% SZS output start Proof %ClaNum:116(EqnAxiom:34) %VarNum:417(SingletonVarNum:163) %MaxLitNum:4 %MaxfuncDepth:2 %SharedTerms:12 %goalClause: 37 38 55 %singleGoalClaCount:3 [35]P1(a1) [36]P1(a2) [37]P3(a3,a5) [38]P2(a5,a6) [54]~P1(a13) [55]~P2(a3,a6) [40]P3(a1,x401) [43]P3(x431,x431) [56]~P4(x561,x561) [39]E(f12(a1,x391),a1) [41]E(f16(x411,a1),x411) [42]E(f12(x421,a1),x421) [44]E(f16(x441,x441),x441) [46]E(f12(x461,f12(x461,a1)),a1) [49]E(f12(x491,f12(x491,x491)),x491) [45]E(f16(x451,x452),f16(x452,x451)) [47]P3(x471,f16(x471,x472)) [48]P3(f12(x481,x482),x481) [50]E(f16(x501,f12(x502,x501)),f16(x501,x502)) [51]E(f12(f16(x511,x512),x512),f12(x511,x512)) [52]E(f12(x521,f12(x521,x522)),f12(x522,f12(x522,x521))) [57]~P1(x571)+E(x571,a1) [61]~P3(x611,a1)+E(x611,a1) [62]P5(f7(x621),x621)+E(x621,a1) [60]~E(x601,x602)+P3(x601,x602) [63]~P5(x632,x631)+~E(x631,a1) [64]~P4(x641,x642)+~E(x641,x642) [65]~P1(x651)+~P5(x652,x651) [70]~P4(x701,x702)+P3(x701,x702) [71]~P2(x712,x711)+P2(x711,x712) [74]~P5(x742,x741)+~P5(x741,x742) [75]~P4(x752,x751)+~P4(x751,x752) [76]~P3(x762,x761)+~P4(x761,x762) [67]~P3(x671,x672)+E(f12(x671,x672),a1) [69]P3(x691,x692)+~E(f12(x691,x692),a1) [72]~P3(x721,x722)+E(f16(x721,x722),x722) [78]P1(x781)+~P1(f16(x782,x781)) [79]P1(x791)+~P1(f16(x791,x792)) [80]P3(x801,x802)+P5(f8(x801,x802),x801) [81]P2(x811,x812)+P5(f14(x811,x812),x812) [82]P2(x821,x822)+P5(f14(x821,x822),x821) [96]P3(x961,x962)+~P5(f8(x961,x962),x962) [88]~P2(x881,x882)+E(f12(x881,f12(x881,x882)),a1) [89]~P3(x891,x892)+E(f16(x891,f12(x892,x891)),x892) [90]~P3(x901,x902)+E(f12(x901,f12(x901,x902)),x901) [95]P2(x951,x952)+~E(f12(x951,f12(x951,x952)),a1) [104]P2(x1041,x1042)+P5(f4(x1041,x1042),f12(x1041,f12(x1041,x1042))) [99]~P3(x991,x993)+P3(f12(x991,x992),f12(x993,x992)) [106]~P2(x1061,x1062)+~P5(x1063,f12(x1061,f12(x1061,x1062))) [107]~P3(x1071,x1073)+P3(f12(x1071,f12(x1071,x1072)),f12(x1073,f12(x1073,x1072))) [58]~P1(x582)+~P1(x581)+E(x581,x582) [73]P4(x731,x732)+~P3(x731,x732)+E(x731,x732) [77]~P3(x772,x771)+~P3(x771,x772)+E(x771,x772) [97]E(x971,x972)+P5(f15(x971,x972),x972)+P5(f15(x971,x972),x971) [103]E(x1031,x1032)+~P5(f15(x1031,x1032),x1032)+~P5(f15(x1031,x1032),x1031) [83]~P3(x833,x832)+P5(x831,x832)+~P5(x831,x833) [84]~P3(x841,x843)+P3(x841,x842)+~P3(x843,x842) [91]~P2(x913,x912)+~P5(x911,x912)+~P5(x911,x913) [98]~P3(x982,x983)+~P3(x981,x983)+P3(f16(x981,x982),x983) [108]P5(f10(x1082,x1083,x1081),x1081)+P5(f10(x1082,x1083,x1081),x1082)+E(x1081,f12(x1082,x1083)) [111]P5(f10(x1112,x1113,x1111),x1111)+~P5(f10(x1112,x1113,x1111),x1113)+E(x1111,f12(x1112,x1113)) [113]~P5(f9(x1132,x1133,x1131),x1131)+~P5(f9(x1132,x1133,x1131),x1133)+E(x1131,f16(x1132,x1133)) [114]~P5(f9(x1142,x1143,x1141),x1141)+~P5(f9(x1142,x1143,x1141),x1142)+E(x1141,f16(x1142,x1143)) [105]~P3(x1051,x1053)+~P3(x1051,x1052)+P3(x1051,f12(x1052,f12(x1052,x1053))) [109]P5(f11(x1092,x1093,x1091),x1091)+P5(f11(x1092,x1093,x1091),x1093)+E(x1091,f12(x1092,f12(x1092,x1093))) [110]P5(f11(x1102,x1103,x1101),x1101)+P5(f11(x1102,x1103,x1101),x1102)+E(x1101,f12(x1102,f12(x1102,x1103))) [85]~P5(x851,x854)+P5(x851,x852)+~E(x852,f16(x853,x854)) [86]~P5(x861,x863)+P5(x861,x862)+~E(x862,f16(x863,x864)) [87]~P5(x871,x873)+P5(x871,x872)+~E(x873,f12(x872,x874)) [92]~P5(x924,x923)+~P5(x924,x921)+~E(x921,f12(x922,x923)) [100]~P5(x1001,x1003)+P5(x1001,x1002)+~E(x1003,f12(x1004,f12(x1004,x1002))) [112]P5(f9(x1122,x1123,x1121),x1121)+P5(f9(x1122,x1123,x1121),x1123)+P5(f9(x1122,x1123,x1121),x1122)+E(x1121,f16(x1122,x1123)) [115]P5(f10(x1152,x1153,x1151),x1153)+~P5(f10(x1152,x1153,x1151),x1151)+~P5(f10(x1152,x1153,x1151),x1152)+E(x1151,f12(x1152,x1153)) [116]~P5(f11(x1162,x1163,x1161),x1161)+~P5(f11(x1162,x1163,x1161),x1163)+~P5(f11(x1162,x1163,x1161),x1162)+E(x1161,f12(x1162,f12(x1162,x1163))) [93]~P5(x931,x934)+P5(x931,x932)+P5(x931,x933)+~E(x932,f12(x934,x933)) [94]~P5(x941,x944)+P5(x941,x942)+P5(x941,x943)+~E(x944,f16(x943,x942)) [102]~P5(x1021,x1024)+~P5(x1021,x1023)+P5(x1021,x1022)+~E(x1022,f12(x1023,f12(x1023,x1024))) %EqnAxiom [1]E(x11,x11) [2]E(x22,x21)+~E(x21,x22) [3]E(x31,x33)+~E(x31,x32)+~E(x32,x33) [4]~E(x41,x42)+E(f12(x41,x43),f12(x42,x43)) [5]~E(x51,x52)+E(f12(x53,x51),f12(x53,x52)) [6]~E(x61,x62)+E(f16(x61,x63),f16(x62,x63)) [7]~E(x71,x72)+E(f16(x73,x71),f16(x73,x72)) [8]~E(x81,x82)+E(f11(x81,x83,x84),f11(x82,x83,x84)) [9]~E(x91,x92)+E(f11(x93,x91,x94),f11(x93,x92,x94)) [10]~E(x101,x102)+E(f11(x103,x104,x101),f11(x103,x104,x102)) [11]~E(x111,x112)+E(f15(x111,x113),f15(x112,x113)) [12]~E(x121,x122)+E(f15(x123,x121),f15(x123,x122)) [13]~E(x131,x132)+E(f8(x131,x133),f8(x132,x133)) [14]~E(x141,x142)+E(f8(x143,x141),f8(x143,x142)) [15]~E(x151,x152)+E(f10(x151,x153,x154),f10(x152,x153,x154)) [16]~E(x161,x162)+E(f10(x163,x161,x164),f10(x163,x162,x164)) [17]~E(x171,x172)+E(f10(x173,x174,x171),f10(x173,x174,x172)) [18]~E(x181,x182)+E(f9(x181,x183,x184),f9(x182,x183,x184)) [19]~E(x191,x192)+E(f9(x193,x191,x194),f9(x193,x192,x194)) [20]~E(x201,x202)+E(f9(x203,x204,x201),f9(x203,x204,x202)) [21]~E(x211,x212)+E(f14(x211,x213),f14(x212,x213)) [22]~E(x221,x222)+E(f14(x223,x221),f14(x223,x222)) [23]~E(x231,x232)+E(f4(x231,x233),f4(x232,x233)) [24]~E(x241,x242)+E(f4(x243,x241),f4(x243,x242)) [25]~E(x251,x252)+E(f7(x251),f7(x252)) [26]~P1(x261)+P1(x262)+~E(x261,x262) [27]P5(x272,x273)+~E(x271,x272)+~P5(x271,x273) [28]P5(x283,x282)+~E(x281,x282)+~P5(x283,x281) [29]P3(x292,x293)+~E(x291,x292)+~P3(x291,x293) [30]P3(x303,x302)+~E(x301,x302)+~P3(x303,x301) [31]P2(x312,x313)+~E(x311,x312)+~P2(x311,x313) [32]P2(x323,x322)+~E(x321,x322)+~P2(x323,x321) [33]P4(x332,x333)+~E(x331,x332)+~P4(x331,x333) [34]P4(x343,x342)+~E(x341,x342)+~P4(x343,x341) %------------------------------------------- cnf(117,plain, (E(x1171,f16(x1171,x1171))), inference(scs_inference,[],[44,2])). cnf(121,plain, (~P2(a6,a3)), inference(scs_inference,[],[55,44,39,2,95,71])). cnf(125,plain, (~P5(x1251,a1)), inference(scs_inference,[],[55,35,44,39,46,2,95,71,69,65])). cnf(129,plain, (~P5(x1291,f16(a1,a1))), inference(scs_inference,[],[55,35,44,39,46,2,95,71,69,65,64,63])). cnf(130,plain, (E(f16(x1301,x1301),x1301)), inference(rename_variables,[],[44])). cnf(132,plain, (~E(a5,a3)), inference(scs_inference,[],[38,55,35,44,39,46,2,95,71,69,65,64,63,31])). cnf(137,plain, (E(f16(x1371,x1371),x1371)), inference(rename_variables,[],[44])). cnf(139,plain, (E(f16(x1391,x1391),x1391)), inference(rename_variables,[],[44])). cnf(140,plain, (~P5(x1401,f16(f12(x1402,f12(x1402,a1)),a1))), inference(scs_inference,[],[43,40,38,55,35,54,44,130,137,41,39,46,2,95,71,69,65,64,63,31,30,29,26,3,100])). cnf(175,plain, (~P5(x1751,f12(a5,f12(a5,a6)))), inference(scs_inference,[],[37,43,40,38,55,35,54,44,130,137,139,47,48,41,39,46,2,95,71,69,65,64,63,31,30,29,26,3,100,97,84,77,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,107,106])). cnf(177,plain, (P5(f4(a3,a6),f12(a3,f12(a3,a6)))), inference(scs_inference,[],[37,43,40,38,55,35,54,44,130,137,139,47,48,41,39,46,2,95,71,69,65,64,63,31,30,29,26,3,100,97,84,77,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,107,106,104])). cnf(185,plain, (E(f12(a5,f12(a5,a6)),a1)), inference(scs_inference,[],[37,43,40,38,55,35,54,44,130,137,139,47,48,41,39,46,2,95,71,69,65,64,63,31,30,29,26,3,100,97,84,77,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,107,106,104,99,90,89,88])). cnf(187,plain, (P5(f14(a3,a6),a3)), inference(scs_inference,[],[37,43,40,38,55,35,54,44,130,137,139,47,48,41,39,46,2,95,71,69,65,64,63,31,30,29,26,3,100,97,84,77,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,107,106,104,99,90,89,88,82])). cnf(189,plain, (P5(f14(a3,a6),a6)), inference(scs_inference,[],[37,43,40,38,55,35,54,44,130,137,139,47,48,41,39,46,2,95,71,69,65,64,63,31,30,29,26,3,100,97,84,77,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,107,106,104,99,90,89,88,82,81])). cnf(210,plain, (E(f16(x2101,x2101),x2101)), inference(rename_variables,[],[44])). cnf(211,plain, (~P2(a3,f16(a6,a6))), inference(scs_inference,[],[37,43,56,40,38,55,35,36,54,44,130,137,139,210,45,47,48,41,39,46,2,95,71,69,65,64,63,31,30,29,26,3,100,97,84,77,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,107,106,104,99,90,89,88,82,81,79,78,76,74,72,67,60,57,34,33,32])). cnf(212,plain, (E(f16(x2121,x2121),x2121)), inference(rename_variables,[],[44])). cnf(213,plain, (~P5(x2131,f16(f16(a1,a1),f16(a1,a1)))), inference(scs_inference,[],[37,43,56,40,38,55,35,36,54,44,130,137,139,210,212,45,47,48,41,39,46,2,95,71,69,65,64,63,31,30,29,26,3,100,97,84,77,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,107,106,104,99,90,89,88,82,81,79,78,76,74,72,67,60,57,34,33,32,28])). cnf(214,plain, (E(f16(x2141,x2141),x2141)), inference(rename_variables,[],[44])). cnf(223,plain, (~E(a3,f12(x2231,a3))), inference(scs_inference,[],[37,43,56,40,38,55,35,36,54,44,130,137,139,210,212,45,47,48,41,39,46,2,95,71,69,65,64,63,31,30,29,26,3,100,97,84,77,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,107,106,104,99,90,89,88,82,81,79,78,76,74,72,67,60,57,34,33,32,28,111,108,105,98,92])). cnf(231,plain, (~E(f12(a5,f12(a5,a6)),f16(x2311,a3))), inference(scs_inference,[],[37,43,56,40,38,55,35,36,54,44,130,137,139,210,212,45,47,48,41,39,46,2,95,71,69,65,64,63,31,30,29,26,3,100,97,84,77,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,107,106,104,99,90,89,88,82,81,79,78,76,74,72,67,60,57,34,33,32,28,111,108,105,98,92,91,87,86,85])). cnf(233,plain, (~P5(f14(a3,a6),f12(a3,f12(a3,a6)))), inference(scs_inference,[],[37,43,56,40,38,55,35,36,54,44,130,137,139,210,212,45,47,48,41,39,46,2,95,71,69,65,64,63,31,30,29,26,3,100,97,84,77,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,107,106,104,99,90,89,88,82,81,79,78,76,74,72,67,60,57,34,33,32,28,111,108,105,98,92,91,87,86,85,83])). cnf(235,plain, (~P3(a5,a3)), inference(scs_inference,[],[37,43,56,40,38,55,35,36,54,44,130,137,139,210,212,45,47,48,41,39,46,2,95,71,69,65,64,63,31,30,29,26,3,100,97,84,77,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,107,106,104,99,90,89,88,82,81,79,78,76,74,72,67,60,57,34,33,32,28,111,108,105,98,92,91,87,86,85,83,73])). cnf(237,plain, (~E(f12(a5,f12(a5,a6)),f12(a3,f12(a3,a3)))), inference(scs_inference,[],[37,43,56,40,38,55,35,36,54,44,130,137,139,210,212,45,47,48,41,39,46,2,95,71,69,65,64,63,31,30,29,26,3,100,97,84,77,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,107,106,104,99,90,89,88,82,81,79,78,76,74,72,67,60,57,34,33,32,28,111,108,105,98,92,91,87,86,85,83,73,102])). cnf(242,plain, (~P5(f14(a3,a6),f16(f16(a5,a5),f16(a5,a5)))), inference(scs_inference,[],[37,43,56,40,38,55,35,36,54,44,130,137,139,210,212,214,45,47,48,41,39,46,2,95,71,69,65,64,63,31,30,29,26,3,100,97,84,77,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,107,106,104,99,90,89,88,82,81,79,78,76,74,72,67,60,57,34,33,32,28,111,108,105,98,92,91,87,86,85,83,73,102,27,103,94])). cnf(249,plain, (P5(f8(a5,a3),a5)), inference(scs_inference,[],[235,96,80])). cnf(252,plain, (~P5(x2521,f12(a5,f12(a5,a6)))), inference(rename_variables,[],[175])). cnf(255,plain, (~P5(x2551,a1)), inference(rename_variables,[],[125])). cnf(256,plain, (~E(f12(a5,f12(a5,a6)),f16(x2561,a3))), inference(rename_variables,[],[231])). cnf(257,plain, (~P5(x2571,f12(a5,f12(a5,a6)))), inference(rename_variables,[],[175])). cnf(267,plain, (~P5(f14(a3,a6),f16(a5,a5))), inference(scs_inference,[],[45,125,235,231,129,189,213,242,175,252,237,96,80,110,112,62,82,91,86])). cnf(268,plain, (E(f16(x2681,x2682),f16(x2682,x2681))), inference(rename_variables,[],[45])). cnf(276,plain, (~E(a3,f12(x2761,a3))), inference(rename_variables,[],[223])). cnf(280,plain, (~E(f12(a3,f12(a3,a6)),a1)), inference(scs_inference,[],[47,48,45,55,125,132,235,231,129,189,223,213,242,175,252,237,96,80,110,112,62,82,91,86,69,84,77,2,95])). cnf(283,plain, (~P5(x2831,a1)), inference(rename_variables,[],[125])). cnf(289,plain, (~P3(a3,f12(a3,a6))), inference(scs_inference,[],[47,48,45,38,55,125,255,132,235,231,129,189,223,213,242,175,252,237,96,80,110,112,62,82,91,86,69,84,77,2,95,81,74,71,67])). cnf(293,plain, (~E(a6,a1)), inference(scs_inference,[],[47,48,45,38,55,125,255,132,235,231,129,189,223,213,242,175,252,237,96,80,110,112,62,82,91,86,69,84,77,2,95,81,74,71,67,65,63])). cnf(298,plain, (E(f12(x2981,a1),x2981)), inference(rename_variables,[],[42])). cnf(300,plain, (E(x3001,f16(x3001,x3001))), inference(rename_variables,[],[117])). cnf(302,plain, (~P5(x3021,a1)), inference(rename_variables,[],[125])). cnf(306,plain, (P3(x3061,x3061)), inference(rename_variables,[],[43])). cnf(308,plain, (~E(a6,f12(x3081,f12(x3081,a1)))), inference(scs_inference,[],[37,42,43,47,48,45,38,55,125,255,283,302,132,235,117,231,129,189,223,276,213,242,175,252,237,96,80,110,112,62,82,91,86,69,84,77,2,95,81,74,71,67,65,63,57,31,3,108,105,100])). cnf(309,plain, (~P5(x3091,a1)), inference(rename_variables,[],[125])). cnf(314,plain, (P5(f15(f12(a5,f12(a5,a6)),f16(x3141,a3)),f16(x3141,a3))), inference(scs_inference,[],[37,42,43,306,47,48,45,38,55,125,255,283,302,132,235,117,231,256,129,189,223,276,213,242,175,252,257,237,96,80,110,112,62,82,91,86,69,84,77,2,95,81,74,71,67,65,63,57,31,3,108,105,100,98,97])). cnf(321,plain, (E(f12(x3211,a1),x3211)), inference(rename_variables,[],[42])). cnf(324,plain, (~P5(x3241,a1)), inference(rename_variables,[],[125])). cnf(326,plain, (~E(a1,f12(a6,f12(a6,a6)))), inference(scs_inference,[],[37,42,298,52,43,306,47,48,45,38,55,125,255,283,302,309,324,132,235,117,231,256,129,189,223,276,213,242,175,252,257,237,177,96,80,110,112,62,82,91,86,69,84,77,2,95,81,74,71,67,65,63,57,31,3,108,105,100,98,97,92,87,83,102])). cnf(327,plain, (~P5(x3271,a1)), inference(rename_variables,[],[125])). cnf(330,plain, (E(f12(x3301,a1),x3301)), inference(rename_variables,[],[42])). cnf(334,plain, (E(f12(x3341,a1),x3341)), inference(rename_variables,[],[42])). cnf(339,plain, (E(x3391,f16(x3391,x3391))), inference(rename_variables,[],[117])). cnf(341,plain, (E(f12(x3411,a1),x3411)), inference(rename_variables,[],[42])). cnf(342,plain, (~P5(x3421,f12(x3422,f12(x3422,a1)))), inference(scs_inference,[],[37,42,298,321,330,334,52,43,306,47,48,45,268,38,55,125,255,283,302,309,324,327,132,235,117,300,231,256,129,189,223,276,213,242,175,252,257,237,177,140,96,80,110,112,62,82,91,86,69,84,77,2,95,81,74,71,67,65,63,57,31,3,108,105,100,98,97,92,87,83,102,94,93,60,32,29,85])). cnf(348,plain, (E(f12(x3481,a1),x3481)), inference(rename_variables,[],[42])). cnf(349,plain, (P5(f14(a3,a6),f12(a6,a1))), inference(scs_inference,[],[37,42,298,321,330,334,341,348,52,43,306,56,47,48,45,268,38,55,125,255,283,302,309,324,327,132,235,117,300,339,231,256,129,189,223,276,213,242,175,252,257,237,177,140,96,80,110,112,62,82,91,86,69,84,77,2,95,81,74,71,67,65,63,57,31,3,108,105,100,98,97,92,87,83,102,94,93,60,32,29,85,27,34,28])). cnf(372,plain, (~P5(x3721,f12(x3722,f12(x3722,a1)))), inference(rename_variables,[],[342])). cnf(375,plain, (~P5(x3751,a1)), inference(rename_variables,[],[125])). cnf(383,plain, (~P5(x3831,a1)), inference(rename_variables,[],[125])). cnf(404,plain, (E(f12(x4041,f12(x4041,x4042)),f12(x4042,f12(x4042,x4041)))), inference(rename_variables,[],[52])). cnf(433,plain, ($false), inference(scs_inference,[],[38,49,50,51,40,117,41,42,52,404,43,48,35,45,121,293,267,314,349,289,249,187,211,342,372,233,185,280,308,326,125,375,383,140,189,80,110,58,82,109,62,86,84,74,71,63,108,92,91,87,94,93,67,69,77,2,81,65,31,102]), ['proof']). % SZS output end Proof
% SZS output start Proof fof(t4_xboole_0, lemma, ![X1, X2]:(~((~(disjoint(X1,X2))&![X3]:~(in(X3,set_intersection2(X1,X2)))))&~((?[X3]:in(X3,set_intersection2(X1,X2))&disjoint(X1,X2)))), file('/home/ars01/Desktop/dist/problems/SEU140+2.p', t4_xboole_0)). fof(t48_xboole_1, lemma, ![X1, X2]:set_difference(X1,set_difference(X1,X2))=set_intersection2(X1,X2), file('/home/ars01/Desktop/dist/problems/SEU140+2.p', t48_xboole_1)). fof(t63_xboole_1, conjecture, ![X1, X2, X3]:((subset(X1,X2)&disjoint(X2,X3))=>disjoint(X1,X3)), file('/home/ars01/Desktop/dist/problems/SEU140+2.p', t63_xboole_1)). fof(d1_xboole_0, axiom, ![X1]:(X1=empty_set<=>![X2]:~(in(X2,X1))), file('/home/ars01/Desktop/dist/problems/SEU140+2.p', d1_xboole_0)). fof(d4_xboole_0, axiom, ![X1, X2, X3]:(X3=set_difference(X1,X2)<=>![X4]:(in(X4,X3)<=>(in(X4,X1)&~(in(X4,X2))))), file('/home/ars01/Desktop/dist/problems/SEU140+2.p', d4_xboole_0)). fof(t3_xboole_0, lemma, ![X1, X2]:(~((~(disjoint(X1,X2))&![X3]:~((in(X3,X1)&in(X3,X2)))))&~((?[X3]:(in(X3,X1)&in(X3,X2))&disjoint(X1,X2)))), file('/home/ars01/Desktop/dist/problems/SEU140+2.p', t3_xboole_0)). fof(d3_xboole_0, axiom, ![X1, X2, X3]:(X3=set_intersection2(X1,X2)<=>![X4]:(in(X4,X3)<=>(in(X4,X1)&in(X4,X2)))), file('/home/ars01/Desktop/dist/problems/SEU140+2.p', d3_xboole_0)). fof(l32_xboole_1, lemma, ![X1, X2]:(set_difference(X1,X2)=empty_set<=>subset(X1,X2)), file('/home/ars01/Desktop/dist/problems/SEU140+2.p', l32_xboole_1)). fof(d10_xboole_0, axiom, ![X1, X2]:(X1=X2<=>(subset(X1,X2)&subset(X2,X1))), file('/home/ars01/Desktop/dist/problems/SEU140+2.p', d10_xboole_0)). fof(t36_xboole_1, lemma, ![X1, X2]:subset(set_difference(X1,X2),X1), file('/home/ars01/Desktop/dist/problems/SEU140+2.p', t36_xboole_1)). fof(t3_boole, axiom, ![X1]:set_difference(X1,empty_set)=X1, file('/home/ars01/Desktop/dist/problems/SEU140+2.p', t3_boole)). fof(c_0_11, lemma, ![X1, X2]:(~((~disjoint(X1,X2)&![X3]:~in(X3,set_intersection2(X1,X2))))&~((?[X3]:in(X3,set_intersection2(X1,X2))&disjoint(X1,X2)))), inference(fof_simplification,[status(thm)],[t4_xboole_0])). fof(c_0_12, lemma, ![X226, X227, X229, X230, X231]:((disjoint(X226,X227)|in(esk10_2(X226,X227),set_intersection2(X226,X227)))&(~in(X231,set_intersection2(X229,X230))|~disjoint(X229,X230))), inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_11])])])])])). fof(c_0_13, lemma, ![X223, X224]:set_difference(X223,set_difference(X223,X224))=set_intersection2(X223,X224), inference(variable_rename,[status(thm)],[t48_xboole_1])). fof(c_0_14, negated_conjecture, ~(![X1, X2, X3]:((subset(X1,X2)&disjoint(X2,X3))=>disjoint(X1,X3))), inference(assume_negation,[status(cth)],[t63_xboole_1])). cnf(c_0_15, lemma, (~in(X1,set_intersection2(X2,X3))|~disjoint(X2,X3)), inference(split_conjunct,[status(thm)],[c_0_12])). cnf(c_0_16, lemma, (set_difference(X1,set_difference(X1,X2))=set_intersection2(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_13])). fof(c_0_17, negated_conjecture, ((subset(esk11_0,esk12_0)&disjoint(esk12_0,esk13_0))&~disjoint(esk11_0,esk13_0)), inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_14])])])). fof(c_0_18, plain, ![X1]:(X1=empty_set<=>![X2]:~in(X2,X1)), inference(fof_simplification,[status(thm)],[d1_xboole_0])). fof(c_0_19, plain, ![X1, X2, X3]:(X3=set_difference(X1,X2)<=>![X4]:(in(X4,X3)<=>(in(X4,X1)&~in(X4,X2)))), inference(fof_simplification,[status(thm)],[d4_xboole_0])). fof(c_0_20, lemma, ![X1, X2]:(~((~disjoint(X1,X2)&![X3]:~((in(X3,X1)&in(X3,X2)))))&~((?[X3]:(in(X3,X1)&in(X3,X2))&disjoint(X1,X2)))), inference(fof_simplification,[status(thm)],[t3_xboole_0])). cnf(c_0_21, lemma, (~disjoint(X2,X3)|~in(X1,set_difference(X2,set_difference(X2,X3)))), inference(rw,[status(thm)],[c_0_15, c_0_16])). cnf(c_0_22, negated_conjecture, (disjoint(esk12_0,esk13_0)), inference(split_conjunct,[status(thm)],[c_0_17])). fof(c_0_23, plain, ![X126, X127, X128]:((X126!=empty_set|~in(X127,X126))&(in(esk1_1(X128),X128)|X128=empty_set)), inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_18])])])])])). fof(c_0_24, plain, ![X145, X146, X147, X148, X149, X150, X151, X152]:((((in(X148,X145)|~in(X148,X147)|X147!=set_intersection2(X145,X146))&(in(X148,X146)|~in(X148,X147)|X147!=set_intersection2(X145,X146)))&(~in(X149,X145)|~in(X149,X146)|in(X149,X147)|X147!=set_intersection2(X145,X146)))&((~in(esk4_3(X150,X151,X152),X152)|(~in(esk4_3(X150,X151,X152),X150)|~in(esk4_3(X150,X151,X152),X151))|X152=set_intersection2(X150,X151))&((in(esk4_3(X150,X151,X152),X150)|in(esk4_3(X150,X151,X152),X152)|X152=set_intersection2(X150,X151))&(in(esk4_3(X150,X151,X152),X151)|in(esk4_3(X150,X151,X152),X152)|X152=set_intersection2(X150,X151))))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[d3_xboole_0])])])])])])). fof(c_0_25, plain, ![X154, X155, X156, X157, X158, X159, X160, X161]:((((in(X157,X154)|~in(X157,X156)|X156!=set_difference(X154,X155))&(~in(X157,X155)|~in(X157,X156)|X156!=set_difference(X154,X155)))&(~in(X158,X154)|in(X158,X155)|in(X158,X156)|X156!=set_difference(X154,X155)))&((~in(esk5_3(X159,X160,X161),X161)|(~in(esk5_3(X159,X160,X161),X159)|in(esk5_3(X159,X160,X161),X160))|X161=set_difference(X159,X160))&((in(esk5_3(X159,X160,X161),X159)|in(esk5_3(X159,X160,X161),X161)|X161=set_difference(X159,X160))&(~in(esk5_3(X159,X160,X161),X160)|in(esk5_3(X159,X160,X161),X161)|X161=set_difference(X159,X160))))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_19])])])])])])). fof(c_0_26, lemma, ![X212, X213, X215, X216, X217]:(((in(esk9_2(X212,X213),X212)|disjoint(X212,X213))&(in(esk9_2(X212,X213),X213)|disjoint(X212,X213)))&(~in(X217,X215)|~in(X217,X216)|~disjoint(X215,X216))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_20])])])])])])). fof(c_0_27, lemma, ![X174, X175]:((set_difference(X174,X175)!=empty_set|subset(X174,X175))&(~subset(X174,X175)|set_difference(X174,X175)=empty_set)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[l32_xboole_1])])). cnf(c_0_28, negated_conjecture, (~in(X1,set_difference(esk12_0,set_difference(esk12_0,esk13_0)))), inference(spm,[status(thm)],[c_0_21, c_0_22])). cnf(c_0_29, plain, (in(esk1_1(X1),X1)|X1=empty_set), inference(split_conjunct,[status(thm)],[c_0_23])). cnf(c_0_30, plain, (in(X1,X2)|~in(X1,X3)|X3!=set_intersection2(X4,X2)), inference(split_conjunct,[status(thm)],[c_0_24])). cnf(c_0_31, plain, (~in(X1,X2)|~in(X1,X3)|X3!=set_difference(X4,X2)), inference(split_conjunct,[status(thm)],[c_0_25])). cnf(c_0_32, negated_conjecture, (~disjoint(esk11_0,esk13_0)), inference(split_conjunct,[status(thm)],[c_0_17])). cnf(c_0_33, lemma, (in(esk9_2(X1,X2),X2)|disjoint(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_26])). fof(c_0_34, plain, ![X124, X125]:(((subset(X124,X125)|X124!=X125)&(subset(X125,X124)|X124!=X125))&(~subset(X124,X125)|~subset(X125,X124)|X124=X125)), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[d10_xboole_0])])])). cnf(c_0_35, lemma, (subset(X1,X2)|set_difference(X1,X2)!=empty_set), inference(split_conjunct,[status(thm)],[c_0_27])). cnf(c_0_36, negated_conjecture, (set_difference(esk12_0,set_difference(esk12_0,esk13_0))=empty_set), inference(spm,[status(thm)],[c_0_28, c_0_29])). fof(c_0_37, lemma, ![X205, X206]:subset(set_difference(X205,X206),X205), inference(variable_rename,[status(thm)],[t36_xboole_1])). cnf(c_0_38, plain, (in(X1,X2)|X3!=set_difference(X4,set_difference(X4,X2))|~in(X1,X3)), inference(rw,[status(thm)],[c_0_30, c_0_16])). cnf(c_0_39, lemma, (set_difference(X1,X2)=empty_set|~subset(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_27])). cnf(c_0_40, negated_conjecture, (subset(esk11_0,esk12_0)), inference(split_conjunct,[status(thm)],[c_0_17])). fof(c_0_41, plain, ![X211]:set_difference(X211,empty_set)=X211, inference(variable_rename,[status(thm)],[t3_boole])). cnf(c_0_42, plain, (~in(X1,set_difference(X2,X3))|~in(X1,X3)), inference(er,[status(thm)],[c_0_31])). cnf(c_0_43, negated_conjecture, (in(esk9_2(esk11_0,esk13_0),esk13_0)), inference(spm,[status(thm)],[c_0_32, c_0_33])). cnf(c_0_44, plain, (X1=X2|~subset(X1,X2)|~subset(X2,X1)), inference(split_conjunct,[status(thm)],[c_0_34])). cnf(c_0_45, lemma, (subset(esk12_0,set_difference(esk12_0,esk13_0))), inference(spm,[status(thm)],[c_0_35, c_0_36])). cnf(c_0_46, lemma, (subset(set_difference(X1,X2),X1)), inference(split_conjunct,[status(thm)],[c_0_37])). cnf(c_0_47, plain, (in(X1,X2)|~in(X1,set_difference(X3,set_difference(X3,X2)))), inference(er,[status(thm)],[c_0_38])). cnf(c_0_48, negated_conjecture, (set_difference(esk11_0,esk12_0)=empty_set), inference(spm,[status(thm)],[c_0_39, c_0_40])). cnf(c_0_49, plain, (set_difference(X1,empty_set)=X1), inference(split_conjunct,[status(thm)],[c_0_41])). cnf(c_0_50, lemma, (in(esk9_2(X1,X2),X1)|disjoint(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_26])). cnf(c_0_51, negated_conjecture, (~in(esk9_2(esk11_0,esk13_0),set_difference(X1,esk13_0))), inference(spm,[status(thm)],[c_0_42, c_0_43])). cnf(c_0_52, lemma, (set_difference(esk12_0,esk13_0)=esk12_0), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_44, c_0_45]), c_0_46])])). cnf(c_0_53, negated_conjecture, (in(X1,esk12_0)|~in(X1,esk11_0)), inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_47, c_0_48]), c_0_49])). cnf(c_0_54, negated_conjecture, (in(esk9_2(esk11_0,esk13_0),esk11_0)), inference(spm,[status(thm)],[c_0_32, c_0_50])). cnf(c_0_55, lemma, (~in(esk9_2(esk11_0,esk13_0),esk12_0)), inference(spm,[status(thm)],[c_0_51, c_0_52])). cnf(c_0_56, negated_conjecture, ($false), inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_53, c_0_54]), c_0_55]), ['proof']). % SZS output end Proof
% SZS output start Proof for SET014^4 (let ((_let_1 (not (forall ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (A (-> $$unsorted Bool))) (=> (and (@ (@ subset X) A) (@ (@ subset Y) A)) (@ (@ subset (@ (@ union X) Y)) A)))))) (let ((_let_2 (= misses (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool))) (not (exists ((U $$unsorted)) (and (@ X U) (@ Y U)))))))) (let ((_let_3 (= meets (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool))) (exists ((U $$unsorted)) (and (@ X U) (@ Y U))))))) (let ((_let_4 (= subset (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool))) (forall ((U $$unsorted)) (=> (@ X U) (@ Y U))))))) (let ((_let_5 (= disjoint (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool))) (= (@ (@ intersection X) Y) emptyset))))) (let ((_let_6 (= complement (lambda ((X (-> $$unsorted Bool)) (U $$unsorted)) (not (@ X U)))))) (let ((_let_7 (= setminus (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (U $$unsorted)) (and (@ X U) (not (@ Y U))))))) (let ((_let_8 (= intersection (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (U $$unsorted)) (and (@ X U) (@ Y U)))))) (let ((_let_9 (= excl_union (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (U $$unsorted)) (let ((_let_1 (@ Y U))) (let ((_let_2 (@ X U))) (or (and _let_2 (not _let_1)) (and (not _let_2) _let_1)))))))) (let ((_let_10 (= union (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (U $$unsorted)) (or (@ X U) (@ Y U)))))) (let ((_let_11 (= singleton (lambda ((X $$unsorted) (U $$unsorted)) (= U X))))) (let ((_let_12 (= unord_pair (lambda ((X $$unsorted) (Y $$unsorted) (U $$unsorted)) (or (= U X) (= U Y)))))) (let ((_let_13 (= emptyset (lambda ((X $$unsorted)) false)))) (let ((_let_14 (= is_a (lambda ((X $$unsorted) (M (-> $$unsorted Bool))) (@ M X))))) (let ((_let_15 (= in (lambda ((X $$unsorted) (M (-> $$unsorted Bool))) (@ M X))))) (let ((_let_16 (forall ((BOUND_VARIABLE_607 $$unsorted)) (or (not (ho_1 skv_3 BOUND_VARIABLE_607)) (ho_1 skv_4 BOUND_VARIABLE_607))))) (let ((_let_17 (ho_1 skv_4 skv_5))) (let ((_let_18 (ho_1 skv_3 skv_5))) (let ((_let_19 (not _let_18))) (let ((_let_20 (or _let_19 _let_17))) (let ((_let_21 (ho_1 skv_2 skv_5))) (let ((_let_22 (not _let_21))) (let ((_let_23 (and _let_22 _let_19))) (let ((_let_24 (not _let_16))) (let ((_let_25 (forall ((BOUND_VARIABLE_588 $$unsorted)) (or (not (ho_1 skv_2 BOUND_VARIABLE_588)) (ho_1 skv_4 BOUND_VARIABLE_588))))) (let ((_let_26 (not _let_25))) (let ((_let_27 (or _let_26 _let_24 _let_23 _let_17))) (let ((_let_28 (forall ((BOUND_VARIABLE_721 |u_(-> $$unsorted Bool)|) (BOUND_VARIABLE_718 |u_(-> $$unsorted Bool)|) (BOUND_VARIABLE_714 |u_(-> $$unsorted Bool)|) (BOUND_VARIABLE_669 $$unsorted)) (or (not (forall ((BOUND_VARIABLE_588 $$unsorted)) (or (not (ho_1 BOUND_VARIABLE_721 BOUND_VARIABLE_588)) (ho_1 BOUND_VARIABLE_714 BOUND_VARIABLE_588)))) (not (forall ((BOUND_VARIABLE_607 $$unsorted)) (or (not (ho_1 BOUND_VARIABLE_718 BOUND_VARIABLE_607)) (ho_1 BOUND_VARIABLE_714 BOUND_VARIABLE_607)))) (and (not (ho_1 BOUND_VARIABLE_721 BOUND_VARIABLE_669)) (not (ho_1 BOUND_VARIABLE_718 BOUND_VARIABLE_669))) (ho_1 BOUND_VARIABLE_714 BOUND_VARIABLE_669))))) (let ((_let_29 (not _let_27))) (let ((_let_30 (not _let_28))) (let ((_let_31 (ASSUME :args (_let_15)))) (let ((_let_32 (ASSUME :args (_let_14)))) (let ((_let_33 (EQ_RESOLVE (ASSUME :args (_let_13)) (MACRO_SR_EQ_INTRO :args (_let_13 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_34 (EQ_RESOLVE (ASSUME :args (_let_12)) (MACRO_SR_EQ_INTRO :args (_let_12 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_35 (EQ_RESOLVE (ASSUME :args (_let_11)) (MACRO_SR_EQ_INTRO :args (_let_11 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_36 (ASSUME :args (_let_10)))) (let ((_let_37 (ASSUME :args (_let_9)))) (let ((_let_38 (ASSUME :args (_let_8)))) (let ((_let_39 (ASSUME :args (_let_7)))) (let ((_let_40 (ASSUME :args (_let_6)))) (let ((_let_41 (EQ_RESOLVE (ASSUME :args (_let_1)) (TRANS (MACRO_SR_EQ_INTRO :args (_let_1 SB_DEFAULT SBA_FIXPOINT)) (MACRO_SR_EQ_INTRO (AND_INTRO (EQ_RESOLVE (ASSUME :args (_let_2)) (MACRO_SR_EQ_INTRO :args (_let_2 SB_DEFAULT SBA_FIXPOINT))) (EQ_RESOLVE (ASSUME :args (_let_3)) (MACRO_SR_EQ_INTRO :args (_let_3 SB_DEFAULT SBA_FIXPOINT))) (EQ_RESOLVE (ASSUME :args (_let_4)) (MACRO_SR_EQ_INTRO :args (_let_4 SB_DEFAULT SBA_FIXPOINT))) (EQ_RESOLVE (EQ_RESOLVE (ASSUME :args (_let_5)) (MACRO_SR_EQ_INTRO :args (_let_5 SB_DEFAULT SBA_FIXPOINT))) (MACRO_SR_EQ_INTRO (AND_INTRO _let_40 _let_39 _let_38 _let_37 _let_36 _let_35 _let_34 _let_33 _let_32 _let_31) :args ((= disjoint (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool))) (= emptyset (@ (@ intersection X) Y)))) SB_DEFAULT SBA_FIXPOINT))) _let_40 _let_39 _let_38 _let_37 _let_36 _let_35 _let_34 _let_33 _let_32 _let_31) :args ((not (forall ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (A (-> $$unsorted Bool))) (or (not (@ (@ subset X) A)) (not (@ (@ subset Y) A)) (@ (@ subset (@ (@ union X) Y)) A)))) SB_DEFAULT SBA_FIXPOINT)) (PREPROCESS :args ((= (not (forall ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (A (-> $$unsorted Bool)) (BOUND_VARIABLE_669 $$unsorted)) (or (not (forall ((BOUND_VARIABLE_588 $$unsorted)) (or (not (@ X BOUND_VARIABLE_588)) (@ A BOUND_VARIABLE_588)))) (not (forall ((BOUND_VARIABLE_607 $$unsorted)) (or (not (@ Y BOUND_VARIABLE_607)) (@ A BOUND_VARIABLE_607)))) (and (not (@ X BOUND_VARIABLE_669)) (not (@ Y BOUND_VARIABLE_669))) (@ A BOUND_VARIABLE_669)))) _let_30))))))) (let ((_let_42 (OR))) (let ((_let_43 (MACRO_RESOLUTION_TRUST (EQ_RESOLVE (IMPLIES_ELIM (SCOPE (SKOLEMIZE _let_41) :args (_let_30))) (CONG (MACRO_SR_PRED_INTRO :args ((= (not _let_30) _let_28))) (REFL :args (_let_29)) :args _let_42)) _let_41 :args (_let_29 true _let_28)))) (let ((_let_44 (REFL :args (_let_27)))) (let ((_let_45 (not _let_20))) (let ((_let_46 (MACRO_RESOLUTION_TRUST (CNF_OR_NEG :args (_let_27 3)) _let_43 :args ((not _let_17) true _let_27)))) (let ((_let_47 (or _let_22 _let_17))) (let ((_let_48 (_let_25))) (let ((_let_49 (skv_5 QUANTIFIERS_INST_CBQI_CONFLICT))) (let ((_let_50 (_let_23))) (let ((_let_51 (_let_16))) (SCOPE (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE (ASSUME :args _let_51) :args _let_49) :args _let_51)) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS :args (_let_20)) :args ((or _let_19 _let_17 _let_45))) (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (CNF_AND_NEG :args _let_50) (CONG (REFL :args _let_50) (MACRO_SR_PRED_INTRO :args ((= (not _let_22) _let_21))) (MACRO_SR_PRED_INTRO :args ((= (not _let_19) _let_18))) :args _let_42)) :args ((or _let_21 _let_18 _let_23))) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS :args (_let_47)) :args ((or _let_22 _let_17 (not _let_47)))) _let_46 (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE (ASSUME :args _let_48) :args _let_49) :args _let_48)) (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (CNF_OR_NEG :args (_let_27 0)) (CONG _let_44 (MACRO_SR_PRED_INTRO :args ((= (not _let_26) _let_25))) :args _let_42)) :args ((or _let_25 _let_27))) _let_43 :args (_let_25 true _let_27)) :args (_let_47 false _let_25)) :args (_let_22 true _let_17 false _let_47)) (MACRO_RESOLUTION_TRUST (CNF_OR_NEG :args (_let_27 2)) _let_43 :args ((not _let_23) true _let_27)) :args (_let_18 true _let_21 true _let_23)) _let_46 :args (_let_45 false _let_18 true _let_17)) (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (CNF_OR_NEG :args (_let_27 1)) (CONG _let_44 (MACRO_SR_PRED_INTRO :args ((= (not _let_24) _let_16))) :args _let_42)) :args ((or _let_16 _let_27))) _let_43 :args (_let_16 true _let_27)) :args (false true _let_20 false _let_16)) :args (_let_15 _let_14 _let_13 _let_12 _let_11 _let_10 _let_9 _let_8 _let_7 _let_6 _let_5 _let_4 _let_3 _let_2 _let_1 true))))))))))))))))))))))))))))))))))))))))))))))))))))) % SZS output end Proof for SET014^4
