-greater_or_equal(cardinality_at_time(first_movers, appear(an_organisation, sk2)), number_of_organizations(e, appear(an_organisation, sk2))) -=(cardinality_at_time(first_movers, appear(an_organisation, sk2)), number_of_organizations(e, appear(an_organisation, sk2))) -=(number_of_organizations(e, appear(an_organisation, sk2)), cardinality_at_time(first_movers, appear(an_organisation, sk2))) -greater(cardinality_at_time(first_movers, appear(an_organisation, sk2)), number_of_organizations(e, appear(an_organisation, sk2))) +greater_or_equal(appear(efficient_producers, e), appear(an_organisation, sk2)) -greater(cardinality_at_time(first_movers, appear(an_organisation, sk2)), zero) +greater(appear(efficient_producers, e), appear(an_organisation, sk2)) +greater(appear(first_movers, sk2), appear(an_organisation, sk2)) +greater_or_equal(appear(efficient_producers, e), appear(first_movers, sk2)) +greater_or_equal(number_of_organizations(e, appear(an_organisation, sk2)), zero) +greater(appear(efficient_producers, e), appear(first_movers, sk2)) +greater(number_of_organizations(e, appear(an_organisation, sk2)), zero) +greater_or_equal(appear(first_movers, sk2), appear(an_organisation, sk2)) -=(appear(first_movers, sk2), appear(an_organisation, sk2)) -=(first_movers, an_organisation) -=(an_organisation, first_movers) +greater_or_equal(_0, _0) -=(appear(an_organisation, sk2), appear(first_movers, sk2)) +in_environment(sk2, appear(an_organisation, sk2)) +environment(sk2) +=(_0, _0)
+ssPv2(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(=0)))))))))))))))))) -ssPv3(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(=0))))))))))))))))))) -ssPv4(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(=0)))))))))))))))))) +ssPv3(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(=0))))))))))))))))) +ssPv2(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(=0))))))))))))))))) -ssPv1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(=0))))))))))))))))) +ssPv3(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(=0)))))))))))))))) -ssPv4(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(=0))))))))))))))) +ssPv1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(=0))))))))))))))) -ssPv2(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(=0))))))))))))))) +ssPv4(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(=0))))))))))))))))) +ssPv4(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(=0)))))))))))))))) +ssPv1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(=0)))))))))))))))) +ssPv1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(=0)))))))))))))) -ssPv2(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(=0)))))))))))))) -ssPv4(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(=0)))))))))))))) +ssPv3(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(=0)))))))))))))) -ssPv2(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(=0))))))))))))) -ssPv3(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(=0))))))))))))))) +ssPv3(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(=0))))))))))))) -ssPv1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(=0))))))))))))) +ssPv4(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(=0)))))))))) +ssPv1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(=0)))))))))))) +ssPv4(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(=0))))))))))))) +ssPv3(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(=0)))))))))))) +ssPv4(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(=0)))))))))))) -ssPv1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(=0))))))))))) +ssPv4(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(=0))))))))))) -ssPv2(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(=0))))))))))) +ssPv1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(=0)))))))))) +ssPv3(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(=0))))))))))) -ssPv3(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(=0)))))))))) -ssPv2(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(=0)))))))))) +ssPv2(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(=0))))))))) -ssPv3(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(=0))))))))) +ssPv1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(=0)))))))) -ssPv2(skf1(skf1(skf1(skf1(skf1(skf1(=0))))))) +ssPv4(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(=0))))))))) -ssPv1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(skf1(=0))))))))) -ssPv1(skf1(skf1(skf1(skf1(skf1(=0)))))) -ssPv2(skf1(skf1(skf1(skf1(skf1(skf1(skf1(=0)))))))) -ssPv3(skf1(skf1(skf1(skf1(skf1(skf1(=0))))))) +ssPv4(skf1(skf1(skf1(skf1(skf1(skf1(skf1(=0)))))))) +ssPv3(skf1(skf1(skf1(skf1(skf1(skf1(skf1(=0)))))))) -ssPv4(skf1(skf1(skf1(skf1(skf1(skf1(=0))))))) +ssPv2(skf1(skf1(skf1(skf1(skf1(=0)))))) +ssPv1(skf1(skf1(skf1(skf1(skf1(skf1(=0))))))) -ssPv3(skf1(skf1(skf1(skf1(skf1(=0)))))) -ssPv4(skf1(skf1(skf1(skf1(=0))))) +ssPv2(skf1(skf1(skf1(skf1(=0))))) +ssPv1(skf1(skf1(skf1(=0)))) -ssPv2(skf1(skf1(=0))) -ssPv3(skf1(skf1(skf1(skf1(=0))))) -ssPv4(skf1(skf1(=0))) +ssPv1(skf1(skf1(skf1(skf1(=0))))) -ssPv2(skf1(skf1(skf1(=0)))) -ssPv3(skf1(skf1(=0))) +ssPv3(skf1(skf1(skf1(=0)))) -ssPv4(skf1(=0)) +ssPv2(=0) +ssPv1(skf1(skf1(=0))) +ssPv2(skf1(=0)) +ssPv4(skf1(skf1(skf1(=0)))) +ssPv3(skf1(=0)) -ssPv1(skf1(=0)) +ssPv4(=0) +ssPv1(=0) +ssRr(_0, skf1(_0))
EP will use the current version of the new TSTP output format, documented in [SZS03]. The current implementation lists initial clauses as of "unknown" origin. The following rule names are defined for the main proof search:
Additionally, the clausification will use additional rule names:
The first proof uses all proof search inferences except for "ef" and "csr", although it uses some in fairly trivial ways. The second is the required proof for SYN075-1, and contains examples for "ef" and "csr". The final proof is for SYN075+1, and also contains the clausification steps.
# Problem is unsatisfiable, constructing proof object # TSTP exit status: Unsatisfiable # Proof object starts here. cnf(1,axiom,(equal(f(X1,X2), f(X2,X1))),unknown). cnf(2,axiom,(equal(f(X1,f(X2,X3)), f(f(X1,X2),X3))),unknown). cnf(3,axiom,(equal(g(X1,X2), g(X2,X1))),unknown). cnf(4,axiom,(~equal(f(f(X1,X2),f(X3,g(X4,X5))), f(f(g(X4,X5),X3),f(X2,X1)))|~equal(k(X1,X1), k(a,b))),unknown). cnf(5,axiom,(equal(b, c)|~equal(X1, X2)|~equal(X3, X4)|~equal(c, d)),unknown). cnf(6,axiom,(equal(a, b)|equal(a, c)),unknown). cnf(7,axiom,(equal(i(X1), i(X2))),unknown). cnf(8,axiom,(equal(c, d)|~equal(h(i(a)), h(i(e)))),unknown). cnf(13,plain-derived,(~equal(k(a,b), k(X1,X1))),inference(ar,[status(thm)],[4,1,3,2,theory(equality)])). cnf(23,plain-derived,(equal(c, b)|epred1_0|~equal(d, c)|~equal(X3, X4)),inference(split,[split(esplit,[])],[5])). cnf(24,plain-derived,(epred2_0|~equal(X1, X2)),inference(split,[split(esplit,[])],[5])). cnf(25,plain-derived,(~epred2_0|~epred1_0),inference(split,[split(esplit,[])],[5])). cnf(26,plain-derived,(epred2_0),inference(er,[status(thm)],[24,theory(equality)])). cnf(27,plain-derived,(false|~epred1_0),inference(rw,[status(thm)],[25,26,theory(equality)])). cnf(28,plain-derived,(~epred1_0),inference(cn,[status(thm)],[27,theory(equality)])). cnf(29,plain-derived,(equal(c, b)|epred1_0|~equal(d, c)),inference(er,[status(thm)],[23,theory(equality)])). cnf(30,plain-derived,(equal(c, b)|~equal(d, c)),inference(sr,[status(thm)],[29,28,theory(equality)])). cnf(31,plain-derived,(equal(d, c)),inference(sr,[status(thm)],[8,7,theory(equality)])). cnf(32,plain-derived,(equal(c, b)|false),inference(rw,[status(thm)],[30,31,theory(equality)])). cnf(33,plain-derived,(equal(c, b)),inference(cn,[status(thm)],[32,theory(equality)])). cnf(34,plain-derived,(equal(b, a)),inference(pm,[status(thm)],[6,33,theory(equality)])). cnf(36,plain-derived,(~equal(k(b,b), k(X1,X1))),inference(rw,[status(thm)],[13,34,theory(equality)])). cnf(75,plain-derived,(false),inference(er,[status(thm)],[36,theory(equality)])). cnf(76,plain-derived,(false),75,['proof']). # Proof object ends here.
# Problem is unsatisfiable, constructing proof object # TSTP exit status: Unsatisfiable # Proof object starts here. cnf(1,axiom,(equal(X1, a)|~big_f(X1,X2)),unknown). cnf(3,axiom,(big_f(X1,X2)|~equal(X1, a)|~equal(X2, b)),unknown). cnf(4,conjecture,(equal(f(X2), X2)|~big_f(X1,f(X2))|~equal(X1, g(X2))),unknown). cnf(6,conjecture,(big_f(X1,f(X2))|equal(f(X2), X2)|~equal(X1, g(X2))),unknown). cnf(9,conjecture,(big_f(h(X1,X2),f(X1))|equal(h(X1,X2), X2)|~equal(f(X1), X1)),unknown). cnf(10,conjecture,(~equal(f(X1), X1)|~equal(h(X1,X2), X2)|~big_f(h(X1,X2),f(X1))),unknown). cnf(13,conjecture-derived,(~equal(f(X1), X1)|~equal(h(X1,X2), X2)|~equal(a, h(X1,X2))|~equal(b, f(X1))),inference(pm,[status(thm)],[10,3,theory(equality)])). cnf(15,conjecture-derived,(equal(f(X2), X2)|~equal(g(X2), X1)),inference(csr,[status(thm)],[6,4])). cnf(16,conjecture-derived,(equal(f(X1), X1)),inference(er,[status(thm)],[15,theory(equality)])). cnf(23,conjecture-derived,(false|~equal(h(X1,X2), X2)|~equal(h(X1,X2), a)|~equal(f(X1), b)),inference(rw,[status(thm)],[13,16,theory(equality)])). cnf(24,conjecture-derived,(false|~equal(h(X1,X2), X2)|~equal(h(X1,X2), a)|~equal(X1, b)),inference(rw,[status(thm)],[23,16,theory(equality)])). cnf(25,conjecture-derived,(~equal(h(X1,X2), X2)|~equal(h(X1,X2), a)|~equal(X1, b)),inference(cn,[status(thm)],[24,theory(equality)])). cnf(30,conjecture-derived,(equal(h(X1,X2), X2)|big_f(h(X1,X2),X1)|~equal(f(X1), X1)),inference(rw,[status(thm)],[9,16,theory(equality)])). cnf(31,conjecture-derived,(equal(h(X1,X2), X2)|big_f(h(X1,X2),X1)|false),inference(rw,[status(thm)],[30,16,theory(equality)])). cnf(32,conjecture-derived,(equal(h(X1,X2), X2)|big_f(h(X1,X2),X1)),inference(cn,[status(thm)],[31,theory(equality)])). cnf(38,conjecture-derived,(equal(a, h(X1,X2))|equal(h(X1,X2), X2)),inference(pm,[status(thm)],[1,32,theory(equality)])). cnf(51,conjecture-derived,(equal(h(X5,X6), a)|~equal(X6, a)),inference(ef,[status(thm)],[38,theory(equality)])). cnf(54,conjecture-derived,(equal(h(X1,X2), X2)|~equal(a, X2)|~equal(h(X1,X2), a)|~equal(X1, b)),inference(pm,[status(thm)],[25,38,theory(equality)])). cnf(85,conjecture-derived,(~equal(a, X2)|~equal(h(X1,X2), a)|~equal(X1, b)),inference(csr,[status(thm)],[54,25])). cnf(86,conjecture-derived,(~equal(a, X2)|~equal(X1, b)),inference(csr,[status(thm)],[85,51])). cnf(87,conjecture-derived,(epred1_0|~equal(a, X2)),inference(split,[split(esplit,[])],[86])). cnf(88,conjecture-derived,(epred2_0|~equal(X1, b)),inference(split,[split(esplit,[])],[86])). cnf(89,conjecture-derived,(~epred2_0|~epred1_0),inference(split,[split(esplit,[])],[86])). cnf(90,conjecture-derived,(epred1_0),inference(er,[status(thm)],[87,theory(equality)])). cnf(92,conjecture-derived,(~epred2_0|false),inference(rw,[status(thm)],[89,90,theory(equality)])). cnf(93,conjecture-derived,(~epred2_0),inference(cn,[status(thm)],[92,theory(equality)])). cnf(94,conjecture-derived,(~equal(X1, b)),inference(sr,[status(thm)],[88,93,theory(equality)])). cnf(95,conjecture-derived,(false),inference(er,[status(thm)],[94,theory(equality)])). cnf(97,conjecture-derived,(false),95,['proof']). # Proof object ends here.
