EP 1.0pre
Stephan Schulz
Institut für Informatik, Technische Universität, Germany
Sample solution for SYN075+1
# Problem is unsatisfiable (or provable), constructing proof object
# SZS status Theorem
# SZS output start CNFRefutation.
fof(1, axiom,?[X1]:?[X2]:![X3]:![X4]:(big_f(X3,X4)<=>(equal(X3, X1)&equal(X4, X2))),file('/home/graph/tptp/TPTP/Problems/SYN/SYN075+1.p', pel52_1)).
fof(2, conjecture,?[X2]:![X4]:(?[X1]:![X3]:(big_f(X3,X4)<=>equal(X3, X1))<=>equal(X4, X2)),file('/home/graph/tptp/TPTP/Problems/SYN/SYN075+1.p', pel52)).
fof(3, negated_conjecture,~(?[X2]:![X4]:(?[X1]:![X3]:(big_f(X3,X4)<=>equal(X3, X1))<=>equal(X4, X2))),inference(assume_negation,[status(cth)],[2])).
fof(4, plain,?[X1]:?[X2]:![X3]:![X4]:((~(big_f(X3,X4))|(equal(X3, X1)&equal(X4, X2)))&((~(equal(X3, X1))|~(equal(X4, X2)))|big_f(X3,X4))),inference(fof_nnf,[status(thm)],[1])).
fof(5, plain,?[X5]:?[X6]:![X7]:![X8]:((~(big_f(X7,X8))|(equal(X7, X5)&equal(X8, X6)))&((~(equal(X7, X5))|~(equal(X8, X6)))|big_f(X7,X8))),inference(variable_rename,[status(thm)],[4])).
fof(6, plain,![X7]:![X8]:((~(big_f(X7,X8))|(equal(X7, esk1_0)&equal(X8, esk2_0)))&((~(equal(X7, esk1_0))|~(equal(X8, esk2_0)))|big_f(X7,X8))),inference(skolemize,[status(sab)],[5])).
fof(7, plain,![X7]:![X8]:(((equal(X7, esk1_0)|~(big_f(X7,X8)))&(equal(X8, esk2_0)|~(big_f(X7,X8))))&((~(equal(X7, esk1_0))|~(equal(X8, esk2_0)))|big_f(X7,X8))),inference(distribute,[status(thm)],[6])).
cnf(8,plain,(big_f(X1,X2)|X2!=esk2_0|X1!=esk1_0),inference(split_conjunct,[status(thm)],[7])).
cnf(9,plain,(X2=esk2_0|~big_f(X1,X2)),inference(split_conjunct,[status(thm)],[7])).
cnf(10,plain,(X1=esk1_0|~big_f(X1,X2)),inference(split_conjunct,[status(thm)],[7])).
fof(11, negated_conjecture,![X2]:?[X4]:((![X1]:?[X3]:((~(big_f(X3,X4))|~(equal(X3, X1)))&(big_f(X3,X4)|equal(X3, X1)))|~(equal(X4, X2)))&(?[X1]:![X3]:((~(big_f(X3,X4))|equal(X3, X1))&(~(equal(X3, X1))|big_f(X3,X4)))|equal(X4, X2))),inference(fof_nnf,[status(thm)],[3])).
fof(12, negated_conjecture,![X5]:?[X6]:((![X7]:?[X8]:((~(big_f(X8,X6))|~(equal(X8, X7)))&(big_f(X8,X6)|equal(X8, X7)))|~(equal(X6, X5)))&(?[X9]:![X10]:((~(big_f(X10,X6))|equal(X10, X9))&(~(equal(X10, X9))|big_f(X10,X6)))|equal(X6, X5))),inference(variable_rename,[status(thm)],[11])).
fof(13, negated_conjecture,![X5]:((![X7]:((~(big_f(esk4_2(X5,X7),esk3_1(X5)))|~(equal(esk4_2(X5,X7), X7)))&(big_f(esk4_2(X5,X7),esk3_1(X5))|equal(esk4_2(X5,X7), X7)))|~(equal(esk3_1(X5), X5)))&(![X10]:((~(big_f(X10,esk3_1(X5)))|equal(X10, esk5_1(X5)))&(~(equal(X10, esk5_1(X5)))|big_f(X10,esk3_1(X5))))|equal(esk3_1(X5), X5))),inference(skolemize,[status(sab)],[12])).
fof(14, negated_conjecture,![X5]:![X7]:![X10]:((((~(big_f(X10,esk3_1(X5)))|equal(X10, esk5_1(X5)))&(~(equal(X10, esk5_1(X5)))|big_f(X10,esk3_1(X5))))|equal(esk3_1(X5), X5))&(((~(big_f(esk4_2(X5,X7),esk3_1(X5)))|~(equal(esk4_2(X5,X7), X7)))&(big_f(esk4_2(X5,X7),esk3_1(X5))|equal(esk4_2(X5,X7), X7)))|~(equal(esk3_1(X5), X5)))),inference(shift_quantors,[status(thm)],[13])).
fof(15, negated_conjecture,![X5]:![X7]:![X10]:((((~(big_f(X10,esk3_1(X5)))|equal(X10, esk5_1(X5)))|equal(esk3_1(X5), X5))&((~(equal(X10, esk5_1(X5)))|big_f(X10,esk3_1(X5)))|equal(esk3_1(X5), X5)))&(((~(big_f(esk4_2(X5,X7),esk3_1(X5)))|~(equal(esk4_2(X5,X7), X7)))|~(equal(esk3_1(X5), X5)))&((big_f(esk4_2(X5,X7),esk3_1(X5))|equal(esk4_2(X5,X7), X7))|~(equal(esk3_1(X5), X5))))),inference(distribute,[status(thm)],[14])).
cnf(16,negated_conjecture,(esk4_2(X1,X2)=X2|big_f(esk4_2(X1,X2),esk3_1(X1))|esk3_1(X1)!=X1),inference(split_conjunct,[status(thm)],[15])).
cnf(17,negated_conjecture,(esk3_1(X1)!=X1|esk4_2(X1,X2)!=X2|~big_f(esk4_2(X1,X2),esk3_1(X1))),inference(split_conjunct,[status(thm)],[15])).
cnf(18,negated_conjecture,(esk3_1(X1)=X1|big_f(X2,esk3_1(X1))|X2!=esk5_1(X1)),inference(split_conjunct,[status(thm)],[15])).
cnf(20,plain,(big_f(esk1_0,X1)|esk2_0!=X1),inference(er,[status(thm)],[8,theory(equality)])).
cnf(21,negated_conjecture,(esk3_1(X1)=X1|big_f(esk5_1(X1),esk3_1(X1))),inference(er,[status(thm)],[18,theory(equality)])).
cnf(23,negated_conjecture,(esk2_0=esk3_1(X1)|esk3_1(X1)=X1),inference(spm,[status(thm)],[9,21,theory(equality)])).
cnf(28,plain,(big_f(esk1_0,esk2_0)),inference(er,[status(thm)],[20,theory(equality)])).
cnf(30,negated_conjecture,(esk3_1(X2)=X2|esk2_0!=X2),inference(ef,[status(thm)],[23,theory(equality)])).
cnf(40,negated_conjecture,(esk3_1(esk2_0)=esk2_0),inference(er,[status(thm)],[30,theory(equality)])).
cnf(44,negated_conjecture,(esk4_2(esk2_0,X1)!=X1|~big_f(esk4_2(esk2_0,X1),esk2_0)),inference(spm,[status(thm)],[17,40,theory(equality)])).
cnf(45,negated_conjecture,(esk4_2(esk2_0,X1)=X1|big_f(esk4_2(esk2_0,X1),esk2_0)),inference(spm,[status(thm)],[16,40,theory(equality)])).
cnf(47,negated_conjecture,(esk1_0=esk4_2(esk2_0,X1)|esk4_2(esk2_0,X1)=X1),inference(spm,[status(thm)],[10,45,theory(equality)])).
cnf(54,negated_conjecture,(esk4_2(esk2_0,X2)=X2|esk1_0!=X2),inference(ef,[status(thm)],[47,theory(equality)])).
cnf(78,negated_conjecture,(esk4_2(esk2_0,esk1_0)=esk1_0),inference(er,[status(thm)],[54,theory(equality)])).
cnf(80,negated_conjecture,(~big_f(esk1_0,esk2_0)),inference(spm,[status(thm)],[44,78,theory(equality)])).
cnf(84,negated_conjecture,($false),inference(rw,[status(thm)],[80,28,theory(equality)])).
cnf(85,negated_conjecture,($false),inference(cn,[status(thm)],[84,theory(equality)])).
cnf(86,negated_conjecture,($false),85,['proof']).
# SZS output end CNFRefutation
# SZS status Theorem
MaLARea 0.3
Josef Urban
Charles University in Prague, Czech Republic
The sample solutions are EP and SPASS proofs.
Sample solution for SYN075+1 from EP
# Problem is unsatisfiable (or provable), constructing proof object
# SZS status Theorem
# SZS output start CNFRefutation.
fof(1, axiom,?[X1]:?[X2]:![X3]:![X4]:(big_f(X3,X4)<=>(equal(X3, X1)&equal(X4, X2))),file('/home/graph/tptp/TPTP/Problems/SYN/SYN075+1.p', pel52_1)).
fof(2, conjecture,?[X2]:![X4]:(?[X1]:![X3]:(big_f(X3,X4)<=>equal(X3, X1))<=>equal(X4, X2)),file('/home/graph/tptp/TPTP/Problems/SYN/SYN075+1.p', pel52)).
fof(3, negated_conjecture,~(?[X2]:![X4]:(?[X1]:![X3]:(big_f(X3,X4)<=>equal(X3, X1))<=>equal(X4, X2))),inference(assume_negation,[status(cth)],[2])).
fof(4, plain,?[X1]:?[X2]:![X3]:![X4]:((~(big_f(X3,X4))|(equal(X3, X1)&equal(X4, X2)))&((~(equal(X3, X1))|~(equal(X4, X2)))|big_f(X3,X4))),inference(fof_nnf,[status(thm)],[1])).
fof(5, plain,?[X5]:?[X6]:![X7]:![X8]:((~(big_f(X7,X8))|(equal(X7, X5)&equal(X8, X6)))&((~(equal(X7, X5))|~(equal(X8, X6)))|big_f(X7,X8))),inference(variable_rename,[status(thm)],[4])).
fof(6, plain,![X7]:![X8]:((~(big_f(X7,X8))|(equal(X7, esk1_0)&equal(X8, esk2_0)))&((~(equal(X7, esk1_0))|~(equal(X8, esk2_0)))|big_f(X7,X8))),inference(skolemize,[status(sab)],[5])).
fof(7, plain,![X7]:![X8]:(((equal(X7, esk1_0)|~(big_f(X7,X8)))&(equal(X8, esk2_0)|~(big_f(X7,X8))))&((~(equal(X7, esk1_0))|~(equal(X8, esk2_0)))|big_f(X7,X8))),inference(distribute,[status(thm)],[6])).
cnf(8,plain,(big_f(X1,X2)|X2!=esk2_0|X1!=esk1_0),inference(split_conjunct,[status(thm)],[7])).
cnf(9,plain,(X2=esk2_0|~big_f(X1,X2)),inference(split_conjunct,[status(thm)],[7])).
cnf(10,plain,(X1=esk1_0|~big_f(X1,X2)),inference(split_conjunct,[status(thm)],[7])).
fof(11, negated_conjecture,![X2]:?[X4]:((![X1]:?[X3]:((~(big_f(X3,X4))|~(equal(X3, X1)))&(big_f(X3,X4)|equal(X3, X1)))|~(equal(X4, X2)))&(?[X1]:![X3]:((~(big_f(X3,X4))|equal(X3, X1))&(~(equal(X3, X1))|big_f(X3,X4)))|equal(X4, X2))),inference(fof_nnf,[status(thm)],[3])).
fof(12, negated_conjecture,![X5]:?[X6]:((![X7]:?[X8]:((~(big_f(X8,X6))|~(equal(X8, X7)))&(big_f(X8,X6)|equal(X8, X7)))|~(equal(X6, X5)))&(?[X9]:![X10]:((~(big_f(X10,X6))|equal(X10, X9))&(~(equal(X10, X9))|big_f(X10,X6)))|equal(X6, X5))),inference(variable_rename,[status(thm)],[11])).
fof(13, negated_conjecture,![X5]:((![X7]:((~(big_f(esk4_2(X5,X7),esk3_1(X5)))|~(equal(esk4_2(X5,X7), X7)))&(big_f(esk4_2(X5,X7),esk3_1(X5))|equal(esk4_2(X5,X7), X7)))|~(equal(esk3_1(X5), X5)))&(![X10]:((~(big_f(X10,esk3_1(X5)))|equal(X10, esk5_1(X5)))&(~(equal(X10, esk5_1(X5)))|big_f(X10,esk3_1(X5))))|equal(esk3_1(X5), X5))),inference(skolemize,[status(sab)],[12])).
