,E2) { 0, 17, 90 } 96 : P_sent-{T}(E1,E1,E2,E0) { 0, 17, 91 } 97 : message-{T}(E0) { 0, 1, 2, 3, 4, 17, 25, 27, 91 } 98 : a_stored-{T}(E2) { 0, 1, 2, 3, 4, 17, 25, 27, 91 } 99 : b_holds-{T}(E2) { 0, 1, 2, 3, 4, 5, 17, 21, 25, 27, 91 } 100 : fresh_to_b-{T}(E0) { 0, 1, 2, 3, 4, 5, 17, 21, 25, 27, 91 } 101 : t_holds-{T}(E1) { 0, 1, 2, 3, 4, 5, 17, 21, 25, 27, 91 } 102 : t_holds-{T}(E2) { 0, 1, 2, 3, 4, 5, 17, 21, 25, 27, 91 } 103 : a_nonce-{T}(E0) { 0, 1, 2, 3, 4, 5, 17, 21, 25, 27, 91 } 104 : intruder_message-{T}(E2) { 0, 1, 2, 3, 4, 5, 17, 21, 25, 27, 91 } 105 : fresh_intruder_nonce-{T}(E0) { 0, 1, 2, 3, 4, 5, 6, 17, 21, 25, 27, 91 } 106 : intruder_message-{T}(E1) { 0, 1, 2, 3, 4, 5, 17, 21, 25, 27, 91 } 107 : intruder_message-{T}(E0) { 0, 1, 2, 3, 4, 5, 17, 21, 25, 27, 91 } 108 : intruder_holds-{T}(E1) { 0, 1, 2, 3, 4, 5, 17, 21, 25, 27, 91 } 109 : a_key-{T}(E1) { 0, 1, 2, 3, 4, 5, 9, 17, 21, 25, 27, 91 } 110 : fresh_intruder_nonce-{T}(E1) { 0, 1, 2, 3, 4, 5, 6, 10, 17, 21, 25, 27, 91 } 111 : intruder_holds-{T}(E2) { 0, 1, 2, 3, 4, 5, 17, 21, 25, 27, 91 } 112 : fresh_to_b-{T}(E1) { 0, 1, 2, 3, 4, 5, 6, 10, 17, 21, 25, 27, 91 } 113 : a_nonce-{T}(E2) { 0, 1, 2, 3, 4, 5, 17, 18, 21, 25, 27, 91 } 114 : fresh_intruder_nonce-{T}(E2) { 0, 1, 2, 3, 4, 5, 6, 10, 17, 20, 21, 25, 27, 91 } 115 : message-{T}(E1) { 0, 1, 2, 3, 4, 5, 17, 21, 25, 27, 46, 91 } 116 : fresh_to_b-{T}(E2) { 0, 1, 2, 3, 4, 5, 6, 10, 17, 20, 21, 25, 27, 91 } 117 : a_holds-{T}(E2) { 0, 1, 2, 3, 4, 13, 17, 21, 23, 25, 27, 28, 35, 43, 64, 91 } 118 : intruder_holds-{T}(E0) { 0, 1, 2, 3, 4, 5, 17, 21, 25, 27, 65, 91 } 119 : message-{T}(E2) { 0, 1, 2, 3, 4, 5, 9, 15, 17, 21, 25, 27, 31, 32, 35, 36, 37, 62, 72, 74, 91 } 120 : b_stored-{T}(E0) { 0, 1, 2, 3, 4, 5, 6, 10, 13, 17, 20, 21, 25, 27, 31, 41, 46, 51, 53, 60, 84, 91 } 121 : b_holds-{T}(E1) { 0, 1, 2, 3, 4, 5, 6, 9, 10, 12, 13, 17, 20, 21, 23, 24, 25, 27, 31, 34, 35, 41, 46, 51, 53, 60, 84, 91 } 122 : P_sent-{T}(E1,E2,E0,E2) { 0, 17, 92 } 123 : P_triple-{T}(E1,E0,E2,E0) { 0, 17, 93 } 124 : b_stored-{T}(E2) { 0, 1, 2, 3, 4, 5, 7, 8, 17, 21, 25, 26, 27, 41, 43, 91, 93 } 125 : b_stored-{T}(E1) { 0, 1, 2, 3, 4, 5, 7, 8, 12, 15, 17, 21, 25, 26, 27, 34, 43, 46, 91, 93 } 126 : P_sent-{T}(E1,E2,E1,E2) { 0, 17, 94 } 127 : P_triple-{T}(E1,E1,E2,E1) { 0, 17, 95 } 128 : P_quadruple-{T}(E0,E0,E2,E0,E0) { 0, 17, 96 } 129 : P_sent-{T}(E1,E2,E2,E2) { 0, 17, 97 } 130 : P_triple-{T}(E1,E2,E0,E2) { 0, 17, 98 } 131 : P_quadruple-{T}(E0,E0,E2,E1,E1) { 0, 17, 99 } 132 : P_sent-{T}(E2,E0,E0,E0) { 0, 17, 100 } 133 : P_triple-{T}(E1,E2,E1,E2) { 0, 17, 101 } 134 : P_quadruple-{T}(E0,E0,E2,E2,E2) { 0, 17, 102 } 135 : P_sent-{T}(E2,E0,E1,E0) { 0, 17, 103 } 136 : P_triple-{T}(E1,E2,E2,E1) { 0, 17, 104 } 137 : P_quadruple-{T}(E0,E1,E0,E2,E0) { 0, 17, 105 } 138 : P_sent-{T}(E2,E0,E2,E1) { 0, 17, 106 } 139 : P_triple-{T}(E2,E0,E0,E2) { 0, 17, 107 } 140 : P_quadruple-{T}(E0,E1,E1,E2,E0) { 0, 17, 108 } 141 : P_sent-{T}(E2,E1,E0,E2) { 0, 17, 109 } 142 : P_triple-{T}(E2,E0,E1,E2) { 0, 17, 110 } 143 : P_quadruple-{T}(E0,E1,E2,E0,E0) { 0, 17, 111 } 144 : P_sent-{T}(E2,E1,E1,E0) { 0, 17, 112 } 145 : P_triple-{T}(E2,E0,E2,E2) { 0, 17, 113 } 146 : P_quadruple-{T}(E0,E1,E2,E1,E1) { 0, 17, 114 } 147 : P_sent-{T}(E2,E1,E2,E1) { 0, 17, 115 } 148 : P_triple-{T}(E2,E1,E0,E2) { 0, 17, 116 } 149 : b_holds-{T}(E0) { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 15, 17, 20, 21, 23, 25, 27, 31, 32, 35, 36, 37, 41, 46, 51, 53, 59, 60, 62, 66, 72, 74, 76, 84, 91, 109, 116 } 150 : P_sent-{T}(E2,E2,E0,E0) { 0, 17, 117 } 151 : P_triple-{T}(E2,E1,E1,E2) { 0, 17, 118 } 152 : P_quadruple-{T}(E0,E1,E2,E2,E0) { 0, 17, 119 } 153 : P_sent-{T}(E2,E2,E1,E1) { 0, 17, 120 } 154 : P_triple-{T}(E2,E1,E2,E2) { 0, 17, 121 } 155 : P_quadruple-{T}(E0,E2,E0,E0,E0) { 0, 17, 122 } 156 : P_sent-{T}(E2,E2,E2,E0) { 0, 17, 123 } 157 : P_triple-{T}(E2,E2,E0,E2) { 0, 17, 124 } 158 : P_quadruple-{T}(E0,E2,E0,E1,E2) { 0, 17, 125 } 159 : P_triple-{T}(E2,E2,E1,E2) { 0, 17, 126 } 160 : P_quadruple-{T}(E0,E2,E0,E2,E0) { 0, 17, 127 } 161 : P_triple-{T}(E2,E2,E2,E2) { 0, 17, 128 } 162 : P_quadruple-{T}(E0,E2,E1,E0,E1) { 0, 17, 129 } 163 : P_quadruple-{T}(E0,E2,E1,E1,E2) { 0, 17, 130 } 164 : P_quadruple-{T}(E0,E2,E1,E2,E0) { 0, 17, 131 } 165 : P_quadruple-{T}(E0,E2,E2,E0,E0) { 0, 17, 132 } 166 : P_quadruple-{T}(E0,E2,E2,E1,E0) { 0, 17, 133 } 167 : P_quadruple-{T}(E0,E2,E2,E2,E2) { 0, 17, 134 } 168 : P_quadruple-{T}(E1,E0,E0,E2,E2) { 0, 17, 135 } 169 : P_quadruple-{T}(E1,E0,E1,E2,E1) { 0, 17, 136 } 170 : P_quadruple-{T}(E1,E0,E2,E0,E1) { 0, 17, 137 } 171 : a_holds-{T}(E0) { 0, 1, 2, 3, 4, 12, 17, 25, 27, 29, 46, 65, 72, 91, 107, 137 } 172 : P_quadruple-{T}(E1,E0,E2,E1,E1) { 0, 17, 138 } 173 : P_quadruple-{T}(E1,E0,E2,E2,E2) { 0, 17, 139 } 174 : P_quadruple-{T}(E1,E1,E0,E2,E0) { 0, 17, 140 } 175 : P_quadruple-{T}(E1,E1,E1,E2,E2) { 0, 17, 141 } 176 : P_quadruple-{T}(E1,E1,E2,E0,E0) { 0, 17, 142 } 177 : P_quadruple-{T}(E1,E1,E2,E1,E0) { 0, 17, 143 } 178 : P_quadruple-{T}(E1,E1,E2,E2,E0) { 0, 17, 144 } 179 : P_quadruple-{T}(E1,E2,E0,E0,E1) { 0, 17, 145 } 180 : P_quadruple-{T}(E1,E2,E0,E1,E0) { 0, 17, 146 } 181 : P_quadruple-{T}(E1,E2,E0,E2,E0) { 0, 17, 147 } 182 : P_quadruple-{T}(E1,E2,E1,E0,E1) { 0, 17, 148 } 183 : P_quadruple-{T}(E1,E2,E1,E1,E2) { 0, 17, 149 } 184 : P_quadruple-{T}(E1,E2,E1,E2,E1) { 0, 17, 150 } 185 : P_quadruple-{T}(E1,E2,E2,E0,E0) { 0, 17, 151 } 186 : P_quadruple-{T}(E1,E2,E2,E1,E2) { 0, 17, 152 } 187 : P_quadruple-{T}(E1,E2,E2,E2,E1) { 0, 17, 153 } 188 : P_quadruple-{T}(E2,E0,E0,E0,E0) { 0, 17, 154 } 189 : P_quadruple-{T}(E2,E0,E0,E1,E0) { 0, 17, 155 } 190 : P_quadruple-{T}(E2,E0,E0,E2,E1) { 0, 17, 156 } 191 : P_quadruple-{T}(E2,E0,E1,E0,E2) { 0, 17, 157 } 192 : P_quadruple-{T}(E2,E0,E1,E1,E0) { 0, 17, 158 } 193 : P_quadruple-{T}(E2,E0,E1,E2,E1) { 0, 17, 159 } 194 : P_quadruple-{T}(E2,E0,E2,E0,E1) { 0, 17, 160 } 195 : P_quadruple-{T}(E2,E0,E2,E1,E0) { 0, 17, 161 } 196 : P_quadruple-{T}(E2,E0,E2,E2,E2) { 0, 17, 162 } 197 : P_quadruple-{T}(E2,E1,E0,E0,E2) { 0, 17, 163 } 198 : P_quadruple-{T}(E2,E1,E0,E1,E2) { 0, 17, 164 } 199 : P_quadruple-{T}(E2,E1,E0,E2,E2) { 0, 17, 165 } 200 : P_quadruple-{T}(E2,E1,E1,E0,E0) { 0, 17, 166 } 201 : P_quadruple-{T}(E2,E1,E1,E1,E1) { 0, 17, 167 } 202 : P_quadruple-{T}(E2,E1,E1,E2,E0) { 0, 17, 168 } 203 : P_quadruple-{T}(E2,E1,E2,E0,E0) { 0, 17, 169 } 204 : P_quadruple-{T}(E2,E1,E2,E1,E0) { 0, 17, 170 } 205 : P_quadruple-{T}(E2,E1,E2,E2,E1) { 0, 17, 171 } 206 : P_quadruple-{T}(E2,E2,E0,E0,E2) { 0, 17, 172 } 207 : P_quadruple-{T}(E2,E2,E0,E1,E0) { 0, 17, 173 } 208 : P_quadruple-{T}(E2,E2,E0,E2,E1) { 0, 17, 174 } 209 : P_quadruple-{T}(E2,E2,E1,E0,E1) { 0, 17, 175 } 210 : P_quadruple-{T}(E2,E2,E1,E1,E1) { 0, 17, 176 } 211 : P_quadruple-{T}(E2,E2,E1,E2,E0) { 0, 17, 177 } 212 : P_quadruple-{T}(E2,E2,E2,E0,E0) { 0, 17, 178 } 213 : P_quadruple-{T}(E2,E2,E2,E1,E2) { 0, 17, 179 } 214 : P_quadruple-{T}(E2,E2,E2,E2,E0) { 0, 17, 180 } % SZS output end Model for /tmp/SystemOnTPTP484/SWV017+1.tptp
Couldn't solve it in 300s
% SZS output start Refutation for /tmp/SystemOnTPTP529/PUZ001+1.tptp RuleSystem INPUT: Initial Rules: #0: input, references = 4, size of lhs = 1: P_agatha-{F}(V0) | EXISTS V1: pppp0-{T}(V1,V0) (used 0 times, uses = {}) #1: input, references = 6, size of lhs = 1: pppp0-{F}(V0,V1) | killed-{T}(V0,V1) (used 0 times, uses = {}) #2: input, references = 4, size of lhs = 1: pppp0-{F}(V0,V1) | lives-{T}(V0) (used 0 times, uses = {}) #3: input, references = 3, size of lhs = 1: P_agatha-{F}(V0) | lives-{T}(V0) (used 0 times, uses = {}) #4: input, references = 3, size of lhs = 2: P_agatha-{F}(V0), P_butler-{F}(V1) | lives-{T}(V1) (used 0 times, uses = {}) #5: input, references = 3, size of lhs = 3: P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2) | lives-{T}(V2) (used 0 times, uses = {}) #6: input, references = 4, size of lhs = 7: P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2), lives-{F}(V3), V3 == V0, V3 == V1, V3 == V2 | FALSE (used 0 times, uses = {}) #7: input, references = 4, size of lhs = 4: P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2), killed-{F}(V3,V4) | hates-{T}(V3,V4) (used 0 times, uses = {}) #8: input, references = 4, size of lhs = 5: P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2), killed-{F}(V3,V4), richer-{F}(V3,V4) | FALSE (used 0 times, uses = {}) #9: input, references = 4, size of lhs = 5: P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2), hates-{F}(V0,V3), hates-{F}(V2,V3) | FALSE (used 0 times, uses = {}) #10: input, references = 5, size of lhs = 5: P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2), #-{F} V3, V3 == V1 | hates-{T}(V0,V3) (used 0 times, uses = {}) #11: input, references = 5, size of lhs = 4: P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2), #-{F} V3 | richer-{T}(V3,V0), hates-{T}(V1,V3) (used 0 times, uses = {}) #12: input, references = 4, size of lhs = 4: P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2), hates-{F}(V0,V3) | hates-{T}(V1,V3) (used 0 times, uses = {}) #13: input, references = 4, size of lhs = 4: P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2), #-{F} V3 | EXISTS V4: pppp1-{T}(V3,V4) (used 0 times, uses = {}) #14: input, references = 4, size of lhs = 2: pppp1-{F}(V0,V1), hates-{F}(V0,V1) | FALSE (used 0 times, uses = {}) #15: input, references = 4, size of lhs = 3: P_agatha-{F}(V1), P_butler-{F}(V1), P_charles-{F}(V2) | FALSE (used 0 times, uses = {}) #16: input, references = 4, size of lhs = 4: P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2), killed-{F}(V0,V0) | FALSE (used 0 times, uses = {}) #17: input, references = 4, size of lhs = 0: FALSE | EXISTS V0: P_agatha-{T}(V0) (used 0 times, uses = {}) #18: input, references = 4, size of lhs = 0: FALSE | EXISTS V0: P_butler-{T}(V0) (used 0 times, uses = {}) #19: input, references = 5, size of lhs = 0: FALSE | EXISTS V0: P_charles-{T}(V0) (used 0 times, uses = {}) number of initial rules = 20 Simplifiers: #20: unsound, references = 3, size of lhs = 3: killed-{F}(V0,V1), killed-{F}(V2,V1), V0 == V2 | FALSE (used 0 times, uses = {}) #21: unsound, references = 3, size of lhs = 3: killed-{F}(V0,V1), killed-{F}(V2,V3), V1 == V3 | FALSE (used 0 times, uses = {}) #22: unsound, references = 3, size of lhs = 3: richer-{F}(V0,V1), richer-{F}(V2,V3), V1 == V3 | FALSE (used 0 times, uses = {}) #23: unsound, references = 3, size of lhs = 3: P_agatha-{F}(V0), P_agatha-{F}(V1), V0 == V1 | FALSE (used 0 times, uses = {}) #24: unsound, references = 3, size of lhs = 3: P_butler-{F}(V0), P_butler-{F}(V1), V0 == V1 | FALSE (used 0 times, uses = {}) #25: unsound, references = 3, size of lhs = 3: P_charles-{F}(V0), P_charles-{F}(V1), V0 == V1 | FALSE (used 0 times, uses = {}) #26: unsound, references = 3, size of lhs = 3: pppp0-{F}(V0,V1), pppp0-{F}(V2,V1), V0 == V2 | FALSE (used 0 times, uses = {}) #27: unsound, references = 3, size of lhs = 3: pppp0-{F}(V0,V1), pppp0-{F}(V2,V3), V1 == V3 | FALSE (used 0 times, uses = {}) #28: unsound, references = 3, size of lhs = 3: pppp1-{F}(V0,V1), pppp1-{F}(V0,V3), V1 == V3 | FALSE (used 0 times, uses = {}) number of simplifiers = 9 Learnt: #30: exists( #19, #15 ), references = 2, size of lhs = 2: P_agatha-{F}(V0), P_butler-{F}(V0) | FALSE (used 0 times, uses = {}) #38: mergings( V0 == V4, V1 == V5, V2 == V6; #34 ), references = 1, size of lhs = 4: P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2), killed-{F}(V3,V0) | hates-{T}(V1,V3) (used 0 times, uses = {}) #47: mergings( V0 == V7, V1 == V5, V5 == V3, V2 == V6, V6 == V8; #41 ), references = 1, size of lhs = 3: P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2) | pppp1-{T}(V1,V1) (used 0 times, uses = {}) #49: disj( #11, input ), references = 1, size of lhs = 4: P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2), pppp1-{F}(V1,V3) | richer-{T}(V3,V0) (used 0 times, uses = {}) #53: mergings( V0 == V2; #51 ), references = 1, size of lhs = 3: P_agatha-{F}(V0), P_butler-{F}(V1), P_charles-{F}(V2) | pppp0-{T}(V0,V0), pppp0-{T}(V1,V0), pppp0-{T}(V2,V0) (used 0 times, uses = {}) #65: mergings( V0 == V5, V5 == V8, V1 == V3, V3 == V6, V6 == V9, V4 == V7, V7 == V2; #57 ), references = 1, size of lhs = 4: P_agatha-{F}(V0), hates-{F}(V0,V0), P_butler-{F}(V1), P_charles-{F}(V2) | pppp0-{T}(V1,V0) (used 0 times, uses = {}) #84: mergings( V2 == V4, V4 == V7, V7 == V9, V9 == V11, V11 == V13, V1 == V3, V3 == V5, V5 == V6, V6 == V8, V8 == V10, V10 == V12, V12 == V14; #71 ), references = 1, size of lhs = 3: P_agatha-{F}(V0), P_butler-{F}(V1), V0 == V1 | FALSE (used 0 times, uses = {}) #91: mergings( V1 == V2, V2 == V3, V3 == V4, V4 == V5, V5 == V6; #85 ), references = 1, size of lhs = 1: P_agatha-{F}(V0) | P_butler-{T}(V0) (used 0 times, uses = {}) #94: exists( #17, #92 ), references = 1, size of lhs = 0: FALSE | FALSE (used 0 times, uses = {}) number of learnt formulas = 9 % SZS output end Refutation for /tmp/SystemOnTPTP529/PUZ001+1.tptp
% SZS output start Model for /tmp/SystemOnTPTP436/NLP042+1.tptp Interpretation 3: Guesses: 0 : guesser 1, 0, ( | 1, 0 ), 0, 0s old, 0 lemmas 1 : guesser 4, 2, ( | 1, 2, 0 ), 0, 0s old, 0 lemmas 2 : guesser 17, 15, ( 1 | 2, 0 ), 0, 0s old, 1 lemmas 3 : guesser 29, 26, ( 2, 1 | 3, 0 ), 1, 0s old, 2 lemmas 4 : guesser 45, 41, ( | 0, 3, 2, 4, 1 ), 3, 0s old, 0 lemmas Elements: { E0, E1, E2, E3 } Atoms: 0 : #-{T} E0 { } 1 : #-{T} E1 { 0 } 2 : pppp5-{T}(E1) { 0 } 3 : actual_world-{T}(E1) { 0 } 4 : pppp4-{T}(E1,E1) { 0, 1 } 5 : pppp3-{T}(E1,E1) { 0, 1 } 6 : order-{T}(E1,E1) { 0, 1 } 7 : nonreflexive-{T}(E1,E1) { 0, 1 } 8 : past-{T}(E1,E1) { 0, 1 } 9 : event-{T}(E1,E1) { 0, 1 } 10 : act-{T}(E1,E1) { 0, 1 } 11 : eventuality-{T}(E1,E1) { 0, 1 } 12 : unisex-{T}(E1,E1) { 0, 1 } 13 : nonexistent-{T}(E1,E1) { 0, 1 } 14 : specific-{T}(E1,E1) { 0, 1 } 15 : thing-{T}(E1,E1) { 0, 1 } 16 : singleton-{T}(E1,E1) { 0, 1 } 17 : #-{T} E2 { 0, 1, 2 } 18 : pppp2-{T}(E1,E2,E1) { 0, 1, 2 } 19 : forename-{T}(E1,E2) { 0, 1, 2 } 20 : mia_forename-{T}(E1,E2) { 0, 1, 2 } 21 : relname-{T}(E1,E2) { 0, 1, 2 } 22 : relation-{T}(E1,E2) { 0, 1, 2 } 23 : abstraction-{T}(E1,E2) { 0, 1, 2 } 24 : unisex-{T}(E1,E2) { 0, 1, 2 } 25 : general-{T}(E1,E2) { 0, 1, 2 } 26 : nonhuman-{T}(E1,E2) { 0, 1, 2 } 27 : thing-{T}(E1,E2) { 0, 1, 2 } 28 : singleton-{T}(E1,E2) { 0, 1, 2 } 29 : #-{T} E3 { 0, 1, 3 } 30 : pppp0-{T}(E1,E3,E1) { 0, 1, 3 } 31 : patient-{T}(E1,E1,E3) { 0, 1, 3 } 32 : shake_beverage-{T}(E1,E3) { 0, 1, 3 } 33 : beverage-{T}(E1,E3) { 0, 1, 3 } 34 : food-{T}(E1,E3) { 0, 1, 3 } 35 : substance_matter-{T}(E1,E3) { 0, 1, 3 } 36 : object-{T}(E1,E3) { 0, 1, 3 } 37 : unisex-{T}(E1,E3) { 0, 1, 3 } 38 : impartial-{T}(E1,E3) { 0, 1, 3 } 39 : nonliving-{T}(E1,E3) { 0, 1, 3 } 40 : entity-{T}(E1,E3) { 0, 1, 3 } 41 : existent-{T}(E1,E3) { 0, 1, 3 } 42 : specific-{T}(E1,E3) { 0, 1, 3 } 43 : thing-{T}(E1,E3) { 0, 1, 3 } 44 : singleton-{T}(E1,E3) { 0, 1, 3 } 45 : pppp1-{T}(E1,E0,E2,E1) { 0, 1, 2, 4 } 46 : agent-{T}(E1,E1,E0) { 0, 1, 2, 4 } 47 : woman-{T}(E1,E0) { 0, 1, 2, 4 } 48 : of-{T}(E1,E2,E0) { 0, 1, 2, 4 } 49 : female-{T}(E1,E0) { 0, 1, 2, 4 } 50 : human_person-{T}(E1,E0) { 0, 1, 2, 4 } 51 : animate-{T}(E1,E0) { 0, 1, 2, 4 } 52 : human-{T}(E1,E0) { 0, 1, 2, 4 } 53 : organism-{T}(E1,E0) { 0, 1, 2, 4 } 54 : living-{T}(E1,E0) { 0, 1, 2, 4 } 55 : impartial-{T}(E1,E0) { 0, 1, 2, 4 } 56 : entity-{T}(E1,E0) { 0, 1, 2, 4 } 57 : existent-{T}(E1,E0) { 0, 1, 2, 4 } 58 : specific-{T}(E1,E0) { 0, 1, 2, 4 } 59 : thing-{T}(E1,E0) { 0, 1, 2, 4 } 60 : singleton-{T}(E1,E0) { 0, 1, 2, 4 } % SZS output end Model for /tmp/SystemOnTPTP436/NLP042+1.tptp
% SZS output start Model for /tmp/SystemOnTPTP484/SWV017+1.tptp Interpretation 18: Guesses: 0 : guesser 1, 0, ( | 1, 0 ), 0, 1s old, 0 lemmas 1 : guesser 3, 1, ( | 1, 2, 0 ), 0, 1s old, 0 lemmas 2 : guesser 4, 2, ( | 1, 2, 0 ), 0, 1s old, 0 lemmas 3 : guesser 5, 3, ( | 1, 2, 0 ), 0, 1s old, 0 lemmas 4 : guesser 6, 4, ( | 0, 2, 1 ), 0, 1s old, 0 lemmas 5 : guesser 7, 5, ( | 0, 2, 1 ), 0, 1s old, 0 lemmas 6 : guesser 8, 6, ( | 0, 2, 1 ), 0, 1s old, 0 lemmas 7 : guesser 9, 7, ( | 0, 2, 1 ), 0, 1s old, 0 lemmas 8 : guesser 10, 8, ( | 0, 2, 1 ), 0, 1s old, 0 lemmas 9 : guesser 11, 9, ( | 1, 2, 0 ), 0, 1s old, 0 lemmas 10 : guesser 12, 10, ( | 1, 2, 0 ), 0, 1s old, 0 lemmas 11 : guesser 13, 11, ( | 0, 2, 1 ), 0, 1s old, 0 lemmas 12 : guesser 14, 12, ( | 1, 2, 0 ), 0, 1s old, 0 lemmas 13 : guesser 15, 13, ( | 0, 2, 1 ), 0, 1s old, 0 lemmas 14 : guesser 16, 14, ( | 0, 2, 1 ), 0, 1s old, 0 lemmas 15 : guesser 17, 15, ( | 1, 2, 0 ), 0, 1s old, 0 lemmas 16 : guesser 18, 16, ( | 1, 2, 0 ), 0, 1s old, 0 lemmas 17 : guesser 19, 17, ( 1 | 2, 0 ), 0, 1s old, 2 lemmas 18 : guesser 21, 18, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 19 : guesser 22, 19, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 20 : guesser 23, 20, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 21 : guesser 24, 21, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 22 : guesser 25, 22, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 23 : guesser 26, 23, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 24 : guesser 27, 24, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 25 : guesser 28, 25, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 26 : guesser 29, 26, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 27 : guesser 30, 27, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 28 : guesser 33, 30, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 29 : guesser 34, 31, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 30 : guesser 35, 32, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 31 : guesser 36, 33, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 32 : guesser 37, 34, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 33 : guesser 38, 35, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 34 : guesser 39, 36, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 35 : guesser 40, 37, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 36 : guesser 41, 38, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 37 : guesser 42, 39, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 38 : guesser 43, 40, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 39 : guesser 44, 41, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 40 : guesser 45, 42, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 41 : guesser 46, 43, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 42 : guesser 47, 44, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 43 : guesser 48, 45, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 44 : guesser 49, 46, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 45 : guesser 50, 47, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 46 : guesser 51, 48, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 47 : guesser 52, 49, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 48 : guesser 53, 50, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 49 : guesser 54, 51, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 50 : guesser 55, 52, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 51 : guesser 56, 53, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 52 : guesser 57, 54, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 53 : guesser 58, 55, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 54 : guesser 59, 56, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 55 : guesser 60, 57, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 56 : guesser 61, 58, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 57 : guesser 62, 59, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 58 : guesser 63, 60, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 59 : guesser 64, 61, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 60 : guesser 65, 62, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 61 : guesser 66, 63, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 62 : guesser 67, 64, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 63 : guesser 68, 65, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 64 : guesser 69, 66, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 65 : guesser 70, 67, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 66 : guesser 71, 68, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 67 : guesser 72, 69, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 68 : guesser 73, 70, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 69 : guesser 74, 71, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 70 : guesser 75, 72, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 71 : guesser 76, 73, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 72 : guesser 77, 74, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 73 : guesser 78, 75, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 74 : guesser 79, 76, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 75 : guesser 80, 77, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 76 : guesser 81, 78, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 77 : guesser 82, 79, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 78 : guesser 83, 80, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 79 : guesser 84, 81, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 80 : guesser 85, 82, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 81 : guesser 86, 83, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 82 : guesser 87, 84, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 83 : guesser 88, 85, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 84 : guesser 89, 86, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 85 : guesser 90, 87, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 86 : guesser 91, 88, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 87 : guesser 92, 89, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 88 : guesser 93, 90, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 89 : guesser 94, 91, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 90 : guesser 95, 92, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 91 : guesser 96, 93, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 92 : guesser 122, 119, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 93 : guesser 123, 120, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 94 : guesser 126, 123, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 95 : guesser 127, 124, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 96 : guesser 128, 125, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 97 : guesser 129, 126, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 98 : guesser 130, 127, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 99 : guesser 131, 128, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 100 : guesser 132, 129, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 101 : guesser 133, 130, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 102 : guesser 134, 131, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 103 : guesser 135, 132, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 104 : guesser 136, 133, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 105 : guesser 137, 134, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 106 : guesser 138, 135, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 107 : guesser 139, 136, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 108 : guesser 140, 137, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 109 : guesser 141, 138, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 110 : guesser 142, 139, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 111 : guesser 143, 140, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 112 : guesser 144, 141, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 113 : guesser 145, 142, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 114 : guesser 146, 143, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 115 : guesser 147, 144, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 116 : guesser 148, 145, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 117 : guesser 150, 147, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 118 : guesser 151, 148, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 119 : guesser 152, 149, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 120 : guesser 153, 150, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 121 : guesser 154, 151, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 122 : guesser 155, 152, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 123 : guesser 156, 153, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 124 : guesser 157, 154, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 125 : guesser 158, 155, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 126 : guesser 159, 156, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 127 : guesser 160, 157, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 128 : guesser 161, 158, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 129 : guesser 162, 159, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 130 : guesser 163, 160, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 131 : guesser 164, 161, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 132 : guesser 165, 162, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 133 : guesser 166, 163, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 134 : guesser 167, 164, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 135 : guesser 168, 165, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 136 : guesser 169, 166, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 137 : guesser 170, 167, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 138 : guesser 172, 169, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 139 : guesser 173, 170, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 140 : guesser 174, 171, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 141 : guesser 175, 172, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 142 : guesser 176, 173, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 143 : guesser 177, 174, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 144 : guesser 178, 175, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 145 : guesser 179, 176, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 146 : guesser 180, 177, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 147 : guesser 181, 178, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 148 : guesser 182, 179, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 149 : guesser 183, 180, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 150 : guesser 184, 181, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 151 : guesser 185, 182, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 152 : guesser 186, 183, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 153 : guesser 187, 184, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 154 : guesser 188, 185, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 155 : guesser 189, 186, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 156 : guesser 190, 187, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 157 : guesser 191, 188, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 158 : guesser 192, 189, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 159 : guesser 193, 190, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 160 : guesser 194, 191, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 161 : guesser 195, 192, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 162 : guesser 196, 193, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 163 : guesser 197, 194, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 164 : guesser 198, 195, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 165 : guesser 199, 196, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 166 : guesser 200, 197, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 167 : guesser 201, 198, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 168 : guesser 202, 199, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 169 : guesser 203, 200, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 170 : guesser 204, 201, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 171 : guesser 205, 202, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 172 : guesser 206, 203, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 173 : guesser 207, 204, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 174 : guesser 208, 205, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 175 : guesser 209, 206, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 176 : guesser 210, 207, ( | 1, 0, 3, 2 ), 18, 0s old, 0 lemmas 177 : guesser 211, 208, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 178 : guesser 212, 209, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas 179 : guesser 213, 210, ( | 2, 1, 3, 0 ), 18, 0s old, 0 lemmas 180 : guesser 214, 211, ( | 0, 2, 3, 1 ), 18, 0s old, 0 lemmas Elements: { E0, E1, E2 } Atoms: 0 : #-{T} E0 { } 1 : #-{T} E1 { 0 } 2 : P_at-{T}(E1) { 0 } 3 : P_t-{T}(E1) { 1 } 4 : P_a-{T}(E1) { 2 } 5 : P_b-{T}(E1) { 3 } 6 : P_an_a_nonce-{T}(E0) { 4 } 7 : P_bt-{T}(E0) { 5 } 8 : P_an_intruder_nonce-{T}(E0) { 6 } 9 : P_generate_b_nonce-{T}(E0,E0) { 7 } 10 : P_generate_expiration_time-{T}(E0,E0) { 8 } 11 : P_generate_key-{T}(E0,E1) { 9 } 12 : P_generate_intruder_nonce-{T}(E0,E1) { 10 } 13 : P_key-{T}(E0,E0,E0) { 11 } 14 : P_pair-{T}(E0,E0,E1) { 12 } 15 : P_encrypt-{T}(E0,E0,E0) { 13 } 16 : P_sent-{T}(E0,E0,E0,E0) { 14 } 17 : P_triple-{T}(E0,E0,E0,E1) { 15 } 18 : P_quadruple-{T}(E0,E0,E0,E0,E1) { 16 } 19 : #-{T} E2 { 0, 17 } 20 : P_generate_b_nonce-{T}(E1,E2) { 0, 17 } 21 : P_generate_expiration_time-{T}(E1,E0) { 0, 18 } 22 : P_generate_key-{T}(E1,E1) { 0, 19 } 23 : P_generate_intruder_nonce-{T}(E1,E2) { 0, 20 } 24 : P_key-{T}(E0,E1,E2) { 0, 21 } 25 : P_pair-{T}(E0,E1,E0) { 0, 22 } 26 : P_encrypt-{T}(E0,E1,E0) { 0, 23 } 27 : P_key-{T}(E1,E0,E1) { 0, 24 } 28 : P_pair-{T}(E1,E0,E2) { 0, 25 } 29 : P_encrypt-{T}(E1,E0,E2) { 0, 26 } 30 : P_key-{T}(E1,E1,E1) { 0, 27 } 31 : a_holds-{T}(E1) { 0, 1, 27 } 32 : party_of_protocol-{T}(E1) { 0, 1, 2, 27 } 33 : P_pair-{T}(E1,E1,E2) { 0, 28 } 34 : P_encrypt-{T}(E1,E1,E2) { 0, 29 } 35 : P_sent-{T}(E0,E0,E1,E2) { 0, 30 } 36 : P_sent-{T}(E0,E1,E0,E0) { 0, 31 } 37 : P_triple-{T}(E0,E0,E1,E0) { 0, 32 } 38 : P_quadruple-{T}(E0,E0,E0,E1,E1) { 0, 33 } 39 : P_sent-{T}(E0,E1,E1,E1) { 0, 34 } 40 : P_triple-{T}(E0,E1,E0,E0) { 0, 35 } 41 : P_quadruple-{T}(E0,E0,E1,E0,E1) { 0, 36 } 42 : P_sent-{T}(E1,E0,E0,E2) { 0, 37 } 43 : P_triple-{T}(E0,E1,E1,E2) { 0, 38 } 44 : P_quadruple-{T}(E0,E0,E1,E1,E0) { 0, 39 } 45 : P_sent-{T}(E1,E0,E1,E0) { 0, 40 } 46 : P_triple-{T}(E1,E0,E0,E1) { 0, 41 } 47 : P_quadruple-{T}(E0,E1,E0,E0,E1) { 0, 42 } 48 : P_sent-{T}(E1,E1,E0,E0) { 0, 43 } 49 : P_triple-{T}(E1,E0,E1,E0) { 0, 44 } 50 : P_quadruple-{T}(E0,E1,E0,E1,E1) { 0, 45 } 51 : P_sent-{T}(E1,E1,E1,E1) { 0, 46 } 52 : P_triple-{T}(E1,E1,E0,E2) { 0, 47 } 53 : P_quadruple-{T}(E0,E1,E1,E0,E2) { 0, 48 } 54 : P_triple-{T}(E1,E1,E1,E1) { 0, 49 } 55 : P_quadruple-{T}(E0,E1,E1,E1,E2) { 0, 50 } 56 : P_generate_b_nonce-{T}(E2,E0) { 0, 17, 51 } 57 : P_quadruple-{T}(E1,E0,E0,E0,E1) { 0, 52 } 58 : P_generate_expiration_time-{T}(E2,E0) { 