# Problem is unsatisfiable, constructing proof object # TSTP exit status: Unsatisfiable # Proof object starts here. fof(1, axiom,?[X1]:?[X2]:![X3]:![X4]:(big_f(X3,X4)<=>(equal(X3, X1)&equal(X4, X2))),unknown). fof(2, conjecture,?[X2]:![X4]:(?[X1]:![X3]:(big_f(X3,X4)<=>equal(X3, X1))<=>equal(X4, X2)),unknown). fof(3, assumption-derived,~(?[X2]:![X4]:(?[X1]:![X3]:(big_f(X3,X4)<=>equal(X3, X1))<=>equal(X4, X2))),inference(assume_negation,[status(cth)],[2])). fof(4, plain-derived,?[X1]:?[X2]:![X3]:![X4]:((~(big_f(X3,X4))|(equal(X3, X1)&equal(X4, X2)))&((~(equal(X3, X1))|~(equal(X4, X2)))|big_f(X3,X4))),inference(fof_nnf,[status(thm)],[1])). fof(5, plain-derived,?[X1]:?[X2]:(![X3]:![X4]:(~(big_f(X3,X4))|(equal(X3, X1)&equal(X4, X2)))&![X3]:![X4]:((~(equal(X3, X1))|~(equal(X4, X2)))|big_f(X3,X4))),inference(shift_quantors,[status(thm)],[4])). fof(6, plain-derived,?[X5]:?[X6]:(![X7]:![X8]:(~(big_f(X7,X8))|(equal(X7, X5)&equal(X8, X6)))&![X9]:![X10]:((~(equal(X9, X5))|~(equal(X10, X6)))|big_f(X9,X10))),inference(variable_rename,[status(thm)],[5])). fof(7, plain-derived,(![X7]:![X8]:(~(big_f(X7,X8))|(equal(X7, esk1_0)&equal(X8, esk2_0)))&![X9]:![X10]:((~(equal(X9, esk1_0))|~(equal(X10, esk2_0)))|big_f(X9,X10))),inference(skolemize,[status(sab)],[6])). fof(8, plain-derived,![X7]:![X8]:![X9]:![X10]:(((equal(X7, esk1_0)|~(big_f(X7,X8)))&(equal(X8, esk2_0)|~(big_f(X7,X8))))&((~(equal(X9, esk1_0))|~(equal(X10, esk2_0)))|big_f(X9,X10))),inference(distribute,[status(thm)],[7])). cnf(9,plain-derived,(big_f(X9,X10)|~equal(X10, esk2_0)|~equal(X9, esk1_0)),inference(split_conjunct,[status(thm)],[8])). cnf(10,plain-derived,(equal(X8, esk2_0)|~big_f(X7,X8)),inference(split_conjunct,[status(thm)],[8])). cnf(11,plain-derived,(equal(X7, esk1_0)|~big_f(X7,X8)),inference(split_conjunct,[status(thm)],[8])). fof(12, assumption-derived,![X2]:?[X4]:((![X1]:?[X3]:((~(big_f(X3,X4))|~(equal(X3, X1)))&(big_f(X3,X4)|equal(X3, X1)))|~(equal(X4, X2)))&(?[X1]:![X3]:((big_f(X3,X4)&equal(X3, X1))|(~(big_f(X3,X4))&~(equal(X3, X1))))|equal(X4, X2))),inference(fof_nnf,[status(thm)],[3])). fof(13, assumption-derived,![X5]:?[X6]:((![X7]:?[X8]:((~(big_f(X8,X6))|~(equal(X8, X7)))&(big_f(X8,X6)|equal(X8, X7)))|~(equal(X6, X5)))&(?[X9]:![X10]:((big_f(X10,X6)&equal(X10, X9))|(~(big_f(X10,X6))&~(equal(X10, X9))))|equal(X6, X5))),inference(variable_rename,[status(thm)],[12])). fof(14, assumption-derived,![X5]:((![X7]:((~(big_f(esk4_2(X5,X7),esk3_1(X5)))|~(equal(esk4_2(X5,X7), X7)))&(big_f(esk4_2(X5,X7),esk3_1(X5))|equal(esk4_2(X5,X7), X7)))|~(equal(esk3_1(X5), X5)))&(![X10]:((big_f(X10,esk3_1(X5))&equal(X10, esk5_1(X5)))|(~(big_f(X10,esk3_1(X5)))&~(equal(X10, esk5_1(X5)))))|equal(esk3_1(X5), X5))),inference(skolemize,[status(sab)],[13])). fof(15, assumption-derived,![X5]:![X7]:![X10]:((((~(big_f(esk4_2(X5,X7),esk3_1(X5)))|~(equal(esk4_2(X5,X7), X7)))|~(equal(esk3_1(X5), X5)))&((big_f(esk4_2(X5,X7),esk3_1(X5))|equal(esk4_2(X5,X7), X7))|~(equal(esk3_1(X5), X5))))&((((~(big_f(X10,esk3_1(X5)))|big_f(X10,esk3_1(X5)))|equal(esk3_1(X5), X5))&((~(equal(X10, esk5_1(X5)))|big_f(X10,esk3_1(X5)))|equal(esk3_1(X5), X5)))&(((~(big_f(X10,esk3_1(X5)))|equal(X10, esk5_1(X5)))|equal(esk3_1(X5), X5))&((~(equal(X10, esk5_1(X5)))|equal(X10, esk5_1(X5)))|equal(esk3_1(X5), X5))))),inference(distribute,[status(thm)],[14])). cnf(18,conjecture-derived,(equal(esk3_1(X5), X5)|big_f(X10,esk3_1(X5))|~equal(X10, esk5_1(X5))),inference(split_conjunct,[status(thm)],[15])). cnf(20,conjecture-derived,(equal(esk4_2(X5,X7), X7)|big_f(esk4_2(X5,X7),esk3_1(X5))|~equal(esk3_1(X5), X5)),inference(split_conjunct,[status(thm)],[15])). cnf(21,conjecture-derived,(~equal(esk3_1(X5), X5)|~equal(esk4_2(X5,X7), X7)|~big_f(esk4_2(X5,X7),esk3_1(X5))),inference(split_conjunct,[status(thm)],[15])). cnf(24,conjecture-derived,(~equal(esk3_1(X1), X1)|~equal(esk4_2(X1,X2), X2)|~equal(esk1_0, esk4_2(X1,X2))|~equal(esk2_0, esk3_1(X1))),inference(pm,[status(thm)],[21,9,theory(equality)])). cnf(26,conjecture-derived,(equal(esk3_1(X1), X1)|big_f(esk5_1(X1),esk3_1(X1))),inference(er,[status(thm)],[18,theory(equality)])). cnf(27,conjecture-derived,(equal(esk1_0, esk4_2(X1,X2))|equal(esk4_2(X1,X2), X2)|~equal(esk3_1(X1), X1)),inference(pm,[status(thm)],[11,20,theory(equality)])). cnf(28,conjecture-derived,(equal(esk2_0, esk3_1(X1))|equal(esk4_2(X1,X2), X2)|~equal(esk3_1(X1), X1)),inference(pm,[status(thm)],[10,20,theory(equality)])). cnf(31,conjecture-derived,(equal(esk1_0, esk5_1(X1))|equal(esk3_1(X1), X1)),inference(pm,[status(thm)],[11,26,theory(equality)])). cnf(32,conjecture-derived,(equal(esk2_0, esk3_1(X1))|equal(esk3_1(X1), X1)),inference(pm,[status(thm)],[10,26,theory(equality)])). cnf(35,conjecture-derived,(big_f(esk1_0,esk3_1(X1))|equal(esk3_1(X1), X1)),inference(pm,[status(thm)],[26,31,theory(equality)])). cnf(36,conjecture-derived,(equal(esk3_1(X2), X2)|~equal(esk2_0, X2)),inference(ef,[status(thm)],[32,theory(equality)])). cnf(50,conjecture-derived,(~big_f(esk4_2(X1,X2),X1)|~equal(esk3_1(X1), X1)|~equal(esk4_2(X1,X2), X2)|~equal(esk2_0, X1)),inference(pm,[status(thm)],[21,36,theory(equality)])). cnf(64,conjecture-derived,(big_f(esk1_0,esk2_0)|equal(esk3_1(X1), X1)),inference(pm,[status(thm)],[35,32,theory(equality)])). cnf(79,conjecture-derived,(~big_f(esk4_2(X1,X2),X1)|~equal(esk4_2(X1,X2), X2)|~equal(esk2_0, X1)),inference(csr,[status(thm)],[50,36])). cnf(80,conjecture-derived,(~big_f(esk4_2(X1,X2),X1)|~equal(esk4_2(X1,X2), X2)),inference(csr,[status(thm)],[79,10])). cnf(100,conjecture-derived,(equal(esk3_1(X1), esk2_0)|equal(esk4_2(X1,X2), X2)),inference(csr,[status(thm)],[28,32])). cnf(104,conjecture-derived,(equal(esk3_1(X1), esk2_0)|~big_f(X2,X1)|~equal(esk4_2(X1,X2), X2)),inference(pm,[status(thm)],[80,100,theory(equality)])). cnf(108,conjecture-derived,(equal(esk3_1(X1), esk2_0)|~big_f(X2,X1)),inference(csr,[status(thm)],[104,100])). cnf(113,conjecture-derived,(equal(esk3_1(esk2_0), esk2_0)|equal(esk3_1(X1), X1)),inference(pm,[status(thm)],[108,64,theory(equality)])). cnf(136,conjecture-derived,(equal(esk3_1(esk2_0), esk2_0)),inference(ef,[status(thm)],[113,theory(equality)])). cnf(174,conjecture-derived,(equal(esk4_2(esk2_0,X1), esk1_0)|equal(esk4_2(esk2_0,X1), X1)),inference(pm,[status(thm)],[27,136,theory(equality)])). cnf(250,conjecture-derived,(equal(esk4_2(esk2_0,X1), X1)|~equal(esk1_0, X1)),inference(ef,[status(thm)],[174,theory(equality)])). cnf(291,conjecture-derived,(~equal(esk3_1(esk2_0), esk2_0)|~equal(esk4_2(esk2_0,X1), esk1_0)|~equal(esk1_0, X1)),inference(pm,[status(thm)],[24,250,theory(equality)])). cnf(304,conjecture-derived,(false|~equal(esk4_2(esk2_0,X1), esk1_0)|~equal(esk1_0, X1)),inference(rw,[status(thm)],[291,136,theory(equality)])). cnf(305,conjecture-derived,(~equal(esk4_2(esk2_0,X1), esk1_0)|~equal(esk1_0, X1)),inference(cn,[status(thm)],[304,theory(equality)])). cnf(309,conjecture-derived,(~equal(X1, esk1_0)),inference(pm,[status(thm)],[305,250,theory(equality)])). cnf(311,conjecture-derived,(false),inference(er,[status(thm)],[309,theory(equality)])). cnf(314,conjecture-derived,(false),311,['proof']). # Proof object ends here.
======================= Model #1 at 0.04 seconds: zero: 0 greater : | 0 1 --+---- 0 | T T 1 | F F e: 0 number_of_organizations : | 0 1 --+---- 0 | 0 0 1 | 0 0 an_organisation: 0 appear : | 0 1 --+---- 0 | 0 1 1 | 0 0 environment : 0 1 ------- F T sk1 : | 0 1 --+---- 0 | 0 0 1 | 0 0 Dimension 3 table for subpopulation not printed cardinality_at_time : | 0 1 --+---- 0 | 0 0 1 | 0 1 efficient_producers: 0 in_environment : | 0 1 --+---- 0 | F F 1 | F T first_movers: 1 greater_or_equal : | 0 1 --+---- 0 | T T 1 | F T sk2: 1 end_of_model
NOTE: In order to save space in the representation of the model, sometimes,
some entries in some of the definition tables are missing.
This is not a bug!
More detailedly, it might happen that for a model with a domain of size
n, for some argument position, only a subset
{'1,'2,..,'k} of all domain elements is shown,
with k < n.
What this means is that the entries for other domain elements 'j
(with k < j <= n) occurring at that argument
position look the same as entries with 'k at that position.
Problem NLP041-1.p is an example where a model is represented in such
a way.
NOTE: In order to save space in the representation of the model, sometimes,
some entries in some of the definition tables are missing.
This is not a bug!
More detailedly, it might happen that for a model with a domain of size
n, for some argument position, only a subset
{'1,'2,..,'k} of all domain elements is shown,
with k < n.
What this means is that the entries for other domain elements 'j
(with k < j <= n) occurring at that argument
position look the same as entries with 'k at that position.
Problem NLP041-1.p is an example where a model is represented in such
a way.
Example 2. Three steps from the sample solution for SYN551+1
Example 3. Two steps from the sample solution for COL003-20:
Mace4 2004-D
William McCune
Argonne National Laboratory, USA
mccune@mcs.anl.gov
Sample SAT model for MGT031-1
-------- Model 1 at 0.02 seconds --------
e : 0
an_organisation : 0
zero : 0
efficient_producers : 0
first_movers : 1
sk2 : 1
appear :
| 0 1
--+----
0 | 0 1
1 | 0 0
number_of_organizations :
| 0 1
--+----
0 | 0 0
1 | 0 0
sk1 :
| 0 1
--+----
0 | 0 0
1 | 0 0
cardinality_at_time :
| 0 1
--+----
0 | 0 0
1 | 0 1
environment :
0 1
-------
0 1
greater :
| 0 1
--+----
0 | 1 1
1 | 0 0
in_environment :
| 0 1
--+----
0 | 0 0
1 | 0 1
greater_or_equal :
| 0 1
--+----
0 | 1 1
1 | 0 1
Sorry, no pretty printing yet for arity 3.
subpopulation(0,0,0) = 0.
subpopulation(0,0,1) = 0.
subpopulation(0,1,0) = 1.
subpopulation(0,1,1) = 1.
subpopulation(1,0,0) = 0.
subpopulation(1,0,1) = 0.
subpopulation(1,1,0) = 0.
subpopulation(1,1,1) = 0.
-------- end of model --------
Octopus 2004
Monty Newborn, Zongyan Wang
McGill University
newborn@cs.mcgill.ca
Sample MIX proof for FLD044-2
Axioms:
1: equalish[M[x,M[y,z]],M[M[x,y],z]] ~defined[x] ~defined[y] ~defined[z]
2 >equalish[A[M[x,y],M[z,y]],M[A[x,z],y]] ~defined[x] ~defined[z] ~defined[y]
3 >equalish[A[x,A[y,z]],A[A[x,y],z]] ~defined[x] ~defined[y] ~defined[z]
4: LE[x,y] LE[y,x] ~defined[x] ~defined[y]
5: LE[0,M[x,y]] ~LE[0,x] ~LE[0,y]
6S equalish[M[x,MI[x]],1] ~defined[x] equalish[x,0]
7S defined[MI[x]] ~defined[x] equalish[x,0]
8: LE[A[x,y],A[z,y]] ~defined[y] ~LE[x,z]
9S>equalish[M[x,y],M[z,y]] ~defined[y] ~equalish[x,z]
10: LE[x,y] ~LE[z,y] ~equalish[z,x]
11S>equalish[A[x,y],A[z,y]] ~defined[y] ~equalish[x,z]
12S equalish[M[x,y],M[y,x]] ~defined[x] ~defined[y]
13: LE[x,y] ~LE[x,z] ~LE[z,y]
14: equalish[x,y] ~LE[x,y] ~LE[y,x]
15 >defined[M[x,y]] ~defined[x] ~defined[y]
16 >equalish[A[x,y],A[y,x]] ~defined[x] ~defined[y]
17 >defined[A[x,y]] ~defined[x] ~defined[y]
18S>equalish[x,y] ~equalish[x,z] ~equalish[z,y]
19S>equalish[A[x,AI[x]],0] ~defined[x]
20S equalish[M[1,x],x] ~defined[x]
21S>equalish[A[0,x],x] ~defined[x]
22S>defined[AI[x]] ~defined[x]
23: equalish[x,x] ~defined[x]