fof(14, negated_conjecture,![X5]:![X7]:![X10]:((((~(big_f(X10,esk3_1(X5)))|equal(X10, esk5_1(X5)))&(~(equal(X10, esk5_1(X5)))|big_f(X10,esk3_1(X5))))|equal(esk3_1(X5), X5))&(((~(big_f(esk4_2(X5,X7),esk3_1(X5)))|~(equal(esk4_2(X5,X7), X7)))&(big_f(esk4_2(X5,X7),esk3_1(X5))|equal(esk4_2(X5,X7), X7)))|~(equal(esk3_1(X5), X5)))),inference(shift_quantors,[status(thm)],[13])).
fof(15, negated_conjecture,![X5]:![X7]:![X10]:((((~(big_f(X10,esk3_1(X5)))|equal(X10, esk5_1(X5)))|equal(esk3_1(X5), X5))&((~(equal(X10, esk5_1(X5)))|big_f(X10,esk3_1(X5)))|equal(esk3_1(X5), X5)))&(((~(big_f(esk4_2(X5,X7),esk3_1(X5)))|~(equal(esk4_2(X5,X7), X7)))|~(equal(esk3_1(X5), X5)))&((big_f(esk4_2(X5,X7),esk3_1(X5))|equal(esk4_2(X5,X7), X7))|~(equal(esk3_1(X5), X5))))),inference(distribute,[status(thm)],[14])).
cnf(16,negated_conjecture,(esk4_2(X1,X2)=X2|big_f(esk4_2(X1,X2),esk3_1(X1))|esk3_1(X1)!=X1),inference(split_conjunct,[status(thm)],[15])).
cnf(17,negated_conjecture,(esk3_1(X1)!=X1|esk4_2(X1,X2)!=X2|~big_f(esk4_2(X1,X2),esk3_1(X1))),inference(split_conjunct,[status(thm)],[15])).
cnf(18,negated_conjecture,(esk3_1(X1)=X1|big_f(X2,esk3_1(X1))|X2!=esk5_1(X1)),inference(split_conjunct,[status(thm)],[15])).
cnf(20,plain,(big_f(esk1_0,X1)|esk2_0!=X1),inference(er,[status(thm)],[8,theory(equality)])).
cnf(21,negated_conjecture,(esk3_1(X1)=X1|big_f(esk5_1(X1),esk3_1(X1))),inference(er,[status(thm)],[18,theory(equality)])).
cnf(23,negated_conjecture,(esk2_0=esk3_1(X1)|esk3_1(X1)=X1),inference(spm,[status(thm)],[9,21,theory(equality)])).
cnf(28,plain,(big_f(esk1_0,esk2_0)),inference(er,[status(thm)],[20,theory(equality)])).
cnf(30,negated_conjecture,(esk3_1(X2)=X2|esk2_0!=X2),inference(ef,[status(thm)],[23,theory(equality)])).
cnf(40,negated_conjecture,(esk3_1(esk2_0)=esk2_0),inference(er,[status(thm)],[30,theory(equality)])).
cnf(44,negated_conjecture,(esk4_2(esk2_0,X1)!=X1|~big_f(esk4_2(esk2_0,X1),esk2_0)),inference(spm,[status(thm)],[17,40,theory(equality)])).
cnf(45,negated_conjecture,(esk4_2(esk2_0,X1)=X1|big_f(esk4_2(esk2_0,X1),esk2_0)),inference(spm,[status(thm)],[16,40,theory(equality)])).
cnf(47,negated_conjecture,(esk1_0=esk4_2(esk2_0,X1)|esk4_2(esk2_0,X1)=X1),inference(spm,[status(thm)],[10,45,theory(equality)])).
cnf(54,negated_conjecture,(esk4_2(esk2_0,X2)=X2|esk1_0!=X2),inference(ef,[status(thm)],[47,theory(equality)])).
cnf(78,negated_conjecture,(esk4_2(esk2_0,esk1_0)=esk1_0),inference(er,[status(thm)],[54,theory(equality)])).
cnf(80,negated_conjecture,(~big_f(esk1_0,esk2_0)),inference(spm,[status(thm)],[44,78,theory(equality)])).
cnf(84,negated_conjecture,($false),inference(rw,[status(thm)],[80,28,theory(equality)])).
cnf(85,negated_conjecture,($false),inference(cn,[status(thm)],[84,theory(equality)])).
cnf(86,negated_conjecture,($false),85,['proof']).
# SZS output end CNFRefutation
# SZS status Theorem
Sample solution for SYN075+1 from SPASS
SPASS beiseite: Proof found.
Problem: /tmp/SystemOnTPTP19294/SYN075+1.dfg
SPASS derived 429 clauses, backtracked 100 clauses and kept 218 clauses.
SPASS allocated 679 KBytes.
SPASS spent0:00:00.03 on the problem.
the0:00:00.00 for the input.
the0:00:00.00 for the FLOTTER CNF translation.
CNF0:00:00.00 for inferences.
for0:00:00.00 for the backtracking.
the0:00:00.01 for the reduction.
Here is a proof with depth 6, length 43 :
1[0:Inp] || big_f__dfg(U,V)* -> equal(V,skc8).
2[0:Inp] || big_f__dfg(U,V)* -> equal(U,skc7).
4[0:Inp] || equal(U,skc8) equal(V,skc7) -> big_f__dfg(V,U)*.
5[0:Inp] || equal(U,skf5(V)) -> big_f__dfg(U,skf3(V))* equal(skf3(V),V).
6[0:Inp] || equal(skf3(U),U) -> equal(skf6(V,U),V) big_f__dfg(skf6(V,U),skf3(U))*.
7[0:Inp] || equal(skf3(U),U) equal(skf6(V,U),V) big_f__dfg(skf6(V,U),skf3(U))* -> .
11[0:Res:5.1,1.0] || equal(U,skf5(V))* -> equal(skf3(V),V) equal(skf3(V),skc8).
14[0:AED:11.0] || -> equal(skf3(U),U)** equal(skf3(U),skc8)**.
15[0:Rew:14.1,5.1] || equal(U,skf5(V))*+ -> big_f__dfg(U,skc8)* equal(skf3(V),V).
16[0:EqF:14.0,14.1] || equal(U,skc8) -> equal(skf3(U),skc8)**.
18[0:Fac:14.0,14.1] || -> equal(skf3(skc8),skc8)**.
35[0:EqR:15.0] || -> big_f__dfg(skf5(U),skc8)* equal(skf3(U),U).
50[0:Res:35.0,2.0] || -> equal(skf3(U),U) equal(skf5(U),skc7)**.
52[0:Rew:50.1,35.0] || -> big_f__dfg(skc7,skc8)* equal(skf3(U),U)**.
61[1:Spt:52.1] || -> equal(skf3(U),U)**.
65[1:Rew:61.0,7.0] || equal(U,U) equal(skf6(V,U),V) big_f__dfg(skf6(V,U),skf3(U))* -> .
66[1:Rew:61.0,6.0] || equal(U,U) -> equal(skf6(V,U),V) big_f__dfg(skf6(V,U),skf3(U))*.
69[1:Obv:66.0] || -> equal(skf6(U,V),U) big_f__dfg(skf6(U,V),skf3(V))*.
70[1:Rew:61.0,69.1] || -> equal(skf6(U,V),U) big_f__dfg(skf6(U,V),V)*.
71[1:Obv:65.0] || equal(skf6(U,V),U) big_f__dfg(skf6(U,V),skf3(V))* -> .
72[1:Rew:61.0,71.1] || equal(skf6(U,V),U) big_f__dfg(skf6(U,V),V)* -> .
78[1:Res:70.1,2.0] || -> equal(skf6(U,V),U)** equal(skf6(U,V),skc7)**.
79[1:Rew:78.1,70.1] || -> equal(skf6(U,V),U)** big_f__dfg(skc7,V).
121[1:Fac:78.0,78.1] || -> equal(skf6(skc7,U),skc7)**.
213[1:SpL:121.0,72.1] || equal(skf6(skc7,U),skc7)** big_f__dfg(skc7,U) -> .
221[1:Rew:121.0,213.0] || equal(skc7,skc7) big_f__dfg(skc7,U)* -> .
222[1:Obv:221.0] || big_f__dfg(skc7,U)* -> .
223[1:MRR:79.1,222.0] || -> equal(skf6(U,V),U)**.
224[1:Rew:223.0,72.0] || equal(U,U) big_f__dfg(skf6(U,V),V)* -> .
226[1:Obv:224.0] || big_f__dfg(skf6(U,V),V)* -> .
227[1:Rew:223.0,226.0] || big_f__dfg(U,V)* -> .
228[1:MRR:4.2,227.0] || equal(U,skc8)* equal(V,skc7)* -> .
229[1:AED:228.1] || -> .
232[1:Spt:229.0,52.0] || -> big_f__dfg(skc7,skc8)*.
493[0:SpR:18.0,6.2] || equal(skf3(skc8),skc8) -> equal(skf6(U,skc8),U) big_f__dfg(skf6(U,skc8),skc8)*.
504[0:Rew:18.0,493.0] || equal(skc8,skc8) -> equal(skf6(U,skc8),U) big_f__dfg(skf6(U,skc8),skc8)*.
505[0:Obv:504.0] || -> equal(skf6(U,skc8),U) big_f__dfg(skf6(U,skc8),skc8)*.
517[0:Res:505.1,2.0] || -> equal(skf6(U,skc8),U)** equal(skf6(U,skc8),skc7)**.
522[0:Fac:517.0,517.1] || -> equal(skf6(skc7,skc8),skc7)**.
539[0:SpL:522.0,7.2] || equal(skf3(skc8),skc8) equal(skf6(skc7,skc8),skc7) big_f__dfg(skc7,skf3(skc8))* -> .
541[0:Rew:16.1,539.2,522.0,539.1,18.0,539.0] || equal(skc8,skc8) equal(skc7,skc7) big_f__dfg(skc7,skc8)* -> .
542[0:Obv:541.1] || big_f__dfg(skc7,skc8)* -> .
543[1:MRR:542.0,232.0] || -> .
Formulae used in the proof : pel52_1 pel52
Metis 2.1
Joe Hurd
Galois, Inc., USA
Explanation of Inference Rules
signature Thm =
(* ------------------------------------------------------------------------- *)
(* *)
(* ----- axiom C *)
(* C *)
(* ------------------------------------------------------------------------- *)
val axiom : Clause.clause -> thm
(* ------------------------------------------------------------------------- *)
(* *)
(* ----------- assume L *)
(* L \/ ~L *)
(* ------------------------------------------------------------------------- *)
val assume : Literal.literal -> thm
(* ------------------------------------------------------------------------- *)
(* C *)
(* -------- subst s *)
(* C[s] *)
(* ------------------------------------------------------------------------- *)
val subst : Subst.subst -> thm -> thm
(* ------------------------------------------------------------------------- *)
(* L \/ C ~L \/ D *)
(* --------------------- resolve L *)
(* C \/ D *)
(* *)
(* The literal L must occur in the first theorem, and the literal ~L must *)
(* occur in the second theorem. *)
(* ------------------------------------------------------------------------- *)
val resolve : Literal.literal -> thm -> thm -> thm
(* ------------------------------------------------------------------------- *)
(* *)
(* --------- refl t *)
(* t = t *)
(* ------------------------------------------------------------------------- *)
val refl : Term.term -> thm
(* ------------------------------------------------------------------------- *)
(* *)
(* ------------------------ equality L p t *)
(* ~(s = t) \/ ~L \/ L' *)
(* *)
(* where s is the subterm of L at path p, and L' is L with the subterm at *)
(* path p being replaced by t. *)
(* ------------------------------------------------------------------------- *)
val equality : Literal.literal -> Term.path -> Term.term -> thm
end
Sample solution for SYN075+1
Problem: data/problems/all/SYN075+1.tptp
Goal:
(?Z W. !X Y. big_f X Y <=> X = Z /\ Y = W) ==>
?W. !Y. (?Z. !X. big_f X Y <=> X = Z) <=> Y = W
Clauses:
(~big_f $X $Y \/ $X = skolemFOFtoCNF_Z) /\
(~big_f $X $Y \/ $Y = skolemFOFtoCNF_W) /\
(~($X = skolemFOFtoCNF_Z) \/ ~($Y = skolemFOFtoCNF_W) \/ big_f $X $Y) /\
(~($X = skolemFOFtoCNF_Z_1 $W) \/ skolemFOFtoCNF_Y $W = $W \/
big_f $X (skolemFOFtoCNF_Y $W)) /\
(~(skolemFOFtoCNF_X $W $Z = $Z) \/ ~(skolemFOFtoCNF_Y $W = $W) \/
~big_f (skolemFOFtoCNF_X $W $Z) (skolemFOFtoCNF_Y $W)) /\
(~(skolemFOFtoCNF_Y $W = $W) \/ skolemFOFtoCNF_X $W $Z = $Z \/
big_f (skolemFOFtoCNF_X $W $Z) (skolemFOFtoCNF_Y $W)) /\
(~big_f $X (skolemFOFtoCNF_Y $W) \/ $X = skolemFOFtoCNF_Z_1 $W \/
skolemFOFtoCNF_Y $W = $W)
SZS status Theorem for data/problems/all/SYN075+1.tptp
SZS output start CNFRefutation for data/problems/all/SYN075+1.tptp
fof(pel52_1, axiom,
(? [Z, W] : ! [X, Y] : (big_f(X, Y) <=> (X = Z & Y = W)))).