0, 17, 53 } 59 : P_generate_key-{T}(E2,E1) { 0, 17, 54 } 60 : P_quadruple-{T}(E1,E0,E0,E1,E2) { 0, 55 } 61 : P_generate_intruder_nonce-{T}(E2,E2) { 0, 17, 56 } 62 : P_key-{T}(E0,E2,E1) { 0, 17, 57 } 63 : P_quadruple-{T}(E1,E0,E1,E0,E0) { 0, 58 } 64 : P_key-{T}(E1,E2,E0) { 0, 17, 59 } 65 : P_pair-{T}(E0,E2,E0) { 0, 17, 60 } 66 : P_quadruple-{T}(E1,E0,E1,E1,E1) { 0, 61 } 67 : P_key-{T}(E2,E0,E2) { 0, 17, 62 } 68 : P_pair-{T}(E1,E2,E1) { 0, 17, 63 } 69 : P_quadruple-{T}(E1,E1,E0,E0,E0) { 0, 64 } 70 : P_key-{T}(E2,E1,E0) { 0, 17, 65 } 71 : P_pair-{T}(E2,E0,E0) { 0, 17, 66 } 72 : P_quadruple-{T}(E1,E1,E0,E1,E2) { 0, 67 } 73 : P_key-{T}(E2,E2,E0) { 0, 17, 68 } 74 : P_pair-{T}(E2,E1,E2) { 0, 17, 69 } 75 : P_quadruple-{T}(E1,E1,E1,E0,E0) { 0, 70 } 76 : P_pair-{T}(E2,E2,E0) { 0, 17, 71 } 77 : P_encrypt-{T}(E0,E2,E0) { 0, 17, 72 } 78 : P_quadruple-{T}(E1,E1,E1,E1,E2) { 0, 73 } 79 : P_encrypt-{T}(E1,E2,E0) { 0, 17, 74 } 80 : P_sent-{T}(E0,E0,E2,E1) { 0, 17, 75 } 81 : P_encrypt-{T}(E2,E0,E2) { 0, 17, 76 } 82 : P_sent-{T}(E0,E1,E2,E1) { 0, 17, 77 } 83 : P_triple-{T}(E0,E0,E2,E2) { 0, 17, 78 } 84 : P_encrypt-{T}(E2,E1,E0) { 0, 17, 79 } 85 : P_sent-{T}(E0,E2,E0,E1) { 0, 17, 80 } 86 : P_triple-{T}(E0,E1,E2,E1) { 0, 17, 81 } 87 : P_encrypt-{T}(E2,E2,E1) { 0, 17, 82 } 88 : P_sent-{T}(E0,E2,E1,E1) { 0, 17, 83 } 89 : P_triple-{T}(E0,E2,E0,E0) { 0, 17, 84 } 90 : P_sent-{T}(E0,E2,E2,E0) { 0, 17, 85 } 91 : P_triple-{T}(E0,E2,E1,E0) { 0, 17, 86 } 92 : P_quadruple-{T}(E0,E0,E0,E2,E0) { 0, 17, 87 } 93 : P_sent-{T}(E1,E0,E2,E2) { 0, 17, 88 } 94 : P_triple-{T}(E0,E2,E2,E2) { 0, 17, 89 } 95 : P_quadruple-{T}(E0,E0,E1,E2,E2) { 0, 17, 90 } 96 : P_sent-{T}(E1,E1,E2,E0) { 0, 17, 91 } 97 : message-{T}(E0) { 0, 1, 2, 3, 4, 17, 25, 27, 91 } 98 : a_stored-{T}(E2) { 0, 1, 2, 3, 4, 17, 25, 27, 91 } 99 : b_holds-{T}(E2) { 0, 1, 2, 3, 4, 5, 17, 21, 25, 27, 91 } 100 : fresh_to_b-{T}(E0) { 0, 1, 2, 3, 4, 5, 17, 21, 25, 27, 91 } 101 : t_holds-{T}(E1) { 0, 1, 2, 3, 4, 5, 17, 21, 25, 27, 91 } 102 : t_holds-{T}(E2) { 0, 1, 2, 3, 4, 5, 17, 21, 25, 27, 91 } 103 : a_nonce-{T}(E0) { 0, 1, 2, 3, 4, 5, 17, 21, 25, 27, 91 } 104 : intruder_message-{T}(E2) { 0, 1, 2, 3, 4, 5, 17, 21, 25, 27, 91 } 105 : fresh_intruder_nonce-{T}(E0) { 0, 1, 2, 3, 4, 5, 6, 17, 21, 25, 27, 91 } 106 : intruder_message-{T}(E1) { 0, 1, 2, 3, 4, 5, 17, 21, 25, 27, 91 } 107 : intruder_message-{T}(E0) { 0, 1, 2, 3, 4, 5, 17, 21, 25, 27, 91 } 108 : intruder_holds-{T}(E1) { 0, 1, 2, 3, 4, 5, 17, 21, 25, 27, 91 } 109 : a_key-{T}(E1) { 0, 1, 2, 3, 4, 5, 9, 17, 21, 25, 27, 91 } 110 : fresh_intruder_nonce-{T}(E1) { 0, 1, 2, 3, 4, 5, 6, 10, 17, 21, 25, 27, 91 } 111 : intruder_holds-{T}(E2) { 0, 1, 2, 3, 4, 5, 17, 21, 25, 27, 91 } 112 : fresh_to_b-{T}(E1) { 0, 1, 2, 3, 4, 5, 6, 10, 17, 21, 25, 27, 91 } 113 : a_nonce-{T}(E2) { 0, 1, 2, 3, 4, 5, 17, 18, 21, 25, 27, 91 } 114 : fresh_intruder_nonce-{T}(E2) { 0, 1, 2, 3, 4, 5, 6, 10, 17, 20, 21, 25, 27, 91 } 115 : message-{T}(E1) { 0, 1, 2, 3, 4, 5, 17, 21, 25, 27, 46, 91 } 116 : fresh_to_b-{T}(E2) { 0, 1, 2, 3, 4, 5, 6, 10, 17, 20, 21, 25, 27, 91 } 117 : a_holds-{T}(E2) { 0, 1, 2, 3, 4, 13, 17, 21, 23, 25, 27, 28, 35, 43, 64, 91 } 118 : intruder_holds-{T}(E0) { 0, 1, 2, 3, 4, 5, 17, 21, 25, 27, 65, 91 } 119 : message-{T}(E2) { 0, 1, 2, 3, 4, 5, 9, 15, 17, 21, 25, 27, 31, 32, 35, 36, 37, 62, 72, 74, 91 } 120 : b_stored-{T}(E0) { 0, 1, 2, 3, 4, 5, 6, 10, 13, 17, 20, 21, 25, 27, 31, 41, 46, 51, 53, 60, 84, 91 } 121 : b_holds-{T}(E1) { 0, 1, 2, 3, 4, 5, 6, 9, 10, 12, 13, 17, 20, 21, 23, 24, 25, 27, 31, 34, 35, 41, 46, 51, 53, 60, 84, 91 } 122 : P_sent-{T}(E1,E2,E0,E2) { 0, 17, 92 } 123 : P_triple-{T}(E1,E0,E2,E0) { 0, 17, 93 } 124 : b_stored-{T}(E2) { 0, 1, 2, 3, 4, 5, 7, 8, 17, 21, 25, 26, 27, 41, 43, 91, 93 } 125 : b_stored-{T}(E1) { 0, 1, 2, 3, 4, 5, 7, 8, 12, 15, 17, 21, 25, 26, 27, 34, 43, 46, 91, 93 } 126 : P_sent-{T}(E1,E2,E1,E2) { 0, 17, 94 } 127 : P_triple-{T}(E1,E1,E2,E1) { 0, 17, 95 } 128 : P_quadruple-{T}(E0,E0,E2,E0,E0) { 0, 17, 96 } 129 : P_sent-{T}(E1,E2,E2,E2) { 0, 17, 97 } 130 : P_triple-{T}(E1,E2,E0,E2) { 0, 17, 98 } 131 : P_quadruple-{T}(E0,E0,E2,E1,E1) { 0, 17, 99 } 132 : P_sent-{T}(E2,E0,E0,E0) { 0, 17, 100 } 133 : P_triple-{T}(E1,E2,E1,E2) { 0, 17, 101 } 134 : P_quadruple-{T}(E0,E0,E2,E2,E2) { 0, 17, 102 } 135 : P_sent-{T}(E2,E0,E1,E0) { 0, 17, 103 } 136 : P_triple-{T}(E1,E2,E2,E1) { 0, 17, 104 } 137 : P_quadruple-{T}(E0,E1,E0,E2,E0) { 0, 17, 105 } 138 : P_sent-{T}(E2,E0,E2,E1) { 0, 17, 106 } 139 : P_triple-{T}(E2,E0,E0,E2) { 0, 17, 107 } 140 : P_quadruple-{T}(E0,E1,E1,E2,E0) { 0, 17, 108 } 141 : P_sent-{T}(E2,E1,E0,E2) { 0, 17, 109 } 142 : P_triple-{T}(E2,E0,E1,E2) { 0, 17, 110 } 143 : P_quadruple-{T}(E0,E1,E2,E0,E0) { 0, 17, 111 } 144 : P_sent-{T}(E2,E1,E1,E0) { 0, 17, 112 } 145 : P_triple-{T}(E2,E0,E2,E2) { 0, 17, 113 } 146 : P_quadruple-{T}(E0,E1,E2,E1,E1) { 0, 17, 114 } 147 : P_sent-{T}(E2,E1,E2,E1) { 0, 17, 115 } 148 : P_triple-{T}(E2,E1,E0,E2) { 0, 17, 116 } 149 : b_holds-{T}(E0) { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 15, 17, 20, 21, 23, 25, 27, 31, 32, 35, 36, 37, 41, 46, 51, 53, 59, 60, 62, 66, 72, 74, 76, 84, 91, 109, 116 } 150 : P_sent-{T}(E2,E2,E0,E0) { 0, 17, 117 } 151 : P_triple-{T}(E2,E1,E1,E2) { 0, 17, 118 } 152 : P_quadruple-{T}(E0,E1,E2,E2,E0) { 0, 17, 119 } 153 : P_sent-{T}(E2,E2,E1,E1) { 0, 17, 120 } 154 : P_triple-{T}(E2,E1,E2,E2) { 0, 17, 121 } 155 : P_quadruple-{T}(E0,E2,E0,E0,E0) { 0, 17, 122 } 156 : P_sent-{T}(E2,E2,E2,E0) { 0, 17, 123 } 157 : P_triple-{T}(E2,E2,E0,E2) { 0, 17, 124 } 158 : P_quadruple-{T}(E0,E2,E0,E1,E2) { 0, 17, 125 } 159 : P_triple-{T}(E2,E2,E1,E2) { 0, 17, 126 } 160 : P_quadruple-{T}(E0,E2,E0,E2,E0) { 0, 17, 127 } 161 : P_triple-{T}(E2,E2,E2,E2) { 0, 17, 128 } 162 : P_quadruple-{T}(E0,E2,E1,E0,E1) { 0, 17, 129 } 163 : P_quadruple-{T}(E0,E2,E1,E1,E2) { 0, 17, 130 } 164 : P_quadruple-{T}(E0,E2,E1,E2,E0) { 0, 17, 131 } 165 : P_quadruple-{T}(E0,E2,E2,E0,E0) { 0, 17, 132 } 166 : P_quadruple-{T}(E0,E2,E2,E1,E0) { 0, 17, 133 } 167 : P_quadruple-{T}(E0,E2,E2,E2,E2) { 0, 17, 134 } 168 : P_quadruple-{T}(E1,E0,E0,E2,E2) { 0, 17, 135 } 169 : P_quadruple-{T}(E1,E0,E1,E2,E1) { 0, 17, 136 } 170 : P_quadruple-{T}(E1,E0,E2,E0,E1) { 0, 17, 137 } 171 : a_holds-{T}(E0) { 0, 1, 2, 3, 4, 12, 17, 25, 27, 29, 46, 65, 72, 91, 107, 137 } 172 : P_quadruple-{T}(E1,E0,E2,E1,E1) { 0, 17, 138 } 173 : P_quadruple-{T}(E1,E0,E2,E2,E2) { 0, 17, 139 } 174 : P_quadruple-{T}(E1,E1,E0,E2,E0) { 0, 17, 140 } 175 : P_quadruple-{T}(E1,E1,E1,E2,E2) { 0, 17, 141 } 176 : P_quadruple-{T}(E1,E1,E2,E0,E0) { 0, 17, 142 } 177 : P_quadruple-{T}(E1,E1,E2,E1,E0) { 0, 17, 143 } 178 : P_quadruple-{T}(E1,E1,E2,E2,E0) { 0, 17, 144 } 179 : P_quadruple-{T}(E1,E2,E0,E0,E1) { 0, 17, 145 } 180 : P_quadruple-{T}(E1,E2,E0,E1,E0) { 0, 17, 146 } 181 : P_quadruple-{T}(E1,E2,E0,E2,E0) { 0, 17, 147 } 182 : P_quadruple-{T}(E1,E2,E1,E0,E1) { 0, 17, 148 } 183 : P_quadruple-{T}(E1,E2,E1,E1,E2) { 0, 17, 149 } 184 : P_quadruple-{T}(E1,E2,E1,E2,E1) { 0, 17, 150 } 185 : P_quadruple-{T}(E1,E2,E2,E0,E0) { 0, 17, 151 } 186 : P_quadruple-{T}(E1,E2,E2,E1,E2) { 0, 17, 152 } 187 : P_quadruple-{T}(E1,E2,E2,E2,E1) { 0, 17, 153 } 188 : P_quadruple-{T}(E2,E0,E0,E0,E0) { 0, 17, 154 } 189 : P_quadruple-{T}(E2,E0,E0,E1,E0) { 0, 17, 155 } 190 : P_quadruple-{T}(E2,E0,E0,E2,E1) { 0, 17, 156 } 191 : P_quadruple-{T}(E2,E0,E1,E0,E2) { 0, 17, 157 } 192 : P_quadruple-{T}(E2,E0,E1,E1,E0) { 0, 17, 158 } 193 : P_quadruple-{T}(E2,E0,E1,E2,E1) { 0, 17, 159 } 194 : P_quadruple-{T}(E2,E0,E2,E0,E1) { 0, 17, 160 } 195 : P_quadruple-{T}(E2,E0,E2,E1,E0) { 0, 17, 161 } 196 : P_quadruple-{T}(E2,E0,E2,E2,E2) { 0, 17, 162 } 197 : P_quadruple-{T}(E2,E1,E0,E0,E2) { 0, 17, 163 } 198 : P_quadruple-{T}(E2,E1,E0,E1,E2) { 0, 17, 164 } 199 : P_quadruple-{T}(E2,E1,E0,E2,E2) { 0, 17, 165 } 200 : P_quadruple-{T}(E2,E1,E1,E0,E0) { 0, 17, 166 } 201 : P_quadruple-{T}(E2,E1,E1,E1,E1) { 0, 17, 167 } 202 : P_quadruple-{T}(E2,E1,E1,E2,E0) { 0, 17, 168 } 203 : P_quadruple-{T}(E2,E1,E2,E0,E0) { 0, 17, 169 } 204 : P_quadruple-{T}(E2,E1,E2,E1,E0) { 0, 17, 170 } 205 : P_quadruple-{T}(E2,E1,E2,E2,E1) { 0, 17, 171 } 206 : P_quadruple-{T}(E2,E2,E0,E0,E2) { 0, 17, 172 } 207 : P_quadruple-{T}(E2,E2,E0,E1,E0) { 0, 17, 173 } 208 : P_quadruple-{T}(E2,E2,E0,E2,E1) { 0, 17, 174 } 209 : P_quadruple-{T}(E2,E2,E1,E0,E1) { 0, 17, 175 } 210 : P_quadruple-{T}(E2,E2,E1,E1,E1) { 0, 17, 176 } 211 : P_quadruple-{T}(E2,E2,E1,E2,E0) { 0, 17, 177 } 212 : P_quadruple-{T}(E2,E2,E2,E0,E0) { 0, 17, 178 } 213 : P_quadruple-{T}(E2,E2,E2,E1,E2) { 0, 17, 179 } 214 : P_quadruple-{T}(E2,E2,E2,E2,E0) { 0, 17, 180 } % SZS output end Model for /tmp/SystemOnTPTP484/SWV017+1.tptp
# SZS status Theorem # SZS output start CNFRefutation fof(t63_xboole_1, conjecture, (![X1]:![X2]:![X3]:((subset(X1,X2)&disjoint(X2,X3))=>disjoint(X1,X3))), file('/tmp/SystemOnTPTP24518/SEU140+2.tptp', t63_xboole_1)). fof(symmetry_r1_xboole_0, axiom, (![X1]:![X2]:(disjoint(X1,X2)=>disjoint(X2,X1))), file('/tmp/SystemOnTPTP24518/SEU140+2.tptp', symmetry_r1_xboole_0)). fof(t1_xboole_1, lemma, (![X1]:![X2]:![X3]:((subset(X1,X2)&subset(X2,X3))=>subset(X1,X3))), file('/tmp/SystemOnTPTP24518/SEU140+2.tptp', t1_xboole_1)). fof(t40_xboole_1, lemma, (![X1]:![X2]:set_difference(set_union2(X1,X2),X2)=set_difference(X1,X2)), file('/tmp/SystemOnTPTP24518/SEU140+2.tptp', t40_xboole_1)). fof(commutativity_k2_xboole_0, axiom, (![X1]:![X2]:set_union2(X1,X2)=set_union2(X2,X1)), file('/tmp/SystemOnTPTP24518/SEU140+2.tptp', commutativity_k2_xboole_0)). fof(t2_boole, axiom, (![X1]:set_intersection2(X1,empty_set)=empty_set), file('/tmp/SystemOnTPTP24518/SEU140+2.tptp', t2_boole)). fof(t48_xboole_1, lemma, (![X1]:![X2]:set_difference(X1,set_difference(X1,X2))=set_intersection2(X1,X2)), file('/tmp/SystemOnTPTP24518/SEU140+2.tptp', t48_xboole_1)). fof(t3_xboole_0, lemma, (![X1]:![X2]:(~((~(disjoint(X1,X2))&![X3]:~((in(X3,X1)&in(X3,X2)))))&~((?[X3]:(in(X3,X1)&in(X3,X2))&disjoint(X1,X2))))), file('/tmp/SystemOnTPTP24518/SEU140+2.tptp', t3_xboole_0)). fof(d4_xboole_0, axiom, (![X1]:![X2]:![X3]:(X3=set_difference(X1,X2)<=>![X4]:(in(X4,X3)<=>(in(X4,X1)&~(in(X4,X2)))))), file('/tmp/SystemOnTPTP24518/SEU140+2.tptp', d4_xboole_0)). fof(l32_xboole_1, lemma, (![X1]:![X2]:(set_difference(X1,X2)=empty_set<=>subset(X1,X2))), file('/tmp/SystemOnTPTP24518/SEU140+2.tptp', l32_xboole_1)). fof(d7_xboole_0, axiom, (![X1]:![X2]:(disjoint(X1,X2)<=>set_intersection2(X1,X2)=empty_set)), file('/tmp/SystemOnTPTP24518/SEU140+2.tptp', d7_xboole_0)). fof(t39_xboole_1, lemma, (![X1]:![X2]:set_union2(X1,set_difference(X2,X1))=set_union2(X1,X2)), file('/tmp/SystemOnTPTP24518/SEU140+2.tptp', t39_xboole_1)). fof(t3_boole, axiom, (![X1]:set_difference(X1,empty_set)=X1), file('/tmp/SystemOnTPTP24518/SEU140+2.tptp', t3_boole)). fof(commutativity_k3_xboole_0, axiom, (![X1]:![X2]:set_intersection2(X1,X2)=set_intersection2(X2,X1)), file('/tmp/SystemOnTPTP24518/SEU140+2.tptp', commutativity_k3_xboole_0)). fof(t36_xboole_1, lemma, (![X1]:![X2]:subset(set_difference(X1,X2),X1)), file('/tmp/SystemOnTPTP24518/SEU140+2.tptp', t36_xboole_1)). fof(t12_xboole_1, lemma, (![X1]:![X2]:(subset(X1,X2)=>set_union2(X1,X2)=X2)), file('/tmp/SystemOnTPTP24518/SEU140+2.tptp', t12_xboole_1)). fof(t1_boole, axiom, (![X1]:set_union2(X1,empty_set)=X1), file('/tmp/SystemOnTPTP24518/SEU140+2.tptp', t1_boole)). fof(c_0_17, negated_conjecture, (~(![X1]:![X2]:![X3]:((subset(X1,X2)&disjoint(X2,X3))=>disjoint(X1,X3)))), inference(assume_negation,[status(cth)],[t63_xboole_1])). fof(c_0_18, plain, (![X3]:![X4]:(~disjoint(X3,X4)|disjoint(X4,X3))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[symmetry_r1_xboole_0])])). fof(c_0_19, negated_conjecture, (((subset(esk11_0,esk12_0)&disjoint(esk12_0,esk13_0))&~disjoint(esk11_0,esk13_0))), inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_17])])])). fof(c_0_20, lemma, (![X4]:![X5]:![X6]:((~subset(X4,X5)|~subset(X5,X6))|subset(X4,X6))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[t1_xboole_1])])). fof(c_0_21, lemma, (![X3]:![X4]:set_difference(set_union2(X3,X4),X4)=set_difference(X3,X4)), inference(variable_rename,[status(thm)],[t40_xboole_1])). fof(c_0_22, plain, (![X3]:![X4]:set_union2(X3,X4)=set_union2(X4,X3)), inference(variable_rename,[status(thm)],[commutativity_k2_xboole_0])). fof(c_0_23, plain, (![X2]:set_intersection2(X2,empty_set)=empty_set), inference(variable_rename,[status(thm)],[t2_boole])). fof(c_0_24, lemma, (![X3]:![X4]:set_difference(X3,set_difference(X3,X4))=set_intersection2(X3,X4)), inference(variable_rename,[status(thm)],[t48_xboole_1])). fof(c_0_25, lemma, (![X4]:![X5]:![X4]:![X5]:![X7]:(((in(esk9_2(X4,X5),X4)|disjoint(X4,X5))&(in(esk9_2(X4,X5),X5)|disjoint(X4,X5)))&((~in(X7,X4)|~in(X7,X5))|~disjoint(X4,X5)))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[t3_xboole_0])])])])])])])])). cnf(c_0_26,plain,(disjoint(X1,X2)|~disjoint(X2,X1)), inference(split_conjunct,[status(thm)],[c_0_18])). cnf(c_0_27,negated_conjecture,(disjoint(esk12_0,esk13_0)), inference(split_conjunct,[status(thm)],[c_0_19])). fof(c_0_28, plain, (![X5]:![X6]:![X7]:![X8]:![X8]:![X5]:![X6]:![X7]:(((((in(X8,X5)|~in(X8,X7))|X7!=set_difference(X5,X6))&((~in(X8,X6)|~in(X8,X7))|X7!=set_difference(X5,X6)))&(((~in(X8,X5)|in(X8,X6))|in(X8,X7))|X7!=set_difference(X5,X6)))&(((~in(esk5_3(X5,X6,X7),X7)|(~in(esk5_3(X5,X6,X7),X5)|in(esk5_3(X5,X6,X7),X6)))|X7=set_difference(X5,X6))&(((in(esk5_3(X5,X6,X7),X5)|in(esk5_3(X5,X6,X7),X7))|X7=set_difference(X5,X6))&((~in(esk5_3(X5,X6,X7),X6)|in(esk5_3(X5,X6,X7),X7))|X7=set_difference(X5,X6)))))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[d4_xboole_0])])])])])])])])). fof(c_0_29, lemma, (![X3]:![X4]:![X3]:![X4]:((set_difference(X3,X4)!=empty_set|subset(X3,X4))&(~subset(X3,X4)|set_difference(X3,X4)=empty_set))), inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[l32_xboole_1])])])])). cnf(c_0_30,lemma,(subset(X1,X2)|~subset(X3,X2)|~subset(X1,X3)), inference(split_conjunct,[status(thm)],[c_0_20])). cnf(c_0_31,negated_conjecture,(subset(esk11_0,esk12_0)), inference(split_conjunct,[status(thm)],[c_0_19])). fof(c_0_32, plain, (![X3]:![X4]:![X3]:![X4]:((~disjoint(X3,X4)|set_intersection2(X3,X4)=empty_set)&(set_intersection2(X3,X4)!=empty_set|disjoint(X3,X4)))), inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[d7_xboole_0])])])])). cnf(c_0_33,lemma,(set_difference(set_union2(X1,X2),X2)=set_difference(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_21])). cnf(c_0_34,plain,(set_union2(X1,X2)=set_union2(X2,X1)), inference(split_conjunct,[status(thm)],[c_0_22])). fof(c_0_35, lemma, (![X3]:![X4]:set_union2(X3,set_difference(X4,X3))=set_union2(X3,X4)), inference(variable_rename,[status(thm)],[t39_xboole_1])). cnf(c_0_36,plain,(set_intersection2(X1,empty_set)=empty_set), inference(split_conjunct,[status(thm)],[c_0_23])). cnf(c_0_37,lemma,(set_difference(X1,set_difference(X1,X2))=set_intersection2(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_24])). fof(c_0_38, plain, (![X2]:set_difference(X2,empty_set)=X2), inference(variable_rename,[status(thm)],[t3_boole])). cnf(c_0_39,lemma,(~disjoint(X1,X2)|~in(X3,X2)|~in(X3,X1)), inference(split_conjunct,[status(thm)],[c_0_25])). cnf(c_0_40,negated_conjecture,(disjoint(esk13_0,esk12_0)), inference(spm,[status(thm)],[c_0_26, c_0_27])). cnf(c_0_41,plain,(in(X4,X2)|X1!=set_difference(X2,X3)|~in(X4,X1)), inference(split_conjunct,[status(thm)],[c_0_28])). fof(c_0_42, plain, (![X3]:![X4]:set_intersection2(X3,X4)=set_intersection2(X4,X3)), inference(variable_rename,[status(thm)],[commutativity_k3_xboole_0])). cnf(c_0_43,lemma,(set_difference(X1,X2)=empty_set|~subset(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_29])). cnf(c_0_44,negated_conjecture,(subset(X1,esk12_0)|~subset(X1,esk11_0)), inference(spm,[status(thm)],[c_0_30, c_0_31])). fof(c_0_45, lemma, (![X3]:![X4]:subset(set_difference(X3,X4),X3)), inference(variable_rename,[status(thm)],[t36_xboole_1])). fof(c_0_46, lemma, (![X3]:![X4]:(~subset(X3,X4)|set_union2(X3,X4)=X4)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[t12_xboole_1])])). cnf(c_0_47,plain,(disjoint(X1,X2)|set_intersection2(X1,X2)!=empty_set), inference(split_conjunct,[status(thm)],[c_0_32])). cnf(c_0_48,lemma,(set_difference(set_union2(X1,X2),X1)=set_difference(X2,X1)), inference(spm,[status(thm)],[c_0_33, c_0_34])). cnf(c_0_49,lemma,(set_union2(X1,set_difference(X2,X1))=set_union2(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_35])). cnf(c_0_50,plain,(set_difference(X1,set_difference(X1,empty_set))=empty_set), inference(rw,[status(thm)],[c_0_36, c_0_37])). cnf(c_0_51,plain,(set_difference(X1,empty_set)=X1), inference(split_conjunct,[status(thm)],[c_0_38])). cnf(c_0_52,negated_conjecture,(~in(X1,esk12_0)|~in(X1,esk13_0)), inference(spm,[status(thm)],[c_0_39, c_0_40])). cnf(c_0_53,lemma,(disjoint(X1,X2)|in(esk9_2(X1,X2),X2)), inference(split_conjunct,[status(thm)],[c_0_25])). cnf(c_0_54,plain,(in(X1,X2)|~in(X1,set_difference(X2,X3))), inference(er,[status(thm)],[c_0_41])). cnf(c_0_55,lemma,(disjoint(X1,X2)|in(esk9_2(X1,X2),X1)), inference(split_conjunct,[status(thm)],[c_0_25])). cnf(c_0_56,plain,(set_intersection2(X1,X2)=set_intersection2(X2,X1)), inference(split_conjunct,[status(thm)],[c_0_42])). cnf(c_0_57,lemma,(set_difference(X1,esk12_0)=empty_set|~subset(X1,esk11_0)), inference(spm,[status(thm)],[c_0_43, c_0_44])). cnf(c_0_58,lemma,(subset(set_difference(X1,X2),X1)), inference(split_conjunct,[status(thm)],[c_0_45])). cnf(c_0_59,plain,(set_intersection2(X1,X2)=empty_set|~disjoint(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_32])). fof(c_0_60, plain, (![X2]:set_union2(X2,empty_set)=X2), inference(variable_rename,[status(thm)],[t1_boole])). cnf(c_0_61,lemma,(set_union2(X1,X2)=X2|~subset(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_46])). cnf(c_0_62,plain,(disjoint(X1,X2)|set_difference(X1,set_difference(X1,X2))!=empty_set), inference(rw,[status(thm)],[c_0_47, c_0_37])). cnf(c_0_63,lemma,(set_difference(set_difference(X1,X2),X2)=set_difference(X1,X2)), inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_48, c_0_49]), c_0_48])). cnf(c_0_64,plain,(set_difference(X1,X1)=empty_set), inference(rw,[status(thm)],[c_0_50, c_0_51])). cnf(c_0_65,lemma,(disjoint(X1,esk13_0)|~in(esk9_2(X1,esk13_0),esk12_0)), inference(spm,[status(thm)],[c_0_52, c_0_53])). cnf(c_0_66,lemma,(disjoint(set_difference(X1,X2),X3)|in(esk9_2(set_difference(X1,X2),X3),X1)), inference(spm,[status(thm)],[c_0_54, c_0_55])). cnf(c_0_67,plain,(set_difference(X1,set_difference(X1,X2))=set_difference(X2,set_difference(X2,X1))), inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_56, c_0_37]), c_0_37])). cnf(c_0_68,lemma,(set_difference(set_difference(esk11_0,X1),esk12_0)=empty_set), inference(spm,[status(thm)],[c_0_57, c_0_58])). cnf(c_0_69,plain,(set_difference(X1,set_difference(X1,X2))=empty_set|~disjoint(X1,X2)), inference(rw,[status(thm)],[c_0_59, c_0_37])). cnf(c_0_70,plain,(set_union2(X1,empty_set)=X1), inference(split_conjunct,[status(thm)],[c_0_60])). cnf(c_0_71,lemma,(set_union2(X1,set_difference(X1,X2))=X1), inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_61, c_0_58]), c_0_34])). cnf(c_0_72,lemma,(disjoint(set_difference(X1,X2),X2)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_62, c_0_63]), c_0_64])])). cnf(c_0_73,lemma,(disjoint(set_difference(esk12_0,X1),esk13_0)), inference(spm,[status(thm)],[c_0_65, c_0_66])). cnf(c_0_74,lemma,(set_difference(esk12_0,set_difference(esk12_0,set_difference(esk11_0,X1)))=set_difference(esk11_0,X1)), inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_67, c_0_68]), c_0_51])). cnf(c_0_75,lemma,(set_difference(X1,X2)=X1|~disjoint(X1,X2)), inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_49, c_0_69]), c_0_70]), c_0_34]), c_0_71])). cnf(c_0_76,lemma,(disjoint(X1,set_difference(X2,X1))), inference(spm,[status(thm)],[c_0_26, c_0_72])). cnf(c_0_77,lemma,(disjoint(set_difference(esk11_0,X1),esk13_0)), inference(spm,[status(thm)],[c_0_73, c_0_74])). cnf(c_0_78,lemma,(set_difference(X1,set_difference(X2,X1))=X1), inference(spm,[status(thm)],[c_0_75, c_0_76])). cnf(c_0_79,negated_conjecture,(~disjoint(esk11_0,esk13_0)), inference(split_conjunct,[status(thm)],[c_0_19])). cnf(c_0_80,lemma,($false), inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_77, c_0_78]), c_0_79]), ['proof']). # SZS output end CNFRefutation
% SZS status Theorem % SZS output start CNFRefutation fof(f8,axiom,( ! [X0,X1] : (subset(X0,X1) <=> ! [X2] : (in(X2,X0) => in(X2,X1)))), file('/Users/korovin/TPTP-v6.1.0/Problems/SEU/SEU140+2.p',unknown)). fof(f77,plain,( ! [X0,X1] : (subset(X0,X1) <=> ! [X2] : (~in(X2,X0) | in(X2,X1)))), inference(ennf_transformation,[],[f8])). fof(f113,plain,( ! [X0,X1] : ((~subset(X0,X1) | ! [X2] : (~in(X2,X0) | in(X2,X1))) & (? [X2] : (in(X2,X0) & ~in(X2,X1)) | subset(X0,X1)))), inference(nnf_transformation,[],[f77])). fof(f115,plain,( ! [X0,X1] : ((~subset(X0,X1) | ! [X3] : (~in(X3,X0) | in(X3,X1))) & ((in(sK2(X1,X0),X0) & ~in(sK2(X1,X0),X1)) | subset(X0,X1)))), inference(skolemisation,[status(esa)],[f114])). fof(f114,plain,( ! [X0,X1] : ((~subset(X0,X1) | ! [X3] : (~in(X3,X0) | in(X3,X1))) & (? [X2] : (in(X2,X0) & ~in(X2,X1)) | subset(X0,X1)))), inference(rectify,[],[f113])). fof(f149,plain,( ( ! [X0,X3,X1] : (in(X3,X1) | ~in(X3,X0) | ~subset(X0,X1)) )), inference(cnf_transformation,[],[f115])). fof(f43,axiom,( ! [X0,X1] : (~(~disjoint(X0,X1) & ! [X2] : ~(in(X2,X0) & in(X2,X1))) & ~(? [X2] : (in(X2,X0) & in(X2,X1)) & disjoint(X0,X1)))), file('/Users/korovin/TPTP-v6.1.0/Problems/SEU/SEU140+2.p',unknown)). fof(f70,plain,( ! [X0,X1] : (~(~disjoint(X0,X1) & ! [X3] : ~(in(X3,X0) & in(X3,X1))) & ~(? [X2] : (in(X2,X0) & in(X2,X1)) & disjoint(X0,X1)))), inference(rectify,[],[f43])). fof(f71,plain,( ! [X0,X1] : (~(~disjoint(X0,X1) & ! [X3] : ~(in(X3,X0) & in(X3,X1))) & ~(? [X2] : (in(X2,X0) & in(X2,X1)) & disjoint(X0,X1)))), inference(flattening,[],[f70])). fof(f131,plain,( ! [X0,X1] : ((disjoint(X0,X1) | (in(sK8(X1,X0),X0) & in(sK8(X1,X0),X1))) & (! [X2] : (~in(X2,X0) | ~in(X2,X1)) | ~disjoint(X0,X1)))), inference(skolemisation,[status(esa)],[f92])). fof(f92,plain,( ! [X0,X1] : ((disjoint(X0,X1) | ? [X3] : (in(X3,X0) & in(X3,X1))) & (! [X2] : (~in(X2,X0) | ~in(X2,X1)) | ~disjoint(X0,X1)))), inference(ennf_transformation,[],[f71])). fof(f198,plain,( ( ! [X2,X0,X1] : (~disjoint(X0,X1) | ~in(X2,X1) | ~in(X2,X0)) )), inference(cnf_transformation,[],[f131])). fof(f196,plain,( ( ! [X0,X1] : (in(sK8(X1,X0),X0) | disjoint(X0,X1)) )), inference(cnf_transformation,[],[f131])). fof(f197,plain,( ( ! [X0,X1] : (in(sK8(X1,X0),X1) | disjoint(X0,X1)) )), inference(cnf_transformation,[],[f131])). fof(f51,conjecture,( ! [X0,X1,X2] : ((subset(X0,X1) & disjoint(X1,X2)) => disjoint(X0,X2))), file('/Users/korovin/TPTP-v6.1.0/Problems/SEU/SEU140+2.p',unknown)). fof(f52,negated_conjecture,( ~! [X0,X1,X2] : ((subset(X0,X1) & disjoint(X1,X2)) => disjoint(X0,X2))), inference(negated_conjecture,[],[f51])). fof(f97,plain,( ? [X0,X1,X2] : ((subset(X0,X1) & disjoint(X1,X2)) & ~disjoint(X0,X2))), inference(ennf_transformation,[],[f52])). fof(f133,plain,( subset(sK10,sK11) & disjoint(sK11,sK12) & ~disjoint(sK10,sK12)), inference(skolemisation,[status(esa)],[f98])). fof(f98,plain,( ? [X0,X1,X2] : (subset(X0,X1) & disjoint(X1,X2) & ~disjoint(X0,X2))), inference(flattening,[],[f97])). fof(f209,plain,( ~disjoint(sK10,sK12)), inference(cnf_transformation,[],[f133])). fof(f208,plain,( disjoint(sK11,sK12)), inference(cnf_transformation,[],[f133])). fof(f207,plain,( subset(sK10,sK11)), inference(cnf_transformation,[],[f133])). cnf(c_17,plain, ( ~ in(X0_$i,X1_$i) | in(X0_$i,X2_$i) | ~ subset(X1_$i,X2_$i) ), inference(cnf_transformation,[],[f149]) ). cnf(c_262,plain, ( ~ in(sK8(sK12,sK10),sK10) | in(sK8(sK12,sK10),X0_$i) | ~ subset(sK10,X0_$i) ), inference(instantiation,[status(thm)],[c_17]) ). cnf(c_835,plain, ( ~ in(sK8(sK12,sK10),sK10) | in(sK8(sK12,sK10),sK11) | ~ subset(sK10,sK11) ), inference(instantiation,[status(thm)],[c_262]) ). cnf(c_62,plain, ( ~ in(X0_$i,X1_$i) | ~ in(X0_$i,X2_$i) | ~ disjoint(X2_$i,X1_$i) ), inference(cnf_transformation,[],[f198]) ). cnf(c_243,plain, ( ~ in(sK8(sK12,sK10),sK12) | ~ in(sK8(sK12,sK10),X0_$i) | ~ disjoint(X0_$i,sK12) ), inference(instantiation,[status(thm)],[c_62]) ). cnf(c_760,plain, ( ~ in(sK8(sK12,sK10),sK12) | ~ in(sK8(sK12,sK10),sK11) | ~ disjoint(sK11,sK12) ), inference(instantiation,[status(thm)],[c_243]) ). cnf(c_64,plain, ( in(sK8(X0_$i,X1_$i),X1_$i) | disjoint(X1_$i,X0_$i) ), inference(cnf_transformation,[],[f196]) ). cnf(c_210,plain, ( in(sK8(sK12,sK10),sK10) | disjoint(sK10,sK12) ), inference(instantiation,[status(thm)],[c_64]) ). cnf(c_63,plain, ( in(sK8(X0_$i,X1_$i),X0_$i) | disjoint(X1_$i,X0_$i) ), inference(cnf_transformation,[],[f197]) ). cnf(c_209,plain, ( in(sK8(sK12,sK10),sK12) | disjoint(sK10,sK12) ), inference(instantiation,[status(thm)],[c_63]) ). cnf(c_72,negated_conjecture, ( ~ disjoint(sK10,sK12) ), inference(cnf_transformation,[],[f209]) ). cnf(c_73,negated_conjecture, ( disjoint(sK11,sK12) ), inference(cnf_transformation,[],[f208]) ). cnf(c_74,negated_conjecture, ( subset(sK10,sK11) ), inference(cnf_transformation,[],[f207]) ). cnf(contradiction,plain, ( $false ), inference(minisat, [status(thm)], [c_835,c_760,c_210,c_209,c_72,c_73,c_74]) ). % SZS output end CNFRefutation
% SZS status CounterSatisfiable % SZS output start Saturation fof(f43,axiom,( ! [X0,X1,X2] : ((entity(X0,X1) & forename(X0,X2) & of(X0,X2,X1)) => ~? [X3] : (forename(X0,X3) & X2 != X3 & of(X0,X3,X1)))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f98,plain,( ! [X0,X1,X2] : ((~entity(X0,X1) | ~forename(X0,X2) | ~of(X0,X2,X1)) | ! [X3] : (~forename(X0,X3) | X2 = X3 | ~of(X0,X3,X1)))), inference(ennf_transformation,[],[f43])). fof(f99,plain,( ! [X0,X1,X2] : (~entity(X0,X1) | ~forename(X0,X2) | ~of(X0,X2,X1) | ! [X3] : (~forename(X0,X3) | X2 = X3 | ~of(X0,X3,X1)))), inference(flattening,[],[f98])). fof(f139,plain,( ( ! [X2,X0,X3,X1] : (~of(X0,X3,X1) | X2 = X3 | ~forename(X0,X3) | ~of(X0,X2,X1) | ~forename(X0,X2) | ~entity(X0,X1)) )), inference(cnf_transformation,[],[f99])). fof(f45,conjecture,( ~? [X0] : (actual_world(X0) & ? [X1,X2,X3,X4] : (of(X0,X2,X1) & woman(X0,X1) & mia_forename(X0,X2) & forename(X0,X2) & shake_beverage(X0,X3) & event(X0,X4) & agent(X0,X4,X1) & patient(X0,X4,X3) & past(X0,X4) & nonreflexive(X0,X4) & order(X0,X4)))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f46,negated_conjecture,( ~~? [X0] : (actual_world(X0) & ? [X1,X2,X3,X4] : (of(X0,X2,X1) & woman(X0,X1) & mia_forename(X0,X2) & forename(X0,X2) & shake_beverage(X0,X3) & event(X0,X4) & agent(X0,X4,X1) & patient(X0,X4,X3) & past(X0,X4) & nonreflexive(X0,X4) & order(X0,X4)))), inference(negated_conjecture,[],[f45])). fof(f53,plain,( ? [X0] : (actual_world(X0) & ? [X1,X2,X3,X4] : (of(X0,X2,X1) & woman(X0,X1) & mia_forename(X0,X2) & forename(X0,X2) & shake_beverage(X0,X3) & event(X0,X4) & agent(X0,X4,X1) & patient(X0,X4,X3) & past(X0,X4) & nonreflexive(X0,X4) & order(X0,X4)))), inference(flattening,[],[f46])). fof(f54,plain,( ? [X0] : (actual_world(X0) & ? [X1,X2,X3,X4] : (of(X0,X2,X1) & woman(X0,X1) & mia_forename(X0,X2) & forename(X0,X2) & shake_beverage(X0,X3) & event(X0,X4) & agent(X0,X4,X1) & patient(X0,X4,X3) & nonreflexive(X0,X4) & order(X0,X4)))), inference(pure_predicate_removal,[],[f53])). fof(f102,plain,( of(sK0,sK2,sK1) & woman(sK0,sK1) & mia_forename(sK0,sK2) & forename(sK0,sK2) & shake_beverage(sK0,sK3) & event(sK0,sK4) & agent(sK0,sK4,sK1) & patient(sK0,sK4,sK3) & nonreflexive(sK0,sK4) & order(sK0,sK4)), inference(skolemisation,[status(esa)],[f55])). fof(f55,plain,( ? [X0,X1,X2,X3,X4] : (of(X0,X2,X1) & woman(X0,X1) & mia_forename(X0,X2) & forename(X0,X2) & shake_beverage(X0,X3) & event(X0,X4) & agent(X0,X4,X1) & patient(X0,X4,X3) & nonreflexive(X0,X4) & order(X0,X4))), inference(pure_predicate_removal,[],[f54])). fof(f141,plain,( of(sK0,sK2,sK1)), inference(cnf_transformation,[],[f102])). fof(f144,plain,( forename(sK0,sK2)), inference(cnf_transformation,[],[f102])). fof(f44,axiom,( ! [X0,X1,X2,X3] : ((nonreflexive(X0,X1) & agent(X0,X1,X2) & patient(X0,X1,X3)) => X2 != X3)), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f100,plain,( ! [X0,X1,X2,X3] : ((~nonreflexive(X0,X1) | ~agent(X0,X1,X2) | ~patient(X0,X1,X3)) | X2 != X3)), inference(ennf_transformation,[],[f44])). fof(f101,plain,( ! [X0,X1,X2,X3] : (~nonreflexive(X0,X1) | ~agent(X0,X1,X2) | ~patient(X0,X1,X3) | X2 != X3)), inference(flattening,[],[f100])). fof(f140,plain,( ( ! [X2,X0,X3,X1] : (X2 != X3 | ~patient(X0,X1,X3) | ~agent(X0,X1,X2) | ~nonreflexive(X0,X1)) )), inference(cnf_transformation,[],[f101])). fof(f151,plain,( ( ! [X0,X3,X1] : (~patient(X0,X1,X3) | ~agent(X0,X1,X3) | ~nonreflexive(X0,X1)) )), inference(equality_resolution,[],[f140])). fof(f147,plain,( agent(sK0,sK4,sK1)), inference(cnf_transformation,[],[f102])). fof(f149,plain,( nonreflexive(sK0,sK4)), inference(cnf_transformation,[],[f102])). fof(f27,axiom,( ! [X0,X1] : (shake_beverage(X0,X1) => beverage(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f84,plain,( ! [X0,X1] : (~shake_beverage(X0,X1) | beverage(X0,X1))), inference(ennf_transformation,[],[f27])). fof(f125,plain,( ( ! [X0,X1] : (beverage(X0,X1) | ~shake_beverage(X0,X1)) )), inference(cnf_transformation,[],[f84])). fof(f26,axiom,( ! [X0,X1] : (beverage(X0,X1) => food(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f83,plain,( ! [X0,X1] : (~beverage(X0,X1) | food(X0,X1))), inference(ennf_transformation,[],[f26])). fof(f124,plain,( ( ! [X0,X1] : (food(X0,X1) | ~beverage(X0,X1)) )), inference(cnf_transformation,[],[f83])). fof(f25,axiom,( ! [X0,X1] : (food(X0,X1) => substance_matter(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f82,plain,( ! [X0,X1] : (~food(X0,X1) | substance_matter(X0,X1))), inference(ennf_transformation,[],[f25])). fof(f123,plain,( ( ! [X0,X1] : (substance_matter(X0,X1) | ~food(X0,X1)) )), inference(cnf_transformation,[],[f82])). fof(f24,axiom,( ! [X0,X1] : (substance_matter(X0,X1) => object(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f81,plain,( ! [X0,X1] : (~substance_matter(X0,X1) | object(X0,X1))), inference(ennf_transformation,[],[f24])). fof(f122,plain,( ( ! [X0,X1] : (object(X0,X1) | ~substance_matter(X0,X1)) )), inference(cnf_transformation,[],[f81])). fof(f8,axiom,( ! [X0,X1] : (woman(X0,X1) => human_person(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f68,plain,( ! [X0,X1] : (~woman(X0,X1) | human_person(X0,X1))), inference(ennf_transformation,[],[f8])). fof(f109,plain,( ( ! [X0,X1] : (human_person(X0,X1) | ~woman(X0,X1)) )), inference(cnf_transformation,[],[f68])). fof(f19,axiom,( ! [X0,X1] : (object(X0,X1) => nonliving(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f77,plain,( ! [X0,X1] : (~object(X0,X1) | nonliving(X0,X1))), inference(ennf_transformation,[],[f19])). fof(f118,plain,( ( ! [X0,X1] : (nonliving(X0,X1) | ~object(X0,X1)) )), inference(cnf_transformation,[],[f77])). fof(f2,axiom,( ! [X0,X1] : (human_person(X0,X1) => animate(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f63,plain,( ! [X0,X1] : (~human_person(X0,X1) | animate(X0,X1))), inference(ennf_transformation,[],[f2])). fof(f104,plain,( ( ! [X0,X1] : (animate(X0,X1) | ~human_person(X0,X1)) )), inference(cnf_transformation,[],[f63])). fof(f37,axiom,( ! [X0,X1] : (animate(X0,X1) => ~nonliving(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f47,plain,( ! [X0,X1] : (animate(X0,X1) => ~nonliving(X0,X1))), inference(flattening,[],[f37])). fof(f92,plain,( ! [X0,X1] : (~animate(X0,X1) | ~nonliving(X0,X1))), inference(ennf_transformation,[],[f47])). fof(f133,plain,( ( ! [X0,X1] : (~nonliving(X0,X1) | ~animate(X0,X1)) )), inference(cnf_transformation,[],[f92])). fof(f145,plain,( shake_beverage(sK0,sK3)), inference(cnf_transformation,[],[f102])). fof(f16,axiom,( ! [X0,X1] : (forename(X0,X1) => relname(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f75,plain,( ! [X0,X1] : (~forename(X0,X1) | relname(X0,X1))), inference(ennf_transformation,[],[f16])). fof(f116,plain,( ( ! [X0,X1] : (relname(X0,X1) | ~forename(X0,X1)) )), inference(cnf_transformation,[],[f75])). fof(f15,axiom,( ! [X0,X1] : (relname(X0,X1) => relation(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f74,plain,( ! [X0,X1] : (~relname(X0,X1) | relation(X0,X1))), inference(ennf_transformation,[],[f15])). fof(f115,plain,( ( ! [X0,X1] : (relation(X0,X1) | ~relname(X0,X1)) )), inference(cnf_transformation,[],[f74])). fof(f14,axiom,( ! [X0,X1] : (relation(X0,X1) => abstraction(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f73,plain,( ! [X0,X1] : (~relation(X0,X1) | abstraction(X0,X1))), inference(ennf_transformation,[],[f14])). fof(f114,plain,( ( ! [X0,X1] : (abstraction(X0,X1) | ~relation(X0,X1)) )), inference(cnf_transformation,[],[f73])). fof(f21,axiom,( ! [X0,X1] : (entity(X0,X1) => specific(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f79,plain,( ! [X0,X1] : (~entity(X0,X1) | specific(X0,X1))), inference(ennf_transformation,[],[f21])). fof(f120,plain,( ( ! [X0,X1] : (specific(X0,X1) | ~entity(X0,X1)) )), inference(cnf_transformation,[],[f79])). fof(f11,axiom,( ! [X0,X1] : (abstraction(X0,X1) => general(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f71,plain,( ! [X0,X1] : (~abstraction(X0,X1) | general(X0,X1))), inference(ennf_transformation,[],[f11])). fof(f112,plain,( ( ! [X0,X1] : (general(X0,X1) | ~abstraction(X0,X1)) )), inference(cnf_transformation,[],[f71])). fof(f41,axiom,( ! [X0,X1] : (specific(X0,X1) => ~general(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f51,plain,( ! [X0,X1] : (specific(X0,X1) => ~general(X0,X1))), inference(flattening,[],[f41])). fof(f96,plain,( ! [X0,X1] : (~specific(X0,X1) | ~general(X0,X1))), inference(ennf_transformation,[],[f51])). fof(f137,plain,( ( ! [X0,X1] : (~general(X0,X1) | ~specific(X0,X1)) )), inference(cnf_transformation,[],[f96])). fof(f7,axiom,( ! [X0,X1] : (human_person(X0,X1) => organism(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f67,plain,( ! [X0,X1] : (~human_person(X0,X1) | organism(X0,X1))), inference(ennf_transformation,[],[f7])). fof(f108,plain,( ( ! [X0,X1] : (organism(X0,X1) | ~human_person(X0,X1)) )), inference(cnf_transformation,[],[f67])). fof(f6,axiom,( ! [X0,X1] : (organism(X0,X1) => entity(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f66,plain,( ! [X0,X1] : (~organism(X0,X1) | entity(X0,X1))), inference(ennf_transformation,[],[f6])). fof(f107,plain,( ( ! [X0,X1] : (entity(X0,X1) | ~organism(X0,X1)) )), inference(cnf_transformation,[],[f66])). fof(f34,axiom,( ! [X0,X1] : (event(X0,X1) => eventuality(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f89,plain,( ! [X0,X1] : (~event(X0,X1) | eventuality(X0,X1))), inference(ennf_transformation,[],[f34])). fof(f130,plain,( ( ! [X0,X1] : (eventuality(X0,X1) | ~event(X0,X1)) )), inference(cnf_transformation,[],[f89])). fof(f31,axiom,( ! [X0,X1] : (eventuality(X0,X1) => specific(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f88,plain,( ! [X0,X1] : (~eventuality(X0,X1) | specific(X0,X1))), inference(ennf_transformation,[],[f31])). fof(f129,plain,( ( ! [X0,X1] : (specific(X0,X1) | ~eventuality(X0,X1)) )), inference(cnf_transformation,[],[f88])). fof(f146,plain,( event(sK0,sK4)), inference(cnf_transformation,[],[f102])). fof(f30,axiom,( ! [X0,X1] : (eventuality(X0,X1) => nonexistent(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f87,plain,( ! [X0,X1] : (~eventuality(X0,X1) | nonexistent(X0,X1))), inference(ennf_transformation,[],[f30])). fof(f128,plain,( ( ! [X0,X1] : (nonexistent(X0,X1) | ~eventuality(X0,X1)) )), inference(cnf_transformation,[],[f87])). fof(f20,axiom,( ! [X0,X1] : (entity(X0,X1) => existent(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f78,plain,( ! [X0,X1] : (~entity(X0,X1) | existent(X0,X1))), inference(ennf_transformation,[],[f20])). fof(f119,plain,( ( ! [X0,X1] : (existent(X0,X1) | ~entity(X0,X1)) )), inference(cnf_transformation,[],[f78])). fof(f38,axiom,( ! [X0,X1] : (existent(X0,X1) => ~nonexistent(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f48,plain,( ! [X0,X1] : (existent(X0,X1) => ~nonexistent(X0,X1))), inference(flattening,[],[f38])). fof(f93,plain,( ! [X0,X1] : (~existent(X0,X1) | ~nonexistent(X0,X1))), inference(ennf_transformation,[],[f48])). fof(f134,plain,( ( ! [X0,X1] : (~nonexistent(X0,X1) | ~existent(X0,X1)) )), inference(cnf_transformation,[],[f93])). fof(f23,axiom,( ! [X0,X1] : (object(X0,X1) => entity(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f80,plain,( ! [X0,X1] : (~object(X0,X1) | entity(X0,X1))), inference(ennf_transformation,[],[f23])). fof(f121,plain,( ( ! [X0,X1] : (entity(X0,X1) | ~object(X0,X1)) )), inference(cnf_transformation,[],[f80])). fof(f9,axiom,( ! [X0,X1] : (mia_forename(X0,X1) => forename(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f69,plain,( ! [X0,X1] : (~mia_forename(X0,X1) | forename(X0,X1))), inference(ennf_transformation,[],[f9])). fof(f110,plain,( ( ! [X0,X1] : (forename(X0,X1) | ~mia_forename(X0,X1)) )), inference(cnf_transformation,[],[f69])). fof(f28,axiom,( ! [X0,X1] : (order(X0,X1) => event(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f85,plain,( ! [X0,X1] : (~order(X0,X1) | event(X0,X1))), inference(ennf_transformation,[],[f28])). fof(f126,plain,( ( ! [X0,X1] : (event(X0,X1) | ~order(X0,X1)) )), inference(cnf_transformation,[],[f85])). fof(f12,axiom,( ! [X0,X1] : (abstraction(X0,X1) => nonhuman(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f72,plain,( ! [X0,X1] : (~abstraction(X0,X1) | nonhuman(X0,X1))), inference(ennf_transformation,[],[f12])). fof(f113,plain,( ( ! [X0,X1] : (nonhuman(X0,X1) | ~abstraction(X0,X1)) )), inference(cnf_transformation,[],[f72])). fof(f3,axiom,( ! [X0,X1] : (human_person(X0,X1) => human(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f64,plain,( ! [X0,X1] : (~human_person(X0,X1) | human(X0,X1))), inference(ennf_transformation,[],[f3])). fof(f105,plain,( ( ! [X0,X1] : (human(X0,X1) | ~human_person(X0,X1)) )), inference(cnf_transformation,[],[f64])). fof(f39,axiom,( ! [X0,X1] : (nonhuman(X0,X1) => ~human(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f49,plain,( ! [X0,X1] : (nonhuman(X0,X1) => ~human(X0,X1))), inference(flattening,[],[f39])). fof(f94,plain,( ! [X0,X1] : (~nonhuman(X0,X1) | ~human(X0,X1))), inference(ennf_transformation,[],[f49])). fof(f135,plain,( ( ! [X0,X1] : (~human(X0,X1) | ~nonhuman(X0,X1)) )), inference(cnf_transformation,[],[f94])). fof(f29,axiom,( ! [X0,X1] : (eventuality(X0,X1) => unisex(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f86,plain,( ! [X0,X1] : (~eventuality(X0,X1) | unisex(X0,X1))), inference(ennf_transformation,[],[f29])). fof(f127,plain,( ( ! [X0,X1] : (unisex(X0,X1) | ~eventuality(X0,X1)) )), inference(cnf_transformation,[],[f86])). fof(f1,axiom,( ! [X0,X1] : (woman(X0,X1) => female(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f62,plain,( ! [X0,X1] : (~woman(X0,X1) | female(X0,X1))), inference(ennf_transformation,[],[f1])). fof(f103,plain,( ( ! [X0,X1] : (female(X0,X1) | ~woman(X0,X1)) )), inference(cnf_transformation,[],[f62])). fof(f42,axiom,( ! [X0,X1] : (unisex(X0,X1) => ~female(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f52,plain,( ! [X0,X1] : (unisex(X0,X1) => ~female(X0,X1))), inference(flattening,[],[f42])). fof(f97,plain,( ! [X0,X1] : (~unisex(X0,X1) | ~female(X0,X1))), inference(ennf_transformation,[],[f52])). fof(f138,plain,( ( ! [X0,X1] : (~female(X0,X1) | ~unisex(X0,X1)) )), inference(cnf_transformation,[],[f97])). fof(f142,plain,( woman(sK0,sK1)), inference(cnf_transformation,[],[f102])). fof(f143,plain,( mia_forename(sK0,sK2)), inference(cnf_transformation,[],[f102])). fof(f148,plain,( patient(sK0,sK4,sK3)), inference(cnf_transformation,[],[f102])). fof(f150,plain,( order(sK0,sK4)), inference(cnf_transformation,[],[f102])). cnf(c_36,plain, ( ~ entity(X0_$i,X1_$i) | ~ forename(X0_$i,X2_$i) | ~ forename(X0_$i,X3_$i) | ~ of(X0_$i,X2_$i,X1_$i) | ~ of(X0_$i,X3_$i,X1_$i) | X3_$i = X2_$i ), inference(cnf_transformation,[],[f139]) ). cnf(c_495,plain, ( ~ entity(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) | ~ forename(X0_$$iProver_event_1_$i,X1_$$iProver_event_2_$i) | ~ forename(X0_$$iProver_event_1_$i,X2_$$iProver_event_2_$i) | ~ of(X0_$$iProver_event_1_$i,X1_$$iProver_event_2_$i,X0_$$iProver_event_2_$i) | ~ of(X0_$$iProver_event_1_$i,X2_$$iProver_event_2_$i,X0_$$iProver_event_2_$i) | X2_$$iProver_event_2_$i = X1_$$iProver_event_2_$i ), inference(subtyping,[status(esa)],[c_36]) ). cnf(c_47,negated_conjecture, ( of(sK0,sK2,sK1) ), inference(cnf_transformation,[],[f141]) ). cnf(c_484,negated_conjecture, ( of(sK0,sK2,sK1) ), inference(subtyping,[status(esa)],[c_47]) ). cnf(c_649,plain, ( ~ entity(sK0,sK1) | ~ forename(sK0,sK2) | ~ forename(sK0,X0_$$iProver_event_2_$i) | ~ of(sK0,X0_$$iProver_event_2_$i,sK1) | sK2 = X0_$$iProver_event_2_$i ), inference(resolution,[status(thm)],[c_495,c_484]) ). cnf(c_44,negated_conjecture, ( forename(sK0,sK2) ), inference(cnf_transformation,[],[f144]) ). cnf(c_650,plain, ( ~ entity(sK0,sK1) | ~ forename(sK0,X0_$$iProver_event_2_$i) | ~ of(sK0,X0_$$iProver_event_2_$i,sK1) | sK2 = X0_$$iProver_event_2_$i ), inference(global_propositional_subsumption,[status(thm)],[c_649,c_44]) ). cnf(c_663,plain, ( ~ entity(sK0,sK1) | ~ forename(sK0,sK2) | sK2 = sK2 ), inference(resolution,[status(thm)],[c_650,c_484]) ). cnf(c_664,plain, ( ~ entity(sK0,sK1) | sK2 = sK2 ), inference(global_propositional_subsumption,[status(thm)],[c_663,c_44]) ). cnf(c_498,plain, ( X0_$$iProver_event_2_$i = X0_$$iProver_event_2_$i ), theory(equality) ). cnf(c_667,plain, ( sK2 = sK2 ), inference(forward_subsumption_resolution,[status(thm)],[c_664,c_498]) ). cnf(c_508,plain, ( agent(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i,X1_$$iProver_event_2_$i) | ~ agent(X0_$$iProver_event_1_$i,X2_$$iProver_event_2_$i,X3_$$iProver_event_2_$i) | X0_$$iProver_event_2_$i != X2_$$iProver_event_2_$i | X1_$$iProver_event_2_$i != X3_$$iProver_event_2_$i ), theory(equality) ). cnf(c_684,plain, ( agent(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i,sK2) | ~ agent(X0_$$iProver_event_1_$i,X1_$$iProver_event_2_$i,sK2) | X0_$$iProver_event_2_$i != X1_$$iProver_event_2_$i ), inference(resolution,[status(thm)],[c_667,c_508]) ). cnf(c_507,plain, ( patient(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i,X1_$$iProver_event_2_$i) | ~ patient(X0_$$iProver_event_1_$i,X2_$$iProver_event_2_$i,X3_$$iProver_event_2_$i) | X0_$$iProver_event_2_$i != X2_$$iProver_event_2_$i | X1_$$iProver_event_2_$i != X3_$$iProver_event_2_$i ), theory(equality) ). cnf(c_683,plain, ( patient(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i,sK2) | ~ patient(X0_$$iProver_event_1_$i,X1_$$iProver_event_2_$i,sK2) | X0_$$iProver_event_2_$i != X1_$$iProver_event_2_$i ), inference(resolution,[status(thm)],[c_667,c_507]) ). cnf(c_506,plain, ( of(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i,X1_$$iProver_event_2_$i) | ~ of(X0_$$iProver_event_1_$i,X2_$$iProver_event_2_$i,X3_$$iProver_event_2_$i) | X0_$$iProver_event_2_$i != X2_$$iProver_event_2_$i | X1_$$iProver_event_2_$i != X3_$$iProver_event_2_$i ), theory(equality) ). cnf(c_682,plain, ( of(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i,sK2) | ~ of(X0_$$iProver_event_1_$i,X1_$$iProver_event_2_$i,sK2) | X0_$$iProver_event_2_$i != X1_$$iProver_event_2_$i ), inference(resolution,[status(thm)],[c_667,c_506]) ). cnf(c_499,plain, ( X0_$$iProver_event_2_$i != X1_$$iProver_event_2_$i | X2_$$iProver_event_2_$i != X1_$$iProver_event_2_$i | X2_$$iProver_event_2_$i = X0_$$iProver_event_2_$i ), theory(equality) ). cnf(c_671,plain, ( sK2 = X0_$$iProver_event_2_$i | X0_$$iProver_event_2_$i != sK2 ), inference(resolution,[status(thm)],[c_667,c_499]) ). cnf(c_638,plain, ( agent(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i,X1_$$iProver_event_2_$i) | ~ agent(X0_$$iProver_event_1_$i,X2_$$iProver_event_2_$i,X1_$$iProver_event_2_$i) | X0_$$iProver_event_2_$i != X2_$$iProver_event_2_$i ), inference(resolution,[status(thm)],[c_508,c_498]) ). cnf(c_629,plain, ( patient(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i,X1_$$iProver_event_2_$i) | ~ patient(X0_$$iProver_event_1_$i,X2_$$iProver_event_2_$i,X1_$$iProver_event_2_$i) | X0_$$iProver_event_2_$i != X2_$$iProver_event_2_$i ), inference(resolution,[status(thm)],[c_507,c_498]) ). cnf(c_620,plain, ( ~ of(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i,X1_$$iProver_event_2_$i) | of(X0_$$iProver_event_1_$i,X2_$$iProver_event_2_$i,X1_$$iProver_event_2_$i) | X2_$$iProver_event_2_$i != X0_$$iProver_event_2_$i ), inference(resolution,[status(thm)],[c_506,c_498]) ). cnf(c_612,plain, ( X0_$$iProver_event_2_$i != X1_$$iProver_event_2_$i | X1_$$iProver_event_2_$i = X0_$$iProver_event_2_$i ), inference(resolution,[status(thm)],[c_499,c_498]) ). cnf(c_37,plain, ( ~ patient(X0_$i,X1_$i,X2_$i) | ~ agent(X0_$i,X1_$i,X2_$i) | ~ nonreflexive(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f151]) ). cnf(c_494,plain, ( ~ patient(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i,X1_$$iProver_event_2_$i) | ~ agent(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i,X1_$$iProver_event_2_$i) | ~ nonreflexive(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) ), inference(subtyping,[status(esa)],[c_37]) ). cnf(c_41,negated_conjecture, ( agent(sK0,sK4,sK1) ), inference(cnf_transformation,[],[f147]) ). cnf(c_490,negated_conjecture, ( agent(sK0,sK4,sK1) ), inference(subtyping,[status(esa)],[c_41]) ). cnf(c_604,plain, ( ~ patient(sK0,sK4,sK1) | ~ nonreflexive(sK0,sK4) ), inference(resolution,[status(thm)],[c_494,c_490]) ). cnf(c_39,negated_conjecture, ( nonreflexive(sK0,sK4) ), inference(cnf_transformation,[],[f149]) ). cnf(c_605,plain, ( ~ patient(sK0,sK4,sK1) ), inference(global_propositional_subsumption,[status(thm)],[c_604,c_39]) ). cnf(c_22,plain, ( beverage(X0_$i,X1_$i) | ~ shake_beverage(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f125]) ). cnf(c_21,plain, ( food(X0_$i,X1_$i) | ~ beverage(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f124]) ). cnf(c_20,plain, ( substance_matter(X0_$i,X1_$i) | ~ food(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f123]) ). cnf(c_19,plain, ( object(X0_$i,X1_$i) | ~ substance_matter(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f122]) ). cnf(c_176,plain, ( object(X0_$i,X1_$i) | ~ food(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_20,c_19]) ). cnf(c_186,plain, ( object(X0_$i,X1_$i) | ~ beverage(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_21,c_176]) ). cnf(c_196,plain, ( object(X0_$i,X1_$i) | ~ shake_beverage(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_22,c_186]) ). cnf(c_6,plain, ( ~ woman(X0_$i,X1_$i) | human_person(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f109]) ). cnf(c_15,plain, ( ~ object(X0_$i,X1_$i) | nonliving(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f118]) ). cnf(c_1,plain, ( animate(X0_$i,X1_$i) | ~ human_person(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f104]) ). cnf(c_30,plain, ( ~ animate(X0_$i,X1_$i) | ~ nonliving(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f133]) ). cnf(c_96,plain, ( ~ human_person(X0_$i,X1_$i) | ~ nonliving(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_1,c_30]) ). cnf(c_228,plain, ( ~ human_person(X0_$i,X1_$i) | ~ object(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_15,c_96]) ). cnf(c_258,plain, ( ~ woman(X0_$i,X1_$i) | ~ object(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_6,c_228]) ). cnf(c_300,plain, ( ~ woman(X0_$i,X1_$i) | ~ shake_beverage(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_196,c_258]) ). cnf(c_482,plain, ( ~ woman(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) | ~ shake_beverage(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) ), inference(subtyping,[status(esa)],[c_300]) ). cnf(c_43,negated_conjecture, ( shake_beverage(sK0,sK3) ), inference(cnf_transformation,[],[f145]) ). cnf(c_488,negated_conjecture, ( shake_beverage(sK0,sK3) ), inference(subtyping,[status(esa)],[c_43]) ). cnf(c_575,plain, ( ~ woman(sK0,sK3) ), inference(resolution,[status(thm)],[c_482,c_488]) ). cnf(c_13,plain, ( ~ forename(X0_$i,X1_$i) | relname(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f116]) ). cnf(c_12,plain, ( relation(X0_$i,X1_$i) | ~ relname(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f115]) ). cnf(c_11,plain, ( abstraction(X0_$i,X1_$i) | ~ relation(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f114]) ). cnf(c_146,plain, ( abstraction(X0_$i,X1_$i) | ~ relname(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_12,c_11]) ). cnf(c_156,plain, ( ~ forename(X0_$i,X1_$i) | abstraction(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_13,c_146]) ). cnf(c_17,plain, ( ~ entity(X0_$i,X1_$i) | specific(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f120]) ). cnf(c_9,plain, ( ~ abstraction(X0_$i,X1_$i) | general(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f112]) ). cnf(c_34,plain, ( ~ general(X0_$i,X1_$i) | ~ specific(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f137]) ). cnf(c_126,plain, ( ~ abstraction(X0_$i,X1_$i) | ~ specific(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_9,c_34]) ). cnf(c_246,plain, ( ~ entity(X0_$i,X1_$i) | ~ abstraction(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_17,c_126]) ). cnf(c_328,plain, ( ~ entity(X0_$i,X1_$i) | ~ forename(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_156,c_246]) ). cnf(c_479,plain, ( ~ entity(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) | ~ forename(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) ), inference(subtyping,[status(esa)],[c_328]) ). cnf(c_487,negated_conjecture, ( forename(sK0,sK2) ), inference(subtyping,[status(esa)],[c_44]) ). cnf(c_566,plain, ( ~ entity(sK0,sK2) ), inference(resolution,[status(thm)],[c_479,c_487]) ). cnf(c_5,plain, ( ~ human_person(X0_$i,X1_$i) | organism(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f108]) ). cnf(c_4,plain, ( ~ organism(X0_$i,X1_$i) | entity(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f107]) ). cnf(c_218,plain, ( ~ human_person(X0_$i,X1_$i) | entity(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_5,c_4]) ). cnf(c_266,plain, ( ~ woman(X0_$i,X1_$i) | entity(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_6,c_218]) ). cnf(c_483,plain, ( ~ woman(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) | entity(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) ), inference(subtyping,[status(esa)],[c_266]) ). cnf(c_568,plain, ( ~ woman(sK0,sK2) ), inference(resolution,[status(thm)],[c_566,c_483]) ). cnf(c_27,plain, ( ~ event(X0_$i,X1_$i) | eventuality(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f130]) ). cnf(c_26,plain, ( specific(X0_$i,X1_$i) | ~ eventuality(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f129]) ). cnf(c_238,plain, ( ~ abstraction(X0_$i,X1_$i) | ~ eventuality(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_26,c_126]) ). cnf(c_336,plain, ( ~ forename(X0_$i,X1_$i) | ~ eventuality(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_156,c_238]) ). cnf(c_350,plain, ( ~ forename(X0_$i,X1_$i) | ~ event(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_27,c_336]) ). cnf(c_478,plain, ( ~ forename(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) | ~ event(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) ), inference(subtyping,[status(esa)],[c_350]) ). cnf(c_42,negated_conjecture, ( event(sK0,sK4) ), inference(cnf_transformation,[],[f146]) ). cnf(c_489,negated_conjecture, ( event(sK0,sK4) ), inference(subtyping,[status(esa)],[c_42]) ). cnf(c_562,plain, ( ~ forename(sK0,sK4) ), inference(resolution,[status(thm)],[c_478,c_489]) ). cnf(c_25,plain, ( ~ eventuality(X0_$i,X1_$i) | nonexistent(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f128]) ). cnf(c_16,plain, ( ~ entity(X0_$i,X1_$i) | existent(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f119]) ). cnf(c_31,plain, ( ~ existent(X0_$i,X1_$i) | ~ nonexistent(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f134]) ). cnf(c_166,plain, ( ~ entity(X0_$i,X1_$i) | ~ nonexistent(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_16,c_31]) ). cnf(c_206,plain, ( ~ entity(X0_$i,X1_$i) | ~ eventuality(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_25,c_166]) ). cnf(c_366,plain, ( ~ entity(X0_$i,X1_$i) | ~ event(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_27,c_206]) ). cnf(c_476,plain, ( ~ entity(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) | ~ event(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) ), inference(subtyping,[status(esa)],[c_366]) ). cnf(c_549,plain, ( ~ entity(sK0,sK4) ), inference(resolution,[status(thm)],[c_476,c_489]) ). cnf(c_551,plain, ( ~ woman(sK0,sK4) ), inference(resolution,[status(thm)],[c_549,c_483]) ). cnf(c_18,plain, ( entity(X0_$i,X1_$i) | ~ object(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f121]) ). cnf(c_308,plain, ( entity(X0_$i,X1_$i) | ~ shake_beverage(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_196,c_18]) ). cnf(c_481,plain, ( entity(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) | ~ shake_beverage(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) ), inference(subtyping,[status(esa)],[c_308]) ). cnf(c_537,plain, ( entity(sK0,sK3) ), inference(resolution,[status(thm)],[c_481,c_488]) ). cnf(c_509,plain, ( ~ nonreflexive(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) | nonreflexive(X0_$$iProver_event_1_$i,X1_$$iProver_event_2_$i) | X1_$$iProver_event_2_$i != X0_$$iProver_event_2_$i ), theory(equality) ). cnf(c_505,plain, ( ~ order(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) | order(X0_$$iProver_event_1_$i,X1_$$iProver_event_2_$i) | X1_$$iProver_event_2_$i != X0_$$iProver_event_2_$i ), theory(equality) ). cnf(c_504,plain, ( ~ event(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) | event(X0_$$iProver_event_1_$i,X1_$$iProver_event_2_$i) | X1_$$iProver_event_2_$i != X0_$$iProver_event_2_$i ), theory(equality) ). cnf(c_503,plain, ( ~ shake_beverage(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) | shake_beverage(X0_$$iProver_event_1_$i,X1_$$iProver_event_2_$i) | X1_$$iProver_event_2_$i != X0_$$iProver_event_2_$i ), theory(equality) ). cnf(c_502,plain, ( ~ mia_forename(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) | mia_forename(X0_$$iProver_event_1_$i,X1_$$iProver_event_2_$i) | X1_$$iProver_event_2_$i != X0_$$iProver_event_2_$i ), theory(equality) ). cnf(c_501,plain, ( ~ forename(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) | forename(X0_$$iProver_event_1_$i,X1_$$iProver_event_2_$i) | X1_$$iProver_event_2_$i != X0_$$iProver_event_2_$i ), theory(equality) ). cnf(c_500,plain, ( ~ woman(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) | woman(X0_$$iProver_event_1_$i,X1_$$iProver_event_2_$i) | X1_$$iProver_event_2_$i != X0_$$iProver_event_2_$i ), theory(equality) ). cnf(c_7,plain, ( forename(X0_$i,X1_$i) | ~ mia_forename(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f110]) ). cnf(c_497,plain, ( forename(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) | ~ mia_forename(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) ), inference(subtyping,[status(esa)],[c_7]) ). cnf(c_23,plain, ( event(X0_$i,X1_$i) | ~ order(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f126]) ). cnf(c_496,plain, ( event(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) | ~ order(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) ), inference(subtyping,[status(esa)],[c_23]) ). cnf(c_10,plain, ( ~ abstraction(X0_$i,X1_$i) | nonhuman(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f113]) ). cnf(c_2,plain, ( ~ human_person(X0_$i,X1_$i) | human(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f105]) ). cnf(c_32,plain, ( ~ human(X0_$i,X1_$i) | ~ nonhuman(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f135]) ). cnf(c_106,plain, ( ~ human_person(X0_$i,X1_$i) | ~ nonhuman(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_2,c_32]) ). cnf(c_136,plain, ( ~ human_person(X0_$i,X1_$i) | ~ abstraction(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_10,c_106]) ). cnf(c_274,plain, ( ~ woman(X0_$i,X1_$i) | ~ abstraction(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_6,c_136]) ). cnf(c_320,plain, ( ~ woman(X0_$i,X1_$i) | ~ forename(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_156,c_274]) ). cnf(c_480,plain, ( ~ woman(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) | ~ forename(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) ), inference(subtyping,[status(esa)],[c_320]) ). cnf(c_24,plain, ( unisex(X0_$i,X1_$i) | ~ eventuality(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f127]) ). cnf(c_0,plain, ( female(X0_$i,X1_$i) | ~ woman(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f103]) ). cnf(c_35,plain, ( ~ female(X0_$i,X1_$i) | ~ unisex(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f138]) ). cnf(c_86,plain, ( ~ woman(X0_$i,X1_$i) | ~ unisex(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_0,c_35]) ). cnf(c_288,plain, ( ~ woman(X0_$i,X1_$i) | ~ eventuality(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_24,c_86]) ). cnf(c_358,plain, ( ~ woman(X0_$i,X1_$i) | ~ event(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_27,c_288]) ). cnf(c_477,plain, ( ~ woman(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) | ~ event(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) ), inference(subtyping,[status(esa)],[c_358]) ). cnf(c_46,negated_conjecture, ( woman(sK0,sK1) ), inference(cnf_transformation,[],[f142]) ). cnf(c_485,negated_conjecture, ( woman(sK0,sK1) ), inference(subtyping,[status(esa)],[c_46]) ). cnf(c_45,negated_conjecture, ( mia_forename(sK0,sK2) ), inference(cnf_transformation,[],[f143]) ). cnf(c_486,negated_conjecture, ( mia_forename(sK0,sK2) ), inference(subtyping,[status(esa)],[c_45]) ). cnf(c_40,negated_conjecture, ( patient(sK0,sK4,sK3) ), inference(cnf_transformation,[],[f148]) ). cnf(c_491,negated_conjecture, ( patient(sK0,sK4,sK3) ), inference(subtyping,[status(esa)],[c_40]) ). cnf(c_492,negated_conjecture, ( nonreflexive(sK0,sK4) ), inference(subtyping,[status(esa)],[c_39]) ). cnf(c_38,negated_conjecture, ( order(sK0,sK4) ), inference(cnf_transformation,[],[f150]) ). cnf(c_493,negated_conjecture, ( order(sK0,sK4) ), inference(subtyping,[status(esa)],[c_38]) ). % SZS output end Saturation