24S>equalish[x,y] ~equalish[y,x]
25: defined[1]
26: ~equalish[0,1]
27S>defined[0]
Negated conclusion:
28S ~equalish[c,AI[d]]
29S>equalish[M[AI[a],b],c]
30S>equalish[M[a,b],d]
31S>defined[a]
32S>defined[b]
33S>defined[c]
34S>defined[d]
---------------
Phase 0 clauses used in proof:
35S>defined[AI[d]]
36S>equalish[M[1,d],d]
37S>equalish[A[d,AI[d]],0]
40S>~equalish[c,x] ~equalish[x,AI[d]]
41S>equalish[x,AI[d]] ~equalish[x,A[0,AI[d]]]
45S>equalish[0,x] ~equalish[A[d,AI[d]],x]
53S>equalish[x,d] ~equalish[x,M[a,b]]
54S>equalish[x,d] ~equalish[M[a,b],x]
55S>equalish[d,M[a,b]]
Phases 1 and 2 clauses used in proof:
57S>(33a,21b) equalish[A[0,c],c]
58S>(57a,24b) equalish[c,A[0,c]]
59S>(24b,11a) equalish[A[x,y],A[z,y]] ~defined[y] ~equalish[z,x]
60S>(59a,18c) ~defined[x] ~equalish[y,z] equalish[u,A[y,x]] ~equalish[u,A[z,x]]
61S>(60a,33a) ~equalish[x,y] equalish[z,A[x,c]] ~equalish[z,A[y,c]]
62S>(61a,37a) equalish[x,A[A[d,AI[d]],c]] ~equalish[x,A[0,c]]
63: 62|{c/x} equalish[c,A[A[d,AI[d]],c]] ~equalish[c,A[0,c]]
64S>(63b,58a) equalish[c,A[A[d,AI[d]],c]]
65S>(35a,17c) defined[A[x,AI[d]]] ~defined[x]
66S>(65a,16b) ~defined[x] equalish[A[A[x,AI[d]],y],A[y,A[x,AI[d]]]] ~defined[y]
67S>(66b,18c) ~defined[x] ~defined[y] equalish[z,A[y,A[x,AI[d]]]] ~equalish[z,A[A[x,AI[d]],y]]
68S>(67b,33a) ~defined[x] equalish[y,A[c,A[x,AI[d]]]] ~equalish[y,A[A[x,AI[d]],c]]
69S>(68a,34a) equalish[x,A[c,A[d,AI[d]]]] ~equalish[x,A[A[d,AI[d]],c]]
70: 69|{c/x} equalish[c,A[c,A[d,AI[d]]]] ~equalish[c,A[A[d,AI[d]],c]]
71S>(70b,64a) equalish[c,A[c,A[d,AI[d]]]]
72S>(35a,3d) equalish[A[x,A[y,AI[d]]],A[A[x,y],AI[d]]] ~defined[x] ~defined[y]
73S>(72b,33a) equalish[A[c,A[x,AI[d]]],A[A[c,x],AI[d]]] ~defined[x]
74S>(73a,18c) ~defined[x] equalish[y,A[A[c,x],AI[d]]] ~equalish[y,A[c,A[x,AI[d]]]]
75S>(74a,34a) equalish[x,A[A[c,d],AI[d]]] ~equalish[x,A[c,A[d,AI[d]]]]
76: 75|{c/x} equalish[c,A[A[c,d],AI[d]]] ~equalish[c,A[c,A[d,AI[d]]]]
77S>(76b,71a) equalish[c,A[A[c,d],AI[d]]]
78S>(41b,11a) equalish[A[x,AI[d]],AI[d]] ~defined[AI[d]] ~equalish[x,0]
79S>(78b,35a) equalish[A[x,AI[d]],AI[d]] ~equalish[x,0]
80S>(79b,18a) equalish[A[x,AI[d]],AI[d]] ~equalish[x,y] ~equalish[y,0]
81S>(80b,16a) equalish[A[A[x,y],AI[d]],AI[d]] ~equalish[A[y,x],0] ~defined[x] ~defined[y]
82S>(81a,40b) ~equalish[A[x,y],0] ~defined[y] ~defined[x] ~equalish[c,A[A[y,x],AI[d]]]
83S>(82b,33a) ~equalish[A[x,c],0] ~defined[x] ~equalish[c,A[A[c,x],AI[d]]]
84S>(83b,34a) ~equalish[A[d,c],0] ~equalish[c,A[A[c,d],AI[d]]]
85S>(84b,77a) ~equalish[A[d,c],0]
86S>(36a,11c) equalish[A[M[1,d],x],A[d,x]] ~defined[x]
87S>(86b,33a) equalish[A[M[1,d],c],A[d,c]]
88S>(87a,24b) equalish[A[d,c],A[M[1,d],c]]
89S>(88a,18b) equalish[A[d,c],x] ~equalish[A[M[1,d],c],x]
90S>(89a,85a) ~equalish[A[M[1,d],c],0]
91S>(36a,11c) equalish[A[M[1,d],x],A[d,x]] ~defined[x]
92S>(91a,18b) ~defined[x] equalish[A[M[1,d],x],y] ~equalish[A[d,x],y]
93S>(92b,18b) ~defined[x] ~equalish[A[d,x],y] equalish[A[M[1,d],x],z] ~equalish[y,z]
94S>(93b*16a) ~defined[x] equalish[A[M[1,d],x],y] ~equalish[A[x,d],y] ~defined[d]
95S>(94d,34a) ~defined[x] equalish[A[M[1,d],x],y] ~equalish[A[x,d],y]
96S>(95a,33a) equalish[A[M[1,d],c],x] ~equalish[A[c,d],x]
97S>(96a,90a) ~equalish[A[c,d],0]
98S>(34a,11b) equalish[A[x,d],A[y,d]] ~equalish[x,y]
99S>(98b,29a) equalish[A[M[AI[a],b],d],A[c,d]]
100S>(99a,18c) equalish[x,A[c,d]] ~equalish[x,A[M[AI[a],b],d]]
101S>(100a,24b) ~equalish[x,A[M[AI[a],b],d]] equalish[A[c,d],x]
102: 101|{0/x} ~equalish[0,A[M[AI[a],b],d]] equalish[A[c,d],0]
103S>(102b,97a) ~equalish[0,A[M[AI[a],b],d]]
104S>(34a,16b) equalish[A[d,x],A[x,d]] ~defined[x]
105S>(104b,15a) equalish[A[d,M[x,y]],A[M[x,y],d]] ~defined[x] ~defined[y]
106S>(105b,22a) equalish[A[d,M[AI[x],y]],A[M[AI[x],y],d]] ~defined[y] ~defined[x]
107S>(106a,18c) ~defined[x] ~defined[y] equalish[z,A[M[AI[y],x],d]] ~equalish[z,A[d,M[AI[y],x]]]
108S>(107b,31a) ~defined[x] equalish[y,A[M[AI[a],x],d]] ~equalish[y,A[d,M[AI[a],x]]]
109S>(108a,32a) equalish[x,A[M[AI[a],b],d]] ~equalish[x,A[d,M[AI[a],b]]]
110S>(109a,103a) ~equalish[0,A[d,M[AI[a],b]]]
111S>(32a,15c) defined[M[x,b]] ~defined[x]
112S>(111b,22a) defined[M[AI[x],b]] ~defined[x]
113S>(112a,11b) ~defined[x] equalish[A[y,M[AI[x],b]],A[z,M[AI[x],b]]] ~equalish[y,z]
114S>(113b,18c) ~defined[x] ~equalish[y,z] equalish[u,A[z,M[AI[x],b]]] ~equalish[u,A[y,M[AI[x],b]]]
115S>(114b,30a) ~defined[x] equalish[y,A[d,M[AI[x],b]]] ~equalish[y,A[M[a,b],M[AI[x],b]]]
116S>(115a,31a) equalish[x,A[d,M[AI[a],b]]] ~equalish[x,A[M[a,b],M[AI[a],b]]]
117S>(116a,110a) ~equalish[0,A[M[a,b],M[AI[a],b]]]
118S>(32a,2d) equalish[A[M[x,b],M[y,b]],M[A[x,y],b]] ~defined[x] ~defined[y]
119S>(118a,24b) ~defined[x] ~defined[y] equalish[M[A[x,y],b],A[M[x,b],M[y,b]]]
120S>(119b,22a) ~defined[x] equalish[M[A[x,AI[y]],b],A[M[x,b],M[AI[y],b]]] ~defined[y]
121S>(120b,18c) ~defined[x] ~defined[y] equalish[z,A[M[x,b],M[AI[y],b]]] ~equalish[z,M[A[x,AI[y]],b]]
122S>(121b,31a) ~defined[x] equalish[y,A[M[x,b],M[AI[a],b]]] ~equalish[y,M[A[x,AI[a]],b]]
123S>(122a,31a) equalish[x,A[M[a,b],M[AI[a],b]]] ~equalish[x,M[A[a,AI[a]],b]]
124S>(123a,117a) ~equalish[0,M[A[a,AI[a]],b]]
125S>(24b,19a) equalish[0,A[x,AI[x]]] ~defined[x]
126S>(125b,31a) equalish[0,A[a,AI[a]]]
127S>(126a,9c) equalish[M[0,x],M[A[a,AI[a]],x]] ~defined[x]
128S>(127a,18c) ~defined[x] equalish[y,M[A[a,AI[a]],x]] ~equalish[y,M[0,x]]
129S>(128a,32a) equalish[x,M[A[a,AI[a]],b]] ~equalish[x,M[0,b]]
130S>(129a,124a) ~equalish[0,M[0,b]]
131S>(21a,18c) ~defined[x] equalish[y,x] ~equalish[y,A[0,x]]
132S>(131a,15a) equalish[x,M[y,z]] ~equalish[x,A[0,M[y,z]]] ~defined[y] ~defined[z]
133S>(132b,24a) equalish[x,M[y,z]] ~defined[y] ~defined[z] ~equalish[A[0,M[y,z]],x]
134S>(133b,27a) equalish[x,M[0,y]] ~defined[y] ~equalish[A[0,M[0,y]],x]
135S>(134b,32a) equalish[x,M[0,b]] ~equalish[A[0,M[0,b]],x]
136S>(135a,130a) ~equalish[A[0,M[0,b]],0]
137S>(54a,11c) ~equalish[M[a,b],x] equalish[A[x,y],A[d,y]] ~defined[y]
138S>(137b,45b) ~equalish[M[a,b],d] ~defined[AI[d]] equalish[0,A[d,AI[d]]]
139S>(138a,30a) ~defined[AI[d]] equalish[0,A[d,AI[d]]]
140S>(139a,35a) equalish[0,A[d,AI[d]]]
141S>(140a,11c) equalish[A[0,x],A[A[d,AI[d]],x]] ~defined[x]
142S>(141b,15a) equalish[A[0,M[x,y]],A[A[d,AI[d]],M[x,y]]] ~defined[x] ~defined[y]
143S>(142a,18b) ~defined[x] ~defined[y] equalish[A[0,M[x,y]],z] ~equalish[A[A[d,AI[d]],M[x,y]],z]
144S>(143a,27a) ~defined[x] equalish[A[0,M[0,x]],y] ~equalish[A[A[d,AI[d]],M[0,x]],y]
145S>(144a,32a) equalish[A[0,M[0,b]],x] ~equalish[A[A[d,AI[d]],M[0,b]],x]
146S>(145a,136a) ~equalish[A[A[d,AI[d]],M[0,b]],0]
147S>(35a,17c) defined[A[x,AI[d]]] ~defined[x]
148S>(147b,34a) defined[A[d,AI[d]]]
149S>(148a,16b) equalish[A[A[d,AI[d]],x],A[x,A[d,AI[d]]]] ~defined[x]
150S>(149b,15a) equalish[A[A[d,AI[d]],M[x,y]],A[M[x,y],A[d,AI[d]]]] ~defined[x] ~defined[y]
151S>(150a,18b) ~defined[x] ~defined[y] equalish[A[A[d,AI[d]],M[x,y]],z] ~equalish[A[M[x,y],A[d,AI[d]]],z]
152S>(151a,27a) ~defined[x] equalish[A[A[d,AI[d]],M[0,x]],y] ~equalish[A[M[0,x],A[d,AI[d]]],y]
153S>(152a,32a) equalish[A[A[d,AI[d]],M[0,b]],x] ~equalish[A[M[0,b],A[d,AI[d]]],x]
154S>(153a,146a) ~equalish[A[M[0,b],A[d,AI[d]]],0]
155S>(35a,3d) equalish[A[x,A[y,AI[d]]],A[A[x,y],AI[d]]] ~defined[x] ~defined[y]
156S>(155b,15a) equalish[A[M[x,y],A[z,AI[d]]],A[A[M[x,y],z],AI[d]]] ~defined[z] ~defined[x] ~defined[y]
157S>(156b,34a) equalish[A[M[x,y],A[d,AI[d]]],A[A[M[x,y],d],AI[d]]] ~defined[x] ~defined[y]
158S>(157b,27a) equalish[A[M[0,x],A[d,AI[d]]],A[A[M[0,x],d],AI[d]]] ~defined[x]
159S>(158a,18b) ~defined[x] equalish[A[M[0,x],A[d,AI[d]]],y] ~equalish[A[A[M[0,x],d],AI[d]],y]
160S>(159a,32a) equalish[A[M[0,b],A[d,AI[d]]],x] ~equalish[A[A[M[0,b],d],AI[d]],x]
161S>(160a,154a) ~equalish[A[A[M[0,b],d],AI[d]],0]
162S>(34a,16c) equalish[A[x,d],A[d,x]] ~defined[x]
163S>(162b,15a) equalish[A[M[x,y],d],A[d,M[x,y]]] ~defined[x] ~defined[y]
164S>(163b,27a) equalish[A[M[0,x],d],A[d,M[0,x]]] ~defined[x]
165S>(164a,11c) ~defined[x] equalish[A[A[M[0,x],d],y],A[A[d,M[0,x]],y]] ~defined[y]
166S>(165b,18b) ~defined[x] ~defined[y] equalish[A[A[M[0,x],d],y],z] ~equalish[A[A[d,M[0,x]],y],z]
167S>(166a,32a) ~defined[x] equalish[A[A[M[0,b],d],x],y] ~equalish[A[A[d,M[0,b]],x],y]
168S>(167a,35a) equalish[A[A[M[0,b],d],AI[d]],x] ~equalish[A[A[d,M[0,b]],AI[d]],x]
169S>(168a,161a) ~equalish[A[A[d,M[0,b]],AI[d]],0]
170S>(53b,9a) equalish[M[x,b],d] ~defined[b] ~equalish[x,a]
171S>(170b,32a) equalish[M[x,b],d] ~equalish[x,a]
172S>(171b,21a) equalish[M[A[0,a],b],d] ~defined[a]
173S>(172b,31a) equalish[M[A[0,a],b],d]
174S>(173a,11c) equalish[A[M[A[0,a],b],x],A[d,x]] ~defined[x]
175S>(174a,18b) ~defined[x] equalish[A[M[A[0,a],b],x],y] ~equalish[A[d,x],y]
176S>(175a,35a) equalish[A[M[A[0,a],b],AI[d]],x] ~equalish[A[d,AI[d]],x]
177S>(176b,37a) equalish[A[M[A[0,a],b],AI[d]],0]
178S>(32a,15c) defined[M[x,b]] ~defined[x]
179S>(178b,27a) defined[M[0,b]]
180S>(179a,11b) equalish[A[x,M[0,b]],A[y,M[0,b]]] ~equalish[x,y]
181S>(180a,11c) ~equalish[x,y] equalish[A[A[x,M[0,b]],z],A[A[y,M[0,b]],z]] ~defined[z]
182S>(181b,18b) ~equalish[x,y] ~defined[z] equalish[A[A[x,M[0,b]],z],u] ~equalish[A[A[y,M[0,b]],z],u]
183S>(182b,35a) ~equalish[x,y] equalish[A[A[x,M[0,b]],AI[d]],z] ~equalish[A[A[y,M[0,b]],AI[d]],z]
184S>(183a,55a) equalish[A[A[d,M[0,b]],AI[d]],x] ~equalish[A[A[M[a,b],M[0,b]],AI[d]],x]
185S>(184a,169a) ~equalish[A[A[M[a,b],M[0,b]],AI[d]],0]
186S>(35a,11b) equalish[A[x,AI[d]],A[y,AI[d]]] ~equalish[x,y]
187S>(186b,9a) equalish[A[M[x,y],AI[d]],A[M[z,y],AI[d]]] ~defined[y] ~equalish[x,z]
188S>(187b,32a) equalish[A[M[x,b],AI[d]],A[M[y,b],AI[d]]] ~equalish[x,y]
189S>(188b,16a) equalish[A[M[A[x,y],b],AI[d]],A[M[A[y,x],b],AI[d]]] ~defined[x] ~defined[y]
190S>(189a,18b) ~defined[x] ~defined[y] equalish[A[M[A[x,y],b],AI[d]],z] ~equalish[A[M[A[y,x],b],AI[d]],z]
191S>(190b,27a) ~defined[x] equalish[A[M[A[x,0],b],AI[d]],y] ~equalish[A[M[A[0,x],b],AI[d]],y]
192S>(191a,31a) equalish[A[M[A[a,0],b],AI[d]],x] ~equalish[A[M[A[0,a],b],AI[d]],x]
193: 192|{0/x} equalish[A[M[A[a,0],b],AI[d]],0] ~equalish[A[M[A[0,a],b],AI[d]],0]
194S>(193b,177a) equalish[A[M[A[a,0],b],AI[d]],0]
195S>(32a,2d) equalish[A[M[x,b],M[y,b]],M[A[x,y],b]] ~defined[x] ~defined[y]
196S>(195b,31a) equalish[A[M[a,b],M[x,b]],M[A[a,x],b]] ~defined[x]
197S>(196b,27a) equalish[A[M[a,b],M[0,b]],M[A[a,0],b]]
198S>(197a,11c) equalish[A[A[M[a,b],M[0,b]],x],A[M[A[a,0],b],x]] ~defined[x]
199S>(198a,18b) ~defined[x] equalish[A[A[M[a,b],M[0,b]],x],y] ~equalish[A[M[A[a,0],b],x],y]
200S>(199a,35a) equalish[A[A[M[a,b],M[0,b]],AI[d]],x] ~equalish[A[M[A[a,0],b],AI[d]],x]
201S>(200a,185a) ~equalish[A[M[A[a,0],b],AI[d]],0]
202S>(201a,194a) []
Otter 3.3
William McCune
Argonne National Laboratory, USA
mccune@mcs.anl.gov
Sample MIX proof for SYN075-1
---------------- PROOF ----------------
1 [] -big_f(A,B)|equal(A,a).
2 [] -big_f(A,B)|equal(B,b).
3 [] -equal(A,a)| -equal(B,b)|big_f(A,B).
4 [] -big_f(A,f(B))| -equal(A,g(B))|equal(f(B),B).
5 [] -equal(A,g(B))|big_f(A,f(B))|equal(f(B),B).
8 [] -equal(f(A),A)|big_f(h(A,B),f(A))|equal(h(A,B),B).