fof(pel52, conjecture,
(? [W] : ! [Y] : (? [Z] : ! [X] : (big_f(X, Y) <=> X = Z) <=> Y = W))).
cnf(0, plain,
(skolemFOFtoCNF_X(W, Z) != Z | skolemFOFtoCNF_Y(W) != W |
~ big_f(skolemFOFtoCNF_X(W, Z), skolemFOFtoCNF_Y(W))),
inference(fof_to_cnf, [], [pel52])).
cnf(1, plain, (skolemFOFtoCNF_X(W, Z) != Z | skolemFOFtoCNF_X(W, Z) = Z),
introduced(tautology,
[assume, [$cnf($equal(skolemFOFtoCNF_X(W, Z), Z))]])).
cnf(2, plain,
(skolemFOFtoCNF_X(W, Z) != Z | ~ big_f(Z, skolemFOFtoCNF_Y(W)) |
big_f(skolemFOFtoCNF_X(W, Z), skolemFOFtoCNF_Y(W))),
introduced(tautology,
[equality,
[$cnf(~ big_f(skolemFOFtoCNF_X(W, Z),
skolemFOFtoCNF_Y(W))), [0], $fot(Z)]])).
cnf(3, plain, (skolemFOFtoCNF_Y(W) != W | skolemFOFtoCNF_Y(W) = W),
introduced(tautology,
[assume, [$cnf($equal(skolemFOFtoCNF_Y(W), W))]])).
cnf(4, plain,
(skolemFOFtoCNF_Y(W) != W | ~ big_f(Z, W) |
big_f(Z, skolemFOFtoCNF_Y(W))),
introduced(tautology,
[equality,
[$cnf(~ big_f(Z, skolemFOFtoCNF_Y(W))), [1], $fot(W)]])).
cnf(5, plain,
(skolemFOFtoCNF_X(W, Z) != Z | skolemFOFtoCNF_Y(W) != W |
~ big_f(Z, W) | big_f(skolemFOFtoCNF_X(W, Z), skolemFOFtoCNF_Y(W))),
inference(resolve, [$cnf(big_f(Z, skolemFOFtoCNF_Y(W)))], [4, 2])).
cnf(6, plain,
(skolemFOFtoCNF_X(W, Z) != Z | skolemFOFtoCNF_Y(W) != W |
~ big_f(Z, W)),
inference(resolve,
[$cnf(big_f(skolemFOFtoCNF_X(W, Z), skolemFOFtoCNF_Y(W)))],
[5, 0])).
cnf(7, plain,
(skolemFOFtoCNF_X(skolemFOFtoCNF_W, skolemFOFtoCNF_Z) !=
skolemFOFtoCNF_Z |
skolemFOFtoCNF_Y(skolemFOFtoCNF_W) != skolemFOFtoCNF_W |
~ big_f(skolemFOFtoCNF_Z, skolemFOFtoCNF_W)),
inference(subst,
[[W, $fot(skolemFOFtoCNF_W)], [Z, $fot(skolemFOFtoCNF_Z)]],
[6])).
cnf(8, plain, (~ big_f(X, Y) | X = skolemFOFtoCNF_Z),
inference(fof_to_cnf, [], [pel52_1])).
cnf(9, plain,
(~ big_f(skolemFOFtoCNF_X(skolemFOFtoCNF_W, X1), skolemFOFtoCNF_W) |
skolemFOFtoCNF_X(skolemFOFtoCNF_W, X1) = skolemFOFtoCNF_Z),
inference(subst,
[[X, $fot(skolemFOFtoCNF_X(skolemFOFtoCNF_W, X1))],
[Y, $fot(skolemFOFtoCNF_W)]], [8])).
cnf(10, plain,
(skolemFOFtoCNF_Y(W) != W | skolemFOFtoCNF_X(W, Z) = Z |
big_f(skolemFOFtoCNF_X(W, Z), skolemFOFtoCNF_Y(W))),
inference(fof_to_cnf, [], [pel52])).
cnf(11, plain,
(skolemFOFtoCNF_Y(W) != W |
~ big_f(skolemFOFtoCNF_X(W, Z), skolemFOFtoCNF_Y(W)) |
big_f(skolemFOFtoCNF_X(W, Z), W)),
introduced(tautology,
[equality,
[$cnf(big_f(skolemFOFtoCNF_X(W, Z), skolemFOFtoCNF_Y(W))),
[1], $fot(W)]])).
cnf(12, plain,
(skolemFOFtoCNF_Y(W) != W | skolemFOFtoCNF_X(W, Z) = Z |
big_f(skolemFOFtoCNF_X(W, Z), W)),
inference(resolve,
[$cnf(big_f(skolemFOFtoCNF_X(W, Z), skolemFOFtoCNF_Y(W)))],
[10, 11])).
cnf(13, plain,
(skolemFOFtoCNF_Y(skolemFOFtoCNF_W) != skolemFOFtoCNF_W |
skolemFOFtoCNF_X(skolemFOFtoCNF_W, X0) = X0 |
big_f(skolemFOFtoCNF_X(skolemFOFtoCNF_W, X0), skolemFOFtoCNF_W)),
inference(subst, [[W, $fot(skolemFOFtoCNF_W)], [Z, $fot(X0)]], [12])).
cnf(14, plain, (~ big_f(X, Y) | Y = skolemFOFtoCNF_W),
inference(fof_to_cnf, [], [pel52_1])).
cnf(15, plain,
(~ big_f(skolemFOFtoCNF_Z_1(X2), skolemFOFtoCNF_Y(X2)) |
skolemFOFtoCNF_Y(X2) = skolemFOFtoCNF_W),
inference(subst,
[[X, $fot(skolemFOFtoCNF_Z_1(X2))],
[Y, $fot(skolemFOFtoCNF_Y(X2))]], [14])).
cnf(16, plain,
(X != skolemFOFtoCNF_Z_1(W) | skolemFOFtoCNF_Y(W) = W |
big_f(X, skolemFOFtoCNF_Y(W))), inference(fof_to_cnf, [], [pel52])).
cnf(17, plain,
(skolemFOFtoCNF_Z_1(W) != skolemFOFtoCNF_Z_1(W) |
skolemFOFtoCNF_Y(W) = W |
big_f(skolemFOFtoCNF_Z_1(W), skolemFOFtoCNF_Y(W))),
inference(subst, [[X, $fot(skolemFOFtoCNF_Z_1(W))]], [16])).
cnf(18, plain, (skolemFOFtoCNF_Z_1(W) = skolemFOFtoCNF_Z_1(W)),
introduced(tautology, [refl, [$fot(skolemFOFtoCNF_Z_1(W))]])).
cnf(19, plain,
(skolemFOFtoCNF_Y(W) = W |
big_f(skolemFOFtoCNF_Z_1(W), skolemFOFtoCNF_Y(W))),
inference(resolve,
[$cnf($equal(skolemFOFtoCNF_Z_1(W), skolemFOFtoCNF_Z_1(W)))],
[18, 17])).
cnf(20, plain,
(skolemFOFtoCNF_Y(X2) = X2 |
big_f(skolemFOFtoCNF_Z_1(X2), skolemFOFtoCNF_Y(X2))),
inference(subst, [[W, $fot(X2)]], [19])).
cnf(21, plain,
(skolemFOFtoCNF_Y(X2) = X2 | skolemFOFtoCNF_Y(X2) = skolemFOFtoCNF_W),
inference(resolve,
[$cnf(big_f(skolemFOFtoCNF_Z_1(X2), skolemFOFtoCNF_Y(X2)))],
[20, 15])).
cnf(22, plain, (skolemFOFtoCNF_Y(skolemFOFtoCNF_W) = skolemFOFtoCNF_W),
inference(subst, [[X2, $fot(skolemFOFtoCNF_W)]], [21])).
cnf(23, plain,
(skolemFOFtoCNF_W != skolemFOFtoCNF_W |
skolemFOFtoCNF_Y(skolemFOFtoCNF_W) != skolemFOFtoCNF_W |
skolemFOFtoCNF_Y(skolemFOFtoCNF_W) = skolemFOFtoCNF_W),
introduced(tautology,
[equality,
[$cnf($equal(skolemFOFtoCNF_Y(skolemFOFtoCNF_W),
skolemFOFtoCNF_W)), [0, 0],
$fot(skolemFOFtoCNF_W)]])).
cnf(24, plain,
(skolemFOFtoCNF_W != skolemFOFtoCNF_W |
skolemFOFtoCNF_Y(skolemFOFtoCNF_W) = skolemFOFtoCNF_W),
inference(resolve,
[$cnf($equal(skolemFOFtoCNF_Y(skolemFOFtoCNF_W),
skolemFOFtoCNF_W))], [22, 23])).
cnf(25, plain,
(skolemFOFtoCNF_W != skolemFOFtoCNF_W |
skolemFOFtoCNF_X(skolemFOFtoCNF_W, X0) = X0 |
big_f(skolemFOFtoCNF_X(skolemFOFtoCNF_W, X0), skolemFOFtoCNF_W)),
inference(resolve,
[$cnf($equal(skolemFOFtoCNF_Y(skolemFOFtoCNF_W),
skolemFOFtoCNF_W))], [24, 13])).
cnf(26, plain, (skolemFOFtoCNF_W = skolemFOFtoCNF_W),
introduced(tautology, [refl, [$fot(skolemFOFtoCNF_W)]])).
cnf(27, plain,
(skolemFOFtoCNF_X(skolemFOFtoCNF_W, X0) = X0 |
big_f(skolemFOFtoCNF_X(skolemFOFtoCNF_W, X0), skolemFOFtoCNF_W)),
inference(resolve, [$cnf($equal(skolemFOFtoCNF_W, skolemFOFtoCNF_W))],
[26, 25])).
cnf(28, plain,
(skolemFOFtoCNF_X(skolemFOFtoCNF_W, X1) = X1 |
big_f(skolemFOFtoCNF_X(skolemFOFtoCNF_W, X1), skolemFOFtoCNF_W)),
inference(subst, [[X0, $fot(X1)]], [27])).
cnf(29, plain,
(skolemFOFtoCNF_X(skolemFOFtoCNF_W, X1) = X1 |
skolemFOFtoCNF_X(skolemFOFtoCNF_W, X1) = skolemFOFtoCNF_Z),
inference(resolve,
[$cnf(big_f(skolemFOFtoCNF_X(skolemFOFtoCNF_W, X1),
skolemFOFtoCNF_W))], [28, 9])).
cnf(30, plain,
(skolemFOFtoCNF_X(skolemFOFtoCNF_W, skolemFOFtoCNF_Z) =
skolemFOFtoCNF_Z),
inference(subst, [[X1, $fot(skolemFOFtoCNF_Z)]], [29])).
cnf(31, plain,
(skolemFOFtoCNF_X(skolemFOFtoCNF_W, skolemFOFtoCNF_Z) !=
skolemFOFtoCNF_Z | skolemFOFtoCNF_Z != skolemFOFtoCNF_Z |
skolemFOFtoCNF_X(skolemFOFtoCNF_W, skolemFOFtoCNF_Z) =
skolemFOFtoCNF_Z),
introduced(tautology,
[equality,
[$cnf(~ $equal(skolemFOFtoCNF_X(skolemFOFtoCNF_W,
skolemFOFtoCNF_Z),
skolemFOFtoCNF_Z)), [0],
$fot(skolemFOFtoCNF_Z)]])).
cnf(32, plain,
(skolemFOFtoCNF_Z != skolemFOFtoCNF_Z |
skolemFOFtoCNF_X(skolemFOFtoCNF_W, skolemFOFtoCNF_Z) =
skolemFOFtoCNF_Z),
inference(resolve,
[$cnf($equal(skolemFOFtoCNF_X(skolemFOFtoCNF_W,
skolemFOFtoCNF_Z),
skolemFOFtoCNF_Z))], [30, 31])).
cnf(33, plain,
(skolemFOFtoCNF_Y(skolemFOFtoCNF_W) != skolemFOFtoCNF_W |
skolemFOFtoCNF_Z != skolemFOFtoCNF_Z |
~ big_f(skolemFOFtoCNF_Z, skolemFOFtoCNF_W)),
inference(resolve,
[$cnf($equal(skolemFOFtoCNF_X(skolemFOFtoCNF_W,
skolemFOFtoCNF_Z),
skolemFOFtoCNF_Z))], [32, 7])).
cnf(34, plain, (skolemFOFtoCNF_Z = skolemFOFtoCNF_Z),
introduced(tautology, [refl, [$fot(skolemFOFtoCNF_Z)]])).
cnf(35, plain,
(skolemFOFtoCNF_Y(skolemFOFtoCNF_W) != skolemFOFtoCNF_W |
~ big_f(skolemFOFtoCNF_Z, skolemFOFtoCNF_W)),
inference(resolve, [$cnf($equal(skolemFOFtoCNF_Z, skolemFOFtoCNF_Z))],
[34, 33])).
cnf(36, plain,
(skolemFOFtoCNF_W != skolemFOFtoCNF_W |
~ big_f(skolemFOFtoCNF_Z, skolemFOFtoCNF_W)),
inference(resolve,
[$cnf($equal(skolemFOFtoCNF_Y(skolemFOFtoCNF_W),
skolemFOFtoCNF_W))], [24, 35])).
cnf(37, plain, (~ big_f(skolemFOFtoCNF_Z, skolemFOFtoCNF_W)),
inference(resolve, [$cnf($equal(skolemFOFtoCNF_W, skolemFOFtoCNF_W))],
[26, 36])).
cnf(38, plain,
(X != skolemFOFtoCNF_Z | Y != skolemFOFtoCNF_W | big_f(X, Y)),
inference(fof_to_cnf, [], [pel52_1])).
cnf(39, plain,
(skolemFOFtoCNF_W != skolemFOFtoCNF_W |
skolemFOFtoCNF_Z != skolemFOFtoCNF_Z |
big_f(skolemFOFtoCNF_Z, skolemFOFtoCNF_W)),
inference(subst,
[[X, $fot(skolemFOFtoCNF_Z)], [Y, $fot(skolemFOFtoCNF_W)]],
[38])).
cnf(40, plain,
(skolemFOFtoCNF_Z != skolemFOFtoCNF_Z |
big_f(skolemFOFtoCNF_Z, skolemFOFtoCNF_W)),
inference(resolve, [$cnf($equal(skolemFOFtoCNF_W, skolemFOFtoCNF_W))],
[26, 39])).
cnf(41, plain, (big_f(skolemFOFtoCNF_Z, skolemFOFtoCNF_W)),
inference(resolve, [$cnf($equal(skolemFOFtoCNF_Z, skolemFOFtoCNF_Z))],
[34, 40])).
cnf(42, plain, ($false),
inference(resolve, [$cnf(big_f(skolemFOFtoCNF_Z, skolemFOFtoCNF_W))],
[41, 37])).