% SZS status Satisfiable % SZS output start Saturation fof(f9,axiom,( ! [X0,X1] : ((message(sent(X0,b,pair(X0,X1))) & fresh_to_b(X1)) => (message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X0,X1,generate_expiration_time(X1)),bt)))) & b_stored(pair(X0,X1))))), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f39,plain,( ! [X0,X1] : ((message(sent(X0,b,pair(X0,X1))) & fresh_to_b(X1)) => message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X0,X1,generate_expiration_time(X1)),bt)))))), inference(pure_predicate_removal,[],[f9])). fof(f44,plain,( ! [X0,X1] : ((~message(sent(X0,b,pair(X0,X1))) | ~fresh_to_b(X1)) | message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X0,X1,generate_expiration_time(X1)),bt)))))), inference(ennf_transformation,[],[f39])). fof(f45,plain,( ! [X0,X1] : (~message(sent(X0,b,pair(X0,X1))) | ~fresh_to_b(X1) | message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X0,X1,generate_expiration_time(X1)),bt)))))), inference(flattening,[],[f44])). fof(f75,plain,( ( ! [X0,X1] : (message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X0,X1,generate_expiration_time(X1)),bt)))) | ~fresh_to_b(X1) | ~message(sent(X0,b,pair(X0,X1)))) )), inference(cnf_transformation,[],[f45])). fof(f14,axiom,( ! [X0,X1,X2,X3,X4,X5,X6] : ((message(sent(X0,t,triple(X0,X1,encrypt(triple(X2,X3,X4),X5)))) & t_holds(key(X5,X0)) & t_holds(key(X6,X2)) & a_nonce(X3)) => message(sent(t,X2,triple(encrypt(quadruple(X0,X3,generate_key(X3),X4),X6),encrypt(triple(X2,generate_key(X3),X4),X5),X1))))), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f46,plain,( ! [X0,X1,X2,X3,X4,X5,X6] : ((~message(sent(X0,t,triple(X0,X1,encrypt(triple(X2,X3,X4),X5)))) | ~t_holds(key(X5,X0)) | ~t_holds(key(X6,X2)) | ~a_nonce(X3)) | message(sent(t,X2,triple(encrypt(quadruple(X0,X3,generate_key(X3),X4),X6),encrypt(triple(X2,generate_key(X3),X4),X5),X1))))), inference(ennf_transformation,[],[f14])). fof(f47,plain,( ! [X0,X1,X2,X3,X4,X5,X6] : (~message(sent(X0,t,triple(X0,X1,encrypt(triple(X2,X3,X4),X5)))) | ~t_holds(key(X5,X0)) | ~t_holds(key(X6,X2)) | ~a_nonce(X3) | message(sent(t,X2,triple(encrypt(quadruple(X0,X3,generate_key(X3),X4),X6),encrypt(triple(X2,generate_key(X3),X4),X5),X1))))), inference(flattening,[],[f46])). fof(f79,plain,( ( ! [X6,X4,X2,X0,X5,X3,X1] : (message(sent(t,X2,triple(encrypt(quadruple(X0,X3,generate_key(X3),X4),X6),encrypt(triple(X2,generate_key(X3),X4),X5),X1))) | ~a_nonce(X3) | ~t_holds(key(X6,X2)) | ~t_holds(key(X5,X0)) | ~message(sent(X0,t,triple(X0,X1,encrypt(triple(X2,X3,X4),X5))))) )), inference(cnf_transformation,[],[f47])). fof(f15,axiom,( ! [X0,X1,X2] : (message(sent(X0,X1,X2)) => intruder_message(X2))), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f48,plain,( ! [X0,X1,X2] : (~message(sent(X0,X1,X2)) | intruder_message(X2))), inference(ennf_transformation,[],[f15])). fof(f80,plain,( ( ! [X2,X0,X1] : (intruder_message(X2) | ~message(sent(X0,X1,X2))) )), inference(cnf_transformation,[],[f48])). fof(f16,axiom,( ! [X0,X1] : (intruder_message(pair(X0,X1)) => (intruder_message(X0) & intruder_message(X1)))), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f49,plain,( ! [X0,X1] : (~intruder_message(pair(X0,X1)) | (intruder_message(X0) & intruder_message(X1)))), inference(ennf_transformation,[],[f16])). fof(f82,plain,( ( ! [X0,X1] : (intruder_message(X1) | ~intruder_message(pair(X0,X1))) )), inference(cnf_transformation,[],[f49])). fof(f81,plain,( ( ! [X0,X1] : (intruder_message(X0) | ~intruder_message(pair(X0,X1))) )), inference(cnf_transformation,[],[f49])). fof(f17,axiom,( ! [X0,X1,X2] : (intruder_message(triple(X0,X1,X2)) => (intruder_message(X0) & intruder_message(X1) & intruder_message(X2)))), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f50,plain,( ! [X0,X1,X2] : (~intruder_message(triple(X0,X1,X2)) | (intruder_message(X0) & intruder_message(X1) & intruder_message(X2)))), inference(ennf_transformation,[],[f17])). fof(f85,plain,( ( ! [X2,X0,X1] : (intruder_message(X2) | ~intruder_message(triple(X0,X1,X2))) )), inference(cnf_transformation,[],[f50])). fof(f84,plain,( ( ! [X2,X0,X1] : (intruder_message(X1) | ~intruder_message(triple(X0,X1,X2))) )), inference(cnf_transformation,[],[f50])). fof(f83,plain,( ( ! [X2,X0,X1] : (intruder_message(X0) | ~intruder_message(triple(X0,X1,X2))) )), inference(cnf_transformation,[],[f50])). fof(f18,axiom,( ! [X0,X1,X2,X3] : (intruder_message(quadruple(X0,X1,X2,X3)) => (intruder_message(X0) & intruder_message(X1) & intruder_message(X2) & intruder_message(X3)))), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f51,plain,( ! [X0,X1,X2,X3] : (~intruder_message(quadruple(X0,X1,X2,X3)) | (intruder_message(X0) & intruder_message(X1) & intruder_message(X2) & intruder_message(X3)))), inference(ennf_transformation,[],[f18])). fof(f89,plain,( ( ! [X2,X0,X3,X1] : (intruder_message(X3) | ~intruder_message(quadruple(X0,X1,X2,X3))) )), inference(cnf_transformation,[],[f51])). fof(f88,plain,( ( ! [X2,X0,X3,X1] : (intruder_message(X2) | ~intruder_message(quadruple(X0,X1,X2,X3))) )), inference(cnf_transformation,[],[f51])). fof(f87,plain,( ( ! [X2,X0,X3,X1] : (intruder_message(X1) | ~intruder_message(quadruple(X0,X1,X2,X3))) )), inference(cnf_transformation,[],[f51])). fof(f86,plain,( ( ! [X2,X0,X3,X1] : (intruder_message(X0) | ~intruder_message(quadruple(X0,X1,X2,X3))) )), inference(cnf_transformation,[],[f51])). fof(f19,axiom,( ! [X0,X1] : ((intruder_message(X0) & intruder_message(X1)) => intruder_message(pair(X0,X1)))), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f52,plain,( ! [X0,X1] : ((~intruder_message(X0) | ~intruder_message(X1)) | intruder_message(pair(X0,X1)))), inference(ennf_transformation,[],[f19])). fof(f53,plain,( ! [X0,X1] : (~intruder_message(X0) | ~intruder_message(X1) | intruder_message(pair(X0,X1)))), inference(flattening,[],[f52])). fof(f90,plain,( ( ! [X0,X1] : (intruder_message(pair(X0,X1)) | ~intruder_message(X1) | ~intruder_message(X0)) )), inference(cnf_transformation,[],[f53])). fof(f20,axiom,( ! [X0,X1,X2] : ((intruder_message(X0) & intruder_message(X1) & intruder_message(X2)) => intruder_message(triple(X0,X1,X2)))), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f54,plain,( ! [X0,X1,X2] : ((~intruder_message(X0) | ~intruder_message(X1) | ~intruder_message(X2)) | intruder_message(triple(X0,X1,X2)))), inference(ennf_transformation,[],[f20])). fof(f55,plain,( ! [X0,X1,X2] : (~intruder_message(X0) | ~intruder_message(X1) | ~intruder_message(X2) | intruder_message(triple(X0,X1,X2)))), inference(flattening,[],[f54])). fof(f91,plain,( ( ! [X2,X0,X1] : (intruder_message(triple(X0,X1,X2)) | ~intruder_message(X2) | ~intruder_message(X1) | ~intruder_message(X0)) )), inference(cnf_transformation,[],[f55])). fof(f21,axiom,( ! [X0,X1,X2,X3] : ((intruder_message(X0) & intruder_message(X1) & intruder_message(X2) & intruder_message(X3)) => intruder_message(quadruple(X0,X1,X2,X3)))), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f56,plain,( ! [X0,X1,X2,X3] : ((~intruder_message(X0) | ~intruder_message(X1) | ~intruder_message(X2) | ~intruder_message(X3)) | intruder_message(quadruple(X0,X1,X2,X3)))), inference(ennf_transformation,[],[f21])). fof(f57,plain,( ! [X0,X1,X2,X3] : (~intruder_message(X0) | ~intruder_message(X1) | ~intruder_message(X2) | ~intruder_message(X3) | intruder_message(quadruple(X0,X1,X2,X3)))), inference(flattening,[],[f56])). fof(f92,plain,( ( ! [X2,X0,X3,X1] : (intruder_message(quadruple(X0,X1,X2,X3)) | ~intruder_message(X3) | ~intruder_message(X2) | ~intruder_message(X1) | ~intruder_message(X0)) )), inference(cnf_transformation,[],[f57])). fof(f23,axiom,( ! [X0,X1,X2] : ((intruder_message(X0) & party_of_protocol(X1) & party_of_protocol(X2)) => message(sent(X1,X2,X0)))), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f60,plain,( ! [X0,X1,X2] : ((~intruder_message(X0) | ~party_of_protocol(X1) | ~party_of_protocol(X2)) | message(sent(X1,X2,X0)))), inference(ennf_transformation,[],[f23])). fof(f61,plain,( ! [X0,X1,X2] : (~intruder_message(X0) | ~party_of_protocol(X1) | ~party_of_protocol(X2) | message(sent(X1,X2,X0)))), inference(flattening,[],[f60])). fof(f94,plain,( ( ! [X2,X0,X1] : (message(sent(X1,X2,X0)) | ~party_of_protocol(X2) | ~party_of_protocol(X1) | ~intruder_message(X0)) )), inference(cnf_transformation,[],[f61])). fof(f27,axiom,( ! [X0] : ~a_nonce(generate_key(X0))), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f36,plain,( ! [X0] : ~a_nonce(generate_key(X0))), inference(flattening,[],[f27])). fof(f98,plain,( ( ! [X0] : (~a_nonce(generate_key(X0))) )), inference(cnf_transformation,[],[f36])). fof(f28,axiom,( ! [X0] : (a_nonce(generate_expiration_time(X0)) & a_nonce(generate_b_nonce(X0)))), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f100,plain,( ( ! [X0] : (a_nonce(generate_b_nonce(X0))) )), inference(cnf_transformation,[],[f28])). fof(f99,plain,( ( ! [X0] : (a_nonce(generate_expiration_time(X0))) )), inference(cnf_transformation,[],[f28])). fof(f32,axiom,( ! [X0] : (fresh_intruder_nonce(X0) => fresh_intruder_nonce(generate_intruder_nonce(X0)))), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f67,plain,( ! [X0] : (~fresh_intruder_nonce(X0) | fresh_intruder_nonce(generate_intruder_nonce(X0)))), inference(ennf_transformation,[],[f32])). fof(f104,plain,( ( ! [X0] : (fresh_intruder_nonce(generate_intruder_nonce(X0)) | ~fresh_intruder_nonce(X0)) )), inference(cnf_transformation,[],[f67])). fof(f33,axiom,( ! [X0] : (fresh_intruder_nonce(X0) => (fresh_to_b(X0) & intruder_message(X0)))), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f68,plain,( ! [X0] : (~fresh_intruder_nonce(X0) | (fresh_to_b(X0) & intruder_message(X0)))), inference(ennf_transformation,[],[f33])). fof(f106,plain,( ( ! [X0] : (intruder_message(X0) | ~fresh_intruder_nonce(X0)) )), inference(cnf_transformation,[],[f68])). fof(f105,plain,( ( ! [X0] : (fresh_to_b(X0) | ~fresh_intruder_nonce(X0)) )), inference(cnf_transformation,[],[f68])). fof(f4,axiom,( a_stored(pair(b,an_a_nonce))), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f71,plain,( a_stored(pair(b,an_a_nonce))), inference(cnf_transformation,[],[f4])). fof(f5,axiom,( ! [X0,X1,X2,X3,X4,X5] : ((message(sent(t,a,triple(encrypt(quadruple(X4,X5,X2,X1),at),X3,X0))) & a_stored(pair(X4,X5))) => (message(sent(a,X4,pair(X3,encrypt(X0,X2)))) & a_holds(key(X2,X4))))), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f40,plain,( ! [X0,X1,X2,X3,X4,X5] : ((message(sent(t,a,triple(encrypt(quadruple(X4,X5,X2,X1),at),X3,X0))) & a_stored(pair(X4,X5))) => message(sent(a,X4,pair(X3,encrypt(X0,X2)))))), inference(pure_predicate_removal,[],[f5])). fof(f42,plain,( ! [X0,X1,X2,X3,X4,X5] : ((~message(sent(t,a,triple(encrypt(quadruple(X4,X5,X2,X1),at),X3,X0))) | ~a_stored(pair(X4,X5))) | message(sent(a,X4,pair(X3,encrypt(X0,X2)))))), inference(ennf_transformation,[],[f40])). fof(f43,plain,( ! [X0,X1,X2,X3,X4,X5] : (~message(sent(t,a,triple(encrypt(quadruple(X4,X5,X2,X1),at),X3,X0))) | ~a_stored(pair(X4,X5)) | message(sent(a,X4,pair(X3,encrypt(X0,X2)))))), inference(flattening,[],[f42])). fof(f72,plain,( ( ! [X4,X2,X0,X5,X3,X1] : (message(sent(a,X4,pair(X3,encrypt(X0,X2)))) | ~a_stored(pair(X4,X5)) | ~message(sent(t,a,triple(encrypt(quadruple(X4,X5,X2,X1),at),X3,X0)))) )), inference(cnf_transformation,[],[f43])). fof(f25,axiom,( ! [X0,X1,X2] : ((intruder_message(X0) & intruder_holds(key(X1,X2)) & party_of_protocol(X2)) => intruder_message(encrypt(X0,X1)))), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f64,plain,( ! [X0,X1,X2] : ((~intruder_message(X0) | ~intruder_holds(key(X1,X2)) | ~party_of_protocol(X2)) | intruder_message(encrypt(X0,X1)))), inference(ennf_transformation,[],[f25])). fof(f65,plain,( ! [X0,X1,X2] : (~intruder_message(X0) | ~intruder_holds(key(X1,X2)) | ~party_of_protocol(X2) | intruder_message(encrypt(X0,X1)))), inference(flattening,[],[f64])). fof(f96,plain,( ( ! [X2,X0,X1] : (intruder_message(encrypt(X0,X1)) | ~party_of_protocol(X2) | ~intruder_holds(key(X1,X2)) | ~intruder_message(X0)) )), inference(cnf_transformation,[],[f65])). fof(f24,axiom,( ! [X1,X2] : ((intruder_message(X1) & party_of_protocol(X2)) => intruder_holds(key(X1,X2)))), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f35,plain,( ! [X0,X1] : ((intruder_message(X0) & party_of_protocol(X1)) => intruder_holds(key(X0,X1)))), inference(rectify,[],[f24])). fof(f62,plain,( ! [X0,X1] : ((~intruder_message(X0) | ~party_of_protocol(X1)) | intruder_holds(key(X0,X1)))), inference(ennf_transformation,[],[f35])). fof(f63,plain,( ! [X0,X1] : (~intruder_message(X0) | ~party_of_protocol(X1) | intruder_holds(key(X0,X1)))), inference(flattening,[],[f62])). fof(f95,plain,( ( ! [X0,X1] : (intruder_holds(key(X0,X1)) | ~party_of_protocol(X1) | ~intruder_message(X0)) )), inference(cnf_transformation,[],[f63])). fof(f31,axiom,( fresh_intruder_nonce(an_intruder_nonce)), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f103,plain,( fresh_intruder_nonce(an_intruder_nonce)), inference(cnf_transformation,[],[f31])). fof(f26,axiom,( a_nonce(an_a_nonce)), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f97,plain,( a_nonce(an_a_nonce)), inference(cnf_transformation,[],[f26])). fof(f13,axiom,( party_of_protocol(t)), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f78,plain,( party_of_protocol(t)), inference(cnf_transformation,[],[f13])). fof(f12,axiom,( t_holds(key(bt,b))), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f77,plain,( t_holds(key(bt,b))), inference(cnf_transformation,[],[f12])). fof(f11,axiom,( t_holds(key(at,a))), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f76,plain,( t_holds(key(at,a))), inference(cnf_transformation,[],[f11])). fof(f8,axiom,( fresh_to_b(an_a_nonce)), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f74,plain,( fresh_to_b(an_a_nonce)), inference(cnf_transformation,[],[f8])). fof(f7,axiom,( party_of_protocol(b)), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f73,plain,( party_of_protocol(b)), inference(cnf_transformation,[],[f7])). fof(f3,axiom,( message(sent(a,b,pair(a,an_a_nonce)))), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f70,plain,( message(sent(a,b,pair(a,an_a_nonce)))), inference(cnf_transformation,[],[f3])). fof(f2,axiom,( party_of_protocol(a)), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f69,plain,( party_of_protocol(a)), inference(cnf_transformation,[],[f2])). cnf(c_6,plain, ( message(sent(b,t,triple(b,generate_b_nonce(X0_$i),encrypt(triple(X1_$i,X0_$i,generate_expiration_time(X0_$i)),bt)))) | ~ message(sent(X1_$i,b,pair(X1_$i,X0_$i))) | ~ fresh_to_b(X0_$i) ), inference(cnf_transformation,[],[f75]) ). cnf(c_233,plain, ( message(sent(b,t,triple(b,generate_b_nonce(X0_$$iProver_fresh_intruder_nonce_1_$i),encrypt(triple(X1_$$iProver_fresh_intruder_nonce_1_$i,X0_$$iProver_fresh_intruder_nonce_1_$i,generate_expiration_time(X0_$$iProver_fresh_intruder_nonce_1_$i)),bt)))) | ~ message(sent(X1_$$iProver_fresh_intruder_nonce_1_$i,b,pair(X1_$$iProver_fresh_intruder_nonce_1_$i,X0_$$iProver_fresh_intruder_nonce_1_$i))) | ~ fresh_to_b(X0_$$iProver_fresh_intruder_nonce_1_$i) ), inference(subtyping,[status(esa)],[c_6]) ). cnf(c_10,plain, ( message(sent(t,X0_$i,triple(encrypt(quadruple(X1_$i,X2_$i,generate_key(X2_$i),X3_$i),X4_$i),encrypt(triple(X0_$i,generate_key(X2_$i),X3_$i),X5_$i),X6_$i))) | ~ message(sent(X1_$i,t,triple(X1_$i,X6_$i,encrypt(triple(X0_$i,X2_$i,X3_$i),X5_$i)))) | ~ t_holds(key(X4_$i,X0_$i)) | ~ t_holds(key(X5_$i,X1_$i)) | ~ a_nonce(X2_$i) ), inference(cnf_transformation,[],[f79]) ). cnf(c_229,plain, ( message(sent(t,X0_$$iProver_fresh_intruder_nonce_1_$i,triple(encrypt(quadruple(X1_$$iProver_fresh_intruder_nonce_1_$i,X2_$$iProver_fresh_intruder_nonce_1_$i,generate_key(X2_$$iProver_fresh_intruder_nonce_1_$i),X3_$$iProver_fresh_intruder_nonce_1_$i),X4_$$iProver_fresh_intruder_nonce_1_$i),encrypt(triple(X0_$$iProver_fresh_intruder_nonce_1_$i,generate_key(X2_$$iProver_fresh_intruder_nonce_1_$i),X3_$$iProver_fresh_intruder_nonce_1_$i),X5_$$iProver_fresh_intruder_nonce_1_$i),X6_$$iProver_fresh_intruder_nonce_1_$i))) | ~ message(sent(X1_$$iProver_fresh_intruder_nonce_1_$i,t,triple(X1_$$iProver_fresh_intruder_nonce_1_$i,X6_$$iProver_fresh_intruder_nonce_1_$i,encrypt(triple(X0_$$iProver_fresh_intruder_nonce_1_$i,X2_$$iProver_fresh_intruder_nonce_1_$i,X3_$$iProver_fresh_intruder_nonce_1_$i),X5_$$iProver_fresh_intruder_nonce_1_$i)))) | ~ t_holds(key(X4_$$iProver_fresh_intruder_nonce_1_$i,X0_$$iProver_fresh_intruder_nonce_1_$i)) | ~ t_holds(key(X5_$$iProver_fresh_intruder_nonce_1_$i,X1_$$iProver_fresh_intruder_nonce_1_$i)) | ~ a_nonce(X2_$$iProver_fresh_intruder_nonce_1_$i) ), inference(subtyping,[status(esa)],[c_10]) ). cnf(c_11,plain, ( ~ message(sent(X0_$i,X1_$i,X2_$i)) | intruder_message(X2_$i) ), inference(cnf_transformation,[],[f80]) ). cnf(c_228,plain, ( ~ message(sent(X0_$$iProver_fresh_intruder_nonce_1_$i,X1_$$iProver_fresh_intruder_nonce_1_$i,X2_$$iProver_fresh_intruder_nonce_1_$i)) | intruder_message(X2_$$iProver_fresh_intruder_nonce_1_$i) ), inference(subtyping,[status(esa)],[c_11]) ). cnf(c_12,plain, ( ~ intruder_message(pair(X0_$i,X1_$i)) | intruder_message(X1_$i) ), inference(cnf_transformation,[],[f82]) ). cnf(c_227,plain, ( ~ intruder_message(pair(X0_$$iProver_fresh_intruder_nonce_1_$i,X1_$$iProver_fresh_intruder_nonce_1_$i)) | intruder_message(X1_$$iProver_fresh_intruder_nonce_1_$i) ), inference(subtyping,[status(esa)],[c_12]) ). cnf(c_13,plain, ( ~ intruder_message(pair(X0_$i,X1_$i)) | intruder_message(X0_$i) ), inference(cnf_transformation,[],[f81]) ). cnf(c_226,plain, ( ~ intruder_message(pair(X0_$$iProver_fresh_intruder_nonce_1_$i,X1_$$iProver_fresh_intruder_nonce_1_$i)) | intruder_message(X0_$$iProver_fresh_intruder_nonce_1_$i) ), inference(subtyping,[status(esa)],[c_13]) ). cnf(c_14,plain, ( ~ intruder_message(triple(X0_$i,X1_$i,X2_$i)) | intruder_message(X2_$i) ), inference(cnf_transformation,[],[f85]) ). cnf(c_225,plain, ( ~ intruder_message(triple(X0_$$iProver_fresh_intruder_nonce_1_$i,X1_$$iProver_fresh_intruder_nonce_1_$i,X2_$$iProver_fresh_intruder_nonce_1_$i)) | intruder_message(X2_$$iProver_fresh_intruder_nonce_1_$i) ), inference(subtyping,[status(esa)],[c_14]) ). cnf(c_15,plain, ( ~ intruder_message(triple(X0_$i,X1_$i,X2_$i)) | intruder_message(X1_$i) ), inference(cnf_transformation,[],[f84]) ). cnf(c_224,plain, ( ~ intruder_message(triple(X0_$$iProver_fresh_intruder_nonce_1_$i,X1_$$iProver_fresh_intruder_nonce_1_$i,X2_$$iProver_fresh_intruder_nonce_1_$i)) | intruder_message(X1_$$iProver_fresh_intruder_nonce_1_$i) ), inference(subtyping,[status(esa)],[c_15]) ). cnf(c_16,plain, ( ~ intruder_message(triple(X0_$i,X1_$i,X2_$i)) | intruder_message(X0_$i) ), inference(cnf_transformation,[],[f83]) ). cnf(c_223,plain, ( ~ intruder_message(triple(X0_$$iProver_fresh_intruder_nonce_1_$i,X1_$$iProver_fresh_intruder_nonce_1_$i,X2_$$iProver_fresh_intruder_nonce_1_$i)) | intruder_message(X0_$$iProver_fresh_intruder_nonce_1_$i) ), inference(subtyping,[status(esa)],[c_16]) ). cnf(c_17,plain, ( ~ intruder_message(quadruple(X0_$i,X1_$i,X2_$i,X3_$i)) | intruder_message(X3_$i) ), inference(cnf_transformation,[],[f89]) ). cnf(c_222,plain, ( ~ intruder_message(quadruple(X0_$$iProver_fresh_intruder_nonce_1_$i,X1_$$iProver_fresh_intruder_nonce_1_$i,X2_$$iProver_fresh_intruder_nonce_1_$i,X3_$$iProver_fresh_intruder_nonce_1_$i)) | intruder_message(X3_$$iProver_fresh_intruder_nonce_1_$i) ), inference(subtyping,[status(esa)],[c_17]) ). cnf(c_18,plain, ( ~ intruder_message(quadruple(X0_$i,X1_$i,X2_$i,X3_$i)) | intruder_message(X2_$i) ), inference(cnf_transformation,[],[f88]) ). cnf(c_221,plain, ( ~ intruder_message(quadruple(X0_$$iProver_fresh_intruder_nonce_1_$i,X1_$$iProver_fresh_intruder_nonce_1_$i,X2_$$iProver_fresh_intruder_nonce_1_$i,X3_$$iProver_fresh_intruder_nonce_1_$i)) | intruder_message(X2_$$iProver_fresh_intruder_nonce_1_$i) ), inference(subtyping,[status(esa)],[c_18]) ). cnf(c_19,plain, ( ~ intruder_message(quadruple(X0_$i,X1_$i,X2_$i,X3_$i)) | intruder_message(X1_$i) ), inference(cnf_transformation,[],[f87]) ). cnf(c_220,plain, ( ~ intruder_message(quadruple(X0_$$iProver_fresh_intruder_nonce_1_$i,X1_$$iProver_fresh_intruder_nonce_1_$i,X2_$$iProver_fresh_intruder_nonce_1_$i,X3_$$iProver_fresh_intruder_nonce_1_$i)) | intruder_message(X1_$$iProver_fresh_intruder_nonce_1_$i) ), inference(subtyping,[status(esa)],[c_19]) ). cnf(c_20,plain, ( ~ intruder_message(quadruple(X0_$i,X1_$i,X2_$i,X3_$i)) | intruder_message(X0_$i) ), inference(cnf_transformation,[],[f86]) ). cnf(c_219,plain, ( ~ intruder_message(quadruple(X0_$$iProver_fresh_intruder_nonce_1_$i,X1_$$iProver_fresh_intruder_nonce_1_$i,X2_$$iProver_fresh_intruder_nonce_1_$i,X3_$$iProver_fresh_intruder_nonce_1_$i)) | intruder_message(X0_$$iProver_fresh_intruder_nonce_1_$i) ), inference(subtyping,[status(esa)],[c_20]) ). cnf(c_21,plain, ( intruder_message(pair(X0_$i,X1_$i)) | ~ intruder_message(X1_$i) | ~ intruder_message(X0_$i) ), inference(cnf_transformation,[],[f90]) ). cnf(c_218,plain, ( intruder_message(pair(X0_$$iProver_fresh_intruder_nonce_1_$i,X1_$$iProver_fresh_intruder_nonce_1_$i)) | ~ intruder_message(X1_$$iProver_fresh_intruder_nonce_1_$i) | ~ intruder_message(X0_$$iProver_fresh_intruder_nonce_1_$i) ), inference(subtyping,[status(esa)],[c_21]) ). cnf(c_22,plain, ( intruder_message(triple(X0_$i,X1_$i,X2_$i)) | ~ intruder_message(X1_$i) | ~ intruder_message(X0_$i) | ~ intruder_message(X2_$i) ), inference(cnf_transformation,[],[f91]) ). cnf(c_217,plain, ( intruder_message(triple(X0_$$iProver_fresh_intruder_nonce_1_$i,X1_$$iProver_fresh_intruder_nonce_1_$i,X2_$$iProver_fresh_intruder_nonce_1_$i)) | ~ intruder_message(X1_$$iProver_fresh_intruder_nonce_1_$i) | ~ intruder_message(X0_$$iProver_fresh_intruder_nonce_1_$i) | ~ intruder_message(X2_$$iProver_fresh_intruder_nonce_1_$i) ), inference(subtyping,[status(esa)],[c_22]) ). cnf(c_23,plain, ( intruder_message(quadruple(X0_$i,X1_$i,X2_$i,X3_$i)) | ~ intruder_message(X1_$i) | ~ intruder_message(X0_$i) | ~ intruder_message(X3_$i) | ~ intruder_message(X2_$i) ), inference(cnf_transformation,[],[f92]) ). cnf(c_216,plain, ( intruder_message(quadruple(X0_$$iProver_fresh_intruder_nonce_1_$i,X1_$$iProver_fresh_intruder_nonce_1_$i,X2_$$iProver_fresh_intruder_nonce_1_$i,X3_$$iProver_fresh_intruder_nonce_1_$i)) | ~ intruder_message(X1_$$iProver_fresh_intruder_nonce_1_$i) | ~ intruder_message(X0_$$iProver_fresh_intruder_nonce_1_$i) | ~ intruder_message(X2_$$iProver_fresh_intruder_nonce_1_$i) | ~ intruder_message(X3_$$iProver_fresh_intruder_nonce_1_$i) ), inference(subtyping,[status(esa)],[c_23]) ). cnf(c_25,plain, ( ~ party_of_protocol(X0_$i) | ~ party_of_protocol(X1_$i) | message(sent(X1_$i,X0_$i,X2_$i)) | ~ intruder_message(X2_$i) ), inference(cnf_transformation,[],[f94]) ). cnf(c_215,plain, ( ~ party_of_protocol(X0_$$iProver_fresh_intruder_nonce_1_$i) | ~ party_of_protocol(X1_$$iProver_fresh_intruder_nonce_1_$i) | message(sent(X1_$$iProver_fresh_intruder_nonce_1_$i,X0_$$iProver_fresh_intruder_nonce_1_$i,X2_$$iProver_fresh_intruder_nonce_1_$i)) | ~ intruder_message(X2_$$iProver_fresh_intruder_nonce_1_$i) ), inference(subtyping,[status(esa)],[c_25]) ). cnf(c_29,plain, ( ~ a_nonce(generate_key(X0_$i)) ), inference(cnf_transformation,[],[f98]) ). cnf(c_213,plain, ( ~ a_nonce(generate_key(X0_$$iProver_fresh_intruder_nonce_1_$i)) ), inference(subtyping,[status(esa)],[c_29]) ). cnf(c_30,plain, ( a_nonce(generate_b_nonce(X0_$i)) ), inference(cnf_transformation,[],[f100]) ). cnf(c_212,plain, ( a_nonce(generate_b_nonce(X0_$$iProver_fresh_intruder_nonce_1_$i)) ), inference(subtyping,[status(esa)],[c_30]) ). cnf(c_31,plain, ( a_nonce(generate_expiration_time(X0_$i)) ), inference(cnf_transformation,[],[f99]) ). cnf(c_211,plain, ( a_nonce(generate_expiration_time(X0_$$iProver_fresh_intruder_nonce_1_$i)) ), inference(subtyping,[status(esa)],[c_31]) ). cnf(c_35,plain, ( fresh_intruder_nonce(generate_intruder_nonce(X0_$i)) | ~ fresh_intruder_nonce(X0_$i) ), inference(cnf_transformation,[],[f104]) ). cnf(c_209,plain, ( fresh_intruder_nonce(generate_intruder_nonce(X0_$$iProver_fresh_intruder_nonce_1_$i)) | ~ fresh_intruder_nonce(X0_$$iProver_fresh_intruder_nonce_1_$i) ), inference(subtyping,[status(esa)],[c_35]) ). cnf(c_36,plain, ( intruder_message(X0_$i) | ~ fresh_intruder_nonce(X0_$i) ), inference(cnf_transformation,[],[f106]) ). cnf(c_208,plain, ( intruder_message(X0_$$iProver_fresh_intruder_nonce_1_$i) | ~ fresh_intruder_nonce(X0_$$iProver_fresh_intruder_nonce_1_$i) ), inference(subtyping,[status(esa)],[c_36]) ). cnf(c_37,plain, ( fresh_to_b(X0_$i) | ~ fresh_intruder_nonce(X0_$i) ), inference(cnf_transformation,[],[f105]) ). cnf(c_207,plain, ( fresh_to_b(X0_$$iProver_fresh_intruder_nonce_1_$i) | ~ fresh_intruder_nonce(X0_$$iProver_fresh_intruder_nonce_1_$i) ), inference(subtyping,[status(esa)],[c_37]) ). cnf(c_2,plain, ( a_stored(pair(b,an_a_nonce)) ), inference(cnf_transformation,[],[f71]) ). cnf(c_3,plain, ( message(sent(a,X0_$i,pair(X1_$i,encrypt(X2_$i,X3_$i)))) | ~ message(sent(t,a,triple(encrypt(quadruple(X0_$i,X4_$i,X3_$i,X5_$i),at),X1_$i,X2_$i))) | ~ a_stored(pair(X0_$i,X4_$i)) ), inference(cnf_transformation,[],[f72]) ). cnf(c_61,plain, ( message(sent(a,b,pair(X0_$i,encrypt(X1_$i,X2_$i)))) | ~ message(sent(t,a,triple(encrypt(quadruple(b,an_a_nonce,X2_$i,X3_$i),at),X0_$i,X1_$i))) ), inference(resolution,[status(thm)],[c_2,c_3]) ). cnf(c_206,plain, ( message(sent(a,b,pair(X0_$$iProver_fresh_intruder_nonce_1_$i,encrypt(X1_$$iProver_fresh_intruder_nonce_1_$i,X2_$$iProver_fresh_intruder_nonce_1_$i)))) | ~ message(sent(t,a,triple(encrypt(quadruple(b,an_a_nonce,X2_$$iProver_fresh_intruder_nonce_1_$i,X3_$$iProver_fresh_intruder_nonce_1_$i),at),X0_$$iProver_fresh_intruder_nonce_1_$i,X1_$$iProver_fresh_intruder_nonce_1_$i))) ), inference(subtyping,[status(esa)],[c_61]) ). cnf(c_27,plain, ( ~ party_of_protocol(X0_$i) | intruder_message(encrypt(X1_$i,X2_$i)) | ~ intruder_message(X1_$i) | ~ intruder_holds(key(X2_$i,X0_$i)) ), inference(cnf_transformation,[],[f96]) ). cnf(c_26,plain, ( ~ party_of_protocol(X0_$i) | ~ intruder_message(X1_$i) | intruder_holds(key(X1_$i,X0_$i)) ), inference(cnf_transformation,[],[f95]) ). cnf(c_95,plain, ( ~ party_of_protocol(X0_$i) | intruder_message(encrypt(X1_$i,X2_$i)) | ~ intruder_message(X2_$i) | ~ intruder_message(X1_$i) ), inference(resolution,[status(thm)],[c_27,c_26]) ). cnf(c_168,plain, ( ~ party_of_protocol(X0_$i) | ~ sP0_iProver_split ), inference(splitting, [splitting(split),new_symbols(definition,[~ sP0_iProver_split])], [c_95]) ). cnf(c_205,plain, ( ~ party_of_protocol(X0_$$iProver_fresh_intruder_nonce_1_$i) | ~ sP0_iProver_split ), inference(subtyping,[status(esa)],[c_168]) ). cnf(c_169,plain, ( intruder_message(encrypt(X0_$i,X1_$i)) | ~ intruder_message(X1_$i) | ~ intruder_message(X0_$i) | sP0_iProver_split ), inference(splitting,[splitting(split),new_symbols(definition,[])],[c_95]) ). cnf(c_204,plain, ( intruder_message(encrypt(X0_$$iProver_fresh_intruder_nonce_1_$i,X1_$$iProver_fresh_intruder_nonce_1_$i)) | ~ intruder_message(X1_$$iProver_fresh_intruder_nonce_1_$i) | ~ intruder_message(X0_$$iProver_fresh_intruder_nonce_1_$i) | sP0_iProver_split ), inference(subtyping,[status(esa)],[c_169]) ). cnf(c_34,plain, ( fresh_intruder_nonce(an_intruder_nonce) ), inference(cnf_transformation,[],[f103]) ). cnf(c_210,plain, ( fresh_intruder_nonce(an_intruder_nonce) ), inference(subtyping,[status(esa)],[c_34]) ). cnf(c_28,plain, ( a_nonce(an_a_nonce) ), inference(cnf_transformation,[],[f97]) ). cnf(c_214,plain, ( a_nonce(an_a_nonce) ), inference(subtyping,[status(esa)],[c_28]) ). cnf(c_9,plain, ( party_of_protocol(t) ), inference(cnf_transformation,[],[f78]) ). cnf(c_230,plain, ( party_of_protocol(t) ), inference(subtyping,[status(esa)],[c_9]) ). cnf(c_8,plain, ( t_holds(key(bt,b)) ), inference(cnf_transformation,[],[f77]) ). cnf(c_231,plain, ( t_holds(key(bt,b)) ), inference(subtyping,[status(esa)],[c_8]) ). cnf(c_7,plain, ( t_holds(key(at,a)) ), inference(cnf_transformation,[],[f76]) ). cnf(c_232,plain, ( t_holds(key(at,a)) ), inference(subtyping,[status(esa)],[c_7]) ). cnf(c_5,plain, ( fresh_to_b(an_a_nonce) ), inference(cnf_transformation,[],[f74]) ). cnf(c_234,plain, ( fresh_to_b(an_a_nonce) ), inference(subtyping,[status(esa)],[c_5]) ). cnf(c_4,plain, ( party_of_protocol(b) ), inference(cnf_transformation,[],[f73]) ). cnf(c_235,plain, ( party_of_protocol(b) ), inference(subtyping,[status(esa)],[c_4]) ). cnf(c_1,plain, ( message(sent(a,b,pair(a,an_a_nonce))) ), inference(cnf_transformation,[],[f70]) ). cnf(c_236,plain, ( message(sent(a,b,pair(a,an_a_nonce))) ), inference(subtyping,[status(esa)],[c_1]) ). cnf(c_0,plain, ( party_of_protocol(a) ), inference(cnf_transformation,[],[f69]) ). cnf(c_237,plain, ( party_of_protocol(a) ), inference(subtyping,[status(esa)],[c_0]) ). % SZS output end Saturation
% SZS status Theorem for SEU140+2.p % SZS output start Proof for SEU140+2.p %----------------------------------------------------- fof(t63_xboole_1,conjecture,! [_63308,_63311,_63314] : (subset(_63308,_63311) & disjoint(_63311,_63314) => disjoint(_63308,_63314)),file('SEU140+2.p',t63_xboole_1)). fof(d3_tarski,axiom,! [_63543,_63546] : (subset(_63543,_63546) <=> ! [_63564] : (in(_63564,_63543) => in(_63564,_63546))),file('SEU140+2.p',d3_tarski)). fof(t3_xboole_0,lemma,! [_63793,_63796] : (~ (~ disjoint(_63793,_63796) & ! [_63818] : ~ (in(_63818,_63793) & in(_63818,_63796))) & ~ (? [_63818] : (in(_63818,_63793) & in(_63818,_63796)) & disjoint(_63793,_63796))),file('SEU140+2.p',t3_xboole_0)). cnf(1,plain,[-(subset(11^[],12^[]))],clausify(t63_xboole_1)). cnf(2,plain,[-(disjoint(12^[],13^[]))],clausify(t63_xboole_1)). cnf(3,plain,[disjoint(11^[],13^[])],clausify(t63_xboole_1)). cnf(4,plain,[subset(_29177,_29233),in(_29347,_29177),-(in(_29347,_29233))],clausify(d3_tarski)). cnf(5,plain,[-(disjoint(_40265,_40352)),-(in(9^[_40352,_40265],_40265))],clausify(t3_xboole_0)). cnf(6,plain,[-(disjoint(_40265,_40352)),-(in(9^[_40352,_40265],_40352))],clausify(t3_xboole_0)). cnf(7,plain,[disjoint(_40265,_40352),in(_40769,_40265),in(_40769,_40352)],clausify(t3_xboole_0)). cnf('1',plain,[disjoint(12^[],13^[]),in(9^[13^[],11^[]],12^[]),in(9^[13^[],11^[]],13^[])],start(7,bind([[_40265,_40769,_40352],[12^[],9^[13^[],11^[]],13^[]]]))). cnf('1.1',plain,[-(disjoint(12^[],13^[]))],extension(2)). cnf('1.2',plain,[-(in(9^[13^[],11^[]],12^[])),subset(11^[],12^[]),in(9^[13^[],11^[]],11^[])],extension(4,bind([[_29233,_29347,_29177],[12^[],9^[13^[],11^[]],11^[]]]))). cnf('1.2.1',plain,[-(subset(11^[],12^[]))],extension(1)). cnf('1.2.2',plain,[-(in(9^[13^[],11^[]],11^[])),-(disjoint(11^[],13^[]))],extension(5,bind([[_40265,_40352],[11^[],13^[]]]))). cnf('1.2.2.1',plain,[disjoint(11^[],13^[])],extension(3)). cnf('1.3',plain,[-(in(9^[13^[],11^[]],13^[])),-(disjoint(11^[],13^[]))],extension(6,bind([[_40265,_40352],[11^[],13^[]]]))). cnf('1.3.1',plain,[disjoint(11^[],13^[])],extension(3)). %----------------------------------------------------- % SZS output end Proof for SEU140+2.p
No.of.Axioms: 0 Length.of.Defs: 2223 Contains.Choice.Funs: false (rf:0,axioms:0,ps:3,u:6,ude:false,rLeibEQ:true,rAndEQ:true,use_choice:true,use_extuni:true,use_extcnf_combined:true,expand_extuni:false,foatp:e,atp_timeout:7,atp_calls_frequency:10,ordering:none,proof_output:1,protocol_output:false,clause_count:2,loop_count:0,foatp_calls:0,translation:fof_full) ******************************** * All subproblems solved! * ******************************** % SZS status Theorem for /home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p : (rf:0,axioms:2,ps:3,u:6,ude:false,rLeibEQ:true,rAndEQ:true,use_choice:true,use_extuni:true,use_extcnf_combined:true,expand_extuni:false,foatp:e,atp_timeout:7,atp_calls_frequency:10,ordering:none,proof_output:1,protocol_output:false,clause_count:28,loop_count:0,foatp_calls:1,translation:fof_full) %**** Beginning of derivation protocol **** % SZS output start CNFRefutation thf(tp_complement,type,(complement: (($i>$o)>($i>$o)))). thf(tp_disjoint,type,(disjoint: (($i>$o)>(($i>$o)>$o)))). thf(tp_emptyset,type,(emptyset: ($i>$o))). thf(tp_excl_union,type,(excl_union: (($i>$o)>(($i>$o)>($i>$o))))). thf(tp_in,type,(in: ($i>(($i>$o)>$o)))). thf(tp_intersection,type,(intersection: (($i>$o)>(($i>$o)>($i>$o))))). thf(tp_is_a,type,(is_a: ($i>(($i>$o)>$o)))). thf(tp_meets,type,(meets: (($i>$o)>(($i>$o)>$o)))). thf(tp_misses,type,(misses: (($i>$o)>(($i>$o)>$o)))). thf(tp_sK1_X,type,(sK1_X: ($i>$o))). thf(tp_sK2_SY0,type,(sK2_SY0: ($i>$o))). thf(tp_sK3_SY2,type,(sK3_SY2: ($i>$o))). thf(tp_sK4_SX0,type,(sK4_SX0: $i)). thf(tp_setminus,type,(setminus: (($i>$o)>(($i>$o)>($i>$o))))). thf(tp_singleton,type,(singleton: ($i>($i>$o)))). thf(tp_subset,type,(subset: (($i>$o)>(($i>$o)>$o)))). thf(tp_union,type,(union: (($i>$o)>(($i>$o)>($i>$o))))). thf(tp_unord_pair,type,(unord_pair: ($i>($i>($i>$o))))). thf(complement,definition,(complement = (^[X:($i>$o),U:$i]: (~ (X@U)))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',complement)). thf(disjoint,definition,(disjoint = (^[X:($i>$o),Y:($i>$o)]: (((intersection@X)@Y) = emptyset))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',disjoint)). thf(emptyset,definition,(emptyset = (^[X:$i]: $false)),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',emptyset)). thf(excl_union,definition,(excl_union = (^[X:($i>$o),Y:($i>$o),U:$i]: (((X@U) & (~ (Y@U))) | ((~ (X@U)) & (Y@U))))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',excl_union)). thf(in,definition,(in = (^[X:$i,M:($i>$o)]: (M@X))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',in)). thf(intersection,definition,(intersection = (^[X:($i>$o),Y:($i>$o),U:$i]: ((X@U) & (Y@U)))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',intersection)). thf(is_a,definition,(is_a = (^[X:$i,M:($i>$o)]: (M@X))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',is_a)). thf(meets,definition,(meets = (^[X:($i>$o),Y:($i>$o)]: (?[U:$i]: ((X@U) & (Y@U))))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',meets)). thf(misses,definition,(misses = (^[X:($i>$o),Y:($i>$o)]: (~ (?[U:$i]: ((X@U) & (Y@U)))))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',misses)). thf(setminus,definition,(setminus = (^[X:($i>$o),Y:($i>$o),U:$i]: ((X@U) & (~ (Y@U))))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',setminus)). thf(singleton,definition,(singleton = (^[X:$i,U:$i]: (U = X))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',singleton)). thf(subset,definition,(subset = (^[X:($i>$o),Y:($i>$o)]: (![U:$i]: ((X@U) => (Y@U))))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',subset)). thf(union,definition,(union = (^[X:($i>$o),Y:($i>$o),U:$i]: ((X@U) | (Y@U)))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',union)). thf(unord_pair,definition,(unord_pair = (^[X:$i,Y:$i,U:$i]: ((U = X) | (U = Y)))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',unord_pair)). thf(1,conjecture,(![X:($i>$o),Y:($i>$o),A:($i>$o)]: ((((subset@X)@A) & ((subset@Y)@A)) => ((subset@((union@X)@Y))@A))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',thm)). thf(2,negated_conjecture,(((![X:($i>$o),Y:($i>$o),A:($i>$o)]: ((((subset@X)@A) & ((subset@Y)@A)) => ((subset@((union@X)@Y))@A)))=$false)),inference(negate_conjecture,[status(cth)],[1])). thf(3,plain,(((![SY0:($i>$o),SY1:($i>$o)]: ((((subset@sK1_X)@SY1) & ((subset@SY0)@SY1)) => ((subset@((union@sK1_X)@SY0))@SY1)))=$false)),inference(extcnf_forall_neg,[status(esa)],[2])). thf(4,plain,(((![SY2:($i>$o)]: ((((subset@sK1_X)@SY2) & ((subset@sK2_SY0)@SY2)) => ((subset@((union@sK1_X)@sK2_SY0))@SY2)))=$false)),inference(extcnf_forall_neg,[status(esa)],[3])). thf(5,plain,((((((subset@sK1_X)@sK3_SY2) & ((subset@sK2_SY0)@sK3_SY2)) => ((subset@((union@sK1_X)@sK2_SY0))@sK3_SY2))=$false)),inference(extcnf_forall_neg,[status(esa)],[4])). thf(6,plain,((((subset@sK1_X)@sK3_SY2)=$true)),inference(standard_cnf,[status(thm)],[5])). thf(7,plain,((((subset@sK2_SY0)@sK3_SY2)=$true)),inference(standard_cnf,[status(thm)],[5])). thf(8,plain,((((subset@((union@sK1_X)@sK2_SY0))@sK3_SY2)=$false)),inference(standard_cnf,[status(thm)],[5])). thf(9,plain,(((~ ((subset@((union@sK1_X)@sK2_SY0))@sK3_SY2))=$true)),inference(polarity_switch,[status(thm)],[8])). thf(10,plain,((((subset@sK2_SY0)@sK3_SY2)=$true)),inference(copy,[status(thm)],[7])). thf(11,plain,((((subset@sK1_X)@sK3_SY2)=$true)),inference(copy,[status(thm)],[6])). thf(12,plain,(((~ ((subset@((union@sK1_X)@sK2_SY0))@sK3_SY2))=$true)),inference(copy,[status(thm)],[9])). thf(13,plain,(((~ (![SX0:$i]: ((~ ((sK1_X@SX0) | (sK2_SY0@SX0))) | (sK3_SY2@SX0))))=$true)),inference(unfold_def,[status(thm)],[12,complement,disjoint,emptyset,excl_union,in,intersection,is_a,meets,misses,setminus,singleton,subset,union,unord_pair])). thf(14,plain,(((![SX0:$i]: ((~ (sK1_X@SX0)) | (sK3_SY2@SX0)))=$true)),inference(unfold_def,[status(thm)],[11,complement,disjoint,emptyset,excl_union,in,intersection,is_a,meets,misses,setminus,singleton,subset,union,unord_pair])). thf(15,plain,(((![SX0:$i]: ((~ (sK2_SY0@SX0)) | (sK3_SY2@SX0)))=$true)),inference(unfold_def,[status(thm)],[10,complement,disjoint,emptyset,excl_union,in,intersection,is_a,meets,misses,setminus,singleton,subset,union,unord_pair])). thf(16,plain,(((![SX0:$i]: ((~ ((sK1_X@SX0) | (sK2_SY0@SX0))) | (sK3_SY2@SX0)))=$false)),inference(extcnf_not_pos,[status(thm)],[13])). thf(17,plain,(![SV1:$i]: ((((~ (sK1_X@SV1)) | (sK3_SY2@SV1))=$true))),inference(extcnf_forall_pos,[status(thm)],[14])). thf(18,plain,(![SV2:$i]: ((((~ (sK2_SY0@SV2)) | (sK3_SY2@SV2))=$true))),inference(extcnf_forall_pos,[status(thm)],[15])). thf(19,plain,((((~ ((sK1_X@sK4_SX0) | (sK2_SY0@sK4_SX0))) | (sK3_SY2@sK4_SX0))=$false)),inference(extcnf_forall_neg,[status(esa)],[16])). thf(20,plain,(![SV1:$i]: (((~ (sK1_X@SV1))=$true) | ((sK3_SY2@SV1)=$true))),inference(extcnf_or_pos,[status(thm)],[17])). thf(21,plain,(![SV2:$i]: (((~ (sK2_SY0@SV2))=$true) | ((sK3_SY2@SV2)=$true))),inference(extcnf_or_pos,[status(thm)],[18])). thf(22,plain,(((~ ((sK1_X@sK4_SX0) | (sK2_SY0@sK4_SX0)))=$false)),inference(extcnf_or_neg,[status(thm)],[19])). thf(23,plain,(((sK3_SY2@sK4_SX0)=$false)),inference(extcnf_or_neg,[status(thm)],[19])). thf(24,plain,(![SV1:$i]: (((sK1_X@SV1)=$false) | ((sK3_SY2@SV1)=$true))),inference(extcnf_not_pos,[status(thm)],[20])). thf(25,plain,(![SV2:$i]: (((sK2_SY0@SV2)=$false) | ((sK3_SY2@SV2)=$true))),inference(extcnf_not_pos,[status(thm)],[21])). thf(26,plain,((((sK1_X@sK4_SX0) | (sK2_SY0@sK4_SX0))=$true)),inference(extcnf_not_neg,[status(thm)],[22])). thf(27,plain,(((sK1_X@sK4_SX0)=$true) | ((sK2_SY0@sK4_SX0)=$true)),inference(extcnf_or_pos,[status(thm)],[26])). thf(28,plain,((($false)=$true)),inference(fo_atp_e,[status(thm)],[23,27,25,24])). thf(29,plain,($false),inference(solved_all_splits,[solved_all_splits(join,[])],[28])). % SZS output end CNFRefutation %**** End of derivation protocol **** %**** no. of clauses in derivation: 29 **** %**** clause counter: 28 **** % SZS status Theorem for /home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p : (rf:0,axioms:2,ps:3,u:6,ude:false,rLeibEQ:true,rAndEQ:true,use_choice:true,use_extuni:true,use_extcnf_combined:true,expand_extuni:false,foatp:e,atp_timeout:7,atp_calls_frequency:10,ordering:none,proof_output:1,protocol_output:false,clause_count:28,loop_count:0,foatp_calls:1,translation:fof_full)