% SZS output start Proof for DAT013=1 (let ((_let_1 (not (forall ((U array) (V Int) (W Int)) (=> (forall ((X Int)) (=> (and (<= V X) (<= X W)) (> (read U X) 0))) (forall ((Y Int)) (=> (and (<= (+ V 3) Y) (<= Y W)) (> (read U Y) 0)))))))) (let ((_let_2 (* (- 1) skv_5))) (let ((_let_3 (+ skv_3 _let_2))) (let ((_let_4 (>= _let_3 (- 2)))) (let ((_let_5 (>= _let_3 1))) (let ((_let_6 (>= (read skv_2 skv_5) 1))) (let ((_let_7 (>= (+ skv_4 _let_2) 0))) (let ((_let_8 (not _let_7))) (let ((_let_9 (forall ((X Int)) (or (not (>= (+ X (* (- 1) skv_3)) 0)) (>= (+ X (* (- 1) skv_4)) 1) (>= (read skv_2 X) 1))))) (let ((_let_10 (not _let_9))) (let ((_let_11 (or _let_10 _let_4 _let_8 _let_6))) (let ((_let_12 (not _let_4))) (let ((_let_13 (forall ((U array) (V Int) (W Int) (BOUND_VARIABLE_434 Int)) (let ((_let_1 (* (- 1) BOUND_VARIABLE_434))) (or (not (forall ((X Int)) (let ((_let_1 (* (- 1) X))) (or (>= (+ V _let_1) 1) (not (>= (+ W _let_1) 0)) (>= (read U X) 1))))) (>= (+ V _let_1) (- 2)) (not (>= (+ W _let_1) 0)) (>= (read U BOUND_VARIABLE_434) 1)))))) (let ((_let_14 (not _let_11))) (let ((_let_15 (EQ_RESOLVE (ASSUME :args (_let_1)) (MACRO_SR_EQ_INTRO :args (_let_1 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_16 (OR))) (let ((_let_17 (not _let_13))) (let ((_let_18 (MACRO_RESOLUTION_TRUST (EQ_RESOLVE (IMPLIES_ELIM (EQ_RESOLVE (SCOPE (SKOLEMIZE _let_15) :args (_let_17)) (REWRITE :args ((=> _let_17 (not (or (not (forall ((X Int)) (let ((_let_1 (* (- 1) X))) (or (>= (+ skv_3 _let_1) 1) (not (>= (+ skv_4 _let_1) 0)) (>= (read skv_2 X) 1))))) _let_4 _let_8 _let_6))))))) (CONG (MACRO_SR_PRED_INTRO :args ((= (not _let_17) _let_13))) (REFL :args (_let_14)) :args _let_16)) _let_15 :args (_let_14 true _let_13)))) (let ((_let_19 (or _let_5 _let_8 _let_6))) (let ((_let_20 (REFL :args (_let_11)))) (let ((_let_21 (_let_9))) (let ((_let_22 (< _let_3 1))) (let ((_let_23 (_let_5))) (let ((_let_24 (ASSUME :args _let_23))) (let ((_let_25 (ASSUME :args (_let_12)))) (SCOPE (MACRO_RESOLUTION_TRUST (EQ_RESOLVE (NOT_AND (MACRO_SR_PRED_TRANSFORM (SCOPE (AND_INTRO _let_24 _let_25) :args (_let_12 _let_5)) (SCOPE (CONTRA (MACRO_SR_PRED_TRANSFORM (SCOPE (MACRO_SR_PRED_TRANSFORM (MACRO_ARITH_SCALE_SUM_UB _let_24 (INT_TIGHT_UB (MACRO_SR_PRED_TRANSFORM _let_25 :args ((< _let_3 (- 2))))) :args ((- 1.0) 1.0)) :args (false)) :args _let_23) :args (_let_22)) (MACRO_SR_PRED_TRANSFORM _let_24 :args ((not _let_22)))) :args (_let_5 _let_12)) :args ((not (and _let_12 _let_5)) SB_LITERAL))) (CONG (MACRO_SR_PRED_INTRO :args ((= (not _let_12) _let_4))) (REFL :args ((not _let_5))) :args _let_16)) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS :args (_let_19)) :args ((or _let_8 _let_6 _let_5 (not _let_19)))) (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (CNF_OR_NEG :args (_let_11 2)) (CONG _let_20 (MACRO_SR_PRED_INTRO :args ((= (not _let_8) _let_7))) :args _let_16)) :args ((or _let_7 _let_11))) _let_18 :args (_let_7 true _let_11)) (MACRO_RESOLUTION_TRUST (CNF_OR_NEG :args (_let_11 3)) _let_18 :args ((not _let_6) true _let_11)) (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (MACRO_SR_PRED_ELIM (SCOPE (INSTANTIATE (ASSUME :args _let_21) :args (skv_5 QUANTIFIERS_INST_E_MATCHING_SIMPLE ((read skv_2 X)))) :args _let_21))) (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (CNF_OR_NEG :args (_let_11 0)) (CONG _let_20 (MACRO_SR_PRED_INTRO :args ((= (not _let_10) _let_9))) :args _let_16)) :args ((or _let_9 _let_11))) _let_18 :args (_let_9 true _let_11)) :args (_let_19 false _let_9)) :args (_let_5 false _let_7 true _let_6 false _let_19)) (MACRO_RESOLUTION_TRUST (CNF_OR_NEG :args (_let_11 1)) _let_18 :args (_let_12 true _let_11)) :args (false false _let_5 true _let_4)) :args ((forall ((U array) (V Int) (W Int)) (= (read (write U V W) V) W)) (forall ((X array) (Y Int) (Z Int) (X1 Int)) (or (= Y Z) (= (read (write X Y X1) Z) (read X Z)))) _let_1 true))))))))))))))))))))))))))) % SZS output end Proof for DAT013=1
% SZS output start Proof for SEU140+2 (let ((_let_1 (forall ((A $$unsorted) (B $$unsorted)) (=> (disjoint A B) (disjoint B A))))) (let ((_let_2 (forall ((A $$unsorted) (B $$unsorted)) (= (subset A B) (forall ((C $$unsorted)) (=> (in C A) (in C B))))))) (let ((_let_3 (forall ((A $$unsorted) (B $$unsorted)) (let ((_let_1 (disjoint A B))) (and (not (and (not _let_1) (forall ((C $$unsorted)) (not (and (in C A) (in C B)))))) (not (and (exists ((C $$unsorted)) (and (in C A) (in C B))) _let_1))))))) (let ((_let_4 (not (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (and (subset A B) (disjoint B C)) (disjoint A C)))))) (let ((_let_5 (in skv_7 skv_4))) (let ((_let_6 (in skv_7 skv_5))) (let ((_let_7 (not _let_5))) (let ((_let_8 (or _let_7 _let_6))) (let ((_let_9 (in skv_7 skv_6))) (let ((_let_10 (not _let_9))) (let ((_let_11 (or _let_7 _let_10))) (let ((_let_12 (forall ((C $$unsorted)) (or (not (in C skv_4)) (not (in C skv_6)))))) (let ((_let_13 (not _let_11))) (let ((_let_14 (not _let_12))) (let ((_let_15 (disjoint skv_4 skv_6))) (let ((_let_16 (or _let_15 _let_14))) (let ((_let_17 (forall ((BOUND_VARIABLE_930 $$unsorted) (BOUND_VARIABLE_932 $$unsorted)) (or (disjoint BOUND_VARIABLE_930 BOUND_VARIABLE_932) (not (forall ((C $$unsorted)) (or (not (in C BOUND_VARIABLE_930)) (not (in C BOUND_VARIABLE_932))))))))) (let ((_let_18 (EQ_RESOLVE (ASSUME :args (_let_3)) (MACRO_SR_EQ_INTRO :args (_let_3 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_19 (_let_17))) (let ((_let_20 (disjoint skv_5 skv_6))) (let ((_let_21 (not _let_20))) (let ((_let_22 (subset skv_4 skv_5))) (let ((_let_23 (not _let_22))) (let ((_let_24 (or _let_23 _let_21 _let_15))) (let ((_let_25 (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (or (not (subset A B)) (not (disjoint B C)) (disjoint A C))))) (let ((_let_26 (not _let_24))) (let ((_let_27 (EQ_RESOLVE (ASSUME :args (_let_4)) (MACRO_SR_EQ_INTRO :args (_let_4 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_28 (OR))) (let ((_let_29 (not _let_25))) (let ((_let_30 (MACRO_RESOLUTION_TRUST (EQ_RESOLVE (IMPLIES_ELIM (SCOPE (SKOLEMIZE _let_27) :args (_let_29))) (CONG (MACRO_SR_PRED_INTRO :args ((= (not _let_29) _let_25))) (REFL :args (_let_26)) :args _let_28)) _let_27 :args (_let_26 true _let_25)))) (let ((_let_31 (_let_14))) (let ((_let_32 (MACRO_RESOLUTION_TRUST (EQ_RESOLVE (IMPLIES_ELIM (SCOPE (SKOLEMIZE (ASSUME :args _let_31)) :args _let_31)) (CONG (MACRO_SR_PRED_INTRO :args ((= (not _let_14) _let_12))) (REFL :args (_let_13)) :args _let_28)) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS :args (_let_16)) :args ((or _let_15 _let_14 (not _let_16)))) (MACRO_RESOLUTION_TRUST (CNF_OR_NEG :args (_let_24 2)) _let_30 :args ((not _let_15) true _let_24)) (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE (ASSUME :args _let_19) :args (skv_4 skv_6 QUANTIFIERS_INST_E_MATCHING_SIMPLE ((not (= (disjoint BOUND_VARIABLE_930 BOUND_VARIABLE_932) true))))) :args _let_19)) (AND_ELIM _let_18 :args (0)) :args (_let_16 false _let_17)) :args (_let_14 true _let_15 false _let_16)) :args (_let_13 true _let_12)))) (let ((_let_33 (REFL :args (_let_11)))) (let ((_let_34 (forall ((C $$unsorted)) (or (not (in C skv_4)) (in C skv_5))))) (let ((_let_35 (= _let_22 _let_34))) (let ((_let_36 (forall ((A $$unsorted) (B $$unsorted)) (= (subset A B) (forall ((C $$unsorted)) (or (not (in C A)) (in C B))))))) (let ((_let_37 (EQ_RESOLVE (ASSUME :args (_let_2)) (MACRO_SR_EQ_INTRO :args (_let_2 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_38 (REFL :args (_let_24)))) (let ((_let_39 (_let_34))) (let ((_let_40 (not _let_6))) (let ((_let_41 (disjoint skv_6 skv_5))) (let ((_let_42 (not _let_41))) (let ((_let_43 (or _let_42 _let_10 _let_40))) (let ((_let_44 (forall ((BOUND_VARIABLE_945 $$unsorted) (BOUND_VARIABLE_947 $$unsorted) (BOUND_VARIABLE_961 $$unsorted)) (or (not (disjoint BOUND_VARIABLE_945 BOUND_VARIABLE_947)) (not (in BOUND_VARIABLE_961 BOUND_VARIABLE_945)) (not (in BOUND_VARIABLE_961 BOUND_VARIABLE_947)))))) (let ((_let_45 (_let_44))) (let ((_let_46 (or _let_21 _let_41))) (let ((_let_47 (forall ((A $$unsorted) (B $$unsorted)) (or (not (disjoint A B)) (disjoint B A))))) (let ((_let_48 (EQ_RESOLVE (ASSUME :args (_let_1)) (MACRO_SR_EQ_INTRO :args (_let_1 SB_DEFAULT SBA_FIXPOINT))))) (SCOPE (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS :args (_let_8)) :args ((or _let_7 _let_6 (not _let_8)))) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS :args (_let_43)) :args ((or _let_42 _let_10 _let_40 (not _let_43)))) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS :args (_let_46)) :args ((or _let_21 _let_41 (not _let_46)))) (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (CNF_OR_NEG :args (_let_24 1)) (CONG _let_38 (MACRO_SR_PRED_INTRO :args ((= (not _let_21) _let_20))) :args _let_28)) :args ((or _let_20 _let_24))) _let_30 :args (_let_20 true _let_24)) (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE _let_48 :args (skv_5 skv_6 QUANTIFIERS_INST_E_MATCHING_SIMPLE ((not (= (disjoint A B) false))))) :args (_let_47))) _let_48 :args (_let_46 false _let_47)) :args (_let_41 false _let_20 false _let_46)) (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (CNF_OR_NEG :args (_let_11 1)) (CONG _let_33 (MACRO_SR_PRED_INTRO :args ((= (not _let_10) _let_9))) :args _let_28)) :args ((or _let_9 _let_11))) _let_32 :args (_let_9 true _let_11)) (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE (ASSUME :args _let_45) :args (skv_6 skv_5 skv_7 QUANTIFIERS_INST_E_MATCHING ((not (= (disjoint BOUND_VARIABLE_945 BOUND_VARIABLE_947) false)) (not (= (in BOUND_VARIABLE_961 BOUND_VARIABLE_945) false))))) :args _let_45)) (AND_ELIM _let_18 :args (1)) :args (_let_43 false _let_44)) :args (_let_40 false _let_41 false _let_9 false _let_43)) (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE (ASSUME :args _let_39) :args (skv_7 QUANTIFIERS_INST_E_MATCHING_SIMPLE ((not (= (in C skv_4) false))))) :args _let_39)) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_EQUIV_POS1 :args (_let_35)) :args ((or _let_23 _let_34 (not _let_35)))) (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (CNF_OR_NEG :args (_let_24 0)) (CONG _let_38 (MACRO_SR_PRED_INTRO :args ((= (not _let_23) _let_22))) :args _let_28)) :args ((or _let_22 _let_24))) _let_30 :args (_let_22 true _let_24)) (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE _let_37 :args (skv_4 skv_5 QUANTIFIERS_INST_E_MATCHING_SIMPLE ((subset A B)))) :args (_let_36))) _let_37 :args (_let_35 false _let_36)) :args (_let_34 false _let_22 false _let_35)) :args (_let_8 false _let_34)) (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (CNF_OR_NEG :args (_let_11 0)) (CONG _let_33 (MACRO_SR_PRED_INTRO :args ((= (not _let_7) _let_5))) :args _let_28)) :args ((or _let_5 _let_11))) _let_32 :args (_let_5 true _let_11)) :args (false true _let_6 false _let_8 false _let_5)) :args ((forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (and (subset A B) (subset C B)) (subset (set_union2 A C) B))) (forall ((A $$unsorted) (B $$unsorted)) (not (and (empty A) (not (= A B)) (empty B)))) _let_4 (forall ((A $$unsorted) (B $$unsorted)) (not (and (in A B) (empty B)))) (forall ((A $$unsorted) (B $$unsorted)) (= (set_difference A (set_difference A B)) (set_intersection2 A B))) (forall ((A $$unsorted)) (=> (empty A) (= A empty_set))) (forall ((A $$unsorted) (B $$unsorted)) (=> (subset A B) (= B (set_union2 A (set_difference B A))))) (forall ((A $$unsorted) (B $$unsorted)) (not (and (subset A B) (proper_subset B A)))) (forall ((A $$unsorted)) (=> (subset A empty_set) (= A empty_set))) _let_3 (forall ((A $$unsorted)) (= (set_difference A empty_set) A)) (forall ((A $$unsorted) (B $$unsorted)) (= (= (set_difference A B) empty_set) (subset A B))) (forall ((A $$unsorted) (B $$unsorted)) (= (set_difference (set_union2 A B) B) (set_difference A B))) (forall ((A $$unsorted) (B $$unsorted)) (subset (set_difference A B) A)) (forall ((A $$unsorted) (B $$unsorted)) (let ((_let_1 (disjoint A B))) (and (not (and (not _let_1) (forall ((C $$unsorted)) (not (in C (set_intersection2 A B)))))) (not (and (exists ((C $$unsorted)) (in C (set_intersection2 A B))) _let_1))))) (forall ((A $$unsorted)) (subset empty_set A)) (forall ((A $$unsorted) (B $$unsorted)) (=> (forall ((C $$unsorted)) (= (in C A) (in C B))) (= A B))) (forall ((A $$unsorted)) (= (set_intersection2 A empty_set) empty_set)) (forall ((A $$unsorted)) (= (set_difference empty_set A) empty_set)) (forall ((A $$unsorted) (B $$unsorted)) (=> (subset A B) (= (set_intersection2 A B) A))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (subset A B) (subset (set_intersection2 A C) (set_intersection2 B C)))) (forall ((A $$unsorted) (B $$unsorted)) (= (proper_subset A B) (and (subset A B) (not (= A B))))) (forall ((A $$unsorted) (B $$unsorted)) (= (set_union2 A A) A)) (forall ((A $$unsorted)) (= (= A empty_set) (forall ((B $$unsorted)) (not (in B A))))) (forall ((A $$unsorted) (B $$unsorted)) (= (set_union2 A B) (set_union2 B A))) (forall ((A $$unsorted) (B $$unsorted)) (= (set_intersection2 A A) A)) _let_2 (forall ((A $$unsorted) (B $$unsorted)) (= (set_union2 A (set_difference B A)) (set_union2 A B))) (forall ((A $$unsorted) (B $$unsorted)) (subset A A)) (forall ((A $$unsorted) (B $$unsorted)) (= (= A B) (and (subset A B) (subset B A)))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (= (= C (set_union2 A B)) (forall ((D $$unsorted)) (= (in D C) (or (in D A) (in D B)))))) (exists ((A $$unsorted)) (empty A)) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (= (= C (set_intersection2 A B)) (forall ((D $$unsorted)) (= (in D C) (and (in D A) (in D B)))))) (forall ((A $$unsorted) (B $$unsorted)) (= (set_intersection2 A B) (set_intersection2 B A))) (forall ((A $$unsorted) (B $$unsorted)) (=> (in A B) (not (in B A)))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (= (= C (set_difference A B)) (forall ((D $$unsorted)) (= (in D C) (and (in D A) (not (in D B))))))) (exists ((A $$unsorted)) (not (empty A))) (forall ((A $$unsorted) (B $$unsorted)) (=> (proper_subset A B) (not (proper_subset B A)))) (forall ((A $$unsorted) (B $$unsorted)) (subset (set_intersection2 A B) A)) true (empty empty_set) (forall ((A $$unsorted) (B $$unsorted)) (=> (not (empty A)) (not (empty (set_union2 A B))))) (forall ((A $$unsorted) (B $$unsorted)) (=> (not (empty A)) (not (empty (set_union2 B A))))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (and (subset A B) (subset B C)) (subset A C))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (subset A B) (subset (set_difference A C) (set_difference B C)))) (forall ((A $$unsorted)) (= (set_union2 A empty_set) A)) (forall ((A $$unsorted) (B $$unsorted)) (not (proper_subset A A))) (forall ((A $$unsorted) (B $$unsorted)) (subset A (set_union2 A B))) _let_1 (forall ((A $$unsorted) (B $$unsorted)) (= (disjoint A B) (= (set_intersection2 A B) empty_set))) (forall ((A $$unsorted) (B $$unsorted)) (= (= (set_difference A B) empty_set) (subset A B))) (forall ((A $$unsorted) (B $$unsorted)) (=> (subset A B) (= (set_union2 A B) B))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (and (subset A B) (subset A C)) (subset A (set_intersection2 B C)))))))))))))))))))))))))))))))))))))))))))))))))))))) % SZS output end Proof for SEU140+2
% SZS output start FiniteModel for NLP042+1 ( ; cardinality of $$unsorted is 4 ; rep: (as @$$unsorted_0 $$unsorted) ; rep: (as @$$unsorted_1 $$unsorted) ; rep: (as @$$unsorted_2 $$unsorted) ; rep: (as @$$unsorted_3 $$unsorted) (define-fun woman (($x1 $$unsorted) ($x2 $$unsorted)) Bool (and (= (as @$$unsorted_3 $$unsorted) $x1) (= (as @$$unsorted_3 $$unsorted) $x2))) (define-fun female (($x1 $$unsorted) ($x2 $$unsorted)) Bool (and (= (as @$$unsorted_3 $$unsorted) $x1) (= (as @$$unsorted_3 $$unsorted) $x2))) (define-fun human_person (($x1 $$unsorted) ($x2 $$unsorted)) Bool (and (= (as @$$unsorted_3 $$unsorted) $x1) (= (as @$$unsorted_3 $$unsorted) $x2))) (define-fun animate (($x1 $$unsorted) ($x2 $$unsorted)) Bool (and (= (as @$$unsorted_3 $$unsorted) $x1) (= (as @$$unsorted_3 $$unsorted) $x2))) (define-fun human (($x1 $$unsorted) ($x2 $$unsorted)) Bool (and (= (as @$$unsorted_3 $$unsorted) $x1) (= (as @$$unsorted_3 $$unsorted) $x2))) (define-fun organism (($x1 $$unsorted) ($x2 $$unsorted)) Bool (and (= (as @$$unsorted_3 $$unsorted) $x1) (= (as @$$unsorted_3 $$unsorted) $x2))) (define-fun living (($x1 $$unsorted) ($x2 $$unsorted)) Bool (and (= (as @$$unsorted_3 $$unsorted) $x1) (= (as @$$unsorted_3 $$unsorted) $x2))) (define-fun impartial (($x1 $$unsorted) ($x2 $$unsorted)) Bool true) (define-fun entity (($x1 $$unsorted) ($x2 $$unsorted)) Bool (or (and (= (as @$$unsorted_3 $$unsorted) $x1) (= (as @$$unsorted_1 $$unsorted) $x2)) (and (= (as @$$unsorted_3 $$unsorted) $x1) (= (as @$$unsorted_3 $$unsorted) $x2)))) (define-fun mia_forename (($x1 $$unsorted) ($x2 $$unsorted)) Bool (and (= (as @$$unsorted_3 $$unsorted) $x1) (= (as @$$unsorted_2 $$unsorted) $x2))) (define-fun forename (($x1 $$unsorted) ($x2 $$unsorted)) Bool (and (= (as @$$unsorted_3 $$unsorted) $x1) (= (as @$$unsorted_2 $$unsorted) $x2))) (define-fun abstraction (($x1 $$unsorted) ($x2 $$unsorted)) Bool (and (= (as @$$unsorted_3 $$unsorted) $x1) (= (as @$$unsorted_2 $$unsorted) $x2))) (define-fun unisex (($x1 $$unsorted) ($x2 $$unsorted)) Bool (or (and (= (as @$$unsorted_3 $$unsorted) $x1) (= (as @$$unsorted_0 $$unsorted) $x2)) (and (= (as @$$unsorted_3 $$unsorted) $x1) (= (as @$$unsorted_2 $$unsorted) $x2)) (and (= (as @$$unsorted_3 $$unsorted) $x1) (= (as @$$unsorted_1 $$unsorted) $x2)))) (define-fun general (($x1 $$unsorted) ($x2 $$unsorted)) Bool (and (= (as @$$unsorted_3 $$unsorted) $x1) (= (as @$$unsorted_2 $$unsorted) $x2))) (define-fun nonhuman (($x1 $$unsorted) ($x2 $$unsorted)) Bool (and (= (as @$$unsorted_3 $$unsorted) $x1) (= (as @$$unsorted_2 $$unsorted) $x2))) (define-fun thing (($x1 $$unsorted) ($x2 $$unsorted)) Bool true) (define-fun relation (($x1 $$unsorted) ($x2 $$unsorted)) Bool (and (= (as @$$unsorted_3 $$unsorted) $x1) (= (as @$$unsorted_2 $$unsorted) $x2))) (define-fun relname (($x1 $$unsorted) ($x2 $$unsorted)) Bool (and (= (as @$$unsorted_3 $$unsorted) $x1) (= (as @$$unsorted_2 $$unsorted) $x2))) (define-fun object (($x1 $$unsorted) ($x2 $$unsorted)) Bool (and (= (as @$$unsorted_3 $$unsorted) $x1) (= (as @$$unsorted_1 $$unsorted) $x2))) (define-fun nonliving (($x1 $$unsorted) ($x2 $$unsorted)) Bool (and (= (as @$$unsorted_3 $$unsorted) $x1) (= (as @$$unsorted_1 $$unsorted) $x2))) (define-fun existent (($x1 $$unsorted) ($x2 $$unsorted)) Bool (or (and (= (as @$$unsorted_3 $$unsorted) $x1) (= (as @$$unsorted_1 $$unsorted) $x2)) (and (= (as @$$unsorted_3 $$unsorted) $x1) (= (as @$$unsorted_3 $$unsorted) $x2)))) (define-fun specific (($x1 $$unsorted) ($x2 $$unsorted)) Bool (or (and (= (as @$$unsorted_3 $$unsorted) $x1) (= (as @$$unsorted_1 $$unsorted) $x2)) (and (= (as @$$unsorted_3 $$unsorted) $x1) (= (as @$$unsorted_0 $$unsorted) $x2)) (and (= (as @$$unsorted_3 $$unsorted) $x1) (= (as @$$unsorted_3 $$unsorted) $x2)))) (define-fun substance_matter (($x1 $$unsorted) ($x2 $$unsorted)) Bool (and (= (as @$$unsorted_3 $$unsorted) $x1) (= (as @$$unsorted_1 $$unsorted) $x2))) (define-fun food (($x1 $$unsorted) ($x2 $$unsorted)) Bool (and (= (as @$$unsorted_3 $$unsorted) $x1) (= (as @$$unsorted_1 $$unsorted) $x2))) (define-fun beverage (($x1 $$unsorted) ($x2 $$unsorted)) Bool (and (= (as @$$unsorted_3 $$unsorted) $x1) (= (as @$$unsorted_1 $$unsorted) $x2))) (define-fun shake_beverage (($x1 $$unsorted) ($x2 $$unsorted)) Bool (and (= (as @$$unsorted_3 $$unsorted) $x1) (= (as @$$unsorted_1 $$unsorted) $x2))) (define-fun order (($x1 $$unsorted) ($x2 $$unsorted)) Bool (and (= (as @$$unsorted_3 $$unsorted) $x1) (= (as @$$unsorted_0 $$unsorted) $x2))) (define-fun event (($x1 $$unsorted) ($x2 $$unsorted)) Bool (and (= (as @$$unsorted_3 $$unsorted) $x1) (= (as @$$unsorted_0 $$unsorted) $x2))) (define-fun eventuality (($x1 $$unsorted) ($x2 $$unsorted)) Bool (and (= (as @$$unsorted_3 $$unsorted) $x1) (= (as @$$unsorted_0 $$unsorted) $x2))) (define-fun nonexistent (($x1 $$unsorted) ($x2 $$unsorted)) Bool (and (= (as @$$unsorted_3 $$unsorted) $x1) (= (as @$$unsorted_0 $$unsorted) $x2))) (define-fun singleton (($x1 $$unsorted) ($x2 $$unsorted)) Bool true) (define-fun act (($x1 $$unsorted) ($x2 $$unsorted)) Bool (and (= (as @$$unsorted_3 $$unsorted) $x1) (= (as @$$unsorted_0 $$unsorted) $x2))) (define-fun of (($x1 $$unsorted) ($x2 $$unsorted) ($x3 $$unsorted)) Bool true) (define-fun nonreflexive (($x1 $$unsorted) ($x2 $$unsorted)) Bool (and (= (as @$$unsorted_3 $$unsorted) $x1) (= (as @$$unsorted_0 $$unsorted) $x2))) (define-fun agent (($x1 $$unsorted) ($x2 $$unsorted) ($x3 $$unsorted)) Bool (and (not (and (= (as @$$unsorted_3 $$unsorted) $x1) (= (as @$$unsorted_0 $$unsorted) $x2) (= (as @$$unsorted_1 $$unsorted) $x3))) (not (and (= (as @$$unsorted_3 $$unsorted) $x1) (= (as @$$unsorted_0 $$unsorted) $x2) (= (as @$$unsorted_0 $$unsorted) $x3))) (not (and (= (as @$$unsorted_3 $$unsorted) $x1) (= (as @$$unsorted_0 $$unsorted) $x2) (= (as @$$unsorted_2 $$unsorted) $x3))))) (define-fun patient (($x1 $$unsorted) ($x2 $$unsorted) ($x3 $$unsorted)) Bool (not (and (= (as @$$unsorted_3 $$unsorted) $x1) (= (as @$$unsorted_0 $$unsorted) $x2) (= (as @$$unsorted_3 $$unsorted) $x3)))) (define-fun actual_world ((_arg_1 $$unsorted)) Bool true) (define-fun past ((_arg_1 $$unsorted) (_arg_2 $$unsorted)) Bool true) ) % SZS output end FiniteModel for NLP042+1
% SZS output start FiniteModel for SWV017+1.tptp ( ; cardinality of $$unsorted is 2 ; rep: (as @$$unsorted_0 $$unsorted) ; rep: (as @$$unsorted_1 $$unsorted) (define-fun at () $$unsorted (as @$$unsorted_0 $$unsorted)) (define-fun t () $$unsorted (as @$$unsorted_0 $$unsorted)) (define-fun key (($x1 $$unsorted) ($x2 $$unsorted)) $$unsorted (as @$$unsorted_0 $$unsorted)) (define-fun a_holds (($x1 $$unsorted)) Bool true) (define-fun a () $$unsorted (as @$$unsorted_0 $$unsorted)) (define-fun party_of_protocol (($x1 $$unsorted)) Bool true) (define-fun b () $$unsorted (as @$$unsorted_0 $$unsorted)) (define-fun an_a_nonce () $$unsorted (as @$$unsorted_0 $$unsorted)) (define-fun pair (($x1 $$unsorted) ($x2 $$unsorted)) $$unsorted (as @$$unsorted_0 $$unsorted)) (define-fun sent (($x1 $$unsorted) ($x2 $$unsorted) ($x3 $$unsorted)) $$unsorted (as @$$unsorted_0 $$unsorted)) (define-fun message (($x1 $$unsorted)) Bool true) (define-fun a_stored (($x1 $$unsorted)) Bool true) (define-fun quadruple (($x1 $$unsorted) ($x2 $$unsorted) ($x3 $$unsorted) ($x4 $$unsorted)) $$unsorted (as @$$unsorted_0 $$unsorted)) (define-fun encrypt (($x1 $$unsorted) ($x2 $$unsorted)) $$unsorted (as @$$unsorted_0 $$unsorted)) (define-fun triple (($x1 $$unsorted) ($x2 $$unsorted) ($x3 $$unsorted)) $$unsorted (as @$$unsorted_0 $$unsorted)) (define-fun bt () $$unsorted (as @$$unsorted_0 $$unsorted)) (define-fun b_holds (($x1 $$unsorted)) Bool true) (define-fun fresh_to_b (($x1 $$unsorted)) Bool true) (define-fun generate_b_nonce (($x1 $$unsorted)) $$unsorted (as @$$unsorted_0 $$unsorted)) (define-fun generate_expiration_time (($x1 $$unsorted)) $$unsorted (as @$$unsorted_0 $$unsorted)) (define-fun b_stored (($x1 $$unsorted)) Bool true) (define-fun a_key (($x1 $$unsorted)) Bool (= (as @$$unsorted_1 $$unsorted) $x1)) (define-fun t_holds (($x1 $$unsorted)) Bool true) (define-fun a_nonce (($x1 $$unsorted)) Bool (= (as @$$unsorted_0 $$unsorted) $x1)) (define-fun generate_key (($x1 $$unsorted)) $$unsorted (as @$$unsorted_1 $$unsorted)) (define-fun intruder_message (($x1 $$unsorted)) Bool true) (define-fun intruder_holds (($x1 $$unsorted)) Bool true) (define-fun an_intruder_nonce () $$unsorted (as @$$unsorted_0 $$unsorted)) (define-fun fresh_intruder_nonce (($x1 $$unsorted)) Bool true) (define-fun generate_intruder_nonce (($x1 $$unsorted)) $$unsorted (as @$$unsorted_0 $$unsorted)) ) % SZS output end FiniteModel for SWV017+1.tptp
% SZS status Theorem for SEU140+2: Theorem is valid % SZS output start CNFRefutation for SEU140+2 fof(f4,axiom,( ((! [A,B] : set_intersection2(A,B) = set_intersection2(B,A) ))), file('/run/media/oscar/Elements/temp/TPTP-v7.3.0.b/Problems/SEU140+2.p')). fof(f5,axiom,( ((! [A,B] :( A = B<=> ( subset(A,B)& subset(B,A) ) ) ))), file('/run/media/oscar/Elements/temp/TPTP-v7.3.0.b/Problems/SEU140+2.p')). fof(f11,axiom,( ((! [A,B] :( disjoint(A,B)<=> set_intersection2(A,B) = empty_set ) ))), file('/run/media/oscar/Elements/temp/TPTP-v7.3.0.b/Problems/SEU140+2.p')). fof(f33,lemma,( ((! [A,B,C] :( subset(A,B)=> subset(set_intersection2(A,C),set_intersection2(B,C)) ) ))), file('/run/media/oscar/Elements/temp/TPTP-v7.3.0.b/Problems/SEU140+2.p')). fof(f37,lemma,( ((! [A] : subset(empty_set,A) ))), file('/run/media/oscar/Elements/temp/TPTP-v7.3.0.b/Problems/SEU140+2.p')). fof(f51,conjecture,( ((! [A,B,C] :( ( subset(A,B)& disjoint(B,C) )=> disjoint(A,C) ) ))), file('/run/media/oscar/Elements/temp/TPTP-v7.3.0.b/Problems/SEU140+2.p')). fof(f52,negated_conjecture,( ~(((! [A,B,C] :( ( subset(A,B)& disjoint(B,C) )=> disjoint(A,C) ) )))), inference(negated_conjecture,[status(cth)],[f51])). fof(f63,plain,( ![X0,X1]: (set_intersection2(X0,X1)=set_intersection2(X1,X0))), inference(cnf_transformation,[status(esa)],[f4])). fof(f64,plain,( ![A,B]: ((~A=B|(subset(A,B)&subset(B,A)))&(A=B|(~subset(A,B)|~subset(B,A))))), inference(NNF_transformation,[status(esa)],[f5])). fof(f65,plain,( (![A,B]: (~A=B|(subset(A,B)&subset(B,A))))&(![A,B]: (A=B|(~subset(A,B)|~subset(B,A))))), inference(miniscoping,[status(esa)],[f64])). fof(f68,plain,( ![X0,X1]: (X0=X1|~subset(X0,X1)|~subset(X1,X0))), inference(cnf_transformation,[status(esa)],[f65])). fof(f108,plain,( ![A,B]: ((~disjoint(A,B)|set_intersection2(A,B)=empty_set)&(disjoint(A,B)|~set_intersection2(A,B)=empty_set))), inference(NNF_transformation,[status(esa)],[f11])). fof(f109,plain,( (![A,B]: (~disjoint(A,B)|set_intersection2(A,B)=empty_set))&(![A,B]: (disjoint(A,B)|~set_intersection2(A,B)=empty_set))), inference(miniscoping,[status(esa)],[f108])). fof(f110,plain,( ![X0,X1]: (~disjoint(X0,X1)|set_intersection2(X0,X1)=empty_set)), inference(cnf_transformation,[status(esa)],[f109])). fof(f111,plain,( ![X0,X1]: (disjoint(X0,X1)|~set_intersection2(X0,X1)=empty_set)), inference(cnf_transformation,[status(esa)],[f109])). fof(f151,plain,( ![A,B,C]: (~subset(A,B)|subset(set_intersection2(A,C),set_intersection2(B,C)))), inference(pre_NNF_transformation,[status(esa)],[f33])). fof(f152,plain,( ![A,B]: (~subset(A,B)|(![C]: subset(set_intersection2(A,C),set_intersection2(B,C))))), inference(miniscoping,[status(esa)],[f151])). fof(f153,plain,( ![X0,X1,X2]: (~subset(X0,X1)|subset(set_intersection2(X0,X2),set_intersection2(X1,X2)))), inference(cnf_transformation,[status(esa)],[f152])). fof(f162,plain,( ![X0]: (subset(empty_set,X0))), inference(cnf_transformation,[status(esa)],[f37])). fof(f193,plain,( (?[A,B,C]: ((subset(A,B)&disjoint(B,C))&~disjoint(A,C)))), inference(pre_NNF_transformation,[status(esa)],[f52])). fof(f194,plain,( ?[A,C]: ((?[B]: (subset(A,B)&disjoint(B,C)))&~disjoint(A,C))), inference(miniscoping,[status(esa)],[f193])). fof(f195,plain,( ((subset(sk0_10,sk0_12)&disjoint(sk0_12,sk0_11))&~disjoint(sk0_10,sk0_11))), inference(skolemization,[status(esa)],[f194])). fof(f196,plain,( subset(sk0_10,sk0_12)), inference(cnf_transformation,[status(esa)],[f195])). fof(f197,plain,( disjoint(sk0_12,sk0_11)), inference(cnf_transformation,[status(esa)],[f195])). fof(f198,plain,( ~disjoint(sk0_10,sk0_11)), inference(cnf_transformation,[status(esa)],[f195])). fof(f471,plain,( set_intersection2(sk0_12,sk0_11)=empty_set), inference(resolution,[status(thm)],[f110,f197])). fof(f472,plain,( set_intersection2(sk0_11,sk0_12)=empty_set), inference(forward_demodulation,[status(thm)],[f63,f471])). fof(f501,plain,( spl0_4 <=> empty_set=empty_set), introduced(split_symbol_definition)). fof(f503,plain,( ~empty_set=empty_set|spl0_4), inference(component_clause,[status(thm)],[f501])). fof(f506,plain,( $false|spl0_4), inference(trivial_equality_resolution,[status(esa)],[f503])). fof(f507,plain,( spl0_4), inference(contradiction_clause,[status(thm)],[f506])). fof(f568,plain,( ![X0]: (empty_set=X0|~subset(X0,empty_set))), inference(resolution,[status(thm)],[f162,f68])). fof(f1330,plain,( ![X0]: (subset(set_intersection2(sk0_10,X0),set_intersection2(sk0_12,X0)))), inference(resolution,[status(thm)],[f153,f196])). fof(f10117,plain,( ![X0]: (subset(set_intersection2(sk0_10,X0),set_intersection2(X0,sk0_12)))), inference(paramodulation,[status(thm)],[f63,f1330])). fof(f13040,plain,( subset(set_intersection2(sk0_10,sk0_11),empty_set)), inference(paramodulation,[status(thm)],[f472,f10117])). fof(f13608,plain,( empty_set=set_intersection2(sk0_10,sk0_11)), inference(resolution,[status(thm)],[f13040,f568])). fof(f13735,plain,( spl0_255 <=> disjoint(sk0_10,sk0_11)), introduced(split_symbol_definition)). fof(f13736,plain,( disjoint(sk0_10,sk0_11)|~spl0_255), inference(component_clause,[status(thm)],[f13735])). fof(f13777,plain,( disjoint(sk0_10,sk0_11)|~empty_set=empty_set), inference(paramodulation,[status(thm)],[f13608,f111])). fof(f13778,plain,( spl0_255|~spl0_4), inference(split_clause,[status(thm)],[f13777,f13735,f501])). fof(f13779,plain,( $false|~spl0_255), inference(forward_subsumption_resolution,[status(thm)],[f13736,f198])). fof(f13780,plain,( ~spl0_255), inference(contradiction_clause,[status(thm)],[f13779])). fof(f13781,plain,( $false), inference(sat_refutation,[status(thm)],[f507,f13778,f13780])). % SZS output end CNFRefutation for SEU140+2.p
% SZS status Unsatisfiable for BOO001-1: Theory is unsatisfiable % SZS output start CNFRefutation for BOO001-1 fof(f1,axiom,( (![V,W,X,Y,Z]: (( multiply(multiply(V,W,X),Y,multiply(V,W,Z)) = multiply(V,W,multiply(X,Y,Z)) )))), file('/run/media/oscar/Elements/temp/TPTP-v7.3.0.b/Problems/BOO001-1.p')). fof(f2,axiom,( (![Y,X]: (( multiply(Y,X,X) = X )))), file('/run/media/oscar/Elements/temp/TPTP-v7.3.0.b/Problems/BOO001-1.p')). fof(f3,axiom,( (![X,Y]: (( multiply(X,X,Y) = X )))), file('/run/media/oscar/Elements/temp/TPTP-v7.3.0.b/Problems/BOO001-1.p')). fof(f5,axiom,( (![X,Y]: (( multiply(X,Y,inverse(Y)) = X )))), file('/run/media/oscar/Elements/temp/TPTP-v7.3.0.b/Problems/BOO001-1.p')). fof(f6,negated_conjecture,( ( inverse(inverse(a)) != a )), file('/run/media/oscar/Elements/temp/TPTP-v7.3.0.b/Problems/BOO001-1.p')). fof(f7,plain,( ![X0,X1,X2,X3,X4]: (multiply(multiply(X0,X1,X2),X3,multiply(X0,X1,X4))=multiply(X0,X1,multiply(X2,X3,X4)))), inference(cnf_transformation,[status(esa)],[f1])). fof(f8,plain,( ![X0,X1]: (multiply(X0,X1,X1)=X1)), inference(cnf_transformation,[status(esa)],[f2])). fof(f9,plain,( ![X0,X1]: (multiply(X0,X0,X1)=X0)), inference(cnf_transformation,[status(esa)],[f3])). fof(f11,plain,( ![X0,X1]: (multiply(X0,X1,inverse(X1))=X0)), inference(cnf_transformation,[status(esa)],[f5])). fof(f12,plain,( ~inverse(inverse(a))=a), inference(cnf_transformation,[status(esa)],[f6])). fof(f18,plain,( ![X0,X1,X2,X3]: (multiply(X0,X1,multiply(X2,X0,X3))=multiply(X2,X0,multiply(X0,X1,X3)))), inference(paramodulation,[status(thm)],[f8,f7])). fof(f19,plain,( ![X0,X1,X2,X3]: (multiply(X0,X1,multiply(X2,multiply(X0,X1,X2),X3))=multiply(X0,X1,X2))), inference(paramodulation,[status(thm)],[f7,f9])). fof(f481,plain,( ![X0,X1,X2]: (multiply(X0,X1,multiply(inverse(X1),X0,X2))=multiply(X0,X1,inverse(X1)))), inference(paramodulation,[status(thm)],[f11,f19])). fof(f482,plain,( ![X0,X1,X2]: (multiply(X0,X1,multiply(inverse(X1),X0,X2))=X0)), inference(forward_demodulation,[status(thm)],[f11,f481])). fof(f526,plain,( ![X0,X1,X2]: (multiply(inverse(X0),X1,multiply(X1,X0,X2))=X1)), inference(paramodulation,[status(thm)],[f18,f482])). fof(f591,plain,( ![X0,X1]: (multiply(inverse(X0),X1,X0)=X1)), inference(paramodulation,[status(thm)],[f8,f526])). fof(f623,plain,( ![X0]: (inverse(inverse(X0))=X0)), inference(paramodulation,[status(thm)],[f11,f591])). fof(f653,plain,( ~a=a), inference(backward_demodulation,[status(thm)],[f623,f12])). fof(f654,plain,( $false), inference(trivial_equality_resolution,[status(esa)],[f653])). % SZS output end CNFRefutation for BOO001-1.p