SZS output end CNFRefutation for data/problems/all/SYN075+1.tptp
Sample solution for MGT019+2
Problem: data/problems/all/MGT019+2.tptp
Goal:
~(!E T.
environment E /\
subpopulations first_movers efficient_producers E T ==>
greater (disbanding_rate first_movers T)
(disbanding_rate efficient_producers T)) /\
(!T.
greater (disbanding_rate first_movers T)
(disbanding_rate efficient_producers T) /\
greater_or_equal (founding_rate efficient_producers T)
(founding_rate first_movers T) ==>
greater (growth_rate efficient_producers T)
(growth_rate first_movers T)) /\
(!X Y. greater_or_equal X Y ==> greater X Y \/ X = Y) /\
(!E.
environment E /\ stable E ==>
?To.
in_environment E To /\
!T.
subpopulations first_movers efficient_producers E T /\
greater_or_equal T To ==>
greater_or_equal (founding_rate efficient_producers T)
(founding_rate first_movers T)) ==>
!E.
environment E /\ stable E ==>
?To.
in_environment E To /\
!T.
subpopulations first_movers efficient_producers E T /\
greater_or_equal T To ==>
greater (growth_rate efficient_producers T)
(growth_rate first_movers T)
Clauses:
~greater (disbanding_rate first_movers skolemFOFtoCNF_T)
(disbanding_rate efficient_producers skolemFOFtoCNF_T) /\
environment skolemFOFtoCNF_E /\
subpopulations first_movers efficient_producers skolemFOFtoCNF_E
skolemFOFtoCNF_T /\
(~greater (disbanding_rate first_movers $T)
(disbanding_rate efficient_producers $T) \/
~greater_or_equal (founding_rate efficient_producers $T)
(founding_rate first_movers $T) \/
greater (growth_rate efficient_producers $T)
(growth_rate first_movers $T)) /\
(~greater_or_equal $X $Y \/ $X = $Y \/ greater $X $Y) /\
(~environment $E \/ ~stable $E \/
in_environment $E (skolemFOFtoCNF_To $E)) /\
(~environment $E \/ ~greater_or_equal $T (skolemFOFtoCNF_To $E) \/
~stable $E \/ ~subpopulations first_movers efficient_producers $E $T \/
greater_or_equal (founding_rate efficient_producers $T)
(founding_rate first_movers $T)) /\ environment skolemFOFtoCNF_E_1 /\
stable skolemFOFtoCNF_E_1 /\
(~greater (growth_rate efficient_producers (skolemFOFtoCNF_T_1 $To))
(growth_rate first_movers (skolemFOFtoCNF_T_1 $To)) \/
~in_environment skolemFOFtoCNF_E_1 $To) /\
(~in_environment skolemFOFtoCNF_E_1 $To \/
greater_or_equal (skolemFOFtoCNF_T_1 $To) $To) /\
(~in_environment skolemFOFtoCNF_E_1 $To \/
subpopulations first_movers efficient_producers skolemFOFtoCNF_E_1
(skolemFOFtoCNF_T_1 $To))
SZS status CounterSatisfiable for data/problems/all/MGT019+2.tptp
SZS output start Saturation for data/problems/all/MGT019+2.tptp
|- ~greater (disbanding_rate first_movers skolemFOFtoCNF_T)
(disbanding_rate efficient_producers skolemFOFtoCNF_T)
|- environment skolemFOFtoCNF_E
|- subpopulations first_movers efficient_producers skolemFOFtoCNF_E
skolemFOFtoCNF_T
|- ~greater (disbanding_rate first_movers $T)
(disbanding_rate efficient_producers $T) \/
~greater_or_equal (founding_rate efficient_producers $T)
(founding_rate first_movers $T) \/
greater (growth_rate efficient_producers $T)
(growth_rate first_movers $T)
|- ~greater_or_equal $X $Y \/ $X = $Y \/ greater $X $Y
|- ~environment $E \/ ~stable $E \/
in_environment $E (skolemFOFtoCNF_To $E)
|- ~environment $E \/ ~greater_or_equal $T (skolemFOFtoCNF_To $E) \/
~stable $E \/ ~subpopulations first_movers efficient_producers $E $T \/
greater_or_equal (founding_rate efficient_producers $T)
(founding_rate first_movers $T)
|- environment skolemFOFtoCNF_E_1
|- stable skolemFOFtoCNF_E_1
|- ~greater (growth_rate efficient_producers (skolemFOFtoCNF_T_1 $To))
(growth_rate first_movers (skolemFOFtoCNF_T_1 $To)) \/
~in_environment skolemFOFtoCNF_E_1 $To
|- ~in_environment skolemFOFtoCNF_E_1 $To \/
greater_or_equal (skolemFOFtoCNF_T_1 $To) $To
|- ~in_environment skolemFOFtoCNF_E_1 $To \/
subpopulations first_movers efficient_producers skolemFOFtoCNF_E_1
(skolemFOFtoCNF_T_1 $To)
|- in_environment skolemFOFtoCNF_E_1 (skolemFOFtoCNF_To skolemFOFtoCNF_E_1)
|- greater_or_equal
(skolemFOFtoCNF_T_1 (skolemFOFtoCNF_To skolemFOFtoCNF_E_1))
(skolemFOFtoCNF_To skolemFOFtoCNF_E_1)
|- subpopulations first_movers efficient_producers skolemFOFtoCNF_E_1
(skolemFOFtoCNF_T_1 (skolemFOFtoCNF_To skolemFOFtoCNF_E_1))
|- skolemFOFtoCNF_T_1 (skolemFOFtoCNF_To skolemFOFtoCNF_E_1) =
skolemFOFtoCNF_To skolemFOFtoCNF_E_1 \/
greater (skolemFOFtoCNF_T_1 (skolemFOFtoCNF_To skolemFOFtoCNF_E_1))
(skolemFOFtoCNF_To skolemFOFtoCNF_E_1)
|- ~greater_or_equal skolemFOFtoCNF_T
(skolemFOFtoCNF_To skolemFOFtoCNF_E) \/ ~stable skolemFOFtoCNF_E \/
greater_or_equal (founding_rate efficient_producers skolemFOFtoCNF_T)
(founding_rate first_movers skolemFOFtoCNF_T)
|- greater_or_equal
(founding_rate efficient_producers
(skolemFOFtoCNF_T_1 (skolemFOFtoCNF_To skolemFOFtoCNF_E_1)))
(founding_rate first_movers
(skolemFOFtoCNF_T_1 (skolemFOFtoCNF_To skolemFOFtoCNF_E_1)))
|- founding_rate efficient_producers
(skolemFOFtoCNF_T_1 (skolemFOFtoCNF_To skolemFOFtoCNF_E_1)) =
founding_rate first_movers
(skolemFOFtoCNF_T_1 (skolemFOFtoCNF_To skolemFOFtoCNF_E_1)) \/
greater
(founding_rate efficient_producers
(skolemFOFtoCNF_T_1 (skolemFOFtoCNF_To skolemFOFtoCNF_E_1)))
(founding_rate first_movers
(skolemFOFtoCNF_T_1 (skolemFOFtoCNF_To skolemFOFtoCNF_E_1)))
|- ~greater
(disbanding_rate first_movers
(skolemFOFtoCNF_T_1 (skolemFOFtoCNF_To skolemFOFtoCNF_E_1)))
(disbanding_rate efficient_producers
(skolemFOFtoCNF_T_1 (skolemFOFtoCNF_To skolemFOFtoCNF_E_1))) \/
greater
(growth_rate efficient_producers
(skolemFOFtoCNF_T_1 (skolemFOFtoCNF_To skolemFOFtoCNF_E_1)))
(growth_rate first_movers
(skolemFOFtoCNF_T_1 (skolemFOFtoCNF_To skolemFOFtoCNF_E_1)))
SZS output end Saturation for data/problems/all/MGT019+2.tptp
Sample solution for SWV010+1
Goal:
a_holds (key at t) /\ party_of_protocol a /\
message (sent a b (a, an_a_nonce)) /\ a_stored (b, an_a_nonce) /\
(!U V W X Y Z.
message (sent t a (triple (encrypt (quadruple Y Z W V) at) X U)) /\
a_stored (Y, Z) ==>
message (sent a Y (X, encrypt U W)) /\ a_holds (key W Y)) /\
b_holds (key bt t) /\ party_of_protocol b /\ fresh_to_b an_a_nonce /\
(!U V.
message (sent U b (U, V)) /\ fresh_to_b V ==>
message
(sent b t
(triple b (generate_b_nonce V)
(encrypt (triple U V (generate_expiration_time V)) bt))) /\
b_stored (U, V)) /\
(!V X Y.
message
(sent X b
(encrypt (triple X V (generate_expiration_time Y)) bt,
encrypt (generate_b_nonce Y) V)) /\ b_stored (X, Y) ==>
b_holds (key V X)) /\ t_holds (key at a) /\ t_holds (key bt b) /\
party_of_protocol t /\
(!U V W X Y Z X1.