% SZS status Theorem for TPTP/Problems/SET/SET014^4.p : 1602 ms resp. 691 ms w/o parsing % SZS output start CNFRefutation for TPTP/Problems/SET/SET014^4.p thf(union_type, type, union: (($i > $o) > (($i > $o) > ($i > $o)))). thf(union_def, definition, (union = (^ [A:($i > $o),B:($i > $o),C:$i]: ((A @ C) | (B @ C))))). thf(subset_type, type, subset: (($i > $o) > (($i > $o) > $o))). thf(subset_def, definition, (subset = (^ [A:($i > $o),B:($i > $o)]: ! [C:$i]: ((A @ C) => (B @ C))))). thf(sk1_type, type, sk1: ($i > $o)). thf(sk2_type, type, sk2: ($i > $o)). thf(sk3_type, type, sk3: ($i > $o)). thf(sk4_type, type, sk4: $i). thf(1,conjecture,((! [A:($i > $o),B:($i > $o),C:($i > $o)]: (((subset @ A @ C) & (subset @ B @ C)) => (subset @ (union @ A @ B) @ C)))),file('TPTP/Problems/SET/SET014^4.p',thm)). thf(2,negated_conjecture,((~ (! [A:($i > $o),B:($i > $o),C:($i > $o)]: (((subset @ A @ C) & (subset @ B @ C)) => (subset @ (union @ A @ B) @ C))))),inference(neg_conjecture,[status(cth)],[1])). thf(3,plain,((~ (! [A:($i > $o),B:($i > $o),C:($i > $o)]: ((! [D:$i]: ((A @ D) => (C @ D)) & ! [D:$i]: ((B @ D) => (C @ D))) => (! [D:$i]: (((A @ D) | (B @ D)) => (C @ D))))))),inference(defexp_and_simp_and_etaexpand,[status(thm)],[2])). thf(5,plain,((sk1 @ sk4) | (sk2 @ sk4)),inference(cnf,[status(esa)],[3])). thf(7,plain,(! [A:$i] : ((~ (sk1 @ A)) | (sk3 @ A))),inference(cnf,[status(esa)],[3])). thf(4,plain,((~ (sk3 @ sk4))),inference(cnf,[status(esa)],[3])). thf(9,plain,(! [A:$i] : ((~ (sk1 @ A)) | ((sk3 @ A) != (sk3 @ sk4)))),inference(paramod_ordered,[status(thm)],[7,4])). thf(10,plain,((~ (sk1 @ sk4))),inference(pattern_uni,[status(thm)],[9:[bind(A, $thf(sk4))]])). thf(11,plain,($false | (sk2 @ sk4)),inference(rewrite,[status(thm)],[5,10])). thf(12,plain,((sk2 @ sk4)),inference(simp,[status(thm)],[11])). thf(6,plain,(! [A:$i] : ((~ (sk2 @ A)) | (sk3 @ A))),inference(cnf,[status(esa)],[3])). thf(8,plain,(! [A:$i] : ((~ (sk2 @ A)) | (sk3 @ A))),inference(simp,[status(thm)],[6])). thf(13,plain,(! [A:$i] : ((~ (sk2 @ A)) | ((sk3 @ A) != (sk3 @ sk4)))),inference(paramod_ordered,[status(thm)],[8,4])). thf(14,plain,((~ (sk2 @ sk4))),inference(pattern_uni,[status(thm)],[13:[bind(A, $thf(sk4))]])). thf(15,plain,($false),inference(rewrite,[status(thm)],[12,14])). thf(16,plain,($false),inference(simp,[status(thm)],[15])). % SZS output end CNFRefutation for TPTP/Problems/SET/SET014^4.p
# SZS status Theorem # SZS output start CNFRefutation fof(t63_xboole_1, conjecture, (![X1]:![X2]:![X3]:((subset(X1,X2)&disjoint(X2,X3))=>disjoint(X1,X3))), file('/tmp/SystemOnTPTP4890/SEU140+2.tptp', t63_xboole_1)). fof(symmetry_r1_xboole_0, axiom, (![X1]:![X2]:(disjoint(X1,X2)=>disjoint(X2,X1))), file('/tmp/SystemOnTPTP4890/SEU140+2.tptp', symmetry_r1_xboole_0)). fof(t1_xboole_1, lemma, (![X1]:![X2]:![X3]:((subset(X1,X2)&subset(X2,X3))=>subset(X1,X3))), file('/tmp/SystemOnTPTP4890/SEU140+2.tptp', t1_xboole_1)). fof(t40_xboole_1, lemma, (![X1]:![X2]:set_difference(set_union2(X1,X2),X2)=set_difference(X1,X2)), file('/tmp/SystemOnTPTP4890/SEU140+2.tptp', t40_xboole_1)). fof(commutativity_k2_xboole_0, axiom, (![X1]:![X2]:set_union2(X1,X2)=set_union2(X2,X1)), file('/tmp/SystemOnTPTP4890/SEU140+2.tptp', commutativity_k2_xboole_0)). fof(t2_boole, axiom, (![X1]:set_intersection2(X1,empty_set)=empty_set), file('/tmp/SystemOnTPTP4890/SEU140+2.tptp', t2_boole)). fof(t48_xboole_1, lemma, (![X1]:![X2]:set_difference(X1,set_difference(X1,X2))=set_intersection2(X1,X2)), file('/tmp/SystemOnTPTP4890/SEU140+2.tptp', t48_xboole_1)). fof(t3_xboole_0, lemma, (![X1]:![X2]:(~((~(disjoint(X1,X2))&![X3]:~((in(X3,X1)&in(X3,X2)))))&~((?[X3]:(in(X3,X1)&in(X3,X2))&disjoint(X1,X2))))), file('/tmp/SystemOnTPTP4890/SEU140+2.tptp', t3_xboole_0)). fof(d4_xboole_0, axiom, (![X1]:![X2]:![X3]:(X3=set_difference(X1,X2)<=>![X4]:(in(X4,X3)<=>(in(X4,X1)&~(in(X4,X2)))))), file('/tmp/SystemOnTPTP4890/SEU140+2.tptp', d4_xboole_0)). fof(l32_xboole_1, lemma, (![X1]:![X2]:(set_difference(X1,X2)=empty_set<=>subset(X1,X2))), file('/tmp/SystemOnTPTP4890/SEU140+2.tptp', l32_xboole_1)). fof(d7_xboole_0, axiom, (![X1]:![X2]:(disjoint(X1,X2)<=>set_intersection2(X1,X2)=empty_set)), file('/tmp/SystemOnTPTP4890/SEU140+2.tptp', d7_xboole_0)). fof(t39_xboole_1, lemma, (![X1]:![X2]:set_union2(X1,set_difference(X2,X1))=set_union2(X1,X2)), file('/tmp/SystemOnTPTP4890/SEU140+2.tptp', t39_xboole_1)). fof(t3_boole, axiom, (![X1]:set_difference(X1,empty_set)=X1), file('/tmp/SystemOnTPTP4890/SEU140+2.tptp', t3_boole)). fof(commutativity_k3_xboole_0, axiom, (![X1]:![X2]:set_intersection2(X1,X2)=set_intersection2(X2,X1)), file('/tmp/SystemOnTPTP4890/SEU140+2.tptp', commutativity_k3_xboole_0)). fof(t36_xboole_1, lemma, (![X1]:![X2]:subset(set_difference(X1,X2),X1)), file('/tmp/SystemOnTPTP4890/SEU140+2.tptp', t36_xboole_1)). fof(t12_xboole_1, lemma, (![X1]:![X2]:(subset(X1,X2)=>set_union2(X1,X2)=X2)), file('/tmp/SystemOnTPTP4890/SEU140+2.tptp', t12_xboole_1)). fof(t1_boole, axiom, (![X1]:set_union2(X1,empty_set)=X1), file('/tmp/SystemOnTPTP4890/SEU140+2.tptp', t1_boole)). fof(c_0_17, negated_conjecture, (~(![X1]:![X2]:![X3]:((subset(X1,X2)&disjoint(X2,X3))=>disjoint(X1,X3)))), inference(assume_negation,[status(cth)],[t63_xboole_1])). fof(c_0_18, plain, (![X3]:![X4]:(~disjoint(X3,X4)|disjoint(X4,X3))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[symmetry_r1_xboole_0])])). fof(c_0_19, negated_conjecture, (((subset(esk11_0,esk12_0)&disjoint(esk12_0,esk13_0))&~disjoint(esk11_0,esk13_0))), inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_17])])])). fof(c_0_20, lemma, (![X4]:![X5]:![X6]:((~subset(X4,X5)|~subset(X5,X6))|subset(X4,X6))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[t1_xboole_1])])). fof(c_0_21, lemma, (![X3]:![X4]:set_difference(set_union2(X3,X4),X4)=set_difference(X3,X4)), inference(variable_rename,[status(thm)],[t40_xboole_1])). fof(c_0_22, plain, (![X3]:![X4]:set_union2(X3,X4)=set_union2(X4,X3)), inference(variable_rename,[status(thm)],[commutativity_k2_xboole_0])). fof(c_0_23, plain, (![X2]:set_intersection2(X2,empty_set)=empty_set), inference(variable_rename,[status(thm)],[t2_boole])). fof(c_0_24, lemma, (![X3]:![X4]:set_difference(X3,set_difference(X3,X4))=set_intersection2(X3,X4)), inference(variable_rename,[status(thm)],[t48_xboole_1])). fof(c_0_25, lemma, (![X4]:![X5]:![X4]:![X5]:![X7]:(((in(esk9_2(X4,X5),X4)|disjoint(X4,X5))&(in(esk9_2(X4,X5),X5)|disjoint(X4,X5)))&((~in(X7,X4)|~in(X7,X5))|~disjoint(X4,X5)))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[t3_xboole_0])])])])])])])])). cnf(c_0_26,plain,(disjoint(X1,X2)|~disjoint(X2,X1)), inference(split_conjunct,[status(thm)],[c_0_18])). cnf(c_0_27,negated_conjecture,(disjoint(esk12_0,esk13_0)), inference(split_conjunct,[status(thm)],[c_0_19])). fof(c_0_28, plain, (![X5]:![X6]:![X7]:![X8]:![X8]:![X5]:![X6]:![X7]:(((((in(X8,X5)|~in(X8,X7))|X7!=set_difference(X5,X6))&((~in(X8,X6)|~in(X8,X7))|X7!=set_difference(X5,X6)))&(((~in(X8,X5)|in(X8,X6))|in(X8,X7))|X7!=set_difference(X5,X6)))&(((~in(esk5_3(X5,X6,X7),X7)|(~in(esk5_3(X5,X6,X7),X5)|in(esk5_3(X5,X6,X7),X6)))|X7=set_difference(X5,X6))&(((in(esk5_3(X5,X6,X7),X5)|in(esk5_3(X5,X6,X7),X7))|X7=set_difference(X5,X6))&((~in(esk5_3(X5,X6,X7),X6)|in(esk5_3(X5,X6,X7),X7))|X7=set_difference(X5,X6)))))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[d4_xboole_0])])])])])])])])). fof(c_0_29, lemma, (![X3]:![X4]:![X3]:![X4]:((set_difference(X3,X4)!=empty_set|subset(X3,X4))&(~subset(X3,X4)|set_difference(X3,X4)=empty_set))), inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[l32_xboole_1])])])])). cnf(c_0_30,lemma,(subset(X1,X2)|~subset(X3,X2)|~subset(X1,X3)), inference(split_conjunct,[status(thm)],[c_0_20])). cnf(c_0_31,negated_conjecture,(subset(esk11_0,esk12_0)), inference(split_conjunct,[status(thm)],[c_0_19])). fof(c_0_32, plain, (![X3]:![X4]:![X3]:![X4]:((~disjoint(X3,X4)|set_intersection2(X3,X4)=empty_set)&(set_intersection2(X3,X4)!=empty_set|disjoint(X3,X4)))), inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[d7_xboole_0])])])])). cnf(c_0_33,lemma,(set_difference(set_union2(X1,X2),X2)=set_difference(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_21])). cnf(c_0_34,plain,(set_union2(X1,X2)=set_union2(X2,X1)), inference(split_conjunct,[status(thm)],[c_0_22])). fof(c_0_35, lemma, (![X3]:![X4]:set_union2(X3,set_difference(X4,X3))=set_union2(X3,X4)), inference(variable_rename,[status(thm)],[t39_xboole_1])). cnf(c_0_36,plain,(set_intersection2(X1,empty_set)=empty_set), inference(split_conjunct,[status(thm)],[c_0_23])). cnf(c_0_37,lemma,(set_difference(X1,set_difference(X1,X2))=set_intersection2(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_24])). fof(c_0_38, plain, (![X2]:set_difference(X2,empty_set)=X2), inference(variable_rename,[status(thm)],[t3_boole])). cnf(c_0_39,lemma,(~disjoint(X1,X2)|~in(X3,X2)|~in(X3,X1)), inference(split_conjunct,[status(thm)],[c_0_25])). cnf(c_0_40,negated_conjecture,(disjoint(esk13_0,esk12_0)), inference(spm,[status(thm)],[c_0_26, c_0_27])). cnf(c_0_41,plain,(in(X4,X2)|X1!=set_difference(X2,X3)|~in(X4,X1)), inference(split_conjunct,[status(thm)],[c_0_28])). fof(c_0_42, plain, (![X3]:![X4]:set_intersection2(X3,X4)=set_intersection2(X4,X3)), inference(variable_rename,[status(thm)],[commutativity_k3_xboole_0])). cnf(c_0_43,lemma,(set_difference(X1,X2)=empty_set|~subset(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_29])). cnf(c_0_44,negated_conjecture,(subset(X1,esk12_0)|~subset(X1,esk11_0)), inference(spm,[status(thm)],[c_0_30, c_0_31])). fof(c_0_45, lemma, (![X3]:![X4]:subset(set_difference(X3,X4),X3)), inference(variable_rename,[status(thm)],[t36_xboole_1])). fof(c_0_46, lemma, (![X3]:![X4]:(~subset(X3,X4)|set_union2(X3,X4)=X4)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[t12_xboole_1])])). cnf(c_0_47,plain,(disjoint(X1,X2)|set_intersection2(X1,X2)!=empty_set), inference(split_conjunct,[status(thm)],[c_0_32])). cnf(c_0_48,lemma,(set_difference(set_union2(X1,X2),X1)=set_difference(X2,X1)), inference(spm,[status(thm)],[c_0_33, c_0_34])). cnf(c_0_49,lemma,(set_union2(X1,set_difference(X2,X1))=set_union2(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_35])). cnf(c_0_50,plain,(set_difference(X1,set_difference(X1,empty_set))=empty_set), inference(rw,[status(thm)],[c_0_36, c_0_37])). cnf(c_0_51,plain,(set_difference(X1,empty_set)=X1), inference(split_conjunct,[status(thm)],[c_0_38])). cnf(c_0_52,negated_conjecture,(~in(X1,esk12_0)|~in(X1,esk13_0)), inference(spm,[status(thm)],[c_0_39, c_0_40])). cnf(c_0_53,lemma,(disjoint(X1,X2)|in(esk9_2(X1,X2),X2)), inference(split_conjunct,[status(thm)],[c_0_25])). cnf(c_0_54,plain,(in(X1,X2)|~in(X1,set_difference(X2,X3))), inference(er,[status(thm)],[c_0_41])). cnf(c_0_55,lemma,(disjoint(X1,X2)|in(esk9_2(X1,X2),X1)), inference(split_conjunct,[status(thm)],[c_0_25])). cnf(c_0_56,plain,(set_intersection2(X1,X2)=set_intersection2(X2,X1)), inference(split_conjunct,[status(thm)],[c_0_42])). cnf(c_0_57,lemma,(set_difference(X1,esk12_0)=empty_set|~subset(X1,esk11_0)), inference(spm,[status(thm)],[c_0_43, c_0_44])). cnf(c_0_58,lemma,(subset(set_difference(X1,X2),X1)), inference(split_conjunct,[status(thm)],[c_0_45])). cnf(c_0_59,plain,(set_intersection2(X1,X2)=empty_set|~disjoint(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_32])). fof(c_0_60, plain, (![X2]:set_union2(X2,empty_set)=X2), inference(variable_rename,[status(thm)],[t1_boole])). cnf(c_0_61,lemma,(set_union2(X1,X2)=X2|~subset(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_46])). cnf(c_0_62,plain,(disjoint(X1,X2)|set_difference(X1,set_difference(X1,X2))!=empty_set), inference(rw,[status(thm)],[c_0_47, c_0_37])). cnf(c_0_63,lemma,(set_difference(set_difference(X1,X2),X2)=set_difference(X1,X2)), inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_48, c_0_49]), c_0_48])). cnf(c_0_64,plain,(set_difference(X1,X1)=empty_set), inference(rw,[status(thm)],[c_0_50, c_0_51])). cnf(c_0_65,lemma,(disjoint(X1,esk13_0)|~in(esk9_2(X1,esk13_0),esk12_0)), inference(spm,[status(thm)],[c_0_52, c_0_53])). cnf(c_0_66,lemma,(disjoint(set_difference(X1,X2),X3)|in(esk9_2(set_difference(X1,X2),X3),X1)), inference(spm,[status(thm)],[c_0_54, c_0_55])). cnf(c_0_67,plain,(set_difference(X1,set_difference(X1,X2))=set_difference(X2,set_difference(X2,X1))), inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_56, c_0_37]), c_0_37])). cnf(c_0_68,lemma,(set_difference(set_difference(esk11_0,X1),esk12_0)=empty_set), inference(spm,[status(thm)],[c_0_57, c_0_58])). cnf(c_0_69,plain,(set_difference(X1,set_difference(X1,X2))=empty_set|~disjoint(X1,X2)), inference(rw,[status(thm)],[c_0_59, c_0_37])). cnf(c_0_70,plain,(set_union2(X1,empty_set)=X1), inference(split_conjunct,[status(thm)],[c_0_60])). cnf(c_0_71,lemma,(set_union2(X1,set_difference(X1,X2))=X1), inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_61, c_0_58]), c_0_34])). cnf(c_0_72,lemma,(disjoint(set_difference(X1,X2),X2)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_62, c_0_63]), c_0_64])])). cnf(c_0_73,lemma,(disjoint(set_difference(esk12_0,X1),esk13_0)), inference(spm,[status(thm)],[c_0_65, c_0_66])). cnf(c_0_74,lemma,(set_difference(esk12_0,set_difference(esk12_0,set_difference(esk11_0,X1)))=set_difference(esk11_0,X1)), inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_67, c_0_68]), c_0_51])). cnf(c_0_75,lemma,(set_difference(X1,X2)=X1|~disjoint(X1,X2)), inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_49, c_0_69]), c_0_70]), c_0_34]), c_0_71])). cnf(c_0_76,lemma,(disjoint(X1,set_difference(X2,X1))), inference(spm,[status(thm)],[c_0_26, c_0_72])). cnf(c_0_77,lemma,(disjoint(set_difference(esk11_0,X1),esk13_0)), inference(spm,[status(thm)],[c_0_73, c_0_74])). cnf(c_0_78,lemma,(set_difference(X1,set_difference(X2,X1))=X1), inference(spm,[status(thm)],[c_0_75, c_0_76])). cnf(c_0_79,negated_conjecture,(~disjoint(esk11_0,esk13_0)), inference(split_conjunct,[status(thm)],[c_0_19])). cnf(c_0_80,lemma,($false), inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_77, c_0_78]), c_0_79]), ['proof']). # SZS output end CNFRefutation
% SZS status Theorem for SEU140+2.p % SZS output start Proof for SEU140+2.p - the following list represents a non-clausal connection proof (a tree in which each node is labelled with a nested clause) - I^V is a skolem term f_I(V) for variable list V - (I^K)^V:C is the (nested) clause C with index (I^K)^V, in which I is the unique index of C, K distinguishes different copies of C, and V is the list of (instantiated) variables in C [(505 ^ 0) ^ [587 ^ [], 586 ^ []] : [disjoint(586 ^ [], 587 ^ []), 506 ^ 0 : [(507 ^ 0) ^ [499 ^ [587 ^ [], 585 ^ []]] : [in(499 ^ [587 ^ [], 585 ^ []], 586 ^ []), in(499 ^ [587 ^ [], 585 ^ []], 587 ^ [])]]], [(591 ^ 1) ^ [] : [-(disjoint(586 ^ [], 587 ^ []))]], [(163 ^ 3) ^ [586 ^ [], set_difference(586 ^ [], 585 ^ []), 585 ^ []] : [-(in(499 ^ [587 ^ [], 585 ^ []], 586 ^ [])), 166 ^ 3 : [(177 ^ 3) ^ [499 ^ [587 ^ [], 585 ^ []]] : [178 ^ 3 : [(179 ^ 3) ^ [] : [in(499 ^ [587 ^ [], 585 ^ []], 585 ^ [])], (181 ^ 3) ^ [] : [in(499 ^ [587 ^ [], 585 ^ []], set_difference(586 ^ [], 585 ^ []))]]]], 586 ^ [] = set_union2(585 ^ [], set_difference(586 ^ [], 585 ^ []))], [(496 ^ 8) ^ [587 ^ [], 585 ^ []] : [-(in(499 ^ [587 ^ [], 585 ^ []], 585 ^ [])), 500 ^ 8 : [(501 ^ 8) ^ [] : []], -(disjoint(585 ^ [], 587 ^ []))], [(593 ^ 9) ^ [] : [disjoint(585 ^ [], 587 ^ [])]]], [(523 ^ 4) ^ [586 ^ [], 585 ^ []] : [-(586 ^ [] = set_union2(585 ^ [], set_difference(586 ^ [], 585 ^ []))), subset(585 ^ [], 586 ^ [])], [(589 ^ 5) ^ [] : [-(subset(585 ^ [], 586 ^ []))]]]], [(496 ^ 3) ^ [587 ^ [], 585 ^ []] : [-(in(499 ^ [587 ^ [], 585 ^ []], 587 ^ [])), 500 ^ 3 : [(503 ^ 3) ^ [] : []], -(disjoint(585 ^ [], 587 ^ []))], [(593 ^ 4) ^ [] : [disjoint(585 ^ [], 587 ^ [])]]]] % SZS output end Proof for SEU140+2.p
% SZS status Theorem for DAT013=1 % SZS output start Proof for DAT013=1 Assumptions after simplification: --------------------------------- (co1) ? [v0: $int] : ? [v1: $int] : ? [v2: $int] : (in_array(v0) & ! [v3: $int] : ! [v4: $int] : ( ~ ($lesseq(v4, 0) | ~ ($lesseq(v3, v2)) | ~ ($lesseq(v1, v3)) | ~ (read(v0, v3) = v4)) & ? [v3: $int] : ? [v4: $int] : ($lesseq(v4, 0)$lesseq(v3, v2) & $lesseq(3, $difference(v3, v1)) & read(v0, v3) = v4)) Further assumptions not needed in the proof: -------------------------------------------- ax1, ax2 Those formulas are unsatisfiable: --------------------------------- Begin of proof | | DELTA: instantiating (co1) with fresh symbols all_4_0, all_4_1, all_4_2 gives: | (1) in_array(all_4_2) & ! [v0: $int] : ! [v1: $int] : ( ~ ($lesseq(v1, 0) | | ~ ($lesseq(v0, all_4_0)) | ~ ($lesseq(all_4_1, v0)) | ~ | (read(all_4_2, v0) = v1)) & ? [v0: $int] : ? [v1: $int] : | ($lesseq(v1, 0)$lesseq(v0, all_4_0) & $lesseq(3, $difference(v0, | all_4_1)) & read(all_4_2, v0) = v1) | | ALPHA: (1) implies: | (2) ! [v0: $int] : ! [v1: $int] : ( ~ ($lesseq(v1, 0) | ~ ($lesseq(v0, | all_4_0)) | ~ ($lesseq(all_4_1, v0)) | ~ (read(all_4_2, v0) = | v1)) | (3) ? [v0: $int] : ? [v1: $int] : ($lesseq(v1, 0)$lesseq(v0, all_4_0) & | $lesseq(3, $difference(v0, all_4_1)) & read(all_4_2, v0) = v1) | | DELTA: instantiating (3) with fresh symbols all_9_0, all_9_1 gives: | (4) $lesseq(all_9_0, 0)$lesseq(all_9_1, all_4_0) & $lesseq(3, | $difference(all_9_1, all_4_1)) & read(all_4_2, all_9_1) = all_9_0 | | ALPHA: (4) implies: | (5) $lesseq(3, $difference(all_9_1, all_4_1)) | (6) $lesseq(all_9_1, all_4_0) | (7) $lesseq(all_9_0, 0) | (8) read(all_4_2, all_9_1) = all_9_0 | | GROUND_INST: instantiating (2) with all_9_0, all_9_1, simplifying with (8) | gives: | (9) ~ ($lesseq(all_9_0, 0) | ~ ($lesseq(all_9_1, all_4_0)) | ~ | ($lesseq(all_4_1, all_9_1)) | | BETA: splitting (9) gives: | | Case 1: | | | | (10) $lesseq(1, all_9_0) | | | | COMBINE_INEQS: (7), (10) imply: | | (11) $lesseq(0, -1) | | | | CLOSE: (11) is inconsistent. | | | Case 2: | | | | (12) ~ ($lesseq(all_9_1, all_4_0)) | ~ ($lesseq(all_4_1, all_9_1)) | | | | BETA: splitting (12) gives: | | | | Case 1: | | | | | | (13) $lesseq(1, $difference(all_9_1, all_4_0)) | | | | | | COMBINE_INEQS: (6), (13) imply: | | | (14) $lesseq(0, -1) | | | | | | CLOSE: (14) is inconsistent. | | | | | Case 2: | | | | | | (15) $lesseq(1, $difference(all_4_1, all_9_1)) | | | | | | COMBINE_INEQS: (5), (15) imply: | | | (16) $lesseq(0, -1) | | | | | | CLOSE: (16) is inconsistent. | | | | | End of split | | | End of split | End of proof % SZS output end Proof for DAT013=1
8 (all A all B (subset(A,B) <-> (all C (in(C,A) -> in(C,B))))) # label(d3_tarski) # label(axiom) # label(non_clause). [assumption]. 26 (all A all B (disjoint(A,B) -> disjoint(B,A))) # label(symmetry_r1_xboole_0) # label(axiom) # label(non_clause). [assumption]. 42 (all A all B (-(-disjoint(A,B) & (all C -(in(C,A) & in(C,B)))) & -((exists C (in(C,A) & in(C,B))) & disjoint(A,B)))) # label(t3_xboole_0) # label(lemma) # label(non_clause). [assumption]. 55 -(all A all B all C (subset(A,B) & disjoint(B,C) -> disjoint(A,C))) # label(t63_xboole_1) # label(negated_conjecture) # label(non_clause). [assumption]. 60 subset(c3,c4) # label(t63_xboole_1) # label(negated_conjecture). [clausify(55)]. 61 disjoint(c4,c5) # label(t63_xboole_1) # label(negated_conjecture). [clausify(55)]. 75 disjoint(A,B) | in(f7(A,B),A) # label(t3_xboole_0) # label(lemma). [clausify(42)]. 76 disjoint(A,B) | in(f7(A,B),B) # label(t3_xboole_0) # label(lemma). [clausify(42)]. 92 -disjoint(c3,c5) # label(t63_xboole_1) # label(negated_conjecture). [clausify(55)]. 101 -in(A,B) | -in(A,C) | -disjoint(B,C) # label(t3_xboole_0) # label(lemma). [clausify(42)]. 109 -disjoint(A,B) | disjoint(B,A) # label(symmetry_r1_xboole_0) # label(axiom). [clausify(26)]. 123 -subset(A,B) | -in(C,A) | in(C,B) # label(d3_tarski) # label(axiom). [clausify(8)]. 273 -disjoint(c5,c3). [ur(109,b,92,a)]. 300 -in(A,c3) | in(A,c4). [resolve(123,a,60,a)]. 959 in(f7(c5,c3),c3). [resolve(273,a,76,a)]. 960 in(f7(c5,c3),c5). [resolve(273,a,75,a)]. 1084 -in(f7(c5,c3),c4). [ur(101,b,960,a,c,61,a)]. 1292 $F. [resolve(300,a,959,a),unit_del(a,1084)].
% SZS output start Proof thf(ty_$i, type, $i : $tType). thf(ty_eigen__2, type, eigen__2 : ($i>$o)). thf(ty_eigen__1, type, eigen__1 : ($i>$o)). thf(ty_eigen__0, type, eigen__0 : ($i>$o)). thf(ty_eigen__3, type, eigen__3 : $i). thf(sP1,plain,(sP1 <=> (eigen__0 @ eigen__3),introduced(definition,[new_symbols( definition,[sP1])]))). thf(sP2,plain,(sP2 <=> (sP1 => (eigen__2 @ eigen__3)),introduced(definition,[new _symbols(definition,[sP2])]))). thf(sP3,plain,(sP3 <=> (eigen__1 @ eigen__3),introduced(definition,[new_symbols( definition,[sP3])]))). thf(sP4,plain,(sP4 <=> (sP3 => (eigen__2 @ eigen__3)),introduced(definition,[new _symbols(definition,[sP4])]))). thf(sP5,plain,(sP5 <=> (![X1:$i]:((eigen__1 @ X1) => (eigen__2 @ X1))),introduce d(definition,[new_symbols(definition,[sP5])]))). thf(sP6,plain,(sP6 <=> (eigen__2 @ eigen__3),introduced(definition,[new_symbols( definition,[sP6])]))). thf(sP7,plain,(sP7 <=> (![X1:$i]:((eigen__0 @ X1) => (eigen__2 @ X1))),introduce d(definition,[new_symbols(definition,[sP7])]))). thf(def_in,definition,(in = (^[X1:$i]:(^[X2:$i>$o]:(X2 @ X1))))). thf(def_is_a,definition,(is_a = (^[X1:$i]:(^[X2:$i>$o]:(X2 @ X1))))). thf(def_emptyset,definition,(emptyset = (^[X1:$i]:$false))). thf(def_unord_pair,definition,(unord_pair = (^[X1:$i]:(^[X2:$i]:(^[X3:$i]:((~((X 3 = X1))) => (X3 = X2))))))). thf(def_singleton,definition,(singleton = (^[X1:$i]:(^[X2:$i]:(X2 = X1))))). thf(def_union,definition,(union = (^[X1:$i>$o]:(^[X2:$i>$o]:(^[X3:$i]:((~((X1 @ X3))) => (X2 @ X3))))))). thf(def_excl_union,definition,(excl_union = (^[X1:$i>$o]:(^[X2:$i>$o]:(^[X3:$i]: (((X1 @ X3) => (X2 @ X3)) => (~(((~((X1 @ X3))) => (~((X2 @ X3)))))))))))). thf(def_intersection,definition,(intersection = (^[X1:$i>$o]:(^[X2:$i>$o]:(^[X3: $i]:(~(((X1 @ X3) => (~((X2 @ X3))))))))))). thf(def_setminus,definition,(setminus = (^[X1:$i>$o]:(^[X2:$i>$o]:(^[X3:$i]:(~(( (X1 @ X3) => (X2 @ X3))))))))). thf(def_complement,definition,(complement = (^[X1:$i>$o]:(^[X2:$i]:(~((X1 @ X2)) ))))). thf(def_disjoint,definition,(disjoint = (^[X1:$i>$o]:(^[X2:$i>$o]:(((intersectio n @ X1) @ X2) = emptyset))))). thf(def_subset,definition,(subset = (^[X1:$i>$o]:(^[X2:$i>$o]:(![X3:$i]:((X1 @ X 3) => (X2 @ X3))))))). thf(def_meets,definition,(meets = (^[X1:$i>$o]:(^[X2:$i>$o]:(~((![X3:$i]:((X1 @ X3) => (~((X2 @ X3))))))))))). thf(def_misses,definition,(misses = (^[X1:$i>$o]:(^[X2:$i>$o]:(![X3:$i]:((X1 @ X 3) => (~((X2 @ X3))))))))). thf(thm,conjecture,(![X1:$i>$o]:(![X2:$i>$o]:(![X3:$i>$o]:((~(((![X4:$i]:((X1 @ X4) => (X3 @ X4))) => (~((![X4:$i]:((X2 @ X4) => (X3 @ X4)))))))) => (![X4:$i]:( ((~((X1 @ X4))) => (X2 @ X4)) => (X3 @ X4)))))))). thf(h0,negated_conjecture,(~((![X1:$i>$o]:(![X2:$i>$o]:(![X3:$i>$o]:((~(((![X4:$ i]:((X1 @ X4) => (X3 @ X4))) => (~((![X4:$i]:((X2 @ X4) => (X3 @ X4)))))))) => ( ![X4:$i]:(((~((X1 @ X4))) => (X2 @ X4)) => (X3 @ X4))))))))),inference(assume_ne gation,[status(cth)],[thm])). thf(h1,assumption,(~((![X1:$i>$o]:(![X2:$i>$o]:((~(((![X3:$i]:((eigen__0 @ X3) = > (X2 @ X3))) => (~((![X3:$i]:((X1 @ X3) => (X2 @ X3)))))))) => (![X3:$i]:(((~(( eigen__0 @ X3))) => (X1 @ X3)) => (X2 @ X3)))))))),introduced(assumption,[])). thf(h2,assumption,(~((![X1:$i>$o]:((~(((![X2:$i]:((eigen__0 @ X2) => (X1 @ X2))) => (~((![X2:$i]:((eigen__1 @ X2) => (X1 @ X2)))))))) => (![X2:$i]:(((~((eigen__ 0 @ X2))) => (eigen__1 @ X2)) => (X1 @ X2))))))),introduced(assumption,[])). thf(h3,assumption,(~(((~((sP7 => (~(sP5))))) => (![X1:$i]:(((~((eigen__0 @ X1))) => (eigen__1 @ X1)) => (eigen__2 @ X1)))))),introduced(assumption,[])). thf(h4,assumption,(~((sP7 => (~(sP5))))),introduced(assumption,[])). thf(h5,assumption,(~((![X1:$i]:(((~((eigen__0 @ X1))) => (eigen__1 @ X1)) => (ei gen__2 @ X1))))),introduced(assumption,[])). thf(h6,assumption,sP7,introduced(assumption,[])). thf(h7,assumption,sP5,introduced(assumption,[])). thf(h8,assumption,(~((((~(sP1)) => sP3) => sP6))),introduced(assumption,[])). thf(h9,assumption,((~(sP1)) => sP3),introduced(assumption,[])). thf(h10,assumption,(~(sP6)),introduced(assumption,[])). thf(h11,assumption,sP1,introduced(assumption,[])). thf(h12,assumption,sP3,introduced(assumption,[])). thf(1,plain,((~(sP2) | ~(sP1)) | sP6),inference(prop_rule,[status(thm)],[])). thf(2,plain,(~(sP7) | sP2),inference(all_rule,[status(thm)],[])). thf(3,plain,$false,inference(prop_unsat,[status(thm),assumptions([h11,h9,h10,h8, h6,h7,h4,h5,h3,h2,h1,h0])],[h10,h11,h6,1,2])). thf(4,plain,((~(sP4) | ~(sP3)) | sP6),inference(prop_rule,[status(thm)],[])). thf(5,plain,(~(sP5) | sP4),inference(all_rule,[status(thm)],[])). thf(6,plain,$false,inference(prop_unsat,[status(thm),assumptions([h12,h9,h10,h8, h6,h7,h4,h5,h3,h2,h1,h0])],[h10,h12,h7,4,5])). thf(7,plain,$false,inference(tab_imp,[status(thm),assumptions([h9,h10,h8,h6,h7,h 4,h5,h3,h2,h1,h0]),tab_imp(discharge,[h11]),tab_imp(discharge,[h12])],[h9,3,6,h1 1,h12])). thf(8,plain,$false,inference(tab_negimp,[status(thm),assumptions([h8,h6,h7,h4,h5 ,h3,h2,h1,h0]),tab_negimp(discharge,[h9,h10])],[h8,7,h9,h10])). thf(9,plain,$false,inference(tab_negall,[status(thm),assumptions([h6,h7,h4,h5,h3 ,h2,h1,h0]),tab_negall(discharge,[h8]),tab_negall(eigenvar,eigen__3)],[h5,8,h8]) ). thf(10,plain,$false,inference(tab_negimp,[status(thm),assumptions([h4,h5,h3,h2,h 1,h0]),tab_negimp(discharge,[h6,h7])],[h4,9,h6,h7])). thf(11,plain,$false,inference(tab_negimp,[status(thm),assumptions([h3,h2,h1,h0]) ,tab_negimp(discharge,[h4,h5])],[h3,10,h4,h5])). thf(12,plain,$false,inference(tab_negall,[status(thm),assumptions([h2,h1,h0]),ta b_negall(discharge,[h3]),tab_negall(eigenvar,eigen__2)],[h2,11,h3])). thf(13,plain,$false,inference(tab_negall,[status(thm),assumptions([h1,h0]),tab_n egall(discharge,[h2]),tab_negall(eigenvar,eigen__1)],[h1,12,h2])). thf(14,plain,$false,inference(tab_negall,[status(thm),assumptions([h0]),tab_nega ll(discharge,[h1]),tab_negall(eigenvar,eigen__0)],[h0,13,h1])). % SZS output end Proof