# SZS output start CNFRefutation thf(thm, conjecture, ![X22:$i > $o, X23:$i > $o, X24:$i > $o]:(((subset @ X22 @ X24)&(subset @ X23 @ X24))=>(subset @ (union @ X22 @ X23) @ X24)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SET014^4.p', thm)). thf(union, axiom, ((union)=(^[X5:$i > $o, X6:$i > $o, X4:$i]:(((X5 @ X4)|(X6 @ X4))))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/Axioms/SET008^0.ax', union)). thf(subset, axiom, ((subset)=(^[X16:$i > $o, X17:$i > $o]:(![X4:$i]:(((X16 @ X4)=>(X17 @ X4)))))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/Axioms/SET008^0.ax', subset)). thf(c_0_3, negated_conjecture, ~(![X22:$i > $o, X23:$i > $o, X24:$i > $o]:((![X29:$i]:((X22 @ X29)=>(X24 @ X29))&![X30:$i]:((X23 @ X30)=>(X24 @ X30)))=>![X32:$i]:(((X22 @ X32)|(X23 @ X32))=>(X24 @ X32)))), inference(apply_def,[status(thm)],[inference(apply_def,[status(thm)],[inference(assume_negation,[status(cth)],[thm]), union]), subset])). thf(c_0_4, negated_conjecture, ![X37:$i, X38:$i]:(((~(epred1_0 @ X37)|(epred3_0 @ X37))&(~(epred2_0 @ X38)|(epred3_0 @ X38)))&(((epred1_0 @ esk1_0)|(epred2_0 @ esk1_0))&~(epred3_0 @ esk1_0))), inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_3])])])])). thf(c_0_5, negated_conjecture, ![X1:$i]:((epred3_0 @ X1)|~(epred2_0 @ X1)), inference(split_conjunct,[status(thm)],[c_0_4])). thf(c_0_6, negated_conjecture, ((epred1_0 @ esk1_0)|(epred2_0 @ esk1_0)), inference(split_conjunct,[status(thm)],[c_0_4])). thf(c_0_7, negated_conjecture, ~(epred3_0 @ esk1_0), inference(split_conjunct,[status(thm)],[c_0_4])). thf(c_0_8, negated_conjecture, ![X1:$i]:((epred3_0 @ X1)|~(epred1_0 @ X1)), inference(split_conjunct,[status(thm)],[c_0_4])). thf(c_0_9, negated_conjecture, (epred1_0 @ esk1_0), inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_5, c_0_6]), c_0_7])). thf(c_0_10, negated_conjecture, ($false), inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_8, c_0_9]), c_0_7]), ['proof']). # SZS output end CNFRefutation
# SZS output start CNFRefutation fof(t4_xboole_0, lemma, ![X1, X2]:(~((~(disjoint(X1,X2))&![X3]:~(in(X3,set_intersection2(X1,X2)))))&~((?[X3]:in(X3,set_intersection2(X1,X2))&disjoint(X1,X2)))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', t4_xboole_0)). fof(t48_xboole_1, lemma, ![X1, X2]:set_difference(X1,set_difference(X1,X2))=set_intersection2(X1,X2), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', t48_xboole_1)). fof(t63_xboole_1, conjecture, ![X1, X2, X3]:((subset(X1,X2)&disjoint(X2,X3))=>disjoint(X1,X3)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', t63_xboole_1)). fof(d1_xboole_0, axiom, ![X1]:(X1=empty_set<=>![X2]:~(in(X2,X1))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', d1_xboole_0)). fof(d4_xboole_0, axiom, ![X1, X2, X3]:(X3=set_difference(X1,X2)<=>![X4]:(in(X4,X3)<=>(in(X4,X1)&~(in(X4,X2))))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', d4_xboole_0)). fof(t3_xboole_0, lemma, ![X1, X2]:(~((~(disjoint(X1,X2))&![X3]:~((in(X3,X1)&in(X3,X2)))))&~((?[X3]:(in(X3,X1)&in(X3,X2))&disjoint(X1,X2)))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', t3_xboole_0)). fof(d3_xboole_0, axiom, ![X1, X2, X3]:(X3=set_intersection2(X1,X2)<=>![X4]:(in(X4,X3)<=>(in(X4,X1)&in(X4,X2)))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', d3_xboole_0)). fof(l32_xboole_1, lemma, ![X1, X2]:(set_difference(X1,X2)=empty_set<=>subset(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', l32_xboole_1)). fof(d10_xboole_0, axiom, ![X1, X2]:(X1=X2<=>(subset(X1,X2)&subset(X2,X1))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', d10_xboole_0)). fof(t36_xboole_1, lemma, ![X1, X2]:subset(set_difference(X1,X2),X1), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', t36_xboole_1)). fof(t3_boole, axiom, ![X1]:set_difference(X1,empty_set)=X1, file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', t3_boole)). fof(c_0_11, lemma, ![X1, X2]:(~((~disjoint(X1,X2)&![X3]:~in(X3,set_intersection2(X1,X2))))&~((?[X3]:in(X3,set_intersection2(X1,X2))&disjoint(X1,X2)))), inference(fof_simplification,[status(thm)],[t4_xboole_0])). fof(c_0_12, lemma, ![X226, X227, X229, X230, X231]:((disjoint(X226,X227)|in(esk10_2(X226,X227),set_intersection2(X226,X227)))&(~in(X231,set_intersection2(X229,X230))|~disjoint(X229,X230))), inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_11])])])])])). fof(c_0_13, lemma, ![X223, X224]:set_difference(X223,set_difference(X223,X224))=set_intersection2(X223,X224), inference(variable_rename,[status(thm)],[t48_xboole_1])). fof(c_0_14, negated_conjecture, ~(![X1, X2, X3]:((subset(X1,X2)&disjoint(X2,X3))=>disjoint(X1,X3))), inference(assume_negation,[status(cth)],[t63_xboole_1])). cnf(c_0_15, lemma, (~in(X1,set_intersection2(X2,X3))|~disjoint(X2,X3)), inference(split_conjunct,[status(thm)],[c_0_12])). cnf(c_0_16, lemma, (set_difference(X1,set_difference(X1,X2))=set_intersection2(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_13])). fof(c_0_17, negated_conjecture, ((subset(esk11_0,esk12_0)&disjoint(esk12_0,esk13_0))&~disjoint(esk11_0,esk13_0)), inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_14])])])). fof(c_0_18, plain, ![X1]:(X1=empty_set<=>![X2]:~in(X2,X1)), inference(fof_simplification,[status(thm)],[d1_xboole_0])). fof(c_0_19, plain, ![X1, X2, X3]:(X3=set_difference(X1,X2)<=>![X4]:(in(X4,X3)<=>(in(X4,X1)&~in(X4,X2)))), inference(fof_simplification,[status(thm)],[d4_xboole_0])). fof(c_0_20, lemma, ![X1, X2]:(~((~disjoint(X1,X2)&![X3]:~((in(X3,X1)&in(X3,X2)))))&~((?[X3]:(in(X3,X1)&in(X3,X2))&disjoint(X1,X2)))), inference(fof_simplification,[status(thm)],[t3_xboole_0])). cnf(c_0_21, lemma, (~disjoint(X2,X3)|~in(X1,set_difference(X2,set_difference(X2,X3)))), inference(rw,[status(thm)],[c_0_15, c_0_16])). cnf(c_0_22, negated_conjecture, (disjoint(esk12_0,esk13_0)), inference(split_conjunct,[status(thm)],[c_0_17])). fof(c_0_23, plain, ![X126, X127, X128]:((X126!=empty_set|~in(X127,X126))&(in(esk1_1(X128),X128)|X128=empty_set)), inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_18])])])])])). fof(c_0_24, plain, ![X145, X146, X147, X148, X149, X150, X151, X152]:((((in(X148,X145)|~in(X148,X147)|X147!=set_intersection2(X145,X146))&(in(X148,X146)|~in(X148,X147)|X147!=set_intersection2(X145,X146)))&(~in(X149,X145)|~in(X149,X146)|in(X149,X147)|X147!=set_intersection2(X145,X146)))&((~in(esk4_3(X150,X151,X152),X152)|(~in(esk4_3(X150,X151,X152),X150)|~in(esk4_3(X150,X151,X152),X151))|X152=set_intersection2(X150,X151))&((in(esk4_3(X150,X151,X152),X150)|in(esk4_3(X150,X151,X152),X152)|X152=set_intersection2(X150,X151))&(in(esk4_3(X150,X151,X152),X151)|in(esk4_3(X150,X151,X152),X152)|X152=set_intersection2(X150,X151))))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[d3_xboole_0])])])])])])). fof(c_0_25, plain, ![X154, X155, X156, X157, X158, X159, X160, X161]:((((in(X157,X154)|~in(X157,X156)|X156!=set_difference(X154,X155))&(~in(X157,X155)|~in(X157,X156)|X156!=set_difference(X154,X155)))&(~in(X158,X154)|in(X158,X155)|in(X158,X156)|X156!=set_difference(X154,X155)))&((~in(esk5_3(X159,X160,X161),X161)|(~in(esk5_3(X159,X160,X161),X159)|in(esk5_3(X159,X160,X161),X160))|X161=set_difference(X159,X160))&((in(esk5_3(X159,X160,X161),X159)|in(esk5_3(X159,X160,X161),X161)|X161=set_difference(X159,X160))&(~in(esk5_3(X159,X160,X161),X160)|in(esk5_3(X159,X160,X161),X161)|X161=set_difference(X159,X160))))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_19])])])])])])). fof(c_0_26, lemma, ![X212, X213, X215, X216, X217]:(((in(esk9_2(X212,X213),X212)|disjoint(X212,X213))&(in(esk9_2(X212,X213),X213)|disjoint(X212,X213)))&(~in(X217,X215)|~in(X217,X216)|~disjoint(X215,X216))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_20])])])])])])). fof(c_0_27, lemma, ![X174, X175]:((set_difference(X174,X175)!=empty_set|subset(X174,X175))&(~subset(X174,X175)|set_difference(X174,X175)=empty_set)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[l32_xboole_1])])). cnf(c_0_28, negated_conjecture, (~in(X1,set_difference(esk12_0,set_difference(esk12_0,esk13_0)))), inference(spm,[status(thm)],[c_0_21, c_0_22])). cnf(c_0_29, plain, (in(esk1_1(X1),X1)|X1=empty_set), inference(split_conjunct,[status(thm)],[c_0_23])). cnf(c_0_30, plain, (in(X1,X2)|~in(X1,X3)|X3!=set_intersection2(X4,X2)), inference(split_conjunct,[status(thm)],[c_0_24])). cnf(c_0_31, plain, (~in(X1,X2)|~in(X1,X3)|X3!=set_difference(X4,X2)), inference(split_conjunct,[status(thm)],[c_0_25])). cnf(c_0_32, negated_conjecture, (~disjoint(esk11_0,esk13_0)), inference(split_conjunct,[status(thm)],[c_0_17])). cnf(c_0_33, lemma, (in(esk9_2(X1,X2),X2)|disjoint(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_26])). fof(c_0_34, plain, ![X124, X125]:(((subset(X124,X125)|X124!=X125)&(subset(X125,X124)|X124!=X125))&(~subset(X124,X125)|~subset(X125,X124)|X124=X125)), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[d10_xboole_0])])])). cnf(c_0_35, lemma, (subset(X1,X2)|set_difference(X1,X2)!=empty_set), inference(split_conjunct,[status(thm)],[c_0_27])). cnf(c_0_36, negated_conjecture, (set_difference(esk12_0,set_difference(esk12_0,esk13_0))=empty_set), inference(spm,[status(thm)],[c_0_28, c_0_29])). fof(c_0_37, lemma, ![X205, X206]:subset(set_difference(X205,X206),X205), inference(variable_rename,[status(thm)],[t36_xboole_1])). cnf(c_0_38, plain, (in(X1,X2)|X3!=set_difference(X4,set_difference(X4,X2))|~in(X1,X3)), inference(rw,[status(thm)],[c_0_30, c_0_16])). cnf(c_0_39, lemma, (set_difference(X1,X2)=empty_set|~subset(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_27])). cnf(c_0_40, negated_conjecture, (subset(esk11_0,esk12_0)), inference(split_conjunct,[status(thm)],[c_0_17])). fof(c_0_41, plain, ![X211]:set_difference(X211,empty_set)=X211, inference(variable_rename,[status(thm)],[t3_boole])). cnf(c_0_42, plain, (~in(X1,set_difference(X2,X3))|~in(X1,X3)), inference(er,[status(thm)],[c_0_31])). cnf(c_0_43, negated_conjecture, (in(esk9_2(esk11_0,esk13_0),esk13_0)), inference(spm,[status(thm)],[c_0_32, c_0_33])). cnf(c_0_44, plain, (X1=X2|~subset(X1,X2)|~subset(X2,X1)), inference(split_conjunct,[status(thm)],[c_0_34])). cnf(c_0_45, lemma, (subset(esk12_0,set_difference(esk12_0,esk13_0))), inference(spm,[status(thm)],[c_0_35, c_0_36])). cnf(c_0_46, lemma, (subset(set_difference(X1,X2),X1)), inference(split_conjunct,[status(thm)],[c_0_37])). cnf(c_0_47, plain, (in(X1,X2)|~in(X1,set_difference(X3,set_difference(X3,X2)))), inference(er,[status(thm)],[c_0_38])). cnf(c_0_48, negated_conjecture, (set_difference(esk11_0,esk12_0)=empty_set), inference(spm,[status(thm)],[c_0_39, c_0_40])). cnf(c_0_49, plain, (set_difference(X1,empty_set)=X1), inference(split_conjunct,[status(thm)],[c_0_41])). cnf(c_0_50, lemma, (in(esk9_2(X1,X2),X1)|disjoint(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_26])). cnf(c_0_51, negated_conjecture, (~in(esk9_2(esk11_0,esk13_0),set_difference(X1,esk13_0))), inference(spm,[status(thm)],[c_0_42, c_0_43])). cnf(c_0_52, lemma, (set_difference(esk12_0,esk13_0)=esk12_0), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_44, c_0_45]), c_0_46])])). cnf(c_0_53, negated_conjecture, (in(X1,esk12_0)|~in(X1,esk11_0)), inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_47, c_0_48]), c_0_49])). cnf(c_0_54, negated_conjecture, (in(esk9_2(esk11_0,esk13_0),esk11_0)), inference(spm,[status(thm)],[c_0_32, c_0_50])). cnf(c_0_55, lemma, (~in(esk9_2(esk11_0,esk13_0),esk12_0)), inference(spm,[status(thm)],[c_0_51, c_0_52])). cnf(c_0_56, negated_conjecture, ($false), inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_53, c_0_54]), c_0_55]), ['proof']). # SZS output end CNFRefutation
# SZS output start Saturation fof(co1, conjecture, ~(?[X1]:(actual_world(X1)&?[X2, X3, X4, X5]:((((((((((of(X1,X3,X2)&woman(X1,X2))&mia_forename(X1,X3))&forename(X1,X3))&shake_beverage(X1,X4))&event(X1,X5))&agent(X1,X5,X2))&patient(X1,X5,X4))&past(X1,X5))&nonreflexive(X1,X5))&order(X1,X5)))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', co1)). fof(ax27, axiom, ![X1, X2]:(shake_beverage(X1,X2)=>beverage(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax27)). fof(ax15, axiom, ![X1, X2]:(relname(X1,X2)=>relation(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax15)). fof(ax16, axiom, ![X1, X2]:(forename(X1,X2)=>relname(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax16)). fof(ax26, axiom, ![X1, X2]:(beverage(X1,X2)=>food(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax26)). fof(ax41, axiom, ![X1, X2]:(specific(X1,X2)=>~(general(X1,X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax41)). fof(ax39, axiom, ![X1, X2]:(nonhuman(X1,X2)=>~(human(X1,X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax39)). fof(ax14, axiom, ![X1, X2]:(relation(X1,X2)=>abstraction(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax14)). fof(ax42, axiom, ![X1, X2]:(unisex(X1,X2)=>~(female(X1,X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax42)). fof(ax38, axiom, ![X1, X2]:(existent(X1,X2)=>~(nonexistent(X1,X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax38)). fof(ax40, axiom, ![X1, X2]:(nonliving(X1,X2)=>~(living(X1,X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax40)). fof(ax25, axiom, ![X1, X2]:(food(X1,X2)=>substance_matter(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax25)). fof(ax37, axiom, ![X1, X2]:(animate(X1,X2)=>~(nonliving(X1,X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax37)). fof(ax6, axiom, ![X1, X2]:(organism(X1,X2)=>entity(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax6)). fof(ax7, axiom, ![X1, X2]:(human_person(X1,X2)=>organism(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax7)). fof(ax8, axiom, ![X1, X2]:(woman(X1,X2)=>human_person(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax8)). fof(ax21, axiom, ![X1, X2]:(entity(X1,X2)=>specific(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax21)). fof(ax12, axiom, ![X1, X2]:(abstraction(X1,X2)=>nonhuman(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax12)). fof(ax10, axiom, ![X1, X2]:(abstraction(X1,X2)=>unisex(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax10)). fof(ax30, axiom, ![X1, X2]:(eventuality(X1,X2)=>nonexistent(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax30)). fof(ax34, axiom, ![X1, X2]:(event(X1,X2)=>eventuality(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax34)). fof(ax31, axiom, ![X1, X2]:(eventuality(X1,X2)=>specific(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax31)). fof(ax19, axiom, ![X1, X2]:(object(X1,X2)=>nonliving(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax19)). fof(ax24, axiom, ![X1, X2]:(substance_matter(X1,X2)=>object(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax24)). fof(ax17, axiom, ![X1, X2]:(object(X1,X2)=>unisex(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax17)). fof(ax29, axiom, ![X1, X2]:(eventuality(X1,X2)=>unisex(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax29)). fof(ax43, axiom, ![X1, X2, X3]:(((entity(X1,X2)&forename(X1,X3))&of(X1,X3,X2))=>~(?[X4]:((forename(X1,X4)&X4!=X3)&of(X1,X4,X2)))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax43)). fof(ax11, axiom, ![X1, X2]:(abstraction(X1,X2)=>general(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax11)). fof(ax44, axiom, ![X1, X2, X3, X4]:(((nonreflexive(X1,X2)&agent(X1,X2,X3))&patient(X1,X2,X4))=>X3!=X4), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax44)). fof(ax3, axiom, ![X1, X2]:(human_person(X1,X2)=>human(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax3)). fof(ax1, axiom, ![X1, X2]:(woman(X1,X2)=>female(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax1)). fof(ax20, axiom, ![X1, X2]:(entity(X1,X2)=>existent(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax20)). fof(ax4, axiom, ![X1, X2]:(organism(X1,X2)=>living(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax4)). fof(ax2, axiom, ![X1, X2]:(human_person(X1,X2)=>animate(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax2)). fof(ax23, axiom, ![X1, X2]:(object(X1,X2)=>entity(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax23)). fof(ax32, axiom, ![X1, X2]:(thing(X1,X2)=>singleton(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax32)). fof(ax33, axiom, ![X1, X2]:(eventuality(X1,X2)=>thing(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax33)). fof(ax13, axiom, ![X1, X2]:(abstraction(X1,X2)=>thing(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax13)). fof(ax22, axiom, ![X1, X2]:(entity(X1,X2)=>thing(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax22)). fof(ax18, axiom, ![X1, X2]:(object(X1,X2)=>impartial(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax18)). fof(ax5, axiom, ![X1, X2]:(organism(X1,X2)=>impartial(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax5)). fof(ax36, axiom, ![X1, X2]:(order(X1,X2)=>act(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax36)). fof(ax35, axiom, ![X1, X2]:(act(X1,X2)=>event(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax35)). fof(ax28, axiom, ![X1, X2]:(order(X1,X2)=>event(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax28)). fof(ax9, axiom, ![X1, X2]:(mia_forename(X1,X2)=>forename(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax9)). fof(c_0_45, negated_conjecture, ~(~(?[X1]:(actual_world(X1)&?[X2, X3, X4, X5]:((((((((((of(X1,X3,X2)&woman(X1,X2))&mia_forename(X1,X3))&forename(X1,X3))&shake_beverage(X1,X4))&event(X1,X5))&agent(X1,X5,X2))&patient(X1,X5,X4))&past(X1,X5))&nonreflexive(X1,X5))&order(X1,X5))))), inference(assume_negation,[status(cth)],[co1])). fof(c_0_46, plain, ![X155, X156]:(~shake_beverage(X155,X156)|beverage(X155,X156)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax27])])). fof(c_0_47, negated_conjecture, (actual_world(esk1_0)&((((((((((of(esk1_0,esk3_0,esk2_0)&woman(esk1_0,esk2_0))&mia_forename(esk1_0,esk3_0))&forename(esk1_0,esk3_0))&shake_beverage(esk1_0,esk4_0))&event(esk1_0,esk5_0))&agent(esk1_0,esk5_0,esk2_0))&patient(esk1_0,esk5_0,esk4_0))&past(esk1_0,esk5_0))&nonreflexive(esk1_0,esk5_0))&order(esk1_0,esk5_0))), inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_45])])])). fof(c_0_48, plain, ![X131, X132]:(~relname(X131,X132)|relation(X131,X132)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax15])])). fof(c_0_49, plain, ![X133, X134]:(~forename(X133,X134)|relname(X133,X134)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax16])])). fof(c_0_50, plain, ![X153, X154]:(~beverage(X153,X154)|food(X153,X154)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax26])])). cnf(c_0_51, plain, (beverage(X1,X2)|~shake_beverage(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_46]), ['final']). cnf(c_0_52, negated_conjecture, (shake_beverage(esk1_0,esk4_0)), inference(split_conjunct,[status(thm)],[c_0_47]), ['final']). fof(c_0_53, plain, ![X1, X2]:(specific(X1,X2)=>~general(X1,X2)), inference(fof_simplification,[status(thm)],[ax41])). fof(c_0_54, plain, ![X1, X2]:(nonhuman(X1,X2)=>~human(X1,X2)), inference(fof_simplification,[status(thm)],[ax39])). fof(c_0_55, plain, ![X129, X130]:(~relation(X129,X130)|abstraction(X129,X130)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax14])])). cnf(c_0_56, plain, (relation(X1,X2)|~relname(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_48]), ['final']). cnf(c_0_57, plain, (relname(X1,X2)|~forename(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_49]), ['final']). fof(c_0_58, plain, ![X1, X2]:(unisex(X1,X2)=>~female(X1,X2)), inference(fof_simplification,[status(thm)],[ax42])). fof(c_0_59, plain, ![X1, X2]:(existent(X1,X2)=>~nonexistent(X1,X2)), inference(fof_simplification,[status(thm)],[ax38])). fof(c_0_60, plain, ![X1, X2]:(nonliving(X1,X2)=>~living(X1,X2)), inference(fof_simplification,[status(thm)],[ax40])). fof(c_0_61, plain, ![X151, X152]:(~food(X151,X152)|substance_matter(X151,X152)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax25])])). cnf(c_0_62, plain, (food(X1,X2)|~beverage(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_50]), ['final']). cnf(c_0_63, negated_conjecture, (beverage(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_51, c_0_52]), ['final']). fof(c_0_64, plain, ![X1, X2]:(animate(X1,X2)=>~nonliving(X1,X2)), inference(fof_simplification,[status(thm)],[ax37])). fof(c_0_65, plain, ![X113, X114]:(~organism(X113,X114)|entity(X113,X114)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax6])])). fof(c_0_66, plain, ![X115, X116]:(~human_person(X115,X116)|organism(X115,X116)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax7])])). fof(c_0_67, plain, ![X117, X118]:(~woman(X117,X118)|human_person(X117,X118)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax8])])). fof(c_0_68, plain, ![X183, X184]:(~specific(X183,X184)|~general(X183,X184)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_53])])). fof(c_0_69, plain, ![X143, X144]:(~entity(X143,X144)|specific(X143,X144)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax21])])). fof(c_0_70, plain, ![X179, X180]:(~nonhuman(X179,X180)|~human(X179,X180)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_54])])). fof(c_0_71, plain, ![X125, X126]:(~abstraction(X125,X126)|nonhuman(X125,X126)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax12])])). cnf(c_0_72, plain, (abstraction(X1,X2)|~relation(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_55]), ['final']). cnf(c_0_73, plain, (relation(X1,X2)|~forename(X1,X2)), inference(spm,[status(thm)],[c_0_56, c_0_57]), ['final']). fof(c_0_74, plain, ![X185, X186]:(~unisex(X185,X186)|~female(X185,X186)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_58])])). fof(c_0_75, plain, ![X121, X122]:(~abstraction(X121,X122)|unisex(X121,X122)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax10])])). fof(c_0_76, plain, ![X177, X178]:(~existent(X177,X178)|~nonexistent(X177,X178)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_59])])). fof(c_0_77, plain, ![X161, X162]:(~eventuality(X161,X162)|nonexistent(X161,X162)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax30])])). fof(c_0_78, plain, ![X169, X170]:(~event(X169,X170)|eventuality(X169,X170)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax34])])). fof(c_0_79, plain, ![X163, X164]:(~eventuality(X163,X164)|specific(X163,X164)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax31])])). fof(c_0_80, plain, ![X181, X182]:(~nonliving(X181,X182)|~living(X181,X182)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_60])])). fof(c_0_81, plain, ![X139, X140]:(~object(X139,X140)|nonliving(X139,X140)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax19])])). fof(c_0_82, plain, ![X149, X150]:(~substance_matter(X149,X150)|object(X149,X150)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax24])])). cnf(c_0_83, plain, (substance_matter(X1,X2)|~food(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_61]), ['final']). cnf(c_0_84, negated_conjecture, (food(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_62, c_0_63]), ['final']). fof(c_0_85, plain, ![X175, X176]:(~animate(X175,X176)|~nonliving(X175,X176)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_64])])). fof(c_0_86, plain, ![X135, X136]:(~object(X135,X136)|unisex(X135,X136)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax17])])). fof(c_0_87, plain, ![X159, X160]:(~eventuality(X159,X160)|unisex(X159,X160)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax29])])). fof(c_0_88, plain, ![X187, X188, X189, X190]:(~entity(X187,X188)|~forename(X187,X189)|~of(X187,X189,X188)|(~forename(X187,X190)|X190=X189|~of(X187,X190,X188))), inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax43])])])). cnf(c_0_89, plain, (entity(X1,X2)|~organism(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_65]), ['final']). cnf(c_0_90, plain, (organism(X1,X2)|~human_person(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_66]), ['final']). cnf(c_0_91, plain, (human_person(X1,X2)|~woman(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_67]), ['final']). cnf(c_0_92, negated_conjecture, (woman(esk1_0,esk2_0)), inference(split_conjunct,[status(thm)],[c_0_47]), ['final']). cnf(c_0_93, plain, (~specific(X1,X2)|~general(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_68]), ['final']). cnf(c_0_94, plain, (specific(X1,X2)|~entity(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_69]), ['final']). fof(c_0_95, plain, ![X123, X124]:(~abstraction(X123,X124)|general(X123,X124)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax11])])). cnf(c_0_96, plain, (~nonhuman(X1,X2)|~human(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_70]), ['final']). cnf(c_0_97, plain, (nonhuman(X1,X2)|~abstraction(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_71]), ['final']). cnf(c_0_98, plain, (abstraction(X1,X2)|~forename(X1,X2)), inference(spm,[status(thm)],[c_0_72, c_0_73]), ['final']). cnf(c_0_99, negated_conjecture, (forename(esk1_0,esk3_0)), inference(split_conjunct,[status(thm)],[c_0_47]), ['final']). cnf(c_0_100, plain, (~unisex(X1,X2)|~female(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_74]), ['final']). cnf(c_0_101, plain, (unisex(X1,X2)|~abstraction(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_75]), ['final']). cnf(c_0_102, plain, (~existent(X1,X2)|~nonexistent(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_76]), ['final']). cnf(c_0_103, plain, (nonexistent(X1,X2)|~eventuality(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_77]), ['final']). cnf(c_0_104, plain, (eventuality(X1,X2)|~event(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_78]), ['final']). cnf(c_0_105, negated_conjecture, (event(esk1_0,esk5_0)), inference(split_conjunct,[status(thm)],[c_0_47]), ['final']). cnf(c_0_106, plain, (specific(X1,X2)|~eventuality(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_79]), ['final']). cnf(c_0_107, plain, (~nonliving(X1,X2)|~living(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_80]), ['final']). cnf(c_0_108, plain, (nonliving(X1,X2)|~object(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_81]), ['final']). cnf(c_0_109, plain, (object(X1,X2)|~substance_matter(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_82]), ['final']). cnf(c_0_110, negated_conjecture, (substance_matter(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_83, c_0_84]), ['final']). cnf(c_0_111, plain, (~animate(X1,X2)|~nonliving(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_85]), ['final']). cnf(c_0_112, plain, (unisex(X1,X2)|~object(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_86]), ['final']). fof(c_0_113, plain, ![X191, X192, X193, X194]:(~nonreflexive(X191,X192)|~agent(X191,X192,X193)|~patient(X191,X192,X194)|X193!=X194), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax44])])). cnf(c_0_114, plain, (unisex(X1,X2)|~eventuality(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_87]), ['final']). cnf(c_0_115, plain, (X4=X3|~entity(X1,X2)|~forename(X1,X3)|~of(X1,X3,X2)|~forename(X1,X4)|~of(X1,X4,X2)), inference(split_conjunct,[status(thm)],[c_0_88]), ['final']). cnf(c_0_116, negated_conjecture, (of(esk1_0,esk3_0,esk2_0)), inference(split_conjunct,[status(thm)],[c_0_47]), ['final']). cnf(c_0_117, plain, (entity(X1,X2)|~human_person(X1,X2)), inference(spm,[status(thm)],[c_0_89, c_0_90]), ['final']). cnf(c_0_118, negated_conjecture, (human_person(esk1_0,esk2_0)), inference(spm,[status(thm)],[c_0_91, c_0_92]), ['final']). cnf(c_0_119, plain, (~general(X1,X2)|~entity(X1,X2)), inference(spm,[status(thm)],[c_0_93, c_0_94]), ['final']). cnf(c_0_120, plain, (general(X1,X2)|~abstraction(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_95]), ['final']). cnf(c_0_121, plain, (~abstraction(X1,X2)|~human(X1,X2)), inference(spm,[status(thm)],[c_0_96, c_0_97]), ['final']). cnf(c_0_122, negated_conjecture, (abstraction(esk1_0,esk3_0)), inference(spm,[status(thm)],[c_0_98, c_0_99]), ['final']). fof(c_0_123, plain, ![X107, X108]:(~human_person(X107,X108)|human(X107,X108)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax3])])). cnf(c_0_124, plain, (~abstraction(X1,X2)|~female(X1,X2)), inference(spm,[status(thm)],[c_0_100, c_0_101]), ['final']). fof(c_0_125, plain, ![X103, X104]:(~woman(X103,X104)|female(X103,X104)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax1])])). cnf(c_0_126, plain, (~eventuality(X1,X2)|~existent(X1,X2)), inference(spm,[status(thm)],[c_0_102, c_0_103]), ['final']). cnf(c_0_127, negated_conjecture, (eventuality(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_104, c_0_105]), ['final']). fof(c_0_128, plain, ![X141, X142]:(~entity(X141,X142)|existent(X141,X142)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax20])])). cnf(c_0_129, plain, (~eventuality(X1,X2)|~general(X1,X2)), inference(spm,[status(thm)],[c_0_93, c_0_106]), ['final']). cnf(c_0_130, plain, (~object(X1,X2)|~living(X1,X2)), inference(spm,[status(thm)],[c_0_107, c_0_108]), ['final']). cnf(c_0_131, negated_conjecture, (object(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_109, c_0_110]), ['final']). fof(c_0_132, plain, ![X109, X110]:(~organism(X109,X110)|living(X109,X110)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax4])])). cnf(c_0_133, plain, (~object(X1,X2)|~animate(X1,X2)), inference(spm,[status(thm)],[c_0_111, c_0_108]), ['final']). fof(c_0_134, plain, ![X105, X106]:(~human_person(X105,X106)|animate(X105,X106)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax2])])). cnf(c_0_135, plain, (~object(X1,X2)|~female(X1,X2)), inference(spm,[status(thm)],[c_0_100, c_0_112]), ['final']). cnf(c_0_136, plain, (~nonreflexive(X1,X2)|~agent(X1,X2,X3)|~patient(X1,X2,X4)|X3!=X4), inference(split_conjunct,[status(thm)],[c_0_113])). cnf(c_0_137, plain, (~eventuality(X1,X2)|~female(X1,X2)), inference(spm,[status(thm)],[c_0_100, c_0_114]), ['final']). fof(c_0_138, plain, ![X147, X148]:(~object(X147,X148)|entity(X147,X148)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax23])])). cnf(c_0_139, negated_conjecture, (X1=esk3_0|~of(esk1_0,X1,esk2_0)|~forename(esk1_0,X1)|~entity(esk1_0,esk2_0)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_115, c_0_116]), c_0_99])])). cnf(c_0_140, negated_conjecture, (entity(esk1_0,esk2_0)), inference(spm,[status(thm)],[c_0_117, c_0_118]), ['final']). fof(c_0_141, plain, ![X165, X166]:(~thing(X165,X166)|singleton(X165,X166)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax32])])). fof(c_0_142, plain, ![X167, X168]:(~eventuality(X167,X168)|thing(X167,X168)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax33])])). fof(c_0_143, plain, ![X127, X128]:(~abstraction(X127,X128)|thing(X127,X128)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax13])])). fof(c_0_144, plain, ![X145, X146]:(~entity(X145,X146)|thing(X145,X146)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax22])])). fof(c_0_145, plain, ![X137, X138]:(~object(X137,X138)|impartial(X137,X138)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax18])])). fof(c_0_146, plain, ![X111, X112]:(~organism(X111,X112)|impartial(X111,X112)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax5])])). fof(c_0_147, plain, ![X173, X174]:(~order(X173,X174)|act(X173,X174)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax36])])). fof(c_0_148, plain, ![X171, X172]:(~act(X171,X172)|event(X171,X172)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax35])])). fof(c_0_149, plain, ![X157, X158]:(~order(X157,X158)|event(X157,X158)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax28])])). fof(c_0_150, plain, ![X119, X120]:(~mia_forename(X119,X120)|forename(X119,X120)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax9])])). cnf(c_0_151, plain, (~abstraction(X1,X2)|~entity(X1,X2)), inference(spm,[status(thm)],[c_0_119, c_0_120]), ['final']). cnf(c_0_152, negated_conjecture, (~human(esk1_0,esk3_0)), inference(spm,[status(thm)],[c_0_121, c_0_122]), ['final']). cnf(c_0_153, plain, (human(X1,X2)|~human_person(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_123]), ['final']). cnf(c_0_154, negated_conjecture, (~female(esk1_0,esk3_0)), inference(spm,[status(thm)],[c_0_124, c_0_122]), ['final']). cnf(c_0_155, plain, (female(X1,X2)|~woman(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_125]), ['final']). cnf(c_0_156, negated_conjecture, (~existent(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_126, c_0_127]), ['final']). cnf(c_0_157, plain, (existent(X1,X2)|~entity(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_128]), ['final']). cnf(c_0_158, negated_conjecture, (~general(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_129, c_0_127]), ['final']). cnf(c_0_159, negated_conjecture, (~living(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_130, c_0_131]), ['final']). cnf(c_0_160, plain, (living(X1,X2)|~organism(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_132]), ['final']). cnf(c_0_161, negated_conjecture, (~animate(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_133, c_0_131]), ['final']). cnf(c_0_162, plain, (animate(X1,X2)|~human_person(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_134]), ['final']). cnf(c_0_163, negated_conjecture, (~female(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_135, c_0_131]), ['final']). cnf(c_0_164, plain, (~patient(X1,X2,X3)|~agent(X1,X2,X3)|~nonreflexive(X1,X2)), inference(er,[status(thm)],[c_0_136]), ['final']). cnf(c_0_165, negated_conjecture, (patient(esk1_0,esk5_0,esk4_0)), inference(split_conjunct,[status(thm)],[c_0_47]), ['final']). cnf(c_0_166, negated_conjecture, (nonreflexive(esk1_0,esk5_0)), inference(split_conjunct,[status(thm)],[c_0_47]), ['final']). cnf(c_0_167, negated_conjecture, (~female(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_137, c_0_127]), ['final']). cnf(c_0_168, plain, (entity(X1,X2)|~object(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_138]), ['final']). cnf(c_0_169, negated_conjecture, (X1=esk3_0|~of(esk1_0,X1,esk2_0)|~forename(esk1_0,X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_139, c_0_140])]), ['final']). cnf(c_0_170, plain, (singleton(X1,X2)|~thing(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_141]), ['final']). cnf(c_0_171, plain, (thing(X1,X2)|~eventuality(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_142]), ['final']). cnf(c_0_172, plain, (thing(X1,X2)|~abstraction(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_143]), ['final']). cnf(c_0_173, plain, (thing(X1,X2)|~entity(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_144]), ['final']). cnf(c_0_174, plain, (impartial(X1,X2)|~object(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_145]), ['final']). cnf(c_0_175, plain, (impartial(X1,X2)|~organism(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_146]), ['final']). cnf(c_0_176, plain, (act(X1,X2)|~order(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_147]), ['final']). cnf(c_0_177, plain, (event(X1,X2)|~act(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_148]), ['final']). cnf(c_0_178, plain, (event(X1,X2)|~order(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_149]), ['final']). cnf(c_0_179, plain, (forename(X1,X2)|~mia_forename(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_150]), ['final']). cnf(c_0_180, negated_conjecture, (~entity(esk1_0,esk3_0)), inference(spm,[status(thm)],[c_0_151, c_0_122]), ['final']). cnf(c_0_181, negated_conjecture, (~human_person(esk1_0,esk3_0)), inference(spm,[status(thm)],[c_0_152, c_0_153]), ['final']). cnf(c_0_182, negated_conjecture, (~woman(esk1_0,esk3_0)), inference(spm,[status(thm)],[c_0_154, c_0_155]), ['final']). cnf(c_0_183, negated_conjecture, (~entity(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_156, c_0_157]), ['final']). cnf(c_0_184, negated_conjecture, (~abstraction(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_158, c_0_120]), ['final']). cnf(c_0_185, negated_conjecture, (~organism(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_159, c_0_160]), ['final']). cnf(c_0_186, negated_conjecture, (~human_person(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_161, c_0_162]), ['final']). cnf(c_0_187, negated_conjecture, (~woman(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_163, c_0_155]), ['final']). cnf(c_0_188, negated_conjecture, (~agent(esk1_0,esk5_0,esk4_0)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_164, c_0_165]), c_0_166])]), ['final']). cnf(c_0_189, negated_conjecture, (~woman(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_167, c_0_155]), ['final']). cnf(c_0_190, negated_conjecture, (entity(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_168, c_0_131]), ['final']). cnf(c_0_191, negated_conjecture, (agent(esk1_0,esk5_0,esk2_0)), inference(split_conjunct,[status(thm)],[c_0_47]), ['final']). cnf(c_0_192, negated_conjecture, (past(esk1_0,esk5_0)), inference(split_conjunct,[status(thm)],[c_0_47]), ['final']). cnf(c_0_193, negated_conjecture, (order(esk1_0,esk5_0)), inference(split_conjunct,[status(thm)],[c_0_47]), ['final']). cnf(c_0_194, negated_conjecture, (mia_forename(esk1_0,esk3_0)), inference(split_conjunct,[status(thm)],[c_0_47]), ['final']). cnf(c_0_195, negated_conjecture, (actual_world(esk1_0)), inference(split_conjunct,[status(thm)],[c_0_47]), ['final']). # SZS output end Saturation
# SZS output start Saturation