message (sent U t (triple U V (encrypt (triple W X Y) Z))) /\
t_holds (key Z U) /\ t_holds (key X1 W) ==>
message
(sent t W
(triple (encrypt (quadruple U X (generate_key X) Y) X1)
(encrypt (triple W (generate_key X) Y) Z) V))) ==> F
Clauses:
a_holds (key at t) /\ party_of_protocol a /\
message (sent a b (a, an_a_nonce)) /\ a_stored (b, an_a_nonce) /\
(~a_stored ($Y, $Z) \/
~message (sent t a (triple (encrypt (quadruple $Y $Z $W $V) at) $X $U)) \/
a_holds (key $W $Y)) /\
(~a_stored ($Y, $Z) \/
~message (sent t a (triple (encrypt (quadruple $Y $Z $W $V) at) $X $U)) \/
message (sent a $Y ($X, encrypt $U $W))) /\ b_holds (key bt t) /\
party_of_protocol b /\ fresh_to_b an_a_nonce /\
(~fresh_to_b $V \/ ~message (sent $U b ($U, $V)) \/ b_stored ($U, $V)) /\
(~fresh_to_b $V \/ ~message (sent $U b ($U, $V)) \/
message
(sent b t
(triple b (generate_b_nonce $V)
(encrypt (triple $U $V (generate_expiration_time $V)) bt)))) /\
(~b_stored ($X, $Y) \/
~message
(sent $X b
(encrypt (triple $X $V (generate_expiration_time $Y)) bt,
encrypt (generate_b_nonce $Y) $V)) \/ b_holds (key $V $X)) /\
t_holds (key at a) /\ t_holds (key bt b) /\ party_of_protocol t /\
(~message (sent $U t (triple $U $V (encrypt (triple $W $X $Y) $Z))) \/
~t_holds (key $X1 $W) \/ ~t_holds (key $Z $U) \/
message
(sent t $W
(triple (encrypt (quadruple $U $X (generate_key $X) $Y) $X1)
(encrypt (triple $W (generate_key $X) $Y) $Z) $V)))
SZS status Satisfiable for data/problems/all/SWV010+1.tptp
SZS output start Saturated for data/problems/all/SWV010+1.tptp
|- a_holds (key at t)
|- party_of_protocol a
|- message (sent a b (a, an_a_nonce))
|- a_stored (b, an_a_nonce)
|- ~a_stored ($Y, $Z) \/
~message
(sent t a (triple (encrypt (quadruple $Y $Z $W $V) at) $X $U)) \/
a_holds (key $W $Y)
|- ~a_stored ($Y, $Z) \/
~message
(sent t a (triple (encrypt (quadruple $Y $Z $W $V) at) $X $U)) \/
message (sent a $Y ($X, encrypt $U $W))
|- b_holds (key bt t)
|- party_of_protocol b
|- fresh_to_b an_a_nonce
|- ~fresh_to_b $V \/ ~message (sent $U b ($U, $V)) \/ b_stored ($U, $V)
|- ~fresh_to_b $V \/ ~message (sent $U b ($U, $V)) \/
message
(sent b t
(triple b (generate_b_nonce $V)
(encrypt (triple $U $V (generate_expiration_time $V)) bt)))
|- ~b_stored ($X, $Y) \/
~message
(sent $X b
(encrypt (triple $X $V (generate_expiration_time $Y)) bt,
encrypt (generate_b_nonce $Y) $V)) \/ b_holds (key $V $X)
|- t_holds (key at a)
|- t_holds (key bt b)
|- party_of_protocol t
|- ~message (sent $U t (triple $U $V (encrypt (triple $W $X $Y) $Z))) \/
~t_holds (key $X1 $W) \/ ~t_holds (key $Z $U) \/
message
(sent t $W
(triple (encrypt (quadruple $U $X (generate_key $X) $Y) $X1)
(encrypt (triple $W (generate_key $X) $Y) $Z) $V))
|- b_stored (a, an_a_nonce)
|- message
(sent b t
(triple b (generate_b_nonce an_a_nonce)
(encrypt
(triple a an_a_nonce (generate_expiration_time an_a_nonce))
bt)))
|- ~t_holds (key $_32 a) \/
message
(sent t a
(triple
(encrypt
(quadruple b an_a_nonce (generate_key an_a_nonce)
(generate_expiration_time an_a_nonce)) $_32)
(encrypt
(triple a (generate_key an_a_nonce)
(generate_expiration_time an_a_nonce)) bt)
(generate_b_nonce an_a_nonce)))
|- message
(sent t a
(triple
(encrypt
(quadruple b an_a_nonce (generate_key an_a_nonce)
(generate_expiration_time an_a_nonce)) at)
(encrypt
(triple a (generate_key an_a_nonce)
(generate_expiration_time an_a_nonce)) bt)
(generate_b_nonce an_a_nonce)))
|- message
(sent a b
(encrypt
(triple a (generate_key an_a_nonce)
(generate_expiration_time an_a_nonce)) bt,
encrypt (generate_b_nonce an_a_nonce) (generate_key an_a_nonce)))
|- a_holds (key (generate_key an_a_nonce) b)
|- b_holds (key (generate_key an_a_nonce) a)
SZS output end Saturated for data/problems/all/SWV010+1.tptp
Muscadet 3.0
Dominique Pastre
Université René Descartes Paris‑5, France
Sample solution for SYN075+1
SZS status Theorem for SYN075+1.p
SZS output start proof for SYN075+1.p
* * * * * * * * * * * * * * * * * * * * * * * *
in the following, N is the number of a (sub)theorem
E is the current step
hyp(N,H,E) means that H is an hypothesis of (sub)theorem N
concl(N,C,E) means that C is the conclusion of (sub)theorem N
addhyp(N,H,E) means add H as a new hypothesis for N
newconcl(N,C,E) means that the new conclusion of N is C
(C replaces the precedent conclusion)
a subtheorem N0-i or N0+i is a subtheorem of the (sub)theorem N0
N0 is proved if all N0-i have been proved (&-node)
or if one N0+i have been proved (|-node)
the initial theorem is numbered 0
* * * theorem to be proved
?[D]:![B]: (?[C]:![A]: (big_f(A, B)<=>A=C)<=>B=D)
* * * proof :
* * * * * * theorem 0 * * * * * *
newconcl(0, ?[D]:![B]: (?[C]:![A]: (big_f(A, B)<=>A=C)<=>B=D), 1)
explanation : initial theorem
--------------------------------------------------------- action(ini)
addhyp(0, ?[C, D]:![A, B]: (big_f(A, B)<=>A=C&B=D), 2)
explanation : rule pel52_1_existe
[addhyp(_, ?[C, D]:![A, B]: (big_f(A, B)<=>A=C&B=D), _)]
built from the axiom pel52_1
--------------------------------------------------------- rule(pel52_1_existe)
create object(s) z2 z1
addhyp(0, ![A, B]: (big_f(A, B)<=>A=z1&B=z2), 3)
because hyp(0, ?[C, D]:![A, B]: (big_f(A, B)<=>A=C&B=D), 2)
explanation : treatment of the existential hypothesis
--------------------------------------------------------- rule(exists)
addhyp(0, big_f(z1, z2), 4)
explanation : local rule1 rulhyp__3__2
[addhyp(_, big_f(z1, z2), _)]
(rule built from the universal hypothesis ![A, B]: (big_f(A, B)<=>A=z1&B=z2)
--------------------------------------------------------- rule(rulhyp__3__2)
* * * * * * creation * * * * * * sub-theorem 0+2 * * * * *
all the hypotheses of (sub)theorem 0 are hypotheses of subtheorem 0+2
newconcl('0+2', ![B]: (?[C]:![A]: (big_f(A, B)<=>A=C)<=>B=z2), 20)
because concl(0, ?[D]:![B]: (?[C]:![A]: (big_f(A, B)<=>A=C)<=>B=D), 1)
explanation : z2 is tried for the existential variable
--------------------------------------------------------- action(demconclexi)
create object(s) z6
newconcl('0+2', ?[B]:![A]: (big_f(A, z6)<=>A=B)<=>z6=z2, 21)
because concl((0, ![B]: (?[C]:![A]: (big_f(A, B)<=>A=C)<=>B=z2)), 20)
explanation : the variables of the conclusion are instantiated
--------------------------------------------------------- rule(!)
newconcl('0+2', (?[B]:![A]: (big_f(A, z6)<=>A=B)=>z6=z2)& (z6=z2=> ?[B]:![A]: (big_f(A, z6)<=>A=B)))
because concl('0+2', ?[B]:![A]: (big_f(A, z6)<=>A=B)<=>z6=z2, 21)
explanation : A<=>B is replaced by (A=>B)&(B=>A)
--------------------------------------------------------- rule(<=>)
* * * * * * creation * * * * * * sub-theorem 0+2-1 * * * * *
all the hypotheses of (sub)theorem 0+2 are hypotheses of subtheorem 0+2-1
newconcl('0+2-1', ?[B]:![A]: (big_f(A, z6)<=>A=B)=>z6=z2, 23)
because concl('0+2', (?[B]:![A]: (big_f(A, z6)<=>A=B)=>z6=z2)& (z6=z2=> ?[B]:![A]: (big_f(A, z6)<=>A=B)), 22)
explanation : to prove a conjunction, prove all the elements of the conjunction
--------------------------------------------------------- action(prove_conj)
addhyp('0+2-1', ?[B]:![A]: (big_f(A, z6)<=>A=B), 24)
newconcl(0+2-1, z6=z2, 24)
because concl('0+2-1', ?[B]:![A]: (big_f(A, z6)<=>A=B)=>z6=z2, 23)
explanation : to prove H=>C, assume H and prove C
--------------------------------------------------------- rule(=>)
create object(s) z7
addhyp('0+2-1', ![A]: (big_f(A, z6)<=>A=z7), 25)
because hyp('0+2-1', ?[B]:![A]: (big_f(A, z6)<=>A=B), 24)
explanation : treatment of the existential hypothesis
--------------------------------------------------------- rule(exists)
addhyp(0+2-1, big_f(z7, z6), 26)
explanation : local rule1 rulhyp__25__1
[addhyp(_, big_f(z7, z6), _)]
(rule built from the universal hypothesis ![A]: (big_f(A, z6)<=>A=z7)
--------------------------------------------------------- rule(rulhyp__25__1)
addhyp(0+2-1, z6=z2, 27)
because hyp(0+2-1, big_f(z7, z6), 26)
explanation : local rule rulhyp__3__1
[if, hyp(A, big_f(_, B), _), then, addhyp(A, B=z2, _)]
(rule built from the universal hypothesis ![A, B]: (big_f(A, B)<=>A=z1&B=z2) )
--------------------------------------------------------- rule(rulhyp__3__1)
newconcl(0+2-1, z2=z2, 30)
because hyp(0+2-1, z2=z6, 27), concl(0+2-1, z6=z2, 24)
explanation : z6 is replaced by z2 in the conclusion
--------------------------------------------------------- action(treatequal_concl)
newconcl(0+2-1, true, 31)
because concl(0+2-1, z2=z2, 30)
explanation : trivial conclusion
--------------------------------------------------------- rule(concl_stop_trivial)
newconcl('0+2', z6=z2=> ?[B]:![A]: (big_f(A, z6)<=>A=B), 32)
because concl(0+2-1, true, 31)
explanation : the conclusion ?[B]:![A]: (big_f(A, z6)<=>A=B)=>z6=z2 of the (sub)theorem 0+2 has been proved ( subtheorem 0+2-1 )
--------------------------------------------------------- action(return_proof)
* * * * * * creation * * * * * * sub-theorem 0+2-2 * * * * *
all the hypotheses of (sub)theorem 0+2 are hypotheses of subtheorem 0+2-2
newconcl('0+2-2', z6=z2=> ?[B]:![A]: (big_f(A, z6)<=>A=B), 33)
explanation : proof of the last element of the conjunction
--------------------------------------------------------- action(prove_conj)
addhyp(0+2-2, z6=z2, 34)
newconcl('0+2-2', ?[B]:![A]: (big_f(A, z6)<=>A=B), 34)
because concl('0+2-2', z6=z2=> ?[B]:![A]: (big_f(A, z6)<=>A=B), 33)
explanation : to prove H=>C, assume H and prove C
--------------------------------------------------------- rule(=>)
newconcl('0+2-2', ?[B]:![A]: (big_f(A, z2)<=>A=B), 35)
because hyp('0+2-2', z2=z6, 34), concl('0+2-2', ?[B]:![A]: (big_f(A, z6)<=>A=B), 34)
explanation : z6 is replaced by z2 in the conclusion
--------------------------------------------------------- action(treatequal_concl)
* * * * * * creation * * * * * * sub-theorem 0+2-2+1 * * * * *
all the hypotheses of (sub)theorem 0+2-2 are hypotheses of subtheorem 0+2-2+1
newconcl('0+2-2+1', ![A]: (big_f(A, z2)<=>A=z1), 36)
because concl('0+2-2', ?[B]:![A]: (big_f(A, z2)<=>A=B), 35)
explanation : z1 is tried for the existential variable
--------------------------------------------------------- action(demconclexi)
create object(s) z8
newconcl(0+2-2+1, big_f(z8, z2)<=>z8=z1, 37)
because concl((0, ![A]: (big_f(A, z2)<=>A=z1)), 36)
explanation : the variables of the conclusion are instantiated
--------------------------------------------------------- rule(!)