% SZS output start Proof thf(ty_$i, type, $i : $tType). thf(ty_eigen__2, type, eigen__2 : ($i>$o)). thf(ty_eigen__1, type, eigen__1 : ($i>$o)). thf(ty_eigen__0, type, eigen__0 : ($i>$o)). thf(ty_eigen__3, type, eigen__3 : $i). thf(sP1,plain,(sP1 <=> (eigen__0 @ eigen__3),introduced(definition,[new_symbols(definition,[sP1])]))). thf(sP2,plain,(sP2 <=> (sP1 => (eigen__2 @ eigen__3)),introduced(definition,[new_symbols(definition,[sP2])]))). thf(sP3,plain,(sP3 <=> (eigen__1 @ eigen__3),introduced(definition,[new_symbols(definition,[sP3])]))). thf(sP4,plain,(sP4 <=> (sP3 => (eigen__2 @ eigen__3)),introduced(definition,[new_symbols(definition,[sP4])]))). thf(sP5,plain,(sP5 <=> (![X1:$i]:((eigen__1 @ X1) => (eigen__2 @ X1))),introduced(definition,[new_symbols(definition,[sP5])]))). thf(sP6,plain,(sP6 <=> (eigen__2 @ eigen__3),introduced(definition,[new_symbols(definition,[sP6])]))). thf(sP7,plain,(sP7 <=> (![X1:$i]:((eigen__0 @ X1) => (eigen__2 @ X1))),introduced(definition,[new_symbols(definition,[sP7])]))). thf(def_in,definition,(in = (^[X1:$i]:(^[X2:$i>$o]:(X2 @ X1))))). thf(def_is_a,definition,(is_a = (^[X1:$i]:(^[X2:$i>$o]:(X2 @ X1))))). thf(def_emptyset,definition,(emptyset = (^[X1:$i]:$false))). thf(def_unord_pair,definition,(unord_pair = (^[X1:$i]:(^[X2:$i]:(^[X3:$i]:((~((X3 = X1))) => (X3 = X2))))))). thf(def_singleton,definition,(singleton = (^[X1:$i]:(^[X2:$i]:(X2 = X1))))). thf(def_union,definition,(union = (^[X1:$i>$o]:(^[X2:$i>$o]:(^[X3:$i]:((~((X1 @ X3))) => (X2 @ X3))))))). thf(def_excl_union,definition,(excl_union = (^[X1:$i>$o]:(^[X2:$i>$o]:(^[X3:$i]:(((X1 @ X3) => (X2 @ X3)) => (~(((~((X1 @ X3))) => (~((X2 @ X3)))))))))))). thf(def_intersection,definition,(intersection = (^[X1:$i>$o]:(^[X2:$i>$o]:(^[X3:$i]:(~(((X1 @ X3) => (~((X2 @ X3))))))))))). thf(def_setminus,definition,(setminus = (^[X1:$i>$o]:(^[X2:$i>$o]:(^[X3:$i]:(~(((X1 @ X3) => (X2 @ X3))))))))). thf(def_complement,definition,(complement = (^[X1:$i>$o]:(^[X2:$i]:(~((X1 @ X2))))))). thf(def_disjoint,definition,(disjoint = (^[X1:$i>$o]:(^[X2:$i>$o]:(((intersection @ X1) @ X2) = emptyset))))). thf(def_subset,definition,(subset = (^[X1:$i>$o]:(^[X2:$i>$o]:(![X3:$i]:((X1 @ X3) => (X2 @ X3))))))). thf(def_meets,definition,(meets = (^[X1:$i>$o]:(^[X2:$i>$o]:(~((![X3:$i]:((X1 @ X3) => (~((X2 @ X3))))))))))). thf(def_misses,definition,(misses = (^[X1:$i>$o]:(^[X2:$i>$o]:(![X3:$i]:((X1 @ X3) => (~((X2 @ X3))))))))). thf(thm,conjecture,(![X1:$i>$o]:(![X2:$i>$o]:(![X3:$i>$o]:((~(((![X4:$i]:((X1 @ X4) => (X3 @ X4))) => (~((![X4:$i]:((X2 @ X4) => (X3 @ X4)))))))) => (![X4:$i]:(((~((X1 @ X4))) => (X2 @ X4)) => (X3 @ X4)))))))). thf(h0,negated_conjecture,(~((![X1:$i>$o]:(![X2:$i>$o]:(![X3:$i>$o]:((~(((![X4:$i]:((X1 @ X4) => (X3 @ X4))) => (~((![X4:$i]:((X2 @ X4) => (X3 @ X4)))))))) => (![X4:$i]:(((~((X1 @ X4))) => (X2 @ X4)) => (X3 @ X4))))))))),inference(assume_negation,[status(cth)],[thm])). thf(h1,assumption,(~((![X1:$i>$o]:(![X2:$i>$o]:((~(((![X3:$i]:((eigen__0 @ X3) => (X2 @ X3))) => (~((![X3:$i]:((X1 @ X3) => (X2 @ X3)))))))) => (![X3:$i]:(((~((eigen__0 @ X3))) => (X1 @ X3)) => (X2 @ X3)))))))),introduced(assumption,[])). thf(h2,assumption,(~((![X1:$i>$o]:((~(((![X2:$i]:((eigen__0 @ X2) => (X1 @ X2))) => (~((![X2:$i]:((eigen__1 @ X2) => (X1 @ X2)))))))) => (![X2:$i]:(((~((eigen__0 @ X2))) => (eigen__1 @ X2)) => (X1 @ X2))))))),introduced(assumption,[])). thf(h3,assumption,(~(((~((sP7 => (~(sP5))))) => (![X1:$i]:(((~((eigen__0 @ X1))) => (eigen__1 @ X1)) => (eigen__2 @ X1)))))),introduced(assumption,[])). thf(h4,assumption,(~((sP7 => (~(sP5))))),introduced(assumption,[])). thf(h5,assumption,(~((![X1:$i]:(((~((eigen__0 @ X1))) => (eigen__1 @ X1)) => (eigen__2 @ X1))))),introduced(assumption,[])). thf(h6,assumption,sP7,introduced(assumption,[])). thf(h7,assumption,sP5,introduced(assumption,[])). thf(h8,assumption,(~((((~(sP1)) => sP3) => sP6))),introduced(assumption,[])). thf(h9,assumption,((~(sP1)) => sP3),introduced(assumption,[])). thf(h10,assumption,(~(sP6)),introduced(assumption,[])). thf(h11,assumption,sP1,introduced(assumption,[])). thf(h12,assumption,sP3,introduced(assumption,[])). thf(1,plain,((~(sP2) | ~(sP1)) | sP6),inference(prop_rule,[status(thm)],[])). thf(2,plain,(~(sP7) | sP2),inference(all_rule,[status(thm)],[])). thf(3,plain,$false,inference(prop_unsat,[status(thm),assumptions([h11,h9,h10,h8,h6,h7,h4,h5,h3,h2,h1,h0])],[h10,h11,h6,1,2])). thf(4,plain,((~(sP4) | ~(sP3)) | sP6),inference(prop_rule,[status(thm)],[])). thf(5,plain,(~(sP5) | sP4),inference(all_rule,[status(thm)],[])). thf(6,plain,$false,inference(prop_unsat,[status(thm),assumptions([h12,h9,h10,h8,h6,h7,h4,h5,h3,h2,h1,h0])],[h10,h12,h7,4,5])). thf(7,plain,$false,inference(tab_imp,[status(thm),assumptions([h9,h10,h8,h6,h7,h4,h5,h3,h2,h1,h0]),tab_imp(discharge,[h11]),tab_imp(discharge,[h12])],[h9,3,6,h11,h12])). thf(8,plain,$false,inference(tab_negimp,[status(thm),assumptions([h8,h6,h7,h4,h5,h3,h2,h1,h0]),tab_negimp(discharge,[h9,h10])],[h8,7,h9,h10])). thf(9,plain,$false,inference(tab_negall,[status(thm),assumptions([h6,h7,h4,h5,h3,h2,h1,h0]),tab_negall(discharge,[h8]),tab_negall(eigenvar,eigen__3)],[h5,8,h8])). thf(10,plain,$false,inference(tab_negimp,[status(thm),assumptions([h4,h5,h3,h2,h1,h0]),tab_negimp(discharge,[h6,h7])],[h4,9,h6,h7])). thf(11,plain,$false,inference(tab_negimp,[status(thm),assumptions([h3,h2,h1,h0]),tab_negimp(discharge,[h4,h5])],[h3,10,h4,h5])). thf(12,plain,$false,inference(tab_negall,[status(thm),assumptions([h2,h1,h0]),tab_negall(discharge,[h3]),tab_negall(eigenvar,eigen__2)],[h2,11,h3])). thf(13,plain,$false,inference(tab_negall,[status(thm),assumptions([h1,h0]),tab_negall(discharge,[h2]),tab_negall(eigenvar,eigen__1)],[h1,12,h2])). thf(14,plain,$false,inference(tab_negall,[status(thm),assumptions([h0]),tab_negall(discharge,[h1]),tab_negall(eigenvar,eigen__0)],[h0,13,h1])). % SZS output end Proof
% SZS status Theorem % SZS output start Derivation Take the following subset of the input axioms: fof(commutativity_k3_xboole_0, axiom, ![A, B]: set_intersection2(A, B)=set_intersection2(B, A)). fof(d10_xboole_0, axiom, ![A, B]: (A=B <=> (subset(A, B) & subset(B, A)))). fof(d7_xboole_0, axiom, ![A, B]: (disjoint(A, B) <=> set_intersection2(A, B)=empty_set)). fof(symmetry_r1_xboole_0, axiom, ![A, B]: (disjoint(A, B) => disjoint(B, A))). fof(t26_xboole_1, lemma, ![A, B, C]: (subset(A, B) => subset(set_intersection2(A, C), set_intersection2(B, C)))). fof(t2_xboole_1, lemma, ![A]: subset(empty_set, A)). fof(t63_xboole_1, conjecture, ![A, B, C]: ((subset(A, B) & disjoint(B, C)) => disjoint(A, C))). Now clausify the problem and encode Horn clauses using $$ifeq; see http://www.cse.chalmers.se/~nicsma/papers/horn.pdf for details. a=b => c=d becomes $$ifeq(a,b,c,d)=d, plus an axiom $$ifeq(X,X,Y,Z)=Y. A predicate p(X) is encoded as p(X)=$$true (this is sound, because the input problem has no model of domain size 1). The encoding turns the above axioms into the following unit equations and goals: Axiom 1 (ifeq_axiom): $$ifeq3(X, X, Y, Z) = Y. Axiom 2 (ifeq_axiom): $$ifeq2(X, X, Y, Z) = Y. Axiom 3 (ifeq_axiom): $$ifeq(X, X, Y, Z) = Y. Axiom 5 (commutativity_k3_xboole_0): set_intersection2(X, Y) = set_intersection2(Y, X). Axiom 6 (d10_xboole_0_1): $$ifeq2(subset(X, Y), $$true2, $$ifeq2(subset(Y, X), $$true2, Y, X), X) = X. Axiom 25 (d7_xboole_0_1): $$ifeq2(disjoint(X, Y), $$true2, set_intersection2(X, Y), empty_set) = empty_set. Axiom 26 (d7_xboole_0): $$ifeq3(set_intersection2(X, Y), empty_set, disjoint(X, Y), $$true2) = $$true2. Axiom 37 (symmetry_r1_xboole_0): $$ifeq(disjoint(X, Y), $$true2, disjoint(Y, X), $$true2) = $$true2. Axiom 43 (t26_xboole_1): $$ifeq(subset(X, Y), $$true2, subset(set_intersection2(X, Z), set_intersection2(Y, Z)), $$true2) = $$true2. Axiom 47 (t2_xboole_1): subset(empty_set, X) = $$true2. Axiom 63 (t63_xboole_1): subset(sK1_t63_xboole_1_A, sK3_t63_xboole_1_B) = $$true2. Axiom 64 (t63_xboole_1_1): disjoint(sK3_t63_xboole_1_B, sK2_t63_xboole_1_C) = $$true2. Goal 1 (t63_xboole_1_2): disjoint(sK1_t63_xboole_1_A, sK2_t63_xboole_1_C) = $$true2. Proof: disjoint(sK1_t63_xboole_1_A, sK2_t63_xboole_1_C) = { by axiom 3 (ifeq_axiom) } $$ifeq($$true2, $$true2, disjoint(sK1_t63_xboole_1_A, sK2_t63_xboole_1_C), $$true2) = { by axiom 26 (d7_xboole_0) } $$ifeq($$ifeq3(set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A), empty_set, disjoint(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A), $$true2), $$true2, disjoint(sK1_t63_xboole_1_A, sK2_t63_xboole_1_C), $$true2) = { by axiom 6 (d10_xboole_0_1) } $$ifeq($$ifeq3($$ifeq2(subset(set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A), empty_set), $$true2, $$ifeq2(subset(empty_set, set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), $$true2, empty_set, set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), empty_set, disjoint(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A), $$true2), $$true2, disjoint(sK1_t63_xboole_1_A, sK2_t63_xboole_1_C), $$true2) = { by axiom 5 (commutativity_k3_xboole_0) } $$ifeq($$ifeq3($$ifeq2(subset(set_intersection2(sK1_t63_xboole_1_A, sK2_t63_xboole_1_C), empty_set), $$true2, $$ifeq2(subset(empty_set, set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), $$true2, empty_set, set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), empty_set, disjoint(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A), $$true2), $$true2, disjoint(sK1_t63_xboole_1_A, sK2_t63_xboole_1_C), $$true2) = { by axiom 25 (d7_xboole_0_1) } $$ifeq($$ifeq3($$ifeq2(subset(set_intersection2(sK1_t63_xboole_1_A, sK2_t63_xboole_1_C), $$ifeq2(disjoint(sK3_t63_xboole_1_B, sK2_t63_xboole_1_C), $$true2, set_intersection2(sK3_t63_xboole_1_B, sK2_t63_xboole_1_C), empty_set)), $$true2, $$ifeq2(subset(empty_set, set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), $$true2, empty_set, set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), empty_set, disjoint(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A), $$true2), $$true2, disjoint(sK1_t63_xboole_1_A, sK2_t63_xboole_1_C), $$true2) = { by axiom 64 (t63_xboole_1_1) } $$ifeq($$ifeq3($$ifeq2(subset(set_intersection2(sK1_t63_xboole_1_A, sK2_t63_xboole_1_C), $$ifeq2($$true2, $$true2, set_intersection2(sK3_t63_xboole_1_B, sK2_t63_xboole_1_C), empty_set)), $$true2, $$ifeq2(subset(empty_set, set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), $$true2, empty_set, set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), empty_set, disjoint(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A), $$true2), $$true2, disjoint(sK1_t63_xboole_1_A, sK2_t63_xboole_1_C), $$true2) = { by axiom 2 (ifeq_axiom) } $$ifeq($$ifeq3($$ifeq2(subset(set_intersection2(sK1_t63_xboole_1_A, sK2_t63_xboole_1_C), set_intersection2(sK3_t63_xboole_1_B, sK2_t63_xboole_1_C)), $$true2, $$ifeq2(subset(empty_set, set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), $$true2, empty_set, set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), empty_set, disjoint(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A), $$true2), $$true2, disjoint(sK1_t63_xboole_1_A, sK2_t63_xboole_1_C), $$true2) = { by axiom 3 (ifeq_axiom) } $$ifeq($$ifeq3($$ifeq2($$ifeq($$true2, $$true2, subset(set_intersection2(sK1_t63_xboole_1_A, sK2_t63_xboole_1_C), set_intersection2(sK3_t63_xboole_1_B, sK2_t63_xboole_1_C)), $$true2), $$true2, $$ifeq2(subset(empty_set, set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), $$true2, empty_set, set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), empty_set, disjoint(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A), $$true2), $$true2, disjoint(sK1_t63_xboole_1_A, sK2_t63_xboole_1_C), $$true2) = { by axiom 63 (t63_xboole_1) } $$ifeq($$ifeq3($$ifeq2($$ifeq(subset(sK1_t63_xboole_1_A, sK3_t63_xboole_1_B), $$true2, subset(set_intersection2(sK1_t63_xboole_1_A, sK2_t63_xboole_1_C), set_intersection2(sK3_t63_xboole_1_B, sK2_t63_xboole_1_C)), $$true2), $$true2, $$ifeq2(subset(empty_set, set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), $$true2, empty_set, set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), empty_set, disjoint(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A), $$true2), $$true2, disjoint(sK1_t63_xboole_1_A, sK2_t63_xboole_1_C), $$true2) = { by axiom 43 (t26_xboole_1) } $$ifeq($$ifeq3($$ifeq2($$true2, $$true2, $$ifeq2(subset(empty_set, set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), $$true2, empty_set, set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), empty_set, disjoint(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A), $$true2), $$true2, disjoint(sK1_t63_xboole_1_A, sK2_t63_xboole_1_C), $$true2) = { by axiom 2 (ifeq_axiom) } $$ifeq($$ifeq3($$ifeq2(subset(empty_set, set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), $$true2, empty_set, set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), empty_set, disjoint(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A), $$true2), $$true2, disjoint(sK1_t63_xboole_1_A, sK2_t63_xboole_1_C), $$true2) = { by axiom 47 (t2_xboole_1) } $$ifeq($$ifeq3($$ifeq2($$true2, $$true2, empty_set, set_intersection2(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A)), empty_set, disjoint(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A), $$true2), $$true2, disjoint(sK1_t63_xboole_1_A, sK2_t63_xboole_1_C), $$true2) = { by axiom 2 (ifeq_axiom) } $$ifeq($$ifeq3(empty_set, empty_set, disjoint(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A), $$true2), $$true2, disjoint(sK1_t63_xboole_1_A, sK2_t63_xboole_1_C), $$true2) = { by axiom 1 (ifeq_axiom) } $$ifeq(disjoint(sK2_t63_xboole_1_C, sK1_t63_xboole_1_A), $$true2, disjoint(sK1_t63_xboole_1_A, sK2_t63_xboole_1_C), $$true2) = { by axiom 37 (symmetry_r1_xboole_0) } $$true2 % SZS output end Derivation
% SZS status Theorem for SEU140+2 % SZS output start Proof for SEU140+2 fof(f6,axiom,( ! [X0] : (empty_set = X0 <=> ! [X1] : ~in(X1,X0))), file('/tmp/SystemOnTPTP11775/SEU140+2.tptp',d1_xboole_0)). fof(f8,axiom,( ! [X0,X1] : (subset(X0,X1) <=> ! [X2] : (in(X2,X0) => in(X2,X1)))), file('/tmp/SystemOnTPTP11775/SEU140+2.tptp',d3_tarski)). fof(f9,axiom,( ! [X0,X1,X2] : (set_intersection2(X0,X1) = X2 <=> ! [X3] : (in(X3,X2) <=> (in(X3,X0) & in(X3,X1))))), file('/tmp/SystemOnTPTP11775/SEU140+2.tptp',d3_xboole_0)). fof(f11,axiom,( ! [X0,X1] : (disjoint(X0,X1) <=> set_intersection2(X0,X1) = empty_set)), file('/tmp/SystemOnTPTP11775/SEU140+2.tptp',d7_xboole_0)). fof(f43,axiom,( ! [X0,X1] : (~(~disjoint(X0,X1) & ! [X2] : ~(in(X2,X0) & in(X2,X1))) & ~(? [X2] : (in(X2,X0) & in(X2,X1)) & disjoint(X0,X1)))), file('/tmp/SystemOnTPTP11775/SEU140+2.tptp',t3_xboole_0)). fof(f51,conjecture,( ! [X0,X1,X2] : ((subset(X0,X1) & disjoint(X1,X2)) => disjoint(X0,X2))), file('/tmp/SystemOnTPTP11775/SEU140+2.tptp',t63_xboole_1)). fof(f52,negated_conjecture,( ~! [X0,X1,X2] : ((subset(X0,X1) & disjoint(X1,X2)) => disjoint(X0,X2))), inference(negated_conjecture,[],[f51])). fof(f60,plain,( ! [X0,X1] : (~(~disjoint(X0,X1) & ! [X3] : ~(in(X3,X0) & in(X3,X1))) & ~(? [X2] : (in(X2,X0) & in(X2,X1)) & disjoint(X0,X1)))), inference(rectify,[],[f43])). fof(f61,plain,( ! [X0,X1] : (~(~disjoint(X0,X1) & ! [X3] : ~(in(X3,X0) & in(X3,X1))) & ~(? [X2] : (in(X2,X0) & in(X2,X1)) & disjoint(X0,X1)))), inference(flattening,[],[f60])). fof(f63,plain,( ! [X0] : (empty_set = X0 <=> ! [X1] : ~in(X1,X0))), inference(flattening,[],[f6])). fof(f74,plain,( ? [X0,X1,X2] : ((subset(X0,X1) & disjoint(X1,X2)) & ~disjoint(X0,X2))), inference(ennf_transformation,[],[f52])). fof(f75,plain,( ? [X0,X1,X2] : (subset(X0,X1) & disjoint(X1,X2) & ~disjoint(X0,X2))), inference(flattening,[],[f74])). fof(f78,plain,( ! [X0,X1] : ((disjoint(X0,X1) | ? [X3] : (in(X3,X0) & in(X3,X1))) & (! [X2] : (~in(X2,X0) | ~in(X2,X1)) | ~disjoint(X0,X1)))), inference(ennf_transformation,[],[f61])). fof(f96,plain,( ! [X0,X1] : (subset(X0,X1) <=> ! [X2] : (~in(X2,X0) | in(X2,X1)))), inference(ennf_transformation,[],[f8])). fof(f101,plain,( subset(sK0,sK1) & disjoint(sK1,sK2) & ~disjoint(sK0,sK2)), inference(skolemisation,[status(esa),new_symbols(skolem,[sK0,sK1,sK2])],[f75])). fof(f103,plain,( ! [X0,X1] : ((disjoint(X0,X1) | (in(sK4(X1,X0),X0) & in(sK4(X1,X0),X1))) & (! [X2] : (~in(X2,X0) | ~in(X2,X1)) | ~disjoint(X0,X1)))), inference(skolemisation,[status(esa),new_symbols(skolem,[sK4])],[f78])). fof(f106,plain,( ! [X0,X1] : ((~disjoint(X0,X1) | set_intersection2(X0,X1) = empty_set) & (set_intersection2(X0,X1) != empty_set | disjoint(X0,X1)))), inference(nnf_transformation,[],[f11])). fof(f109,plain,( ! [X0] : ((empty_set != X0 | ! [X1] : ~in(X1,X0)) & (? [X1] : in(X1,X0) | empty_set = X0))), inference(nnf_transformation,[],[f63])). fof(f110,plain,( ! [X0] : ((empty_set != X0 | ! [X2] : ~in(X2,X0)) & (? [X1] : in(X1,X0) | empty_set = X0))), inference(rectify,[],[f109])). fof(f111,plain,( ! [X0] : ((empty_set != X0 | ! [X2] : ~in(X2,X0)) & (in(sK5(X0),X0) | empty_set = X0))), inference(skolemisation,[status(esa),new_symbols(skolem,[sK5])],[f110])). fof(f116,plain,( ! [X0,X1,X2] : ((set_intersection2(X0,X1) != X2 | ! [X3] : ((~in(X3,X2) | (in(X3,X0) & in(X3,X1))) & ((~in(X3,X0) | ~in(X3,X1)) | in(X3,X2)))) & (? [X3] : ((in(X3,X2) | (in(X3,X0) & in(X3,X1))) & (~in(X3,X2) | (~in(X3,X0) | ~in(X3,X1)))) | set_intersection2(X0,X1) = X2))), inference(nnf_transformation,[],[f9])). fof(f117,plain,( ! [X0,X1,X2] : ((set_intersection2(X0,X1) != X2 | ! [X3] : ((~in(X3,X2) | (in(X3,X0) & in(X3,X1))) & (~in(X3,X0) | ~in(X3,X1) | in(X3,X2)))) & (? [X3] : ((in(X3,X2) | (in(X3,X0) & in(X3,X1))) & (~in(X3,X2) | ~in(X3,X0) | ~in(X3,X1))) | set_intersection2(X0,X1) = X2))), inference(flattening,[],[f116])). fof(f118,plain,( ! [X0,X1,X2] : ((set_intersection2(X0,X1) != X2 | ! [X4] : ((~in(X4,X2) | (in(X4,X0) & in(X4,X1))) & (~in(X4,X0) | ~in(X4,X1) | in(X4,X2)))) & (? [X3] : ((in(X3,X2) | (in(X3,X0) & in(X3,X1))) & (~in(X3,X2) | ~in(X3,X0) | ~in(X3,X1))) | set_intersection2(X0,X1) = X2))), inference(rectify,[],[f117])). fof(f119,plain,( ! [X0,X1,X2] : ((set_intersection2(X0,X1) != X2 | ! [X4] : ((~in(X4,X2) | (in(X4,X0) & in(X4,X1))) & (~in(X4,X0) | ~in(X4,X1) | in(X4,X2)))) & (((in(sK7(X2,X1,X0),X2) | (in(sK7(X2,X1,X0),X0) & in(sK7(X2,X1,X0),X1))) & (~in(sK7(X2,X1,X0),X2) | ~in(sK7(X2,X1,X0),X0) | ~in(sK7(X2,X1,X0),X1))) | set_intersection2(X0,X1) = X2))), inference(skolemisation,[status(esa),new_symbols(skolem,[sK7])],[f118])). fof(f124,plain,( ! [X0,X1] : ((~subset(X0,X1) | ! [X2] : (~in(X2,X0) | in(X2,X1))) & (? [X2] : (in(X2,X0) & ~in(X2,X1)) | subset(X0,X1)))), inference(nnf_transformation,[],[f96])). fof(f125,plain,( ! [X0,X1] : ((~subset(X0,X1) | ! [X3] : (~in(X3,X0) | in(X3,X1))) & (? [X2] : (in(X2,X0) & ~in(X2,X1)) | subset(X0,X1)))), inference(rectify,[],[f124])). fof(f126,plain,( ! [X0,X1] : ((~subset(X0,X1) | ! [X3] : (~in(X3,X0) | in(X3,X1))) & ((in(sK9(X1,X0),X0) & ~in(sK9(X1,X0),X1)) | subset(X0,X1)))), inference(skolemisation,[status(esa),new_symbols(skolem,[sK9])],[f125])). fof(f133,plain,( subset(sK0,sK1)), inference(cnf_transformation,[],[f101])). fof(f134,plain,( disjoint(sK1,sK2)), inference(cnf_transformation,[],[f101])). fof(f135,plain,( ~disjoint(sK0,sK2)), inference(cnf_transformation,[],[f101])). fof(f146,plain,( ( ! [X0,X1] : (in(sK4(X1,X0),X0) | disjoint(X0,X1)) )), inference(cnf_transformation,[],[f103])). fof(f147,plain,( ( ! [X0,X1] : (in(sK4(X1,X0),X1) | disjoint(X0,X1)) )), inference(cnf_transformation,[],[f103])). fof(f162,plain,( ( ! [X0,X1] : (set_intersection2(X0,X1) = empty_set | ~disjoint(X0,X1)) )), inference(cnf_transformation,[],[f106])). fof(f169,plain,( ( ! [X2,X0] : (~in(X2,X0) | empty_set != X0) )), inference(cnf_transformation,[],[f111])). fof(f189,plain,( ( ! [X4,X2,X0,X1] : (in(X4,X2) | ~in(X4,X1) | ~in(X4,X0) | set_intersection2(X0,X1) != X2) )), inference(cnf_transformation,[],[f119])). fof(f202,plain,( ( ! [X0,X3,X1] : (~subset(X0,X1) | ~in(X3,X0) | in(X3,X1)) )), inference(cnf_transformation,[],[f126])). fof(f218,plain,( ( ! [X2] : (~in(X2,empty_set)) )), inference(equality_resolution,[],[f169])). fof(f222,plain,( ( ! [X4,X0,X1] : (in(X4,set_intersection2(X0,X1)) | ~in(X4,X1) | ~in(X4,X0)) )), inference(equality_resolution,[],[f189])). fof(f234,plain,( set_intersection2(sK1,sK2) = empty_set), inference(unit_resulting_resolution,[],[f134,f162])). fof(f467,plain,( in(sK4(sK2,sK0),sK0)), inference(unit_resulting_resolution,[],[f135,f146])). fof(f480,plain,( in(sK4(sK2,sK0),sK1)), inference(unit_resulting_resolution,[],[f133,f467,f202])). fof(f513,plain,( in(sK4(sK2,sK0),sK2)), inference(unit_resulting_resolution,[],[f135,f147])). fof(f857,plain,( in(sK4(sK2,sK0),set_intersection2(sK1,sK2))), inference(unit_resulting_resolution,[],[f513,f480,f222])). fof(f865,plain,( in(sK4(sK2,sK0),empty_set)), inference(forward_demodulation,[],[f857,f234])). fof(f866,plain,( $false), inference(subsumption_resolution,[],[f865,f218])). % SZS output end Proof for SEU140+2
tff(type_def_6, type, array: $tType). tff(func_def_0, type, read: (array * $int) > $int). tff(func_def_1, type, write: (array * $int * $int) > array). tff(func_def_7, type, sK0: array). tff(func_def_8, type, sK1: $int). tff(func_def_9, type, sK2: $int). tff(func_def_10, type, sK3: $int). tff(f3,conjecture,( ! [X0 : array,X1 : $int,X2 : $int] : (! [X3 : $int] : (($lesseq(X3,X2) & $lesseq(X1,X3)) => $greater(read(X0,X3),0)) => ! [X4 : $int] : (($lesseq(X4,X2) & $lesseq($sum(X1,3),X4)) => $greater(read(X0,X4),0)))), file('/Users/giles/TPTP/TPTP-v6.2.0/Problems/DAT/DAT013=1.p',unknown)). tff(f4,negated_conjecture,( ~! [X0 : array,X1 : $int,X2 : $int] : (! [X3 : $int] : (($lesseq(X3,X2) & $lesseq(X1,X3)) => $greater(read(X0,X3),0)) => ! [X4 : $int] : (($lesseq(X4,X2) & $lesseq($sum(X1,3),X4)) => $greater(read(X0,X4),0)))), inference(negated_conjecture,[],[f3])). tff(f6,plain,( ~! [X0 : array,X1 : $int,X2 : $int] : (! [X3 : $int] : ((~$less(X2,X3) & ~$less(X3,X1)) => $less(0,read(X0,X3))) => ! [X4 : $int] : ((~$less(X2,X4) & ~$less(X4,$sum(X1,3))) => $less(0,read(X0,X4))))), inference(evaluation,[],[f4])). tff(f7,plain,( ( ! [X0:$int,X1:$int] : ($sum(X0,X1) = $sum(X1,X0)) )), introduced(theory_axiom,[])). tff(f9,plain,( ( ! [X0:$int] : ($sum(X0,0) = X0) )), introduced(theory_axiom,[])). tff(f12,plain,( ( ! [X0:$int] : (~$less(X0,X0)) )), introduced(theory_axiom,[])). tff(f13,plain,( ( ! [X2:$int,X0:$int,X1:$int] : (~$less(X1,X2) | ~$less(X0,X1) | $less(X0,X2)) )), introduced(theory_axiom,[])). tff(f14,plain,( ( ! [X0:$int,X1:$int] : ($less(X1,X0) | $less(X0,X1) | X0 = X1) )), introduced(theory_axiom,[])). tff(f15,plain,( ( ! [X2:$int,X0:$int,X1:$int] : ($less($sum(X0,X2),$sum(X1,X2)) | ~$less(X0,X1)) )), introduced(theory_axiom,[])). tff(f20,plain,( ? [X0 : array,X1 : $int,X2 : $int] : (? [X4 : $int] : (~$less(0,read(X0,X4)) & (~$less(X2,X4) & ~$less(X4,$sum(X1,3)))) & ! [X3 : $int] : ($less(0,read(X0,X3)) | ($less(X2,X3) | $less(X3,X1))))), inference(ennf_transformation,[],[f6])). tff(f21,plain,( ? [X0 : array,X1 : $int,X2 : $int] : (? [X4 : $int] : (~$less(0,read(X0,X4)) & ~$less(X2,X4) & ~$less(X4,$sum(X1,3))) & ! [X3 : $int] : ($less(0,read(X0,X3)) | $less(X2,X3) | $less(X3,X1)))), inference(flattening,[],[f20])). tff(f22,plain,( ? [X0 : array,X1 : $int,X2 : $int] : (? [X3 : $int] : (~$less(0,read(X0,X3)) & ~$less(X2,X3) & ~$less(X3,$sum(X1,3))) & ! [X4 : $int] : ($less(0,read(X0,X4)) | $less(X2,X4) | $less(X4,X1)))), inference(rectify,[],[f21])). tff(f23,plain,( ? [X0 : array,X1 : $int,X2 : $int] : (? [X3 : $int] : (~$less(0,read(X0,X3)) & ~$less(X2,X3) & ~$less(X3,$sum(X1,3))) & ! [X4 : $int] : ($less(0,read(X0,X4)) | $less(X2,X4) | $less(X4,X1))) => (? [X3 : $int] : (~$less(0,read(sK0,X3)) & ~$less(sK2,X3) & ~$less(X3,$sum(sK1,3))) & ! [X4 : $int] : ($less(0,read(sK0,X4)) | $less(sK2,X4) | $less(X4,sK1)))), introduced(choice_axiom,[])). tff(f24,plain,( ( ! [X2:$int,X0:array,X1:$int] : (? [X3 : $int] : (~$less(0,read(X0,X3)) & ~$less(X2,X3) & ~$less(X3,$sum(X1,3))) => (~$less(0,read(X0,sK3)) & ~$less(X2,sK3) & ~$less(sK3,$sum(X1,3)))) )), introduced(choice_axiom,[])). tff(f25,plain,( (~$less(0,read(sK0,sK3)) & ~$less(sK2,sK3) & ~$less(sK3,$sum(sK1,3))) & ! [X4 : $int] : ($less(0,read(sK0,X4)) | $less(sK2,X4) | $less(X4,sK1))), inference(skolemisation,[status(esa),new_symbols(skolem,[sK0,sK1,sK2,sK3])],[f22,f24,f23])). tff(f29,plain,( ( ! [X4:$int] : ($less(0,read(sK0,X4)) | $less(sK2,X4) | $less(X4,sK1)) )), inference(cnf_transformation,[],[f25])). tff(f30,plain,( ~$less(sK3,$sum(sK1,3))), inference(cnf_transformation,[],[f25])). tff(f31,plain,( ~$less(sK2,sK3)), inference(cnf_transformation,[],[f25])). tff(f32,plain,( ~$less(0,read(sK0,sK3))), inference(cnf_transformation,[],[f25])). tff(f33,plain,( ~$less(sK3,$sum(3,sK1))), inference(forward_demodulation,[],[f30,f7])). tff(f98,plain,( $less($sum(3,sK1),sK3) | $sum(3,sK1) = sK3), inference(resolution,[],[f14,f33])). tff(f131,plain,( spl4_8 <=> $sum(3,sK1) = sK3), introduced(AVATAR_definition,[new_symbols(naming,[spl4_8])])). tff(f132,plain,( $sum(3,sK1) = sK3 | ~spl4_8), inference(AVATAR_component_clause,[],[f131])). tff(f137,plain,( spl4_10 <=> $less($sum(3,sK1),sK3)), introduced(AVATAR_definition,[new_symbols(naming,[spl4_10])])). tff(f138,plain,( $less($sum(3,sK1),sK3) | ~spl4_10), inference(AVATAR_component_clause,[],[f137])). tff(f142,plain,( spl4_8 | spl4_10), inference(AVATAR_split_clause,[],[f98,f137,f131])). tff(f172,plain,( ( ! [X6:$int,X4:$int,X5:$int] : ($less($sum(X5,X4),$sum(X6,X5)) | ~$less(X4,X6)) )), inference(superposition,[],[f15,f7])). tff(f489,plain,( ( ! [X6:$int,X7:$int] : ($less(X6,$sum(X7,X6)) | ~$less(0,X7)) )), inference(superposition,[],[f172,f9])). tff(f659,plain,( $less(sK2,sK3) | $less(sK3,sK1)), inference(resolution,[],[f29,f32])). tff(f662,plain,( $less(sK3,sK1)), inference(subsumption_resolution,[],[f659,f31])). tff(f664,plain,( ( ! [X0:$int] : (~$less(X0,sK3) | $less(X0,sK1)) )), inference(resolution,[],[f662,f13])). tff(f673,plain,( ( ! [X4:$int] : ($less($sum(sK1,X4),sK3) | ~$less(X4,3)) ) | ~spl4_8), inference(superposition,[],[f172,f132])). tff(f2473,plain,( $less(sK1,sK3) | ~$less(0,3) | ~spl4_8), inference(superposition,[],[f673,f9])). tff(f2478,plain,( $less(sK1,sK3) | ~spl4_8), inference(evaluation,[],[f2473])). tff(f2480,plain,( $less(sK1,sK1) | ~spl4_8), inference(resolution,[],[f2478,f664])). tff(f2484,plain,( $false | ~spl4_8), inference(subsumption_resolution,[],[f2480,f12])). tff(f2485,plain,( ~spl4_8), inference(AVATAR_contradiction_clause,[],[f2484,f131])). tff(f2513,plain,( ( ! [X2:$int] : (~$less(X2,$sum(3,sK1)) | $less(X2,sK3)) ) | ~spl4_10), inference(resolution,[],[f138,f13])). tff(f2962,plain,( ~$less(0,3) | $less(sK1,sK3) | ~spl4_10), inference(resolution,[],[f489,f2513])). tff(f2989,plain,( $less(sK1,sK3) | ~spl4_10), inference(evaluation,[],[f2962])). tff(f2991,plain,( $less(sK1,sK1) | ~spl4_10), inference(resolution,[],[f2989,f664])). tff(f2995,plain,( $false | ~spl4_10), inference(subsumption_resolution,[],[f2991,f12])). tff(f2996,plain,( ~spl4_10), inference(AVATAR_contradiction_clause,[],[f2995,f137])). tff(f2997,plain,( $false), inference(AVATAR_sat_refutation,[],[f142,f2485,f2996])).
# SZS output start Saturation. tff(u283,axiom, (![X1, X0] : ((~woman(X0,X1) | human_person(X0,X1))))). tff(u282,axiom, (![X1, X0] : ((~woman(X0,X1) | female(X0,X1))))). tff(u281,negated_conjecture, woman(sK0,sK1)). tff(u280,negated_conjecture, ~female(sK0,sK4)). tff(u279,negated_conjecture, ~female(sK0,sK2)). tff(u278,negated_conjecture, ~female(sK0,sK3)). tff(u277,negated_conjecture, female(sK0,sK1)). tff(u276,axiom, (![X1, X0] : ((~human_person(X0,X1) | organism(X0,X1))))). tff(u275,axiom, (![X1, X0] : ((~human_person(X0,X1) | human(X0,X1))))). tff(u274,axiom, (![X1, X0] : ((~human_person(X0,X1) | animate(X0,X1))))). tff(u273,negated_conjecture, human_person(sK0,sK1)). tff(u272,negated_conjecture, ~animate(sK0,sK3)). tff(u271,negated_conjecture, animate(sK0,sK1)). tff(u270,negated_conjecture, ~human(sK0,sK2)). tff(u269,negated_conjecture, human(sK0,sK1)). tff(u268,axiom, (![X1, X0] : ((~organism(X0,X1) | entity(X0,X1))))). tff(u267,axiom, (![X1, X0] : ((~organism(X0,X1) | living(X0,X1))))). tff(u266,negated_conjecture, organism(sK0,sK1)). tff(u265,negated_conjecture, ~living(sK0,sK3)). tff(u264,negated_conjecture, living(sK0,sK1)). tff(u263,axiom, (![X1, X0] : ((~entity(X0,X1) | specific(X0,X1))))). tff(u262,axiom, (![X1, X0] : ((~entity(X0,X1) | existent(X0,X1))))). tff(u261,negated_conjecture, entity(sK0,sK1)). tff(u260,negated_conjecture, entity(sK0,sK3)). tff(u259,axiom, (![X1, X0] : ((~mia_forename(X0,X1) | forename(X0,X1))))). tff(u258,negated_conjecture, mia_forename(sK0,sK2)). tff(u257,axiom, (![X1, X0] : ((~forename(X0,X1) | relname(X0,X1))))). tff(u256,negated_conjecture, forename(sK0,sK2)). tff(u255,axiom, (![X1, X0] : ((~abstraction(X0,X1) | nonhuman(X0,X1))))). tff(u254,axiom, (![X1, X0] : ((~abstraction(X0,X1) | general(X0,X1))))). tff(u253,axiom, (![X1, X0] : ((~abstraction(X0,X1) | unisex(X0,X1))))). tff(u252,negated_conjecture, abstraction(sK0,sK2)). tff(u251,axiom, (![X1, X0] : ((~unisex(X0,X1) | ~female(X0,X1))))). tff(u250,negated_conjecture, unisex(sK0,sK2)). tff(u249,negated_conjecture, unisex(sK0,sK4)). tff(u248,negated_conjecture, unisex(sK0,sK3)). tff(u247,negated_conjecture, ~general(sK0,sK4)). tff(u246,negated_conjecture, ~general(sK0,sK1)). tff(u245,negated_conjecture, ~general(sK0,sK3)). tff(u244,negated_conjecture, general(sK0,sK2)). tff(u243,axiom, (![X1, X0] : ((~nonhuman(X0,X1) | ~human(X0,X1))))). tff(u242,negated_conjecture, nonhuman(sK0,sK2)). tff(u241,axiom, (![X1, X0] : ((~relation(X0,X1) | abstraction(X0,X1))))). tff(u240,negated_conjecture, relation(sK0,sK2)). tff(u239,axiom, (![X1, X0] : ((~relname(X0,X1) | relation(X0,X1))))). tff(u238,negated_conjecture, relname(sK0,sK2)). tff(u237,axiom, (![X1, X0] : ((~object(X0,X1) | entity(X0,X1))))). tff(u236,axiom, (![X1, X0] : ((~object(X0,X1) | nonliving(X0,X1))))). tff(u235,axiom, (![X1, X0] : ((~object(X0,X1) | unisex(X0,X1))))). tff(u234,negated_conjecture, object(sK0,sK3)). tff(u233,axiom, (![X1, X0] : ((~nonliving(X0,X1) | ~living(X0,X1))))). tff(u232,axiom, (![X1, X0] : ((~nonliving(X0,X1) | ~animate(X0,X1))))). tff(u231,negated_conjecture, nonliving(sK0,sK3)). tff(u230,negated_conjecture, ~existent(sK0,sK4)). tff(u229,negated_conjecture, existent(sK0,sK1)). tff(u228,negated_conjecture, existent(sK0,sK3)). tff(u227,axiom, (![X1, X0] : ((~specific(X0,X1) | ~general(X0,X1))))). tff(u226,negated_conjecture, specific(sK0,sK1)). tff(u225,negated_conjecture, specific(sK0,sK4)). tff(u224,negated_conjecture, specific(sK0,sK3)). tff(u223,axiom, (![X1, X0] : ((~substance_matter(X0,X1) | object(X0,X1))))). tff(u222,negated_conjecture, substance_matter(sK0,sK3)). tff(u221,axiom, (![X1, X0] : ((~food(X0,X1) | substance_matter(X0,X1))))). tff(u220,negated_conjecture, food(sK0,sK3)). tff(u219,axiom, (![X1, X0] : ((~beverage(X0,X1) | food(X0,X1))))). tff(u218,negated_conjecture, beverage(sK0,sK3)). tff(u217,axiom, (![X1, X0] : ((~shake_beverage(X0,X1) | beverage(X0,X1))))). tff(u216,negated_conjecture, shake_beverage(sK0,sK3)). tff(u215,axiom, (![X1, X0] : ((~order(X0,X1) | act(X0,X1))))). tff(u214,axiom, (![X1, X0] : ((~order(X0,X1) | event(X0,X1))))). tff(u213,negated_conjecture, order(sK0,sK4)). tff(u212,axiom, (![X1, X0] : ((~event(X0,X1) | eventuality(X0,X1))))). tff(u211,negated_conjecture, event(sK0,sK4)). tff(u210,axiom, (![X1, X0] : ((~eventuality(X0,X1) | specific(X0,X1))))). tff(u209,axiom, (![X1, X0] : ((~eventuality(X0,X1) | nonexistent(X0,X1))))). tff(u208,axiom, (![X1, X0] : ((~eventuality(X0,X1) | unisex(X0,X1))))). tff(u207,negated_conjecture, eventuality(sK0,sK4)). tff(u206,axiom, (![X1, X0] : ((~nonexistent(X0,X1) | ~existent(X0,X1))))). tff(u205,negated_conjecture, nonexistent(sK0,sK4)). tff(u204,axiom, (![X1, X0] : ((~act(X0,X1) | event(X0,X1))))). tff(u203,negated_conjecture, act(sK0,sK4)). tff(u202,axiom, (![X1, X3, X0, X2] : ((~of(X0,X3,X1) | (X2 = X3) | ~forename(X0,X3) | ~of(X0,X2,X1) | ~forename(X0,X2) | ~entity(X0,X1))))). tff(u201,negated_conjecture, (![X0] : ((~of(sK0,X0,sK1) | (sK2 = X0) | ~forename(sK0,X0))))). tff(u200,negated_conjecture, of(sK0,sK2,sK1)). tff(u199,negated_conjecture, nonreflexive(sK0,sK4)). tff(u198,negated_conjecture, ~agent(sK0,sK4,sK3)). tff(u197,negated_conjecture, agent(sK0,sK4,sK1)). tff(u196,axiom, (![X1, X3, X0] : ((~patient(X0,X1,X3) | ~agent(X0,X1,X3) | ~nonreflexive(X0,X1))))). tff(u195,negated_conjecture, patient(sK0,sK4,sK3)). # SZS output end Saturation.