9 [] -equal(f(A),A)| -equal(h(A,B),B)| -big_f(h(A,B),f(A)).
11 [] equal(A,A).
13 [hyper,11,5] big_f(g(A),f(A))|equal(f(A),A).
14 [hyper,11,3,11] big_f(a,b).
21 [hyper,13,3,11] big_f(g(b),f(b))|big_f(a,f(b)).
62 [hyper,21,4,11] big_f(a,f(b))|equal(f(b),b).
79 [hyper,62,3,11,factor_simp] big_f(a,f(b)).
81,80 [hyper,79,2] equal(f(b),b).
126 [hyper,80,8,demod,81] big_f(h(b,A),b)|equal(h(b,A),A).
319 [hyper,126,3,80,demod,81,factor_simp] big_f(h(b,a),b).
331,330 [hyper,319,1] equal(h(b,a),a).
335 [para_from,330.1.1,9.3.1,demod,81,331,81,unit_del,11,11,14] $F.
------------ end of proof -------------
Sample MIX proof for PUZ031-1
---------------- PROOF ----------------
1 [] animal(A)| -wolf(A).
2 [] animal(A)| -fox(A).
3 [] animal(A)| -bird(A).
5 [] animal(A)| -snail(A).
6 [] plant(A)| -grain(A).
7 [] eats(A,B)|eats(A,C)| -animal(A)| -plant(B)| -animal(C)| -plant(D)| -much_smaller(C,A)| -eats(C,D).
9 [] much_smaller(A,B)| -snail(A)| -bird(B).
10 [] much_smaller(A,B)| -bird(A)| -fox(B).
11 [] much_smaller(A,B)| -fox(A)| -wolf(B).
13 [] -wolf(A)| -grain(B)| -eats(A,B).
15 [] -bird(A)| -snail(B)| -eats(A,B).
18 [] plant(snail_food_of(A))| -snail(A).
19 [] eats(A,snail_food_of(A))| -snail(A).
20 [] -animal(A)| -animal(B)| -grain(C)| -eats(A,B)| -eats(B,C).
23 [factor,7.4.6] eats(A,B)|eats(A,C)| -animal(A)| -plant(B)| -animal(C)| -much_smaller(C,A)| -eats(C,B).
28 [] wolf(a_wolf).
29 [] fox(a_fox).
30 [] bird(a_bird).
32 [] snail(a_snail).
33 [] grain(a_grain).
34 [hyper,28,1] animal(a_wolf).
35 [hyper,29,11,28] much_smaller(a_fox,a_wolf).
36 [hyper,29,2] animal(a_fox).
37 [hyper,30,10,29] much_smaller(a_bird,a_fox).
38 [hyper,30,3] animal(a_bird).
44 [hyper,32,19] eats(a_snail,snail_food_of(a_snail)).
45 [hyper,32,18] plant(snail_food_of(a_snail)).
46 [hyper,32,9,30] much_smaller(a_snail,a_bird).
47 [hyper,32,5] animal(a_snail).
48 [hyper,33,6] plant(a_grain).
50 [hyper,44,7,38,48,47,45,46] eats(a_bird,a_grain)|eats(a_bird,a_snail).
55 [hyper,50,15,30,32] eats(a_bird,a_grain).
56 [hyper,55,23,36,48,38,37] eats(a_fox,a_grain)|eats(a_fox,a_bird).
62 [hyper,56,20,36,38,33,55] eats(a_fox,a_grain).
63 [hyper,62,23,34,48,36,35] eats(a_wolf,a_grain)|eats(a_wolf,a_fox).
67 [hyper,63,13,28,33] eats(a_wolf,a_fox).
69 [hyper,67,20,34,36,33,62] $F.
------------ end of proof -------------
Paradox 1.0
Koen Claessen, Niklas Sörensson
Chalmers University of Technology and
Gothenburg University, Sweden
{koen,nik}@cs.chalmers.se
Solution Description
When it has found a model, Paradox produces a table of definitions for each
constant symbol, function symbol, and predicate symbol.
The table is sorted alphabetically.
In the table, domain elements are represented as positive natural numbers
preceded by a ' (tick).
Sample Solution to MGT031-1
an_organisation = '1
appear('1,'1) = '2
appear('1,'2) = '2
appear('2,'1) = '1
appear('2,'2) = '1
cardinality_at_time('1,'1) = '2
cardinality_at_time('1,'2) = '2
cardinality_at_time('2,'1) = '2
cardinality_at_time('2,'2) = '2
e = '1
efficient_producers = '2
environment('1) : FALSE
environment('2) : TRUE
first_movers = '2
greater('1,'1) : TRUE
greater('1,'2) : TRUE
greater('2,'1) : FALSE
greater('2,'2) : TRUE
greater_or_equal('1,'1) : TRUE
greater_or_equal('1,'2) : TRUE
greater_or_equal('2,'1) : FALSE
greater_or_equal('2,'2) : TRUE
in_environment('1,'1) : TRUE
in_environment('1,'2) : TRUE
in_environment('2,'1) : TRUE
in_environment('2,'2) : TRUE
number_of_organizations('1,'1) = '2
number_of_organizations('1,'2) = '1
number_of_organizations('2,'1) = '2
number_of_organizations('2,'2) = '2
sk1('1,'1) = '2
sk1('1,'2) = '2
sk1('2,'1) = '2
sk1('2,'2) = '2
sk2 = '2
subpopulation('1,'1,'1) : TRUE
subpopulation('1,'1,'2) : TRUE
subpopulation('1,'2,'1) : TRUE
subpopulation('1,'2,'2) : TRUE
subpopulation('2,'1,'1) : TRUE
subpopulation('2,'1,'2) : TRUE
subpopulation('2,'2,'1) : TRUE
subpopulation('2,'2,'2) : TRUE
zero = '1
Sample Solution to NLP041-1
abstraction('1,'1) : FALSE
abstraction('1,'2) : FALSE
abstraction('1,'3) : FALSE
abstraction('1,'4) : TRUE
act('1,'1) : FALSE
act('1,'2) : FALSE
act('1,'3) : TRUE
act('1,'4) : FALSE
actual_world('1) : TRUE
agent('1,'1,'1) : TRUE
agent('1,'1,'2) : TRUE
agent('1,'1,'3) : TRUE
agent('1,'1,'4) : TRUE
agent('1,'2,'1) : TRUE
agent('1,'2,'2) : TRUE
agent('1,'2,'3) : TRUE
agent('1,'2,'4) : TRUE
agent('1,'3,'1) : TRUE
agent('1,'3,'2) : FALSE
agent('1,'3,'3) : FALSE
agent('1,'3,'4) : FALSE
agent('1,'4,'1) : TRUE
agent('1,'4,'2) : TRUE
agent('1,'4,'3) : TRUE
agent('1,'4,'4) : FALSE
animate('1,'1) : TRUE
animate('1,'2) : FALSE
animate('1,'3) : FALSE
animate('1,'4) : FALSE
beverage('1,'1) : FALSE
beverage('1,'2) : TRUE
beverage('1,'3) : FALSE
beverage('1,'4) : FALSE
entity('1,'1) : TRUE
entity('1,'2) : TRUE
entity('1,'3) : FALSE
entity('1,'4) : FALSE
event('1,'1) : FALSE
event('1,'2) : FALSE
event('1,'3) : TRUE
event('1,'4) : FALSE
eventuality('1,'1) : FALSE
eventuality('1,'2) : FALSE
eventuality('1,'3) : TRUE
eventuality('1,'4) : FALSE
existent('1,'1) : TRUE
existent('1,'2) : TRUE
existent('1,'3) : FALSE
existent('1,'4) : FALSE
female('1,'1) : TRUE
female('1,'2) : FALSE
female('1,'3) : FALSE
female('1,'4) : FALSE
food('1,'1) : FALSE
food('1,'2) : TRUE
food('1,'3) : FALSE
food('1,'4) : FALSE
forename('1,'1) : FALSE
forename('1,'2) : FALSE
forename('1,'3) : FALSE
forename('1,'4) : TRUE
general('1,'1) : FALSE
general('1,'2) : FALSE
general('1,'3) : FALSE
general('1,'4) : TRUE
human('1,'1) : TRUE
human('1,'2) : FALSE
human('1,'3) : FALSE
human('1,'4) : FALSE
human_person('1,'1) : TRUE
human_person('1,'2) : FALSE
human_person('1,'3) : FALSE
human_person('1,'4) : FALSE
impartial('1,'1) : TRUE
impartial('1,'2) : TRUE
impartial('1,'3) : FALSE
impartial('1,'4) : FALSE
living('1,'1) : TRUE
living('1,'2) : FALSE
living('1,'3) : FALSE
living('1,'4) : FALSE
mia_forename('1,'1) : FALSE
mia_forename('1,'2) : FALSE
mia_forename('1,'3) : FALSE
mia_forename('1,'4) : TRUE
nonexistent('1,'1) : FALSE
nonexistent('1,'2) : FALSE
nonexistent('1,'3) : TRUE
nonexistent('1,'4) : TRUE
nonhuman('1,'1) : FALSE
nonhuman('1,'2) : TRUE
nonhuman('1,'3) : TRUE
nonhuman('1,'4) : TRUE
nonliving('1,'1) : FALSE
nonliving('1,'2) : TRUE
nonliving('1,'3) : TRUE
nonliving('1,'4) : TRUE
nonreflexive('1,'1) : FALSE
nonreflexive('1,'2) : FALSE
nonreflexive('1,'3) : TRUE
nonreflexive('1,'4) : TRUE
object('1,'1) : FALSE
object('1,'2) : TRUE
object('1,'3) : FALSE
object('1,'4) : FALSE
of('1,'1,'1) : FALSE
of('1,'1,'2) : TRUE
of('1,'1,'3) : TRUE
of('1,'1,'4) : TRUE
of('1,'2,'1) : FALSE
of('1,'2,'2) : TRUE
of('1,'2,'3) : TRUE
of('1,'2,'4) : TRUE
of('1,'3,'1) : FALSE
of('1,'3,'2) : TRUE
of('1,'3,'3) : TRUE
of('1,'3,'4) : TRUE
of('1,'4,'1) : TRUE
of('1,'4,'2) : TRUE
of('1,'4,'3) : TRUE
of('1,'4,'4) : TRUE
order('1,'1) : FALSE
order('1,'2) : FALSE
order('1,'3) : TRUE
order('1,'4) : FALSE
organism('1,'1) : TRUE
organism('1,'2) : FALSE
organism('1,'3) : FALSE
organism('1,'4) : FALSE
past('1,'1) : FALSE
past('1,'2) : FALSE
past('1,'3) : TRUE
past('1,'4) : FALSE
patient('1,'1,'1) : TRUE
patient('1,'1,'2) : TRUE
patient('1,'1,'3) : TRUE
patient('1,'1,'4) : TRUE
patient('1,'2,'1) : TRUE
patient('1,'2,'2) : TRUE
patient('1,'2,'3) : TRUE
patient('1,'2,'4) : TRUE
patient('1,'3,'1) : FALSE
patient('1,'3,'2) : TRUE
patient('1,'3,'3) : TRUE
patient('1,'3,'4) : TRUE
patient('1,'4,'1) : FALSE
patient('1,'4,'2) : FALSE
patient('1,'4,'3) : FALSE
patient('1,'4,'4) : TRUE
relation('1,'1) : FALSE
relation('1,'2) : FALSE
relation('1,'3) : FALSE
relation('1,'4) : TRUE
relname('1,'1) : FALSE
relname('1,'2) : FALSE
relname('1,'3) : FALSE
relname('1,'4) : TRUE
shake_beverage('1,'1) : FALSE
shake_beverage('1,'2) : TRUE
shake_beverage('1,'3) : FALSE
shake_beverage('1,'4) : FALSE
singleton('1,'1) : TRUE
singleton('1,'2) : TRUE
singleton('1,'3) : TRUE
singleton('1,'4) : TRUE
skc5 = '1
skc6 = '3
skc7 = '2
skc8 = '4
skc9 = '1
specific('1,'1) : TRUE
specific('1,'2) : TRUE
specific('1,'3) : TRUE
specific('1,'4) : FALSE
substance_matter('1,'1) : FALSE
substance_matter('1,'2) : TRUE
substance_matter('1,'3) : FALSE
substance_matter('1,'4) : FALSE
thing('1,'1) : TRUE
thing('1,'2) : TRUE
thing('1,'3) : TRUE
thing('1,'4) : TRUE
unisex('1,'1) : FALSE
unisex('1,'2) : TRUE
unisex('1,'3) : TRUE
unisex('1,'4) : TRUE
woman('1,'1) : TRUE
woman('1,'2) : FALSE
woman('1,'3) : FALSE
woman('1,'4) : FALSE
Paradox 1.1-casc
Koen Claessen, Niklas Sörensson
Chalmers University of Technology and
Gothenburg University, Sweden
{koen,nik}@cs.chalmers.se
Solution Description
When it has found a model, Paradox produces a table of definitions for each
constant symbol, function symbol, and predicate symbol.
The table is sorted alphabetically.
In the table, domain elements are represented as positive natural numbers
preceded by a ' (tick).