newconcl(0+2-2+1, (big_f(z8, z2)=>z8=z1)& (z8=z1=>big_f(z8, z2)))
because concl(0+2-2+1, big_f(z8, z2)<=>z8=z1, 37)
explanation : A<=>B is replaced by (A=>B)&(B=>A)
--------------------------------------------------------- rule(<=>)
* * * * * * creation * * * * * * sub-theorem 0+2-2+1-1 * * * * *
all the hypotheses of (sub)theorem 0+2-2+1 are hypotheses of subtheorem 0+2-2+1-1
newconcl(0+2-2+1-1, big_f(z8, z2)=>z8=z1, 39)
because concl(0+2-2+1, (big_f(z8, z2)=>z8=z1)& (z8=z1=>big_f(z8, z2)), 38)
explanation : to prove a conjunction, prove all the elements of the conjunction
--------------------------------------------------------- action(prove_conj)
addhyp(0+2-2+1-1, big_f(z8, z2), 40)
newconcl(0+2-2+1-1, z8=z1, 40)
because concl(0+2-2+1-1, big_f(z8, z2)=>z8=z1, 39)
explanation : to prove H=>C, assume H and prove C
--------------------------------------------------------- rule(=>)
addhyp(0+2-2+1-1, z8=z1, 41)
because hyp(0+2-2+1-1, big_f(z8, z2), 40)
explanation : local rule rulhyp__3__
[if, hyp(A, big_f(B, _), _), then, addhyp(A, B=z1, _)]
(rule built from the universal hypothesis ![A, B]: (big_f(A, B)<=>A=z1&B=z2) )
--------------------------------------------------------- rule(rulhyp__3__)
newconcl(0+2-2+1-1, z1=z1, 42)
because hyp(0+2-2+1-1, z1=z8, 41), concl(0+2-2+1-1, z8=z1, 40)
explanation : z8 is replaced by z1 in the conclusion
--------------------------------------------------------- action(treatequal_concl)
newconcl(0+2-2+1-1, true, 43)
because concl(0+2-2+1-1, z1=z1, 42)
explanation : trivial conclusion
--------------------------------------------------------- rule(concl_stop_trivial)
newconcl(0+2-2+1, z8=z1=>big_f(z8, z2), 44)
because concl(0+2-2+1-1, true, 43)
explanation : the conclusion big_f(z8, z2)=>z8=z1 of the (sub)theorem 0+2-2+1 has been proved ( subtheorem 0+2-2+1-1 )
--------------------------------------------------------- action(return_proof)
* * * * * * creation * * * * * * sub-theorem 0+2-2+1-2 * * * * *
all the hypotheses of (sub)theorem 0+2-2+1 are hypotheses of subtheorem 0+2-2+1-2
newconcl(0+2-2+1-2, z8=z1=>big_f(z8, z2), 45)
explanation : proof of the last element of the conjunction
--------------------------------------------------------- action(prove_conj)
addhyp(0+2-2+1-2, z8=z1, 46)
newconcl(0+2-2+1-2, big_f(z8, z2), 46)
because concl(0+2-2+1-2, z8=z1=>big_f(z8, z2), 45)
explanation : to prove H=>C, assume H and prove C
--------------------------------------------------------- rule(=>)
newconcl(0+2-2+1-2, big_f(z1, z2), 47)
because hyp(0+2-2+1-2, z1=z8, 46), concl(0+2-2+1-2, big_f(z8, z2), 46)
explanation : z8 is replaced by z1 in the conclusion
--------------------------------------------------------- action(treatequal_concl)
newconcl(0+2-2+1-2, true, 48)
because hyp(0+2-2+1-2, big_f(z1, z2), 4), concl(0+2-2+1-2, big_f(z1, z2), 47)
explanation : the conclusion big_f(z1, z2) to be proved is a hypothesis
--------------------------------------------------------- rule(stop_hyp_concl)
newconcl(0+2-2+1, true, 49)
because concl(0+2-2+1-2, true, 48)
explanation : the conclusion z8=z1=>big_f(z8, z2) of the (sub)theorem 0+2-2+1 has been proved ( subtheorem 0+2-2+1-2 )
--------------------------------------------------------- action(return_proof)
newconcl(0+2-2, true, 50)
because concl(0+2-2+1, true, 49)
explanation : la conclusion du (sub-)theorem 0+2-2 a ete provede (sub-theorem 0+2-2+1 )
--------------------------------------------------------- action(return_proofexi)
newconcl(0+2, true, 51)
because concl(0+2-2, true, 50)
explanation : the conclusion z6=z2=> ?[B]:![A]: (big_f(A, z6)<=>A=B) of the (sub)theorem 0+2 has been proved ( subtheorem 0+2-2 )
--------------------------------------------------------- action(return_proof)
newconcl(0, true, 52)
because concl(0+2, true, 51)
explanation : la conclusion du (sub-)theorem 0 a ete provede (sub-theorem 0+2 )
--------------------------------------------------------- action(return_proofexi)
then the initial theorem is proved
* * * * * * * * * * * * * * * * * * * * * * * *
SZS output end proof for SYN075+1.p
Paradox 2.2 and 3.0
Koen Claessen
Chalmers University of Technology, Sweden
Sample solution for MGT019+2
% domain size is 1
disbanding_rate(!1,!1) = !1
efficient_producers = !1
environment(!1) <=> $true
first_movers = !1
founding_rate(!1,!1) = !1
greater(!1,!1) <=> $false
greater_or_equal(!1,!1) <=> $true
growth_rate(!1,!1) = !1
in_environment(!1,!1) <=> $true
stable(!1) <=> $true
subpopulations(!1,!1,!1,!1) <=> $true
Sample solution for SWV010+1
% domain size is 1
a_holds(X1)
a_stored(X1)
b_holds(X1)
b_stored(X1)
fresh_to_b(X1)
message(X1)
party_of_protocol(X1)
t_holds(X1)
randoCoP 1.1
Jens Otten, Thomas Raths
University of Potsdam, Germany
Explanation of Inference Rules
Sample solution for SYN075+1
Translation into (disjunctive) clausal form:
(1) [-(6 ^ [_7142, _6164]), p1(4 ^ [_7142, _6164], 1 ^ [_6164])]
(2) [-(6 ^ [_7142, _6164]), -(equal(4 ^ [_7142, _6164], _7142))]
(3) [-(5 ^ [_7142, _6164]), equal(4 ^ [_7142, _6164], _7142)]
(4) [-(5 ^ [_7142, _6164]), -(p1(4 ^ [_7142, _6164], 1 ^ [_6164]))]
(5) [-(7 ^ [_6164]), 5 ^ [_7142, _6164], 6 ^ [_7142, _6164]]
(6) [-(7 ^ [_6164]), -(equal(1 ^ [_6164], _6164))]
(7) [-(3 ^ [_6164]), -(p1(_7217, 1 ^ [_6164])), equal(_7217, 2 ^ [_6164])]
(8) [-(3 ^ [_6164]), p1(_7217, 1 ^ [_6164]), -(equal(_7217, 2 ^ [_6164]))]
(9) [-(3 ^ [_6164]), equal(1 ^ [_6164], _6164)]
(10) [7 ^ [_6164], 3 ^ [_6164]]
(11) [-(equal(_4118, _4118))]
(12) [equal(_4218, _4263), -(equal(_4263, _4218))]
(13) [-(equal(_4454, _4565)), equal(_4454, _4510), equal(_4510, _4565)]
(14) [-(p1(_4903, _4958)), equal(_4847, _4903), p1(_4847, _4958)]
(15) [-(p1(_5351, _5296)), equal(_5240, _5296), p1(_5351, _5240)]
(16) [p1(_6945, _6950), -(equal(_6945, 1 ^ []))]
(17) [p1(_6945, _6950), -(equal(_6950, 2 ^ []))]
(18) [-(p1(_6945, _6950)), equal(_6945, 1 ^ []), equal(_6950, 2 ^ [])]
We prove that the given clauses are valid, i.e. for
a given substitution they evaluate to true for all
interpretations. The proof is by contradiction:
Assume there is an interpretation so that the given
clauses evaluate to false. Then in each clause there
has to be at least one literal that is false.
Then clause (10) under the substitution [[_6164], [2 ^ []]]
is false if at least one of the following is false:
[7 ^ [2 ^ []], 3 ^ [2 ^ []]]
1 Assume 7 ^ [2 ^ []] is false.
Then clause (5) under the substitution [[_7142, _6164], [1 ^ [], 2 ^ []]]
is false if at least one of the following is false:
[5 ^ [1 ^ [], 2 ^ []], 6 ^ [1 ^ [], 2 ^ []]]
1.1 Assume 5 ^ [1 ^ [], 2 ^ []] is false.
Then clause (3) under the substitution [[_6164, _7142], [2 ^ [], 1 ^ []]]
is false if at least one of the following is false:
[equal(4 ^ [1 ^ [], 2 ^ []], 1 ^ [])]
1.1.1 Assume equal(4 ^ [1 ^ [], 2 ^ []], 1 ^ []) is false.
Then clause (16) under the substitution [[_6950, _6945], [1 ^ [2 ^ []], 4 ^ [1 ^ [], 2 ^ []]]]
is false if at least one of the following is false:
[p1(4 ^ [1 ^ [], 2 ^ []], 1 ^ [2 ^ []])]
1.1.1.1 Assume p1(4 ^ [1 ^ [], 2 ^ []], 1 ^ [2 ^ []]) is false.
Then clause (4) under the substitution [[_6164, _7142], [2 ^ [], 1 ^ []]]
is false if at least one of the following is false:
[-(5 ^ [1 ^ [], 2 ^ []])]
1.1.1.1.1 Assume -(5 ^ [1 ^ [], 2 ^ []]) is false.
This is a contradiction to assumption 1.1.
1.2 Assume 6 ^ [1 ^ [], 2 ^ []] is false.
Then clause (1) under the substitution [[_6164, _7142], [2 ^ [], 1 ^ []]]
is false if at least one of the following is false:
[p1(4 ^ [1 ^ [], 2 ^ []], 1 ^ [2 ^ []])]
1.2.1 Assume p1(4 ^ [1 ^ [], 2 ^ []], 1 ^ [2 ^ []]) is false.
Then clause (18) under the substitution [[_6950, _6945], [1 ^ [2 ^ []], 4 ^ [1 ^ [], 2 ^ []]]]
is false if at least one of the following is false:
[equal(4 ^ [1 ^ [], 2 ^ []], 1 ^ []), equal(1 ^ [2 ^ []], 2 ^ [])]
1.2.1.1 Assume equal(4 ^ [1 ^ [], 2 ^ []], 1 ^ []) is false.
Then clause (2) under the substitution [[_6164, _7142], [2 ^ [], 1 ^ []]]
is false if at least one of the following is false:
[-(6 ^ [1 ^ [], 2 ^ []])]
1.2.1.1.1 Assume -(6 ^ [1 ^ [], 2 ^ []]) is false.
This is a contradiction to assumption 1.2.
1.2.1.2 Assume equal(1 ^ [2 ^ []], 2 ^ []) is false.
Then clause (6) under the substitution [[_6164], [2 ^ []]]
is false if at least one of the following is false:
[-(7 ^ [2 ^ []])]
1.2.1.2.1 Assume -(7 ^ [2 ^ []]) is false.
This is a contradiction to assumption 1.
2 Assume 3 ^ [2 ^ []] is false.
Then clause (7) under the substitution [[_7217, _6164], [2 ^ [2 ^ []], 2 ^ []]]
is false if at least one of the following is false:
[-(p1(2 ^ [2 ^ []], 1 ^ [2 ^ []])), equal(2 ^ [2 ^ []], 2 ^ [2 ^ []])]
2.1 Assume -(p1(2 ^ [2 ^ []], 1 ^ [2 ^ []])) is false.
Then clause (14) under the substitution [[_4903, _4958, _4847], [2 ^ [2 ^ []], 1 ^ [2 ^ []], 2 ^ [2 ^ []]]]
is false if at least one of the following is false:
[-(p1(2 ^ [2 ^ []], 1 ^ [2 ^ []])), equal(2 ^ [2 ^ []], 2 ^ [2 ^ []])]
2.1.1 Assume -(p1(2 ^ [2 ^ []], 1 ^ [2 ^ []])) is false.
Then clause (17) under the substitution [[_6950, _6945], [1 ^ [2 ^ []], 2 ^ [2 ^ []]]]
is false if at least one of the following is false:
[-(equal(1 ^ [2 ^ []], 2 ^ []))]
2.1.1.1 Assume -(equal(1 ^ [2 ^ []], 2 ^ [])) is false.
Then clause (9) under the substitution [[_6164], [2 ^ []]]
is false if at least one of the following is false:
[-(3 ^ [2 ^ []])]
2.1.1.1.1 Assume -(3 ^ [2 ^ []]) is false.
This is a contradiction to assumption 2.
2.1.2 Assume equal(2 ^ [2 ^ []], 2 ^ [2 ^ []]) is false.
Then clause (8) under the substitution [[_6164, _7217], [2 ^ [], 2 ^ [2 ^ []]]]
is false if at least one of the following is false:
[-(3 ^ [2 ^ []]), p1(2 ^ [2 ^ []], 1 ^ [2 ^ []])]
2.1.2.1 Assume -(3 ^ [2 ^ []]) is false.
This is a contradiction to assumption 2.
2.1.2.2 Assume p1(2 ^ [2 ^ []], 1 ^ [2 ^ []]) is false.
This is a contradiction to assumption 2.1.
2.2 Assume equal(2 ^ [2 ^ []], 2 ^ [2 ^ []]) is false.
Then clause (11) under the substitution [[_4118], [2 ^ [2 ^ []]]]
is true.
Therefore there is no interpretation that makes all
given clauses simultaneously false. Hence the given
clauses are valid.