fof(server_t_generates_key, axiom, ![X1, X2, X3, X4, X5, X6, X7]:((((message(sent(X1,t,triple(X1,X2,encrypt(triple(X3,X4,X5),X6))))&t_holds(key(X6,X1)))&t_holds(key(X7,X3)))&a_nonce(X4))=>message(sent(t,X3,triple(encrypt(quadruple(X1,X4,generate_key(X4),X5),X7),encrypt(triple(X3,generate_key(X4),X5),X6),X2)))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', server_t_generates_key)). fof(b_creates_freash_nonces_in_time, axiom, ![X1, X2]:((message(sent(X1,b,pair(X1,X2)))&fresh_to_b(X2))=>(message(sent(b,t,triple(b,generate_b_nonce(X2),encrypt(triple(X1,X2,generate_expiration_time(X2)),bt))))&b_stored(pair(X1,X2)))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', b_creates_freash_nonces_in_time)). fof(intruder_message_sent, axiom, ![X1, X2, X3]:(((intruder_message(X1)&party_of_protocol(X2))&party_of_protocol(X3))=>message(sent(X2,X3,X1))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_message_sent)). fof(t_holds_key_at_for_a, axiom, t_holds(key(at,a)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', t_holds_key_at_for_a)). fof(intruder_can_record, axiom, ![X1, X2, X3]:(message(sent(X1,X2,X3))=>intruder_message(X3)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_can_record)). fof(a_sent_message_i_to_b, axiom, message(sent(a,b,pair(a,an_a_nonce))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', a_sent_message_i_to_b)). fof(nonce_a_is_fresh_to_b, axiom, fresh_to_b(an_a_nonce), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', nonce_a_is_fresh_to_b)). fof(b_is_party_of_protocol, axiom, party_of_protocol(b), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', b_is_party_of_protocol)). fof(intruder_composes_pairs, axiom, ![X1, X2]:((intruder_message(X1)&intruder_message(X2))=>intruder_message(pair(X1,X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_composes_pairs)). fof(a_forwards_secure, axiom, ![X1, X2, X3, X4, X5, X6]:((message(sent(t,a,triple(encrypt(quadruple(X5,X6,X3,X2),at),X4,X1)))&a_stored(pair(X5,X6)))=>(message(sent(a,X5,pair(X4,encrypt(X1,X3))))&a_holds(key(X3,X5)))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', a_forwards_secure)). fof(t_holds_key_bt_for_b, axiom, t_holds(key(bt,b)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', t_holds_key_bt_for_b)). fof(intruder_decomposes_triples, axiom, ![X1, X2, X3]:(intruder_message(triple(X1,X2,X3))=>((intruder_message(X1)&intruder_message(X2))&intruder_message(X3))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_decomposes_triples)). fof(b_accepts_secure_session_key, axiom, ![X2, X4, X5]:(((message(sent(X4,b,pair(encrypt(triple(X4,X2,generate_expiration_time(X5)),bt),encrypt(generate_b_nonce(X5),X2))))&a_key(X2))&b_stored(pair(X4,X5)))=>b_holds(key(X2,X4))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', b_accepts_secure_session_key)). fof(a_stored_message_i, axiom, a_stored(pair(b,an_a_nonce)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', a_stored_message_i)). fof(an_a_nonce_is_a_nonce, axiom, a_nonce(an_a_nonce), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', an_a_nonce_is_a_nonce)). fof(t_is_party_of_protocol, axiom, party_of_protocol(t), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', t_is_party_of_protocol)). fof(intruder_composes_triples, axiom, ![X1, X2, X3]:(((intruder_message(X1)&intruder_message(X2))&intruder_message(X3))=>intruder_message(triple(X1,X2,X3))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_composes_triples)). fof(intruder_key_encrypts, axiom, ![X1, X2, X3]:(((intruder_message(X1)&intruder_holds(key(X2,X3)))&party_of_protocol(X3))=>intruder_message(encrypt(X1,X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_key_encrypts)). fof(intruder_holds_key, axiom, ![X2, X3]:((intruder_message(X2)&party_of_protocol(X3))=>intruder_holds(key(X2,X3))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_holds_key)). fof(intruder_decomposes_pairs, axiom, ![X1, X2]:(intruder_message(pair(X1,X2))=>(intruder_message(X1)&intruder_message(X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_decomposes_pairs)). fof(a_is_party_of_protocol, axiom, party_of_protocol(a), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', a_is_party_of_protocol)). fof(generated_keys_are_keys, axiom, ![X1]:a_key(generate_key(X1)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', generated_keys_are_keys)). fof(fresh_intruder_nonces_are_fresh_to_b, axiom, ![X1]:(fresh_intruder_nonce(X1)=>(fresh_to_b(X1)&intruder_message(X1))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', fresh_intruder_nonces_are_fresh_to_b)). fof(can_generate_more_fresh_intruder_nonces, axiom, ![X1]:(fresh_intruder_nonce(X1)=>fresh_intruder_nonce(generate_intruder_nonce(X1))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', can_generate_more_fresh_intruder_nonces)). fof(generated_keys_are_not_nonces, axiom, ![X1]:~(a_nonce(generate_key(X1))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', generated_keys_are_not_nonces)). fof(intruder_composes_quadruples, axiom, ![X1, X2, X3, X4]:((((intruder_message(X1)&intruder_message(X2))&intruder_message(X3))&intruder_message(X4))=>intruder_message(quadruple(X1,X2,X3,X4))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_composes_quadruples)). fof(intruder_interception, axiom, ![X1, X2, X3]:(((intruder_message(encrypt(X1,X2))&intruder_holds(key(X2,X3)))&party_of_protocol(X3))=>intruder_message(X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_interception)). fof(intruder_decomposes_quadruples, axiom, ![X1, X2, X3, X4]:(intruder_message(quadruple(X1,X2,X3,X4))=>(((intruder_message(X1)&intruder_message(X2))&intruder_message(X3))&intruder_message(X4))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_decomposes_quadruples)). fof(nothing_is_a_nonce_and_a_key, axiom, ![X1]:~((a_key(X1)&a_nonce(X1))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', nothing_is_a_nonce_and_a_key)). fof(an_intruder_nonce_is_a_fresh_intruder_nonce, axiom, fresh_intruder_nonce(an_intruder_nonce), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', an_intruder_nonce_is_a_fresh_intruder_nonce)). fof(generated_times_and_nonces_are_nonces, axiom, ![X1]:(a_nonce(generate_expiration_time(X1))&a_nonce(generate_b_nonce(X1))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', generated_times_and_nonces_are_nonces)). fof(b_hold_key_bt_for_t, axiom, b_holds(key(bt,t)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', b_hold_key_bt_for_t)). fof(a_holds_key_at_for_t, axiom, a_holds(key(at,t)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', a_holds_key_at_for_t)). fof(c_0_33, plain, ![X75, X76, X77, X78, X79, X80, X81]:(~message(sent(X75,t,triple(X75,X76,encrypt(triple(X77,X78,X79),X80))))|~t_holds(key(X80,X75))|~t_holds(key(X81,X77))|~a_nonce(X78)|message(sent(t,X77,triple(encrypt(quadruple(X75,X78,generate_key(X78),X79),X81),encrypt(triple(X77,generate_key(X78),X79),X80),X76)))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[server_t_generates_key])])). fof(c_0_34, plain, ![X70, X71]:((message(sent(b,t,triple(b,generate_b_nonce(X71),encrypt(triple(X70,X71,generate_expiration_time(X71)),bt))))|(~message(sent(X70,b,pair(X70,X71)))|~fresh_to_b(X71)))&(b_stored(pair(X70,X71))|(~message(sent(X70,b,pair(X70,X71)))|~fresh_to_b(X71)))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[b_creates_freash_nonces_in_time])])])). fof(c_0_35, plain, ![X106, X107, X108]:(~intruder_message(X106)|~party_of_protocol(X107)|~party_of_protocol(X108)|message(sent(X107,X108,X106))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_message_sent])])). cnf(c_0_36, plain, (message(sent(t,X3,triple(encrypt(quadruple(X1,X4,generate_key(X4),X5),X7),encrypt(triple(X3,generate_key(X4),X5),X6),X2)))|~message(sent(X1,t,triple(X1,X2,encrypt(triple(X3,X4,X5),X6))))|~t_holds(key(X6,X1))|~t_holds(key(X7,X3))|~a_nonce(X4)), inference(split_conjunct,[status(thm)],[c_0_33]), ['final']). cnf(c_0_37, plain, (t_holds(key(at,a))), inference(split_conjunct,[status(thm)],[t_holds_key_at_for_a]), ['final']). fof(c_0_38, plain, ![X82, X83, X84]:(~message(sent(X82,X83,X84))|intruder_message(X84)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_can_record])])). cnf(c_0_39, plain, (message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X2,X1,generate_expiration_time(X1)),bt))))|~message(sent(X2,b,pair(X2,X1)))|~fresh_to_b(X1)), inference(split_conjunct,[status(thm)],[c_0_34]), ['final']). cnf(c_0_40, plain, (message(sent(a,b,pair(a,an_a_nonce)))), inference(split_conjunct,[status(thm)],[a_sent_message_i_to_b]), ['final']). cnf(c_0_41, plain, (fresh_to_b(an_a_nonce)), inference(split_conjunct,[status(thm)],[nonce_a_is_fresh_to_b]), ['final']). cnf(c_0_42, plain, (b_stored(pair(X1,X2))|~message(sent(X1,b,pair(X1,X2)))|~fresh_to_b(X2)), inference(split_conjunct,[status(thm)],[c_0_34]), ['final']). cnf(c_0_43, plain, (message(sent(X2,X3,X1))|~intruder_message(X1)|~party_of_protocol(X2)|~party_of_protocol(X3)), inference(split_conjunct,[status(thm)],[c_0_35]), ['final']). cnf(c_0_44, plain, (party_of_protocol(b)), inference(split_conjunct,[status(thm)],[b_is_party_of_protocol]), ['final']). fof(c_0_45, plain, ![X94, X95]:(~intruder_message(X94)|~intruder_message(X95)|intruder_message(pair(X94,X95))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_composes_pairs])])). fof(c_0_46, plain, ![X64, X65, X66, X67, X68, X69]:((message(sent(a,X68,pair(X67,encrypt(X64,X66))))|(~message(sent(t,a,triple(encrypt(quadruple(X68,X69,X66,X65),at),X67,X64)))|~a_stored(pair(X68,X69))))&(a_holds(key(X66,X68))|(~message(sent(t,a,triple(encrypt(quadruple(X68,X69,X66,X65),at),X67,X64)))|~a_stored(pair(X68,X69))))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[a_forwards_secure])])])). cnf(c_0_47, plain, (message(sent(t,a,triple(encrypt(quadruple(X1,X2,generate_key(X2),X3),at),encrypt(triple(a,generate_key(X2),X3),X4),X5)))|~a_nonce(X2)|~t_holds(key(X4,X1))|~message(sent(X1,t,triple(X1,X5,encrypt(triple(a,X2,X3),X4))))), inference(spm,[status(thm)],[c_0_36, c_0_37]), ['final']). cnf(c_0_48, plain, (t_holds(key(bt,b))), inference(split_conjunct,[status(thm)],[t_holds_key_bt_for_b]), ['final']). fof(c_0_49, plain, ![X87, X88, X89]:(((intruder_message(X87)|~intruder_message(triple(X87,X88,X89)))&(intruder_message(X88)|~intruder_message(triple(X87,X88,X89))))&(intruder_message(X89)|~intruder_message(triple(X87,X88,X89)))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_decomposes_triples])])])). cnf(c_0_50, plain, (intruder_message(X3)|~message(sent(X1,X2,X3))), inference(split_conjunct,[status(thm)],[c_0_38]), ['final']). cnf(c_0_51, plain, (message(sent(b,t,triple(b,generate_b_nonce(an_a_nonce),encrypt(triple(a,an_a_nonce,generate_expiration_time(an_a_nonce)),bt))))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_39, c_0_40]), c_0_41])]), ['final']). fof(c_0_52, plain, ![X72, X73, X74]:(~message(sent(X73,b,pair(encrypt(triple(X73,X72,generate_expiration_time(X74)),bt),encrypt(generate_b_nonce(X74),X72))))|~a_key(X72)|~b_stored(pair(X73,X74))|b_holds(key(X72,X73))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[b_accepts_secure_session_key])])). cnf(c_0_53, plain, (b_stored(pair(X1,X2))|~intruder_message(pair(X1,X2))|~fresh_to_b(X2)|~party_of_protocol(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_42, c_0_43]), c_0_44])]), ['final']). cnf(c_0_54, plain, (intruder_message(pair(X1,X2))|~intruder_message(X1)|~intruder_message(X2)), inference(split_conjunct,[status(thm)],[c_0_45]), ['final']). cnf(c_0_55, plain, (message(sent(a,X1,pair(X2,encrypt(X3,X4))))|~message(sent(t,a,triple(encrypt(quadruple(X1,X5,X4,X6),at),X2,X3)))|~a_stored(pair(X1,X5))), inference(split_conjunct,[status(thm)],[c_0_46]), ['final']). cnf(c_0_56, plain, (a_stored(pair(b,an_a_nonce))), inference(split_conjunct,[status(thm)],[a_stored_message_i]), ['final']). cnf(c_0_57, plain, (message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),bt),X3)))|~a_nonce(X1)|~message(sent(b,t,triple(b,X3,encrypt(triple(a,X1,X2),bt))))), inference(spm,[status(thm)],[c_0_47, c_0_48]), ['final']). cnf(c_0_58, plain, (a_nonce(an_a_nonce)), inference(split_conjunct,[status(thm)],[an_a_nonce_is_a_nonce]), ['final']). cnf(c_0_59, plain, (party_of_protocol(t)), inference(split_conjunct,[status(thm)],[t_is_party_of_protocol]), ['final']). fof(c_0_60, plain, ![X96, X97, X98]:(~intruder_message(X96)|~intruder_message(X97)|~intruder_message(X98)|intruder_message(triple(X96,X97,X98))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_composes_triples])])). cnf(c_0_61, plain, (intruder_message(X1)|~intruder_message(triple(X1,X2,X3))), inference(split_conjunct,[status(thm)],[c_0_49]), ['final']). cnf(c_0_62, plain, (intruder_message(triple(b,generate_b_nonce(an_a_nonce),encrypt(triple(a,an_a_nonce,generate_expiration_time(an_a_nonce)),bt)))), inference(spm,[status(thm)],[c_0_50, c_0_51]), ['final']). cnf(c_0_63, plain, (b_holds(key(X2,X1))|~message(sent(X1,b,pair(encrypt(triple(X1,X2,generate_expiration_time(X3)),bt),encrypt(generate_b_nonce(X3),X2))))|~a_key(X2)|~b_stored(pair(X1,X3))), inference(split_conjunct,[status(thm)],[c_0_52]), ['final']). cnf(c_0_64, plain, (b_stored(pair(X1,X2))|~intruder_message(X2)|~intruder_message(X1)|~fresh_to_b(X2)|~party_of_protocol(X1)), inference(spm,[status(thm)],[c_0_53, c_0_54]), ['final']). fof(c_0_65, plain, ![X111, X112, X113]:(~intruder_message(X111)|~intruder_holds(key(X112,X113))|~party_of_protocol(X113)|intruder_message(encrypt(X111,X112))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_key_encrypts])])). fof(c_0_66, plain, ![X109, X110]:(~intruder_message(X109)|~party_of_protocol(X110)|intruder_holds(key(X109,X110))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_holds_key])])). cnf(c_0_67, plain, (message(sent(t,b,triple(encrypt(quadruple(X1,X2,generate_key(X2),X3),bt),encrypt(triple(b,generate_key(X2),X3),X4),X5)))|~a_nonce(X2)|~t_holds(key(X4,X1))|~message(sent(X1,t,triple(X1,X5,encrypt(triple(b,X2,X3),X4))))), inference(spm,[status(thm)],[c_0_36, c_0_48]), ['final']). cnf(c_0_68, plain, (message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X2,X1,generate_expiration_time(X1)),bt))))|~intruder_message(pair(X2,X1))|~fresh_to_b(X1)|~party_of_protocol(X2)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_39, c_0_43]), c_0_44])]), ['final']). fof(c_0_69, plain, ![X85, X86]:((intruder_message(X85)|~intruder_message(pair(X85,X86)))&(intruder_message(X86)|~intruder_message(pair(X85,X86)))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_decomposes_pairs])])])). cnf(c_0_70, plain, (message(sent(a,b,pair(X1,encrypt(X2,X3))))|~message(sent(t,a,triple(encrypt(quadruple(b,an_a_nonce,X3,X4),at),X1,X2)))), inference(spm,[status(thm)],[c_0_55, c_0_56]), ['final']). cnf(c_0_71, plain, (party_of_protocol(a)), inference(split_conjunct,[status(thm)],[a_is_party_of_protocol]), ['final']). cnf(c_0_72, plain, (message(sent(t,a,triple(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at),encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),generate_b_nonce(an_a_nonce))))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_57, c_0_51]), c_0_58])]), ['final']). cnf(c_0_73, plain, (b_stored(pair(a,an_a_nonce))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_42, c_0_40]), c_0_41])]), ['final']). cnf(c_0_74, plain, (message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),bt),X3)))|~intruder_message(triple(b,X3,encrypt(triple(a,X1,X2),bt)))|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_57, c_0_43]), c_0_59]), c_0_44])]), ['final']). cnf(c_0_75, plain, (intruder_message(triple(X1,X2,X3))|~intruder_message(X1)|~intruder_message(X2)|~intruder_message(X3)), inference(split_conjunct,[status(thm)],[c_0_60]), ['final']). cnf(c_0_76, plain, (intruder_message(b)), inference(spm,[status(thm)],[c_0_61, c_0_62]), ['final']). cnf(c_0_77, plain, (intruder_message(X1)|~intruder_message(triple(X2,X3,X1))), inference(split_conjunct,[status(thm)],[c_0_49]), ['final']). cnf(c_0_78, plain, (b_holds(key(X1,X2))|~intruder_message(X3)|~intruder_message(X2)|~a_key(X1)|~fresh_to_b(X3)|~message(sent(X2,b,pair(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt),encrypt(generate_b_nonce(X3),X1))))|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_63, c_0_64]), ['final']). cnf(c_0_79, plain, (intruder_message(encrypt(X1,X2))|~intruder_message(X1)|~intruder_holds(key(X2,X3))|~party_of_protocol(X3)), inference(split_conjunct,[status(thm)],[c_0_65]), ['final']). cnf(c_0_80, plain, (intruder_holds(key(X1,X2))|~intruder_message(X1)|~party_of_protocol(X2)), inference(split_conjunct,[status(thm)],[c_0_66]), ['final']). cnf(c_0_81, plain, (message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),bt),X3)))|~a_nonce(X1)|~message(sent(b,t,triple(b,X3,encrypt(triple(b,X1,X2),bt))))), inference(spm,[status(thm)],[c_0_67, c_0_48]), ['final']). cnf(c_0_82, plain, (message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X2,X1,generate_expiration_time(X1)),bt))))|~intruder_message(X1)|~intruder_message(X2)|~fresh_to_b(X1)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_68, c_0_54]), ['final']). cnf(c_0_83, plain, (intruder_message(X1)|~intruder_message(pair(X1,X2))), inference(split_conjunct,[status(thm)],[c_0_69]), ['final']). cnf(c_0_84, plain, (intruder_message(pair(a,an_a_nonce))), inference(spm,[status(thm)],[c_0_50, c_0_40]), ['final']). cnf(c_0_85, plain, (message(sent(a,b,pair(X1,encrypt(X2,X3))))|~intruder_message(triple(encrypt(quadruple(b,an_a_nonce,X3,X4),at),X1,X2))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_70, c_0_43]), c_0_71]), c_0_59])]), ['final']). cnf(c_0_86, plain, (intruder_message(triple(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at),encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),generate_b_nonce(an_a_nonce)))), inference(spm,[status(thm)],[c_0_50, c_0_72]), ['final']). cnf(c_0_87, plain, (b_holds(key(X1,a))|~a_key(X1)|~message(sent(a,b,pair(encrypt(triple(a,X1,generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),X1))))), inference(spm,[status(thm)],[c_0_63, c_0_73]), ['final']). cnf(c_0_88, plain, (message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),bt),X3)))|~intruder_message(encrypt(triple(a,X1,X2),bt))|~intruder_message(X3)|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_74, c_0_75]), c_0_76])]), ['final']). cnf(c_0_89, plain, (intruder_message(encrypt(triple(a,an_a_nonce,generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_77, c_0_62]), ['final']). cnf(c_0_90, plain, (b_holds(key(X1,X2))|~intruder_message(pair(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt),encrypt(generate_b_nonce(X3),X1)))|~intruder_message(X3)|~intruder_message(X2)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_78, c_0_43]), c_0_44])]), ['final']). cnf(c_0_91, plain, (intruder_message(encrypt(X1,X2))|~intruder_message(X1)|~intruder_message(X2)|~party_of_protocol(X3)), inference(spm,[status(thm)],[c_0_79, c_0_80])). cnf(c_0_92, plain, (message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),bt),encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt),generate_b_nonce(X1))))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_81, c_0_82]), c_0_76]), c_0_44])]), ['final']). cnf(c_0_93, plain, (intruder_message(a)), inference(spm,[status(thm)],[c_0_83, c_0_84]), ['final']). cnf(c_0_94, plain, (message(sent(a,b,pair(X1,encrypt(X2,X3))))|~intruder_message(encrypt(quadruple(b,an_a_nonce,X3,X4),at))|~intruder_message(X2)|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_85, c_0_75]), ['final']). cnf(c_0_95, plain, (intruder_message(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at))), inference(spm,[status(thm)],[c_0_61, c_0_86]), ['final']). cnf(c_0_96, plain, (message(sent(a,b,pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))))), inference(spm,[status(thm)],[c_0_70, c_0_72]), ['final']). cnf(c_0_97, plain, (b_holds(key(X1,a))|~intruder_message(pair(encrypt(triple(a,X1,generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),X1)))|~a_key(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_87, c_0_43]), c_0_44]), c_0_71])]), ['final']). cnf(c_0_98, plain, (a_holds(key(X1,X2))|~message(sent(t,a,triple(encrypt(quadruple(X2,X3,X1,X4),at),X5,X6)))|~a_stored(pair(X2,X3))), inference(split_conjunct,[status(thm)],[c_0_46]), ['final']). cnf(c_0_99, plain, (message(sent(t,a,triple(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at),encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),X1)))|~intruder_message(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_88, c_0_89]), c_0_58])]), ['final']). cnf(c_0_100, plain, (intruder_message(triple(b,generate_b_nonce(X1),encrypt(triple(X2,X1,generate_expiration_time(X1)),bt)))|~intruder_message(X1)|~intruder_message(X2)|~fresh_to_b(X1)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_50, c_0_82]), ['final']). cnf(c_0_101, plain, (message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),bt),X3)))|~intruder_message(triple(b,X3,encrypt(triple(b,X1,X2),bt)))|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_81, c_0_43]), c_0_59]), c_0_44])]), ['final']). cnf(c_0_102, plain, (b_holds(key(X1,X2))|~intruder_message(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt))|~intruder_message(encrypt(generate_b_nonce(X3),X1))|~intruder_message(X3)|~intruder_message(X2)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_90, c_0_54]), ['final']). cnf(c_0_103, plain, (intruder_message(encrypt(X1,X2))|~intruder_message(X1)|~intruder_message(X2)), inference(spm,[status(thm)],[c_0_91, c_0_44]), ['final']). cnf(c_0_104, plain, (intruder_message(triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),bt),encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt),generate_b_nonce(X1)))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_50, c_0_92]), ['final']). cnf(c_0_105, plain, (message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),at),encrypt(triple(a,generate_key(X1),generate_expiration_time(X1)),bt),generate_b_nonce(X1))))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_57, c_0_82]), c_0_93]), c_0_71])]), ['final']). cnf(c_0_106, plain, (message(sent(a,b,pair(X1,encrypt(X2,generate_key(an_a_nonce)))))|~intruder_message(X2)|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_94, c_0_95]), ['final']). cnf(c_0_107, plain, (message(sent(t,a,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),at),X3)))|~a_nonce(X1)|~message(sent(a,t,triple(a,X3,encrypt(triple(a,X1,X2),at))))), inference(spm,[status(thm)],[c_0_47, c_0_37]), ['final']). fof(c_0_108, plain, ![X117]:a_key(generate_key(X117)), inference(variable_rename,[status(thm)],[generated_keys_are_keys])). cnf(c_0_109, plain, (intruder_message(X1)|~intruder_message(triple(X2,X1,X3))), inference(split_conjunct,[status(thm)],[c_0_49]), ['final']). cnf(c_0_110, plain, (intruder_message(X1)|~intruder_message(pair(X2,X1))), inference(split_conjunct,[status(thm)],[c_0_69]), ['final']). cnf(c_0_111, plain, (intruder_message(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce))))), inference(spm,[status(thm)],[c_0_50, c_0_96]), ['final']). cnf(c_0_112, plain, (message(sent(t,b,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),at),X3)))|~a_nonce(X1)|~message(sent(a,t,triple(a,X3,encrypt(triple(b,X1,X2),at))))), inference(spm,[status(thm)],[c_0_67, c_0_37]), ['final']). cnf(c_0_113, plain, (b_holds(key(X1,a))|~intruder_message(encrypt(triple(a,X1,generate_expiration_time(an_a_nonce)),bt))|~intruder_message(encrypt(generate_b_nonce(an_a_nonce),X1))|~a_key(X1)), inference(spm,[status(thm)],[c_0_97, c_0_54]), ['final']). cnf(c_0_114, plain, (a_holds(key(X1,b))|~message(sent(t,a,triple(encrypt(quadruple(b,an_a_nonce,X1,X2),at),X3,X4)))), inference(spm,[status(thm)],[c_0_98, c_0_56]), ['final']). fof(c_0_115, plain, ![X119]:((fresh_to_b(X119)|~fresh_intruder_nonce(X119))&(intruder_message(X119)|~fresh_intruder_nonce(X119))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[fresh_intruder_nonces_are_fresh_to_b])])])). cnf(c_0_116, plain, (message(sent(a,b,pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(X1,generate_key(an_a_nonce)))))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_70, c_0_99]), ['final']). cnf(c_0_117, plain, (intruder_message(encrypt(triple(X1,X2,generate_expiration_time(X2)),bt))|~intruder_message(X2)|~intruder_message(X1)|~fresh_to_b(X2)|~party_of_protocol(X1)), inference(spm,[status(thm)],[c_0_77, c_0_100]), ['final']). cnf(c_0_118, plain, (message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),bt),X3)))|~intruder_message(encrypt(triple(b,X1,X2),bt))|~intruder_message(X3)|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_101, c_0_75]), c_0_76])]), ['final']). cnf(c_0_119, plain, (b_holds(key(X1,X2))|~intruder_message(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt))|~intruder_message(generate_b_nonce(X3))|~intruder_message(X3)|~intruder_message(X2)|~intruder_message(X1)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_102, c_0_103]), ['final']). cnf(c_0_120, plain, (intruder_message(generate_b_nonce(X1))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_77, c_0_104]), ['final']). cnf(c_0_121, plain, (intruder_message(triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),at),encrypt(triple(a,generate_key(X1),generate_expiration_time(X1)),bt),generate_b_nonce(X1)))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_50, c_0_105]), ['final']). cnf(c_0_122, plain, (intruder_message(pair(X1,encrypt(X2,generate_key(an_a_nonce))))|~intruder_message(X2)|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_50, c_0_106]), ['final']). cnf(c_0_123, plain, (message(sent(t,a,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),at),X3)))|~intruder_message(triple(a,X3,encrypt(triple(a,X1,X2),at)))|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_107, c_0_43]), c_0_59]), c_0_71])]), ['final']). cnf(c_0_124, plain, (a_key(generate_key(X1))), inference(split_conjunct,[status(thm)],[c_0_108]), ['final']). cnf(c_0_125, plain, (intruder_message(generate_b_nonce(X1))|~intruder_message(X1)|~intruder_message(X2)|~fresh_to_b(X1)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_109, c_0_100]), ['final']). cnf(c_0_126, plain, (intruder_message(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))), inference(spm,[status(thm)],[c_0_110, c_0_111]), ['final']). cnf(c_0_127, plain, (intruder_message(an_a_nonce)), inference(spm,[status(thm)],[c_0_110, c_0_84]), ['final']). cnf(c_0_128, plain, (message(sent(t,b,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),at),X3)))|~intruder_message(triple(a,X3,encrypt(triple(b,X1,X2),at)))|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_112, c_0_43]), c_0_59]), c_0_71])]), ['final']). cnf(c_0_129, plain, (intruder_message(generate_b_nonce(an_a_nonce))), inference(spm,[status(thm)],[c_0_109, c_0_62]), ['final']). cnf(c_0_130, plain, (b_holds(key(X1,a))|~intruder_message(encrypt(triple(a,X1,generate_expiration_time(an_a_nonce)),bt))|~intruder_message(generate_b_nonce(an_a_nonce))|~intruder_message(X1)|~a_key(X1)), inference(spm,[status(thm)],[c_0_113, c_0_103])). cnf(c_0_131, plain, (a_holds(key(X1,b))|~intruder_message(triple(encrypt(quadruple(b,an_a_nonce,X1,X2),at),X3,X4))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_114, c_0_43]), c_0_71]), c_0_59])]), ['final']). fof(c_0_132, plain, ![X118]:(~fresh_intruder_nonce(X118)|fresh_intruder_nonce(generate_intruder_nonce(X118))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[can_generate_more_fresh_intruder_nonces])])). fof(c_0_133, plain, ![X1]:~a_nonce(generate_key(X1)), inference(fof_simplification,[status(thm)],[generated_keys_are_not_nonces])). cnf(c_0_134, plain, (message(sent(b,t,triple(b,generate_b_nonce(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce))),encrypt(triple(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)),generate_expiration_time(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))),bt))))|~fresh_to_b(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_68, c_0_111]), ['final']). cnf(c_0_135, plain, (fresh_to_b(X1)|~fresh_intruder_nonce(X1)), inference(split_conjunct,[status(thm)],[c_0_115]), ['final']). cnf(c_0_136, plain, (intruder_message(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(X1,generate_key(an_a_nonce))))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_50, c_0_116]), ['final']). cnf(c_0_137, plain, (message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),at),encrypt(triple(a,generate_key(X1),generate_expiration_time(X1)),bt),X2)))|~intruder_message(X2)|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_88, c_0_117]), c_0_93]), c_0_71])]), ['final']). cnf(c_0_138, plain, (message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),bt),encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt),X2)))|~intruder_message(X2)|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_118, c_0_117]), c_0_76]), c_0_44])]), ['final']). cnf(c_0_139, plain, (b_holds(key(X1,X2))|~intruder_message(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt))|~intruder_message(X3)|~intruder_message(X2)|~intruder_message(X1)|~a_nonce(X3)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_119, c_0_120]), ['final']). cnf(c_0_140, plain, (intruder_message(encrypt(triple(a,generate_key(X1),generate_expiration_time(X1)),bt))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_109, c_0_121]), ['final']). cnf(c_0_141, plain, (intruder_message(encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_109, c_0_104]), ['final']). cnf(c_0_142, plain, (message(sent(b,t,triple(b,generate_b_nonce(encrypt(X1,generate_key(an_a_nonce))),encrypt(triple(X2,encrypt(X1,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X1,generate_key(an_a_nonce)))),bt))))|~intruder_message(X1)|~intruder_message(X2)|~fresh_to_b(encrypt(X1,generate_key(an_a_nonce)))|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_68, c_0_122]), ['final']). cnf(c_0_143, plain, (message(sent(t,a,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),at),X3)))|~intruder_message(encrypt(triple(a,X1,X2),at))|~intruder_message(X3)|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_123, c_0_75]), c_0_93])]), ['final']). cnf(c_0_144, plain, (message(sent(b,t,triple(b,generate_b_nonce(encrypt(X1,generate_key(an_a_nonce))),encrypt(triple(a,encrypt(X1,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X1,generate_key(an_a_nonce)))),bt))))|~intruder_message(X1)|~fresh_to_b(encrypt(X1,generate_key(an_a_nonce)))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_39, c_0_106]), c_0_93])]), ['final']). cnf(c_0_145, plain, (b_holds(key(generate_key(an_a_nonce),X1))|~intruder_message(encrypt(triple(X1,generate_key(an_a_nonce),generate_expiration_time(X2)),bt))|~intruder_message(X2)|~intruder_message(X1)|~fresh_to_b(X2)|~party_of_protocol(X1)), inference(csr,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_90, c_0_122]), c_0_124])]), c_0_125]), ['final']). cnf(c_0_146, plain, (b_stored(pair(X1,encrypt(X2,generate_key(an_a_nonce))))|~intruder_message(X2)|~intruder_message(X1)|~fresh_to_b(encrypt(X2,generate_key(an_a_nonce)))|~party_of_protocol(X1)), inference(spm,[status(thm)],[c_0_53, c_0_122]), ['final']). cnf(c_0_147, plain, (b_stored(pair(a,encrypt(X1,generate_key(an_a_nonce))))|~intruder_message(X1)|~fresh_to_b(encrypt(X1,generate_key(an_a_nonce)))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_42, c_0_106]), c_0_93])]), ['final']). cnf(c_0_148, plain, (intruder_message(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)|~intruder_message(X2)), inference(spm,[status(thm)],[c_0_110, c_0_122])). cnf(c_0_149, plain, (b_stored(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce))))|~fresh_to_b(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_53, c_0_111]), ['final']). cnf(c_0_150, plain, (b_holds(key(generate_key(an_a_nonce),X1))|~intruder_message(encrypt(triple(X1,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))|~intruder_message(X1)|~party_of_protocol(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_102, c_0_126]), c_0_127]), c_0_124]), c_0_41])]), ['final']). cnf(c_0_151, plain, (message(sent(t,b,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),at),X3)))|~intruder_message(encrypt(triple(b,X1,X2),at))|~intruder_message(X3)|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_128, c_0_75]), c_0_93])]), ['final']). cnf(c_0_152, plain, (b_holds(key(X1,X2))|~intruder_message(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt))|~intruder_message(X3)|~intruder_message(X2)|~intruder_message(X1)|~intruder_message(X4)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)|~party_of_protocol(X4)), inference(spm,[status(thm)],[c_0_119, c_0_125]), ['final']). cnf(c_0_153, plain, (b_holds(key(X1,X2))|~intruder_message(encrypt(triple(X2,X1,generate_expiration_time(an_a_nonce)),bt))|~intruder_message(X2)|~intruder_message(X1)|~a_key(X1)|~party_of_protocol(X2)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_119, c_0_129]), c_0_127]), c_0_41])]), ['final']). cnf(c_0_154, plain, (b_holds(key(X1,a))|~intruder_message(encrypt(triple(a,X1,generate_expiration_time(an_a_nonce)),bt))|~intruder_message(X1)|~a_key(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_130, c_0_129])]), ['final']). cnf(c_0_155, plain, (a_holds(key(X1,b))|~intruder_message(encrypt(quadruple(b,an_a_nonce,X1,X2),at))|~intruder_message(X3)|~intruder_message(X4)), inference(spm,[status(thm)],[c_0_131, c_0_75]), ['final']). cnf(c_0_156, plain, (intruder_message(X1)|~fresh_intruder_nonce(X1)), inference(split_conjunct,[status(thm)],[c_0_115]), ['final']). cnf(c_0_157, plain, (fresh_intruder_nonce(generate_intruder_nonce(X1))|~fresh_intruder_nonce(X1)), inference(split_conjunct,[status(thm)],[c_0_132]), ['final']). fof(c_0_158, plain, ![X99, X100, X101, X102]:(~intruder_message(X99)|~intruder_message(X100)|~intruder_message(X101)|~intruder_message(X102)|intruder_message(quadruple(X99,X100,X101,X102))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_composes_quadruples])])). fof(c_0_159, plain, ![X103, X104, X105]:(~intruder_message(encrypt(X103,X104))|~intruder_holds(key(X104,X105))|~party_of_protocol(X105)|intruder_message(X104)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_interception])])). fof(c_0_160, plain, ![X90, X91, X92, X93]:((((intruder_message(X90)|~intruder_message(quadruple(X90,X91,X92,X93)))&(intruder_message(X91)|~intruder_message(quadruple(X90,X91,X92,X93))))&(intruder_message(X92)|~intruder_message(quadruple(X90,X91,X92,X93))))&(intruder_message(X93)|~intruder_message(quadruple(X90,X91,X92,X93)))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_decomposes_quadruples])])])). fof(c_0_161, plain, ![X116]:(~a_key(X116)|~a_nonce(X116)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[nothing_is_a_nonce_and_a_key])])). fof(c_0_162, plain, ![X114]:~a_nonce(generate_key(X114)), inference(variable_rename,[status(thm)],[c_0_133])). cnf(c_0_163, plain, (fresh_intruder_nonce(an_intruder_nonce)), inference(split_conjunct,[status(thm)],[an_intruder_nonce_is_a_fresh_intruder_nonce]), ['final']). fof(c_0_164, plain, ![X115]:(a_nonce(generate_expiration_time(X115))&a_nonce(generate_b_nonce(X115))), inference(variable_rename,[status(thm)],[generated_times_and_nonces_are_nonces])). cnf(c_0_165, plain, (message(sent(b,t,triple(b,generate_b_nonce(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce))),encrypt(triple(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)),generate_expiration_time(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))),bt))))|~fresh_intruder_nonce(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_134, c_0_135]), ['final']). cnf(c_0_166, plain, (message(sent(b,t,triple(b,generate_b_nonce(encrypt(X1,generate_key(an_a_nonce))),encrypt(triple(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(X1,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X1,generate_key(an_a_nonce)))),bt))))|~intruder_message(X1)|~fresh_to_b(encrypt(X1,generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_68, c_0_136]), ['final']). cnf(c_0_167, plain, (intruder_message(triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),at),encrypt(triple(a,generate_key(X1),generate_expiration_time(X1)),bt),X2))|~intruder_message(X2)|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_50, c_0_137]), ['final']). cnf(c_0_168, plain, (intruder_message(triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),bt),encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt),X2))|~intruder_message(X2)|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_50, c_0_138]), ['final']). cnf(c_0_169, plain, (intruder_message(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),at))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_61, c_0_121]), ['final']). cnf(c_0_170, plain, (b_holds(key(generate_key(X1),a))|~intruder_message(generate_key(X1))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