Sample Solution to MGT031-1
an_organisation = '1
appear('1,'1) = '2
appear('1,'2) = '2
appear('2,'1) = '1
appear('2,'2) = '1
cardinality_at_time('1,'1) = '2
cardinality_at_time('1,'2) = '2
cardinality_at_time('2,'1) = '2
cardinality_at_time('2,'2) = '2
e = '1
efficient_producers = '2
environment('1) : FALSE
environment('2) : TRUE
first_movers = '2
greater('1,'1) : TRUE
greater('1,'2) : TRUE
greater('2,'1) : FALSE
greater('2,'2) : TRUE
greater_or_equal('1,'1) : TRUE
greater_or_equal('1,'2) : TRUE
greater_or_equal('2,'1) : FALSE
greater_or_equal('2,'2) : TRUE
in_environment('1,'1) : TRUE
in_environment('1,'2) : TRUE
in_environment('2,'1) : TRUE
in_environment('2,'2) : TRUE
number_of_organizations('1,'1) = '2
number_of_organizations('1,'2) = '1
number_of_organizations('2,'1) = '2
number_of_organizations('2,'2) = '2
sk1('1,'1) = '2
sk1('1,'2) = '2
sk1('2,'1) = '2
sk1('2,'2) = '2
sk2 = '2
subpopulation('1,'1,'1) : TRUE
subpopulation('1,'1,'2) : TRUE
subpopulation('1,'2,'1) : TRUE
subpopulation('1,'2,'2) : TRUE
subpopulation('2,'1,'1) : TRUE
subpopulation('2,'1,'2) : TRUE
subpopulation('2,'2,'1) : TRUE
subpopulation('2,'2,'2) : TRUE
zero = '1
Sample Solution to NLP041-1
abstraction('1,'1) : FALSE
abstraction('1,'2) : FALSE
abstraction('1,'3) : FALSE
abstraction('1,'4) : TRUE
act('1,'1) : FALSE
act('1,'2) : FALSE
act('1,'3) : TRUE
act('1,'4) : FALSE
actual_world('1) : TRUE
agent('1,'1,'1) : TRUE
agent('1,'1,'2) : TRUE
agent('1,'1,'3) : TRUE
agent('1,'1,'4) : TRUE
agent('1,'2,'1) : TRUE
agent('1,'2,'2) : TRUE
agent('1,'2,'3) : TRUE
agent('1,'2,'4) : TRUE
agent('1,'3,'1) : TRUE
agent('1,'3,'2) : FALSE
agent('1,'3,'3) : FALSE
agent('1,'3,'4) : FALSE
agent('1,'4,'1) : TRUE
agent('1,'4,'2) : TRUE
agent('1,'4,'3) : TRUE
agent('1,'4,'4) : FALSE
animate('1,'1) : TRUE
animate('1,'2) : FALSE
animate('1,'3) : FALSE
animate('1,'4) : FALSE
beverage('1,'1) : FALSE
beverage('1,'2) : TRUE
beverage('1,'3) : FALSE
beverage('1,'4) : FALSE
entity('1,'1) : TRUE
entity('1,'2) : TRUE
entity('1,'3) : FALSE
entity('1,'4) : FALSE
event('1,'1) : FALSE
event('1,'2) : FALSE
event('1,'3) : TRUE
event('1,'4) : FALSE
eventuality('1,'1) : FALSE
eventuality('1,'2) : FALSE
eventuality('1,'3) : TRUE
eventuality('1,'4) : FALSE
existent('1,'1) : TRUE
existent('1,'2) : TRUE
existent('1,'3) : FALSE
existent('1,'4) : FALSE
female('1,'1) : TRUE
female('1,'2) : FALSE
female('1,'3) : FALSE
female('1,'4) : FALSE
food('1,'1) : FALSE
food('1,'2) : TRUE
food('1,'3) : FALSE
food('1,'4) : FALSE
forename('1,'1) : FALSE
forename('1,'2) : FALSE
forename('1,'3) : FALSE
forename('1,'4) : TRUE
general('1,'1) : FALSE
general('1,'2) : FALSE
general('1,'3) : FALSE
general('1,'4) : TRUE
human('1,'1) : TRUE
human('1,'2) : FALSE
human('1,'3) : FALSE
human('1,'4) : FALSE
human_person('1,'1) : TRUE
human_person('1,'2) : FALSE
human_person('1,'3) : FALSE
human_person('1,'4) : FALSE
impartial('1,'1) : TRUE
impartial('1,'2) : TRUE
impartial('1,'3) : FALSE
impartial('1,'4) : FALSE
living('1,'1) : TRUE
living('1,'2) : FALSE
living('1,'3) : FALSE
living('1,'4) : FALSE
mia_forename('1,'1) : FALSE
mia_forename('1,'2) : FALSE
mia_forename('1,'3) : FALSE
mia_forename('1,'4) : TRUE
nonexistent('1,'1) : FALSE
nonexistent('1,'2) : FALSE
nonexistent('1,'3) : TRUE
nonexistent('1,'4) : TRUE
nonhuman('1,'1) : FALSE
nonhuman('1,'2) : TRUE
nonhuman('1,'3) : TRUE
nonhuman('1,'4) : TRUE
nonliving('1,'1) : FALSE
nonliving('1,'2) : TRUE
nonliving('1,'3) : TRUE
nonliving('1,'4) : TRUE
nonreflexive('1,'1) : FALSE
nonreflexive('1,'2) : FALSE
nonreflexive('1,'3) : TRUE
nonreflexive('1,'4) : TRUE
object('1,'1) : FALSE
object('1,'2) : TRUE
object('1,'3) : FALSE
object('1,'4) : FALSE
of('1,'1,'1) : FALSE
of('1,'1,'2) : TRUE
of('1,'1,'3) : TRUE
of('1,'1,'4) : TRUE
of('1,'2,'1) : FALSE
of('1,'2,'2) : TRUE
of('1,'2,'3) : TRUE
of('1,'2,'4) : TRUE
of('1,'3,'1) : FALSE
of('1,'3,'2) : TRUE
of('1,'3,'3) : TRUE
of('1,'3,'4) : TRUE
of('1,'4,'1) : TRUE
of('1,'4,'2) : TRUE
of('1,'4,'3) : TRUE
of('1,'4,'4) : TRUE
order('1,'1) : FALSE
order('1,'2) : FALSE
order('1,'3) : TRUE
order('1,'4) : FALSE
organism('1,'1) : TRUE
organism('1,'2) : FALSE
organism('1,'3) : FALSE
organism('1,'4) : FALSE
past('1,'1) : FALSE
past('1,'2) : FALSE
past('1,'3) : TRUE
past('1,'4) : FALSE
patient('1,'1,'1) : TRUE
patient('1,'1,'2) : TRUE
patient('1,'1,'3) : TRUE
patient('1,'1,'4) : TRUE
patient('1,'2,'1) : TRUE
patient('1,'2,'2) : TRUE
patient('1,'2,'3) : TRUE
patient('1,'2,'4) : TRUE
patient('1,'3,'1) : FALSE
patient('1,'3,'2) : TRUE
patient('1,'3,'3) : TRUE
patient('1,'3,'4) : TRUE
patient('1,'4,'1) : FALSE
patient('1,'4,'2) : FALSE
patient('1,'4,'3) : FALSE
patient('1,'4,'4) : TRUE
relation('1,'1) : FALSE
relation('1,'2) : FALSE
relation('1,'3) : FALSE
relation('1,'4) : TRUE
relname('1,'1) : FALSE
relname('1,'2) : FALSE
relname('1,'3) : FALSE
relname('1,'4) : TRUE
shake_beverage('1,'1) : FALSE
shake_beverage('1,'2) : TRUE
shake_beverage('1,'3) : FALSE
shake_beverage('1,'4) : FALSE
singleton('1,'1) : TRUE
singleton('1,'2) : TRUE
singleton('1,'3) : TRUE
singleton('1,'4) : TRUE
skc5 = '1
skc6 = '3
skc7 = '2
skc8 = '4
skc9 = '1
specific('1,'1) : TRUE
specific('1,'2) : TRUE
specific('1,'3) : TRUE
specific('1,'4) : FALSE
substance_matter('1,'1) : FALSE
substance_matter('1,'2) : TRUE
substance_matter('1,'3) : FALSE
substance_matter('1,'4) : FALSE
thing('1,'1) : TRUE
thing('1,'2) : TRUE
thing('1,'3) : TRUE
thing('1,'4) : TRUE
unisex('1,'1) : FALSE
unisex('1,'2) : TRUE
unisex('1,'3) : TRUE
unisex('1,'4) : TRUE
woman('1,'1) : TRUE
woman('1,'2) : FALSE
woman('1,'3) : FALSE
woman('1,'4) : FALSE
THEO J2004
Monty Newborn
McGill University
newborn@cs.mcgill.ca
Sample MIX proof for SYN075-1
THE PROOF OF GIVEN THEOREM
Axioms:
1: ~E.[x,y] ~big_f[x,z] big_f[y,z]
2: ~E.[x,y] ~big_f[z,x] big_f[z,y]
3: ~E.[x,y] ~E.[y,z] E.[x,z]
4S>~E.[x,a] ~E.[y,b] big_f[x,y]
5: ~E.[x,y] E.[h[x,z],h[y,z]]
6S ~E.[x,y] E.[h[z,x],h[z,y]]
7: ~E.[x,y] E.[f[x],f[y]]
8: ~E.[x,y] E.[g[x],g[y]]
9S ~big_f[x,y] E.[x,a]
10: ~big_f[x,y] E.[y,b]
11: ~E.[x,y] E.[y,x]
12S>E.[x,x]
Negated conclusion:
13S ~big_f[x,f[y]] E.[x,g[y]] big_f[h[y,z],f[y]] ~big_f[h[y,z],f[y]]
14S ~E.[x,g[y]] big_f[x,f[y]] big_f[h[y,z],f[y]] E.[h[y,z],z]
15S ~E.[x,g[y]] big_f[x,f[y]] ~E.[h[y,z],z] ~big_f[h[y,z],f[y]]
16S ~E.[f[x],x] ~E.[h[x,y],y] ~big_f[h[x,y],f[x]]
17S ~E.[f[x],x] big_f[h[x,y],f[x]] E.[h[x,y],y]
18# ~big_f[x,f[y]] ~E.[x,g[y]] E.[f[y],y]
19# ~E.[x,g[y]] big_f[x,f[y]] E.[f[y],y]
---------------
Phase 0 clauses used in proof:
20S>E.[f[x],x]
21S>E.[h[x,a],a]
23 >~E.[f[x],x] ~big_f[h[x,h[x,y]],f[x]] ~E.[h[x,y],y]
24S>(23a*20a) ~big_f[h[x,h[x,y]],f[x]] ~E.[h[x,y],y]
28S>(24b*21a) ~big_f[h[x,h[x,a]],f[x]]
Phases 1 and 2 clauses used in proof:
29S>(28a,4c) ~E.[h[x,h[x,a]],a] ~E.[f[x],b]
30S>[29a,21a] ~E.[h[x,a],a] ~E.[f[x],b]
31S>[30a,21a] ~E.[a,a] ~E.[f[x],b]
32S>[31b,20a] ~E.[a,a] ~E.[x,b]
33S>[32a,12a] ~E.[x,b]
34S>(33a,12a) []
SOS 1.0
John Slaney
Australian National University
John.Slaney@anu.edu.au
Sample MIX proof for SYN075-1
---------------- PROOF ----------------
1 [] {+} -big_f(A,B)|equal(A,a).
2 [] {+} -big_f(A,B)|equal(B,b).
3 [] {+} -equal(A,a)| -equal(B,b)|big_f(A,B).
4 [] {+} -big_f(A,f(B))| -equal(A,g(B))|equal(f(B),B).
5 [] {+} -equal(A,g(B))|big_f(A,f(B))|equal(f(B),B).
8 [] {+} -equal(f(A),A)|big_f(h(A,B),f(A))|equal(h(A,B),B).
9 [] {+} -equal(f(A),A)| -equal(h(A,B),B)| -big_f(h(A,B),f(A)).
11 [] {-} equal(A,A).
13 [hyper,11,5] {-} big_f(g(A),f(A))|equal(f(A),A).
14 [hyper,11,3,11] {-} big_f(a,b).
21 [hyper,13,3,11] {-} big_f(g(b),f(b))|big_f(a,f(b)).
62 [hyper,21,4,11] {-} big_f(a,f(b))|equal(f(b),b).
79 [hyper,62,3,11,factor_simp] {-} big_f(a,f(b)).
81,80 [hyper,79,2] {-} equal(f(b),b).
126 [hyper,80,8,demod,81] {-} big_f(h(b,A),b)|equal(h(b,A),A).
319 [hyper,126,3,80,demod,81,factor_simp] {-} big_f(h(b,a),b).
331,330 [hyper,319,1] {-} equal(h(b,a),a).
335 [para_from,330.1.1,9.3.1,demod,81,331,81,unit_del,11,11,14] {-} $F.
------------ end of proof -------------
Sample MIX proof for RNG021-6
---------------- PROOF ----------------
1 [] {-} -equal(associator(add(u,v),x,y),add(associator(u,x,y),associator(v,x,y))).
2 [copy,1,flip.1] {+} -equal(add(associator(u,x,y),associator(v,x,y)),associator(add(u,v),x,y)).
5,4 [] {+} equal(add(additive_identity,A),A).
7,6 [] {+} equal(add(A,additive_identity),A).
9,8 [] {+} equal(multiply(additive_identity,A),additive_identity).
12 [] {+} equal(add(additive_inverse(A),A),additive_identity).
14 [] {+} equal(add(A,additive_inverse(A)),additive_identity).
21,20 [] {-} equal(multiply(add(A,B),C),add(multiply(A,C),multiply(B,C))).
22 [] {+} equal(add(A,B),add(B,A)).
23 [] {-} equal(add(A,add(B,C)),add(add(A,B),C)).
25,24 [copy,23,flip.1] {-} equal(add(add(A,B),C),add(A,add(B,C))).
30 [] {-} equal(associator(A,B,C),add(multiply(multiply(A,B),C),additive_inverse(multiply(A,multiply(B,C))))).
31 [copy,30,flip.1] {-} equal(add(multiply(multiply(A,B),C),additive_inverse(multiply(A,multiply(B,C)))),associator(A,B,C)).
55 [para_into,24.1.1.1,22.1.1,demod,25] {-} equal(add(A,add(B,C)),add(B,add(A,C))).
56 [para_into,24.1.1.1,14.1.1,demod,5,flip.1] {+} equal(add(A,add(additive_inverse(A),B)),B).
58 [para_into,24.1.1.1,12.1.1,demod,5,flip.1] {+} equal(add(additive_inverse(A),add(A,B)),B).
61 [para_into,24.1.1,14.1.1,flip.1] {-} equal(add(A,add(B,additive_inverse(add(A,B)))),additive_identity).
64 [para_into,56.1.1.2,22.1.1] {+} equal(add(A,add(B,additive_inverse(A))),B).
68 [para_into,56.1.1,22.1.1,demod,25] {+} equal(add(additive_inverse(A),add(B,A)),B).
76 [para_into,20.1.1.1,14.1.1,demod,9,flip.1] {-} equal(add(multiply(A,B),multiply(additive_inverse(A),B)),additive_identity).
86 [para_into,64.1.1.2,24.1.1] {-} equal(add(A,add(B,add(C,additive_inverse(A)))),add(B,C)).
102 [para_into,61.1.1,22.1.1,demod,25] {-} equal(add(A,add(additive_inverse(add(B,A)),B)),additive_identity).
178 [para_into,58.1.1.2,102.1.1,demod,7,flip.1] {+} equal(add(additive_inverse(add(A,B)),A),additive_inverse(B)).
187,186 [para_into,58.1.1.2,76.1.1,demod,7] {+} equal(additive_inverse(multiply(A,B)),multiply(additive_inverse(A),B)).
197 [back_demod,31,demod,187] {-} equal(add(multiply(multiply(A,B),C),multiply(additive_inverse(A),multiply(B,C))),associator(A,B,C)).
230 [para_into,55.1.1.2,76.1.1,demod,7,flip.1] {-} equal(add(multiply(A,B),add(C,multiply(additive_inverse(A),B))),C).
264,263 [para_into,178.1.1.1.1,68.1.1,flip.1] {+} equal(additive_inverse(add(A,B)),add(additive_inverse(A),additive_inverse(B))).
316,315 [para_from,186.1.1,86.1.1.2.2.2] {-} equal(add(multiply(A,B),add(C,add(D,multiply(additive_inverse(A),B)))),add(C,D)).
2052 [para_into,197.1.1.1.1,20.1.1,demod,21,264,21,25] {-} equal(add(multiply(multiply(A,B),C),add(multiply(multiply(D,B),C),add(multiply(additive_inverse(A),multiply(B,C)),multiply(additive_inverse(D),multiply(B,C))))),associator(add(A,D),B,C)).
2156,2155 [para_from,197.1.1,230.1.1.2,flip.1] {-} equal(multiply(multiply(A,B),C),add(multiply(A,multiply(B,C)),associator(A,B,C))).
2187 [back_demod,2052,demod,2156,2156,25,316,25,316] {-} equal(add(associator(A,B,C),associator(D,B,C)),associator(add(A,D),B,C)).
2189 [binary,2187.1,2.1] {-} $F.
------------ end of proof -------------
Sample FOF proof for SYN075+1
---------------- PROOF ----------------
1 [] {+} -big_f(A,B)|equal(A,$c2).
2 [] {+} -big_f(A,B)|equal(B,$c1).
3 [] {+} big_f(A,B)| -equal(A,$c2)| -equal(B,$c1).
5 [] {+} big_f(A,$f3(B))| -equal(A,$f1(B))|equal($f3(B),B).
6 [] {+} big_f($f2(A,B),$f3(A))|equal($f2(A,B),B)| -equal($f3(A),A).
7 [] {+} -big_f($f2(A,B),$f3(A))| -equal($f2(A,B),B)| -equal($f3(A),A).
8 [] {-} equal(A,A).
9 [hyper,8,5] {-} big_f($f1(A),$f3(A))|equal($f3(A),A).
10 [hyper,8,3,8] {-} big_f($c2,$c1).
24 [hyper,9,3,8] {-} big_f($f1($c1),$f3($c1))|big_f($c2,$f3($c1)).
58 [hyper,24,2] {-} big_f($c2,$f3($c1))|equal($f3($c1),$c1).
82 [hyper,58,3,8,factor_simp] {-} big_f($c2,$f3($c1)).
85,84 [hyper,82,2] {-} equal($f3($c1),$c1).
105 [hyper,84,6,demod,85] {-} big_f($f2($c1,A),$c1)|equal($f2($c1,A),A).
259 [hyper,105,3,84,demod,85,factor_simp] {-} big_f($f2($c1,$c2),$c1).
272,271 [hyper,259,1] {-} equal($f2($c1,$c2),$c2).