SInE 0.3
Krystof Hoder
Charles University in Prague, Czech Republic
Sample solution for SYN075+1
# Problem is unsatisfiable (or provable), constructing proof object
# SZS status Theorem
# SZS output start CNFRefutation.
fof(1, axiom,?[X1]:?[X2]:![X3]:![X4]:(big_f(X3,X4)<=>(equal(X3, X1)&equal(X4, X2))),file('/tmp/tmpHkvhK4/req', pel52_1)).
fof(2, conjecture,?[X2]:![X4]:(?[X1]:![X3]:(big_f(X3,X4)<=>equal(X3, X1))<=>equal(X4, X2)),file('/tmp/tmpHkvhK4/req', pel52)).
fof(3, negated_conjecture,~(?[X2]:![X4]:(?[X1]:![X3]:(big_f(X3,X4)<=>equal(X3, X1))<=>equal(X4, X2))),inference(assume_negation,[status(cth)],[2])).
fof(4, plain,?[X1]:?[X2]:![X3]:![X4]:((~(big_f(X3,X4))|(equal(X3, X1)&equal(X4, X2)))&((~(equal(X3, X1))|~(equal(X4, X2)))|big_f(X3,X4))),inference(fof_nnf,[status(thm)],[1])).
fof(5, plain,?[X5]:?[X6]:![X7]:![X8]:((~(big_f(X7,X8))|(equal(X7, X5)&equal(X8, X6)))&((~(equal(X7, X5))|~(equal(X8, X6)))|big_f(X7,X8))),inference(variable_rename,[status(thm)],[4])).
fof(6, plain,![X7]:![X8]:((~(big_f(X7,X8))|(equal(X7, esk1_0)&equal(X8, esk2_0)))&((~(equal(X7, esk1_0))|~(equal(X8, esk2_0)))|big_f(X7,X8))),inference(skolemize,[status(sab)],[5])).
fof(7, plain,![X7]:![X8]:(((equal(X7, esk1_0)|~(big_f(X7,X8)))&(equal(X8, esk2_0)|~(big_f(X7,X8))))&((~(equal(X7, esk1_0))|~(equal(X8, esk2_0)))|big_f(X7,X8))),inference(distribute,[status(thm)],[6])).
cnf(8,plain,(big_f(X1,X2)|X2!=esk2_0|X1!=esk1_0),inference(split_conjunct,[status(thm)],[7])).
cnf(9,plain,(X2=esk2_0|~big_f(X1,X2)),inference(split_conjunct,[status(thm)],[7])).
cnf(10,plain,(X1=esk1_0|~big_f(X1,X2)),inference(split_conjunct,[status(thm)],[7])).
fof(11, negated_conjecture,![X2]:?[X4]:((![X1]:?[X3]:((~(big_f(X3,X4))|~(equal(X3, X1)))&(big_f(X3,X4)|equal(X3, X1)))|~(equal(X4, X2)))&(?[X1]:![X3]:((~(big_f(X3,X4))|equal(X3, X1))&(~(equal(X3, X1))|big_f(X3,X4)))|equal(X4, X2))),inference(fof_nnf,[status(thm)],[3])).
fof(12, negated_conjecture,![X5]:?[X6]:((![X7]:?[X8]:((~(big_f(X8,X6))|~(equal(X8, X7)))&(big_f(X8,X6)|equal(X8, X7)))|~(equal(X6, X5)))&(?[X9]:![X10]:((~(big_f(X10,X6))|equal(X10, X9))&(~(equal(X10, X9))|big_f(X10,X6)))|equal(X6, X5))),inference(variable_rename,[status(thm)],[11])).
fof(13, negated_conjecture,![X5]:((![X7]:((~(big_f(esk4_2(X5,X7),esk3_1(X5)))|~(equal(esk4_2(X5,X7), X7)))&(big_f(esk4_2(X5,X7),esk3_1(X5))|equal(esk4_2(X5,X7), X7)))|~(equal(esk3_1(X5), X5)))&(![X10]:((~(big_f(X10,esk3_1(X5)))|equal(X10, esk5_1(X5)))&(~(equal(X10, esk5_1(X5)))|big_f(X10,esk3_1(X5))))|equal(esk3_1(X5), X5))),inference(skolemize,[status(sab)],[12])).
fof(14, negated_conjecture,![X5]:![X7]:![X10]:((((~(big_f(X10,esk3_1(X5)))|equal(X10, esk5_1(X5)))&(~(equal(X10, esk5_1(X5)))|big_f(X10,esk3_1(X5))))|equal(esk3_1(X5), X5))&(((~(big_f(esk4_2(X5,X7),esk3_1(X5)))|~(equal(esk4_2(X5,X7), X7)))&(big_f(esk4_2(X5,X7),esk3_1(X5))|equal(esk4_2(X5,X7), X7)))|~(equal(esk3_1(X5), X5)))),inference(shift_quantors,[status(thm)],[13])).
fof(15, negated_conjecture,![X5]:![X7]:![X10]:((((~(big_f(X10,esk3_1(X5)))|equal(X10, esk5_1(X5)))|equal(esk3_1(X5), X5))&((~(equal(X10, esk5_1(X5)))|big_f(X10,esk3_1(X5)))|equal(esk3_1(X5), X5)))&(((~(big_f(esk4_2(X5,X7),esk3_1(X5)))|~(equal(esk4_2(X5,X7), X7)))|~(equal(esk3_1(X5), X5)))&((big_f(esk4_2(X5,X7),esk3_1(X5))|equal(esk4_2(X5,X7), X7))|~(equal(esk3_1(X5), X5))))),inference(distribute,[status(thm)],[14])).
cnf(16,negated_conjecture,(esk4_2(X1,X2)=X2|big_f(esk4_2(X1,X2),esk3_1(X1))|esk3_1(X1)!=X1),inference(split_conjunct,[status(thm)],[15])).
cnf(17,negated_conjecture,(esk3_1(X1)!=X1|esk4_2(X1,X2)!=X2|~big_f(esk4_2(X1,X2),esk3_1(X1))),inference(split_conjunct,[status(thm)],[15])).
cnf(18,negated_conjecture,(esk3_1(X1)=X1|big_f(X2,esk3_1(X1))|X2!=esk5_1(X1)),inference(split_conjunct,[status(thm)],[15])).
cnf(25,negated_conjecture,(esk2_0=esk3_1(X2)|esk3_1(X2)=X2|esk5_1(X2)!=X1),inference(pm,[status(thm)],[9,18,theory(equality)])).
cnf(37,negated_conjecture,(esk3_1(X1)=esk2_0|esk3_1(X1)=X1),inference(er,[status(thm)],[25,theory(equality)])).
cnf(48,negated_conjecture,(esk3_1(X2)=X2|esk2_0!=X2),inference(ef,[status(thm)],[37,theory(equality)])).
cnf(60,negated_conjecture,(~big_f(esk4_2(X1,X2),X1)|esk4_2(X1,X2)!=X2|esk3_1(X1)!=X1|esk2_0!=X1),inference(pm,[status(thm)],[17,48,theory(equality)])).
cnf(71,negated_conjecture,(esk4_2(X1,X2)!=X2|esk3_1(X1)!=X1|esk2_0!=X1|esk1_0!=esk4_2(X1,X2)),inference(pm,[status(thm)],[60,8,theory(equality)])).
cnf(1021,negated_conjecture,(esk1_0=esk4_2(X1,X2)|esk4_2(X1,X2)=X2|esk3_1(X1)!=X1),inference(pm,[status(thm)],[10,16,theory(equality)])).
cnf(1085,negated_conjecture,(esk4_2(X3,X4)=X4|esk1_0!=X4|esk3_1(X3)!=X3),inference(ef,[status(thm)],[1021,theory(equality)])).
cnf(1132,negated_conjecture,(X2!=esk1_0|esk4_2(X1,X2)!=X2|esk3_1(X1)!=X1|esk2_0!=X1),inference(pm,[status(thm)],[71,1085,theory(equality)])).
cnf(1179,negated_conjecture,(esk3_1(X1)!=X1|X2!=esk1_0|esk2_0!=X1),inference(pm,[status(thm)],[1132,1085,theory(equality)])).
cnf(1247,negated_conjecture,(X2!=esk1_0|esk2_0!=X1),inference(pm,[status(thm)],[1179,48,theory(equality)])).
cnf(1299,negated_conjecture,(esk2_0!=X1),inference(er,[status(thm)],[1247,theory(equality)])).
cnf(1302,negated_conjecture,($false),inference(er,[status(thm)],[1299,theory(equality)])).
cnf(1304,negated_conjecture,($false),1302,['proof']).
# SZS output end CNFRefutation
SInE-VD 0.3
Krystof Hoder
Charles University in Prague, Czech Republic
Sample solution for SYN075+1
Running slice lrs+1012_35_bd=off_bs=off_fde=none_600 for 195 deciseconds
------------------ SLICE UNSUCCESSFUL -------------------
=========== Statistics ==========
version: 7.45 8.01 (for CASC-21 only)
=== General:
time: 19.6s
memory: 18.4Mb
termination reason: time limit expired
=== Generating inferences:
resolution: 180
superposition: 448
equality_resolution: 26
=== Simplifying inferences:
propositional_tautology: 15
equational_tautology: 81
forward_subsumption: 449
=== Generated clauses:
total: 668
discarded_as_redundant: 545
=== Retained clauses:
total: 115
selected: 111
currently_active: 111
currently_passive: 4
======= End of statistics =======
Running slice lrs+10_10:1_bs=off_fde=none_lcm=predicate_nwc=1.5_600 for 620 deciseconds
--------------------- PROVED ----------------------
%=========== Refutation ==========
fof(1, axiom, (?[X0,X1] : (![X2,X3] : ((big_f(X2,X3) <=> (X2=X0 & X3=X1))))), file(input, pel52_1)).
fof(21, plain, (?[X0,X1] : (![X2,X3] : ((big_f(X2,X3) <=> (X3=X1 & X2=X0))))), inference('normalize',[],[1])).
fof(25, plain, (?[X0,X1] : (![X2,X3] : ((big_f(X2,X3) <=> (X3=X1 & X2=X0))))), inference('definition folding',[],[21])).
fof(29, plain, (?[X0,X1] : (![X2,X3] : (((((~big_f(X2,X3)) | ((X3=X1 & X2=X0)))) & (((((~X3=X1) | (~X2=X0))) | big_f(X2,X3))))))), inference('NNF transformation',[],[25])).
fof(30, plain, (?[X0,X1] : (![X2,X3] : (((((~big_f(X2,X3)) | ((X3=X1 & X2=X0)))) & (((~X3=X1) | (~X2=X0) | big_f(X2,X3))))))), inference('flattening',[],[29])).
fof(31, plain, ((((~big_f(X2,X3)) | ((X3=$s6 & X2=$s5)))) & (((~X3=$s6) | (~X2=$s5) | big_f(X2,X3)))), inference('skolemization',[],[30])).
cnf(38, plain, (big_f(X2,X3) | ~X2=$s5 | ~X3=$s6), inference('cnf transformation',[],[31])).
cnf(46, plain, (~X1=$s6 | big_f($s5,X1)), inference('equality resolution',[],[38])).
cnf(48, plain, (big_f($s5,$s6)), inference('equality resolution',[],[46])).
cnf(36, plain, (X3=$s6 | ~big_f(X2,X3)), inference('cnf transformation',[],[31])).
fof(2, negated_conjecture, (~(?[X1] : (![X3] : (((?[X0] : (![X2] : ((big_f(X2,X3) <=> X2=X0)))) <=> X3=X1))))), file(input, pel52)).
fof(22, negated_conjecture, (~(?[X0] : (![X1] : (((?[X2] : (![X3] : ((big_f(X3,X1) <=> X3=X2)))) <=> X1=X0))))), inference('rectify',[],[2])).
fof(23, negated_conjecture, (~(?[X0] : (![X1] : ((X1=X0 <=> (?[X2] : (![X3] : ((X3=X2 <=> big_f(X3,X1)))))))))), inference('normalize',[],[22])).
fof(24, negated_conjecture, (![X0] : (?[X1] : ((X1=X0 <~> (?[X2] : (![X3] : ((X3=X2 <=> big_f(X3,X1))))))))), inference('ENNF transformation',[],[23])).
fof(26, negated_conjecture, (![X0] : (?[X1] : ((((X1=X0 | (?[X2] : (![X3] : (((((~X3=X2) | big_f(X3,X1))) & (((~big_f(X3,X1)) | X3=X2)))))))) & (((~X1=X0) | (![X2] : (?[X3] : ((((X3=X2 | big_f(X3,X1))) & (((~X3=X2) | (~big_f(X3,X1)))))))))))))), inference('NNF transformation',[],[24])).
fof(27, negated_conjecture, (![X0] : (?[X1] : ((((X1=X0 | (?[X2] : (![X3] : (((((~X3=X2) | big_f(X3,X1))) & (((~big_f(X3,X1)) | X3=X2)))))))) & (((~X1=X0) | (![X4] : (?[X5] : ((((X5=X4 | big_f(X5,X1))) & (((~X5=X4) | (~big_f(X5,X1)))))))))))))), inference('rectify',[],[26])).
fof(28, negated_conjecture, ((($s2(X0)=X0 | (((((~X3=$s3(X1)) | big_f(X3,$s2(X0)))) & (((~big_f(X3,$s2(X0))) | X3=$s3(X1))))))) & (((~$s2(X0)=X0) | (((($s4(X1,X4)=X4 | big_f($s4(X1,X4),$s2(X0)))) & (((~$s4(X1,X4)=X4) | (~big_f($s4(X1,X4),$s2(X0)))))))))), inference('skolemization',[],[27])).
cnf(32, negated_conjecture, (big_f(X3,$s2(X0)) | ~X3=$s3(X1) | $s2(X0)=X0), inference('cnf transformation',[],[28])).
cnf(47, negated_conjecture, (big_f($s3(X1),$s2(X2)) | $s2(X2)=X2), inference('equality resolution',[],[32])).
cnf(49, negated_conjecture, ($s2(X1)=$s6 | $s2(X1)=X1), inference('resolution',[],[36,47])).
cnf(52, negated_conjecture, (~$s6=X1 | $s2(X1)=X1), inference('equality factoring',[],[49])).
cnf(63, negated_conjecture, ($s2($s6)=$s6), inference('equality resolution',[],[52])).
cnf(37, plain, (X2=$s5 | ~big_f(X2,X3)), inference('cnf transformation',[],[31])).
cnf(34, negated_conjecture, (big_f($s4(X1,X4),$s2(X0)) | $s4(X1,X4)=X4 | ~$s2(X0)=X0), inference('cnf transformation',[],[28])).
cnf(65, negated_conjecture, (big_f($s4(X1,X2),$s6) | $s4(X1,X2)=X2), inference('backward superposition, forward demodulation',[],[63,34,63])).
cnf(82, negated_conjecture, ($s4(X1,X2)=$s5 | $s4(X1,X2)=X2), inference('resolution',[],[37,65])).
cnf(142, negated_conjecture, (~$s5=X1 | $s4(X2,X1)=X1), inference('equality factoring',[],[82])).
cnf(188, negated_conjecture, ($s4(X1,$s5)=$s5), inference('equality resolution',[],[142])).
cnf(35, negated_conjecture, (~big_f($s4(X1,X4),$s2(X0)) | ~$s4(X1,X4)=X4 | ~$s2(X0)=X0), inference('cnf transformation',[],[28])).
cnf(213, negated_conjecture, (~$s2(X1)=X1 | ~big_f($s5,$s2(X1))), inference('backward superposition, forward demodulation',[],[188,35,188])).
cnf(232, negated_conjecture, $false, inference('forward superposition, forward demodulation, forward subsumption resolution',[],[48,63,63,213])).