tff(declare$i,type,$i:$tType). tff(declare_$i1,type,at:$i). tff(declare_$i2,type,an_a_nonce:$i). tff(finite_domain,axiom, ! [X:$i] : ( X = at | X = an_a_nonce ) ). tff(distinct_domain,axiom, at != an_a_nonce ). tff(declare_t,type,t:$i). tff(t_definition,axiom,t = at). tff(declare_a,type,a:$i). tff(a_definition,axiom,a = at). tff(declare_b,type,b:$i). tff(b_definition,axiom,b = at). tff(declare_bt,type,bt:$i). tff(bt_definition,axiom,bt = an_a_nonce). tff(declare_an_intruder_nonce,type,an_intruder_nonce:$i). tff(an_intruder_nonce_definition,axiom,an_intruder_nonce = an_a_nonce). tff(declare_key,type,key: $i * $i > $i). tff(function_key,axiom, key(at,at) = at & key(at,an_a_nonce) = at & key(an_a_nonce,at) = at & key(an_a_nonce,an_a_nonce) = an_a_nonce ). tff(declare_pair,type,pair: $i * $i > $i). tff(function_pair,axiom, pair(at,at) = at & pair(at,an_a_nonce) = an_a_nonce & pair(an_a_nonce,at) = at & pair(an_a_nonce,an_a_nonce) = at ). tff(declare_sent,type,sent: $i * $i * $i > $i). tff(function_sent,axiom, sent(at,at,at) = at & sent(at,at,an_a_nonce) = at & sent(at,an_a_nonce,at) = at & sent(at,an_a_nonce,an_a_nonce) = an_a_nonce & sent(an_a_nonce,at,at) = at & sent(an_a_nonce,at,an_a_nonce) = at & sent(an_a_nonce,an_a_nonce,at) = at & sent(an_a_nonce,an_a_nonce,an_a_nonce) = at ). tff(declare_quadruple,type,quadruple: $i * $i * $i * $i > $i). tff(function_quadruple,axiom, quadruple(at,at,at,at) = at & quadruple(at,at,at,an_a_nonce) = at & quadruple(at,at,an_a_nonce,at) = at & quadruple(at,at,an_a_nonce,an_a_nonce) = at & quadruple(at,an_a_nonce,at,at) = at & quadruple(at,an_a_nonce,at,an_a_nonce) = at & quadruple(at,an_a_nonce,an_a_nonce,at) = at & quadruple(at,an_a_nonce,an_a_nonce,an_a_nonce) = at & quadruple(an_a_nonce,at,at,at) = at & quadruple(an_a_nonce,at,at,an_a_nonce) = an_a_nonce & quadruple(an_a_nonce,at,an_a_nonce,at) = an_a_nonce & quadruple(an_a_nonce,at,an_a_nonce,an_a_nonce) = an_a_nonce & quadruple(an_a_nonce,an_a_nonce,at,at) = an_a_nonce & quadruple(an_a_nonce,an_a_nonce,at,an_a_nonce) = at & quadruple(an_a_nonce,an_a_nonce,an_a_nonce,at) = an_a_nonce & quadruple(an_a_nonce,an_a_nonce,an_a_nonce,an_a_nonce) = an_a_nonce ). tff(declare_encrypt,type,encrypt: $i * $i > $i). tff(function_encrypt,axiom, encrypt(at,at) = an_a_nonce & encrypt(at,an_a_nonce) = an_a_nonce & encrypt(an_a_nonce,at) = at & encrypt(an_a_nonce,an_a_nonce) = at ). tff(declare_triple,type,triple: $i * $i * $i > $i). tff(function_triple,axiom, triple(at,at,at) = at & triple(at,at,an_a_nonce) = an_a_nonce & triple(at,an_a_nonce,at) = at & triple(at,an_a_nonce,an_a_nonce) = at & triple(an_a_nonce,at,at) = at & triple(an_a_nonce,at,an_a_nonce) = an_a_nonce & triple(an_a_nonce,an_a_nonce,at) = at & triple(an_a_nonce,an_a_nonce,an_a_nonce) = an_a_nonce ). tff(declare_generate_b_nonce,type,generate_b_nonce: $i > $i). tff(function_generate_b_nonce,axiom, generate_b_nonce(at) = an_a_nonce & generate_b_nonce(an_a_nonce) = an_a_nonce ). tff(declare_generate_expiration_time,type,generate_expiration_time: $i > $i). tff(function_generate_expiration_time,axiom, generate_expiration_time(at) = an_a_nonce & generate_expiration_time(an_a_nonce) = an_a_nonce ). tff(declare_generate_key,type,generate_key: $i > $i). tff(function_generate_key,axiom, generate_key(at) = at & generate_key(an_a_nonce) = at ). tff(declare_generate_intruder_nonce,type,generate_intruder_nonce: $i > $i). tff(function_generate_intruder_nonce,axiom, generate_intruder_nonce(at) = at & generate_intruder_nonce(an_a_nonce) = an_a_nonce ). tff(declare_a_holds,type,a_holds: $i > $o ). fof(predicate_a_holds,axiom, a_holds(at) & a_holds(an_a_nonce) ). tff(declare_party_of_protocol,type,party_of_protocol: $i > $o ). fof(predicate_party_of_protocol,axiom, party_of_protocol(at) & party_of_protocol(an_a_nonce) ). tff(declare_message,type,message: $i > $o ). fof(predicate_message,axiom, message(at) & message(an_a_nonce) ). tff(declare_a_stored,type,a_stored: $i > $o ). fof(predicate_a_stored,axiom, ~a_stored(at) & a_stored(an_a_nonce) ). tff(declare_b_holds,type,b_holds: $i > $o ). fof(predicate_b_holds,axiom, b_holds(at) & b_holds(an_a_nonce) ). tff(declare_fresh_to_b,type,fresh_to_b: $i > $o ). fof(predicate_fresh_to_b,axiom, fresh_to_b(at) & fresh_to_b(an_a_nonce) ). tff(declare_b_stored,type,b_stored: $i > $o ). fof(predicate_b_stored,axiom, b_stored(at) & b_stored(an_a_nonce) ). tff(declare_a_key,type,a_key: $i > $o ). fof(predicate_a_key,axiom, a_key(at) & ~a_key(an_a_nonce) ). tff(declare_t_holds,type,t_holds: $i > $o ). fof(predicate_t_holds,axiom, t_holds(at) & ~t_holds(an_a_nonce) ). tff(declare_a_nonce,type,a_nonce: $i > $o ). fof(predicate_a_nonce,axiom, ~a_nonce(at) & a_nonce(an_a_nonce) ). tff(declare_intruder_message,type,intruder_message: $i > $o ). fof(predicate_intruder_message,axiom, intruder_message(at) & intruder_message(an_a_nonce) ). tff(declare_intruder_holds,type,intruder_holds: $i > $o ). fof(predicate_intruder_holds,axiom, intruder_holds(at) & intruder_holds(an_a_nonce) ). tff(declare_fresh_intruder_nonce,type,fresh_intruder_nonce: $i > $o ). fof(predicate_fresh_intruder_nonce,axiom, ~fresh_intruder_nonce(at) & fresh_intruder_nonce(an_a_nonce) ).
tff(type_def_5, type, array: $tType). tff(func_def_0, type, read: (array * $int) > $int). tff(func_def_1, type, write: (array * $int * $int) > array). tff(func_def_7, type, sK0: array). tff(func_def_8, type, sK1: $int). tff(func_def_9, type, sK2: $int). tff(func_def_10, type, sK3: $int). tff(f3,conjecture,( ! [X0 : array,X1 : $int,X2 : $int] : (! [X3 : $int] : (($lesseq(X3,X2) & $lesseq(X1,X3)) => $greater(read(X0,X3),0)) => ! [X4 : $int] : (($lesseq(X4,X2) & $lesseq($sum(X1,3),X4)) => $greater(read(X0,X4),0)))), file('TPTP/TPTP-v6.4.0/Problems/DAT/DAT013=1.p',unknown)). tff(f4,negated_conjecture,( ~! [X0 : array,X1 : $int,X2 : $int] : (! [X3 : $int] : (($lesseq(X3,X2) & $lesseq(X1,X3)) => $greater(read(X0,X3),0)) => ! [X4 : $int] : (($lesseq(X4,X2) & $lesseq($sum(X1,3),X4)) => $greater(read(X0,X4),0)))), inference(negated_conjecture,[],[f3])). tff(f6,plain,( ~! [X0 : array,X1 : $int,X2 : $int] : (! [X3 : $int] : ((~$less(X2,X3) & ~$less(X3,X1)) => $less(0,read(X0,X3))) => ! [X4 : $int] : ((~$less(X2,X4) & ~$less(X4,$sum(X1,3))) => $less(0,read(X0,X4))))), inference(evaluation,[],[f4])). tff(f7,plain,( ( ! [X0:$int,X1:$int] : ($sum(X0,X1) = $sum(X1,X0)) )), introduced(theory_axiom,[])). tff(f9,plain,( ( ! [X0:$int] : ($sum(X0,0) = X0) )), introduced(theory_axiom,[])). tff(f12,plain,( ( ! [X0:$int] : (~$less(X0,X0)) )), introduced(theory_axiom,[])). tff(f13,plain,( ( ! [X2:$int,X0:$int,X1:$int] : (~$less(X1,X2) | ~$less(X0,X1) | $less(X0,X2)) )), introduced(theory_axiom,[])). tff(f14,plain,( ( ! [X0:$int,X1:$int] : ($less(X1,X0) | $less(X0,X1) | X0 = X1) )), introduced(theory_axiom,[])). tff(f15,plain,( ( ! [X2:$int,X0:$int,X1:$int] : ($less($sum(X0,X2),$sum(X1,X2)) | ~$less(X0,X1)) )), introduced(theory_axiom,[])). tff(f20,plain,( ? [X0 : array,X1 : $int,X2 : $int] : (? [X4 : $int] : (~$less(0,read(X0,X4)) & (~$less(X2,X4) & ~$less(X4,$sum(X1,3)))) & ! [X3 : $int] : ($less(0,read(X0,X3)) | ($less(X2,X3) | $less(X3,X1))))), inference(ennf_transformation,[],[f6])). tff(f21,plain,( ? [X0 : array,X1 : $int,X2 : $int] : (? [X4 : $int] : (~$less(0,read(X0,X4)) & ~$less(X2,X4) & ~$less(X4,$sum(X1,3))) & ! [X3 : $int] : ($less(0,read(X0,X3)) | $less(X2,X3) | $less(X3,X1)))), inference(flattening,[],[f20])). tff(f22,plain,( ? [X0 : array,X1 : $int,X2 : $int] : (? [X3 : $int] : (~$less(0,read(X0,X3)) & ~$less(X2,X3) & ~$less(X3,$sum(X1,3))) & ! [X4 : $int] : ($less(0,read(X0,X4)) | $less(X2,X4) | $less(X4,X1)))), inference(rectify,[],[f21])). tff(f23,plain,( ? [X0 : array,X1 : $int,X2 : $int] : (? [X3 : $int] : (~$less(0,read(X0,X3)) & ~$less(X2,X3) & ~$less(X3,$sum(X1,3))) & ! [X4 : $int] : ($less(0,read(X0,X4)) | $less(X2,X4) | $less(X4,X1))) => (? [X3 : $int] : (~$less(0,read(sK0,X3)) & ~$less(sK2,X3) & ~$less(X3,$sum(sK1,3))) & ! [X4 : $int] : ($less(0,read(sK0,X4)) | $less(sK2,X4) | $less(X4,sK1)))), introduced(choice_axiom,[])). tff(f24,plain,( ( ! [X2:$int,X0:array,X1:$int] : (? [X3 : $int] : (~$less(0,read(X0,X3)) & ~$less(X2,X3) & ~$less(X3,$sum(X1,3))) => (~$less(0,read(X0,sK3)) & ~$less(X2,sK3) & ~$less(sK3,$sum(X1,3)))) )), introduced(choice_axiom,[])). tff(f25,plain,( (~$less(0,read(sK0,sK3)) & ~$less(sK2,sK3) & ~$less(sK3,$sum(sK1,3))) & ! [X4 : $int] : ($less(0,read(sK0,X4)) | $less(sK2,X4) | $less(X4,sK1))), inference(skolemisation,[status(esa),new_symbols(skolem,[sK0,sK1,sK2,sK3])],[f22,f24,f23])). tff(f29,plain,( ( ! [X4:$int] : ($less(0,read(sK0,X4)) | $less(sK2,X4) | $less(X4,sK1)) )), inference(cnf_transformation,[],[f25])). tff(f30,plain,( ~$less(sK3,$sum(sK1,3))), inference(cnf_transformation,[],[f25])). tff(f31,plain,( ~$less(sK2,sK3)), inference(cnf_transformation,[],[f25])). tff(f32,plain,( ~$less(0,read(sK0,sK3))), inference(cnf_transformation,[],[f25])). tff(f33,plain,( ~$less(sK3,$sum(3,sK1))), inference(forward_demodulation,[],[f30,f7])). tff(f98,plain,( $less($sum(3,sK1),sK3) | $sum(3,sK1) = sK3), inference(resolution,[],[f14,f33])). tff(f131,plain,( spl4_8 <=> $sum(3,sK1) = sK3), introduced(avatar_definition,[new_symbols(naming,[spl4_8])])). tff(f132,plain,( $sum(3,sK1) = sK3 | ~spl4_8), inference(avatar_component_clause,[],[f131])). tff(f137,plain,( spl4_10 <=> $less($sum(3,sK1),sK3)), introduced(avatar_definition,[new_symbols(naming,[spl4_10])])). tff(f138,plain,( $less($sum(3,sK1),sK3) | ~spl4_10), inference(avatar_component_clause,[],[f137])). tff(f142,plain,( spl4_8 | spl4_10), inference(avatar_split_clause,[],[f98,f137,f131])). tff(f172,plain,( ( ! [X6:$int,X4:$int,X5:$int] : ($less($sum(X5,X4),$sum(X6,X5)) | ~$less(X4,X6)) )), inference(superposition,[],[f15,f7])). tff(f489,plain,( ( ! [X6:$int,X7:$int] : ($less(X6,$sum(X7,X6)) | ~$less(0,X7)) )), inference(superposition,[],[f172,f9])). tff(f659,plain,( $less(sK2,sK3) | $less(sK3,sK1)), inference(resolution,[],[f29,f32])). tff(f662,plain,( $less(sK3,sK1)), inference(subsumption_resolution,[],[f659,f31])). tff(f664,plain,( ( ! [X0:$int] : (~$less(X0,sK3) | $less(X0,sK1)) )), inference(resolution,[],[f662,f13])). tff(f673,plain,( ( ! [X4:$int] : ($less($sum(sK1,X4),sK3) | ~$less(X4,3)) ) | ~spl4_8), inference(superposition,[],[f172,f132])). tff(f2468,plain,( $less(sK1,sK3) | ~$less(0,3) | ~spl4_8), inference(superposition,[],[f673,f9])). tff(f2473,plain,( $less(sK1,sK3) | ~spl4_8), inference(evaluation,[],[f2468])). tff(f2475,plain,( $less(sK1,sK1) | ~spl4_8), inference(resolution,[],[f2473,f664])). tff(f2479,plain,( $false | ~spl4_8), inference(subsumption_resolution,[],[f2475,f12])). tff(f2480,plain,( ~spl4_8), inference(avatar_contradiction_clause,[],[f2479])). tff(f2508,plain,( ( ! [X2:$int] : (~$less(X2,$sum(3,sK1)) | $less(X2,sK3)) ) | ~spl4_10), inference(resolution,[],[f138,f13])). tff(f2961,plain,( ~$less(0,3) | $less(sK1,sK3) | ~spl4_10), inference(resolution,[],[f489,f2508])). tff(f2988,plain,( $less(sK1,sK3) | ~spl4_10), inference(evaluation,[],[f2961])). tff(f2990,plain,( $less(sK1,sK1) | ~spl4_10), inference(resolution,[],[f2988,f664])). tff(f2994,plain,( $false | ~spl4_10), inference(subsumption_resolution,[],[f2990,f12])). tff(f2995,plain,( ~spl4_10), inference(avatar_contradiction_clause,[],[f2994])). tff(f2996,plain,( $false), inference(avatar_sat_refutation,[],[f142,f2480,f2995])).
fof(f3,axiom,( ! [X0,X1] : set_union2(X0,X1) = set_union2(X1,X0)), file('TPTP/TPTP-v6.4.0/Problems/SEU/SEU140+2.p',unknown)). fof(f4,axiom,( ! [X0,X1] : set_intersection2(X0,X1) = set_intersection2(X1,X0)), file('TPTP/TPTP-v6.4.0/Problems/SEU/SEU140+2.p',unknown)). fof(f10,axiom,( ! [X0,X1,X2] : (set_difference(X0,X1) = X2 <=> ! [X3] : (in(X3,X2) <=> (~in(X3,X1) & in(X3,X0))))), file('TPTP/TPTP-v6.4.0/Problems/SEU/SEU140+2.p',unknown)). fof(f11,axiom,( ! [X0,X1] : (disjoint(X0,X1) <=> set_intersection2(X0,X1) = empty_set)), file('TPTP/TPTP-v6.4.0/Problems/SEU/SEU140+2.p',unknown)). fof(f20,axiom,( ! [X0,X1] : set_union2(X0,X0) = X0), file('TPTP/TPTP-v6.4.0/Problems/SEU/SEU140+2.p',unknown)). fof(f23,axiom,( ! [X0,X1] : (empty_set = set_difference(X0,X1) <=> subset(X0,X1))), file('TPTP/TPTP-v6.4.0/Problems/SEU/SEU140+2.p',unknown)). fof(f28,axiom,( ! [X0,X1] : (subset(X0,X1) => set_union2(X0,X1) = X1)), file('TPTP/TPTP-v6.4.0/Problems/SEU/SEU140+2.p',unknown)). fof(f31,axiom,( ! [X0] : set_union2(X0,empty_set) = X0), file('TPTP/TPTP-v6.4.0/Problems/SEU/SEU140+2.p',unknown)). fof(f39,axiom,( ! [X0,X1] : subset(set_difference(X0,X1),X0)), file('TPTP/TPTP-v6.4.0/Problems/SEU/SEU140+2.p',unknown)). fof(f41,axiom,( ! [X0,X1] : set_union2(X0,X1) = set_union2(X0,set_difference(X1,X0))), file('TPTP/TPTP-v6.4.0/Problems/SEU/SEU140+2.p',unknown)). fof(f42,axiom,( ! [X0] : set_difference(X0,empty_set) = X0), file('TPTP/TPTP-v6.4.0/Problems/SEU/SEU140+2.p',unknown)). fof(f43,axiom,( ! [X0,X1] : (~(disjoint(X0,X1) & ? [X2] : (in(X2,X1) & in(X2,X0))) & ~(! [X2] : ~(in(X2,X1) & in(X2,X0)) & ~disjoint(X0,X1)))), file('TPTP/TPTP-v6.4.0/Problems/SEU/SEU140+2.p',unknown)). fof(f45,axiom,( ! [X0,X1] : set_difference(X0,X1) = set_difference(set_union2(X0,X1),X1)), file('TPTP/TPTP-v6.4.0/Problems/SEU/SEU140+2.p',unknown)). fof(f47,axiom,( ! [X0,X1] : set_intersection2(X0,X1) = set_difference(X0,set_difference(X0,X1))), file('TPTP/TPTP-v6.4.0/Problems/SEU/SEU140+2.p',unknown)). fof(f51,conjecture,( ! [X0,X1,X2] : ((disjoint(X1,X2) & subset(X0,X1)) => disjoint(X0,X2))), file('TPTP/TPTP-v6.4.0/Problems/SEU/SEU140+2.p',unknown)). fof(f52,negated_conjecture,( ~! [X0,X1,X2] : ((disjoint(X1,X2) & subset(X0,X1)) => disjoint(X0,X2))), inference(negated_conjecture,[],[f51])). fof(f55,axiom,( ! [X0,X1] : subset(X0,set_union2(X0,X1))), file('TPTP/TPTP-v6.4.0/Problems/SEU/SEU140+2.p',unknown)). fof(f58,plain,( ! [X0] : set_union2(X0,X0) = X0), inference(rectify,[],[f20])). fof(f62,plain,( ! [X0,X1] : (~(disjoint(X0,X1) & ? [X2] : (in(X2,X1) & in(X2,X0))) & ~(! [X3] : ~(in(X3,X1) & in(X3,X0)) & ~disjoint(X0,X1)))), inference(rectify,[],[f43])). fof(f73,plain,( ! [X0,X1] : (set_union2(X0,X1) = X1 | ~subset(X0,X1))), inference(ennf_transformation,[],[f28])). fof(f82,plain,( ! [X0,X1] : ((~disjoint(X0,X1) | ! [X2] : (~in(X2,X1) | ~in(X2,X0))) & (? [X3] : (in(X3,X1) & in(X3,X0)) | disjoint(X0,X1)))), inference(ennf_transformation,[],[f62])). fof(f87,plain,( ? [X0,X1,X2] : (~disjoint(X0,X2) & (disjoint(X1,X2) & subset(X0,X1)))), inference(ennf_transformation,[],[f52])). fof(f88,plain,( ? [X0,X1,X2] : (~disjoint(X0,X2) & disjoint(X1,X2) & subset(X0,X1))), inference(flattening,[],[f87])). fof(f114,plain,( ! [X0,X1,X2] : ((set_difference(X0,X1) = X2 | ? [X3] : (((in(X3,X1) | ~in(X3,X0)) | ~in(X3,X2)) & ((~in(X3,X1) & in(X3,X0)) | in(X3,X2)))) & (! [X3] : ((in(X3,X2) | (in(X3,X1) | ~in(X3,X0))) & ((~in(X3,X1) & in(X3,X0)) | ~in(X3,X2))) | set_difference(X0,X1) != X2))), inference(nnf_transformation,[],[f10])). fof(f115,plain,( ! [X0,X1,X2] : ((set_difference(X0,X1) = X2 | ? [X3] : ((in(X3,X1) | ~in(X3,X0) | ~in(X3,X2)) & ((~in(X3,X1) & in(X3,X0)) | in(X3,X2)))) & (! [X3] : ((in(X3,X2) | in(X3,X1) | ~in(X3,X0)) & ((~in(X3,X1) & in(X3,X0)) | ~in(X3,X2))) | set_difference(X0,X1) != X2))), inference(flattening,[],[f114])). fof(f116,plain,( ! [X0,X1,X2] : ((set_difference(X0,X1) = X2 | ? [X3] : ((in(X3,X1) | ~in(X3,X0) | ~in(X3,X2)) & ((~in(X3,X1) & in(X3,X0)) | in(X3,X2)))) & (! [X4] : ((in(X4,X2) | in(X4,X1) | ~in(X4,X0)) & ((~in(X4,X1) & in(X4,X0)) | ~in(X4,X2))) | set_difference(X0,X1) != X2))), inference(rectify,[],[f115])). fof(f117,plain,( ! [X2,X1,X0] : (? [X3] : ((in(X3,X1) | ~in(X3,X0) | ~in(X3,X2)) & ((~in(X3,X1) & in(X3,X0)) | in(X3,X2))) => ((in(sK4(X0,X1,X2),X1) | ~in(sK4(X0,X1,X2),X0) | ~in(sK4(X0,X1,X2),X2)) & ((~in(sK4(X0,X1,X2),X1) & in(sK4(X0,X1,X2),X0)) | in(sK4(X0,X1,X2),X2))))), introduced(choice_axiom,[])). fof(f118,plain,( ! [X0,X1,X2] : ((set_difference(X0,X1) = X2 | ((in(sK4(X0,X1,X2),X1) | ~in(sK4(X0,X1,X2),X0) | ~in(sK4(X0,X1,X2),X2)) & ((~in(sK4(X0,X1,X2),X1) & in(sK4(X0,X1,X2),X0)) | in(sK4(X0,X1,X2),X2)))) & (! [X4] : ((in(X4,X2) | in(X4,X1) | ~in(X4,X0)) & ((~in(X4,X1) & in(X4,X0)) | ~in(X4,X2))) | set_difference(X0,X1) != X2))), inference(skolemisation,[status(esa),new_symbols(skolem,[sK4])],[f116,f117])). fof(f119,plain,( ! [X0,X1] : ((disjoint(X0,X1) | set_intersection2(X0,X1) != empty_set) & (set_intersection2(X0,X1) = empty_set | ~disjoint(X0,X1)))), inference(nnf_transformation,[],[f11])). fof(f120,plain,( ! [X0,X1] : ((empty_set = set_difference(X0,X1) | ~subset(X0,X1)) & (subset(X0,X1) | empty_set != set_difference(X0,X1)))), inference(nnf_transformation,[],[f23])). fof(f129,plain,( ! [X1,X0] : (? [X3] : (in(X3,X1) & in(X3,X0)) => (in(sK8(X0,X1),X1) & in(sK8(X0,X1),X0)))), introduced(choice_axiom,[])). fof(f130,plain,( ! [X0,X1] : ((~disjoint(X0,X1) | ! [X2] : (~in(X2,X1) | ~in(X2,X0))) & ((in(sK8(X0,X1),X1) & in(sK8(X0,X1),X0)) | disjoint(X0,X1)))), inference(skolemisation,[status(esa),new_symbols(skolem,[sK8])],[f82,f129])). fof(f133,plain,( ? [X0,X1,X2] : (~disjoint(X0,X2) & disjoint(X1,X2) & subset(X0,X1)) => (~disjoint(sK10,sK12) & disjoint(sK11,sK12) & subset(sK10,sK11))), introduced(choice_axiom,[])). fof(f134,plain,( ~disjoint(sK10,sK12) & disjoint(sK11,sK12) & subset(sK10,sK11)), inference(skolemisation,[status(esa),new_symbols(skolem,[sK10,sK11,sK12])],[f88,f133])). fof(f137,plain,( ( ! [X0,X1] : (set_union2(X0,X1) = set_union2(X1,X0)) )), inference(cnf_transformation,[],[f3])). fof(f138,plain,( ( ! [X0,X1] : (set_intersection2(X0,X1) = set_intersection2(X1,X0)) )), inference(cnf_transformation,[],[f4])). fof(f159,plain,( ( ! [X4,X2,X0,X1] : (in(X4,X0) | ~in(X4,X2) | set_difference(X0,X1) != X2) )), inference(cnf_transformation,[],[f118])). fof(f160,plain,( ( ! [X4,X2,X0,X1] : (~in(X4,X1) | ~in(X4,X2) | set_difference(X0,X1) != X2) )), inference(cnf_transformation,[],[f118])). fof(f165,plain,( ( ! [X0,X1] : (set_intersection2(X0,X1) = empty_set | ~disjoint(X0,X1)) )), inference(cnf_transformation,[],[f119])). fof(f171,plain,( ( ! [X0] : (set_union2(X0,X0) = X0) )), inference(cnf_transformation,[],[f58])). fof(f175,plain,( ( ! [X0,X1] : (~subset(X0,X1) | empty_set = set_difference(X0,X1)) )), inference(cnf_transformation,[],[f120])). fof(f180,plain,( ( ! [X0,X1] : (~subset(X0,X1) | set_union2(X0,X1) = X1) )), inference(cnf_transformation,[],[f73])). fof(f183,plain,( ( ! [X0] : (set_union2(X0,empty_set) = X0) )), inference(cnf_transformation,[],[f31])). fof(f192,plain,( ( ! [X0,X1] : (subset(set_difference(X0,X1),X0)) )), inference(cnf_transformation,[],[f39])). fof(f195,plain,( ( ! [X0,X1] : (set_union2(X0,X1) = set_union2(X0,set_difference(X1,X0))) )), inference(cnf_transformation,[],[f41])). fof(f196,plain,( ( ! [X0] : (set_difference(X0,empty_set) = X0) )), inference(cnf_transformation,[],[f42])). fof(f197,plain,( ( ! [X0,X1] : (in(sK8(X0,X1),X0) | disjoint(X0,X1)) )), inference(cnf_transformation,[],[f130])). fof(f198,plain,( ( ! [X0,X1] : (in(sK8(X0,X1),X1) | disjoint(X0,X1)) )), inference(cnf_transformation,[],[f130])). fof(f201,plain,( ( ! [X0,X1] : (set_difference(X0,X1) = set_difference(set_union2(X0,X1),X1)) )), inference(cnf_transformation,[],[f45])). fof(f203,plain,( ( ! [X0,X1] : (set_intersection2(X0,X1) = set_difference(X0,set_difference(X0,X1))) )), inference(cnf_transformation,[],[f47])). fof(f208,plain,( subset(sK10,sK11)), inference(cnf_transformation,[],[f134])). fof(f209,plain,( disjoint(sK11,sK12)), inference(cnf_transformation,[],[f134])). fof(f210,plain,( ~disjoint(sK10,sK12)), inference(cnf_transformation,[],[f134])). fof(f213,plain,( ( ! [X0,X1] : (subset(X0,set_union2(X0,X1))) )), inference(cnf_transformation,[],[f55])). fof(f216,plain,( ( ! [X0,X1] : (set_difference(X0,set_difference(X0,X1)) = set_difference(X1,set_difference(X1,X0))) )), inference(definition_unfolding,[],[f138,f203,f203])). fof(f224,plain,( ( ! [X0,X1] : (~disjoint(X0,X1) | empty_set = set_difference(X0,set_difference(X0,X1))) )), inference(definition_unfolding,[],[f165,f203])). fof(f243,plain,( ( ! [X4,X0,X1] : (~in(X4,set_difference(X0,X1)) | ~in(X4,X1)) )), inference(equality_resolution,[],[f160])). fof(f244,plain,( ( ! [X4,X0,X1] : (~in(X4,set_difference(X0,X1)) | in(X4,X0)) )), inference(equality_resolution,[],[f159])). fof(f281,plain,( ( ! [X1] : (set_union2(empty_set,X1) = X1) )), inference(superposition,[],[f137,f183])). fof(f286,plain,( ( ! [X6,X7] : (subset(X6,set_union2(X7,X6))) )), inference(superposition,[],[f213,f137])). fof(f324,plain,( ( ! [X4,X3] : (empty_set = set_difference(X3,set_union2(X4,X3))) )), inference(resolution,[],[f175,f286])). fof(f326,plain,( ( ! [X6,X7] : (empty_set = set_difference(set_difference(X6,X7),X6)) )), inference(resolution,[],[f175,f192])). fof(f340,plain,( set_union2(sK10,sK11) = sK11), inference(resolution,[],[f180,f208])). fof(f399,plain,( ( ! [X10,X8,X9] : (~in(sK8(X8,set_difference(X9,X10)),X10) | disjoint(X8,set_difference(X9,X10))) )), inference(resolution,[],[f243,f198])). fof(f405,plain,( ( ! [X4,X2,X3] : (in(sK8(set_difference(X2,X3),X4),X2) | disjoint(set_difference(X2,X3),X4)) )), inference(resolution,[],[f244,f197])). fof(f468,plain,( ( ! [X4,X5] : (set_union2(X5,set_union2(X4,X5)) = set_union2(X5,set_difference(X4,X5))) )), inference(superposition,[],[f195,f201])). fof(f477,plain,( ( ! [X4,X5] : (set_union2(X5,X4) = set_union2(X5,set_union2(X4,X5))) )), inference(forward_demodulation,[],[f468,f195])). fof(f615,plain,( empty_set = set_difference(sK11,set_difference(sK11,sK12))), inference(resolution,[],[f224,f209])). fof(f726,plain,( ( ! [X6,X7] : (set_difference(X7,set_difference(X7,set_union2(X6,X7))) = set_difference(set_union2(X6,X7),set_difference(X6,X7))) )), inference(superposition,[],[f216,f201])). fof(f772,plain,( ( ! [X6,X7] : (set_difference(X7,empty_set) = set_difference(set_union2(X6,X7),set_difference(X6,X7))) )), inference(forward_demodulation,[],[f726,f324])). fof(f773,plain,( ( ! [X6,X7] : (set_difference(set_union2(X6,X7),set_difference(X6,X7)) = X7) )), inference(forward_demodulation,[],[f772,f196])). fof(f1209,plain,( set_union2(set_difference(sK11,sK12),empty_set) = set_union2(set_difference(sK11,sK12),sK11)), inference(superposition,[],[f195,f615])). fof(f1226,plain,( set_union2(set_difference(sK11,sK12),empty_set) = set_union2(sK11,set_difference(sK11,sK12))), inference(forward_demodulation,[],[f1209,f137])). fof(f1227,plain,( set_union2(empty_set,set_difference(sK11,sK12)) = set_union2(sK11,set_difference(sK11,sK12))), inference(forward_demodulation,[],[f1226,f137])). fof(f1228,plain,( set_union2(sK11,set_difference(sK11,sK12)) = set_difference(sK11,sK12)), inference(forward_demodulation,[],[f1227,f281])). fof(f1312,plain,( ( ! [X10,X11] : (set_union2(X10,empty_set) = set_union2(X10,set_difference(X10,X11))) )), inference(superposition,[],[f195,f326])). fof(f1331,plain,( ( ! [X10,X11] : (set_union2(X10,set_difference(X10,X11)) = X10) )), inference(forward_demodulation,[],[f1312,f183])). fof(f1333,plain,( set_difference(sK11,sK12) = sK11), inference(backward_demodulation,[],[f1331,f1228])). fof(f2114,plain,( set_union2(sK11,sK10) = set_union2(sK11,sK11)), inference(superposition,[],[f477,f340])). fof(f2148,plain,( set_union2(sK11,sK10) = sK11), inference(forward_demodulation,[],[f2114,f171])). fof(f2201,plain,( set_difference(sK11,set_difference(sK11,sK10)) = sK10), inference(superposition,[],[f773,f2148])). fof(f2214,plain,( set_difference(set_union2(sK11,sK12),sK11) = sK12), inference(superposition,[],[f773,f1333])). fof(f4504,plain,( ( ! [X4,X2,X3] : (disjoint(set_difference(X2,X3),set_difference(X4,X2)) | disjoint(set_difference(X2,X3),set_difference(X4,X2))) )), inference(resolution,[],[f405,f399])). fof(f4539,plain,( ( ! [X4,X2,X3] : (disjoint(set_difference(X2,X3),set_difference(X4,X2))) )), inference(duplicate_literal_removal,[],[f4504])). fof(f4747,plain,( ( ! [X41] : (disjoint(sK10,set_difference(X41,sK11))) )), inference(superposition,[],[f4539,f2201])). fof(f4918,plain,( disjoint(sK10,sK12)), inference(superposition,[],[f4747,f2214])). fof(f4925,plain,( $false), inference(subsumption_resolution,[],[f4918,f210])).
tff(u283,axiom, (![X1, X0] : ((~woman(X0,X1) | human_person(X0,X1))))). tff(u282,axiom, (![X1, X0] : ((~woman(X0,X1) | female(X0,X1))))). tff(u281,negated_conjecture, woman(sK0,sK1)). tff(u280,negated_conjecture, ~female(sK0,sK4)). tff(u279,negated_conjecture, ~female(sK0,sK2)). tff(u278,negated_conjecture, ~female(sK0,sK3)). tff(u277,negated_conjecture, female(sK0,sK1)). tff(u276,axiom, (![X1, X0] : ((~human_person(X0,X1) | organism(X0,X1))))). tff(u275,axiom, (![X1, X0] : ((~human_person(X0,X1) | human(X0,X1))))). tff(u274,axiom, (![X1, X0] : ((~human_person(X0,X1) | animate(X0,X1))))). tff(u273,negated_conjecture, human_person(sK0,sK1)). tff(u272,negated_conjecture, ~animate(sK0,sK3)). tff(u271,negated_conjecture, animate(sK0,sK1)). tff(u270,negated_conjecture, ~human(sK0,sK2)). tff(u269,negated_conjecture, human(sK0,sK1)). tff(u268,axiom, (![X1, X0] : ((~organism(X0,X1) | entity(X0,X1))))). tff(u267,axiom, (![X1, X0] : ((~organism(X0,X1) | living(X0,X1))))). tff(u266,negated_conjecture, organism(sK0,sK1)). tff(u265,negated_conjecture, ~living(sK0,sK3)). tff(u264,negated_conjecture, living(sK0,sK1)). tff(u263,axiom, (![X1, X0] : ((~entity(X0,X1) | specific(X0,X1))))). tff(u262,axiom, (![X1, X0] : ((~entity(X0,X1) | existent(X0,X1))))). tff(u261,negated_conjecture, entity(sK0,sK1)). tff(u260,negated_conjecture, entity(sK0,sK3)). tff(u259,axiom, (![X1, X0] : ((~mia_forename(X0,X1) | forename(X0,X1))))). tff(u258,negated_conjecture, mia_forename(sK0,sK2)). tff(u257,axiom, (![X1, X0] : ((~forename(X0,X1) | relname(X0,X1))))). tff(u256,negated_conjecture, forename(sK0,sK2)). tff(u255,axiom, (![X1, X0] : ((~abstraction(X0,X1) | nonhuman(X0,X1))))). tff(u254,axiom, (![X1, X0] : ((~abstraction(X0,X1) | general(X0,X1))))). tff(u253,axiom, (![X1, X0] : ((~abstraction(X0,X1) | unisex(X0,X1))))). tff(u252,negated_conjecture, abstraction(sK0,sK2)). tff(u251,axiom, (![X1, X0] : ((~unisex(X0,X1) | ~female(X0,X1))))). tff(u250,negated_conjecture, unisex(sK0,sK2)). tff(u249,negated_conjecture, unisex(sK0,sK4)). tff(u248,negated_conjecture, unisex(sK0,sK3)). tff(u247,negated_conjecture, ~general(sK0,sK4)). tff(u246,negated_conjecture, ~general(sK0,sK1)). tff(u245,negated_conjecture, ~general(sK0,sK3)). tff(u244,negated_conjecture, general(sK0,sK2)). tff(u243,axiom, (![X1, X0] : ((~nonhuman(X0,X1) | ~human(X0,X1))))). tff(u242,negated_conjecture, nonhuman(sK0,sK2)). tff(u241,axiom, (![X1, X0] : ((~relation(X0,X1) | abstraction(X0,X1))))). tff(u240,negated_conjecture, relation(sK0,sK2)). tff(u239,axiom, (![X1, X0] : ((~relname(X0,X1) | relation(X0,X1))))). tff(u238,negated_conjecture, relname(sK0,sK2)). tff(u237,axiom, (![X1, X0] : ((~object(X0,X1) | entity(X0,X1))))). tff(u236,axiom, (![X1, X0] : ((~object(X0,X1) | nonliving(X0,X1))))). tff(u235,axiom, (![X1, X0] : ((~object(X0,X1) | unisex(X0,X1))))). tff(u234,negated_conjecture, object(sK0,sK3)). tff(u233,axiom, (![X1, X0] : ((~nonliving(X0,X1) | ~living(X0,X1))))). tff(u232,axiom, (![X1, X0] : ((~nonliving(X0,X1) | ~animate(X0,X1))))). tff(u231,negated_conjecture, nonliving(sK0,sK3)). tff(u230,negated_conjecture, ~existent(sK0,sK4)). tff(u229,negated_conjecture, existent(sK0,sK1)). tff(u228,negated_conjecture, existent(sK0,sK3)). tff(u227,axiom, (![X1, X0] : ((~specific(X0,X1) | ~general(X0,X1))))). tff(u226,negated_conjecture, specific(sK0,sK1)). tff(u225,negated_conjecture, specific(sK0,sK4)). tff(u224,negated_conjecture, specific(sK0,sK3)). tff(u223,axiom, (![X1, X0] : ((~substance_matter(X0,X1) | object(X0,X1))))). tff(u222,negated_conjecture, substance_matter(sK0,sK3)). tff(u221,axiom, (![X1, X0] : ((~food(X0,X1) | substance_matter(X0,X1))))). tff(u220,negated_conjecture, food(sK0,sK3)). tff(u219,axiom, (![X1, X0] : ((~beverage(X0,X1) | food(X0,X1))))). tff(u218,negated_conjecture, beverage(sK0,sK3)). tff(u217,axiom, (![X1, X0] : ((~shake_beverage(X0,X1) | beverage(X0,X1))))). tff(u216,negated_conjecture, shake_beverage(sK0,sK3)). tff(u215,axiom, (![X1, X0] : ((~order(X0,X1) | act(X0,X1))))). tff(u214,axiom, (![X1, X0] : ((~order(X0,X1) | event(X0,X1))))). tff(u213,negated_conjecture, order(sK0,sK4)). tff(u212,axiom, (![X1, X0] : ((~event(X0,X1) | eventuality(X0,X1))))). tff(u211,negated_conjecture, event(sK0,sK4)). tff(u210,axiom, (![X1, X0] : ((~eventuality(X0,X1) | specific(X0,X1))))). tff(u209,axiom, (![X1, X0] : ((~eventuality(X0,X1) | nonexistent(X0,X1))))). tff(u208,axiom, (![X1, X0] : ((~eventuality(X0,X1) | unisex(X0,X1))))). tff(u207,negated_conjecture, eventuality(sK0,sK4)). tff(u206,axiom, (![X1, X0] : ((~nonexistent(X0,X1) | ~existent(X0,X1))))). tff(u205,negated_conjecture, nonexistent(sK0,sK4)). tff(u204,axiom, (![X1, X0] : ((~act(X0,X1) | event(X0,X1))))). tff(u203,negated_conjecture, act(sK0,sK4)). tff(u202,axiom, (![X1, X3, X0, X2] : ((~of(X0,X3,X1) | (X2 = X3) | ~forename(X0,X3) | ~of(X0,X2,X1) | ~forename(X0,X2) | ~entity(X0,X1))))). tff(u201,negated_conjecture, (![X0] : ((~of(sK0,X0,sK1) | (sK2 = X0) | ~forename(sK0,X0))))). tff(u200,negated_conjecture, of(sK0,sK2,sK1)). tff(u199,negated_conjecture, nonreflexive(sK0,sK4)). tff(u198,negated_conjecture, ~agent(sK0,sK4,sK3)). tff(u197,negated_conjecture, agent(sK0,sK4,sK1)). tff(u196,axiom, (![X1, X3, X0] : ((~patient(X0,X1,X3) | ~agent(X0,X1,X3) | ~nonreflexive(X0,X1))))). tff(u195,negated_conjecture, patient(sK0,sK4,sK3)).
tff(declare_$i,type,$i:$tType). tff(declare_$i1,type,at:$i). tff(declare_$i2,type,t:$i). tff(finite_domain,axiom, ! [X:$i] : ( X = at | X = t ) ). tff(distinct_domain,axiom, at != t ). tff(declare_a,type,a:$i). tff(a_definition,axiom,a = at). tff(declare_b,type,b:$i). tff(b_definition,axiom,b = at). tff(declare_an_a_nonce,type,an_a_nonce:$i). tff(an_a_nonce_definition,axiom,an_a_nonce = t). tff(declare_bt,type,bt:$i). tff(bt_definition,axiom,bt = at). tff(declare_an_intruder_nonce,type,an_intruder_nonce:$i). tff(an_intruder_nonce_definition,axiom,an_intruder_nonce = at). tff(declare_key,type,key: $i * $i > $i). tff(function_key,axiom, key(at,at) = at & key(at,t) = t & key(t,at) = t & key(t,t) = t ). tff(declare_pair,type,pair: $i * $i > $i). tff(function_pair,axiom, pair(at,at) = at & pair(at,t) = t & pair(t,at) = at & pair(t,t) = at ). tff(declare_sent,type,sent: $i * $i * $i > $i). tff(function_sent,axiom, sent(at,at,at) = at & sent(at,at,t) = at & sent(at,t,at) = at & sent(at,t,t) = at & sent(t,at,at) = at & sent(t,at,t) = at & sent(t,t,at) = at & sent(t,t,t) = at ). tff(declare_quadruple,type,quadruple: $i * $i * $i * $i > $i). tff(function_quadruple,axiom, quadruple(at,at,at,at) = t & quadruple(at,at,at,t) = at & quadruple(at,at,t,at) = t & quadruple(at,at,t,t) = t & quadruple(at,t,at,at) = t & quadruple(at,t,at,t) = at & quadruple(at,t,t,at) = at & quadruple(at,t,t,t) = at & quadruple(t,at,at,at) = t & quadruple(t,at,at,t) = at & quadruple(t,at,t,at) = t & quadruple(t,at,t,t) = t & quadruple(t,t,at,at) = t & quadruple(t,t,at,t) = at & quadruple(t,t,t,at) = t & quadruple(t,t,t,t) = t ). tff(declare_encrypt,type,encrypt: $i * $i > $i). tff(function_encrypt,axiom, encrypt(at,at) = at & encrypt(at,t) = at & encrypt(t,at) = at & encrypt(t,t) = t ). tff(declare_triple,type,triple: $i * $i * $i > $i). tff(function_triple,axiom, triple(at,at,at) = t & triple(at,at,t) = at & triple(at,t,at) = at & triple(at,t,t) = at & triple(t,at,at) = t & triple(t,at,t) = t & triple(t,t,at) = at & triple(t,t,t) = at ). tff(declare_generate_b_nonce,type,generate_b_nonce: $i > $i). tff(function_generate_b_nonce,axiom, generate_b_nonce(at) = t & generate_b_nonce(t) = t ). tff(declare_generate_expiration_time,type,generate_expiration_time: $i > $i). tff(function_generate_expiration_time,axiom, generate_expiration_time(at) = t & generate_expiration_time(t) = t ). tff(declare_generate_key,type,generate_key: $i > $i). tff(function_generate_key,axiom, generate_key(at) = at & generate_key(t) = at ). tff(declare_generate_intruder_nonce,type,generate_intruder_nonce: $i > $i). tff(function_generate_intruder_nonce,axiom, generate_intruder_nonce(at) = at & generate_intruder_nonce(t) = t ). tff(declare_a_holds,type,a_holds: $i > $o ). tff(predicate_a_holds,axiom, % a_holds(at) undefined in model % a_holds(t) undefined in model ). tff(declare_party_of_protocol,type,party_of_protocol: $i > $o ). tff(predicate_party_of_protocol,axiom, party_of_protocol(at) & party_of_protocol(t) ). tff(declare_message,type,message: $i > $o ). tff(predicate_message,axiom, message(at) & ~message(t) ). tff(declare_a_stored,type,a_stored: $i > $o ). tff(predicate_a_stored,axiom, ~a_stored(at) & a_stored(t) ). tff(declare_b_holds,type,b_holds: $i > $o ). tff(predicate_b_holds,axiom, % b_holds(at) undefined in model % b_holds(t) undefined in model ). tff(declare_fresh_to_b,type,fresh_to_b: $i > $o ). tff(predicate_fresh_to_b,axiom, fresh_to_b(at) & fresh_to_b(t) ). tff(declare_b_stored,type,b_stored: $i > $o ). tff(predicate_b_stored,axiom, % b_stored(at) undefined in model % b_stored(t) undefined in model ). tff(declare_a_key,type,a_key: $i > $o ). tff(predicate_a_key,axiom, a_key(at) & ~a_key(t) ). tff(declare_t_holds,type,t_holds: $i > $o ). tff(predicate_t_holds,axiom, t_holds(at) & ~t_holds(t) ). tff(declare_a_nonce,type,a_nonce: $i > $o ). tff(predicate_a_nonce,axiom, ~a_nonce(at) & a_nonce(t) ). tff(declare_intruder_message,type,intruder_message: $i > $o ). tff(predicate_intruder_message,axiom, intruder_message(at) & intruder_message(t) ). tff(declare_intruder_holds,type,intruder_holds: $i > $o ). tff(predicate_intruder_holds,axiom, intruder_holds(at) & intruder_holds(t) ). tff(declare_fresh_intruder_nonce,type,fresh_intruder_nonce: $i > $o ). tff(predicate_fresh_intruder_nonce,axiom, fresh_intruder_nonce(at) & ~fresh_intruder_nonce(t) ).