279 [para_from,271.1.1,7.2.1,demod,272,85,85,unit_del,10,8,8] {-} $F.
------------ end of proof -------------
Vampire 6.0
Alexandre Riazanov, Andrei Voronkov
University of Manchester, England
{riazanoa,voronkov}@cs.man.ac.uk
KEY FOR VAMPIRE PROOFS
Example 1. A step from the sample solution for SYN551+1
*********** [<number>] ***************
<clause/formula body>
******* [<premise number>,..,<premise number>-><conclusion number>] **********
<premise>
.
.
.
<premise>
-------------------------------
<conclusion>
Premises and conclusions can be formulas or clauses.
*********** [11->20] ***********
(~X0=f(g(X0)) \/
((sk1=f(g(sk1)) &
~sk1=sk0) &
sk0=f(g(sk0))) \/
~X3=g(f(X3)) \/
((sk3=g(f(sk3)) &
~sk3=sk2) &
sk2=g(f(sk2)))) &
((sk4=f(g(sk4)) &
((~X8=f(g(X8)) \/
X8=X7) \/
~X7=f(g(X7)))) \/
(sk5=g(f(sk5)) &
((~X11=g(f(X11)) \/
X11=X10) \/
~X10=g(f(X10)))))
-----------------------------
sk2=g(f(sk2)) \/ ~X3=g(f(X3)) \/ sk0=f(g(sk0)) \/ ~X0=f(g(X0))
The conclusion [20] is one of the clauses obtained by clausification
of the premise [11]. The constant sk5 was introduced by skolemisation.
*********** [20->25] ***********
sk2=g(f(sk2)) \/ ~X3=g(f(X3)) \/ sk0=f(g(sk0)) \/ ~X0=f(g(X0))
-----------------------------
~g(f(X0))=X0 \/ p__2
*********** [20->31] ***********
sk2=g(f(sk2)) \/ ~X3=g(f(X3)) \/ sk0=f(g(sk0)) \/ ~X0=f(g(X0))
-----------------------------
~f(g(X0))=X0 \/ p__3
*********** [20->42] ***********
sk2=g(f(sk2)) \/ ~X3=g(f(X3)) \/ sk0=f(g(sk0)) \/ ~X0=f(g(X0))
-----------------------------
f(g(sk0))=sk0 \/ g(f(sk2))=sk2 \/ ~p__2 \/ ~p__3
These steps together form a splitting inference.
In the first two we introduce names p__2 and p__3
for the components ~X3=g(f(X3)) and ~X0=f(g(X0))
of the clause [20].
The last one is obtained by folding the components.
*********** [9->10] ***********
~apply(strong_fixed_point,fixed_pt)=apply(fixed_pt,apply(strong_fixed_point,fixe
d_pt))
-----------------------------
~p__0(apply(strong_fixed_point,fixed_pt)
*********** [9->12] ***********
~apply(strong_fixed_point,fixed_pt)=apply(fixed_pt,apply(strong_fixed_point,fixe
d_pt))
-----------------------------
p__0(apply(fixed_pt,apply(strong_fixed_point,fixed_pt)))
These steps form a negative equality splitting.
Again, p__0 is a new predicate.
Sample MIX proof for SYN075-1
Refutation found. Thanks to Tanya!
*********** [12] ***********
~X0=a \/ ~X1=b \/ big_f(X0,X1)
*********** [12->20] ***********
~X0=a \/ ~X1=b \/ big_f(X0,X1)
-----------------------------
big_f(a,b)
*********** [20->21] ***********
big_f(a,b)
-----------------------------
big_f(a,b)
*********** [10] ***********
~big_f(X0,X1) \/ X0=a
*********** [10->22] ***********
~big_f(X0,X1) \/ X0=a
-----------------------------
~big_f(X0,X1) \/ X0=a
*********** [22->23] ***********
~big_f(X0,X1) \/ X0=a
-----------------------------
~big_f(X0,X1) \/ X0=a
*********** [13] ***********
~big_f(X1,f(X0)) \/ ~X1=g(X0) \/ f(X0)=X0
*********** [13->24] ***********
~big_f(X1,f(X0)) \/ ~X1=g(X0) \/ f(X0)=X0
-----------------------------
~big_f(g(X0),f(X0)) \/ f(X0)=X0
*********** [15] ***********
~X1=g(X0) \/ big_f(X1,f(X0)) \/ f(X0)=X0
*********** [24,15->25] ***********
~big_f(g(X0),f(X0)) \/ f(X0)=X0
~X1=g(X0) \/ big_f(X1,f(X0)) \/ f(X0)=X0
-----------------------------
f(X0)=X0
*********** [25->26] ***********
f(X0)=X0
-----------------------------
f(X0)=X0
*********** [18] ***********
~f(X0)=X0 \/ big_f(h(X0,X2),f(X0)) \/ h(X0,X2)=X2
*********** [18->27] ***********
~f(X0)=X0 \/ big_f(h(X0,X2),f(X0)) \/ h(X0,X2)=X2
-----------------------------
~f(X0)=X0 \/ h(X0,X1)=X1 \/ big_f(h(X0,X1),f(X0))
*********** [26,26,27->28] ***********
f(X0)=X0
f(X0)=X0
~f(X0)=X0 \/ h(X0,X1)=X1 \/ big_f(h(X0,X1),f(X0))
-----------------------------
big_f(h(X0,X1),X0) \/ h(X0,X1)=X1
*********** [23,28->29] ***********
~big_f(X0,X1) \/ X0=a
big_f(h(X0,X1),X0) \/ h(X0,X1)=X1
-----------------------------
h(X0,X1)=a \/ h(X0,X1)=X1
*********** [29->30] ***********
h(X0,X1)=a \/ h(X0,X1)=X1
-----------------------------
h(X0,a)=a
*********** [19] ***********
~f(X0)=X0 \/ ~h(X0,X2)=X2 \/ ~big_f(h(X0,X2),f(X0))
*********** [19->31] ***********
~f(X0)=X0 \/ ~h(X0,X2)=X2 \/ ~big_f(h(X0,X2),f(X0))
-----------------------------
~big_f(h(X0,X1),f(X0)) \/ ~h(X0,X1)=X1 \/ ~f(X0)=X0
*********** [26,26,31->32] ***********
f(X0)=X0
f(X0)=X0
~big_f(h(X0,X1),f(X0)) \/ ~h(X0,X1)=X1 \/ ~f(X0)=X0
-----------------------------
~h(X0,X1)=X1 \/ ~big_f(h(X0,X1),X0)
*********** [30,32,30->33] ***********
h(X0,a)=a
~h(X0,X1)=X1 \/ ~big_f(h(X0,X1),X0)
h(X0,a)=a
-----------------------------
~big_f(a,X0)
*********** [21,33->34] ***********
big_f(a,b)
~big_f(a,X0)
-----------------------------
#
======= End of refutation =======
Vampire 7.0
Alexandre Riazanov, Andrei Voronkov
University of Manchester, England
{riazanoa,voronkov}@cs.man.ac.uk
Names of rules used in Vampire 7.0 proofs, and their meanings
Input axiom, hypothesis or the negation of conjecture
Additional axiom (Ax)((Ey)F(x,y) -> F(x,f(x))),
where f is a Skolem function
(Ax)(F(x)->F'(x)), G[F(t)] => G[F'(t)]
G[(Ax)F(x)] => G[F(t)]
G[~(F1 & ... & Fn)] => G[~F1 \/ ... \/ ~Fn]
G[~(F1 \/ ... \/ Fn)] => G[~F1 & ... & ~Fn]
G[~(F1 -> F2)] => G[F1 & ~F2]
G[~(F1 <-> F2)] => G[F1 <~> F2]
G[~(F1 <~> F2)] => G[F1 <-> F2]
G[~~F] => G[F]
G[~(Ax)F] => G[(Ex)~F]
G[~(Ex)F] => G[(Ax)~F]
G[F1 -> F2] => G[~F1 \/ F2]
G[F1 <-> F2] => G[(F1 -> F2) & (F2 -> F1)]
G[F1 <~> F2] => G[(F1 \/ F2) & (~F1 \/ ~F2)]
Renaming of bound variables.
G[(Q x1 ... xk ... x_n)A] => G[(Q x1 ... xk-1 xk+1 ... x_n)A]
where xk does not occur in A
G[(A x1 ... xn)(F1 & ... & Fm)] => G[(A x1 ... xn)F1 & ... & (A x1 ... xn)Fm)]
G[(E x1 ... xn)(F1 \/ ... \/ Fm)] =>
G[(E x1 ... xn)F1 \/ ... \/ (E x1 ... xn)Fm)]
G[(Q x)(Q y)F] => G[(Q y)(Q x)F]
G[(A x1 x2)(F1 \/ F2)] => G[(A x1)F1 \/ ... \/ (A x2)F2)],
where x2 does not occur in F1. Can be applied to many variables
and disjunctions of arbitrary length.
G[(E x1 x2)(F1 & F2)] => G[(E x1)F1 & ... & (E x2)F2)],
where x2 does not occur in F1. Can be applied to many variables
and disjunctions of arbitrary length.
Applies symmetry of <->, <~>, \/ or &.
Applies associativity of \/ or &.
Applies symmetry of the equality predicate.
G[F1 <-> F2] => G[F1 -> F2],
G[F1 <-> F2] => G[F2 -> F1],
provided that the context G[.] is positive.
G[(E x) F1 \/ F2] => G[(E x) F1 \/ (E x) F2]
G[(A x) F1 & F2] => G[(A x) F1 & (A x) F2]
G[F1 & .. Fk-1 & Fk & Fk+1 & .. & Fn] =>
G[F1 & .. Fk-1 & Fk+1 & .. & Fn],
where the context G[.] is positive.
Factorises duplicate literals in a clause.
Binary resolution (on literals, not arbitrary formulas)
Any combination of the following rules on clauses: binary resolution,
factoring, paramodulation, equality resolution, equality factoring,
permutation of literals in a clause, renaming of free variables
in a clause.
Sample MIX proof for SYN075-1
=========== Refutation ==========
*********** [3, input] ***********
X0!=a \/ X1!=b \/ big_f(X0,X1)
*********** [3->13, kernel inference] ***********
X0!=a \/ X1!=b \/ big_f(X0,X1)
-----------------------------
X1!=b \/ X2!=a \/ big_f(X2,X1)
*********** [13->22, kernel inference] ***********
X1!=b \/ X2!=a \/ big_f(X2,X1)
-----------------------------
X1!=b \/ X2!=a \/ big_f(X2,X1)
*********** [22->28, kernel inference] ***********
X1!=b \/ X2!=a \/ big_f(X2,X1)
-----------------------------
X1!=a \/ big_f(X1,b)
*********** [28->33, kernel inference] ***********
X1!=a \/ big_f(X1,b)
-----------------------------
big_f(a,b)
*********** [1, input] ***********
~big_f(X0,X1) \/ X0=a
*********** [1->11, kernel inference] ***********
~big_f(X0,X1) \/ X0=a
-----------------------------
~big_f(X1,X2) \/ X1=a
*********** [11->20, kernel inference] ***********
~big_f(X1,X2) \/ X1=a
-----------------------------
~big_f(X1,X2) \/ X1=a
*********** [9, input] ***********
f(X0)!=X0 \/ big_f(h(X0,X2),f(X0)) \/ h(X0,X2)=X2
*********** [9->18, kernel inference] ***********
f(X0)!=X0 \/ big_f(h(X0,X2),f(X0)) \/ h(X0,X2)=X2
-----------------------------
f(X1)!=X1 \/ h(X1,X2)=X2 \/ big_f(h(X1,X2),f(X1))
*********** [18->26, kernel inference] ***********
f(X1)!=X1 \/ h(X1,X2)=X2 \/ big_f(h(X1,X2),f(X1))
-----------------------------
f(X1)!=X1 \/ h(X1,X2)=X2 \/ big_f(h(X1,X2),f(X1))
*********** [4, input] ***********
~big_f(X1,f(X0)) \/ X1!=g(X0) \/ f(X0)=X0
*********** [4->14, kernel inference] ***********
~big_f(X1,f(X0)) \/ X1!=g(X0) \/ f(X0)=X0
-----------------------------
X1!=g(X2) \/ f(X2)=X2 \/ ~big_f(X1,f(X2))
*********** [6, input] ***********
X1!=g(X0) \/ big_f(X1,f(X0)) \/ f(X0)=X0
*********** [14,6->15, kernel inference] ***********
X1!=g(X2) \/ f(X2)=X2 \/ ~big_f(X1,f(X2))
X1!=g(X0) \/ big_f(X1,f(X0)) \/ f(X0)=X0
-----------------------------
X1!=g(X2) \/ f(X2)=X2
*********** [15->23, kernel inference] ***********
X1!=g(X2) \/ f(X2)=X2
-----------------------------
X1!=g(X2) \/ f(X2)=X2
*********** [23->29, kernel inference] ***********
X1!=g(X2) \/ f(X2)=X2
-----------------------------
f(X1)=X1
*********** [26,29->31, kernel inference] ***********
f(X1)!=X1 \/ h(X1,X2)=X2 \/ big_f(h(X1,X2),f(X1))
f(X1)=X1
-----------------------------
big_f(h(X1,X2),X1) \/ h(X1,X2)=X2
*********** [20,31->35, kernel inference] ***********
~big_f(X1,X2) \/ X1=a
big_f(h(X1,X2),X1) \/ h(X1,X2)=X2
-----------------------------
h(X1,X2)=a \/ h(X1,X2)=X2
*********** [35->36, kernel inference] ***********
h(X1,X2)=a \/ h(X1,X2)=X2
-----------------------------
a!=X1 \/ h(X2,X1)=X1
*********** [36->40, kernel inference] ***********
a!=X1 \/ h(X2,X1)=X1
-----------------------------
h(X1,a)=a
*********** [10, input] ***********
f(X0)!=X0 \/ h(X0,X2)!=X2 \/ ~big_f(h(X0,X2),f(X0))
*********** [10->19, kernel inference] ***********
f(X0)!=X0 \/ h(X0,X2)!=X2 \/ ~big_f(h(X0,X2),f(X0))
-----------------------------
~big_f(h(X1,X2),f(X1)) \/ h(X1,X2)!=X2 \/ f(X1)!=X1