%======= End of refutation =======
=========== Statistics ==========
version: 7.45 8.01 (for CASC-21 only)
=== General:
time: 0s
memory: 0Mb
termination reason: refutation found
=== Generating inferences:
resolution: 81
superposition: 1835
equality_factoring: 88
equality_resolution: 19
=== Simplifying inferences:
propositional_tautology: 6
equational_tautology: 325
forward_subsumption: 1506
forward_subsumption_resolution: 1
forward_demodulation: 10
backward_demodulation: 1
=== Generated clauses:
total: 2038
discarded_as_redundant: 1837
=== Retained clauses:
total: 194
selected: 85
currently_active: 85
currently_passive: 107
======= End of statistics =======
Vampire 9.0
Andrei Voronkov
University of Manchester, United Kingdom
Sample solution for SYN075+1
=========== Refutation ==========
*********** [1, input] ***********
(? X0 X1)(! X2 X3)(big_f(X2,X3) <=> X2=X0 & X3=X1)
*********** [1->77, normalize] ***********
(? X0 X1)(! X2 X3)(big_f(X2,X3) <=> X2=X0 & X3=X1)
-----------------------------
(? X0 X1)(! X2 X3)(big_f(X2,X3) <=> X3=X1 & X2=X0)
*********** [77->84, NNF transformation] ***********
(? X0 X1)(! X2 X3)(big_f(X2,X3) <=> X3=X1 & X2=X0)
-----------------------------
(? X0 X1)(! X2 X3)((~big_f(X2,X3) \/ (X3=X1 & X2=X0)) & ((X3!=X1 \/ X2!=X0) \/ big_f(X2,X3)))
*********** [84->85, flattening] ***********
(? X0 X1)(! X2 X3)((~big_f(X2,X3) \/ (X3=X1 & X2=X0)) & ((X3!=X1 \/ X2!=X0) \/ big_f(X2,X3)))
-----------------------------
(? X0 X1)(! X2 X3)((~big_f(X2,X3) \/ (X3=X1 & X2=X0)) & (X3!=X1 \/ X2!=X0 \/ big_f(X2,X3)))
*********** [85->86, skolemization] ***********
(? X0 X1)(! X2 X3)((~big_f(X2,X3) \/ (X3=X1 & X2=X0)) & (X3!=X1 \/ X2!=X0 \/ big_f(X2,X3)))
-----------------------------
(~big_f(X2,X3) \/ (X3=$s12 & X2=$s11)) & (X3!=$s12 \/ X2!=$s11 \/ big_f(X2,X3))
*********** [86->93, cnf transformation] ***********
(~big_f(X2,X3) \/ (X3=$s12 & X2=$s11)) & (X3!=$s12 \/ X2!=$s11 \/ big_f(X2,X3))
-----------------------------
big_f(X2,X3) \/ X2!=$s11 \/ X3!=$s12
*********** [93->116, equality resolution, passive clause reanimation] ***********
big_f(X2,X3) \/ X2!=$s11 \/ X3!=$s12
-----------------------------
X1!=$s11 \/ big_f(X1,$s12)
*********** [116->122, equality resolution, passive clause reanimation] ***********
X1!=$s11 \/ big_f(X1,$s12)
-----------------------------
big_f($s11,$s12)
*********** [2, input] ***********
~(? X1)(! X3)((? X0)(! X2)(big_f(X2,X3) <=> X2=X0) <=> X3=X1)
*********** [2->78, rectify] ***********
~(? X1)(! X3)((? X0)(! X2)(big_f(X2,X3) <=> X2=X0) <=> X3=X1)
-----------------------------
~(? X0)(! X1)((? X2)(! X3)(big_f(X3,X1) <=> X3=X2) <=> X1=X0)
*********** [78->79, normalize] ***********
~(? X0)(! X1)((? X2)(! X3)(big_f(X3,X1) <=> X3=X2) <=> X1=X0)
-----------------------------
~(? X0)(! X1)(X1=X0 <=> (? X2)(! X3)(X3=X2 <=> big_f(X3,X1)))
*********** [79->80, ENNF transformation] ***********
~(? X0)(! X1)(X1=X0 <=> (? X2)(! X3)(X3=X2 <=> big_f(X3,X1)))
-----------------------------
(! X0)(? X1)(X1=X0 <~> (? X2)(! X3)(X3=X2 <=> big_f(X3,X1)))
*********** [80->81, NNF transformation] ***********
(! X0)(? X1)(X1=X0 <~> (? X2)(! X3)(X3=X2 <=> big_f(X3,X1)))
-----------------------------
(! X0)(? X1)((X1=X0 \/ (? X2)(! X3)((X3!=X2 \/ big_f(X3,X1)) & (~big_f(X3,X1) \/ X3=X2))) & (X1!=X0 \/ (! X2)(? X3)((X3=X2 \/ big_f(X3,X1)) & (X3!=X2 \/ ~big_f(X3,X1)))))
*********** [81->82, rectify] ***********
(! X0)(? X1)((X1=X0 \/ (? X2)(! X3)((X3!=X2 \/ big_f(X3,X1)) & (~big_f(X3,X1) \/ X3=X2))) & (X1!=X0 \/ (! X2)(? X3)((X3=X2 \/ big_f(X3,X1)) & (X3!=X2 \/ ~big_f(X3,X1)))))
-----------------------------
(! X0)(? X1)((X1=X0 \/ (? X2)(! X3)((X3!=X2 \/ big_f(X3,X1)) & (~big_f(X3,X1) \/ X3=X2))) & (X1!=X0 \/ (! X4)(? X5)((X5=X4 \/ big_f(X5,X1)) & (X5!=X4 \/ ~big_f(X5,X1)))))
*********** [82->83, skolemization] ***********
(! X0)(? X1)((X1=X0 \/ (? X2)(! X3)((X3!=X2 \/ big_f(X3,X1)) & (~big_f(X3,X1) \/ X3=X2))) & (X1!=X0 \/ (! X4)(? X5)((X5=X4 \/ big_f(X5,X1)) & (X5!=X4 \/ ~big_f(X5,X1)))))
-----------------------------
($s8(X0)=X0 \/ ((X3!=$s9(X1) \/ big_f(X3,$s8(X0))) & (~big_f(X3,$s8(X0)) \/ X3=$s9(X1)))) & ($s8(X0)!=X0 \/ (($s10(X1,X4)=X4 \/ big_f($s10(X1,X4),$s8(X0))) & ($s10(X1,X4)!=X4 \/ ~big_f($s10(X1,X4),$s8(X0)))))
*********** [83->87, cnf transformation] ***********
($s8(X0)=X0 \/ ((X3!=$s9(X1) \/ big_f(X3,$s8(X0))) & (~big_f(X3,$s8(X0)) \/ X3=$s9(X1)))) & ($s8(X0)!=X0 \/ (($s10(X1,X4)=X4 \/ big_f($s10(X1,X4),$s8(X0))) & ($s10(X1,X4)!=X4 \/ ~big_f($s10(X1,X4),$s8(X0)))))
-----------------------------
big_f(X3,$s8(X0)) \/ X3!=$s9(X1) \/ $s8(X0)=X0
*********** [87->118, equality resolution, passive clause reanimation] ***********
big_f(X3,$s8(X0)) \/ X3!=$s9(X1) \/ $s8(X0)=X0
-----------------------------
big_f($s9(X1),$s8(X2)) \/ $s8(X2)=X2
*********** [86->91, cnf transformation] ***********
(~big_f(X2,X3) \/ (X3=$s12 & X2=$s11)) & (X3!=$s12 \/ X2!=$s11 \/ big_f(X2,X3))
-----------------------------
X3=$s12 \/ ~big_f(X2,X3)
*********** [118,91->123, resolution, passive clause reanimation] ***********
big_f($s9(X1),$s8(X2)) \/ $s8(X2)=X2
X3=$s12 \/ ~big_f(X2,X3)
-----------------------------
$s8(X1)=$s12 \/ $s8(X1)=X1
*********** [123->131, equality factoring, passive clause reanimation] ***********
$s8(X1)=$s12 \/ $s8(X1)=X1
-----------------------------
$s12!=X1 \/ $s8(X1)=X1
*********** [131->146, equality resolution, passive clause reanimation] ***********
$s12!=X1 \/ $s8(X1)=X1
-----------------------------
$s8($s12)=$s12
*********** [83->89, cnf transformation] ***********
($s8(X0)=X0 \/ ((X3!=$s9(X1) \/ big_f(X3,$s8(X0))) & (~big_f(X3,$s8(X0)) \/ X3=$s9(X1)))) & ($s8(X0)!=X0 \/ (($s10(X1,X4)=X4 \/ big_f($s10(X1,X4),$s8(X0))) & ($s10(X1,X4)!=X4 \/ ~big_f($s10(X1,X4),$s8(X0)))))
-----------------------------
big_f($s10(X1,X4),$s8(X0)) \/ $s10(X1,X4)=X4 \/ $s8(X0)!=X0
*********** [146,89,146->202, backward superposition, forward demodulation, passive clause reanimation] ***********
$s8($s12)=$s12
big_f($s10(X1,X4),$s8(X0)) \/ $s10(X1,X4)=X4 \/ $s8(X0)!=X0
$s8($s12)=$s12
-----------------------------
big_f($s10(X1,X2),$s12) \/ $s10(X1,X2)=X2
*********** [86->92, cnf transformation] ***********
(~big_f(X2,X3) \/ (X3=$s12 & X2=$s11)) & (X3!=$s12 \/ X2!=$s11 \/ big_f(X2,X3))
-----------------------------
X2=$s11 \/ ~big_f(X2,X3)
*********** [202,92->213, resolution, passive clause reanimation] ***********
big_f($s10(X1,X2),$s12) \/ $s10(X1,X2)=X2
X2=$s11 \/ ~big_f(X2,X3)
-----------------------------
$s10(X1,X2)=$s11 \/ $s10(X1,X2)=X2
*********** [213->296, equality factoring, passive clause reanimation] ***********
$s10(X1,X2)=$s11 \/ $s10(X1,X2)=X2
-----------------------------
$s11!=X1 \/ $s10(X2,X1)=X1
*********** [296->320, equality resolution, passive clause reanimation] ***********
$s11!=X1 \/ $s10(X2,X1)=X1
-----------------------------
$s10(X1,$s11)=$s11
*********** [83->90, cnf transformation] ***********
($s8(X0)=X0 \/ ((X3!=$s9(X1) \/ big_f(X3,$s8(X0))) & (~big_f(X3,$s8(X0)) \/ X3=$s9(X1)))) & ($s8(X0)!=X0 \/ (($s10(X1,X4)=X4 \/ big_f($s10(X1,X4),$s8(X0))) & ($s10(X1,X4)!=X4 \/ ~big_f($s10(X1,X4),$s8(X0)))))
-----------------------------
~big_f($s10(X1,X4),$s8(X0)) \/ $s10(X1,X4)!=X4 \/ $s8(X0)!=X0
*********** [146,90,146->192, backward superposition, forward demodulation, passive clause reanimation] ***********
$s8($s12)=$s12
~big_f($s10(X1,X4),$s8(X0)) \/ $s10(X1,X4)!=X4 \/ $s8(X0)!=X0
$s8($s12)=$s12
-----------------------------
$s10(X1,X2)!=X2 \/ ~big_f($s10(X1,X2),$s12)
*********** [122,320,192,320->328, backward superposition, forward demodulation, forward subsumption resolution] ***********
big_f($s11,$s12)
$s10(X1,$s11)=$s11
$s10(X1,X2)!=X2 \/ ~big_f($s10(X1,X2),$s12)
$s10(X1,$s11)=$s11
-----------------------------
#
======= End of refutation =======