% SZS output start Proof for DAT013=1 tff(type_def_5, type, array: $tType). tff(func_def_0, type, read: (array * $int) > $int). tff(func_def_1, type, write: (array * $int * $int) > array). tff(func_def_5, type, sK0: array). tff(func_def_6, type, sK1: $int). tff(func_def_7, type, sK2: $int). tff(func_def_8, type, sK3: $int). tff(f3,conjecture,( ! [X0 : array,X1 : $int,X2 : $int] : (! [X3 : $int] : (($lesseq(X3,X2) & $lesseq(X1,X3)) => $greater(read(X0,X3),0)) => ! [X4 : $int] : (($lesseq(X4,X2) & $lesseq($sum(X1,3),X4)) => $greater(read(X0,X4),0)))), file('/Users/giles/TPTP/TPTP-v7.0.0/Problems/DAT/DAT013=1.p',co1)). tff(f4,negated_conjecture,( ~! [X0 : array,X1 : $int,X2 : $int] : (! [X3 : $int] : (($lesseq(X3,X2) & $lesseq(X1,X3)) => $greater(read(X0,X3),0)) => ! [X4 : $int] : (($lesseq(X4,X2) & $lesseq($sum(X1,3),X4)) => $greater(read(X0,X4),0)))), inference(negated_conjecture,[],[f3])). tff(f5,plain,( ~! [X0 : array,X1 : $int,X2 : $int] : (! [X3 : $int] : ((~$less(X2,X3) & ~$less(X3,X1)) => $less(0,read(X0,X3))) => ! [X4 : $int] : ((~$less(X2,X4) & ~$less(X4,$sum(X1,3))) => $less(0,read(X0,X4))))), inference(evaluation,[],[f4])). tff(f7,plain,( ? [X0 : array,X1 : $int,X2 : $int] : (? [X4 : $int] : (~$less(0,read(X0,X4)) & (~$less(X2,X4) & ~$less(X4,$sum(X1,3)))) & ! [X3 : $int] : ($less(0,read(X0,X3)) | ($less(X2,X3) | $less(X3,X1))))), inference(ennf_transformation,[],[f5])). tff(f8,plain,( ? [X0 : array,X1 : $int,X2 : $int] : (? [X4 : $int] : (~$less(0,read(X0,X4)) & ~$less(X2,X4) & ~$less(X4,$sum(X1,3))) & ! [X3 : $int] : ($less(0,read(X0,X3)) | $less(X2,X3) | $less(X3,X1)))), inference(flattening,[],[f7])). tff(f9,plain,( ~$less(sK3,$sum(sK1,3))), inference(cnf_transformation,[],[f8])). tff(f10,plain,( ~$less(sK2,sK3)), inference(cnf_transformation,[],[f8])). tff(f11,plain,( ~$less(0,read(sK0,sK3))), inference(cnf_transformation,[],[f8])). tff(f12,plain,( ( ! [X3:$int] : ($less(0,read(sK0,X3)) | $less(sK2,X3) | $less(X3,sK1)) )), inference(cnf_transformation,[],[f8])). tff(f19,plain,( spl4_1 <=> ~$less(0,read(sK0,sK3))), introduced(avatar_definition,[new_symbols(naming,[spl4_1])])). tff(f20,plain,( ~$less(0,read(sK0,sK3)) | ~spl4_1), inference(avatar_component_clause,[],[f19])). tff(f21,plain,( ~spl4_1), inference(avatar_split_clause,[],[f11,f19])). tff(f23,plain,( spl4_2 <=> $less(sK2,sK3)), introduced(avatar_definition,[new_symbols(naming,[spl4_2])])). tff(f26,plain,( spl4_3 <=> ~$less(sK2,sK3)), introduced(avatar_definition,[new_symbols(naming,[spl4_3])])). tff(f28,plain,( ~spl4_3), inference(avatar_split_clause,[],[f10,f26])). tff(f33,plain,( spl4_5 <=> ~$less(sK3,$sum(sK1,3))), introduced(avatar_definition,[new_symbols(naming,[spl4_5])])). tff(f35,plain,( ~spl4_5), inference(avatar_split_clause,[],[f9,f33])). tff(f36,plain,( $less(sK2,sK3) | $less(sK3,sK1) | ~spl4_1), inference(resolution,[],[f12,f20])). tff(f41,plain,( spl4_6 <=> $less(sK3,sK1)), introduced(avatar_definition,[new_symbols(naming,[spl4_6])])). tff(f43,plain,( spl4_6 | spl4_2 | spl4_1), inference(avatar_split_clause,[],[f36,f19,f23,f41])). tff(f44,plain,( $false), inference(avatar_sat_refutation,[],[f21,f28,f35,f43])). % SZS output end Proof for DAT013=1
% SZS output start Proof for SEU140+2 fof(f3,axiom,( ! [X0,X1] : set_union2(X0,X1) = set_union2(X1,X0)), file('/Users/giles/TPTP/TPTP-v7.0.0/Problems/SEU/SEU140+2.p',commutativity_k2_xboole_0)). fof(f4,axiom,( ! [X0,X1] : set_intersection2(X0,X1) = set_intersection2(X1,X0)), file('/Users/giles/TPTP/TPTP-v7.0.0/Problems/SEU/SEU140+2.p',commutativity_k3_xboole_0)). fof(f5,axiom,( ! [X0,X1] : (X0 = X1 <=> (subset(X1,X0) & subset(X0,X1)))), file('/Users/giles/TPTP/TPTP-v7.0.0/Problems/SEU/SEU140+2.p',d10_xboole_0)). fof(f10,axiom,( ! [X0,X1,X2] : (set_difference(X0,X1) = X2 <=> ! [X3] : (in(X3,X2) <=> (~in(X3,X1) & in(X3,X0))))), file('/Users/giles/TPTP/TPTP-v7.0.0/Problems/SEU/SEU140+2.p',d4_xboole_0)). fof(f11,axiom,( ! [X0,X1] : (disjoint(X0,X1) <=> set_intersection2(X0,X1) = empty_set)), file('/Users/giles/TPTP/TPTP-v7.0.0/Problems/SEU/SEU140+2.p',d7_xboole_0)). fof(f28,axiom,( ! [X0,X1] : (subset(X0,X1) => set_union2(X0,X1) = X1)), file('/Users/giles/TPTP/TPTP-v7.0.0/Problems/SEU/SEU140+2.p',t12_xboole_1)). fof(f39,axiom,( ! [X0,X1] : subset(set_difference(X0,X1),X0)), file('/Users/giles/TPTP/TPTP-v7.0.0/Problems/SEU/SEU140+2.p',t36_xboole_1)). fof(f40,axiom,( ! [X0,X1] : (empty_set = set_difference(X0,X1) <=> subset(X0,X1))), file('/Users/giles/TPTP/TPTP-v7.0.0/Problems/SEU/SEU140+2.p',t37_xboole_1)). fof(f41,axiom,( ! [X0,X1] : set_union2(X0,X1) = set_union2(X0,set_difference(X1,X0))), file('/Users/giles/TPTP/TPTP-v7.0.0/Problems/SEU/SEU140+2.p',t39_xboole_1)). fof(f42,axiom,( ! [X0] : set_difference(X0,empty_set) = X0), file('/Users/giles/TPTP/TPTP-v7.0.0/Problems/SEU/SEU140+2.p',t3_boole)). fof(f43,axiom,( ! [X0,X1] : (~(disjoint(X0,X1) & ? [X2] : (in(X2,X1) & in(X2,X0))) & ~(! [X2] : ~(in(X2,X1) & in(X2,X0)) & ~disjoint(X0,X1)))), file('/Users/giles/TPTP/TPTP-v7.0.0/Problems/SEU/SEU140+2.p',t3_xboole_0)). fof(f45,axiom,( ! [X0,X1] : set_difference(X0,X1) = set_difference(set_union2(X0,X1),X1)), file('/Users/giles/TPTP/TPTP-v7.0.0/Problems/SEU/SEU140+2.p',t40_xboole_1)). fof(f47,axiom,( ! [X0,X1] : set_intersection2(X0,X1) = set_difference(X0,set_difference(X0,X1))), file('/Users/giles/TPTP/TPTP-v7.0.0/Problems/SEU/SEU140+2.p',t48_xboole_1)). fof(f51,conjecture,( ! [X0,X1,X2] : ((disjoint(X1,X2) & subset(X0,X1)) => disjoint(X0,X2))), file('/Users/giles/TPTP/TPTP-v7.0.0/Problems/SEU/SEU140+2.p',t63_xboole_1)). fof(f52,negated_conjecture,( ~! [X0,X1,X2] : ((disjoint(X1,X2) & subset(X0,X1)) => disjoint(X0,X2))), inference(negated_conjecture,[],[f51])). fof(f55,axiom,( ! [X0,X1] : subset(X0,set_union2(X0,X1))), file('/Users/giles/TPTP/TPTP-v7.0.0/Problems/SEU/SEU140+2.p',t7_xboole_1)). fof(f59,plain,( ! [X0,X1] : (~(disjoint(X0,X1) & ? [X2] : (in(X2,X1) & in(X2,X0))) & ~(! [X3] : ~(in(X3,X1) & in(X3,X0)) & ~disjoint(X0,X1)))), inference(rectify,[],[f43])). fof(f65,plain,( ? [X0,X1,X2] : (~disjoint(X0,X2) & (disjoint(X1,X2) & subset(X0,X1)))), inference(ennf_transformation,[],[f52])). fof(f66,plain,( ? [X0,X1,X2] : (~disjoint(X0,X2) & disjoint(X1,X2) & subset(X0,X1))), inference(flattening,[],[f65])). fof(f69,plain,( ! [X0,X1] : ((~disjoint(X0,X1) | ! [X2] : (~in(X2,X1) | ~in(X2,X0))) & (? [X3] : (in(X3,X1) & in(X3,X0)) | disjoint(X0,X1)))), inference(ennf_transformation,[],[f59])). fof(f71,plain,( ! [X0,X1] : (set_union2(X0,X1) = X1 | ~subset(X0,X1))), inference(ennf_transformation,[],[f28])). fof(f94,plain,( ? [X0,X1,X2] : (~disjoint(X0,X2) & disjoint(X1,X2) & subset(X0,X1)) => (~disjoint(sK0,sK2) & disjoint(sK1,sK2) & subset(sK0,sK1))), introduced(choice_axiom,[])). fof(f95,plain,( ~disjoint(sK0,sK2) & disjoint(sK1,sK2) & subset(sK0,sK1)), inference(skolemisation,[status(esa),new_symbols(skolem,[sK0,sK1,sK2])],[f66,f94])). fof(f98,plain,( ! [X1,X0] : (? [X3] : (in(X3,X1) & in(X3,X0)) => (in(sK4(X0,X1),X1) & in(sK4(X0,X1),X0)))), introduced(choice_axiom,[])). fof(f99,plain,( ! [X0,X1] : ((~disjoint(X0,X1) | ! [X2] : (~in(X2,X1) | ~in(X2,X0))) & ((in(sK4(X0,X1),X1) & in(sK4(X0,X1),X0)) | disjoint(X0,X1)))), inference(skolemisation,[status(esa),new_symbols(skolem,[sK4])],[f69,f98])). fof(f100,plain,( ! [X0,X1] : ((empty_set = set_difference(X0,X1) | ~subset(X0,X1)) & (subset(X0,X1) | empty_set != set_difference(X0,X1)))), inference(nnf_transformation,[],[f40])). fof(f109,plain,( ! [X0,X1] : ((X0 = X1 | (~subset(X1,X0) | ~subset(X0,X1))) & ((subset(X1,X0) & subset(X0,X1)) | X0 != X1))), inference(nnf_transformation,[],[f5])). fof(f110,plain,( ! [X0,X1] : ((X0 = X1 | ~subset(X1,X0) | ~subset(X0,X1)) & ((subset(X1,X0) & subset(X0,X1)) | X0 != X1))), inference(flattening,[],[f109])). fof(f111,plain,( ! [X0,X1] : ((disjoint(X0,X1) | set_intersection2(X0,X1) != empty_set) & (set_intersection2(X0,X1) = empty_set | ~disjoint(X0,X1)))), inference(nnf_transformation,[],[f11])). fof(f116,plain,( ! [X0,X1,X2] : ((set_difference(X0,X1) = X2 | ? [X3] : (((in(X3,X1) | ~in(X3,X0)) | ~in(X3,X2)) & ((~in(X3,X1) & in(X3,X0)) | in(X3,X2)))) & (! [X3] : ((in(X3,X2) | (in(X3,X1) | ~in(X3,X0))) & ((~in(X3,X1) & in(X3,X0)) | ~in(X3,X2))) | set_difference(X0,X1) != X2))), inference(nnf_transformation,[],[f10])). fof(f117,plain,( ! [X0,X1,X2] : ((set_difference(X0,X1) = X2 | ? [X3] : ((in(X3,X1) | ~in(X3,X0) | ~in(X3,X2)) & ((~in(X3,X1) & in(X3,X0)) | in(X3,X2)))) & (! [X3] : ((in(X3,X2) | in(X3,X1) | ~in(X3,X0)) & ((~in(X3,X1) & in(X3,X0)) | ~in(X3,X2))) | set_difference(X0,X1) != X2))), inference(flattening,[],[f116])). fof(f118,plain,( ! [X0,X1,X2] : ((set_difference(X0,X1) = X2 | ? [X3] : ((in(X3,X1) | ~in(X3,X0) | ~in(X3,X2)) & ((~in(X3,X1) & in(X3,X0)) | in(X3,X2)))) & (! [X4] : ((in(X4,X2) | in(X4,X1) | ~in(X4,X0)) & ((~in(X4,X1) & in(X4,X0)) | ~in(X4,X2))) | set_difference(X0,X1) != X2))), inference(rectify,[],[f117])). fof(f119,plain,( ! [X2,X1,X0] : (? [X3] : ((in(X3,X1) | ~in(X3,X0) | ~in(X3,X2)) & ((~in(X3,X1) & in(X3,X0)) | in(X3,X2))) => ((in(sK8(X0,X1,X2),X1) | ~in(sK8(X0,X1,X2),X0) | ~in(sK8(X0,X1,X2),X2)) & ((~in(sK8(X0,X1,X2),X1) & in(sK8(X0,X1,X2),X0)) | in(sK8(X0,X1,X2),X2))))), introduced(choice_axiom,[])). fof(f120,plain,( ! [X0,X1,X2] : ((set_difference(X0,X1) = X2 | ((in(sK8(X0,X1,X2),X1) | ~in(sK8(X0,X1,X2),X0) | ~in(sK8(X0,X1,X2),X2)) & ((~in(sK8(X0,X1,X2),X1) & in(sK8(X0,X1,X2),X0)) | in(sK8(X0,X1,X2),X2)))) & (! [X4] : ((in(X4,X2) | in(X4,X1) | ~in(X4,X0)) & ((~in(X4,X1) & in(X4,X0)) | ~in(X4,X2))) | set_difference(X0,X1) != X2))), inference(skolemisation,[status(esa),new_symbols(skolem,[sK8])],[f118,f119])). fof(f135,plain,( subset(sK0,sK1)), inference(cnf_transformation,[],[f95])). fof(f136,plain,( disjoint(sK1,sK2)), inference(cnf_transformation,[],[f95])). fof(f137,plain,( ~disjoint(sK0,sK2)), inference(cnf_transformation,[],[f95])). fof(f140,plain,( ( ! [X0,X1] : (subset(X0,set_union2(X0,X1))) )), inference(cnf_transformation,[],[f55])). fof(f142,plain,( ( ! [X0,X1] : (subset(set_difference(X0,X1),X0)) )), inference(cnf_transformation,[],[f39])). fof(f143,plain,( ( ! [X0,X1] : (set_union2(X0,X1) = set_union2(X0,set_difference(X1,X0))) )), inference(cnf_transformation,[],[f41])). fof(f144,plain,( ( ! [X0,X1] : (set_difference(X0,X1) = set_difference(set_union2(X0,X1),X1)) )), inference(cnf_transformation,[],[f45])). fof(f145,plain,( ( ! [X0,X1] : (set_intersection2(X0,X1) = set_difference(X0,set_difference(X0,X1))) )), inference(cnf_transformation,[],[f47])). fof(f148,plain,( ( ! [X0,X1] : (in(sK4(X0,X1),X0) | disjoint(X0,X1)) )), inference(cnf_transformation,[],[f99])). fof(f149,plain,( ( ! [X0,X1] : (in(sK4(X0,X1),X1) | disjoint(X0,X1)) )), inference(cnf_transformation,[],[f99])). fof(f152,plain,( ( ! [X0,X1] : (~subset(X0,X1) | set_union2(X0,X1) = X1) )), inference(cnf_transformation,[],[f71])). fof(f155,plain,( ( ! [X0,X1] : (~subset(X0,X1) | empty_set = set_difference(X0,X1)) )), inference(cnf_transformation,[],[f100])). fof(f165,plain,( ( ! [X0] : (set_difference(X0,empty_set) = X0) )), inference(cnf_transformation,[],[f42])). fof(f176,plain,( ( ! [X0,X1] : (set_union2(X0,X1) = set_union2(X1,X0)) )), inference(cnf_transformation,[],[f3])). fof(f177,plain,( ( ! [X0,X1] : (set_intersection2(X0,X1) = set_intersection2(X1,X0)) )), inference(cnf_transformation,[],[f4])). fof(f187,plain,( ( ! [X0,X1] : (~subset(X0,X1) | ~subset(X1,X0) | X0 = X1) )), inference(cnf_transformation,[],[f110])). fof(f189,plain,( ( ! [X0,X1] : (set_intersection2(X0,X1) = empty_set | ~disjoint(X0,X1)) )), inference(cnf_transformation,[],[f111])). fof(f196,plain,( ( ! [X4,X2,X0,X1] : (in(X4,X0) | ~in(X4,X2) | set_difference(X0,X1) != X2) )), inference(cnf_transformation,[],[f120])). fof(f197,plain,( ( ! [X4,X2,X0,X1] : (~in(X4,X1) | ~in(X4,X2) | set_difference(X0,X1) != X2) )), inference(cnf_transformation,[],[f120])). fof(f224,plain,( ( ! [X0,X1] : (set_difference(X0,set_difference(X0,X1)) = set_difference(X1,set_difference(X1,X0))) )), inference(definition_unfolding,[],[f177,f145,f145])). fof(f226,plain,( ( ! [X0,X1] : (~disjoint(X0,X1) | empty_set = set_difference(X0,set_difference(X0,X1))) )), inference(definition_unfolding,[],[f189,f145])). fof(f237,plain,( ( ! [X4,X0,X1] : (~in(X4,X1) | ~in(X4,set_difference(X0,X1))) )), inference(equality_resolution,[],[f197])). fof(f238,plain,( ( ! [X4,X0,X1] : (~in(X4,set_difference(X0,X1)) | in(X4,X0)) )), inference(equality_resolution,[],[f196])). fof(f291,plain,( ( ! [X2,X1] : (set_union2(X1,X2) = set_union2(X1,set_union2(X1,X2))) )), inference(resolution,[],[f152,f140])). fof(f295,plain,( set_union2(sK0,sK1) = sK1), inference(resolution,[],[f152,f135])). fof(f316,plain,( ( ! [X2,X1] : (empty_set = set_difference(X1,set_union2(X1,X2))) )), inference(resolution,[],[f155,f140])). fof(f333,plain,( ( ! [X10,X8,X9] : (~in(sK4(X8,X9),set_difference(X10,X9)) | disjoint(X8,X9)) )), inference(resolution,[],[f237,f149])). fof(f343,plain,( ( ! [X4,X2,X3] : (in(sK4(set_difference(X2,X3),X4),X2) | disjoint(set_difference(X2,X3),X4)) )), inference(resolution,[],[f238,f148])). fof(f371,plain,( ( ! [X2,X1] : (set_difference(X1,X2) = set_difference(set_union2(X2,X1),X2)) )), inference(superposition,[],[f144,f176])). fof(f373,plain,( ( ! [X6,X7] : (set_difference(X6,set_difference(X7,X6)) = set_difference(set_union2(X6,X7),set_difference(X7,X6))) )), inference(superposition,[],[f144,f143])). fof(f561,plain,( ( ! [X12,X11] : (subset(set_difference(X12,set_difference(X12,X11)),X11)) )), inference(superposition,[],[f142,f224])). fof(f1382,plain,( spl13_24 <=> set_difference(sK1,sK2) = sK1), introduced(avatar_definition,[new_symbols(naming,[spl13_24])])). fof(f1383,plain,( set_difference(sK1,sK2) = sK1 | ~spl13_24), inference(avatar_component_clause,[],[f1382])). fof(f1905,plain,( empty_set = set_difference(sK1,set_difference(sK1,sK2))), inference(resolution,[],[f136,f226])). fof(f1956,plain,( subset(set_difference(sK1,empty_set),set_difference(sK1,sK2))), inference(superposition,[],[f561,f1905])). fof(f1963,plain,( subset(sK1,set_difference(sK1,sK2))), inference(forward_demodulation,[],[f1956,f165])). fof(f1989,plain,( ~subset(set_difference(sK1,sK2),sK1) | set_difference(sK1,sK2) = sK1), inference(resolution,[],[f1963,f187])). fof(f1996,plain,( set_difference(sK1,sK2) = sK1), inference(subsumption_resolution,[],[f1989,f142])). fof(f1997,plain,( spl13_24), inference(avatar_split_clause,[],[f1996,f1382])). fof(f2849,plain,( ( ! [X2,X0,X1] : (disjoint(set_difference(set_difference(X0,X1),X2),X1) | disjoint(set_difference(set_difference(X0,X1),X2),X1)) )), inference(resolution,[],[f343,f333])). fof(f2875,plain,( ( ! [X2,X0,X1] : (disjoint(set_difference(set_difference(X0,X1),X2),X1)) )), inference(duplicate_literal_removal,[],[f2849])). fof(f3339,plain,( ( ! [X6,X5] : (set_difference(X5,set_difference(set_union2(X5,X6),X5)) = set_difference(set_union2(X5,X6),set_difference(set_union2(X5,X6),X5))) )), inference(superposition,[],[f373,f291])). fof(f3392,plain,( ( ! [X6,X5] : (set_difference(X5,set_difference(X5,set_union2(X5,X6))) = set_difference(X5,set_difference(set_union2(X5,X6),X5))) )), inference(forward_demodulation,[],[f3339,f224])). fof(f3393,plain,( ( ! [X6,X5] : (set_difference(X5,set_difference(X6,X5)) = set_difference(X5,set_difference(X5,set_union2(X5,X6)))) )), inference(forward_demodulation,[],[f3392,f371])). fof(f3394,plain,( ( ! [X6,X5] : (set_difference(X5,empty_set) = set_difference(X5,set_difference(X6,X5))) )), inference(forward_demodulation,[],[f3393,f316])). fof(f3395,plain,( ( ! [X6,X5] : (set_difference(X5,set_difference(X6,X5)) = X5) )), inference(forward_demodulation,[],[f3394,f165])). fof(f8484,plain,( ( ! [X35] : (disjoint(set_difference(sK1,X35),sK2)) ) | ~spl13_24), inference(superposition,[],[f2875,f1383])). fof(f8869,plain,( ( ! [X6,X7] : (set_difference(set_union2(X6,X7),set_difference(X7,X6)) = X6) )), inference(backward_demodulation,[],[f3395,f373])). fof(f9076,plain,( set_difference(sK1,set_difference(sK1,sK0)) = sK0), inference(superposition,[],[f8869,f295])). fof(f9268,plain,( disjoint(sK0,sK2) | ~spl13_24), inference(superposition,[],[f8484,f9076])). fof(f9375,plain,( $false | ~spl13_24), inference(subsumption_resolution,[],[f9268,f137])). fof(f9376,plain,( ~spl13_24), inference(avatar_contradiction_clause,[],[f9375])). fof(f9532,plain,( $false), inference(avatar_sat_refutation,[],[f1997,f9376])). % SZS output end Proof for SEU140+2
% # SZS output start Saturation. tff(u313,negated_conjecture, ~woman(sK0,sK3)). tff(u312,negated_conjecture, ~woman(sK0,sK4)). tff(u311,negated_conjecture, ~woman(sK0,sK2)). tff(u310,axiom, (![X1, X0] : ((~woman(X0,X1) | ~forename(X0,X1))))). tff(u309,axiom, (![X1, X0] : ((~woman(X0,X1) | ~unisex(X0,X1))))). tff(u308,negated_conjecture, woman(sK0,sK1)). tff(u307,axiom, (![X1, X0] : ((~female(X0,X1) | ~unisex(X0,X1))))). tff(u306,axiom, (![X1, X0] : ((female(X0,X1) | ~woman(X0,X1))))). tff(u305,negated_conjecture, ~human_person(sK0,sK3)). tff(u304,negated_conjecture, ~human_person(sK0,sK4)). tff(u303,negated_conjecture, ~human_person(sK0,sK2)). tff(u302,axiom, (![X1, X0] : ((~human_person(X0,X1) | ~forename(X0,X1))))). tff(u301,axiom, (![X1, X0] : ((human_person(X0,X1) | ~woman(X0,X1))))). tff(u300,negated_conjecture, ~animate(sK0,sK3)). tff(u299,axiom, (![X1, X0] : ((animate(X0,X1) | ~human_person(X0,X1))))). tff(u298,axiom, (![X1, X0] : ((~human(X0,X1) | ~forename(X0,X1))))). tff(u297,axiom, (![X1, X0] : ((human(X0,X1) | ~human_person(X0,X1))))). tff(u296,negated_conjecture, ~organism(sK0,sK3)). tff(u295,negated_conjecture, ~organism(sK0,sK4)). tff(u294,negated_conjecture, ~organism(sK0,sK2)). tff(u293,axiom, (![X1, X0] : ((organism(X0,X1) | ~human_person(X0,X1))))). tff(u292,negated_conjecture, ~living(sK0,sK3)). tff(u291,axiom, (![X1, X0] : ((living(X0,X1) | ~organism(X0,X1))))). tff(u290,negated_conjecture, ~entity(sK0,sK4)). tff(u289,negated_conjecture, ~entity(sK0,sK2)). tff(u288,axiom, (![X1, X0] : ((entity(X0,X1) | ~organism(X0,X1))))). tff(u287,negated_conjecture, entity(sK0,sK3)). tff(u286,negated_conjecture, ((~entity(sK0,sK1)) | entity(sK0,sK1))). tff(u285,axiom, (![X1, X0] : ((~mia_forename(X0,X1) | ~entity(X0,X1))))). tff(u284,negated_conjecture, ~mia_forename(sK0,sK1)). tff(u283,negated_conjecture, ~mia_forename(sK0,sK4)). tff(u282,negated_conjecture, mia_forename(sK0,sK2)). tff(u281,negated_conjecture, ~forename(sK0,sK1)). tff(u280,negated_conjecture, ~forename(sK0,sK4)). tff(u279,axiom, (![X1, X0] : ((~forename(X0,X1) | ~entity(X0,X1))))). tff(u278,negated_conjecture, forename(sK0,sK2)). tff(u277,axiom, (![X1, X0] : ((forename(X0,X1) | ~mia_forename(X0,X1))))). tff(u276,axiom, (![X1, X0] : ((~abstraction(X0,X1) | ~entity(X0,X1))))). tff(u275,axiom, (![X1, X0] : ((~abstraction(X0,X1) | nonhuman(X0,X1))))). tff(u274,negated_conjecture, ~abstraction(sK0,sK1)). tff(u273,negated_conjecture, ~abstraction(sK0,sK4)). tff(u272,axiom, (![X1, X0] : ((abstraction(X0,X1) | ~forename(X0,X1))))). tff(u271,negated_conjecture, ~unisex(sK0,sK1)). tff(u270,axiom, (![X1, X0] : ((unisex(X0,X1) | ~abstraction(X0,X1))))). tff(u269,negated_conjecture, unisex(sK0,sK3)). tff(u268,negated_conjecture, unisex(sK0,sK4)). tff(u267,axiom, (![X1, X0] : ((~general(X0,X1) | ~entity(X0,X1))))). tff(u266,negated_conjecture, ~general(sK0,sK4)). tff(u265,axiom, (![X1, X0] : ((general(X0,X1) | ~abstraction(X0,X1))))). tff(u264,axiom, (![X1, X0] : ((~nonhuman(X0,X1) | ~human(X0,X1))))). tff(u263,axiom, (![X1, X0] : ((nonhuman(X0,X1) | ~forename(X0,X1))))). tff(u262,axiom, (![X1, X0] : ((~relation(X0,X1) | abstraction(X0,X1))))). tff(u261,axiom, (![X1, X0] : ((relation(X0,X1) | ~forename(X0,X1))))). tff(u260,axiom, (![X1, X0] : ((~relname(X0,X1) | relation(X0,X1))))). tff(u259,axiom, (![X1, X0] : ((relname(X0,X1) | ~forename(X0,X1))))). tff(u258,axiom, (![X1, X0] : ((~object(X0,X1) | unisex(X0,X1))))). tff(u257,axiom, (![X1, X0] : ((~object(X0,X1) | entity(X0,X1))))). tff(u256,axiom, (![X1, X0] : ((~object(X0,X1) | nonliving(X0,X1))))). tff(u255,negated_conjecture, object(sK0,sK3)). tff(u254,axiom, (![X1, X0] : ((~nonliving(X0,X1) | ~living(X0,X1))))). tff(u253,axiom, (![X1, X0] : ((~nonliving(X0,X1) | ~animate(X0,X1))))). tff(u252,negated_conjecture, nonliving(sK0,sK3)). tff(u251,negated_conjecture, ~existent(sK0,sK4)). tff(u250,axiom, (![X1, X0] : ((existent(X0,X1) | ~entity(X0,X1))))). tff(u249,axiom, (![X1, X0] : ((~specific(X0,X1) | ~general(X0,X1))))). tff(u248,axiom, (![X1, X0] : ((specific(X0,X1) | ~entity(X0,X1))))). tff(u247,negated_conjecture, specific(sK0,sK4)). tff(u246,axiom, (![X1, X0] : ((~substance_matter(X0,X1) | object(X0,X1))))). tff(u245,negated_conjecture, substance_matter(sK0,sK3)). tff(u244,axiom, (![X1, X0] : ((~food(X0,X1) | substance_matter(X0,X1))))). tff(u243,negated_conjecture, food(sK0,sK3)). tff(u242,axiom, (![X1, X0] : ((~beverage(X0,X1) | food(X0,X1))))). tff(u241,negated_conjecture, beverage(sK0,sK3)). tff(u240,axiom, (![X1, X0] : ((~shake_beverage(X0,X1) | beverage(X0,X1))))). tff(u239,negated_conjecture, shake_beverage(sK0,sK3)). tff(u238,axiom, (![X1, X0] : ((~order(X0,X1) | eventuality(X0,X1))))). tff(u237,negated_conjecture, order(sK0,sK4)). tff(u236,axiom, (![X1, X0] : ((~event(X0,X1) | eventuality(X0,X1))))). tff(u235,negated_conjecture, event(sK0,sK4)). tff(u234,axiom, (![X1, X0] : ((event(X0,X1) | ~order(X0,X1))))). tff(u233,axiom, (![X1, X0] : ((~eventuality(X0,X1) | unisex(X0,X1))))). tff(u232,axiom, (![X1, X0] : ((~eventuality(X0,X1) | specific(X0,X1))))). tff(u231,axiom, (![X1, X0] : ((~eventuality(X0,X1) | nonexistent(X0,X1))))). tff(u230,negated_conjecture, eventuality(sK0,sK4)). tff(u229,axiom, (![X1, X0] : ((~nonexistent(X0,X1) | ~existent(X0,X1))))). tff(u228,negated_conjecture, nonexistent(sK0,sK4)). tff(u227,axiom, (![X1, X0] : ((~act(X0,X1) | event(X0,X1))))). tff(u226,axiom, (![X1, X0] : ((act(X0,X1) | ~order(X0,X1))))). tff(u225,axiom, (![X1, X3, X0, X2] : ((~of(X0,X2,X1) | (X2 = X3) | ~forename(X0,X3) | ~of(X0,X3,X1) | ~forename(X0,X2) | ~entity(X0,X1))))). tff(u224,negated_conjecture, ((~(![X0] : ((~of(sK0,X0,sK1) | (sK2 = X0) | ~forename(sK0,X0))))) | (![X0] : ((~of(sK0,X0,sK1) | (sK2 = X0) | ~forename(sK0,X0)))))). tff(u223,negated_conjecture, of(sK0,sK2,sK1)). tff(u222,axiom, (![X1, X3, X0] : ((~nonreflexive(X0,X1) | ~agent(X0,X1,X3) | ~patient(X0,X1,X3))))). tff(u221,negated_conjecture, nonreflexive(sK0,sK4)). tff(u220,negated_conjecture, ~agent(sK0,sK4,sK3)). tff(u219,negated_conjecture, agent(sK0,sK4,sK1)). tff(u218,negated_conjecture, (![X0] : ((~patient(sK0,sK4,X0) | ~agent(sK0,sK4,X0))))). tff(u217,negated_conjecture, patient(sK0,sK4,sK3)). % # SZS output end Saturation.
% SZS output start FiniteModel for SWV017+1 tff(declare_$i,type,$i:$tType). tff(declare_$i1,type,at:$i). tff(declare_$i2,type,an_a_nonce:$i). tff(finite_domain,axiom, ! [X:$i] : ( X = at | X = an_a_nonce ) ). tff(distinct_domain,axiom, at != an_a_nonce ). tff(declare_t,type,t:$i). tff(t_definition,axiom,t = at). tff(declare_a,type,a:$i). tff(a_definition,axiom,a = at). tff(declare_b,type,b:$i). tff(b_definition,axiom,b = at). tff(declare_bt,type,bt:$i). tff(bt_definition,axiom,bt = an_a_nonce). tff(declare_an_intruder_nonce,type,an_intruder_nonce:$i). tff(an_intruder_nonce_definition,axiom,an_intruder_nonce = an_a_nonce). tff(declare_key,type,key: $i * $i > $i). tff(function_key,axiom, key(at,at) = at & key(at,an_a_nonce) = at & key(an_a_nonce,at) = at & key(an_a_nonce,an_a_nonce) = an_a_nonce ). tff(declare_pair,type,pair: $i * $i > $i). tff(function_pair,axiom, pair(at,at) = at & pair(at,an_a_nonce) = an_a_nonce & pair(an_a_nonce,at) = at & pair(an_a_nonce,an_a_nonce) = at ). tff(declare_sent,type,sent: $i * $i * $i > $i). tff(function_sent,axiom, sent(at,at,at) = at & sent(at,at,an_a_nonce) = at & sent(at,an_a_nonce,at) = at & sent(at,an_a_nonce,an_a_nonce) = an_a_nonce & sent(an_a_nonce,at,at) = at & sent(an_a_nonce,at,an_a_nonce) = at & sent(an_a_nonce,an_a_nonce,at) = at & sent(an_a_nonce,an_a_nonce,an_a_nonce) = at ). tff(declare_quadruple,type,quadruple: $i * $i * $i * $i > $i). tff(function_quadruple,axiom, quadruple(at,at,at,at) = at & quadruple(at,at,at,an_a_nonce) = at & quadruple(at,at,an_a_nonce,at) = at & quadruple(at,at,an_a_nonce,an_a_nonce) = at & quadruple(at,an_a_nonce,at,at) = at & quadruple(at,an_a_nonce,at,an_a_nonce) = at & quadruple(at,an_a_nonce,an_a_nonce,at) = at & quadruple(at,an_a_nonce,an_a_nonce,an_a_nonce) = at & quadruple(an_a_nonce,at,at,at) = at & quadruple(an_a_nonce,at,at,an_a_nonce) = an_a_nonce & quadruple(an_a_nonce,at,an_a_nonce,at) = an_a_nonce & quadruple(an_a_nonce,at,an_a_nonce,an_a_nonce) = an_a_nonce & quadruple(an_a_nonce,an_a_nonce,at,at) = an_a_nonce & quadruple(an_a_nonce,an_a_nonce,at,an_a_nonce) = at & quadruple(an_a_nonce,an_a_nonce,an_a_nonce,at) = an_a_nonce & quadruple(an_a_nonce,an_a_nonce,an_a_nonce,an_a_nonce) = an_a_nonce ). tff(declare_encrypt,type,encrypt: $i * $i > $i). tff(function_encrypt,axiom, encrypt(at,at) = an_a_nonce & encrypt(at,an_a_nonce) = an_a_nonce & encrypt(an_a_nonce,at) = at & encrypt(an_a_nonce,an_a_nonce) = at ). tff(declare_triple,type,triple: $i * $i * $i > $i). tff(function_triple,axiom, triple(at,at,at) = at & triple(at,at,an_a_nonce) = an_a_nonce & triple(at,an_a_nonce,at) = at & triple(at,an_a_nonce,an_a_nonce) = at & triple(an_a_nonce,at,at) = at & triple(an_a_nonce,at,an_a_nonce) = an_a_nonce & triple(an_a_nonce,an_a_nonce,at) = at & triple(an_a_nonce,an_a_nonce,an_a_nonce) = an_a_nonce ). tff(declare_generate_b_nonce,type,generate_b_nonce: $i > $i). tff(function_generate_b_nonce,axiom, generate_b_nonce(at) = an_a_nonce & generate_b_nonce(an_a_nonce) = an_a_nonce ). tff(declare_generate_expiration_time,type,generate_expiration_time: $i > $i). tff(function_generate_expiration_time,axiom, generate_expiration_time(at) = an_a_nonce & generate_expiration_time(an_a_nonce) = an_a_nonce ). tff(declare_generate_key,type,generate_key: $i > $i). tff(function_generate_key,axiom, generate_key(at) = at & generate_key(an_a_nonce) = at ). tff(declare_generate_intruder_nonce,type,generate_intruder_nonce: $i > $i). tff(function_generate_intruder_nonce,axiom, generate_intruder_nonce(at) = at & generate_intruder_nonce(an_a_nonce) = an_a_nonce ). tff(declare_a_holds,type,a_holds: $i > $o ). tff(predicate_a_holds,axiom, a_holds(at) & a_holds(an_a_nonce) ). tff(declare_party_of_protocol,type,party_of_protocol: $i > $o ). tff(predicate_party_of_protocol,axiom, party_of_protocol(at) & party_of_protocol(an_a_nonce) ). tff(declare_message,type,message: $i > $o ). tff(predicate_message,axiom, message(at) & message(an_a_nonce) ). tff(declare_a_stored,type,a_stored: $i > $o ). tff(predicate_a_stored,axiom, ~a_stored(at) & a_stored(an_a_nonce) ). tff(declare_b_holds,type,b_holds: $i > $o ). tff(predicate_b_holds,axiom, b_holds(at) & b_holds(an_a_nonce) ). tff(declare_fresh_to_b,type,fresh_to_b: $i > $o ). tff(predicate_fresh_to_b,axiom, fresh_to_b(at) & fresh_to_b(an_a_nonce) ). tff(declare_b_stored,type,b_stored: $i > $o ). tff(predicate_b_stored,axiom, b_stored(at) & b_stored(an_a_nonce) ). tff(declare_a_key,type,a_key: $i > $o ). tff(predicate_a_key,axiom, a_key(at) & ~a_key(an_a_nonce) ). tff(declare_t_holds,type,t_holds: $i > $o ). tff(predicate_t_holds,axiom, t_holds(at) & ~t_holds(an_a_nonce) ). tff(declare_a_nonce,type,a_nonce: $i > $o ). tff(predicate_a_nonce,axiom, ~a_nonce(at) & a_nonce(an_a_nonce) ). tff(declare_intruder_message,type,intruder_message: $i > $o ). tff(predicate_intruder_message,axiom, intruder_message(at) & intruder_message(an_a_nonce) ). tff(declare_intruder_holds,type,intruder_holds: $i > $o ). tff(predicate_intruder_holds,axiom, intruder_holds(at) & intruder_holds(an_a_nonce) ). tff(declare_fresh_intruder_nonce,type,fresh_intruder_nonce: $i > $o ). tff(predicate_fresh_intruder_nonce,axiom, ~fresh_intruder_nonce(at) & fresh_intruder_nonce(an_a_nonce) ). % SZS output end FiniteModel for SWV017+1