*********** [19->27, kernel inference] ***********
~big_f(h(X1,X2),f(X1)) \/ h(X1,X2)!=X2 \/ f(X1)!=X1
-----------------------------
~big_f(h(X1,X2),f(X1)) \/ h(X1,X2)!=X2 \/ f(X1)!=X1
*********** [27,29->32, kernel inference] ***********
~big_f(h(X1,X2),f(X1)) \/ h(X1,X2)!=X2 \/ f(X1)!=X1
f(X1)=X1
-----------------------------
h(X1,X2)!=X2 \/ ~big_f(h(X1,X2),X1)
*********** [40,32,40->41, kernel inference] ***********
h(X1,a)=a
h(X1,X2)!=X2 \/ ~big_f(h(X1,X2),X1)
h(X1,a)=a
-----------------------------
~big_f(a,X1)
*********** [33,41->42, kernel inference] ***********
big_f(a,b)
~big_f(a,X1)
-----------------------------
#
======= End of refutation =======
Sample FOF proof for SYN075+1
=========== Refutation ==========
*********** [1, input] ***********
(? X1 X0)(! X3 X2)(big_f(X3,X2) <=> X3=X1 & X2=X0)
*********** [1->3, rectify] ***********
(? X1 X0)(! X3 X2)(big_f(X3,X2) <=> X3=X1 & X2=X0)
-----------------------------
(? X0 X1)(! X2 X3)(big_f(X2,X3) <=> X2=X0 & X3=X1)
*********** [3->84, equivalence-to-and] ***********
(? X0 X1)(! X2 X3)(big_f(X2,X3) <=> X2=X0 & X3=X1)
-----------------------------
(? X0 X1)(! X2 X3)((big_f(X2,X3) => X2=X0 & X3=X1) & (X2=X0 & X3=X1 => big_f(X2,X3)))
*********** [84->85, implies-to-or] ***********
(? X0 X1)(! X2 X3)((big_f(X2,X3) => X2=X0 & X3=X1) & (X2=X0 & X3=X1 => big_f(X2,X3)))
-----------------------------
(? X0 X1)(! X2 X3)((big_f(X2,X3) => X2=X0 & X3=X1) & (~(X2=X0 & X3=X1) \/ big_f(X2,X3)))
*********** [85->86, not-and] ***********
(? X0 X1)(! X2 X3)((big_f(X2,X3) => X2=X0 & X3=X1) & (~(X2=X0 & X3=X1) \/ big_f(X2,X3)))
-----------------------------
(? X0 X1)(! X2 X3)((big_f(X2,X3) => X2=X0 & X3=X1) & ((~X2=X0 \/ ~X3=X1) \/ big_f(X2,X3)))
*********** [86->5, implies-to-or] ***********
(? X0 X1)(! X2 X3)((big_f(X2,X3) => X2=X0 & X3=X1) & ((~X2=X0 \/ ~X3=X1) \/ big_f(X2,X3)))
-----------------------------
(? X0 X1)(! X2 X3)((~big_f(X2,X3) \/ (X2=X0 & X3=X1)) & ((~X2=X0 \/ ~X3=X1) \/ big_f(X2,X3)))
*********** [5->6, flattening] ***********
(? X0 X1)(! X2 X3)((~big_f(X2,X3) \/ (X2=X0 & X3=X1)) & ((~X2=X0 \/ ~X3=X1) \/ big_f(X2,X3)))
-----------------------------
(? X0 X1)(! X2 X3)((~big_f(X2,X3) \/ (X2=X0 & X3=X1)) & (~X2=X0 \/ ~X3=X1 \/ big_f(X2,X3)))
*********** [6->89, forall-and] ***********
(? X0 X1)(! X2 X3)((~big_f(X2,X3) \/ (X2=X0 & X3=X1)) & (~X2=X0 \/ ~X3=X1 \/ big_f(X2,X3)))
-----------------------------
(? X0 X1)((! X2 X3)(~big_f(X2,X3) \/ (X2=X0 & X3=X1)) & (! X2 X3)(~X2=X0 \/ ~X3=X1 \/ big_f(X2,X3)))
*********** [89->7, forall-or] ***********
(? X0 X1)((! X2 X3)(~big_f(X2,X3) \/ (X2=X0 & X3=X1)) & (! X2 X3)(~X2=X0 \/ ~X3=X1 \/ big_f(X2,X3)))
-----------------------------
(? X0 X1)((! X2 X3)(~big_f(X2,X3) \/ (X2=X0 & X3=X1)) & (! X3)((! X2)(~X2=X0 \/ big_f(X2,X3)) \/ ~X3=X1))
*********** [7->8, rectify] ***********
(? X0 X1)((! X2 X3)(~big_f(X2,X3) \/ (X2=X0 & X3=X1)) & (! X3)((! X2)(~X2=X0 \/ big_f(X2,X3)) \/ ~X3=X1))
-----------------------------
(? X0 X1)((! X2 X3)(~big_f(X2,X3) \/ (X2=X0 & X3=X1)) & (! X4)((! X5)(~X5=X0 \/ big_f(X5,X4)) \/ ~X4=X1))
*********** [91, choice axiom] ***********
(? X0 X1)((! X2 X3)(~big_f(X2,X3) \/ (X2=X0 & X3=X1)) & (! X4)((! X5)(~X5=X0 \/ big_f(X5,X4)) \/ ~X4=X1)) => (! X2 X3)(~big_f(X2,X3) \/ (X2=sk0 & X3=sk1)) & (! X4)((! X5)(~X5=sk0 \/ big_f(X5,X4)) \/ ~X4=sk1)
*********** [91,8->92, monotone replacement] ***********
(? X0 X1)((! X2 X3)(~big_f(X2,X3) \/ (X2=X0 & X3=X1)) & (! X4)((! X5)(~X5=X0 \/ big_f(X5,X4)) \/ ~X4=X1)) => (! X2 X3)(~big_f(X2,X3) \/ (X2=sk0 & X3=sk1)) & (! X4)((! X5)(~X5=sk0 \/ big_f(X5,X4)) \/ ~X4=sk1)
(? X0 X1)((! X2 X3)(~big_f(X2,X3) \/ (X2=X0 & X3=X1)) & (! X4)((! X5)(~X5=X0 \/ big_f(X5,X4)) \/ ~X4=X1))
-----------------------------
(! X2 X3)(~big_f(X2,X3) \/ (X2=sk0 & X3=sk1)) & (! X4)((! X5)(~X5=sk0 \/ big_f(X5,X4)) \/ ~X4=sk1)
*********** [92->93, forall-elimination] ***********
(! X2 X3)(~big_f(X2,X3) \/ (X2=sk0 & X3=sk1)) & (! X4)((! X5)(~X5=sk0 \/ big_f(X5,X4)) \/ ~X4=sk1)
-----------------------------
(! X2 X3)(~big_f(X2,X3) \/ (X2=sk0 & X3=sk1)) & ((! X5)(~X5=sk0 \/ big_f(X5,X4)) \/ ~X4=sk1)
*********** [93->94, forall-elimination] ***********
(! X2 X3)(~big_f(X2,X3) \/ (X2=sk0 & X3=sk1)) & ((! X5)(~X5=sk0 \/ big_f(X5,X4)) \/ ~X4=sk1)
-----------------------------
(! X2 X3)(~big_f(X2,X3) \/ (X2=sk0 & X3=sk1)) & ((~X5=sk0 \/ big_f(X5,X4)) \/ ~X4=sk1)
*********** [94->9, forall-elimination] ***********
(! X2 X3)(~big_f(X2,X3) \/ (X2=sk0 & X3=sk1)) & ((~X5=sk0 \/ big_f(X5,X4)) \/ ~X4=sk1)
-----------------------------
(~big_f(X2,X3) \/ (X2=sk0 & X3=sk1)) & ((~X5=sk0 \/ big_f(X5,X4)) \/ ~X4=sk1)
*********** [9->17, cnf transformation] ***********
(~big_f(X2,X3) \/ (X2=sk0 & X3=sk1)) & ((~X5=sk0 \/ big_f(X5,X4)) \/ ~X4=sk1)
-----------------------------
X4!=sk1 \/ big_f(X5,X4) \/ X5!=sk0
*********** [17->26, kernel inference] ***********
X4!=sk1 \/ big_f(X5,X4) \/ X5!=sk0
-----------------------------
X1!=sk0 \/ X2!=sk1 \/ big_f(X1,X2)
*********** [26->33, kernel inference] ***********
X1!=sk0 \/ X2!=sk1 \/ big_f(X1,X2)
-----------------------------
X1!=sk0 \/ X2!=sk1 \/ big_f(X1,X2)
*********** [33->37, kernel inference] ***********
X1!=sk0 \/ X2!=sk1 \/ big_f(X1,X2)
-----------------------------
X1!=sk1 \/ big_f(sk0,X1)
*********** [37->38, kernel inference] ***********
X1!=sk1 \/ big_f(sk0,X1)
-----------------------------
big_f(sk0,sk1)
*********** [9->16, cnf transformation] ***********
(~big_f(X2,X3) \/ (X2=sk0 & X3=sk1)) & ((~X5=sk0 \/ big_f(X5,X4)) \/ ~X4=sk1)
-----------------------------
X3=sk1 \/ ~big_f(X2,X3)
*********** [16->27, kernel inference] ***********
X3=sk1 \/ ~big_f(X2,X3)
-----------------------------
~big_f(X1,X2) \/ X2=sk1
*********** [27->34, kernel inference] ***********
~big_f(X1,X2) \/ X2=sk1
-----------------------------
~big_f(X1,X2) \/ X2=sk1
*********** [2, input] ***********
~(? X0)(! X2)((? X1)(! X3)(big_f(X3,X2) <=> X3=X1) <=> X2=X0)
*********** [2->4, rectify] ***********
~(? X0)(! X2)((? X1)(! X3)(big_f(X3,X2) <=> X3=X1) <=> X2=X0)
-----------------------------
~(? X0)(! X1)((? X2)(! X3)(big_f(X3,X1) <=> X3=X2) <=> X1=X0)
*********** [4->96, not-exists] ***********
~(? X0)(! X1)((? X2)(! X3)(big_f(X3,X1) <=> X3=X2) <=> X1=X0)
-----------------------------
(! X0)~(! X1)((? X2)(! X3)(big_f(X3,X1) <=> X3=X2) <=> X1=X0)
*********** [96->97, not-forall] ***********
(! X0)~(! X1)((? X2)(! X3)(big_f(X3,X1) <=> X3=X2) <=> X1=X0)
-----------------------------
(! X0)(? X1)~((? X2)(! X3)(big_f(X3,X1) <=> X3=X2) <=> X1=X0)
*********** [97->10, not-iff] ***********
(! X0)(? X1)~((? X2)(! X3)(big_f(X3,X1) <=> X3=X2) <=> X1=X0)
-----------------------------
(! X0)(? X1)((? X2)(! X3)(big_f(X3,X1) <=> X3=X2) <~> X1=X0)
*********** [10->99, xor-to-and] ***********
(! X0)(? X1)((? X2)(! X3)(big_f(X3,X1) <=> X3=X2) <~> X1=X0)
-----------------------------
(! X0)(? X1)(((? X2)(! X3)(big_f(X3,X1) <=> X3=X2) \/ X1=X0) & (~(? X2)(! X3)(big_f(X3,X1) <=> X3=X2) \/ ~X1=X0))
*********** [99->100, not-exists] ***********
(! X0)(? X1)(((? X2)(! X3)(big_f(X3,X1) <=> X3=X2) \/ X1=X0) & (~(? X2)(! X3)(big_f(X3,X1) <=> X3=X2) \/ ~X1=X0))
-----------------------------
(! X0)(? X1)(((? X2)(! X3)(big_f(X3,X1) <=> X3=X2) \/ X1=X0) & ((! X2)~(! X3)(big_f(X3,X1) <=> X3=X2) \/ ~X1=X0))
*********** [100->101, not-forall] ***********
(! X0)(? X1)(((? X2)(! X3)(big_f(X3,X1) <=> X3=X2) \/ X1=X0) & ((! X2)~(! X3)(big_f(X3,X1) <=> X3=X2) \/ ~X1=X0))
-----------------------------
(! X0)(? X1)(((? X2)(! X3)(big_f(X3,X1) <=> X3=X2) \/ X1=X0) & ((! X2)(? X3)~(big_f(X3,X1) <=> X3=X2) \/ ~X1=X0))
*********** [101->102, not-iff] ***********
(! X0)(? X1)(((? X2)(! X3)(big_f(X3,X1) <=> X3=X2) \/ X1=X0) & ((! X2)(? X3)~(big_f(X3,X1) <=> X3=X2) \/ ~X1=X0))
-----------------------------
(! X0)(? X1)(((? X2)(! X3)(big_f(X3,X1) <=> X3=X2) \/ X1=X0) & ((! X2)(? X3)(big_f(X3,X1) <~> X3=X2) \/ ~X1=X0))
*********** [102->103, xor-to-and] ***********
(! X0)(? X1)(((? X2)(! X3)(big_f(X3,X1) <=> X3=X2) \/ X1=X0) & ((! X2)(? X3)(big_f(X3,X1) <~> X3=X2) \/ ~X1=X0))
-----------------------------
(! X0)(? X1)(((? X2)(! X3)(big_f(X3,X1) <=> X3=X2) \/ X1=X0) & ((! X2)(? X3)((big_f(X3,X1) \/ X3=X2) & (~big_f(X3,X1) \/ ~X3=X2)) \/ ~X1=X0))
*********** [103->104, equivalence-to-and] ***********
(! X0)(? X1)(((? X2)(! X3)(big_f(X3,X1) <=> X3=X2) \/ X1=X0) & ((! X2)(? X3)((big_f(X3,X1) \/ X3=X2) & (~big_f(X3,X1) \/ ~X3=X2)) \/ ~X1=X0))
-----------------------------
(! X0)(? X1)(((? X2)(! X3)((big_f(X3,X1) => X3=X2) & (X3=X2 => big_f(X3,X1))) \/ X1=X0) & ((! X2)(? X3)((big_f(X3,X1) \/ X3=X2) & (~big_f(X3,X1) \/ ~X3=X2)) \/ ~X1=X0))
*********** [104->105, implies-to-or] ***********
(! X0)(? X1)(((? X2)(! X3)((big_f(X3,X1) => X3=X2) & (X3=X2 => big_f(X3,X1))) \/ X1=X0) & ((! X2)(? X3)((big_f(X3,X1) \/ X3=X2) & (~big_f(X3,X1) \/ ~X3=X2)) \/ ~X1=X0))
-----------------------------
(! X0)(? X1)(((? X2)(! X3)((big_f(X3,X1) => X3=X2) & (~X3=X2 \/ big_f(X3,X1))) \/ X1=X0) & ((! X2)(? X3)((big_f(X3,X1) \/ X3=X2) & (~big_f(X3,X1) \/ ~X3=X2)) \/ ~X1=X0))
*********** [105->11, implies-to-or] ***********
(! X0)(? X1)(((? X2)(! X3)((big_f(X3,X1) => X3=X2) & (~X3=X2 \/ big_f(X3,X1))) \/ X1=X0) & ((! X2)(? X3)((big_f(X3,X1) \/ X3=X2) & (~big_f(X3,X1) \/ ~X3=X2)) \/ ~X1=X0))
-----------------------------
(! X0)(? X1)(((? X2)(! X3)((~big_f(X3,X1) \/ X3=X2) & (~X3=X2 \/ big_f(X3,X1))) \/ X1=X0) & ((! X2)(? X3)((big_f(X3,X1) \/ X3=X2) & (~big_f(X3,X1) \/ ~X3=X2)) \/ ~X1=X0))
*********** [11->12, forall-and] ***********
(! X0)(? X1)(((? X2)(! X3)((~big_f(X3,X1) \/ X3=X2) & (~X3=X2 \/ big_f(X3,X1))) \/ X1=X0) & ((! X2)(? X3)((big_f(X3,X1) \/ X3=X2) & (~big_f(X3,X1) \/ ~X3=X2)) \/ ~X1=X0))
-----------------------------
(! X0)(? X1)(((? X2)((! X3)(~big_f(X3,X1) \/ X3=X2) & (! X3)(~X3=X2 \/ big_f(X3,X1))) \/ X1=X0) & ((! X2)(? X3)((big_f(X3,X1) \/ X3=X2) & (~big_f(X3,X1) \/ ~X3=X2)) \/ ~X1=X0))
*********** [12->13, rectify] ***********
(! X0)(? X1)(((? X2)((! X3)(~big_f(X3,X1) \/ X3=X2) & (! X3)(~X3=X2 \/ big_f(X3,X1))) \/ X1=X0) & ((! X2)(? X3)((big_f(X3,X1) \/ X3=X2) & (~big_f(X3,X1) \/ ~X3=X2)) \/ ~X1=X0))
-----------------------------
(! X0)(? X1)(((? X2)((! X3)(~big_f(X3,X1) \/ X3=X2) & (! X4)(~X4=X2 \/ big_f(X4,X1))) \/ X1=X0) & ((! X5)(? X6)((big_f(X6,X1) \/ X6=X5) & (~big_f(X6,X1) \/ ~X6=X5)) \/ ~X1=X0))
*********** [112, choice axiom] ***********
(! X0)((? X2)((! X3)(~big_f(X3,sk2(X0)) \/ X3=X2) & (! X4)(~X4=X2 \/ big_f(X4,sk2(X0)))) => (! X3)(~big_f(X3,sk2(X0)) \/ X3=sk3(X0)) & (! X4)(~X4=sk3(X0) \/ big_f(X4,sk2(X0))))
*********** [110, choice axiom] ***********
(! X0 X5)((? X6)((big_f(X6,sk2(X0)) \/ X6=X5) & (~big_f(X6,sk2(X0)) \/ ~X6=X5)) => (big_f(sk4(X0,X5),sk2(X0)) \/ sk4(X0,X5)=X5) & (~big_f(sk4(X0,X5),sk2(X0)) \/ ~sk4(X0,X5)=X5))
*********** [108, choice axiom] ***********
(! X0)((? X1)(((? X2)((! X3)(~big_f(X3,X1) \/ X3=X2) & (! X4)(~X4=X2 \/ big_f(X4,X1))) \/ X1=X0) & ((! X5)(? X6)((big_f(X6,X1) \/ X6=X5) & (~big_f(X6,X1) \/ ~X6=X5)) \/ ~X1=X0)) => ((? X2)((! X3)(~big_f(X3,sk2(X0)) \/ X3=X2) & (! X4)(~X4=X2 \/ big_f(X4,sk2(X0)))) \/ sk2(X0)=X0) & ((! X5)(? X6)((big_f(X6,sk2(X0)) \/ X6=X5) & (~big_f(X6,sk2(X0)) \/ ~X6=X5)) \/ ~sk2(X0)=X0))
*********** [108,13->109, monotone replacement] ***********
(! X0)((? X1)(((? X2)((! X3)(~big_f(X3,X1) \/ X3=X2) & (! X4)(~X4=X2 \/ big_f(X4,X1))) \/ X1=X0) & ((! X5)(? X6)((big_f(X6,X1) \/ X6=X5) & (~big_f(X6,X1) \/ ~X6=X5)) \/ ~X1=X0)) => ((? X2)((! X3)(~big_f(X3,sk2(X0)) \/ X3=X2) & (! X4)(~X4=X2 \/ big_f(X4,sk2(X0)))) \/ sk2(X0)=X0) & ((! X5)(? X6)((big_f(X6,sk2(X0)) \/ X6=X5) & (~big_f(X6,sk2(X0)) \/ ~X6=X5)) \/ ~sk2(X0)=X0))
(! X0)(? X1)(((? X2)((! X3)(~big_f(X3,X1) \/ X3=X2) & (! X4)(~X4=X2 \/ big_f(X4,X1))) \/ X1=X0) & ((! X5)(? X6)((big_f(X6,X1) \/ X6=X5) & (~big_f(X6,X1) \/ ~X6=X5)) \/ ~X1=X0))
-----------------------------
(! X0)(((? X2)((! X3)(~big_f(X3,sk2(X0)) \/ X3=X2) & (! X4)(~X4=X2 \/ big_f(X4,sk2(X0)))) \/ sk2(X0)=X0) & ((! X5)(? X6)((big_f(X6,sk2(X0)) \/ X6=X5) & (~big_f(X6,sk2(X0)) \/ ~X6=X5)) \/ ~sk2(X0)=X0))
*********** [110,109->111, monotone replacement] ***********
(! X0 X5)((? X6)((big_f(X6,sk2(X0)) \/ X6=X5) & (~big_f(X6,sk2(X0)) \/ ~X6=X5)) => (big_f(sk4(X0,X5),sk2(X0)) \/ sk4(X0,X5)=X5) & (~big_f(sk4(X0,X5),sk2(X0)) \/ ~sk4(X0,X5)=X5))
(! X0)(((? X2)((! X3)(~big_f(X3,sk2(X0)) \/ X3=X2) & (! X4)(~X4=X2 \/ big_f(X4,sk2(X0)))) \/ sk2(X0)=X0) & ((! X5)(? X6)((big_f(X6,sk2(X0)) \/ X6=X5) & (~big_f(X6,sk2(X0)) \/ ~X6=X5)) \/ ~sk2(X0)=X0))
-----------------------------
(! X0)(((? X2)((! X3)(~big_f(X3,sk2(X0)) \/ X3=X2) & (! X4)(~X4=X2 \/ big_f(X4,sk2(X0)))) \/ sk2(X0)=X0) & ((! X5)((big_f(sk4(X0,X5),sk2(X0)) \/ sk4(X0,X5)=X5) & (~big_f(sk4(X0,X5),sk2(X0)) \/ ~sk4(X0,X5)=X5)) \/ ~sk2(X0)=X0))
*********** [112,111->113, monotone replacement] ***********
(! X0)((? X2)((! X3)(~big_f(X3,sk2(X0)) \/ X3=X2) & (! X4)(~X4=X2 \/ big_f(X4,sk2(X0)))) => (! X3)(~big_f(X3,sk2(X0)) \/ X3=sk3(X0)) & (! X4)(~X4=sk3(X0) \/ big_f(X4,sk2(X0))))
(! X0)(((? X2)((! X3)(~big_f(X3,sk2(X0)) \/ X3=X2) & (! X4)(~X4=X2 \/ big_f(X4,sk2(X0)))) \/ sk2(X0)=X0) & ((! X5)((big_f(sk4(X0,X5),sk2(X0)) \/ sk4(X0,X5)=X5) & (~big_f(sk4(X0,X5),sk2(X0)) \/ ~sk4(X0,X5)=X5)) \/ ~sk2(X0)=X0))
-----------------------------
(! X0)((((! X3)(~big_f(X3,sk2(X0)) \/ X3=sk3(X0)) & (! X4)(~X4=sk3(X0) \/ big_f(X4,sk2(X0)))) \/ sk2(X0)=X0) & ((! X5)((big_f(sk4(X0,X5),sk2(X0)) \/ sk4(X0,X5)=X5) & (~big_f(sk4(X0,X5),sk2(X0)) \/ ~sk4(X0,X5)=X5)) \/ ~sk2(X0)=X0))
*********** [113->114, forall-elimination] ***********
(! X0)((((! X3)(~big_f(X3,sk2(X0)) \/ X3=sk3(X0)) & (! X4)(~X4=sk3(X0) \/ big_f(X4,sk2(X0)))) \/ sk2(X0)=X0) & ((! X5)((big_f(sk4(X0,X5),sk2(X0)) \/ sk4(X0,X5)=X5) & (~big_f(sk4(X0,X5),sk2(X0)) \/ ~sk4(X0,X5)=X5)) \/ ~sk2(X0)=X0))
-----------------------------
(((! X3)(~big_f(X3,sk2(X0)) \/ X3=sk3(X0)) & (! X4)(~X4=sk3(X0) \/ big_f(X4,sk2(X0)))) \/ sk2(X0)=X0) & ((! X5)((big_f(sk4(X0,X5),sk2(X0)) \/ sk4(X0,X5)=X5) & (~big_f(sk4(X0,X5),sk2(X0)) \/ ~sk4(X0,X5)=X5)) \/ ~sk2(X0)=X0)
*********** [114->115, forall-elimination] ***********
(((! X3)(~big_f(X3,sk2(X0)) \/ X3=sk3(X0)) & (! X4)(~X4=sk3(X0) \/ big_f(X4,sk2(X0)))) \/ sk2(X0)=X0) & ((! X5)((big_f(sk4(X0,X5),sk2(X0)) \/ sk4(X0,X5)=X5) & (~big_f(sk4(X0,X5),sk2(X0)) \/ ~sk4(X0,X5)=X5)) \/ ~sk2(X0)=X0)
-----------------------------
(((! X3)(~big_f(X3,sk2(X0)) \/ X3=sk3(X0)) & (! X4)(~X4=sk3(X0) \/ big_f(X4,sk2(X0)))) \/ sk2(X0)=X0) & (((big_f(sk4(X0,X5),sk2(X0)) \/ sk4(X0,X5)=X5) & (~big_f(sk4(X0,X5),sk2(X0)) \/ ~sk4(X0,X5)=X5)) \/ ~sk2(X0)=X0)
*********** [115->116, forall-elimination] ***********
(((! X3)(~big_f(X3,sk2(X0)) \/ X3=sk3(X0)) & (! X4)(~X4=sk3(X0) \/ big_f(X4,sk2(X0)))) \/ sk2(X0)=X0) & (((big_f(sk4(X0,X5),sk2(X0)) \/ sk4(X0,X5)=X5) & (~big_f(sk4(X0,X5),sk2(X0)) \/ ~sk4(X0,X5)=X5)) \/ ~sk2(X0)=X0)
-----------------------------
(((! X3)(~big_f(X3,sk2(X0)) \/ X3=sk3(X0)) & (~X4=sk3(X0) \/ big_f(X4,sk2(X0)))) \/ sk2(X0)=X0) & (((big_f(sk4(X0,X5),sk2(X0)) \/ sk4(X0,X5)=X5) & (~big_f(sk4(X0,X5),sk2(X0)) \/ ~sk4(X0,X5)=X5)) \/ ~sk2(X0)=X0)
*********** [116->14, forall-elimination] ***********
(((! X3)(~big_f(X3,sk2(X0)) \/ X3=sk3(X0)) & (~X4=sk3(X0) \/ big_f(X4,sk2(X0)))) \/ sk2(X0)=X0) & (((big_f(sk4(X0,X5),sk2(X0)) \/ sk4(X0,X5)=X5) & (~big_f(sk4(X0,X5),sk2(X0)) \/ ~sk4(X0,X5)=X5)) \/ ~sk2(X0)=X0)
-----------------------------
(((~big_f(X3,sk2(X0)) \/ X3=sk3(X0)) & (~X4=sk3(X0) \/ big_f(X4,sk2(X0)))) \/ sk2(X0)=X0) & (((big_f(sk4(X0,X5),sk2(X0)) \/ sk4(X0,X5)=X5) & (~big_f(sk4(X0,X5),sk2(X0)) \/ ~sk4(X0,X5)=X5)) \/ ~sk2(X0)=X0)
*********** [14->19, cnf transformation] ***********
(((~big_f(X3,sk2(X0)) \/ X3=sk3(X0)) & (~X4=sk3(X0) \/ big_f(X4,sk2(X0)))) \/ sk2(X0)=X0) & (((big_f(sk4(X0,X5),sk2(X0)) \/ sk4(X0,X5)=X5) & (~big_f(sk4(X0,X5),sk2(X0)) \/ ~sk4(X0,X5)=X5)) \/ ~sk2(X0)=X0)
-----------------------------
sk2(X0)=X0 \/ big_f(X4,sk2(X0)) \/ X4!=sk3(X0)
*********** [19->24, kernel inference] ***********
sk2(X0)=X0 \/ big_f(X4,sk2(X0)) \/ X4!=sk3(X0)
-----------------------------
X1!=sk3(X2) \/ sk2(X2)=X2 \/ big_f(X1,sk2(X2))
*********** [24->31, kernel inference] ***********
X1!=sk3(X2) \/ sk2(X2)=X2 \/ big_f(X1,sk2(X2))
-----------------------------
X1!=sk3(X2) \/ sk2(X2)=X2 \/ big_f(X1,sk2(X2))
*********** [31->36, kernel inference] ***********
X1!=sk3(X2) \/ sk2(X2)=X2 \/ big_f(X1,sk2(X2))
-----------------------------
big_f(sk3(X1),sk2(X1)) \/ sk2(X1)=X1
*********** [34,36->40, kernel inference] ***********
~big_f(X1,X2) \/ X2=sk1
big_f(sk3(X1),sk2(X1)) \/ sk2(X1)=X1
-----------------------------
sk2(X1)=sk1 \/ sk2(X1)=X1
*********** [40->43, kernel inference] ***********
sk2(X1)=sk1 \/ sk2(X1)=X1
-----------------------------
sk1!=X1 \/ sk2(X1)=X1
*********** [43->49, kernel inference] ***********
sk1!=X1 \/ sk2(X1)=X1
-----------------------------
sk2(sk1)=sk1
*********** [9->15, cnf transformation] ***********
(~big_f(X2,X3) \/ (X2=sk0 & X3=sk1)) & ((~X5=sk0 \/ big_f(X5,X4)) \/ ~X4=sk1)
-----------------------------
X2=sk0 \/ ~big_f(X2,X3)
*********** [15->28, kernel inference] ***********
X2=sk0 \/ ~big_f(X2,X3)
-----------------------------
~big_f(X1,X2) \/ X1=sk0
*********** [28->35, kernel inference] ***********
~big_f(X1,X2) \/ X1=sk0
-----------------------------
~big_f(X1,X2) \/ X1=sk0
*********** [14->20, cnf transformation] ***********
(((~big_f(X3,sk2(X0)) \/ X3=sk3(X0)) & (~X4=sk3(X0) \/ big_f(X4,sk2(X0)))) \/ sk2(X0)=X0) & (((big_f(sk4(X0,X5),sk2(X0)) \/ sk4(X0,X5)=X5) & (~big_f(sk4(X0,X5),sk2(X0)) \/ ~sk4(X0,X5)=X5)) \/ ~sk2(X0)=X0)
-----------------------------
sk2(X0)!=X0 \/ sk4(X0,X5)=X5 \/ big_f(sk4(X0,X5),sk2(X0))
*********** [20->23, kernel inference] ***********
sk2(X0)!=X0 \/ sk4(X0,X5)=X5 \/ big_f(sk4(X0,X5),sk2(X0))
-----------------------------
sk2(X1)!=X1 \/ sk4(X1,X2)=X2 \/ big_f(sk4(X1,X2),sk2(X1))
*********** [23->30, kernel inference] ***********
sk2(X1)!=X1 \/ sk4(X1,X2)=X2 \/ big_f(sk4(X1,X2),sk2(X1))
-----------------------------
sk2(X1)!=X1 \/ sk4(X1,X2)=X2 \/ big_f(sk4(X1,X2),sk2(X1))
*********** [49,30,49->54, kernel inference] ***********
sk2(sk1)=sk1
sk2(X1)!=X1 \/ sk4(X1,X2)=X2 \/ big_f(sk4(X1,X2),sk2(X1))
sk2(sk1)=sk1
-----------------------------
big_f(sk4(sk1,X1),sk1) \/ sk4(sk1,X1)=X1
*********** [35,54->56, kernel inference] ***********
~big_f(X1,X2) \/ X1=sk0
big_f(sk4(sk1,X1),sk1) \/ sk4(sk1,X1)=X1
-----------------------------
sk4(sk1,X1)=sk0 \/ sk4(sk1,X1)=X1
*********** [56->68, kernel inference] ***********
sk4(sk1,X1)=sk0 \/ sk4(sk1,X1)=X1
-----------------------------
sk0!=X1 \/ sk4(sk1,X1)=X1
*********** [68->75, kernel inference] ***********
sk0!=X1 \/ sk4(sk1,X1)=X1
-----------------------------
sk4(sk1,sk0)=sk0
*********** [14->21, cnf transformation] ***********
(((~big_f(X3,sk2(X0)) \/ X3=sk3(X0)) & (~X4=sk3(X0) \/ big_f(X4,sk2(X0)))) \/ sk2(X0)=X0) & (((big_f(sk4(X0,X5),sk2(X0)) \/ sk4(X0,X5)=X5) & (~big_f(sk4(X0,X5),sk2(X0)) \/ ~sk4(X0,X5)=X5)) \/ ~sk2(X0)=X0)
-----------------------------
sk2(X0)!=X0 \/ sk4(X0,X5)!=X5 \/ ~big_f(sk4(X0,X5),sk2(X0))
*********** [21->22, kernel inference] ***********
sk2(X0)!=X0 \/ sk4(X0,X5)!=X5 \/ ~big_f(sk4(X0,X5),sk2(X0))
-----------------------------
~big_f(sk4(X1,X2),sk2(X1)) \/ sk4(X1,X2)!=X2 \/ sk2(X1)!=X1
*********** [22->29, kernel inference] ***********
~big_f(sk4(X1,X2),sk2(X1)) \/ sk4(X1,X2)!=X2 \/ sk2(X1)!=X1
-----------------------------
~big_f(sk4(X1,X2),sk2(X1)) \/ sk4(X1,X2)!=X2 \/ sk2(X1)!=X1
*********** [38,49,75,49,29,75->83, kernel inference] ***********
big_f(sk0,sk1)
sk2(sk1)=sk1
sk4(sk1,sk0)=sk0
sk2(sk1)=sk1
~big_f(sk4(X1,X2),sk2(X1)) \/ sk4(X1,X2)!=X2 \/ sk2(X1)!=X1
sk4(sk1,sk0)=sk0
-----------------------------
#
======= End of refutation =======