_139, c_0_140]), c_0_93]), c_0_124]), c_0_71])]), ['final']). cnf(c_0_171, plain, (b_holds(key(X1,X2))|~intruder_message(triple(X2,X1,generate_expiration_time(X3)))|~intruder_message(bt)|~intruder_message(X3)|~a_nonce(X3)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)), inference(csr,[status(thm)],[inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_139, c_0_103]), c_0_109]), c_0_61]), ['final']). cnf(c_0_172, plain, (b_holds(key(generate_key(X1),b))|~intruder_message(generate_key(X1))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_139, c_0_141]), c_0_76]), c_0_124]), c_0_44])]), ['final']). cnf(c_0_173, plain, (intruder_message(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),bt))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_61, c_0_104]), ['final']). cnf(c_0_174, plain, (intruder_message(triple(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at),encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),X1))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_50, c_0_99]), ['final']). cnf(c_0_175, plain, (b_stored(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(X1,generate_key(an_a_nonce))))|~intruder_message(X1)|~fresh_to_b(encrypt(X1,generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_53, c_0_136]), ['final']). cnf(c_0_176, plain, (message(sent(b,t,triple(b,generate_b_nonce(encrypt(X1,generate_key(an_a_nonce))),encrypt(triple(X2,encrypt(X1,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X1,generate_key(an_a_nonce)))),bt))))|~fresh_intruder_nonce(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)|~intruder_message(X2)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_142, c_0_135]), ['final']). cnf(c_0_177, plain, (message(sent(t,a,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),at),X3)))|~intruder_message(triple(a,X1,X2))|~intruder_message(at)|~intruder_message(X3)|~a_nonce(X1)), inference(spm,[status(thm)],[c_0_143, c_0_103]), ['final']). cnf(c_0_178, plain, (message(sent(b,t,triple(b,generate_b_nonce(encrypt(X1,generate_key(an_a_nonce))),encrypt(triple(a,encrypt(X1,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X1,generate_key(an_a_nonce)))),bt))))|~fresh_intruder_nonce(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_144, c_0_135]), ['final']). cnf(c_0_179, plain, (b_holds(key(generate_key(an_a_nonce),X1))|~intruder_message(triple(X1,generate_key(an_a_nonce),generate_expiration_time(X2)))|~intruder_message(bt)|~intruder_message(X2)|~fresh_to_b(X2)|~party_of_protocol(X1)), inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_145, c_0_103]), c_0_61]), ['final']). cnf(c_0_180, plain, (b_holds(key(generate_key(an_a_nonce),X1))|~intruder_message(generate_key(an_a_nonce))|~intruder_message(X1)|~fresh_to_b(generate_key(an_a_nonce))|~party_of_protocol(X1)), inference(spm,[status(thm)],[c_0_145, c_0_117]), ['final']). cnf(c_0_181, plain, (b_stored(pair(X1,encrypt(X2,generate_key(an_a_nonce))))|~fresh_intruder_nonce(encrypt(X2,generate_key(an_a_nonce)))|~intruder_message(X2)|~intruder_message(X1)|~party_of_protocol(X1)), inference(spm,[status(thm)],[c_0_146, c_0_135]), ['final']). cnf(c_0_182, plain, (b_stored(pair(a,encrypt(X1,generate_key(an_a_nonce))))|~fresh_intruder_nonce(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_147, c_0_135]), ['final']). cnf(c_0_183, plain, (intruder_message(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_148, c_0_86]), ['final']). cnf(c_0_184, plain, (b_stored(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce))))|~fresh_intruder_nonce(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_149, c_0_135]), ['final']). cnf(c_0_185, plain, (b_holds(key(generate_key(an_a_nonce),X1))|~intruder_message(triple(X1,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)))|~intruder_message(bt)|~party_of_protocol(X1)), inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_150, c_0_103]), c_0_61]), ['final']). cnf(c_0_186, plain, (message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),bt),X3)))|~intruder_message(triple(a,X1,X2))|~intruder_message(bt)|~intruder_message(X3)|~a_nonce(X1)), inference(spm,[status(thm)],[c_0_88, c_0_103]), ['final']). cnf(c_0_187, plain, (message(sent(t,b,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),at),X3)))|~intruder_message(triple(b,X1,X2))|~intruder_message(at)|~intruder_message(X3)|~a_nonce(X1)), inference(spm,[status(thm)],[c_0_151, c_0_103]), ['final']). cnf(c_0_188, plain, (message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),bt),X3)))|~intruder_message(triple(b,X1,X2))|~intruder_message(bt)|~intruder_message(X3)|~a_nonce(X1)), inference(spm,[status(thm)],[c_0_118, c_0_103]), ['final']). cnf(c_0_189, plain, (b_holds(key(X1,X2))|~intruder_message(triple(X2,X1,generate_expiration_time(X3)))|~intruder_message(bt)|~intruder_message(X3)|~intruder_message(X4)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)|~party_of_protocol(X4)), inference(csr,[status(thm)],[inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_152, c_0_103]), c_0_109]), c_0_61]), ['final']). cnf(c_0_190, plain, (b_holds(key(X1,X2))|~intruder_message(X1)|~intruder_message(X2)|~intruder_message(X3)|~a_key(X1)|~fresh_to_b(X1)|~party_of_protocol(X2)|~party_of_protocol(X3)), inference(spm,[status(thm)],[c_0_152, c_0_117]), ['final']). cnf(c_0_191, plain, (b_holds(key(an_a_nonce,X1))|~intruder_message(X1)|~a_key(an_a_nonce)|~party_of_protocol(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_153, c_0_117]), c_0_127]), c_0_41])]), ['final']). cnf(c_0_192, plain, (b_holds(key(X1,X2))|~intruder_message(triple(X2,X1,generate_expiration_time(an_a_nonce)))|~intruder_message(bt)|~a_key(X1)|~party_of_protocol(X2)), inference(csr,[status(thm)],[inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_153, c_0_103]), c_0_109]), c_0_61]), ['final']). cnf(c_0_193, plain, (message(sent(a,b,pair(X1,encrypt(X2,X3))))|~intruder_message(quadruple(b,an_a_nonce,X3,X4))|~intruder_message(at)|~intruder_message(X2)|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_94, c_0_103]), ['final']). cnf(c_0_194, plain, (b_holds(key(X1,a))|~intruder_message(triple(a,X1,generate_expiration_time(an_a_nonce)))|~intruder_message(bt)|~a_key(X1)), inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_154, c_0_103]), c_0_109]), ['final']). cnf(c_0_195, plain, (b_holds(key(an_a_nonce,a))|~a_key(an_a_nonce)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_154, c_0_89]), c_0_127])]), ['final']). cnf(c_0_196, plain, (a_holds(key(X1,b))|~intruder_message(quadruple(b,an_a_nonce,X1,X2))|~intruder_message(at)|~intruder_message(X3)|~intruder_message(X4)), inference(spm,[status(thm)],[c_0_155, c_0_103]), ['final']). cnf(c_0_197, plain, (intruder_message(generate_intruder_nonce(X1))|~fresh_intruder_nonce(X1)), inference(spm,[status(thm)],[c_0_156, c_0_157]), ['final']). cnf(c_0_198, plain, (intruder_message(quadruple(X1,X2,X3,X4))|~intruder_message(X1)|~intruder_message(X2)|~intruder_message(X3)|~intruder_message(X4)), inference(split_conjunct,[status(thm)],[c_0_158]), ['final']). cnf(c_0_199, plain, (intruder_message(X2)|~intruder_message(encrypt(X1,X2))|~intruder_holds(key(X2,X3))|~party_of_protocol(X3)), inference(split_conjunct,[status(thm)],[c_0_159]), ['final']). cnf(c_0_200, plain, (intruder_message(X1)|~intruder_message(quadruple(X1,X2,X3,X4))), inference(split_conjunct,[status(thm)],[c_0_160]), ['final']). cnf(c_0_201, plain, (intruder_message(X1)|~intruder_message(quadruple(X2,X1,X3,X4))), inference(split_conjunct,[status(thm)],[c_0_160]), ['final']). cnf(c_0_202, plain, (intruder_message(X1)|~intruder_message(quadruple(X2,X3,X1,X4))), inference(split_conjunct,[status(thm)],[c_0_160]), ['final']). cnf(c_0_203, plain, (intruder_message(X1)|~intruder_message(quadruple(X2,X3,X4,X1))), inference(split_conjunct,[status(thm)],[c_0_160]), ['final']). cnf(c_0_204, plain, (~a_key(X1)|~a_nonce(X1)), inference(split_conjunct,[status(thm)],[c_0_161]), ['final']). cnf(c_0_205, plain, (~a_nonce(generate_key(X1))), inference(split_conjunct,[status(thm)],[c_0_162]), ['final']). cnf(c_0_206, plain, (b_holds(key(generate_key(an_a_nonce),b))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_150, c_0_141]), c_0_76]), c_0_44]), c_0_127]), c_0_58]), c_0_41])]), ['final']). cnf(c_0_207, plain, (intruder_message(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_83, c_0_111]), ['final']). cnf(c_0_208, plain, (b_holds(key(generate_key(an_a_nonce),a))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_78, c_0_96]), c_0_127]), c_0_93]), c_0_124]), c_0_41]), c_0_71])]), ['final']). cnf(c_0_209, plain, (a_holds(key(generate_key(an_a_nonce),b))), inference(spm,[status(thm)],[c_0_114, c_0_72]), ['final']). cnf(c_0_210, plain, (intruder_message(an_intruder_nonce)), inference(spm,[status(thm)],[c_0_156, c_0_163]), ['final']). cnf(c_0_211, plain, (b_holds(key(bt,t))), inference(split_conjunct,[status(thm)],[b_hold_key_bt_for_t]), ['final']). cnf(c_0_212, plain, (a_holds(key(at,t))), inference(split_conjunct,[status(thm)],[a_holds_key_at_for_t]), ['final']). cnf(c_0_213, plain, (a_nonce(generate_expiration_time(X1))), inference(split_conjunct,[status(thm)],[c_0_164]), ['final']). cnf(c_0_214, plain, (a_nonce(generate_b_nonce(X1))), inference(split_conjunct,[status(thm)],[c_0_164]), ['final']). # SZS output end Saturation
# SZS output start CNFRefutation cnf(associativity, axiom, (multiply(multiply(X1,X2,X3),X4,multiply(X1,X2,X5))=multiply(X1,X2,multiply(X3,X4,X5))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/Axioms/BOO001-0.ax', associativity)). cnf(ternary_multiply_1, axiom, (multiply(X1,X2,X2)=X2), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/Axioms/BOO001-0.ax', ternary_multiply_1)). cnf(right_inverse, axiom, (multiply(X1,X2,inverse(X2))=X1), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/Axioms/BOO001-0.ax', right_inverse)). cnf(ternary_multiply_2, axiom, (multiply(X1,X1,X2)=X1), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/Axioms/BOO001-0.ax', ternary_multiply_2)). cnf(left_inverse, axiom, (multiply(inverse(X1),X1,X2)=X2), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/Axioms/BOO001-0.ax', left_inverse)). cnf(prove_inverse_is_self_cancelling, negated_conjecture, (inverse(inverse(a))!=a), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/BOO001-1.p', prove_inverse_is_self_cancelling)). cnf(c_0_6, axiom, (multiply(multiply(X1,X2,X3),X4,multiply(X1,X2,X5))=multiply(X1,X2,multiply(X3,X4,X5))), associativity). cnf(c_0_7, axiom, (multiply(X1,X2,X2)=X2), ternary_multiply_1). cnf(c_0_8, plain, (multiply(multiply(X1,X2,X3),X4,X2)=multiply(X1,X2,multiply(X3,X4,X2))), inference(spm,[status(thm)],[c_0_6, c_0_7])). cnf(c_0_9, axiom, (multiply(X1,X2,inverse(X2))=X1), right_inverse). cnf(c_0_10, plain, (multiply(X1,X2,X3)=multiply(X1,X3,multiply(inverse(X3),X2,X3))), inference(spm,[status(thm)],[c_0_8, c_0_9])). cnf(c_0_11, axiom, (multiply(X1,X1,X2)=X1), ternary_multiply_2). cnf(c_0_12, axiom, (multiply(inverse(X1),X1,X2)=X2), left_inverse). cnf(c_0_13, plain, (multiply(X1,inverse(X2),X2)=X1), inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_10, c_0_11]), c_0_9])). cnf(c_0_14, negated_conjecture, (inverse(inverse(a))!=a), prove_inverse_is_self_cancelling). cnf(c_0_15, plain, (inverse(inverse(X1))=X1), inference(spm,[status(thm)],[c_0_12, c_0_13])). cnf(c_0_16, negated_conjecture, ($false), inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_14, c_0_15])]), ['proof']). # SZS output end CNFRefutation
# No SInE strategy applied # Trying AutoSched0 for 149 seconds # AutoSched0-Mode selected heuristic G_E___207_C18_F1_SE_CS_SP_PI_PS_S00A # and selection function NoSelection. # # Presaturation interreduction done # Proof found! # SZS status Theorem # SZS output start CNFRefutation thf(thm, conjecture, ![X22:$i > $o, X23:$i > $o, X24:$i > $o]:((subset @ X22 @ X24&subset @ X23 @ X24)=>subset @ (union @ X22 @ X23) @ X24), file('/home/petar/Documents/tptp/Problems/SET/SET014^4.p', thm)). thf(union, axiom, (union)=(^[X5:$i > $o, X6:$i > $o, X4:$i]:(X5 @ X4|X6 @ X4)), file('/home/petar/Documents/tptp/Problems/SET/Axioms/SET008^0.ax', union)). thf(subset, axiom, (subset)=(^[X16:$i > $o, X17:$i > $o]:![X4:$i]:(X16 @ X4=>X17 @ X4)), file('/home/petar/Documents/tptp/Problems/SET/Axioms/SET008^0.ax', subset)). thf(c_0_3, negated_conjecture, ~(![X22:$i > $o, X23:$i > $o, X24:$i > $o]:((![X29:$i]:(X22 @ X29=>X24 @ X29)&![X30:$i]:(X23 @ X30=>X24 @ X30))=>![X32:$i]:((X22 @ X32|X23 @ X32)=>X24 @ X32))), inference(apply_def,[status(thm)],[inference(apply_def,[status(thm)],[inference(assume_negation,[status(cth)],[thm]), union]), subset])). thf(c_0_4, negated_conjecture, ![X37:$i, X38:$i]:(((~epred1_0 @ X37|epred3_0 @ X37)&(~epred2_0 @ X38|epred3_0 @ X38))&((epred1_0 @ esk1_0|epred2_0 @ esk1_0)&~epred3_0 @ esk1_0)), inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_3])])])])). thf(c_0_5, negated_conjecture, ![X1:$i]:(epred3_0 @ X1|~epred2_0 @ X1), inference(split_conjunct,[status(thm)],[c_0_4])). thf(c_0_6, negated_conjecture, (epred1_0 @ esk1_0|epred2_0 @ esk1_0), inference(split_conjunct,[status(thm)],[c_0_4])). thf(c_0_7, negated_conjecture, ~epred3_0 @ esk1_0, inference(split_conjunct,[status(thm)],[c_0_4])). thf(c_0_8, negated_conjecture, ![X1:$i]:(epred3_0 @ X1|~epred1_0 @ X1), inference(split_conjunct,[status(thm)],[c_0_4])). thf(c_0_9, negated_conjecture, epred1_0 @ esk1_0, inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_5, c_0_6]), c_0_7])). thf(c_0_10, negated_conjecture, ($false), inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_8, c_0_9]), c_0_7]), ['proof']). # SZS output end CNFRefutation # Training examples: 0 positive, 0 negative
% SZS output start CNFRefutation for DAT013=1.tptp tff(f6,plain,( ( ! [X0 : $int,X1 : $int] : ($sum(X0,X1) = $sum(X1,X0)) )), introduced(theory_axiom_143,[])). tff(f8,plain,( ( ! [X0 : $int] : ($sum(X0,0) = X0) )), introduced(theory_axiom_145,[])). tff(f14,plain,( ( ! [X2 : $int,X0 : $int,X1 : $int] : (~$less(X0,X1) | $less($sum(X0,X2),$sum(X1,X2))) )), introduced(theory_axiom_153,[])). tff(f13,plain,( ( ! [X0 : $int,X1 : $int] : ($less(X0,X1) | $less(X1,X0) | X0 = X1) )), introduced(theory_axiom_152,[])). tff(f3,conjecture,( ! [X0 : array] : ! [X1 : $int] : ! [X2 : $int] : (! [X3 : $int] : (($lesseq(X3,X2) & $lesseq(X1,X3)) => $greater(read(X0,X3),0)) => ! [X4 : $int] : (($lesseq(X4,X2) & $lesseq($sum(X1,3),X4)) => $greater(read(X0,X4),0)))), file('/tmp/SystemOnTPTP23709/DAT013=1.tptp',co1)). tff(f4,negated_conjecture,( ~! [X0 : array] : ! [X1 : $int] : ! [X2 : $int] : (! [X3 : $int] : (($lesseq(X3,X2) & $lesseq(X1,X3)) => $greater(read(X0,X3),0)) => ! [X4 : $int] : (($lesseq(X4,X2) & $lesseq($sum(X1,3),X4)) => $greater(read(X0,X4),0)))), inference(negated_conjecture,[],[f3])). tff(f5,plain,( ~! [X0 : array] : ! [X1 : $int] : ! [X2 : $int] : (! [X3 : $int] : ((~$less(X2,X3) & ~$less(X3,X1)) => $less(0,read(X0,X3))) => ! [X4 : $int] : ((~$less(X2,X4) & ~$less(X4,$sum(X1,3))) => $less(0,read(X0,X4))))), inference(theory_normalization,[],[f4])). tff(f19,plain,( ~! [X0 : array,X1 : $int,X2 : $int] : (! [X3 : $int] : ((~$less(X2,X3) & ~$less(X3,X1)) => $less(0,read(X0,X3))) => ! [X4 : $int] : ((~$less(X2,X4) & ~$less(X4,$sum(X1,3))) => $less(0,read(X0,X4))))), inference(flattening,[],[f5])). tff(f20,plain,( ? [X0 : array,X1 : $int,X2 : $int] : (? [X4 : $int] : (~$less(0,read(X0,X4)) & (~$less(X2,X4) & ~$less(X4,$sum(X1,3)))) & ! [X3 : $int] : ($less(0,read(X0,X3)) | ($less(X2,X3) | $less(X3,X1))))), inference(ennf_transformation,[],[f19])). tff(f21,plain,( ? [X0 : array,X1 : $int,X2 : $int] : (? [X4 : $int] : (~$less(0,read(X0,X4)) & ~$less(X2,X4) & ~$less(X4,$sum(X1,3))) & ! [X3 : $int] : ($less(0,read(X0,X3)) | $less(X2,X3) | $less(X3,X1)))), inference(flattening,[],[f20])). tff(f22,plain,( ? [X0 : array,X1 : $int,X2 : $int] : (? [X3 : $int] : (~$less(0,read(X0,X3)) & ~$less(X2,X3) & ~$less(X3,$sum(X1,3))) & ! [X4 : $int] : ($less(0,read(X0,X4)) | $less(X2,X4) | $less(X4,X1)))), inference(rectify,[],[f21])). tff(f24,plain,( ? [X3 : $int] : (~$less(0,read(sK0,X3)) & ~$less(sK2,X3) & ~$less(X3,$sum(sK1,3))) => (~$less(0,read(sK0,sK3)) & ~$less(sK2,sK3) & ~$less(sK3,$sum(sK1,3)))), introduced(choice_axiom,[])). tff(f23,plain,( ? [X0 : array,X1 : $int,X2 : $int] : (? [X3 : $int] : (~$less(0,read(X0,X3)) & ~$less(X2,X3) & ~$less(X3,$sum(X1,3))) & ! [X4 : $int] : ($less(0,read(X0,X4)) | $less(X2,X4) | $less(X4,X1))) => (? [X3 : $int] : (~$less(0,read(sK0,X3)) & ~$less(sK2,X3) & ~$less(X3,$sum(sK1,3))) & ! [X4 : $int] : ($less(0,read(sK0,X4)) | $less(sK2,X4) | $less(X4,sK1)))), introduced(choice_axiom,[])). tff(f25,plain,( (~$less(0,read(sK0,sK3)) & ~$less(sK2,sK3) & ~$less(sK3,$sum(sK1,3))) & ! [X4 : $int] : ($less(0,read(sK0,X4)) | $less(sK2,X4) | $less(X4,sK1))), inference(skolemisation,[status(esa),new_symbols(skolem,[sK0,sK1,sK2,sK3])],[f22,f24,f23])). tff(f29,plain,( ~$less(sK3,$sum(sK1,3))), inference(cnf_transformation,[],[f25])). tff(f28,plain,( ( ! [X4 : $int] : ($less(0,read(sK0,X4)) | $less(sK2,X4) | $less(X4,sK1)) )), inference(cnf_transformation,[],[f25])). tff(f31,plain,( ~$less(0,read(sK0,sK3))), inference(cnf_transformation,[],[f25])). tff(f30,plain,( ~$less(sK2,sK3)), inference(cnf_transformation,[],[f25])). tff(f12,plain,( ( ! [X2 : $int,X0 : $int,X1 : $int] : (~$less(X0,X1) | ~$less(X1,X2) | $less(X0,X2)) )), introduced(theory_axiom_151,[])). tff(f15,plain,( ( ! [X0 : $int,X1 : $int] : ($less(X0,X1) | $less(X1,$sum(X0,1))) )), introduced(theory_axiom_155,[])). tff(f11,plain,( ( ! [X0 : $int] : (~$less(X0,X0)) )), introduced(theory_axiom_150,[])). tff(f17,plain,( ( ! [X0 : $int,X1 : $int] : (~$less(X0,X1) | ~$less(X1,$sum(X0,1))) )), introduced(theory_axiom_169,[])). cnf(c_60,plain, ( $sum_int(X0_3,X1_3) = $sum_int(X1_3,X0_3) ), inference(cnf_transformation,[],[f6]) ). cnf(c_58,plain, ( $sum_int(X0_3,0) = X0_3 ), inference(cnf_transformation,[],[f8]) ). cnf(c_9404,plain, ( $sum_int(0,X0_3) = X0_3 ), inference(superposition,[status(thm)],[c_58,c_60]) ). cnf(c_52,plain, ( ~ $less_int(X0_3,X1_3) | $less_int($sum_int(X0_3,X2_3),$sum_int(X1_3,X2_3)) ), inference(cnf_transformation,[],[f14]) ). cnf(c_9454,plain, ( ~ $less_int(0,X0_3) | $less_int(X1_3,$sum_int(X0_3,X1_3)) ), inference(superposition,[status(thm)],[c_9404,c_52]) ). cnf(c_11457,plain, ( ~ $less_int(0,X0_3) | $less_int(X1_3,$sum_int(X1_3,X0_3)) ), inference(superposition,[status(thm)],[c_60,c_9454]) ). cnf(c_53,plain, ( X0_3 = X1_3 | $less_int(X0_3,X1_3) | $less_int(X1_3,X0_3) ), inference(cnf_transformation,[],[f13]) ). cnf(c_65,negated_conjecture, ( ~ $less_int(sK3,$sum_int(sK1,3)) ), inference(cnf_transformation,[],[f29]) ). cnf(c_762,plain, ( $sum_int(sK1,3) = sK3 | $less_int($sum_int(sK1,3),sK3) ), inference(superposition,[status(thm)],[c_53,c_65]) ). cnf(c_66,negated_conjecture, ( $less_int(0,read(sK0,X0_3)) | $less_int(X0_3,sK1) | $less_int(sK2,X0_3) ), inference(cnf_transformation,[],[f28]) ). cnf(c_63,negated_conjecture, ( ~ $less_int(0,read(sK0,sK3)) ), inference(cnf_transformation,[],[f31]) ). cnf(c_562,plain, ( $less_int(sK2,sK3) | $less_int(sK3,sK1) ), inference(superposition,[status(thm)],[c_66,c_63]) ). cnf(c_64,negated_conjecture, ( ~ $less_int(sK2,sK3) ), inference(cnf_transformation,[],[f30]) ). cnf(c_517,plain, ( $less_int(0,read(sK0,sK3)) | $less_int(sK2,sK3) | $less_int(sK3,sK1) ), inference(instantiation,[status(thm)],[c_66]) ). cnf(c_563,plain, ( $less_int(sK3,sK1) ), inference(global_propositional_subsumption, [status(thm)], [c_562,c_64,c_63,c_517]) ). cnf(c_54,plain, ( ~ $less_int(X0_3,X1_3) | ~ $less_int(X2_3,X0_3) | $less_int(X2_3,X1_3) ), inference(cnf_transformation,[],[f12]) ). cnf(c_9563,plain, ( ~ $less_int(X0_3,sK3) | $less_int(X0_3,sK1) ), inference(superposition,[status(thm)],[c_563,c_54]) ). cnf(c_9666,plain, ( $sum_int(sK1,3) = sK3 | $less_int($sum_int(sK1,3),sK1) ), inference(superposition,[status(thm)],[c_762,c_9563]) ). cnf(c_2336,plain, ( ~ $less_int(X0_3,sK3) | $less_int(X0_3,sK1) ), inference(superposition,[status(thm)],[c_563,c_54]) ). cnf(c_2467,plain, ( X0_3 = sK3 | $less_int(X0_3,sK1) | $less_int(sK3,X0_3) ), inference(superposition,[status(thm)],[c_53,c_2336]) ). cnf(c_197,plain, ( X0_3 != X1_3 | X2_3 != X3_3 | ~ $less_int(X1_3,X3_3) | $less_int(X0_3,X2_3) ), theory(equality) ). cnf(c_652,plain, ( X0_3 != sK3 | X1_3 != sK1 | ~ $less_int(sK3,sK1) | $less_int(X0_3,X1_3) ), inference(instantiation,[status(thm)],[c_197]) ). cnf(c_932,plain, ( X0_3 != sK3 | sK1 != sK1 | ~ $less_int(sK3,sK1) | $less_int(X0_3,sK1) ), inference(instantiation,[status(thm)],[c_652]) ). cnf(c_192,plain,( X0_3 = X0_3 ),theory(equality) ). cnf(c_933,plain, ( sK1 = sK1 ), inference(instantiation,[status(thm)],[c_192]) ). cnf(c_1431,plain, ( ~ $less_int(X0_3,sK3) | $less_int(X0_3,sK1) ), inference(superposition,[status(thm)],[c_563,c_54]) ). cnf(c_1448,plain, ( X0_3 = sK3 | $less_int(X0_3,sK1) | $less_int(sK3,X0_3) ), inference(superposition,[status(thm)],[c_53,c_1431]) ). cnf(c_3782,plain, ( $less_int(X0_3,sK1) | $less_int(sK3,X0_3) ), inference(global_propositional_subsumption, [status(thm)], [c_2467,c_64,c_63,c_517,c_932,c_933,c_1448]) ). cnf(c_3789,plain, ( $less_int($sum_int(sK1,3),sK1) ), inference(superposition,[status(thm)],[c_3782,c_65]) ). cnf(c_9676,plain, ( $less_int($sum_int(sK1,3),sK1) ), inference(global_propositional_subsumption, [status(thm)], [c_9666,c_3789]) ). cnf(c_51,plain, ( $less_int(X0_3,$sum_int(X1_3,1)) | $less_int(X1_3,X0_3) ), inference(cnf_transformation,[],[f15]) ). cnf(c_55,plain, ( ~ $less_int(X0_3,X0_3) ), inference(cnf_transformation,[],[f11]) ). cnf(c_9426,plain, ( $less_int(X0_3,$sum_int(X0_3,1)) ), inference(superposition,[status(thm)],[c_51,c_55]) ). cnf(c_9564,plain, ( ~ $less_int(X0_3,X1_3) | $less_int(X0_3,$sum_int(X1_3,1)) ), inference(superposition,[status(thm)],[c_9426,c_54]) ). cnf(c_49,plain, ( ~ $less_int(X0_3,$sum_int(X1_3,1)) | ~ $less_int(X1_3,X0_3) ), inference(cnf_transformation,[],[f17]) ). cnf(c_9755,plain, ( ~ $less_int(X0_3,X1_3) | ~ $less_int(X1_3,X0_3) ), inference(superposition,[status(thm)],[c_9564,c_49]) ). cnf(c_10475,plain, ( ~ $less_int(sK1,$sum_int(sK1,3)) ), inference(superposition,[status(thm)],[c_9676,c_9755]) ). cnf(c_18913,plain, ( ~ $less_int(0,3) ), inference(superposition,[status(thm)],[c_11457,c_10475]) ). cnf(c_604,plain, ( ~ $less_int(1,X0_3) | ~ $less_int(0,1) | $less_int(0,X0_3) ), inference(instantiation,[status(thm)],[c_54]) ). cnf(c_1084,plain, ( ~ $less_int(1,3) | ~ $less_int(0,1) | $less_int(0,3) ), inference(instantiation,[status(thm)],[c_604]) ). cnf(c_79,plain,( $less_int(0,1) ),theory(arith) ). cnf(c_80,plain,( $less_int(1,3) ),theory(arith) ). cnf(contradiction,plain, ( $false ), inference(minisat,[status(thm)],[c_18913,c_1084,c_79,c_80]) ). % SZS output end CNFRefutation for DAT013=1.tptp
% SZS output start CNFRefutation for SEU140+2.tptp fof(f8,axiom,( ! [X0] : ! [X1] : (subset(X0,X1) <=> ! [X2] : (in(X2,X0) => in(X2,X1)))), file('/tmp/SystemOnTPTP24033/SEU140+2.tptp',d3_tarski)). fof(f64,plain,( ! [X0,X1] : (subset(X0,X1) <=> ! [X2] : (in(X2,X0) => in(X2,X1)))), inference(flattening,[],[f8])). fof(f104,plain,( ! [X0,X1] : (subset(X0,X1) <=> ! [X2] : (in(X2,X1) | ~in(X2,X0)))), inference(ennf_transformation,[],[f64])). fof(f142,plain,( ! [X0,X1] : ((subset(X0,X1) | ? [X2] : (~in(X2,X1) & in(X2,X0))) & (! [X2] : (in(X2,X1) | ~in(X2,X0)) | ~subset(X0,X1)))), inference(nnf_transformation,[],[f104])). fof(f143,plain,( ! [X0,X1] : ((subset(X0,X1) | ? [X2] : (~in(X2,X1) & in(X2,X0))) & (! [X3] : (in(X3,X1) | ~in(X3,X0)) | ~subset(X0,X1)))), inference(rectify,[],[f142])). fof(f144,plain,( ! [X0,X1] : (? [X2] : (~in(X2,X1) & in(X2,X0)) => (~in(sK2(X0,X1),X1) & in(sK2(X0,X1),X0)))), introduced(choice_axiom,[])). fof(f145,plain,( ! [X0,X1] : ((subset(X0,X1) | (~in(sK2(X0,X1),X1) & in(sK2(X0,X1),X0))) & (! [X3] : (in(X3,X1) | ~in(X3,X0)) | ~subset(X0,X1)))), inference(skolemisation,[status(esa),new_symbols(skolem,[sK2])],[f143,f144])). fof(f187,plain,( ( ! [X0,X3,X1] : (in(X3,X1) | ~in(X3,X0) | ~subset(X0,X1)) )), inference(cnf_transformation,[],[f145])). fof(f43,axiom,( ! [X0] : ! [X1] : (~(disjoint(X0,X1) & ? [X2] : (in(X2,X1) & in(X2,X0))) & ~(! [X2] : ~(in(X2,X1) & in(X2,X0)) & ~disjoint(X0,X1)))), file('/tmp/SystemOnTPTP24033/SEU140+2.tptp',t3_xboole_0)). fof(f88,plain,( ! [X0] : ! [X1] : (~(disjoint(X0,X1) & ? [X2] : (in(X2,X1) & in(X2,X0))) & ~(! [X3] : ~(in(X3,X1) & in(X3,X0)) & ~disjoint(X0,X1)))), inference(rectify,[],[f43])). fof(f89,plain,( ! [X0,X1] : (~(disjoint(X0,X1) & ? [X2] : (in(X2,X1) & in(X2,X0))) & ~(! [X3] : ~(in(X3,X1) & in(X3,X0)) & ~disjoint(X0,X1)))), inference(flattening,[],[f88])). fof(f119,plain,( ! [X0,X1] : ((~disjoint(X0,X1) | ! [X2] : (~in(X2,X1) | ~in(X2,X0))) & (? [X3] : (in(X3,X1) & in(X3,X0)) | disjoint(X0,X1)))), inference(ennf_transformation,[],[f89])). fof(f166,plain,( ! [X0,X1] : (? [X3] : (in(X3,X1) & in(X3,X0)) => (in(sK8(X0,X1),X1) & in(sK8(X0,X1),X0)))), introduced(choice_axiom,[])). fof(f167,plain,( ! [X0,X1] : ((~disjoint(X0,X1) | ! [X2] : (~in(X2,X1) | ~in(X2,X0))) & ((in(sK8(X0,X1),X1) & in(sK8(X0,X1),X0)) | disjoint(X0,X1)))), inference(skolemisation,[status(esa),new_symbols(skolem,[sK8])],[f119,f166])). fof(f236,plain,( ( ! [X2,X0,X1] : (~disjoint(X0,X1) | ~in(X2,X1) | ~in(X2,X0)) )), inference(cnf_transformation,[],[f167])). fof(f234,plain,( ( ! [X0,X1] : (in(sK8(X0,X1),X0) | disjoint(X0,X1)) )), inference(cnf_transformation,[],[f167])). fof(f235,plain,( ( ! [X0,X1] : (in(sK8(X0,X1),X1) | disjoint(X0,X1)) )), inference(cnf_transformation,[],[f167])). fof(f51,conjecture,( ! [X0] : ! [X1] : ! [X2] : ((disjoint(X1,X2) & subset(X0,X1)) => disjoint(X0,X2))), file('/tmp/SystemOnTPTP24033/SEU140+2.tptp',t63_xboole_1)). fof(f52,negated_conjecture,( ~! [X0] : ! [X1] : ! [X2] : ((disjoint(X1,X2) & subset(X0,X1)) => disjoint(X0,X2))), inference(negated_conjecture,[],[f51])). fof(f96,plain,( ~! [X0,X1,X2] : ((disjoint(X1,X2) & subset(X0,X1)) => disjoint(X0,X2))), inference(flattening,[],[f52])). fof(f124,plain,( ? [X0,X1,X2] : (~disjoint(X0,X2) & (disjoint(X1,X2) & subset(X0,X1)))), inference(ennf_transformation,[],[f96])). fof(f125,plain,( ? [X0,X1,X2] : (~disjoint(X0,X2) & disjoint(X1,X2) & subset(X0,X1))), inference(flattening,[],[f124])). fof(f170,plain,( ? [X0,X1,X2] : (~disjoint(X0,X2) & disjoint(X1,X2) & subset(X0,X1)) => (~disjoint(sK10,sK12) & disjoint(sK11,sK12) & subset(sK10,sK11))), introduced(choice_axiom,[])). fof(f171,plain,( ~disjoint(sK10,sK12) & disjoint(sK11,sK12) & subset(sK10,sK11)), inference(skolemisation,[status(esa),new_symbols(skolem,[sK10,sK11,sK12])],[f125,f170])). fof(f247,plain,( ~disjoint(sK10,sK12)), inference(cnf_transformation,[],[f171])). fof(f246,plain,( disjoint(sK11,sK12)), inference(cnf_transformation,[],[f171])). fof(f245,plain,( subset(sK10,sK11)), inference(cnf_transformation,[],[f171])). cnf(c_66,plain, ( ~ in(X0,X1) | ~ subset(X1,X2) | in(X0,X2) ), inference(cnf_transformation,[],[f187]) ). cnf(c_3731,plain, ( ~ in(sK8(sK10,sK12),sK10) | ~ subset(sK10,X0) | in(sK8(sK10,sK12),X0) ), inference(instantiation,[status(thm)],[c_66]) ). cnf(c_8290,plain, ( ~ in(sK8(sK10,sK12),sK10) | ~ subset(sK10,sK11) | in(sK8(sK10,sK12),sK11) ), inference(instantiation,[status(thm)],[c_3731]) ). cnf(c_111,plain, ( ~ in(X0,X1) | ~ in(X0,X2) | ~ disjoint(X2,X1) ), inference(cnf_transformation,[],[f236]) ). cnf(c_3649,plain, ( ~ in(sK8(sK10,sK12),X0) | ~ in(sK8(sK10,sK12),sK12) | ~ disjoint(X0,sK12) ), inference(instantiation,[status(thm)],[c_111]) ). cnf(c_7873,plain, ( ~ in(sK8(sK10,sK12),sK12) | ~ in(sK8(sK10,sK12),sK11) | ~ disjoint(sK11,sK12) ), inference(instantiation,[status(thm)],[c_3649]) ). cnf(c_113,plain, ( in(sK8(X0,X1),X0) | disjoint(X0,X1) ), inference(cnf_transformation,[],[f234]) ). cnf(c_3362,plain, ( in(sK8(sK10,sK12),sK10) | disjoint(sK10,sK12) ), inference(instantiation,[status(thm)],[c_113]) ). cnf(c_112,plain, ( in(sK8(X0,X1),X1) | disjoint(X0,X1) ), inference(cnf_transformation,[],[f235]) ). cnf(c_3361,plain, ( in(sK8(sK10,sK12),sK12) | disjoint(sK10,sK12) ), inference(instantiation,[status(thm)],[c_112]) ). cnf(c_121,negated_conjecture, ( ~ disjoint(sK10,sK12) ), inference(cnf_transformation,[],[f247]) ). cnf(c_122,negated_conjecture, ( disjoint(sK11,sK12) ), inference(cnf_transformation,[],[f246]) ). cnf(c_123,negated_conjecture, ( subset(sK10,sK11) ), inference(cnf_transformation,[],[f245]) ). cnf(contradiction,plain, ( $false ), inference(minisat, [status(thm)], [c_8290,c_7873,c_3362,c_3361,c_121,c_122,c_123]) ). % SZS output end CNFRefutation for SEU140+2.tptp
% SZS output start Saturation for NLP042+1.tptp fof(f45,conjecture,( ~? [X0] : (? [X1] : ? [X2] : ? [X3] : ? [X4] : (order(X0,X4) & nonreflexive(X0,X4) & past(X0,X4) & patient(X0,X4,X3) & agent(X0,X4,X1) & event(X0,X4) & shake_beverage(X0,X3) & forename(X0,X2) & mia_forename(X0,X2) & woman(X0,X1) & of(X0,X2,X1)) & actual_world(X0))), file('/tmp/SystemOnTPTP24503/NLP042+1.tptp',co1)). fof(f46,negated_conjecture,( ~~? [X0] : (? [X1] : ? [X2] : ? [X3] : ? [X4] : (order(X0,X4) & nonreflexive(X0,X4) & past(X0,X4) & patient(X0,X4,X3) & agent(X0,X4,X1) & event(X0,X4) & shake_beverage(X0,X3) & forename(X0,X2) & mia_forename(X0,X2) & woman(X0,X1) & of(X0,X2,X1)) & actual_world(X0))), inference(negated_conjecture,[],[f45])). fof(f91,plain,( ? [X0] : (? [X1,X2,X3,X4] : (order(X0,X4) & nonreflexive(X0,X4) & past(X0,X4) & patient(X0,X4,X3) & agent(X0,X4,X1) & event(X0,X4) & shake_beverage(X0,X3) & forename(X0,X2) & mia_forename(X0,X2) & woman(X0,X1) & of(X0,X2,X1)) & actual_world(X0))), inference(flattening,[],[f46])). fof(f92,plain,( ? [X0] : (? [X1,X2,X3,X4] : (order(X0,X4) & nonreflexive(X0,X4) & patient(X0,X4,X3) & agent(X0,X4,X1) & event(X0,X4) & shake_beverage(X0,X3) & forename(X0,X2) & mia_forename(X0,X2) & woman(X0,X1) & of(X0,X2,X1)) & actual_world(X0))), inference(pure_predicate_removal,[],[f91])). fof(f93,plain,( ? [X0,X1,X2,X3,X4] : (order(X0,X4) & nonreflexive(X0,X4) & patient(X0,X4,X3) & agent(X0,X4,X1) & event(X0,X4) & shake_beverage(X0,X3) & forename(X0,X2) & mia_forename(X0,X2) & woman(X0,X1) & of(X0,X2,X1))), inference(pure_predicate_removal,[],[f92])). fof(f140,plain,( ? [X0,X1,X2,X3,X4] : (order(X0,X4) & nonreflexive(X0,X4) & patient(X0,X4,X3) & agent(X0,X4,X1) & event(X0,X4) & shake_beverage(X0,X3) & forename(X0,X2) & mia_forename(X0,X2) & woman(X0,X1) & of(X0,X2,X1)) => (order(sK0,sK4) & nonreflexive(sK0,sK4) & patient(sK0,sK4,sK3) & agent(sK0,sK4,sK1) & event(sK0,sK4) & shake_beverage(sK0,sK3) & forename(sK0,sK2) & mia_forename(sK0,sK2) & woman(sK0,sK1) & of(sK0,sK2,sK1))), introduced(choice_axiom,[])). fof(f141,plain,( order(sK0,sK4) & nonreflexive(sK0,sK4) & patient(sK0,sK4,sK3) & agent(sK0,sK4,sK1) & event(sK0,sK4) & shake_beverage(sK0,sK3) & forename(sK0,sK2) & mia_forename(sK0,sK2) & woman(sK0,sK1) & of(sK0,sK2,sK1)), inference(skolemisation,[status(esa),new_symbols(skolem,[sK0,sK1,sK2,sK3,sK4])],[f93,f140])). fof(f180,plain,( of(sK0,sK2,sK1)), inference(cnf_transformation,[],[f141])). fof(f43,axiom,( ! [X0] : ! [X1] : ! [X2] : ((of(X0,X2,X1) & forename(X0,X2) & entity(X0,X1)) => ~? [X3] : (of(X0,X3,X1) & X2 != X3 & forename(X0,X3)))), file('/tmp/SystemOnTPTP24503/NLP042+1.tptp',ax43)). fof(f89,plain,( ! [X0,X1,X2] : ((of(X0,X2,X1) & forename(X0,X2) & entity(X0,X1)) => ~? [X3] : (of(X0,X3,X1) & X2 != X3 & forename(X0,X3)))), inference(flattening,[],[f43])). fof(f136,plain,( ! [X0,X1,X2] : (! [X3] : (~of(X0,X3,X1) | X2 = X3 | ~forename(X0,X3)) | (~of(X0,X2,X1) | ~forename(X0,X2) | ~entity(X0,X1)))), inference(ennf_transformation,[],[f89])). fof(f137,plain,( ! [X0,X1,X2] : (! [X3] : (~of(X0,X3,X1) | X2 = X3 | ~forename(X0,X3)) | ~of(X0,X2,X1) | ~forename(X0,X2) | ~entity(X0,X1))), inference(flattening,[],[f136])). fof(f178,plain,( ( ! [X2,X0,X3,X1] : (~of(X0,X3,X1) | X2 = X3 | ~forename(X0,X3) | ~of(X0,X2,X1) | ~forename(X0,X2) | ~entity(X0,X1)) )), inference(cnf_transformation,[],[f137])). fof(f6,axiom,( ! [X0] : ! [X1] : (organism(X0,X1) => entity(X0,X1))), file('/tmp/SystemOnTPTP24503/NLP042+1.tptp',ax6)). fof(f52,plain,( ! [X0,X1] : (organism(X0,X1) => entity(X0,X1))), inference(flattening,[],[f6])). fof(f104,plain,( ! [X0,X1] : (entity(X0,X1) | ~organism(X0,X1))), inference(ennf_transformation,[],[f52])). fof(f146,plain,( ( ! [X0,X1] : (entity(X0,X1) | ~organism(X0,X1)) )), inference(cnf_transformation,[],[f104])). fof(f7,axiom,( ! [X0] : ! [X1] : (human_person(X0,X1) => organism(X0,X1))), file('/tmp/SystemOnTPTP24503/NLP042+1.tptp',ax7)). fof(f53,plain,( ! [X0,X1] : (human_person(X0,X1) => organism(X0,X1))), inference(flattening,[],[f7])). fof(f105,plain,( ! [X0,X1] : (organism(X0,X1) | ~human_person(X0,X1))), inference(ennf_transformation,[],[f53])). fof(f147,plain,( ( ! [X0,X1] : (organism(X0,X1) | ~human_person(X0,X1)) )), inference(cnf_transformation,[],[f105])). fof(f8,axiom,( ! [X0] : ! [X1] : (woman(X0,X1) => human_person(X0,X1))), file('/tmp/SystemOnTPTP24503/NLP042+1.tptp',ax8)). fof(f54,plain,( ! [X0,X1] : (woman(X0,X1) => human_person(X0,X1))), inference(flattening,[],[f8])). fof(f106,plain,( ! [X0,X1] : (human_person(X0,X1) | ~woman(X0,X1))), inference(ennf_transformation,[],[f54])). fof(f148,plain,( ( ! [X0,X1] : (human_person(X0,X1) | ~woman(X0,X1)) )), inference(cnf_transformation,[],[f106])). fof(f181,plain,( woman(sK0,sK1)), inference(cnf_transformation,[],[f141])). fof(f183,plain,( forename(sK0,sK2)), inference(cnf_transformation,[],[f141])). fof(f24,axiom,( ! [X0] : ! [X1] : (substance_matter(X0,X1) => object(X0,X1))), file('/tmp/SystemOnTPTP24503/NLP042+1.tptp',ax24)). fof(f70,plain,( ! [X0,X1] : (substance_matter(X0,X1) => object(X0,X1))), inference(flattening,[],[f24])). fof(f119,plain,( ! [X0,X1] : (object(X0,X1) | ~substance_matter(X0,X1))), inference(ennf_transformation,[],[f70])). fof(f161,plain,( ( ! [X0,X1] : (object(X0,X1) | ~substance_matter(X0,X1)) )), inference(cnf_transformation,[],[f119])). fof(f25,axiom,( ! [X0] : ! [X1] : (food(X0,X1) => substance_matter(X0,X1))), file('/tmp/SystemOnTPTP24503/NLP042+1.tptp',ax25)). fof(f71,plain,( ! [X0,X1] : (food(X0,X1) => substance_matter(X0,X1))), inference(flattening,[],[f25])). fof(f120,plain,( ! [X0,X1] : (substance_matter(X0,X1) | ~food(X0,X1))), inference(ennf_transformation,[],[f71])). fof(f162,plain,( ( ! [X0,X1] : (substance_matter(X0,X1) | ~food(X0,X1)) )), inference(cnf_transformation,[],[f120])). fof(f26,axiom,( ! [X0] : ! [X1] : (beverage(X0,X1) => food(X0,X1))), file('/tmp/SystemOnTPTP24503/NLP042+1.tptp',ax26)). fof(f72,plain,( ! [X0,X1] : (beverage(X0,X1) => food(X0,X1))), inference(flattening,[],[f26])). fof(f121,plain,( ! [X0,X1] : (food(X0,X1) | ~beverage(X0,X1))), inference(ennf_transformation,[],[f72])). fof(f163,plain,( ( ! [X0,X1] : (food(X0,X1) | ~beverage(X0,X1)) )), inference(cnf_transformation,[],[f121])). fof(f27,axiom,( ! [X0] : ! [X1] : (shake_beverage(X0,X1) => beverage(X0,X1))), file('/tmp/SystemOnTPTP24503/NLP042+1.tptp',ax27)). fof(f73,plain,( ! [X0,X1] : (shake_beverage(X0,X1) => beverage(X0,X1))), inference(flattening,[],[f27])). fof(f122,plain,( ! [X0,X1] : (beverage(X0,X1) | ~shake_beverage(X0,X1))), inference(ennf_transformation,[],[f73])). fof(f164,plain,( ( ! [X0,X1] : (beverage(X0,X1) | ~shake_beverage(X0,X1)) )), inference(cnf_transformation,[],[f122])). fof(f184,plain,( shake_beverage(sK0,sK3)), inference(cnf_transformation,[],[f141])). fof(f19,axiom,( ! [X0] : ! [X1] : (object(X0,X1) => nonliving(X0,X1))), file('/tmp/SystemOnTPTP24503/NLP042+1.tptp',ax19)). fof(f65,plain,( ! [X0,X1] : (object(X0,X1) => nonliving(X0,X1))), inference(flattening,[],[f19])). fof(f115,plain,( ! [X0,X1] : (nonliving(X0,X1) | ~object(X0,X1))), inference(ennf_transformation,[],[f65])). fof(f157,plain,( ( ! [X0,X1] : (nonliving(X0,X1) | ~object(X0,X1)) )), inference(cnf_transformation,[],[f115])). fof(f2,axiom,( ! [X0] : ! [X1] : (human_person(X0,X1) => animate(X0,X1))), file('/tmp/SystemOnTPTP24503/NLP042+1.tptp',ax2)). fof(f48,plain,( ! [X0,X1] : (human_person(X0,X1) => animate(X0,X1))), inference(flattening,[],[f2])). fof(f101,plain,( ! [X0,X1] : (animate(X0,X1) | ~human_person(X0,X1))), inference(ennf_transformation,[],[f48])). fof(f143,plain,( ( ! [X0,X1] : (animate(X0,X1) | ~human_person(X0,X1)) )), inference(cnf_transformation,[],[f101])). fof(f37,axiom,( ! [X0] : ! [X1] : (animate(X0,X1) => ~nonliving(X0,X1))), file('/tmp/SystemOnTPTP24503/NLP042+1.tptp',ax37)). fof(f83,plain,( ! [X0,X1] : (animate(X0,X1) => ~nonliving(X0,X1))), inference(flattening,[],[f37])). fof(f130,plain,( ! [X0,X1] : (~nonliving(X0,X1) | ~animate(X0,X1))), inference(ennf_transformation,[],[f83])). fof(f172,plain,( ( ! [X0,X1] : (~nonliving(X0,X1) | ~animate(X0,X1)) )), inference(cnf_transformation,[],[f130])). fof(f34,axiom,( ! [X0] : ! [X1] : (event(X0,X1) => eventuality(X0,X1))), file('/tmp/SystemOnTPTP24503/NLP042+1.tptp',ax34)). fof(f80,plain,( ! [X0,X1] : (event(X0,X1) => eventuality(X0,X1))), inference(flattening,[],[f34])). fof(f127,plain,( ! [X0,X1] : (eventuality(X0,X1) | ~event(X0,X1))), inference(ennf_transformation,[],[f80])). fof(f169,plain,( ( ! [X0,X1] : (eventuality(X0,X1) | ~event(X0,X1)) )), inference(cnf_transformation,[],[f127])). fof(f185,plain,( event(sK0,sK4)), inference(cnf_transformation,[],[f141])). fof(f29,axiom,( ! [X0] : ! [X1] : (eventuality(X0,X1) => unisex(X0,X1))), file('/tmp/SystemOnTPTP24503/NLP042+1.tptp',ax29)). fof(f75,plain,( ! [X0,X1] : (eventuality(X0,X1) => unisex(X0,X1))), inference(flattening,[],[f29])). fof(f124,plain,( ! [X0,X1] : (unisex(X0,X1) | ~eventuality(X0,X1))), inference(ennf_transformation,[],[f75])). fof(f166,plain,( ( ! [X0,X1] : (unisex(X0,X1) | ~eventuality(X0,X1)) )), inference(cnf_transformation,[],[f124])). fof(f1,axiom,( ! [X0] : ! [X1] : (woman(X0,X1) => female(X0,X1))), file('/tmp/SystemOnTPTP24503/NLP042+1.tptp',ax1)). fof(f47,plain,( ! [X0,X1] : (woman(X0,X1) => female(X0,X1))), inference(flattening,[],[f1])). fof(f100,plain,( ! [X0,X1] : (female(X0,X1) | ~woman(X0,X1))), inference(ennf_transformation,[],[f47])). fof(f142,plain,( ( ! [X0,X1] : (female(X0,X1) | ~woman(X0,X1)) )), inference(cnf_transformation,[],[f100])). fof(f42,axiom,( ! [X0] : ! [X1] : (unisex(X0,X1) => ~female(X0,X1))), file('/tmp/SystemOnTPTP24503/NLP042+1.tptp',ax42)). fof(f88,plain,( ! [X0,X1] : (unisex(X0,X1) => ~female(X0,X1))), inference(flattening,[],[f42])). fof(f135,plain,( ! [X0,X1] : (~female(X0,X1) | ~unisex(X0,X1))), inference(ennf_transformation,[],[f88])). fof(f177,plain,( ( ! [X0,X1] : (~female(X0,X1) | ~unisex(X0,X1)) )), inference(cnf_transformation,[],[f135])). fof(f23,axiom,( ! [X0] : ! [X1] : (object(X0,X1) => entity(X0,X1))), file('/tmp/SystemOnTPTP24503/NLP042+1.tptp',ax23)). fof(f69,plain,( ! [X0,X1] : (object(X0,X1) => entity(X0,X1))), inference(flattening,[],[f23])). fof(f118,plain,( ! [X0,X1] : (entity(X0,X1) | ~object(X0,X1))), inference(ennf_transformation,[],[f69])). fof(f160,plain,( ( ! [X0,X1] : (entity(X0,X1) | ~object(X0,X1)) )), inference(cnf_transformation,[],[f118])). fof(f30,axiom,( ! [X0] : ! [X1] : (eventuality(X0,X1) => nonexistent(X0,X1))), file('/tmp/SystemOnTPTP24503/NLP042+1.tptp',ax30)). fof(f76,plain,( ! [X0,X1] : (eventuality(X0,X1) => nonexistent(X0,X1))), inference(flattening,[],[f30])). fof(f125,plain,( ! [X0,X1] : (nonexistent(X0,X1) | ~eventuality(X0,X1))), inference(ennf_transformation,[],[f76])). fof(f167,plain,( ( ! [X0,X1] : (nonexistent(X0,X1) | ~eventuality(X0,X1)) )), inference(cnf_transformation,[],[f125])). fof(f20,axiom,( ! [X0] : ! [X1] : (entity(X0,X1) => existent(X0,X1))), file('/tmp/SystemOnTPTP24503/NLP042+1.tptp',ax20)). fof(f66,plain,( ! [X0,X1] : (entity(X0,X1) => existent(X0,X1))), inference(flattening,[],[f20])). fof(f116,plain,( ! [X0,X1] : (existent(X0,X1) | ~entity(X0,X1))), inference(ennf_transformation,[],[f66])). fof(f158,plain,( ( ! [X0,X1] : (existent(X0,X1) | ~entity(X0,X1)) )), inference(cnf_transformation,[],[f116])). fof(f38,axiom,( ! [X0] : ! [X1] : (existent(X0,X1) => ~nonexistent(X0,X1))), file('/tmp/SystemOnTPTP24503/NLP042+1.tptp',ax38)). fof(f84,plain,( ! [X0,X1] : (existent(X0,X1) => ~nonexistent(X0,X1))), inference(flattening,[],[f38])). fof(f131,plain,( ! [X0,X1] : (~nonexistent(X0,X1) | ~existent(X0,X1))), inference(ennf_transformation,[],[f84])). fof(f173,plain,( ( ! [X0,X1] : (~nonexistent(X0,X1) | ~existent(X0,X1)) )), inference(cnf_transformation,[],[f131])). fof(f21,axiom,( ! [X0] : ! [X1] : (entity(X0,X1) => specific(X0,X1))), file('/tmp/SystemOnTPTP24503/NLP042+1.tptp',ax21)). fof(f67,plain,( ! [X0,X1] : (entity(X0,X1) => specific(X0,X1))), inference(flattening,[],[f21])). fof(f117,plain,( ! [X0,X1] : (specific(X0,X1) | ~entity(X0,X1))), inference(ennf_transformation,[],[f67])). fof(f159,plain,( ( ! [X0,X1] : (specific(X0,X1) | ~entity(X0,X1)) )), inference(cnf_transformation,[],[f117])). fof(f16,axiom,( ! [X0] : ! [X1] : (forename(X0,X1) => relname(X0,X1))), file('/tmp/SystemOnTPTP24503/NLP042+1.tptp',ax16)). fof(f62,plain,( ! [X0,X1] : (forename(X0,X1) => relname(X0,X1))), inference(flattening,[],[f16])). fof(f113,plain,( ! [X0,X1] : (relname(X0,X1) | ~forename(X0,X1))), inference(ennf_transformation,[],[f62])). fof(f155,plain,( ( ! [X0,X1] : (relname(X0,X1) | ~forename(X0,X1)) )), inference(cnf_transformation,[],[f113])). fof(f15,axiom,( ! [X0] : ! [X1] : (relname(X0,X1) => relation(X0,X1))), file('/tmp/SystemOnTPTP24503/NLP042+1.tptp',ax15)). fof(f61,plain,( ! [X0,X1] : (relname(X0,X1) => relation(X0,X1))), inference(flattening,[],[f15])). fof(f112,plain,( ! [X0,X1] : (relation(X0,X1) | ~relname(X0,X1))), inference(ennf_transformation,[],[f61])). fof(f154,plain,( ( ! [X0,X1] : (relation(X0,X1) | ~relname(X0,X1)) )), inference(cnf_transformation,[],[f112])). fof(f14,axiom,( ! [X0] : ! [X1] : (relation(X0,X1) => abstraction(X0,X1))), file('/tmp/SystemOnTPTP24503/NLP042+1.tptp',ax14)). fof(f60,plain,( ! [X0,X1] : (relation(X0,X1) => abstraction(X0,X1))), inference(flattening,[],[f14])). fof(f111,plain,( ! [X0,X1] : (abstraction(X0,X1) | ~relation(X0,X1))), inference(ennf_transformation,[],[f60])). fof(f153,plain,( ( ! [X0,X1] : (abstraction(X0,X1) | ~relation(X0,X1)) )), inference(cnf_transformation,[],[f111])). fof(f11,axiom,( ! [X0] : ! [X1] : (abstraction(X0,X1) => general(X0,X1))), file('/tmp/SystemOnTPTP24503/NLP042+1.tptp',ax11)). fof(f57,plain,( ! [X0,X1] : (abstraction(X0,X1) => general(X0,X1))), inference(flattening,[],[f11])). fof(f109,plain,( ! [X0,X1] : (general(X0,X1) | ~abstraction(X0,X1))), inference(ennf_transformation,[],[f57])). fof(f151,plain,( ( ! [X0,X1] : (general(X0,X1) | ~abstraction(X0,X1)) )), inference(cnf_transformation,[],[f109])). fof(f41,axiom,( ! [X0] : ! [X1] : (specific(X0,X1) => ~general(X0,X1))), file('/tmp/SystemOnTPTP24503/NLP042+1.tptp',ax41)). fof(f87,plain,( ! [X0,X1] : (specific(X0,X1) => ~general(X0,X1))), inference(flattening,[],[f41])). fof(f134,plain,( ! [X0,X1] : (~general(X0,X1) | ~specific(X0,X1))), inference(ennf_transformation,[],[f87])). fof(f176,plain,( ( ! [X0,X1] : (~general(X0,X1) | ~specific(X0,X1)) )), inference(cnf_transformation,[],[f134])). fof(f31,axiom,( ! [X0] : ! [X1] : (eventuality(X0,X1) => specific(X0,X1))), file('/tmp/SystemOnTPTP24503/NLP042+1.tptp',ax31)). fof(f77,plain,( ! [X0,X1] : (eventuality(X0,X1) => specific(X0,X1))), inference(flattening,[],[f31])). fof(f126,plain,( ! [X0,X1] : (specific(X0,X1) | ~eventuality(X0,X1))), inference(ennf_transformation,[],[f77])). fof(f168,plain,( ( ! [X0,X1] : (specific(X0,X1) | ~eventuality(X0,X1)) )), inference(cnf_transformation,[],[f126])). fof(f12,axiom,( ! [X0] : ! [X1] : (abstraction(X0,X1) => nonhuman(X0,X1))), file('/tmp/SystemOnTPTP24503/NLP042+1.tptp',ax12)). fof(f58,plain,( ! [X0,X1] : (abstraction(X0,X1) => nonhuman(X0,X1))), inference(flattening,[],[f12])). fof(f110,plain,( ! [X0,X1] : (nonhuman(X0,X1) | ~abstraction(X0,X1))), inference(ennf_transformation,[],[f58])). fof(f152,plain,( ( ! [X0,X1] : (nonhuman(X0,X1) | ~abstraction(X0,X1)) )), inference(cnf_transformation,[],[f110])). fof(f3,axiom,( ! [X0] : ! [X1] : (human_person(X0,X1) => human(X0,X1))), file('/tmp/SystemOnTPTP24503/NLP042+1.tptp',ax3)). fof(f49,plain,( ! [X0,X1] : (human_person(X0,X1) => human(X0,X1))), inference(flattening,[],[f3])). fof(f102,plain,( ! [X0,X1] : (human(X0,X1) | ~human_person(X0,X1))), inference(ennf_transformation,[],[f49])). fof(f144,plain,( ( ! [X0,X1] : (human(X0,X1) | ~human_person(X0,X1)) )), inference(cnf_transformation,[],[f102])). fof(f39,axiom,( ! [X0] : ! [X1] : (nonhuman(X0,X1) => ~human(X0,X1))), file('/tmp/SystemOnTPTP24503/NLP042+1.tptp',ax39)). fof(f85,plain,( ! [X0,X1] : (nonhuman(X0,X1) => ~human(X0,X1))), inference(flattening,[],[f39])). fof(f132,plain,( ! [X0,X1] : (~human(X0,X1) | ~nonhuman(X0,X1))), inference(ennf_transformation,[],[f85])). fof(f174,plain,( ( ! [X0,X1] : (~human(X0,X1) | ~nonhuman(X0,X1)) )), inference(cnf_transformation,[],[f132])). cnf(c_489,plain, ( X0 != X1 | X2 != X3 | ~ nonreflexive(X1,X3) | nonreflexive(X0,X2) ), theory(equality) ). cnf(c_919,plain, ( X0 != X1 | X2 != X3 | X4 != X5 | ~ agent(X1,X3,X5) | agent(X0,X2,X4) ), theory(equality) ). cnf(c_487,plain, ( X0 != X1 | X2 != X3 | X4 != X5 | ~ patient(X1,X3,X5) | patient(X0,X2,X4) ), theory(equality) ). cnf(c_485,plain, ( X0 != X1 | X2 != X3 | ~ order(X1,X3) | order(X0,X2) ), theory(equality) ). cnf(c_484,plain, ( X0 != X1 | X2 != X3 | ~ event(X1,X3) | event(X0,X2) ), theory(equality) ). cnf(c_483,plain, ( X0 != X1 | X2 != X3 | ~ shake_beverage(X1,X3) | shake_beverage(X0,X2) ), theory(equality) ). cnf(c_482,plain, ( X0 != X1 | X2 != X3 | ~ mia_forename(X1,X3) | mia_forename(X0,X2) ), theory(equality) ). cnf(c_480,plain, ( X0 != X1 | X2 != X3 | ~ woman(X1,X3) | woman(X0,X2) ), theory(equality) ). cnf(c_978,plain,( X0_1 = X0_1 ),theory(equality) ). cnf(c_96,negated_conjecture, ( of(sK0,sK2,sK1) ), inference(cnf_transformation,[],[f180]) ). cnf(c_85,plain, ( ~ of(X0,X1,X2) | ~ of(X0,X3,X2) | ~ entity(X0,X2) | ~ forename(X0,X1) | ~ forename(X0,X3) | X1 = X3 ), inference(cnf_transformation,[],[f178]) ). cnf(c_53,plain, ( ~ organism(X0,X1) | entity(X0,X1) ), inference(cnf_transformation,[],[f146]) ). cnf(c_54,plain, ( ~ human_person(X0,X1) | organism(X0,X1) ), inference(cnf_transformation,[],[f147]) ). cnf(c_55,plain, ( ~ woman(X0,X1) | human_person(X0,X1) ), inference(cnf_transformation,[],[f148]) ). cnf(c_95,negated_conjecture, ( woman(sK0,sK1) ), inference(cnf_transformation,[],[f181]) ). cnf(c_532,plain, ( X0 != sK0 | X1 != sK1 | human_person(X0,X1) ), inference(resolution_lifted,[status(thm)],[c_55,c_95]) ). cnf(c_533,plain, ( human_person(sK0,sK1) ), inference(unflattening,[status(thm)],[c_532]) ). cnf(c_685,plain, ( X0 != sK0 | X1 != sK1 | organism(X0,X1) ), inference(resolution_lifted,[status(thm)],[c_54,c_533]) ). cnf(c_686,plain, ( organism(sK0,sK1) ), inference(unflattening,[status(thm)],[c_685]) ). cnf(c_695,plain, ( X0 != sK0 | X1 != sK1 | entity(X0,X1) ), inference(resolution_lifted,[status(thm)],[c_53,c_686]) ). cnf(c_696,plain, ( entity(sK0,sK1) ), inference(unflattening,[status(thm)],[c_695]) ). cnf(c_799,plain, ( X0 != sK0 | X1 != sK1 | ~ of(X0,X2,X1) | ~ of(X0,X3,X1) | ~ forename(X0,X2) | ~ forename(X0,X3) | X2 = X3 ), inference(resolution_lifted,[status(thm)],[c_85,c_696]) ). cnf(c_800,plain, ( ~ of(sK0,X0,sK1) | ~ of(sK0,X1,sK1) | ~ forename(sK0,X0) | ~ forename(sK0,X1) | X0 = X1 ), inference(unflattening,[status(thm)],[c_799]) ). cnf(c_1115,plain, ( ~ of(sK0,X0,sK1) | ~ forename(sK0,X0) | ~ forename(sK0,sK2) | X0 = sK2 ), inference(superposition,[status(thm)],[c_96,c_800]) ). cnf(c_93,negated_conjecture, ( forename(sK0,sK2) ), inference(cnf_transformation,[],[f183]) ). cnf(c_1116,plain, ( ~ of(sK0,X0,sK1) | ~ forename(sK0,X0) | X0 = sK2 ), inference(forward_subsumption_resolution,[status(thm)],[c_1115,c_93]) ). cnf(c_68,plain, ( ~ substance_matter(X0,X1) | object(X0,X1) ), inference(cnf_transformation,[],[f161]) ). cnf(c_69,plain, ( ~ food(X0,X1) | substance_matter(X0,X1) ), inference(cnf_transformation,[],[f162]) ). cnf(c_70,plain, ( ~ beverage(X0,X1) | food(X0,X1) ), inference(cnf_transformation,[],[f163]) ). cnf(c_71,plain, ( ~ shake_beverage(X0,X1) | beverage(X0,X1) ), inference(cnf_transformation,[],[f164]) ). cnf(c_92,negated_conjecture, ( shake_beverage(sK0,sK3) ), inference(cnf_transformation,[],[f184]) ). cnf(c_492,plain, ( X0 != sK0 | X1 != sK3 | beverage(X0,X1) ), inference(resolution_lifted,[status(thm)],[c_71,c_92]) ). cnf(c_493,plain, ( beverage(sK0,sK3) ), inference(unflattening,[status(thm)],[c_492]) ). cnf(c_498,plain, ( X0 != sK0 | X1 != sK3 | food(X0,X1) ), inference(resolution_lifted,[status(thm)],[c_70,c_493]) ). cnf(c_499,plain, ( food(sK0,sK3) ), inference(unflattening,[status(thm)],[c_498]) ). cnf(c_504,plain, ( X0 != sK0 | X1 != sK3 | substance_matter(X0,X1) ), inference(resolution_lifted,[status(thm)],[c_69,c_499]) ). cnf(c_505,plain, ( substance_matter(sK0,sK3) ), inference(unflattening,[status(thm)],[c_504]) ). cnf(c_510,plain, ( X0 != sK0 | X1 != sK3 | object(X0,X1) ), inference(resolution_lifted,[status(thm)],[c_68,c_505]) ). cnf(c_511,plain, ( object(sK0,sK3) ), inference(unflattening,[status(thm)],[c_510]) ). cnf(c_64,plain, ( ~ object(X0,X1) | nonliving(X0,X1) ), inference(cnf_transformation,[],[f157]) ). cnf(c_50,plain, ( ~ human_person(X0,X1) | animate(X0,X1) ), inference(cnf_transformation,[],[f143]) ). cnf(c_79,plain, ( ~ animate(X0,X1) | ~ nonliving(X0,X1) ), inference(cnf_transformation,[],[f172]) ). cnf(c_539,plain, ( X0 != X1 | X2 != X3 | ~ human_person(X0,X2) | ~ nonliving(X1,X3) ), inference(resolution_lifted,[status(thm)],[c_50,c_79]) ). cnf(c_540,plain, ( ~ human_person(X0,X1) | ~ nonliving(X0,X1) ), inference(unflattening,[status(thm)],[c_539]) ). cnf(c_680,plain, ( X0 != sK0 | X1 != sK1 | ~ nonliving(X0,X1) ), inference(resolution_lifted,[status(thm)],[c_540,c_533]) ). cnf(c_681,plain, ( ~ nonliving(sK0,sK1) ), inference(unflattening,[status(thm)],[c_680]) ). cnf(c_701,plain, ( X0 != sK0 | X1 != sK1 | ~ object(X0,X1) ), inference(resolution_lifted,[status(thm)],[c_64,c_681]) ). cnf(c_702,plain, ( ~ object(sK0,sK1) ), inference(unflattening,[status(thm)],[c_701]) ). cnf(c_717,plain, ( sK0 != sK0 | sK3 != sK1 ), inference(resolution_lifted,[status(thm)],[c_511,c_702]) ). cnf(c_858,plain, ( sK3 != sK1 ), inference(equality_resolution_simp,[status(thm)],[c_717]) ). cnf(c_76,plain, ( ~ event(X0,X1) | eventuality(X0,X1) ), inference(cnf_transformation,[],[f169]) ). cnf(c_91,negated_conjecture, ( event(sK0,sK4) ), inference(cnf_transformation,[],[f185]) ). cnf(c_637,plain, ( X0 != sK0 | X1 != sK4 | eventuality(X0,X1) ), inference(resolution_lifted,[status(thm)],[c_76,c_91]) ). cnf(c_638,plain, ( eventuality(sK0,sK4) ), inference(unflattening,[status(thm)],[c_637]) ). cnf(c_73,plain, ( ~ eventuality(X0,X1) | unisex(X0,X1) ), inference(cnf_transformation,[],[f166]) ). cnf(c_49,plain, ( ~ woman(X0,X1) | female(X0,X1) ), inference(cnf_transformation,[],[f142]) ). cnf(c_84,plain, ( ~ female(X0,X1) | ~ unisex(X0,X1) ), inference(cnf_transformation,[],[f177]) ). cnf(c_516,plain, ( X0 != X1 | X2 != X3 | ~ woman(X0,X2) | ~ unisex(X1,X3) ), inference(resolution_lifted,[status(thm)],[c_49,c_84]) ). cnf(c_517,plain, ( ~ woman(X0,X1) | ~ unisex(X0,X1) ), inference(unflattening,[status(thm)],[c_516]) ). cnf(c_527,plain, ( X0 != sK0 | X1 != sK1 | ~ unisex(X0,X1) ), inference(resolution_lifted,[status(thm)],[c_517,c_95]) ). cnf(c_528,plain, ( ~ unisex(sK0,sK1) ), inference(unflattening,[status(thm)],[c_527]) ). cnf(c_728,plain, ( X0 != sK0 | X1 != sK1 | ~ eventuality(X0,X1) ), inference(resolution_lifted,[status(thm)],[c_73,c_528]) ). cnf(c_729,plain, ( ~ eventuality(sK0,sK1) ), inference(unflattening,[status(thm)],[c_728]) ). cnf(c_747,plain, ( sK0 != sK0 | sK4 != sK1 ), inference(resolution_lifted,[status(thm)],[c_638,c_729]) ). cnf(c_857,plain, ( sK4 != sK1 ), inference(equality_resolution_simp,[status(thm)],[c_747]) ). cnf(c_67,plain, ( ~ object(X0,X1) | entity(X0,X1) ), inference(cnf_transformation,[],[f160]) ). cnf(c_707,plain, ( X0 != sK0 | X1 != sK3 | entity(X0,X1) ), inference(resolution_lifted,[status(thm)],[c_67,c_511]) ). cnf(c_708,plain, ( entity(sK0,sK3) ), inference(unflattening,[status(thm)],[c_707]) ). cnf(c_74,plain, ( ~ eventuality(X0,X1) | nonexistent(X0,X1) ), inference(cnf_transformation,[],[f167]) ). cnf(c_65,plain, ( ~ entity(X0,X1) | existent(X0,X1) ), inference(cnf_transformation,[],[f158]) ). cnf(c_80,plain, ( ~ existent(X0,X1) | ~ nonexistent(X0,X1) ), inference(cnf_transformation,[],[f173]) ). cnf(c_616,plain, ( X0 != X1 | X2 != X3 | ~ entity(X0,X2) | ~ nonexistent(X1,X3) ), inference(resolution_lifted,[status(thm)],[c_65,c_80]) ). cnf(c_617,plain, ( ~ entity(X0,X1) | ~ nonexistent(X0,X1) ), inference(unflattening,[status(thm)],[c_616]) ). cnf(c_643,plain, ( X0 != X1 | X2 != X3 | ~ entity(X1,X3) | ~ eventuality(X0,X2) ), inference(resolution_lifted,[status(thm)],[c_74,c_617]) ). cnf(c_644,plain, ( ~ entity(X0,X1) | ~ eventuality(X0,X1) ), inference(unflattening,[status(thm)],[c_643]) ). cnf(c_737,plain, ( X0 != sK0 | X1 != sK4 | ~ entity(X0,X1) ), inference(resolution_lifted,[status(thm)],[c_644,c_638]) ). cnf(c_738,plain, ( ~ entity(sK0,sK4) ), inference(unflattening,[status(thm)],[c_737]) ). cnf(c_836,plain, ( sK0 != sK0 | sK4 != sK3 ), inference(resolution_lifted,[status(thm)],[c_708,c_738]) ). cnf(c_856,plain, ( sK4 != sK3 ), inference(equality_resolution_simp,[status(thm)],[c_836]) ). cnf(c_817,plain, ( X0 != sK0 | X1 != sK3 | ~ of(X0,X2,X1) | ~ of(X0,X3,X1) | ~ forename(X0,X2) | ~ forename(X0,X3) | X2 = X3 ), inference(resolution_lifted,[status(thm)],[c_85,c_708]) ). cnf(c_818,plain, ( ~ of(sK0,X0,sK3) | ~ of(sK0,X1,sK3) | ~ forename(sK0,X0) | ~ forename(sK0,X1) | X0 = X1 ), inference(unflattening,[status(thm)],[c_817]) ). cnf(c_66,plain, ( ~ entity(X0,X1) | specific(X0,X1) ), inference(cnf_transformation,[],[f159]) ). cnf(c_62,plain, ( ~ forename(X0,X1) | relname(X0,X1) ), inference(cnf_transformation,[],[f155]) ). cnf(c_61,plain, ( ~ relname(X0,X1) | relation(X0,X1) ), inference(cnf_transformation,[],[f154]) ). cnf(c_60,plain, ( ~ relation(X0,X1) | abstraction(X0,X1) ), inference(cnf_transformation,[],[f153]) ). cnf(c_594,plain, ( X0 != X1 | X2 != X3 | ~ relname(X0,X2) | abstraction(X1,X3) ), inference(resolution_lifted,[status(thm)],[c_61,c_60]) ). cnf(c_595,plain, ( ~ relname(X0,X1) | abstraction(X0,X1) ), inference(unflattening,[status(thm)],[c_594]) ). cnf(c_605,plain, ( X0 != X1 | X2 != X3 | ~ forename(X0,X2) | abstraction(X1,X3) ), inference(resolution_lifted,[status(thm)],[c_62,c_595]) ). cnf(c_606,plain, ( ~ forename(X0,X1) | abstraction(X0,X1) ), inference(unflattening,[status(thm)],[c_605]) ). cnf(c_58,plain, ( ~ abstraction(X0,X1) | general(X0,X1) ), inference(cnf_transformation,[],[f151]) ). cnf(c_83,plain, ( ~ general(X0,X1) | ~ specific(X0,X1) ), inference(cnf_transformation,[],[f176]) ). cnf(c_572,plain, ( X0 != X1 | X2 != X3 | ~ abstraction(X0,X2) | ~ specific(X1,X3) ), inference(resolution_lifted,[status(thm)],[c_58,c_83]) ). cnf(c_573,plain, ( ~ abstraction(X0,X1) | ~ specific(X0,X1) ), inference(unflattening,[status(thm)],[c_572]) ). cnf(c_758,plain, ( X0 != X1 | X2 != X3 | ~ forename(X0,X2) | ~ specific(X1,X3) ), inference(resolution_lifted,[status(thm)],[c_606,c_573]) ). cnf(c_759,plain, ( ~ forename(X0,X1) | ~ specific(X0,X1) ), inference(unflattening,[status(thm)],[c_758]) ). cnf(c_775,plain, ( X0 != X1 | X2 != X3 | ~ entity(X0,X2) | ~ forename(X1,X3) ), inference(resolution_lifted,[status(thm)],[c_66,c_759]) ). cnf(c_776,plain, ( ~ entity(X0,X1) | ~ forename(X0,X1) ), inference(unflattening,[status(thm)],[c_775]) ). cnf(c_794,plain, ( X0 != sK0 | X1 != sK3 | ~ forename(X0,X1) ), inference(resolution_lifted,[status(thm)],[c_776,c_708]) ). cnf(c_795,plain, ( ~ forename(sK0,sK3) ), inference(unflattening,[status(thm)],[c_794]) ). cnf(c_75,plain, ( ~ eventuality(X0,X1) | specific(X0,X1) ), inference(cnf_transformation,[],[f168]) ). cnf(c_742,plain, ( X0 != sK0 | X1 != sK4 | specific(X0,X1) ), inference(resolution_lifted,[status(thm)],[c_75,c_638]) ). cnf(c_743,plain, ( specific(sK0,sK4) ), inference(unflattening,[status(thm)],[c_742]) ). cnf(c_784,plain, ( X0 != sK0 | X1 != sK4 | ~ forename(X0,X1) ), inference(resolution_lifted,[status(thm)],[c_759,c_743]) ). cnf(c_785,plain, ( ~ forename(sK0,sK4) ), inference(unflattening,[status(thm)],[c_784]) ). cnf(c_59,plain, ( ~ abstraction(X0,X1) | nonhuman(X0,X1) ), inference(cnf_transformation,[],[f152]) ). cnf(c_51,plain, ( ~ human_person(X0,X1) | human(X0,X1) ), inference(cnf_transformation,[],[f144]) ). cnf(c_81,plain, ( ~ human(X0,X1) | ~ nonhuman(X0,X1) ), inference(cnf_transformation,[],[f174]) ). cnf(c_550,plain, ( X0 != X1 | X2 != X3 | ~ human_person(X0,X2) | ~ nonhuman(X1,X3) ), inference(resolution_lifted,[status(thm)],[c_51,c_81]) ). cnf(c_551,plain, ( ~ human_person(X0,X1) | ~ nonhuman(X0,X1) ), inference(unflattening,[status(thm)],[c_550]) ). cnf(c_583,plain, ( X0 != X1 | X2 != X3 | ~ human_person(X1,X3) | ~ abstraction(X0,X2) ), inference(resolution_lifted,[status(thm)],[c_59,c_551]) ). cnf(c_584,plain, ( ~ human_person(X0,X1) | ~ abstraction(X0,X1) ), inference(unflattening,[status(thm)],[c_583]) ). cnf(c_675,plain, ( X0 != sK0 | X1 != sK1 | ~ abstraction(X0,X1) ), inference(resolution_lifted,[status(thm)],[c_584,c_533]) ). cnf(c_676,plain, ( ~ abstraction(sK0,sK1) ), inference(unflattening,[status(thm)],[c_675]) ). cnf(c_767,plain, ( X0 != sK0 | X1 != sK1 | ~ forename(X0,X1) ), inference(resolution_lifted,[status(thm)],[c_606,c_676]) ). cnf(c_768,plain, ( ~ forename(sK0,sK1) ), inference(unflattening,[status(thm)],[c_767]) ). % SZS output end Saturation for NLP042+1.tptp
% SZS output start Saturation for SWV017+1.tptp fof(f33,axiom,( ! [X0] : (fresh_intruder_nonce(X0) => (intruder_message(X0) & fresh_to_b(X0)))), file('/tmp/SystemOnTPTP26063/SWV017+1.tptp',fresh_intruder_nonces_are_fresh_to_b)). fof(f82,plain,( ! [X0] : ((intruder_message(X0) & fresh_to_b(X0)) | ~fresh_intruder_nonce(X0))), inference(ennf_transformation,[],[f33])). fof(f119,plain,( ( ! [X0] : (fresh_to_b(X0) | ~fresh_intruder_nonce(X0)) )), inference(cnf_transformation,[],[f82])). fof(f120,plain,( ( ! [X0] : (intruder_message(X0) | ~fresh_intruder_nonce(X0)) )), inference(cnf_transformation,[],[f82])). fof(f32,axiom,( ! [X0] : (fresh_intruder_nonce(X0) => fresh_intruder_nonce(generate_intruder_nonce(X0)))), file('/tmp/SystemOnTPTP26063/SWV017+1.tptp',can_generate_more_fresh_intruder_nonces)). fof(f81,plain,( ! [X0] : (fresh_intruder_nonce(generate_intruder_nonce(X0)) | ~fresh_intruder_nonce(X0))), inference(ennf_transformation,[],[f32])). fof(f118,plain,( ( ! [X0] : (fresh_intruder_nonce(generate_intruder_nonce(X0)) | ~fresh_intruder_nonce(X0)) )), inference(cnf_transformation,[],[f81])). fof(f31,axiom,( fresh_intruder_nonce(an_intruder_nonce)), file('/tmp/SystemOnTPTP26063/SWV017+1.tptp',an_intruder_nonce_is_a_fresh_intruder_nonce)). fof(f117,plain,( fresh_intruder_nonce(an_intruder_nonce)), inference(cnf_transformation,[],[f31])). fof(f27,axiom,( ! [X0] : ~a_nonce(generate_key(X0))), file('/tmp/SystemOnTPTP26063/SWV017+1.tptp',generated_keys_are_not_nonces)). fof(f112,plain,( ( ! [X0] : (~a_nonce(generate_key(X0))) )), inference(cnf_transformation,[],[f27])). fof(f25,axiom,( ! [X0] : ! [X1] : ! [X2] : ((party_of_protocol(X2) & intruder_holds(key(X1,X2)) & intruder_message(X0)) => intruder_message(encrypt(X0,X1)))), file('/tmp/SystemOnTPTP26063/SWV017+1.tptp',intruder_key_encrypts)). fof(f50,plain,( ! [X0,X1,X2] : ((party_of_protocol(X2) & intruder_holds(key(X1,X2)) & intruder_message(X0)) => intruder_message(encrypt(X0,X1)))), inference(flattening,[],[f25])). fof(f78,plain,( ! [X0,X1,X2] : (intruder_message(encrypt(X0,X1)) | (~party_of_protocol(X2) | ~intruder_holds(key(X1,X2)) | ~intruder_message(X0)))), inference(ennf_transformation,[],[f50])). fof(f79,plain,( ! [X0,X1,X2] : (intruder_message(encrypt(X0,X1)) | ~party_of_protocol(X2) | ~intruder_holds(key(X1,X2)) | ~intruder_message(X0))), inference(flattening,[],[f78])). fof(f110,plain,( ( ! [X2,X0,X1] : (intruder_message(encrypt(X0,X1)) | ~party_of_protocol(X2) | ~intruder_holds(key(X1,X2)) | ~intruder_message(X0)) )), inference(cnf_transformation,[],[f79])). fof(f24,axiom,( ! [X1] : ! [X2] : ((party_of_protocol(X2) & intruder_message(X1)) => intruder_holds(key(X1,X2)))), file('/tmp/SystemOnTPTP26063/SWV017+1.tptp',intruder_holds_key)). fof(f48,plain,( ! [X0] : ! [X1] : ((party_of_protocol(X1) & intruder_message(X0)) => intruder_holds(key(X0,X1)))), inference(rectify,[],[f24])). fof(f49,plain,( ! [X0,X1] : ((party_of_protocol(X1) & intruder_message(X0)) => intruder_holds(key(X0,X1)))), inference(flattening,[],[f48])). fof(f76,plain,( ! [X0,X1] : (intruder_holds(key(X0,X1)) | (~party_of_protocol(X1) | ~intruder_message(X0)))), inference(ennf_transformation,[],[f49])). fof(f77,plain,( ! [X0,X1] : (intruder_holds(key(X0,X1)) | ~party_of_protocol(X1) | ~intruder_message(X0))), inference(flattening,[],[f76])). fof(f109,plain,( ( ! [X0,X1] : (intruder_holds(key(X0,X1)) | ~party_of_protocol(X1) | ~intruder_message(X0)) )), inference(cnf_transformation,[],[f77])). fof(f23,axiom,( ! [X0] : ! [X1] : ! [X2] : ((party_of_protocol(X2) & party_of_protocol(X1) & intruder_message(X0)) => message(sent(X1,X2,X0)))), file('/tmp/SystemOnTPTP26063/SWV017+1.tptp',intruder_message_sent)). fof(f47,plain,( ! [X0,X1,X2] : ((party_of_protocol(X2) & party_of_protocol(X1) & intruder_message(X0)) => message(sent(X1,X2,X0)))), inference(flattening,[],[f23])). fof(f74,plain,( ! [X0,X1,X2] : (message(sent(X1,X2,X0)) | (~party_of_protocol(X2) | ~party_of_protocol(X1) | ~intruder_message(X0)))), inference(ennf_transformation,[],[f47])). fof(f75,plain,( ! [X0,X1,X2] : (message(sent(X1,X2,X0)) | ~party_of_protocol(X2) | ~party_of_protocol(X1) | ~intruder_message(X0))), inference(flattening,[],[f74])). fof(f108,plain,( ( ! [X2,X0,X1] : (message(sent(X1,X2,X0)) | ~party_of_protocol(X2) | ~party_of_protocol(X1) | ~intruder_message(X0)) )), inference(cnf_transformation,[],[f75])). fof(f22,axiom,( ! [X0] : ! [X1] : ! [X2] : ((party_of_protocol(X2) & intruder_holds(key(X1,X2)) & intruder_message(encrypt(X0,X1))) => intruder_message(X1))), file('/tmp/SystemOnTPTP26063/SWV017+1.tptp',intruder_interception)). fof(f46,plain,( ! [X0,X1,X2] : ((party_of_protocol(X2) & intruder_holds(key(X1,X2)) & intruder_message(encrypt(X0,X1))) => intruder_message(X1))), inference(flattening,[],[f22])). fof(f72,plain,( ! [X0,X1,X2] : (intruder_message(X1) | (~party_of_protocol(X2) | ~intruder_holds(key(X1,X2)) | ~intruder_message(encrypt(X0,X1))))), inference(ennf_transformation,[],[f46])). fof(f73,plain,( ! [X0,X1,X2] : (intruder_message(X1) | ~party_of_protocol(X2) | ~intruder_holds(key(X1,X2)) | ~intruder_message(encrypt(X0,X1)))), inference(flattening,[],[f72])). fof(f107,plain,( ( ! [X2,X0,X1] : (intruder_message(X1) | ~party_of_protocol(X2) | ~intruder_holds(key(X1,X2)) | ~intruder_message(encrypt(X0,X1))) )), inference(cnf_transformation,[],[f73])). fof(f21,axiom,( ! [X0] : ! [X1] : ! [X2] : ! [X3] : ((intruder_message(X3) & intruder_message(X2) & intruder_message(X1) & intruder_message(X0)) => intruder_message(quadruple(X0,X1,X2,X3)))), file('/tmp/SystemOnTPTP26063/SWV017+1.tptp',intruder_composes_quadruples)). fof(f45,plain,( ! [X0,X1,X2,X3] : ((intruder_message(X3) & intruder_message(X2) & intruder_message(X1) & intruder_message(X0)) => intruder_message(quadruple(X0,X1,X2,X3)))), inference(flattening,[],[f21])). fof(f70,plain,( ! [X0,X1,X2,X3] : (intruder_message(quadruple(X0,X1,X2,X3)) | (~intruder_message(X3) | ~intruder_message(X2) | ~intruder_message(X1) | ~intruder_message(X0)))), inference(ennf_transformation,[],[f45])). fof(f71,plain,( ! [X0,X1,X2,X3] : (intruder_message(quadruple(X0,X1,X2,X3)) | ~intruder_message(X3) | ~intruder_message(X2) | ~intruder_message(X1) | ~intruder_message(X0))), inference(flattening,[],[f70])). fof(f106,plain,( ( ! [X2,X0,X3,X1] : (intruder_message(quadruple(X0,X1,X2,X3)) | ~intruder_message(X3) | ~intruder_message(X2) | ~intruder_message(X1) | ~intruder_message(X0)) )), inference(cnf_transformation,[],[f71])). fof(f20,axiom,( ! [X0] : ! [X1] : ! [X2] : ((intruder_message(X2) & intruder_message(X1) & intruder_message(X0)) => intruder_message(triple(X0,X1,X2)))), file('/tmp/SystemOnTPTP26063/SWV017+1.tptp',intruder_composes_triples)). fof(f44,plain,( ! [X0,X1,X2] : ((intruder_message(X2) & intruder_message(X1) & intruder_message(X0)) => intruder_message(triple(X0,X1,X2)))), inference(flattening,[],[f20])). fof(f68,plain,( ! [X0,X1,X2] : (intruder_message(triple(X0,X1,X2)) | (~intruder_message(X2) | ~intruder_message(X1) | ~intruder_message(X0)))), inference(ennf_transformation,[],[f44])). fof(f69,plain,( ! [X0,X1,X2] : (intruder_message(triple(X0,X1,X2)) | ~intruder_message(X2) | ~intruder_message(X1) | ~intruder_message(X0))), inference(flattening,[],[f68])). fof(f105,plain,( ( ! [X2,X0,X1] : (intruder_message(triple(X0,X1,X2)) | ~intruder_message(X2) | ~intruder_message(X1) | ~intruder_message(X0)) )), inference(cnf_transformation,[],[f69])). fof(f19,axiom,( ! [X0] : ! [X1] : ((intruder_message(X1) & intruder_message(X0)) => intruder_message(pair(X0,X1)))), file('/tmp/SystemOnTPTP26063/SWV017+1.tptp',intruder_composes_pairs)). fof(f43,plain,( ! [X0,X1] : ((intruder_message(X1) & intruder_message(X0)) => intruder_message(pair(X0,X1)))), inference(flattening,[],[f19])). fof(f66,plain,( ! [X0,X1] : (intruder_message(pair(X0,X1)) | (~intruder_message(X1) | ~intruder_message(X0)))), inference(ennf_transformation,[],[f43])). fof(f67,plain,( ! [X0,X1] : (intruder_message(pair(X0,X1)) | ~intruder_message(X1) | ~intruder_message(X0))), inference(flattening,[],[f66])). fof(f104,plain,( ( ! [X0,X1] : (intruder_message(pair(X0,X1)) | ~intruder_message(X1) | ~intruder_message(X0)) )), inference(cnf_transformation,[],[f67])). fof(f18,axiom,( ! [X0] : ! [X1] : ! [X2] : ! [X3] : (intruder_message(quadruple(X0,X1,X2,X3)) => (intruder_message(X3) & intruder_message(X2) & intruder_message(X1) & intruder_message(X0)))), file('/tmp/SystemOnTPTP26063/SWV017+1.tptp',intruder_decomposes_quadruples)). fof(f42,plain,( ! [X0,X1,X2,X3] : (intruder_message(quadruple(X0,X1,X2,X3)) => (intruder_message(X3) & intruder_message(X2) & intruder_message(X1) & intruder_message(X0)))), inference(flattening,[],[f18])). fof(f65,plain,( ! [X0,X1,X2,X3] : ((intruder_message(X3) & intruder_message(X2) & intruder_message(X1) & intruder_message(X0)) | ~intruder_message(quadruple(X0,X1,X2,X3)))), inference(ennf_transformation,[],[f42])). fof(f100,plain,( ( ! [X2,X0,X3,X1] : (intruder_message(X0) | ~intruder_message(quadruple(X0,X1,X2,X3))) )), inference(cnf_transformation,[],[f65])). fof(f101,plain,( ( ! [X2,X0,X3,X1] : (intruder_message(X1) | ~intruder_message(quadruple(X0,X1,X2,X3))) )), inference(cnf_transformation,[],[f65])). fof(f102,plain,( ( ! [X2,X0,X3,X1] : (intruder_message(X2) | ~intruder_message(quadruple(X0,X1,X2,X3))) )), inference(cnf_transformation,[],[f65])). fof(f103,plain,( ( ! [X2,X0,X3,X1] : (intruder_message(X3) | ~intruder_message(quadruple(X0,X1,X2,X3))) )), inference(cnf_transformation,[],[f65])). fof(f17,axiom,( ! [X0] : ! [X1] : ! [X2] : (intruder_message(triple(X0,X1,X2)) => (intruder_message(X2) & intruder_message(X1) & intruder_message(X0)))), file('/tmp/SystemOnTPTP26063/SWV017+1.tptp',intruder_decomposes_triples)). fof(f41,plain,( ! [X0,X1,X2] : (intruder_message(triple(X0,X1,X2)) => (intruder_message(X2) & intruder_message(X1) & intruder_message(X0)))), inference(flattening,[],[f17])). fof(f64,plain,( ! [X0,X1,X2] : ((intruder_message(X2) & intruder_message(X1) & intruder_message(X0)) | ~intruder_message(triple(X0,X1,X2)))), inference(ennf_transformation,[],[f41])). fof(f97,plain,( ( ! [X2,X0,X1] : (intruder_message(X0) | ~intruder_message(triple(X0,X1,X2))) )), inference(cnf_transformation,[],[f64])). fof(f98,plain,( ( ! [X2,X0,X1] : (intruder_message(X1) | ~intruder_message(triple(X0,X1,X2))) )), inference(cnf_transformation,[],[f64])). fof(f99,plain,( ( ! [X2,X0,X1] : (intruder_message(X2) | ~intruder_message(triple(X0,X1,X2))) )), inference(cnf_transformation,[],[f64])). fof(f16,axiom,( ! [X0] : ! [X1] : (intruder_message(pair(X0,X1)) => (intruder_message(X1) & intruder_message(X0)))), file('/tmp/SystemOnTPTP26063/SWV017+1.tptp',intruder_decomposes_pairs)). fof(f40,plain,( ! [X0,X1] : (intruder_message(pair(X0,X1)) => (intruder_message(X1) & intruder_message(X0)))), inference(flattening,[],[f16])). fof(f63,plain,( ! [X0,X1] : ((intruder_message(X1) & intruder_message(X0)) | ~intruder_message(pair(X0,X1)))), inference(ennf_transformation,[],[f40])). fof(f95,plain,( ( ! [X0,X1] : (intruder_message(X0) | ~intruder_message(pair(X0,X1))) )), inference(cnf_transformation,[],[f63])). fof(f96,plain,( ( ! [X0,X1] : (intruder_message(X1) | ~intruder_message(pair(X0,X1))) )), inference(cnf_transformation,[],[f63])). fof(f15,axiom,( ! [X0] : ! [X1] : ! [X2] : (message(sent(X0,X1,X2)) => intruder_message(X2))), file('/tmp/SystemOnTPTP26063/SWV017+1.tptp',intruder_can_record)). fof(f39,plain,( ! [X0,X1,X2] : (message(sent(X0,X1,X2)) => intruder_message(X2))), inference(flattening,[],[f15])). fof(f62,plain,( ! [X0,X1,X2] : (intruder_message(X2) | ~message(sent(X0,X1,X2)))), inference(ennf_transformation,[],[f39])). fof(f94,plain,( ( ! [X2,X0,X1] : (intruder_message(X2) | ~message(sent(X0,X1,X2))) )), inference(cnf_transformation,[],[f62])). fof(f14,axiom,( ! [X0] : ! [X1] : ! [X2] : ! [X3] : ! [X4] : ! [X5] : ! [X6] : ((a_nonce(X3) & t_holds(key(X6,X2)) & t_holds(key(X5,X0)) & message(sent(X0,t,triple(X0,X1,encrypt(triple(X2,X3,X4),X5))))) => message(sent(t,X2,triple(encrypt(quadruple(X0,X3,generate_key(X3),X4),X6),encrypt(triple(X2,generate_key(X3),X4),X5),X1))))), file('/tmp/SystemOnTPTP26063/SWV017+1.tptp',server_t_generates_key)). fof(f38,plain,( ! [X0,X1,X2,X3,X4,X5,X6] : ((a_nonce(X3) & t_holds(key(X6,X2)) & t_holds(key(X5,X0)) & message(sent(X0,t,triple(X0,X1,encrypt(triple(X2,X3,X4),X5))))) => message(sent(t,X2,triple(encrypt(quadruple(X0,X3,generate_key(X3),X4),X6),encrypt(triple(X2,generate_key(X3),X4),X5),X1))))), inference(flattening,[],[f14])). fof(f60,plain,( ! [X0,X1,X2,X3,X4,X5,X6] : (message(sent(t,X2,triple(encrypt(quadruple(X0,X3,generate_key(X3),X4),X6),encrypt(triple(X2,generate_key(X3),X4),X5),X1))) | (~a_nonce(X3) | ~t_holds(key(X6,X2)) | ~t_holds(key(X5,X0)) | ~message(sent(X0,t,triple(X0,X1,encrypt(triple(X2,X3,X4),X5))))))), inference(ennf_transformation,[],[f38])). fof(f61,plain,( ! [X0,X1,X2,X3,X4,X5,X6] : (message(sent(t,X2,triple(encrypt(quadruple(X0,X3,generate_key(X3),X4),X6),encrypt(triple(X2,generate_key(X3),X4),X5),X1))) | ~a_nonce(X3) | ~t_holds(key(X6,X2)) | ~t_holds(key(X5,X0)) | ~message(sent(X0,t,triple(X0,X1,encrypt(triple(X2,X3,X4),X5)))))), inference(flattening,[],[f60])). fof(f93,plain,( ( ! [X6,X4,X2,X0,X5,X3,X1] : (message(sent(t,X2,triple(encrypt(quadruple(X0,X3,generate_key(X3),X4),X6),encrypt(triple(X2,generate_key(X3),X4),X5),X1))) | ~a_nonce(X3) | ~t_holds(key(X6,X2)) | ~t_holds(key(X5,X0)) | ~message(sent(X0,t,triple(X0,X1,encrypt(triple(X2,X3,X4),X5))))) )), inference(cnf_transformation,[],[f61])). fof(f13,axiom,( party_of_protocol(t)), file('/tmp/SystemOnTPTP26063/SWV017+1.tptp',t_is_party_of_protocol)). fof(f92,plain,( party_of_protocol(t)), inference(cnf_transformation,[],[f13])). fof(f12,axiom,( t_holds(key(bt,b))), file('/tmp/SystemOnTPTP26063/SWV017+1.tptp',t_holds_key_bt_for_b)). fof(f91,plain,( t_holds(key(bt,b))), inference(cnf_transformation,[],[f12])). fof(f11,axiom,( t_holds(key(at,a))), file('/tmp/SystemOnTPTP26063/SWV017+1.tptp',t_holds_key_at_for_a)). fof(f90,plain,( t_holds(key(at,a))), inference(cnf_transformation,[],[f11])). fof(f9,axiom,( ! [X0] : ! [X1] : ((fresh_to_b(X1) & message(sent(X0,b,pair(X0,X1)))) => (b_stored(pair(X0,X1)) & message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X0,X1,generate_expiration_time(X1)),bt))))))), file('/tmp/SystemOnTPTP26063/SWV017+1.tptp',b_creates_freash_nonces_in_time)). fof(f35,plain,( ! [X0,X1] : ((fresh_to_b(X1) & message(sent(X0,b,pair(X0,X1)))) => (b_stored(pair(X0,X1)) & message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X0,X1,generate_expiration_time(X1)),bt))))))), inference(flattening,[],[f9])). fof(f53,plain,( ! [X0,X1] : ((fresh_to_b(X1) & message(sent(X0,b,pair(X0,X1)))) => message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X0,X1,generate_expiration_time(X1)),bt)))))), inference(pure_predicate_removal,[],[f35])). fof(f58,plain,( ! [X0,X1] : (message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X0,X1,generate_expiration_time(X1)),bt)))) | (~fresh_to_b(X1) | ~message(sent(X0,b,pair(X0,X1)))))), inference(ennf_transformation,[],[f53])). fof(f59,plain,( ! [X0,X1] : (message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X0,X1,generate_expiration_time(X1)),bt)))) | ~fresh_to_b(X1) | ~message(sent(X0,b,pair(X0,X1))))), inference(flattening,[],[f58])). fof(f89,plain,( ( ! [X0,X1] : (message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X0,X1,generate_expiration_time(X1)),bt)))) | ~fresh_to_b(X1) | ~message(sent(X0,b,pair(X0,X1)))) )), inference(cnf_transformation,[],[f59])). fof(f8,axiom,( fresh_to_b(an_a_nonce)), file('/tmp/SystemOnTPTP26063/SWV017+1.tptp',nonce_a_is_fresh_to_b)). fof(f88,plain,( fresh_to_b(an_a_nonce)), inference(cnf_transformation,[],[f8])). fof(f7,axiom,( party_of_protocol(b)), file('/tmp/SystemOnTPTP26063/SWV017+1.tptp',b_is_party_of_protocol)). fof(f87,plain,( party_of_protocol(b)), inference(cnf_transformation,[],[f7])). fof(f5,axiom,( ! [X0] : ! [X1] : ! [X2] : ! [X3] : ! [X4] : ! [X5] : ((a_stored(pair(X4,X5)) & message(sent(t,a,triple(encrypt(quadruple(X4,X5,X2,X1),at),X3,X0)))) => (a_holds(key(X2,X4)) & message(sent(a,X4,pair(X3,encrypt(X0,X2))))))), file('/tmp/SystemOnTPTP26063/SWV017+1.tptp',a_forwards_secure)). fof(f34,plain,( ! [X0,X1,X2,X3,X4,X5] : ((a_stored(pair(X4,X5)) & message(sent(t,a,triple(encrypt(quadruple(X4,X5,X2,X1),at),X3,X0)))) => (a_holds(key(X2,X4)) & message(sent(a,X4,pair(X3,encrypt(X0,X2))))))), inference(flattening,[],[f5])). fof(f54,plain,( ! [X0,X1,X2,X3,X4,X5] : ((a_stored(pair(X4,X5)) & message(sent(t,a,triple(encrypt(quadruple(X4,X5,X2,X1),at),X3,X0)))) => message(sent(a,X4,pair(X3,encrypt(X0,X2)))))), inference(pure_predicate_removal,[],[f34])). fof(f56,plain,( ! [X0,X1,X2,X3,X4,X5] : (message(sent(a,X4,pair(X3,encrypt(X0,X2)))) | (~a_stored(pair(X4,X5)) | ~message(sent(t,a,triple(encrypt(quadruple(X4,X5,X2,X1),at),X3,X0)))))), inference(ennf_transformation,[],[f54])). fof(f57,plain,( ! [X0,X1,X2,X3,X4,X5] : (message(sent(a,X4,pair(X3,encrypt(X0,X2)))) | ~a_stored(pair(X4,X5)) | ~message(sent(t,a,triple(encrypt(quadruple(X4,X5,X2,X1),at),X3,X0))))), inference(flattening,[],[f56])). fof(f86,plain,( ( ! [X4,X2,X0,X5,X3,X1] : (message(sent(a,X4,pair(X3,encrypt(X0,X2)))) | ~a_stored(pair(X4,X5)) | ~message(sent(t,a,triple(encrypt(quadruple(X4,X5,X2,X1),at),X3,X0)))) )), inference(cnf_transformation,[],[f57])). fof(f4,axiom,( a_stored(pair(b,an_a_nonce))), file('/tmp/SystemOnTPTP26063/SWV017+1.tptp',a_stored_message_i)). fof(f85,plain,( a_stored(pair(b,an_a_nonce))), inference(cnf_transformation,[],[f4])). fof(f3,axiom,( message(sent(a,b,pair(a,an_a_nonce)))), file('/tmp/SystemOnTPTP26063/SWV017+1.tptp',a_sent_message_i_to_b)). fof(f84,plain,( message(sent(a,b,pair(a,an_a_nonce)))), inference(cnf_transformation,[],[f3])). fof(f2,axiom,( party_of_protocol(a)), file('/tmp/SystemOnTPTP26063/SWV017+1.tptp',a_is_party_of_protocol)). fof(f83,plain,( party_of_protocol(a)), inference(cnf_transformation,[],[f2])). cnf(c_86,plain, ( ~ fresh_intruder_nonce(X0) | fresh_to_b(X0) ), inference(cnf_transformation,[],[f119]) ). cnf(c_85,plain, ( ~ fresh_intruder_nonce(X0) | intruder_message(X0) ), inference(cnf_transformation,[],[f120]) ). cnf(c_84,plain, ( ~ fresh_intruder_nonce(X0) | fresh_intruder_nonce(generate_intruder_nonce(X0)) ), inference(cnf_transformation,[],[f118]) ). cnf(c_83,plain, ( fresh_intruder_nonce(an_intruder_nonce) ), inference(cnf_transformation,[],[f117]) ). cnf(c_78,plain, ( ~ a_nonce(generate_key(X0)) ), inference(cnf_transformation,[],[f112]) ). cnf(c_76,plain, ( ~ intruder_holds(key(X0,X1)) | ~ party_of_protocol(X1) | ~ intruder_message(X2) | intruder_message(encrypt(X2,X0)) ), inference(cnf_transformation,[],[f110]) ). cnf(c_75,plain, ( ~ party_of_protocol(X0) | ~ intruder_message(X1) | intruder_holds(key(X1,X0)) ), inference(cnf_transformation,[],[f109]) ). cnf(c_74,plain, ( ~ party_of_protocol(X0) | ~ party_of_protocol(X1) | ~ intruder_message(X2) | message(sent(X1,X0,X2)) ), inference(cnf_transformation,[],[f108]) ). cnf(c_73,plain, ( ~ intruder_message(encrypt(X0,X1)) | ~ intruder_holds(key(X1,X2)) | ~ party_of_protocol(X2) | intruder_message(X1) ), inference(cnf_transformation,[],[f107]) ). cnf(c_72,plain, ( ~ intruder_message(X0) | ~ intruder_message(X1) | ~ intruder_message(X2) | ~ intruder_message(X3) | intruder_message(quadruple(X1,X3,X2,X0)) ), inference(cnf_transformation,[],[f106]) ). cnf(c_71,plain, ( ~ intruder_message(X0) | ~ intruder_message(X1) | ~ intruder_message(X2) | intruder_message(triple(X0,X2,X1)) ), inference(cnf_transformation,[],[f105]) ). cnf(c_70,plain, ( ~ intruder_message(X0) | ~ intruder_message(X1) | intruder_message(pair(X0,X1)) ), inference(cnf_transformation,[],[f104]) ). cnf(c_69,plain, ( ~ intruder_message(quadruple(X0,X1,X2,X3)) | intruder_message(X0) ), inference(cnf_transformation,[],[f100]) ). cnf(c_68,plain, ( ~ intruder_message(quadruple(X0,X1,X2,X3)) | intruder_message(X1) ), inference(cnf_transformation,[],[f101]) ). cnf(c_67,plain, ( ~ intruder_message(quadruple(X0,X1,X2,X3)) | intruder_message(X2) ), inference(cnf_transformation,[],[f102]) ). cnf(c_66,plain, ( ~ intruder_message(quadruple(X0,X1,X2,X3)) | intruder_message(X3) ), inference(cnf_transformation,[],[f103]) ). cnf(c_65,plain, ( ~ intruder_message(triple(X0,X1,X2)) | intruder_message(X0) ), inference(cnf_transformation,[],[f97]) ). cnf(c_64,plain, ( ~ intruder_message(triple(X0,X1,X2)) | intruder_message(X1) ), inference(cnf_transformation,[],[f98]) ). cnf(c_63,plain, ( ~ intruder_message(triple(X0,X1,X2)) | intruder_message(X2) ), inference(cnf_transformation,[],[f99]) ). cnf(c_62,plain, ( ~ intruder_message(pair(X0,X1)) | intruder_message(X0) ), inference(cnf_transformation,[],[f95]) ). cnf(c_61,plain, ( ~ intruder_message(pair(X0,X1)) | intruder_message(X1) ), inference(cnf_transformation,[],[f96]) ). cnf(c_60,plain, ( ~ message(sent(X0,X1,X2)) | intruder_message(X2) ), inference(cnf_transformation,[],[f94]) ). cnf(c_59,plain, ( ~ message(sent(X0,t,triple(X0,X1,encrypt(triple(X2,X3,X4),X5)))) | ~ t_holds(key(X5,X0)) | ~ t_holds(key(X6,X2)) | ~ a_nonce(X3) | message(sent(t,X2,triple(encrypt(quadruple(X0,X3,generate_key(X3),X4),X6),encrypt(triple(X2,generate_key(X3),X4),X5),X1))) ), inference(cnf_transformation,[],[f93]) ). cnf(c_58,plain, ( party_of_protocol(t) ), inference(cnf_transformation,[],[f92]) ). cnf(c_57,plain, ( t_holds(key(bt,b)) ), inference(cnf_transformation,[],[f91]) ). cnf(c_56,plain, ( t_holds(key(at,a)) ), inference(cnf_transformation,[],[f90]) ). cnf(c_55,plain, ( ~ message(sent(X0,b,pair(X0,X1))) | ~ fresh_to_b(X1) | message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X0,X1,generate_expiration_time(X1)),bt)))) ), inference(cnf_transformation,[],[f89]) ). cnf(c_54,plain, ( fresh_to_b(an_a_nonce) ), inference(cnf_transformation,[],[f88]) ). cnf(c_53,plain, ( party_of_protocol(b) ), inference(cnf_transformation,[],[f87]) ). cnf(c_52,plain, ( ~ message(sent(t,a,triple(encrypt(quadruple(X0,X1,X2,X3),at),X4,X5))) | ~ a_stored(pair(X0,X1)) | message(sent(a,X0,pair(X4,encrypt(X5,X2)))) ), inference(cnf_transformation,[],[f86]) ). cnf(c_51,plain, ( a_stored(pair(b,an_a_nonce)) ), inference(cnf_transformation,[],[f85]) ). cnf(c_50,plain, ( message(sent(a,b,pair(a,an_a_nonce))) ), inference(cnf_transformation,[],[f84]) ). cnf(c_49,plain, ( party_of_protocol(a) ), inference(cnf_transformation,[],[f83]) ). % SZS output end Saturation for SWV017+1.tptp
% SZS output start CNFRefutation for BOO001-1.tptp cnf(c_49,negated_conjecture, ( inverse(inverse(a)) != a ), file('/tmp/SystemOnTPTP27206/BOO001-1.tptp', prove_inverse_is_self_cancelling) ). cnf(c_54,plain, ( multiply(X0,X1,inverse(X1)) = X0 ), file('/exp/home/tptp/TPTP/Axioms/BOO001-0.ax', right_inverse) ). cnf(c_51,plain, ( multiply(X0,X1,X1) = X1 ), file('/exp/home/tptp/TPTP/Axioms/BOO001-0.ax', ternary_multiply_1) ). cnf(c_50,plain, ( multiply(multiply(X0,X1,X2),X3,multiply(X0,X1,X4)) = multiply(X0,X1,multiply(X2,X3,X4)) ), file('/exp/home/tptp/TPTP/Axioms/BOO001-0.ax', associativity) ). cnf(c_115,plain, ( multiply(X0,X1,multiply(X1,X2,X3)) = multiply(X1,X2,multiply(X0,X1,X3)) ), inference(superposition,[status(thm)],[c_51,c_50]) ). cnf(c_143,plain, ( multiply(X0,X1,multiply(X2,X0,X1)) = multiply(X2,X0,X1) ), inference(superposition,[status(thm)],[c_51,c_115]) ). cnf(c_184,plain, ( multiply(X0,inverse(X0),X1) = X1 ), inference(superposition,[status(thm)],[c_54,c_143]) ). cnf(c_205,plain, ( inverse(inverse(X0)) = X0 ), inference(superposition,[status(thm)],[c_184,c_54]) ). cnf(c_211,plain, ( $false ), inference(backward_subsumption_resolution,[status(thm)],[c_49,c_205]) ). % SZS output end CNFRefutation for BOO001-1.tptp
% SZS output start Proof thf(ty_eigen__2, type, eigen__2 : ($i>$o)). thf(ty_eigen__1, type, eigen__1 : ($i>$o)). thf(ty_eigen__0, type, eigen__0 : ($i>$o)). thf(ty_eigen__3, type, eigen__3 : $i). thf(sP1,plain,sP1 <=> ((~((eigen__0 @ eigen__3))) => (eigen__1 @ eigen__3)),introduced(definition,[new_symbols(definition,[sP1])])). thf(sP2,plain,sP2 <=> ((eigen__0 @ eigen__3) => (eigen__2 @ eigen__3)),introduced(definition,[new_symbols(definition,[sP2])])). thf(sP3,plain,sP3 <=> (eigen__0 @ eigen__3),introduced(definition,[new_symbols(definition,[sP3])])). thf(sP4,plain,sP4 <=> (eigen__1 @ eigen__3),introduced(definition,[new_symbols(definition,[sP4])])). thf(sP5,plain,sP5 <=> (![X1:$i]:((eigen__1 @ X1) => (eigen__2 @ X1))),introduced(definition,[new_symbols(definition,[sP5])])). thf(sP6,plain,sP6 <=> (eigen__2 @ eigen__3),introduced(definition,[new_symbols(definition,[sP6])])). thf(sP7,plain,sP7 <=> (sP4 => sP6),introduced(definition,[new_symbols(definition,[sP7])])). thf(sP8,plain,sP8 <=> (![X1:$i]:((eigen__0 @ X1) => (eigen__2 @ X1))),introduced(definition,[new_symbols(definition,[sP8])])). thf(def_in,definition,(in = (^[X1:$i]:(^[X2:$i>$o]:(X2 @ X1))))). thf(def_is_a,definition,(is_a = (^[X1:$i]:(^[X2:$i>$o]:(X2 @ X1))))). thf(def_emptyset,definition,(emptyset = (^[X1:$i]:$false))). thf(def_unord_pair,definition,(unord_pair = (^[X1:$i]:(^[X2:$i]:(^[X3:$i]:((X3 = X1) | (X3 = X2))))))). thf(def_singleton,definition,(singleton = (^[X1:$i]:(^[X2:$i]:(X2 = X1))))). thf(def_union,definition,(union = (^[X1:$i>$o]:(^[X2:$i>$o]:(^[X3:$i]:((X1 @ X3) | (X2 @ X3))))))). thf(def_excl_union,definition,(excl_union = (^[X1:$i>$o]:(^[X2:$i>$o]:(^[X3:$i]:(((X1 @ X3) & ((~) @ (X2 @ X3))) | (((~) @ (X1 @ X3)) & (X2 @ X3)))))))). thf(def_intersection,definition,(intersection = (^[X1:$i>$o]:(^[X2:$i>$o]:(^[X3:$i]:((X1 @ X3) & (X2 @ X3))))))). thf(def_setminus,definition,(setminus = (^[X1:$i>$o]:(^[X2:$i>$o]:(^[X3:$i]:((X1 @ X3) & ((~) @ (X2 @ X3)))))))). thf(def_complement,definition,(complement = (^[X1:$i>$o]:(^[X2:$i]:((~) @ (X1 @ X2)))))). thf(def_disjoint,definition,(disjoint = (^[X1:$i>$o]:(^[X2:$i>$o]:(((intersection @ X1) @ X2) = emptyset))))). thf(def_subset,definition,(subset = (^[X1:$i>$o]:(^[X2:$i>$o]:(![X3:$i]:(((^[X4:$o]:(^[X5:$o]:(X4 => X5))) @ (X1 @ X3)) @ (X2 @ X3))))))). thf(def_meets,definition,(meets = (^[X1:$i>$o]:(^[X2:$i>$o]:(?[X3:$i]:((X1 @ X3) & (X2 @ X3))))))). thf(def_misses,definition,(misses = (^[X1:$i>$o]:(^[X2:$i>$o]:((~) @ (?[X3:$i]:((X1 @ X3) & (X2 @ X3)))))))). thf(thm,conjecture,(![X1:$i>$o]:(![X2:$i>$o]:(![X3:$i>$o]:((~(((![X4:$i]:((X1 @ X4) => (X3 @ X4))) => (~((![X4:$i]:((X2 @ X4) => (X3 @ X4)))))))) => (![X4:$i]:(((~((X1 @ X4))) => (X2 @ X4)) => (X3 @ X4)))))))). thf(h0,negated_conjecture,(~((![X1:$i>$o]:(![X2:$i>$o]:(![X3:$i>$o]:((~(((![X4:$i]:((X1 @ X4) => (X3 @ X4))) => (~((![X4:$i]:((X2 @ X4) => (X3 @ X4)))))))) => (![X4:$i]:(((~((X1 @ X4))) => (X2 @ X4)) => (X3 @ X4))))))))),inference(assume_negation,[status(cth)],[thm])). thf(h1,assumption,(~((![X1:$i>$o]:(![X2:$i>$o]:((~(((![X3:$i]:((eigen__0 @ X3) => (X2 @ X3))) => (~((![X3:$i]:((X1 @ X3) => (X2 @ X3)))))))) => (![X3:$i]:(((~((eigen__0 @ X3))) => (X1 @ X3)) => (X2 @ X3)))))))),introduced(assumption,[])). thf(h2,assumption,(~((![X1:$i>$o]:((~(((![X2:$i]:((eigen__0 @ X2) => (X1 @ X2))) => (~((![X2:$i]:((eigen__1 @ X2) => (X1 @ X2)))))))) => (![X2:$i]:(((~((eigen__0 @ X2))) => (eigen__1 @ X2)) => (X1 @ X2))))))),introduced(assumption,[])). thf(h3,assumption,(~(((~((sP8 => (~(sP5))))) => (![X1:$i]:(((~((eigen__0 @ X1))) => (eigen__1 @ X1)) => (eigen__2 @ X1)))))),introduced(assumption,[])). thf(h4,assumption,(~((sP8 => (~(sP5))))),introduced(assumption,[])). thf(h5,assumption,(~((![X1:$i]:(((~((eigen__0 @ X1))) => (eigen__1 @ X1)) => (eigen__2 @ X1))))),introduced(assumption,[])). thf(h6,assumption,sP8,introduced(assumption,[])). thf(h7,assumption,sP5,introduced(assumption,[])). thf(h8,assumption,(~((sP1 => sP6))),introduced(assumption,[])). thf(h9,assumption,sP1,introduced(assumption,[])). thf(h10,assumption,(~(sP6)),introduced(assumption,[])). thf(1,plain,((~(sP7) | ~(sP4)) | sP6),inference(prop_rule,[status(thm)],[])). thf(2,plain,((~(sP2) | ~(sP3)) | sP6),inference(prop_rule,[status(thm)],[])). thf(3,plain,(~(sP5) | sP7),inference(all_rule,[status(thm)],[])). thf(4,plain,(~(sP8) | sP2),inference(all_rule,[status(thm)],[])). thf(5,plain,((~(sP1) | sP3) | sP4),inference(prop_rule,[status(thm)],[])). thf(6,plain,$false,inference(prop_unsat,[status(thm),assumptions([h9,h10,h8,h6,h7,h4,h5,h3,h2,h1,h0])],[1,2,3,4,5,h6,h7,h9,h10])). thf(7,plain,$false,inference(tab_negimp,[status(thm),assumptions([h8,h6,h7,h4,h5,h3,h2,h1,h0]),tab_negimp(discharge,[h9,h10])],[h8,6,h9,h10])). thf(8,plain,$false,inference(tab_negall,[status(thm),assumptions([h6,h7,h4,h5,h3,h2,h1,h0]),tab_negall(discharge,[h8]),tab_negall(eigenvar,eigen__3)],[h5,7,h8])). thf(9,plain,$false,inference(tab_negimp,[status(thm),assumptions([h4,h5,h3,h2,h1,h0]),tab_negimp(discharge,[h6,h7])],[h4,8,h6,h7])). thf(10,plain,$false,inference(tab_negimp,[status(thm),assumptions([h3,h2,h1,h0]),tab_negimp(discharge,[h4,h5])],[h3,9,h4,h5])). thf(11,plain,$false,inference(tab_negall,[status(thm),assumptions([h2,h1,h0]),tab_negall(discharge,[h3]),tab_negall(eigenvar,eigen__2)],[h2,10,h3])). thf(12,plain,$false,inference(tab_negall,[status(thm),assumptions([h1,h0]),tab_negall(discharge,[h2]),tab_negall(eigenvar,eigen__1)],[h1,11,h2])). thf(13,plain,$false,inference(tab_negall,[status(thm),assumptions([h0]),tab_negall(discharge,[h1]),tab_negall(eigenvar,eigen__0)],[h0,12,h1])). thf(0,theorem,(![X1:$i>$o]:(![X2:$i>$o]:(![X3:$i>$o]:((~(((![X4:$i]:((X1 @ X4) => (X3 @ X4))) => (~((![X4:$i]:((X2 @ X4) => (X3 @ X4)))))))) => (![X4:$i]:(((~((X1 @ X4))) => (X2 @ X4)) => (X3 @ X4))))))),inference(contra,[status(thm),contra(discharge,[h0])],[13,h0])). % SZS output end Proof
# SZS status Theorem for /home/hesterj/Projects/Testing/FOL/SEU140+2.p # SZS output start for /home/hesterj/Projects/Testing/FOL/SEU140+2.p # Begin clausification derivation # End clausification derivation # Begin listing active clauses obtained from FOF to CNF conversion cnf(i_0_82, negated_conjecture, (subset(esk11_0,esk12_0))). cnf(i_0_81, negated_conjecture, (disjoint(esk12_0,esk13_0))). cnf(i_0_40, plain, (empty(empty_set))). cnf(i_0_48, plain, (empty(esk6_0))). cnf(i_0_62, lemma, (subset(empty_set,X1))). cnf(i_0_50, plain, (subset(X1,X1))). cnf(i_0_76, plain, (set_difference(empty_set,X1)=empty_set)). cnf(i_0_55, plain, (set_union2(X1,empty_set)=X1)). cnf(i_0_68, plain, (set_difference(X1,empty_set)=X1)). cnf(i_0_43, plain, (set_union2(X1,X1)=X1)). cnf(i_0_85, lemma, (subset(X1,set_union2(X1,X2)))). cnf(i_0_64, lemma, (subset(set_difference(X1,X2),X1))). cnf(i_0_59, plain, (set_difference(X1,X1)=empty_set)). cnf(i_0_67, lemma, (set_union2(X1,set_difference(X2,X1))=set_union2(X1,X2))). cnf(i_0_73, lemma, (set_difference(set_union2(X1,X2),X2)=set_difference(X1,X2))). cnf(i_0_3, plain, (set_union2(X1,X2)=set_union2(X2,X1))). cnf(i_0_4, plain, (set_difference(X1,set_difference(X1,X2))=set_difference(X2,set_difference(X2,X1)))). cnf(i_0_80, negated_conjecture, (~disjoint(esk11_0,esk13_0))). cnf(i_0_49, plain, (~empty(esk7_0))). cnf(i_0_45, plain, (~proper_subset(X1,X1))). cnf(i_0_9, plain, (~in(X1,empty_set))). cnf(i_0_84, plain, (~empty(X1)|~in(X2,X1))). cnf(i_0_83, plain, (X1=empty_set|~empty(X1))). cnf(i_0_72, lemma, (X1=empty_set|~subset(X1,empty_set))). cnf(i_0_79, lemma, (~subset(X1,X2)|~proper_subset(X2,X1))). cnf(i_0_1, plain, (~in(X1,X2)|~in(X2,X1))). cnf(i_0_2, plain, (~proper_subset(X1,X2)|~proper_subset(X2,X1))). cnf(i_0_35, plain, (subset(X1,X2)|~proper_subset(X1,X2))). cnf(i_0_51, plain, (disjoint(X1,X2)|~disjoint(X2,X1))). cnf(i_0_86, plain, (X1=X2|~empty(X2)|~empty(X1))). cnf(i_0_69, lemma, (~disjoint(X1,X2)|~in(X3,X2)|~in(X3,X1))). cnf(i_0_42, plain, (empty(X1)|~empty(set_union2(X2,X1)))). cnf(i_0_41, plain, (empty(X1)|~empty(set_union2(X1,X2)))). cnf(i_0_77, lemma, (~disjoint(X1,X2)|~in(X3,set_difference(X1,set_difference(X1,X2))))). cnf(i_0_47, lemma, (subset(X1,X2)|set_difference(X1,X2)!=empty_set)). cnf(i_0_46, lemma, (set_difference(X1,X2)=empty_set|~subset(X1,X2))). cnf(i_0_8, plain, (X1=empty_set|in(esk1_1(X1),X1))). cnf(i_0_52, lemma, (set_union2(X1,X2)=X2|~subset(X1,X2))). cnf(i_0_18, plain, (in(X1,X2)|~subset(X3,X2)|~in(X1,X3))). cnf(i_0_29, plain, (~in(X1,set_difference(X2,X3))|~in(X1,X3))). cnf(i_0_5, plain, (X1=X2|~subset(X2,X1)|~subset(X1,X2))). cnf(i_0_16, plain, (subset(X1,X2)|~in(esk3_2(X1,X2),X2))). cnf(i_0_31, plain, (disjoint(X1,X2)|set_difference(X1,set_difference(X1,X2))!=empty_set)). cnf(i_0_56, lemma, (subset(X1,X2)|~subset(X3,X2)|~subset(X1,X3))). cnf(i_0_32, plain, (set_difference(X1,set_difference(X1,X2))=empty_set|~disjoint(X1,X2))). cnf(i_0_33, plain, (X1=X2|proper_subset(X1,X2)|~subset(X1,X2))). cnf(i_0_58, lemma, (set_difference(X1,set_difference(X1,X2))=X1|~subset(X1,X2))). cnf(i_0_17, plain, (subset(X1,X2)|in(esk3_2(X1,X2),X1))). cnf(i_0_70, lemma, (disjoint(X1,X2)|in(esk9_2(X1,X2),X2))). cnf(i_0_71, lemma, (disjoint(X1,X2)|in(esk9_2(X1,X2),X1))). cnf(i_0_87, lemma, (subset(set_union2(X1,X2),X3)|~subset(X2,X3)|~subset(X1,X3))). cnf(i_0_13, plain, (in(X1,set_union2(X2,X3))|~in(X1,X3))). cnf(i_0_30, plain, (in(X1,X2)|~in(X1,set_difference(X2,X3)))). cnf(i_0_14, plain, (in(X1,set_union2(X2,X3))|~in(X1,X2))). cnf(i_0_63, lemma, (subset(set_difference(X1,X2),set_difference(X3,X2))|~subset(X1,X3))). cnf(i_0_23, plain, (in(X1,X2)|~in(X1,set_difference(X3,set_difference(X3,X2))))). cnf(i_0_78, lemma, (disjoint(X1,X2)|in(esk10_2(X1,X2),set_difference(X1,set_difference(X1,X2))))). cnf(i_0_61, plain, (X1=X2|~in(esk8_2(X1,X2),X2)|~in(esk8_2(X1,X2),X1))). cnf(i_0_28, plain, (in(X1,set_difference(X2,X3))|in(X1,X3)|~in(X1,X2))). cnf(i_0_54, lemma, (subset(X1,set_difference(X2,set_difference(X2,X3)))|~subset(X1,X3)|~subset(X1,X2))). cnf(i_0_22, plain, (in(X1,set_difference(X2,set_difference(X2,X3)))|~in(X1,X3)|~in(X1,X2))). cnf(i_0_15, plain, (in(X1,X2)|in(X1,X3)|~in(X1,set_union2(X3,X2)))). cnf(i_0_60, plain, (X1=X2|in(esk8_2(X1,X2),X1)|in(esk8_2(X1,X2),X2))). cnf(i_0_11, plain, (X1=set_union2(X2,X3)|~in(esk2_3(X2,X3,X1),X1)|~in(esk2_3(X2,X3,X1),X3))). cnf(i_0_12, plain, (X1=set_union2(X2,X3)|~in(esk2_3(X2,X3,X1),X1)|~in(esk2_3(X2,X3,X1),X2))). cnf(i_0_25, plain, (X1=set_difference(X2,X3)|in(esk5_3(X2,X3,X1),X1)|~in(esk5_3(X2,X3,X1),X3))). cnf(i_0_57, lemma, (subset(set_difference(X1,set_difference(X1,X2)),set_difference(X3,set_difference(X3,X2)))|~subset(X1,X3))). cnf(i_0_26, plain, (X1=set_difference(X2,X3)|in(esk5_3(X2,X3,X1),X2)|in(esk5_3(X2,X3,X1),X1))). cnf(i_0_19, plain, (X1=set_difference(X2,set_difference(X2,X3))|in(esk4_3(X2,X3,X1),X3)|in(esk4_3(X2,X3,X1),X1))). cnf(i_0_20, plain, (X1=set_difference(X2,set_difference(X2,X3))|in(esk4_3(X2,X3,X1),X2)|in(esk4_3(X2,X3,X1),X1))). cnf(i_0_21, plain, (X1=set_difference(X2,set_difference(X2,X3))|~in(esk4_3(X2,X3,X1),X1)|~in(esk4_3(X2,X3,X1),X3)|~in(esk4_3(X2,X3,X1),X2))). cnf(i_0_27, plain, (X1=set_difference(X2,X3)|in(esk5_3(X2,X3,X1),X3)|~in(esk5_3(X2,X3,X1),X1)|~in(esk5_3(X2,X3,X1),X2))). cnf(i_0_10, plain, (X1=set_union2(X2,X3)|in(esk2_3(X2,X3,X1),X2)|in(esk2_3(X2,X3,X1),X3)|in(esk2_3(X2,X3,X1),X1))). # End listing active clauses. There is an equivalent clause to each of these in the clausification! # Begin printing tableau # Found 4 steps cnf(i_0_80, negated_conjecture, (~disjoint(esk11_0,esk13_0)), inference(start_rule)). cnf(i_0_101, plain, (~disjoint(esk11_0,esk13_0)), inference(extension_rule, [i_0_51])). cnf(i_0_119, plain, (~disjoint(esk13_0,esk11_0)), inference(extension_rule, [i_0_31])). cnf(i_0_165, plain, (set_difference(esk13_0,set_difference(esk13_0,esk11_0))!=empty_set), inference(etableau_closure_rule, [i_0_165, ...])). # End printing tableau # SZS output end
% SZS status Theorem for /opt/TPTP/Problems/SEU/SEU140+2.p % SZS output start CNFRefutation for /opt/TPTP/Problems/SEU/SEU140+2.p fof('t3_xboole_0_$sk', plain, ((~disjoint(X2,X1) | (~in(X3,X1) | ~in(X3,X2))) & ((in($sk5(X4,X5),X5) & in($sk5(X4,X5),X4)) | disjoint(X4,X5))), inference(negpush_and_skolemize,[],['t3_xboole_0'])). fof('t3_xboole_0', lemma, (! [A,B] : (~(~disjoint(A,B) & (! [C] : ~(in(C,A) & in(C,B)))) & ~((? [C] : (in(C,A) & in(C,B))) & disjoint(A,B)))), input). fof('symmetry_r1_xboole_0_$sk', plain, (disjoint(X2,X1) | ~disjoint(X1,X2)), inference(negpush_and_skolemize,[],['symmetry_r1_xboole_0'])). fof('symmetry_r1_xboole_0', axiom, (! [A,B] : (disjoint(A,B) => disjoint(B,A))), input). fof('t63_xboole_1_$sk', plain, (~disjoint($sk3,$sk2) & (disjoint($sk1,$sk2) & subset($sk3,$sk1))), inference(negpush_and_skolemize,[],['t63_xboole_1'])). fof('t63_xboole_1', conjecture, (! [A,B,C] : ((subset(A,B) & disjoint(B,C)) => disjoint(A,C))), input). fof('d3_tarski_$sk', plain, ((~subset(X2,X1) | (in(X3,X1) | ~in(X3,X2))) & (subset(X5,X4) | (~in($sk14(X4,X5),X4) & in($sk14(X4,X5),X5)))), inference(negpush_and_skolemize,[],['d3_tarski'])). fof('d3_tarski', axiom, (! [A,B] : (subset(A,B) <=> (! [C] : (in(C,A) => in(C,B))))), input). cnf('1', plain, (~disjoint(X,Y) | ~in(Z,Y) | ~in(Z,X)), inference(cnf_transformation,[],['t3_xboole_0_$sk'])). cnf('2', plain, (~disjoint(X,Y) | disjoint(Y,X)), inference(cnf_transformation,[],['symmetry_r1_xboole_0_$sk'])). cnf('3', plain, (disjoint($sk1,$sk2)), inference(cnf_transformation,[],['t63_xboole_1_$sk'])). cnf('4', plain, (disjoint($sk2,$sk1)), inference(resolution,[],['2','3'])). cnf('5', plain, (~in(X,$sk1) | ~in(X,$sk2)), inference(resolution,[],['1','4'])). cnf('6', plain, (~subset(X,Y) | ~in(Z,X) | in(Z,Y)), inference(cnf_transformation,[],['d3_tarski_$sk'])). cnf('7', plain, (subset($sk3,$sk1)), inference(cnf_transformation,[],['t63_xboole_1_$sk'])). cnf('8', plain, (~in(X,$sk3) | in(X,$sk1)), inference(resolution,[],['6','7'])). cnf('9', plain, (in($sk5(X,Y),Y) | disjoint(X,Y)), inference(cnf_transformation,[],['t3_xboole_0_$sk'])). cnf('10', plain, (in($sk5(X,$sk3),$sk1) | disjoint(X,$sk3)), inference(resolution,[],['8','9'])). cnf('11', plain, (~in($sk5(X,$sk3),$sk2) | disjoint(X,$sk3)), inference(resolution,[],['5','10'])). cnf('12', plain, (in($sk5(X,Y),X) | disjoint(X,Y)), inference(cnf_transformation,[],['t3_xboole_0_$sk'])). cnf('13', plain, (disjoint($sk2,$sk3)), inference(resolution,[],['11','12'])). cnf('14', plain, (~disjoint($sk3,$sk2)), inference(cnf_transformation,[],['t63_xboole_1_$sk'])). cnf('15', plain, ($false), inference(resolution,[then_simplify],['13','2','14'])). % SZS output end CNFRefutation for /opt/TPTP/Problems/SEU/SEU140+2.p
% SZS status Unsatisfiable for /opt/TPTP/Problems/BOO/BOO001-1.p % SZS output start CNFRefutation for /opt/TPTP/Problems/BOO/BOO001-1.p cnf('1', plain, (multiply(X,Y,inverse(Y)) = X), inference(cnf_transformation,[],['$inc_right_inverse'])). cnf('2', plain, (multiply(X,Y,Y) = Y), inference(cnf_transformation,[],['$inc_ternary_multiply_1'])). cnf('3', plain, (multiply(multiply(X,Y,Z),U,multiply(X,Y,V)) = multiply(X,Y,multiply(Z,U,V))), inference(cnf_transformation,[],['$inc_associativity'])). cnf('4', plain, (multiply(X,Y,multiply(Z,X,U)) = multiply(Z,X,multiply(X,Y,U))), inference(paramodulation,[],['2','3'])). cnf('5', plain, (multiply(X,X,Y) = X), inference(cnf_transformation,[],['$inc_ternary_multiply_2'])). cnf('6', plain, (multiply(X,Y,multiply(Z,multiply(X,Y,Z),U)) = multiply(X,Y,Z)), inference(paramodulation,[],['3','5'])). cnf('7', plain, (multiply(X3,Y3,multiply(inverse(Y3),X3,Z3)) = multiply(X3,Y3,inverse(Y3))), inference(paramodulation,[],['1','6'])). cnf('8', plain, (multiply(X,Y,multiply(inverse(Y),X,Z)) = X), inference(simplify,[],['7','1'])). cnf('9', plain, (multiply(inverse(X),Y,multiply(Y,X,Z)) = Y), inference(paramodulation,[],['4','8'])). cnf('10', plain, (multiply(inverse(X),Y,X) = Y), inference(paramodulation,[],['2','9'])). cnf('11', plain, (inverse(inverse(a)) != a), inference(cnf_transformation,[],['prove_inverse_is_self_cancelling'])). cnf('12', plain, ($false), inference(paramodulation,[then_simplify],['1','10','11'])). % SZS output end CNFRefutation for /opt/TPTP/Problems/BOO/BOO001-1.p
% SZS output start Proof for SYN036+1.tptp [0] (β¬⇔) BETA_NOT_EQUIV : ¬((∃ X (∀ Y ((big_p(X) ⇔ big_p(Y)))) ⇔ (∃ U (big_q(U)) ⇔ ∀ W (big_q(W)))) ⇔ (∃ X1 (∀ Y1 ((big_q(X1) ⇔ big_q(Y1)))) ⇔ (∃ U1 (big_p(U1)) ⇔ ∀ W1 (big_p(W1))))) -> [1] ¬(∃ X (∀ Y ((big_p(X) ⇔ big_p(Y)))) ⇔ (∃ U (big_q(U)) ⇔ ∀ W (big_q(W)))), (∃ X1 (∀ Y1 ((big_q(X1) ⇔ big_q(Y1)))) ⇔ (∃ U1 (big_p(U1)) ⇔ ∀ W1 (big_p(W1)))) -> [2] (∃ X (∀ Y ((big_p(X) ⇔ big_p(Y)))) ⇔ (∃ U (big_q(U)) ⇔ ∀ W (big_q(W)))), ¬(∃ X1 (∀ Y1 ((big_q(X1) ⇔ big_q(Y1)))) ⇔ (∃ U1 (big_p(U1)) ⇔ ∀ W1 (big_p(W1)))) [1] (β¬⇔) BETA_NOT_EQUIV : ¬(∃ X (∀ Y ((big_p(X) ⇔ big_p(Y)))) ⇔ (∃ U (big_q(U)) ⇔ ∀ W (big_q(W)))) -> [5] ¬∃ X (∀ Y ((big_p(X) ⇔ big_p(Y)))), (∃ U (big_q(U)) ⇔ ∀ W (big_q(W))) -> [6] ∃ X (∀ Y ((big_p(X) ⇔ big_p(Y)))), ¬(∃ U (big_q(U)) ⇔ ∀ W (big_q(W))) [5] (β⇔) BETA_EQUIV : (∃ X1 (∀ Y1 ((big_q(X1) ⇔ big_q(Y1)))) ⇔ (∃ U1 (big_p(U1)) ⇔ ∀ W1 (big_p(W1)))) -> [11] ¬∃ X1 (∀ Y1 ((big_q(X1) ⇔ big_q(Y1)))), ¬(∃ U1 (big_p(U1)) ⇔ ∀ W1 (big_p(W1))) -> [12] ∃ X1 (∀ Y1 ((big_q(X1) ⇔ big_q(Y1)))), (∃ U1 (big_p(U1)) ⇔ ∀ W1 (big_p(W1))) [12] (δ∃) DELTA_EXISTS : ∃ X1 (∀ Y1 ((big_q(X1) ⇔ big_q(Y1)))) -> [23] ∀ Y1 ((big_q(skolem_X14) ⇔ big_q(Y1))) [23] (β⇔) BETA_EQUIV : (∃ U (big_q(U)) ⇔ ∀ W (big_q(W))) -> [31] ¬∃ U (big_q(U)), ¬∀ W (big_q(W)) -> [32] ∃ U (big_q(U)), ∀ W (big_q(W)) [32] (δ∃) DELTA_EXISTS : ∃ U (big_q(U)) -> [48] big_q(skolem_U2) [48] (β⇔) BETA_EQUIV : (∃ U1 (big_p(U1)) ⇔ ∀ W1 (big_p(W1))) -> [52] ¬∃ U1 (big_p(U1)), ¬∀ W1 (big_p(W1)) -> [53] ∃ U1 (big_p(U1)), ∀ W1 (big_p(W1)) [53] (δ∃) DELTA_EXISTS : ∃ U1 (big_p(U1)) -> [61] big_p(skolem_U16) [61] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ X (∀ Y ((big_p(X) ⇔ big_p(Y)))) -> [184] ¬∀ Y ((big_p(skolem_U16) ⇔ big_p(Y))) [184] (δ¬∀) DELTA_NOT_FORALL : ¬∀ Y ((big_p(skolem_U16) ⇔ big_p(Y))) -> [189] ¬(big_p(skolem_U16) ⇔ big_p(skolem_Y1(skolem_U16))) [189] (β¬⇔) BETA_NOT_EQUIV : ¬(big_p(skolem_U16) ⇔ big_p(skolem_Y1(skolem_U16))) -> [192] ¬big_p(skolem_U16), big_p(skolem_Y1(skolem_U16)) -> [193] big_p(skolem_U16), ¬big_p(skolem_Y1(skolem_U16)) [193] (γ∀) GAMMA_FORALL : ∀ Y1 ((big_q(skolem_X14) ⇔ big_q(Y1))) -> [241] (big_q(skolem_X14) ⇔ big_q(skolem_U2)) [241] (β⇔) BETA_EQUIV : (big_q(skolem_X14) ⇔ big_q(skolem_U2)) -> [244] ¬big_q(skolem_X14), ¬big_q(skolem_U2) -> [245] big_q(skolem_X14), big_q(skolem_U2) [245] (γ∀) GAMMA_FORALL : ∀ W (big_q(W)) -> [267] big_q(W) [267] (γ∀) GAMMA_FORALL : ∀ W1 (big_p(W1)) -> [277] big_p(skolem_Y1(skolem_U16)) [277] (⊙ / {(W1, skolem_Y1(X))}) CLOSURE : big_p(skolem_Y1(skolem_U16)) [52] (δ¬∀) DELTA_NOT_FORALL : ¬∀ W1 (big_p(W1)) -> [76] ¬big_p(skolem_W17) [76] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ X (∀ Y ((big_p(X) ⇔ big_p(Y)))) -> [86] ¬∀ Y ((big_p(skolem_W17) ⇔ big_p(Y))) [86] (δ¬∀) DELTA_NOT_FORALL : ¬∀ Y ((big_p(skolem_W17) ⇔ big_p(Y))) -> [88] ¬(big_p(skolem_W17) ⇔ big_p(skolem_Y1(skolem_W17))) [88] (β¬⇔) BETA_NOT_EQUIV : ¬(big_p(skolem_W17) ⇔ big_p(skolem_Y1(skolem_W17))) -> [90] ¬big_p(skolem_W17), big_p(skolem_Y1(skolem_W17)) -> [91] big_p(skolem_W17), ¬big_p(skolem_Y1(skolem_W17)) [90] (γ∀) GAMMA_FORALL : ∀ Y1 ((big_q(skolem_X14) ⇔ big_q(Y1))) -> [405] (big_q(skolem_X14) ⇔ big_q(skolem_U2)) [405] (β⇔) BETA_EQUIV : (big_q(skolem_X14) ⇔ big_q(skolem_U2)) -> [406] ¬big_q(skolem_X14), ¬big_q(skolem_U2) -> [407] big_q(skolem_X14), big_q(skolem_U2) [407] (γ∀) GAMMA_FORALL : ∀ W (big_q(W)) -> [418] big_q(W) [418] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ U1 (big_p(U1)) -> [428] ¬big_p(skolem_Y1(skolem_W17)) [428] (⊙ / {(U1, skolem_Y1(X))}) CLOSURE : ¬big_p(skolem_Y1(skolem_W17)) [31] (δ¬∀) DELTA_NOT_FORALL : ¬∀ W (big_q(W)) -> [63] ¬big_q(skolem_W3) [63] (β⇔) BETA_EQUIV : (∃ U1 (big_p(U1)) ⇔ ∀ W1 (big_p(W1))) -> [69] ¬∃ U1 (big_p(U1)), ¬∀ W1 (big_p(W1)) -> [70] ∃ U1 (big_p(U1)), ∀ W1 (big_p(W1)) [69] (δ¬∀) DELTA_NOT_FORALL : ¬∀ W1 (big_p(W1)) -> [133] ¬big_p(skolem_W17) [133] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ X (∀ Y ((big_p(X) ⇔ big_p(Y)))) -> [136] ¬∀ Y ((big_p(skolem_W17) ⇔ big_p(Y))) [136] (δ¬∀) DELTA_NOT_FORALL : ¬∀ Y ((big_p(skolem_W17) ⇔ big_p(Y))) -> [137] ¬(big_p(skolem_W17) ⇔ big_p(skolem_Y1(skolem_W17))) [137] (β¬⇔) BETA_NOT_EQUIV : ¬(big_p(skolem_W17) ⇔ big_p(skolem_Y1(skolem_W17))) -> [138] ¬big_p(skolem_W17), big_p(skolem_Y1(skolem_W17)) -> [139] big_p(skolem_W17), ¬big_p(skolem_Y1(skolem_W17)) [138] (γ∀) GAMMA_FORALL : ∀ Y1 ((big_q(skolem_X14) ⇔ big_q(Y1))) -> [324] (big_q(skolem_X14) ⇔ big_q(skolem_W3)) [324] (β⇔) BETA_EQUIV : (big_q(skolem_X14) ⇔ big_q(skolem_W3)) -> [325] ¬big_q(skolem_X14), ¬big_q(skolem_W3) -> [326] big_q(skolem_X14), big_q(skolem_W3) [325] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ U (big_q(U)) -> [332] ¬big_q(U) [332] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ U1 (big_p(U1)) -> [333] ¬big_p(skolem_Y1(skolem_W17)) [333] (⊙ / {(U1, skolem_Y1(X))}) CLOSURE : ¬big_p(skolem_Y1(skolem_W17)) [70] (δ∃) DELTA_EXISTS : ∃ U1 (big_p(U1)) -> [99] big_p(skolem_U16) [99] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ X (∀ Y ((big_p(X) ⇔ big_p(Y)))) -> [101] ¬∀ Y ((big_p(skolem_U16) ⇔ big_p(Y))) [101] (δ¬∀) DELTA_NOT_FORALL : ¬∀ Y ((big_p(skolem_U16) ⇔ big_p(Y))) -> [103] ¬(big_p(skolem_U16) ⇔ big_p(skolem_Y1(skolem_U16))) [103] (β¬⇔) BETA_NOT_EQUIV : ¬(big_p(skolem_U16) ⇔ big_p(skolem_Y1(skolem_U16))) -> [104] ¬big_p(skolem_U16), big_p(skolem_Y1(skolem_U16)) -> [105] big_p(skolem_U16), ¬big_p(skolem_Y1(skolem_U16)) [105] (γ∀) GAMMA_FORALL : ∀ Y1 ((big_q(skolem_X14) ⇔ big_q(Y1))) -> [125] (big_q(skolem_X14) ⇔ big_q(skolem_W3)) [125] (β⇔) BETA_EQUIV : (big_q(skolem_X14) ⇔ big_q(skolem_W3)) -> [127] ¬big_q(skolem_X14), ¬big_q(skolem_W3) -> [128] big_q(skolem_X14), big_q(skolem_W3) [127] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ U (big_q(U)) -> [147] ¬big_q(U) [147] (γ∀) GAMMA_FORALL : ∀ W1 (big_p(W1)) -> [148] big_p(skolem_Y1(skolem_U16)) [148] (⊙ / {(W1, skolem_Y1(X))}) CLOSURE : big_p(skolem_Y1(skolem_U16)) [11] (β⇔) BETA_EQUIV : (∃ U (big_q(U)) ⇔ ∀ W (big_q(W))) -> [25] ¬∃ U (big_q(U)), ¬∀ W (big_q(W)) -> [26] ∃ U (big_q(U)), ∀ W (big_q(W)) [26] (δ∃) DELTA_EXISTS : ∃ U (big_q(U)) -> [35] big_q(skolem_U2) [35] (β¬⇔) BETA_NOT_EQUIV : ¬(∃ U1 (big_p(U1)) ⇔ ∀ W1 (big_p(W1))) -> [39] ¬∃ U1 (big_p(U1)), ∀ W1 (big_p(W1)) -> [40] ∃ U1 (big_p(U1)), ¬∀ W1 (big_p(W1)) [39] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ X (∀ Y ((big_p(X) ⇔ big_p(Y)))) -> [328] ¬∀ Y ((big_p(X) ⇔ big_p(Y))) [328] (δ¬∀) DELTA_NOT_FORALL : ¬∀ Y ((big_p(X) ⇔ big_p(Y))) -> [329] ¬(big_p(X) ⇔ big_p(skolem_Y1(X))) [329] (β¬⇔) BETA_NOT_EQUIV : ¬(big_p(X) ⇔ big_p(skolem_Y1(X))) -> [330] ¬big_p(X), big_p(skolem_Y1(X)) -> [331] big_p(X), ¬big_p(skolem_Y1(X)) [331] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ X1 (∀ Y1 ((big_q(X1) ⇔ big_q(Y1)))) -> [334] ¬∀ Y1 ((big_q(skolem_U2) ⇔ big_q(Y1))) [334] (δ¬∀) DELTA_NOT_FORALL : ¬∀ Y1 ((big_q(skolem_U2) ⇔ big_q(Y1))) -> [336] ¬(big_q(skolem_U2) ⇔ big_q(skolem_Y15(skolem_U2))) [336] (β¬⇔) BETA_NOT_EQUIV : ¬(big_q(skolem_U2) ⇔ big_q(skolem_Y15(skolem_U2))) -> [339] ¬big_q(skolem_U2), big_q(skolem_Y15(skolem_U2)) -> [340] big_q(skolem_U2), ¬big_q(skolem_Y15(skolem_U2)) [340] (γ∀) GAMMA_FORALL : ∀ W (big_q(W)) -> [361] big_q(skolem_Y15(skolem_U2)) [361] (⊙ / {(W, skolem_Y15(X1))}) CLOSURE : big_q(skolem_Y15(skolem_U2)) [330] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ X1 (∀ Y1 ((big_q(X1) ⇔ big_q(Y1)))) -> [349] ¬∀ Y1 ((big_q(skolem_U2) ⇔ big_q(Y1))) [349] (δ¬∀) DELTA_NOT_FORALL : ¬∀ Y1 ((big_q(skolem_U2) ⇔ big_q(Y1))) -> [350] ¬(big_q(skolem_U2) ⇔ big_q(skolem_Y15(skolem_U2))) [350] (β¬⇔) BETA_NOT_EQUIV : ¬(big_q(skolem_U2) ⇔ big_q(skolem_Y15(skolem_U2))) -> [351] ¬big_q(skolem_U2), big_q(skolem_Y15(skolem_U2)) -> [352] big_q(skolem_U2), ¬big_q(skolem_Y15(skolem_U2)) [352] (γ∀) GAMMA_FORALL : ∀ W (big_q(W)) -> [363] big_q(skolem_Y15(skolem_U2)) [363] (⊙ / {(W, skolem_Y15(X1))}) CLOSURE : big_q(skolem_Y15(skolem_U2)) [40] (δ∃) DELTA_EXISTS : ∃ U1 (big_p(U1)) -> [49] big_p(skolem_U16) [49] (δ¬∀) DELTA_NOT_FORALL : ¬∀ W1 (big_p(W1)) -> [195] ¬big_p(skolem_W17) [195] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ X (∀ Y ((big_p(X) ⇔ big_p(Y)))) -> [231] ¬∀ Y ((big_p(skolem_W17) ⇔ big_p(Y))) [231] (δ¬∀) DELTA_NOT_FORALL : ¬∀ Y ((big_p(skolem_W17) ⇔ big_p(Y))) -> [232] ¬(big_p(skolem_W17) ⇔ big_p(skolem_Y1(skolem_W17))) [232] (β¬⇔) BETA_NOT_EQUIV : ¬(big_p(skolem_W17) ⇔ big_p(skolem_Y1(skolem_W17))) -> [233] ¬big_p(skolem_W17), big_p(skolem_Y1(skolem_W17)) -> [234] big_p(skolem_W17), ¬big_p(skolem_Y1(skolem_W17)) [234] (⊙ / {(X, skolem_W17)}) CLOSURE : big_p(skolem_W17) [233] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ X1 (∀ Y1 ((big_q(X1) ⇔ big_q(Y1)))) -> [282] ¬∀ Y1 ((big_q(skolem_U2) ⇔ big_q(Y1))) [282] (δ¬∀) DELTA_NOT_FORALL : ¬∀ Y1 ((big_q(skolem_U2) ⇔ big_q(Y1))) -> [283] ¬(big_q(skolem_U2) ⇔ big_q(skolem_Y15(skolem_U2))) [283] (β¬⇔) BETA_NOT_EQUIV : ¬(big_q(skolem_U2) ⇔ big_q(skolem_Y15(skolem_U2))) -> [286] ¬big_q(skolem_U2), big_q(skolem_Y15(skolem_U2)) -> [287] big_q(skolem_U2), ¬big_q(skolem_Y15(skolem_U2)) [287] (γ∀) GAMMA_FORALL : ∀ W (big_q(W)) -> [432] big_q(skolem_Y15(skolem_U2)) [432] (⊙ / {(W, skolem_Y15(X1))}) CLOSURE : big_q(skolem_Y15(skolem_U2)) [25] (δ¬∀) DELTA_NOT_FORALL : ¬∀ W (big_q(W)) -> [72] ¬big_q(skolem_W3) [72] (β¬⇔) BETA_NOT_EQUIV : ¬(∃ U1 (big_p(U1)) ⇔ ∀ W1 (big_p(W1))) -> [77] ¬∃ U1 (big_p(U1)), ∀ W1 (big_p(W1)) -> [78] ∃ U1 (big_p(U1)), ¬∀ W1 (big_p(W1)) [77] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ X (∀ Y ((big_p(X) ⇔ big_p(Y)))) -> [198] ¬∀ Y ((big_p(X) ⇔ big_p(Y))) [198] (δ¬∀) DELTA_NOT_FORALL : ¬∀ Y ((big_p(X) ⇔ big_p(Y))) -> [199] ¬(big_p(X) ⇔ big_p(skolem_Y1(X))) [199] (β¬⇔) BETA_NOT_EQUIV : ¬(big_p(X) ⇔ big_p(skolem_Y1(X))) -> [200] ¬big_p(X), big_p(skolem_Y1(X)) -> [201] big_p(X), ¬big_p(skolem_Y1(X)) [201] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ X1 (∀ Y1 ((big_q(X1) ⇔ big_q(Y1)))) -> [217] ¬∀ Y1 ((big_q(skolem_W3) ⇔ big_q(Y1))) [217] (δ¬∀) DELTA_NOT_FORALL : ¬∀ Y1 ((big_q(skolem_W3) ⇔ big_q(Y1))) -> [218] ¬(big_q(skolem_W3) ⇔ big_q(skolem_Y15(skolem_W3))) [218] (β¬⇔) BETA_NOT_EQUIV : ¬(big_q(skolem_W3) ⇔ big_q(skolem_Y15(skolem_W3))) -> [221] ¬big_q(skolem_W3), big_q(skolem_Y15(skolem_W3)) -> [222] big_q(skolem_W3), ¬big_q(skolem_Y15(skolem_W3)) [221] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ U (big_q(U)) -> [281] ¬big_q(skolem_Y15(skolem_W3)) [281] (⊙ / {(U, skolem_Y15(X1))}) CLOSURE : ¬big_q(skolem_Y15(skolem_W3)) [200] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ X1 (∀ Y1 ((big_q(X1) ⇔ big_q(Y1)))) -> [235] ¬∀ Y1 ((big_q(skolem_W3) ⇔ big_q(Y1))) [235] (δ¬∀) DELTA_NOT_FORALL : ¬∀ Y1 ((big_q(skolem_W3) ⇔ big_q(Y1))) -> [236] ¬(big_q(skolem_W3) ⇔ big_q(skolem_Y15(skolem_W3))) [236] (β¬⇔) BETA_NOT_EQUIV : ¬(big_q(skolem_W3) ⇔ big_q(skolem_Y15(skolem_W3))) -> [237] ¬big_q(skolem_W3), big_q(skolem_Y15(skolem_W3)) -> [238] big_q(skolem_W3), ¬big_q(skolem_Y15(skolem_W3)) [237] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ U (big_q(U)) -> [284] ¬big_q(skolem_Y15(skolem_W3)) [284] (⊙ / {(U, skolem_Y15(X1))}) CLOSURE : ¬big_q(skolem_Y15(skolem_W3)) [78] (δ∃) DELTA_EXISTS : ∃ U1 (big_p(U1)) -> [98] big_p(skolem_U16) [98] (δ¬∀) DELTA_NOT_FORALL : ¬∀ W1 (big_p(W1)) -> [100] ¬big_p(skolem_W17) [100] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ X (∀ Y ((big_p(X) ⇔ big_p(Y)))) -> [110] ¬∀ Y ((big_p(skolem_W17) ⇔ big_p(Y))) [110] (δ¬∀) DELTA_NOT_FORALL : ¬∀ Y ((big_p(skolem_W17) ⇔ big_p(Y))) -> [113] ¬(big_p(skolem_W17) ⇔ big_p(skolem_Y1(skolem_W17))) [113] (β¬⇔) BETA_NOT_EQUIV : ¬(big_p(skolem_W17) ⇔ big_p(skolem_Y1(skolem_W17))) -> [114] ¬big_p(skolem_W17), big_p(skolem_Y1(skolem_W17)) -> [115] big_p(skolem_W17), ¬big_p(skolem_Y1(skolem_W17)) [115] (⊙ / {(X, skolem_W17)}) CLOSURE : big_p(skolem_W17) [114] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ X1 (∀ Y1 ((big_q(X1) ⇔ big_q(Y1)))) -> [341] ¬∀ Y1 ((big_q(skolem_W3) ⇔ big_q(Y1))) [341] (δ¬∀) DELTA_NOT_FORALL : ¬∀ Y1 ((big_q(skolem_W3) ⇔ big_q(Y1))) -> [342] ¬(big_q(skolem_W3) ⇔ big_q(skolem_Y15(skolem_W3))) [342] (β¬⇔) BETA_NOT_EQUIV : ¬(big_q(skolem_W3) ⇔ big_q(skolem_Y15(skolem_W3))) -> [346] ¬big_q(skolem_W3), big_q(skolem_Y15(skolem_W3)) -> [347] big_q(skolem_W3), ¬big_q(skolem_Y15(skolem_W3)) [346] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ U (big_q(U)) -> [376] ¬big_q(skolem_Y15(skolem_W3)) [376] (⊙ / {(U, skolem_Y15(X1))}) CLOSURE : ¬big_q(skolem_Y15(skolem_W3)) [6] (δ∃) DELTA_EXISTS : ∃ X (∀ Y ((big_p(X) ⇔ big_p(Y)))) -> [10] ∀ Y ((big_p(skolem_X0) ⇔ big_p(Y))) [10] (β⇔) BETA_EQUIV : (∃ X1 (∀ Y1 ((big_q(X1) ⇔ big_q(Y1)))) ⇔ (∃ U1 (big_p(U1)) ⇔ ∀ W1 (big_p(W1)))) -> [15] ¬∃ X1 (∀ Y1 ((big_q(X1) ⇔ big_q(Y1)))), ¬(∃ U1 (big_p(U1)) ⇔ ∀ W1 (big_p(W1))) -> [16] ∃ X1 (∀ Y1 ((big_q(X1) ⇔ big_q(Y1)))), (∃ U1 (big_p(U1)) ⇔ ∀ W1 (big_p(W1))) [16] (δ∃) DELTA_EXISTS : ∃ X1 (∀ Y1 ((big_q(X1) ⇔ big_q(Y1)))) -> [24] ∀ Y1 ((big_q(skolem_X14) ⇔ big_q(Y1))) [24] (β¬⇔) BETA_NOT_EQUIV : ¬(∃ U (big_q(U)) ⇔ ∀ W (big_q(W))) -> [33] ¬∃ U (big_q(U)), ∀ W (big_q(W)) -> [34] ∃ U (big_q(U)), ¬∀ W (big_q(W)) [33] (β⇔) BETA_EQUIV : (∃ U1 (big_p(U1)) ⇔ ∀ W1 (big_p(W1))) -> [268] ¬∃ U1 (big_p(U1)), ¬∀ W1 (big_p(W1)) -> [269] ∃ U1 (big_p(U1)), ∀ W1 (big_p(W1)) [268] (δ¬∀) DELTA_NOT_FORALL : ¬∀ W1 (big_p(W1)) -> [300] ¬big_p(skolem_W17) [300] (γ∀) GAMMA_FORALL : ∀ Y ((big_p(skolem_X0) ⇔ big_p(Y))) -> [302] (big_p(skolem_X0) ⇔ big_p(skolem_W17)) [302] (β⇔) BETA_EQUIV : (big_p(skolem_X0) ⇔ big_p(skolem_W17)) -> [305] ¬big_p(skolem_X0), ¬big_p(skolem_W17) -> [306] big_p(skolem_X0), big_p(skolem_W17) [305] (γ∀) GAMMA_FORALL : ∀ Y1 ((big_q(skolem_X14) ⇔ big_q(Y1))) -> [313] (big_q(skolem_X14) ⇔ big_q(Y1)) [313] (β⇔) BETA_EQUIV : (big_q(skolem_X14) ⇔ big_q(Y1)) -> [314] ¬big_q(skolem_X14), ¬big_q(Y1) -> [315] big_q(skolem_X14), big_q(Y1) [315] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ U (big_q(U)) -> [321] ¬big_q(U) [321] (⊙ / {(Y1, U)}) CLOSURE : ¬big_q(U) [314] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ U (big_q(U)) -> [322] ¬big_q(U) [322] (γ∀) GAMMA_FORALL : ∀ W (big_q(W)) -> [323] big_q(W) [323] (⊙ / {(Y1, W)}) CLOSURE : big_q(W) [269] (δ∃) DELTA_EXISTS : ∃ U1 (big_p(U1)) -> [273] big_p(skolem_U16) [273] (γ∀) GAMMA_FORALL : ∀ Y ((big_p(skolem_X0) ⇔ big_p(Y))) -> [274] (big_p(skolem_X0) ⇔ big_p(skolem_U16)) [274] (β⇔) BETA_EQUIV : (big_p(skolem_X0) ⇔ big_p(skolem_U16)) -> [275] ¬big_p(skolem_X0), ¬big_p(skolem_U16) -> [276] big_p(skolem_X0), big_p(skolem_U16) [276] (γ∀) GAMMA_FORALL : ∀ Y1 ((big_q(skolem_X14) ⇔ big_q(Y1))) -> [278] (big_q(skolem_X14) ⇔ big_q(Y1)) [278] (β⇔) BETA_EQUIV : (big_q(skolem_X14) ⇔ big_q(Y1)) -> [279] ¬big_q(skolem_X14), ¬big_q(Y1) -> [280] big_q(skolem_X14), big_q(Y1) [280] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ U (big_q(U)) -> [427] ¬big_q(U) [427] (⊙ / {(Y1, U)}) CLOSURE : ¬big_q(U) [279] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ U (big_q(U)) -> [429] ¬big_q(U) [429] (γ∀) GAMMA_FORALL : ∀ W (big_q(W)) -> [430] big_q(skolem_X14) [430] (⊙ / {(W, skolem_X14)}) CLOSURE : big_q(skolem_X14) [34] (δ∃) DELTA_EXISTS : ∃ U (big_q(U)) -> [44] big_q(skolem_U2) [44] (δ¬∀) DELTA_NOT_FORALL : ¬∀ W (big_q(W)) -> [51] ¬big_q(skolem_W3) [51] (β⇔) BETA_EQUIV : (∃ U1 (big_p(U1)) ⇔ ∀ W1 (big_p(W1))) -> [57] ¬∃ U1 (big_p(U1)), ¬∀ W1 (big_p(W1)) -> [58] ∃ U1 (big_p(U1)), ∀ W1 (big_p(W1)) [58] (δ∃) DELTA_EXISTS : ∃ U1 (big_p(U1)) -> [62] big_p(skolem_U16) [62] (γ∀) GAMMA_FORALL : ∀ Y ((big_p(skolem_X0) ⇔ big_p(Y))) -> [116] (big_p(skolem_X0) ⇔ big_p(skolem_U16)) [116] (β⇔) BETA_EQUIV : (big_p(skolem_X0) ⇔ big_p(skolem_U16)) -> [117] ¬big_p(skolem_X0), ¬big_p(skolem_U16) -> [118] big_p(skolem_X0), big_p(skolem_U16) [118] (γ∀) GAMMA_FORALL : ∀ Y1 ((big_q(skolem_X14) ⇔ big_q(Y1))) -> [156] (big_q(skolem_X14) ⇔ big_q(skolem_W3)) [156] (β⇔) BETA_EQUIV : (big_q(skolem_X14) ⇔ big_q(skolem_W3)) -> [158] ¬big_q(skolem_X14), ¬big_q(skolem_W3) -> [159] big_q(skolem_X14), big_q(skolem_W3) [159] (⊙ / {(Y1, skolem_W3)}) CLOSURE : big_q(skolem_W3) [158] (γ∀) GAMMA_FORALL : ∀ W1 (big_p(W1)) -> [379] big_p(W1) [379] (Reintroduction) GAMMA_FORALL : ∀ Y ((big_p(skolem_X0) ⇔ big_p(Y))) -> [397] ∀ Y ((big_p(skolem_X0) ⇔ big_p(Y))) [397] (γ∀) GAMMA_FORALL : ∀ Y ((big_p(skolem_X0) ⇔ big_p(Y))) -> [398] (big_p(skolem_X0) ⇔ big_p(Y)) [398] (β⇔) BETA_EQUIV : (big_p(skolem_X0) ⇔ big_p(Y)) -> [399] ¬big_p(skolem_X0), ¬big_p(Y) -> [400] big_p(skolem_X0), big_p(Y) [399] (⊙ / {}) CLOSURE : ¬big_p(skolem_X0) [400] (Reintroduction) : ∀ Y1 ((big_q(skolem_X14) ⇔ big_q(Y1))) -> [412] ∀ Y1 ((big_q(skolem_X14) ⇔ big_q(Y1))) [412] (γ∀) GAMMA_FORALL : ∀ Y1 ((big_q(skolem_X14) ⇔ big_q(Y1))) -> [413] (big_q(skolem_X14) ⇔ big_q(skolem_U2)) [413] (β⇔) BETA_EQUIV : (big_q(skolem_X14) ⇔ big_q(skolem_U2)) -> [414] ¬big_q(skolem_X14), ¬big_q(skolem_U2) -> [415] big_q(skolem_X14), big_q(skolem_U2) [415] (⊙ / {}) CLOSURE : big_q(skolem_X14) [57] (δ¬∀) DELTA_NOT_FORALL : ¬∀ W1 (big_p(W1)) -> [102] ¬big_p(skolem_W17) [102] (γ∀) GAMMA_FORALL : ∀ Y ((big_p(skolem_X0) ⇔ big_p(Y))) -> [402] (big_p(skolem_X0) ⇔ big_p(skolem_W17)) [402] (β⇔) BETA_EQUIV : (big_p(skolem_X0) ⇔ big_p(skolem_W17)) -> [403] ¬big_p(skolem_X0), ¬big_p(skolem_W17) -> [404] big_p(skolem_X0), big_p(skolem_W17) [403] (γ∀) GAMMA_FORALL : ∀ Y1 ((big_q(skolem_X14) ⇔ big_q(Y1))) -> [419] (big_q(skolem_X14) ⇔ big_q(skolem_U2)) [419] (β⇔) BETA_EQUIV : (big_q(skolem_X14) ⇔ big_q(skolem_U2)) -> [420] ¬big_q(skolem_X14), ¬big_q(skolem_U2) -> [421] big_q(skolem_X14), big_q(skolem_U2) [420] (⊙ / {(Y1, skolem_U2)}) CLOSURE : ¬big_q(skolem_U2) [421] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ U1 (big_p(U1)) -> [433] ¬big_p(U1) [433] (Reintroduction) GAMMA_NOT_EXISTS : ∀ Y ((big_p(skolem_X0) ⇔ big_p(Y))) -> [434] ∀ Y ((big_p(skolem_X0) ⇔ big_p(Y))) [434] (γ∀) GAMMA_FORALL : ∀ Y ((big_p(skolem_X0) ⇔ big_p(Y))) -> [435] (big_p(skolem_X0) ⇔ big_p(Y)) [435] (β⇔) BETA_EQUIV : (big_p(skolem_X0) ⇔ big_p(Y)) -> [436] ¬big_p(skolem_X0), ¬big_p(Y) -> [437] big_p(skolem_X0), big_p(Y) [437] (⊙ / {}) CLOSURE : big_p(skolem_X0) [436] (Reintroduction) : ∀ Y1 ((big_q(skolem_X14) ⇔ big_q(Y1))) -> [438] ∀ Y1 ((big_q(skolem_X14) ⇔ big_q(Y1))) [438] (γ∀) GAMMA_FORALL : ∀ Y1 ((big_q(skolem_X14) ⇔ big_q(Y1))) -> [439] (big_q(skolem_X14) ⇔ big_q(skolem_W3)) [439] (β⇔) BETA_EQUIV : (big_q(skolem_X14) ⇔ big_q(skolem_W3)) -> [440] ¬big_q(skolem_X14), ¬big_q(skolem_W3) -> [441] big_q(skolem_X14), big_q(skolem_W3) [440] (⊙ / {}) CLOSURE : ¬big_q(skolem_X14) [15] (β¬⇔) BETA_NOT_EQUIV : ¬(∃ U (big_q(U)) ⇔ ∀ W (big_q(W))) -> [82] ¬∃ U (big_q(U)), ∀ W (big_q(W)) -> [83] ∃ U (big_q(U)), ¬∀ W (big_q(W)) [82] (β¬⇔) BETA_NOT_EQUIV : ¬(∃ U1 (big_p(U1)) ⇔ ∀ W1 (big_p(W1))) -> [111] ¬∃ U1 (big_p(U1)), ∀ W1 (big_p(W1)) -> [112] ∃ U1 (big_p(U1)), ¬∀ W1 (big_p(W1)) [112] (δ∃) DELTA_EXISTS : ∃ U1 (big_p(U1)) -> [120] big_p(skolem_U16) [120] (δ¬∀) DELTA_NOT_FORALL : ¬∀ W1 (big_p(W1)) -> [122] ¬big_p(skolem_W17) [122] (γ∀) GAMMA_FORALL : ∀ Y ((big_p(skolem_X0) ⇔ big_p(Y))) -> [126] (big_p(skolem_X0) ⇔ big_p(skolem_W17)) [126] (β⇔) BETA_EQUIV : (big_p(skolem_X0) ⇔ big_p(skolem_W17)) -> [129] ¬big_p(skolem_X0), ¬big_p(skolem_W17) -> [130] big_p(skolem_X0), big_p(skolem_W17) [130] (⊙ / {(Y, skolem_W17)}) CLOSURE : big_p(skolem_W17) [129] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ X1 (∀ Y1 ((big_q(X1) ⇔ big_q(Y1)))) -> [393] ¬∀ Y1 ((big_q(X1) ⇔ big_q(Y1))) [393] (δ¬∀) DELTA_NOT_FORALL : ¬∀ Y1 ((big_q(X1) ⇔ big_q(Y1))) -> [394] ¬(big_q(X1) ⇔ big_q(skolem_Y15(X1))) [394] (β¬⇔) BETA_NOT_EQUIV : ¬(big_q(X1) ⇔ big_q(skolem_Y15(X1))) -> [395] ¬big_q(X1), big_q(skolem_Y15(X1)) -> [396] big_q(X1), ¬big_q(skolem_Y15(X1)) [395] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ U (big_q(U)) -> [417] ¬big_q(skolem_Y15(X1)) [417] (⊙ / {(U, skolem_Y15(X1))}) CLOSURE : ¬big_q(skolem_Y15(X1)) [396] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ U (big_q(U)) -> [416] ¬big_q(U) [416] (⊙ / {(X1, U)}) CLOSURE : ¬big_q(U) [111] (γ∀) GAMMA_FORALL : ∀ Y ((big_p(skolem_X0) ⇔ big_p(Y))) -> [163] (big_p(skolem_X0) ⇔ big_p(Y)) [163] (β⇔) BETA_EQUIV : (big_p(skolem_X0) ⇔ big_p(Y)) -> [164] ¬big_p(skolem_X0), ¬big_p(Y) -> [165] big_p(skolem_X0), big_p(Y) [164] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ X1 (∀ Y1 ((big_q(X1) ⇔ big_q(Y1)))) -> [368] ¬∀ Y1 ((big_q(X1) ⇔ big_q(Y1))) [368] (δ¬∀) DELTA_NOT_FORALL : ¬∀ Y1 ((big_q(X1) ⇔ big_q(Y1))) -> [369] ¬(big_q(X1) ⇔ big_q(skolem_Y15(X1))) [369] (β¬⇔) BETA_NOT_EQUIV : ¬(big_q(X1) ⇔ big_q(skolem_Y15(X1))) -> [370] ¬big_q(X1), big_q(skolem_Y15(X1)) -> [371] big_q(X1), ¬big_q(skolem_Y15(X1)) [371] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ U (big_q(U)) -> [375] ¬big_q(U) [375] (⊙ / {(X1, U)}) CLOSURE : ¬big_q(U) [370] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ U (big_q(U)) -> [377] ¬big_q(skolem_Y15(X1)) [377] (⊙ / {(U, skolem_Y15(X1))}) CLOSURE : ¬big_q(skolem_Y15(X1)) [165] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ X1 (∀ Y1 ((big_q(X1) ⇔ big_q(Y1)))) -> [170] ¬∀ Y1 ((big_q(X1) ⇔ big_q(Y1))) [170] (δ¬∀) DELTA_NOT_FORALL : ¬∀ Y1 ((big_q(X1) ⇔ big_q(Y1))) -> [171] ¬(big_q(X1) ⇔ big_q(skolem_Y15(X1))) [171] (β¬⇔) BETA_NOT_EQUIV : ¬(big_q(X1) ⇔ big_q(skolem_Y15(X1))) -> [172] ¬big_q(X1), big_q(skolem_Y15(X1)) -> [173] big_q(X1), ¬big_q(skolem_Y15(X1)) [173] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ U (big_q(U)) -> [408] ¬big_q(U) [408] (⊙ / {(X1, U)}) CLOSURE : ¬big_q(U) [172] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ U (big_q(U)) -> [450] ¬big_q(skolem_Y15(X1)) [450] (⊙ / {(U, skolem_Y15(X1))}) CLOSURE : ¬big_q(skolem_Y15(X1)) [83] (δ∃) DELTA_EXISTS : ∃ U (big_q(U)) -> [94] big_q(skolem_U2) [94] (δ¬∀) DELTA_NOT_FORALL : ¬∀ W (big_q(W)) -> [95] ¬big_q(skolem_W3) [95] (β¬⇔) BETA_NOT_EQUIV : ¬(∃ U1 (big_p(U1)) ⇔ ∀ W1 (big_p(W1))) -> [96] ¬∃ U1 (big_p(U1)), ∀ W1 (big_p(W1)) -> [97] ∃ U1 (big_p(U1)), ¬∀ W1 (big_p(W1)) [96] (γ∀) GAMMA_FORALL : ∀ Y ((big_p(skolem_X0) ⇔ big_p(Y))) -> [153] (big_p(skolem_X0) ⇔ big_p(Y)) [153] (β⇔) BETA_EQUIV : (big_p(skolem_X0) ⇔ big_p(Y)) -> [154] ¬big_p(skolem_X0), ¬big_p(Y) -> [155] big_p(skolem_X0), big_p(Y) [155] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ X1 (∀ Y1 ((big_q(X1) ⇔ big_q(Y1)))) -> [389] ¬∀ Y1 ((big_q(skolem_W3) ⇔ big_q(Y1))) [389] (δ¬∀) DELTA_NOT_FORALL : ¬∀ Y1 ((big_q(skolem_W3) ⇔ big_q(Y1))) -> [390] ¬(big_q(skolem_W3) ⇔ big_q(skolem_Y15(skolem_W3))) [390] (β¬⇔) BETA_NOT_EQUIV : ¬(big_q(skolem_W3) ⇔ big_q(skolem_Y15(skolem_W3))) -> [391] ¬big_q(skolem_W3), big_q(skolem_Y15(skolem_W3)) -> [392] big_q(skolem_W3), ¬big_q(skolem_Y15(skolem_W3)) [392] (⊙ / {(X1, skolem_W3)}) CLOSURE : big_q(skolem_W3) [391] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ U1 (big_p(U1)) -> [426] ¬big_p(U1) [426] (⊙ / {(Y, U1)}) CLOSURE : ¬big_p(U1) [154] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ X1 (∀ Y1 ((big_q(X1) ⇔ big_q(Y1)))) -> [177] ¬∀ Y1 ((big_q(skolem_W3) ⇔ big_q(Y1))) [177] (δ¬∀) DELTA_NOT_FORALL : ¬∀ Y1 ((big_q(skolem_W3) ⇔ big_q(Y1))) -> [180] ¬(big_q(skolem_W3) ⇔ big_q(skolem_Y15(skolem_W3))) [180] (β¬⇔) BETA_NOT_EQUIV : ¬(big_q(skolem_W3) ⇔ big_q(skolem_Y15(skolem_W3))) -> [181] ¬big_q(skolem_W3), big_q(skolem_Y15(skolem_W3)) -> [182] big_q(skolem_W3), ¬big_q(skolem_Y15(skolem_W3)) [182] (⊙ / {(X1, skolem_W3)}) CLOSURE : big_q(skolem_W3) [181] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ U1 (big_p(U1)) -> [455] ¬big_p(U1) [455] (γ∀) GAMMA_FORALL : ∀ W1 (big_p(W1)) -> [456] big_p(W1) [456] (⊙ / {(Y, W1)}) CLOSURE : big_p(W1) [97] (δ∃) DELTA_EXISTS : ∃ U1 (big_p(U1)) -> [320] big_p(skolem_U16) [320] (δ¬∀) DELTA_NOT_FORALL : ¬∀ W1 (big_p(W1)) -> [327] ¬big_p(skolem_W17) [327] (γ∀) GAMMA_FORALL : ∀ Y ((big_p(skolem_X0) ⇔ big_p(Y))) -> [335] (big_p(skolem_X0) ⇔ big_p(skolem_W17)) [335] (β⇔) BETA_EQUIV : (big_p(skolem_X0) ⇔ big_p(skolem_W17)) -> [337] ¬big_p(skolem_X0), ¬big_p(skolem_W17) -> [338] big_p(skolem_X0), big_p(skolem_W17) [338] (⊙ / {(Y, skolem_W17)}) CLOSURE : big_p(skolem_W17) [337] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ X1 (∀ Y1 ((big_q(X1) ⇔ big_q(Y1)))) -> [380] ¬∀ Y1 ((big_q(skolem_U2) ⇔ big_q(Y1))) [380] (δ¬∀) DELTA_NOT_FORALL : ¬∀ Y1 ((big_q(skolem_U2) ⇔ big_q(Y1))) -> [381] ¬(big_q(skolem_U2) ⇔ big_q(skolem_Y15(skolem_U2))) [381] (β¬⇔) BETA_NOT_EQUIV : ¬(big_q(skolem_U2) ⇔ big_q(skolem_Y15(skolem_U2))) -> [386] ¬big_q(skolem_U2), big_q(skolem_Y15(skolem_U2)) -> [387] big_q(skolem_U2), ¬big_q(skolem_Y15(skolem_U2)) [386] (⊙ / {(X1, skolem_U2)}) CLOSURE : ¬big_q(skolem_U2) [387] (Reintroduction) : ∀ Y ((big_p(skolem_X0) ⇔ big_p(Y))) -> [457] ∀ Y ((big_p(skolem_X0) ⇔ big_p(Y))) [457] (γ∀) GAMMA_FORALL : ∀ Y ((big_p(skolem_X0) ⇔ big_p(Y))) -> [458] (big_p(skolem_X0) ⇔ big_p(skolem_U16)) [458] (β⇔) BETA_EQUIV : (big_p(skolem_X0) ⇔ big_p(skolem_U16)) -> [459] ¬big_p(skolem_X0), ¬big_p(skolem_U16) -> [460] big_p(skolem_X0), big_p(skolem_U16) [460] (⊙ / {}) CLOSURE : big_p(skolem_X0) [2] (β⇔) BETA_EQUIV : (∃ X (∀ Y ((big_p(X) ⇔ big_p(Y)))) ⇔ (∃ U (big_q(U)) ⇔ ∀ W (big_q(W)))) -> [3] ¬∃ X (∀ Y ((big_p(X) ⇔ big_p(Y)))), ¬(∃ U (big_q(U)) ⇔ ∀ W (big_q(W))) -> [4] ∃ X (∀ Y ((big_p(X) ⇔ big_p(Y)))), (∃ U (big_q(U)) ⇔ ∀ W (big_q(W))) [4] (δ∃) DELTA_EXISTS : ∃ X (∀ Y ((big_p(X) ⇔ big_p(Y)))) -> [9] ∀ Y ((big_p(skolem_X0) ⇔ big_p(Y))) [9] (β¬⇔) BETA_NOT_EQUIV : ¬(∃ X1 (∀ Y1 ((big_q(X1) ⇔ big_q(Y1)))) ⇔ (∃ U1 (big_p(U1)) ⇔ ∀ W1 (big_p(W1)))) -> [13] ¬∃ X1 (∀ Y1 ((big_q(X1) ⇔ big_q(Y1)))), (∃ U1 (big_p(U1)) ⇔ ∀ W1 (big_p(W1))) -> [14] ∃ X1 (∀ Y1 ((big_q(X1) ⇔ big_q(Y1)))), ¬(∃ U1 (big_p(U1)) ⇔ ∀ W1 (big_p(W1))) [14] (δ∃) DELTA_EXISTS : ∃ X1 (∀ Y1 ((big_q(X1) ⇔ big_q(Y1)))) -> [22] ∀ Y1 ((big_q(skolem_X14) ⇔ big_q(Y1))) [22] (β⇔) BETA_EQUIV : (∃ U (big_q(U)) ⇔ ∀ W (big_q(W))) -> [29] ¬∃ U (big_q(U)), ¬∀ W (big_q(W)) -> [30] ∃ U (big_q(U)), ∀ W (big_q(W)) [29] (δ¬∀) DELTA_NOT_FORALL : ¬∀ W (big_q(W)) -> [183] ¬big_q(skolem_W3) [183] (β¬⇔) BETA_NOT_EQUIV : ¬(∃ U1 (big_p(U1)) ⇔ ∀ W1 (big_p(W1))) -> [186] ¬∃ U1 (big_p(U1)), ∀ W1 (big_p(W1)) -> [187] ∃ U1 (big_p(U1)), ¬∀ W1 (big_p(W1)) [186] (γ∀) GAMMA_FORALL : ∀ Y ((big_p(skolem_X0) ⇔ big_p(Y))) -> [225] (big_p(skolem_X0) ⇔ big_p(Y)) [225] (β⇔) BETA_EQUIV : (big_p(skolem_X0) ⇔ big_p(Y)) -> [226] ¬big_p(skolem_X0), ¬big_p(Y) -> [227] big_p(skolem_X0), big_p(Y) [227] (γ∀) GAMMA_FORALL : ∀ Y1 ((big_q(skolem_X14) ⇔ big_q(Y1))) -> [228] (big_q(skolem_X14) ⇔ big_q(skolem_W3)) [228] (β⇔) BETA_EQUIV : (big_q(skolem_X14) ⇔ big_q(skolem_W3)) -> [229] ¬big_q(skolem_X14), ¬big_q(skolem_W3) -> [230] big_q(skolem_X14), big_q(skolem_W3) [229] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ U (big_q(U)) -> [261] ¬big_q(U) [261] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ U1 (big_p(U1)) -> [265] ¬big_p(U1) [265] (⊙ / {(Y, U1)}) CLOSURE : ¬big_p(U1) [226] (γ∀) GAMMA_FORALL : ∀ Y1 ((big_q(skolem_X14) ⇔ big_q(Y1))) -> [246] (big_q(skolem_X14) ⇔ big_q(skolem_W3)) [246] (β⇔) BETA_EQUIV : (big_q(skolem_X14) ⇔ big_q(skolem_W3)) -> [248] ¬big_q(skolem_X14), ¬big_q(skolem_W3) -> [249] big_q(skolem_X14), big_q(skolem_W3) [248] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ U (big_q(U)) -> [270] ¬big_q(U) [270] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ U1 (big_p(U1)) -> [271] ¬big_p(U1) [271] (γ∀) GAMMA_FORALL : ∀ W1 (big_p(W1)) -> [272] big_p(W1) [272] (⊙ / {(Y, W1)}) CLOSURE : big_p(W1) [187] (δ∃) DELTA_EXISTS : ∃ U1 (big_p(U1)) -> [203] big_p(skolem_U16) [203] (δ¬∀) DELTA_NOT_FORALL : ¬∀ W1 (big_p(W1)) -> [206] ¬big_p(skolem_W17) [206] (γ∀) GAMMA_FORALL : ∀ Y ((big_p(skolem_X0) ⇔ big_p(Y))) -> [212] (big_p(skolem_X0) ⇔ big_p(skolem_U16)) [212] (β⇔) BETA_EQUIV : (big_p(skolem_X0) ⇔ big_p(skolem_U16)) -> [213] ¬big_p(skolem_X0), ¬big_p(skolem_U16) -> [214] big_p(skolem_X0), big_p(skolem_U16) [213] (⊙ / {(Y, skolem_U16)}) CLOSURE : ¬big_p(skolem_U16) [214] (γ∀) GAMMA_FORALL : ∀ Y1 ((big_q(skolem_X14) ⇔ big_q(Y1))) -> [301] (big_q(skolem_X14) ⇔ big_q(skolem_W3)) [301] (β⇔) BETA_EQUIV : (big_q(skolem_X14) ⇔ big_q(skolem_W3)) -> [303] ¬big_q(skolem_X14), ¬big_q(skolem_W3) -> [304] big_q(skolem_X14), big_q(skolem_W3) [303] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ U (big_q(U)) -> [308] ¬big_q(U) [308] (Reintroduction) GAMMA_NOT_EXISTS : ∀ Y ((big_p(skolem_X0) ⇔ big_p(Y))) -> [309] ∀ Y ((big_p(skolem_X0) ⇔ big_p(Y))) [309] (γ∀) GAMMA_FORALL : ∀ Y ((big_p(skolem_X0) ⇔ big_p(Y))) -> [310] (big_p(skolem_X0) ⇔ big_p(skolem_W17)) [310] (β⇔) BETA_EQUIV : (big_p(skolem_X0) ⇔ big_p(skolem_W17)) -> [311] ¬big_p(skolem_X0), ¬big_p(skolem_W17) -> [312] big_p(skolem_X0), big_p(skolem_W17) [311] (⊙ / {}) CLOSURE : ¬big_p(skolem_X0) [30] (δ∃) DELTA_EXISTS : ∃ U (big_q(U)) -> [41] big_q(skolem_U2) [41] (β¬⇔) BETA_NOT_EQUIV : ¬(∃ U1 (big_p(U1)) ⇔ ∀ W1 (big_p(W1))) -> [46] ¬∃ U1 (big_p(U1)), ∀ W1 (big_p(W1)) -> [47] ∃ U1 (big_p(U1)), ¬∀ W1 (big_p(W1)) [47] (δ∃) DELTA_EXISTS : ∃ U1 (big_p(U1)) -> [59] big_p(skolem_U16) [59] (δ¬∀) DELTA_NOT_FORALL : ¬∀ W1 (big_p(W1)) -> [266] ¬big_p(skolem_W17) [266] (γ∀) GAMMA_FORALL : ∀ Y ((big_p(skolem_X0) ⇔ big_p(Y))) -> [316] (big_p(skolem_X0) ⇔ big_p(skolem_W17)) [316] (β⇔) BETA_EQUIV : (big_p(skolem_X0) ⇔ big_p(skolem_W17)) -> [317] ¬big_p(skolem_X0), ¬big_p(skolem_W17) -> [318] big_p(skolem_X0), big_p(skolem_W17) [318] (⊙ / {(Y, skolem_W17)}) CLOSURE : big_p(skolem_W17) [317] (γ∀) GAMMA_FORALL : ∀ Y1 ((big_q(skolem_X14) ⇔ big_q(Y1))) -> [343] (big_q(skolem_X14) ⇔ big_q(skolem_U2)) [343] (β⇔) BETA_EQUIV : (big_q(skolem_X14) ⇔ big_q(skolem_U2)) -> [344] ¬big_q(skolem_X14), ¬big_q(skolem_U2) -> [345] big_q(skolem_X14), big_q(skolem_U2) [345] (γ∀) GAMMA_FORALL : ∀ W (big_q(W)) -> [356] big_q(W) [356] (Reintroduction) GAMMA_FORALL : ∀ Y ((big_p(skolem_X0) ⇔ big_p(Y))) -> [364] ∀ Y ((big_p(skolem_X0) ⇔ big_p(Y))) [364] (γ∀) GAMMA_FORALL : ∀ Y ((big_p(skolem_X0) ⇔ big_p(Y))) -> [365] (big_p(skolem_X0) ⇔ big_p(skolem_U16)) [365] (β⇔) BETA_EQUIV : (big_p(skolem_X0) ⇔ big_p(skolem_U16)) -> [366] ¬big_p(skolem_X0), ¬big_p(skolem_U16) -> [367] big_p(skolem_X0), big_p(skolem_U16) [367] (⊙ / {}) CLOSURE : big_p(skolem_X0) [46] (γ∀) GAMMA_FORALL : ∀ Y ((big_p(skolem_X0) ⇔ big_p(Y))) -> [167] (big_p(skolem_X0) ⇔ big_p(Y)) [167] (β⇔) BETA_EQUIV : (big_p(skolem_X0) ⇔ big_p(Y)) -> [168] ¬big_p(skolem_X0), ¬big_p(Y) -> [169] big_p(skolem_X0), big_p(Y) [168] (γ∀) GAMMA_FORALL : ∀ Y1 ((big_q(skolem_X14) ⇔ big_q(Y1))) -> [353] (big_q(skolem_X14) ⇔ big_q(skolem_U2)) [353] (β⇔) BETA_EQUIV : (big_q(skolem_X14) ⇔ big_q(skolem_U2)) -> [354] ¬big_q(skolem_X14), ¬big_q(skolem_U2) -> [355] big_q(skolem_X14), big_q(skolem_U2) [355] (γ∀) GAMMA_FORALL : ∀ W (big_q(W)) -> [357] big_q(W) [357] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ U1 (big_p(U1)) -> [358] ¬big_p(U1) [358] (γ∀) GAMMA_FORALL : ∀ W1 (big_p(W1)) -> [359] big_p(W1) [359] (⊙ / {(Y, W1)}) CLOSURE : big_p(W1) [169] (γ∀) GAMMA_FORALL : ∀ Y1 ((big_q(skolem_X14) ⇔ big_q(Y1))) -> [372] (big_q(skolem_X14) ⇔ big_q(skolem_U2)) [372] (β⇔) BETA_EQUIV : (big_q(skolem_X14) ⇔ big_q(skolem_U2)) -> [373] ¬big_q(skolem_X14), ¬big_q(skolem_U2) -> [374] big_q(skolem_X14), big_q(skolem_U2) [374] (γ∀) GAMMA_FORALL : ∀ W (big_q(W)) -> [378] big_q(W) [378] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ U1 (big_p(U1)) -> [443] ¬big_p(U1) [443] (⊙ / {(Y, U1)}) CLOSURE : ¬big_p(U1) [13] (β⇔) BETA_EQUIV : (∃ U (big_q(U)) ⇔ ∀ W (big_q(W))) -> [64] ¬∃ U (big_q(U)), ¬∀ W (big_q(W)) -> [65] ∃ U (big_q(U)), ∀ W (big_q(W)) [64] (δ¬∀) DELTA_NOT_FORALL : ¬∀ W (big_q(W)) -> [107] ¬big_q(skolem_W3) [107] (β⇔) BETA_EQUIV : (∃ U1 (big_p(U1)) ⇔ ∀ W1 (big_p(W1))) -> [108] ¬∃ U1 (big_p(U1)), ¬∀ W1 (big_p(W1)) -> [109] ∃ U1 (big_p(U1)), ∀ W1 (big_p(W1)) [109] (δ∃) DELTA_EXISTS : ∃ U1 (big_p(U1)) -> [119] big_p(skolem_U16) [119] (γ∀) GAMMA_FORALL : ∀ Y ((big_p(skolem_X0) ⇔ big_p(Y))) -> [121] (big_p(skolem_X0) ⇔ big_p(skolem_U16)) [121] (β⇔) BETA_EQUIV : (big_p(skolem_X0) ⇔ big_p(skolem_U16)) -> [123] ¬big_p(skolem_X0), ¬big_p(skolem_U16) -> [124] big_p(skolem_X0), big_p(skolem_U16) [124] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ X1 (∀ Y1 ((big_q(X1) ⇔ big_q(Y1)))) -> [140] ¬∀ Y1 ((big_q(skolem_W3) ⇔ big_q(Y1))) [140] (δ¬∀) DELTA_NOT_FORALL : ¬∀ Y1 ((big_q(skolem_W3) ⇔ big_q(Y1))) -> [141] ¬(big_q(skolem_W3) ⇔ big_q(skolem_Y15(skolem_W3))) [141] (β¬⇔) BETA_NOT_EQUIV : ¬(big_q(skolem_W3) ⇔ big_q(skolem_Y15(skolem_W3))) -> [142] ¬big_q(skolem_W3), big_q(skolem_Y15(skolem_W3)) -> [143] big_q(skolem_W3), ¬big_q(skolem_Y15(skolem_W3)) [142] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ U (big_q(U)) -> [174] ¬big_q(skolem_Y15(skolem_W3)) [174] (⊙ / {(U, skolem_Y15(X1))}) CLOSURE : ¬big_q(skolem_Y15(skolem_W3)) [108] (δ¬∀) DELTA_NOT_FORALL : ¬∀ W1 (big_p(W1)) -> [131] ¬big_p(skolem_W17) [131] (γ∀) GAMMA_FORALL : ∀ Y ((big_p(skolem_X0) ⇔ big_p(Y))) -> [132] (big_p(skolem_X0) ⇔ big_p(skolem_W17)) [132] (β⇔) BETA_EQUIV : (big_p(skolem_X0) ⇔ big_p(skolem_W17)) -> [134] ¬big_p(skolem_X0), ¬big_p(skolem_W17) -> [135] big_p(skolem_X0), big_p(skolem_W17) [134] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ X1 (∀ Y1 ((big_q(X1) ⇔ big_q(Y1)))) -> [149] ¬∀ Y1 ((big_q(skolem_W3) ⇔ big_q(Y1))) [149] (δ¬∀) DELTA_NOT_FORALL : ¬∀ Y1 ((big_q(skolem_W3) ⇔ big_q(Y1))) -> [150] ¬(big_q(skolem_W3) ⇔ big_q(skolem_Y15(skolem_W3))) [150] (β¬⇔) BETA_NOT_EQUIV : ¬(big_q(skolem_W3) ⇔ big_q(skolem_Y15(skolem_W3))) -> [151] ¬big_q(skolem_W3), big_q(skolem_Y15(skolem_W3)) -> [152] big_q(skolem_W3), ¬big_q(skolem_Y15(skolem_W3)) [151] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ U (big_q(U)) -> [166] ¬big_q(skolem_Y15(skolem_W3)) [166] (⊙ / {(U, skolem_Y15(X1))}) CLOSURE : ¬big_q(skolem_Y15(skolem_W3)) [65] (δ∃) DELTA_EXISTS : ∃ U (big_q(U)) -> [74] big_q(skolem_U2) [74] (β⇔) BETA_EQUIV : (∃ U1 (big_p(U1)) ⇔ ∀ W1 (big_p(W1))) -> [84] ¬∃ U1 (big_p(U1)), ¬∀ W1 (big_p(W1)) -> [85] ∃ U1 (big_p(U1)), ∀ W1 (big_p(W1)) [85] (δ∃) DELTA_EXISTS : ∃ U1 (big_p(U1)) -> [106] big_p(skolem_U16) [106] (γ∀) GAMMA_FORALL : ∀ Y ((big_p(skolem_X0) ⇔ big_p(Y))) -> [144] (big_p(skolem_X0) ⇔ big_p(skolem_U16)) [144] (β⇔) BETA_EQUIV : (big_p(skolem_X0) ⇔ big_p(skolem_U16)) -> [145] ¬big_p(skolem_X0), ¬big_p(skolem_U16) -> [146] big_p(skolem_X0), big_p(skolem_U16) [146] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ X1 (∀ Y1 ((big_q(X1) ⇔ big_q(Y1)))) -> [157] ¬∀ Y1 ((big_q(skolem_U2) ⇔ big_q(Y1))) [157] (δ¬∀) DELTA_NOT_FORALL : ¬∀ Y1 ((big_q(skolem_U2) ⇔ big_q(Y1))) -> [160] ¬(big_q(skolem_U2) ⇔ big_q(skolem_Y15(skolem_U2))) [160] (β¬⇔) BETA_NOT_EQUIV : ¬(big_q(skolem_U2) ⇔ big_q(skolem_Y15(skolem_U2))) -> [161] ¬big_q(skolem_U2), big_q(skolem_Y15(skolem_U2)) -> [162] big_q(skolem_U2), ¬big_q(skolem_Y15(skolem_U2)) [162] (γ∀) GAMMA_FORALL : ∀ W (big_q(W)) -> [388] big_q(skolem_Y15(skolem_U2)) [388] (⊙ / {(W, skolem_Y15(X1))}) CLOSURE : big_q(skolem_Y15(skolem_U2)) [84] (δ¬∀) DELTA_NOT_FORALL : ¬∀ W1 (big_p(W1)) -> [175] ¬big_p(skolem_W17) [175] (γ∀) GAMMA_FORALL : ∀ Y ((big_p(skolem_X0) ⇔ big_p(Y))) -> [176] (big_p(skolem_X0) ⇔ big_p(skolem_W17)) [176] (β⇔) BETA_EQUIV : (big_p(skolem_X0) ⇔ big_p(skolem_W17)) -> [178] ¬big_p(skolem_X0), ¬big_p(skolem_W17) -> [179] big_p(skolem_X0), big_p(skolem_W17) [178] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ X1 (∀ Y1 ((big_q(X1) ⇔ big_q(Y1)))) -> [382] ¬∀ Y1 ((big_q(skolem_U2) ⇔ big_q(Y1))) [382] (δ¬∀) DELTA_NOT_FORALL : ¬∀ Y1 ((big_q(skolem_U2) ⇔ big_q(Y1))) -> [383] ¬(big_q(skolem_U2) ⇔ big_q(skolem_Y15(skolem_U2))) [383] (β¬⇔) BETA_NOT_EQUIV : ¬(big_q(skolem_U2) ⇔ big_q(skolem_Y15(skolem_U2))) -> [384] ¬big_q(skolem_U2), big_q(skolem_Y15(skolem_U2)) -> [385] big_q(skolem_U2), ¬big_q(skolem_Y15(skolem_U2)) [385] (γ∀) GAMMA_FORALL : ∀ W (big_q(W)) -> [453] big_q(skolem_Y15(skolem_U2)) [453] (⊙ / {(W, skolem_Y15(X1))}) CLOSURE : big_q(skolem_Y15(skolem_U2)) [3] (β¬⇔) BETA_NOT_EQUIV : ¬(∃ X1 (∀ Y1 ((big_q(X1) ⇔ big_q(Y1)))) ⇔ (∃ U1 (big_p(U1)) ⇔ ∀ W1 (big_p(W1)))) -> [7] ¬∃ X1 (∀ Y1 ((big_q(X1) ⇔ big_q(Y1)))), (∃ U1 (big_p(U1)) ⇔ ∀ W1 (big_p(W1))) -> [8] ∃ X1 (∀ Y1 ((big_q(X1) ⇔ big_q(Y1)))), ¬(∃ U1 (big_p(U1)) ⇔ ∀ W1 (big_p(W1))) [7] (β¬⇔) BETA_NOT_EQUIV : ¬(∃ U (big_q(U)) ⇔ ∀ W (big_q(W))) -> [20] ¬∃ U (big_q(U)), ∀ W (big_q(W)) -> [21] ∃ U (big_q(U)), ¬∀ W (big_q(W)) [21] (δ∃) DELTA_EXISTS : ∃ U (big_q(U)) -> [28] big_q(skolem_U2) [28] (δ¬∀) DELTA_NOT_FORALL : ¬∀ W (big_q(W)) -> [194] ¬big_q(skolem_W3) [194] (β⇔) BETA_EQUIV : (∃ U1 (big_p(U1)) ⇔ ∀ W1 (big_p(W1))) -> [196] ¬∃ U1 (big_p(U1)), ¬∀ W1 (big_p(W1)) -> [197] ∃ U1 (big_p(U1)), ∀ W1 (big_p(W1)) [196] (δ¬∀) DELTA_NOT_FORALL : ¬∀ W1 (big_p(W1)) -> [216] ¬big_p(skolem_W17) [216] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ X (∀ Y ((big_p(X) ⇔ big_p(Y)))) -> [219] ¬∀ Y ((big_p(skolem_W17) ⇔ big_p(Y))) [219] (δ¬∀) DELTA_NOT_FORALL : ¬∀ Y ((big_p(skolem_W17) ⇔ big_p(Y))) -> [220] ¬(big_p(skolem_W17) ⇔ big_p(skolem_Y1(skolem_W17))) [220] (β¬⇔) BETA_NOT_EQUIV : ¬(big_p(skolem_W17) ⇔ big_p(skolem_Y1(skolem_W17))) -> [223] ¬big_p(skolem_W17), big_p(skolem_Y1(skolem_W17)) -> [224] big_p(skolem_W17), ¬big_p(skolem_Y1(skolem_W17)) [223] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ X1 (∀ Y1 ((big_q(X1) ⇔ big_q(Y1)))) -> [285] ¬∀ Y1 ((big_q(skolem_W3) ⇔ big_q(Y1))) [285] (δ¬∀) DELTA_NOT_FORALL : ¬∀ Y1 ((big_q(skolem_W3) ⇔ big_q(Y1))) -> [288] ¬(big_q(skolem_W3) ⇔ big_q(skolem_Y15(skolem_W3))) [288] (β¬⇔) BETA_NOT_EQUIV : ¬(big_q(skolem_W3) ⇔ big_q(skolem_Y15(skolem_W3))) -> [290] ¬big_q(skolem_W3), big_q(skolem_Y15(skolem_W3)) -> [291] big_q(skolem_W3), ¬big_q(skolem_Y15(skolem_W3)) [291] (⊙ / {(X1, skolem_W3)}) CLOSURE : big_q(skolem_W3) [290] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ U1 (big_p(U1)) -> [360] ¬big_p(skolem_Y1(skolem_W17)) [360] (⊙ / {(U1, skolem_Y1(X))}) CLOSURE : ¬big_p(skolem_Y1(skolem_W17)) [197] (δ∃) DELTA_EXISTS : ∃ U1 (big_p(U1)) -> [215] big_p(skolem_U16) [215] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ X (∀ Y ((big_p(X) ⇔ big_p(Y)))) -> [253] ¬∀ Y ((big_p(skolem_U16) ⇔ big_p(Y))) [253] (δ¬∀) DELTA_NOT_FORALL : ¬∀ Y ((big_p(skolem_U16) ⇔ big_p(Y))) -> [255] ¬(big_p(skolem_U16) ⇔ big_p(skolem_Y1(skolem_U16))) [255] (β¬⇔) BETA_NOT_EQUIV : ¬(big_p(skolem_U16) ⇔ big_p(skolem_Y1(skolem_U16))) -> [256] ¬big_p(skolem_U16), big_p(skolem_Y1(skolem_U16)) -> [257] big_p(skolem_U16), ¬big_p(skolem_Y1(skolem_U16)) [257] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ X1 (∀ Y1 ((big_q(X1) ⇔ big_q(Y1)))) -> [296] ¬∀ Y1 ((big_q(skolem_W3) ⇔ big_q(Y1))) [296] (δ¬∀) DELTA_NOT_FORALL : ¬∀ Y1 ((big_q(skolem_W3) ⇔ big_q(Y1))) -> [297] ¬(big_q(skolem_W3) ⇔ big_q(skolem_Y15(skolem_W3))) [297] (β¬⇔) BETA_NOT_EQUIV : ¬(big_q(skolem_W3) ⇔ big_q(skolem_Y15(skolem_W3))) -> [298] ¬big_q(skolem_W3), big_q(skolem_Y15(skolem_W3)) -> [299] big_q(skolem_W3), ¬big_q(skolem_Y15(skolem_W3)) [299] (⊙ / {(X1, skolem_W3)}) CLOSURE : big_q(skolem_W3) [298] (γ∀) GAMMA_FORALL : ∀ W1 (big_p(W1)) -> [362] big_p(skolem_Y1(skolem_U16)) [362] (⊙ / {(W1, skolem_Y1(X))}) CLOSURE : big_p(skolem_Y1(skolem_U16)) [20] (β⇔) BETA_EQUIV : (∃ U1 (big_p(U1)) ⇔ ∀ W1 (big_p(W1))) -> [36] ¬∃ U1 (big_p(U1)), ¬∀ W1 (big_p(W1)) -> [37] ∃ U1 (big_p(U1)), ∀ W1 (big_p(W1)) [36] (δ¬∀) DELTA_NOT_FORALL : ¬∀ W1 (big_p(W1)) -> [68] ¬big_p(skolem_W17) [68] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ X (∀ Y ((big_p(X) ⇔ big_p(Y)))) -> [71] ¬∀ Y ((big_p(skolem_W17) ⇔ big_p(Y))) [71] (δ¬∀) DELTA_NOT_FORALL : ¬∀ Y ((big_p(skolem_W17) ⇔ big_p(Y))) -> [75] ¬(big_p(skolem_W17) ⇔ big_p(skolem_Y1(skolem_W17))) [75] (β¬⇔) BETA_NOT_EQUIV : ¬(big_p(skolem_W17) ⇔ big_p(skolem_Y1(skolem_W17))) -> [79] ¬big_p(skolem_W17), big_p(skolem_Y1(skolem_W17)) -> [80] big_p(skolem_W17), ¬big_p(skolem_Y1(skolem_W17)) [79] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ X1 (∀ Y1 ((big_q(X1) ⇔ big_q(Y1)))) -> [202] ¬∀ Y1 ((big_q(X1) ⇔ big_q(Y1))) [202] (δ¬∀) DELTA_NOT_FORALL : ¬∀ Y1 ((big_q(X1) ⇔ big_q(Y1))) -> [204] ¬(big_q(X1) ⇔ big_q(skolem_Y15(X1))) [204] (β¬⇔) BETA_NOT_EQUIV : ¬(big_q(X1) ⇔ big_q(skolem_Y15(X1))) -> [207] ¬big_q(X1), big_q(skolem_Y15(X1)) -> [208] big_q(X1), ¬big_q(skolem_Y15(X1)) [208] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ U (big_q(U)) -> [252] ¬big_q(U) [252] (⊙ / {(X1, U)}) CLOSURE : ¬big_q(U) [207] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ U (big_q(U)) -> [260] ¬big_q(skolem_Y15(X1)) [260] (⊙ / {(U, skolem_Y15(X1))}) CLOSURE : ¬big_q(skolem_Y15(X1)) [37] (δ∃) DELTA_EXISTS : ∃ U1 (big_p(U1)) -> [45] big_p(skolem_U16) [45] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ X (∀ Y ((big_p(X) ⇔ big_p(Y)))) -> [50] ¬∀ Y ((big_p(skolem_U16) ⇔ big_p(Y))) [50] (δ¬∀) DELTA_NOT_FORALL : ¬∀ Y ((big_p(skolem_U16) ⇔ big_p(Y))) -> [54] ¬(big_p(skolem_U16) ⇔ big_p(skolem_Y1(skolem_U16))) [54] (β¬⇔) BETA_NOT_EQUIV : ¬(big_p(skolem_U16) ⇔ big_p(skolem_Y1(skolem_U16))) -> [55] ¬big_p(skolem_U16), big_p(skolem_Y1(skolem_U16)) -> [56] big_p(skolem_U16), ¬big_p(skolem_Y1(skolem_U16)) [56] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ X1 (∀ Y1 ((big_q(X1) ⇔ big_q(Y1)))) -> [205] ¬∀ Y1 ((big_q(X1) ⇔ big_q(Y1))) [205] (δ¬∀) DELTA_NOT_FORALL : ¬∀ Y1 ((big_q(X1) ⇔ big_q(Y1))) -> [209] ¬(big_q(X1) ⇔ big_q(skolem_Y15(X1))) [209] (β¬⇔) BETA_NOT_EQUIV : ¬(big_q(X1) ⇔ big_q(skolem_Y15(X1))) -> [210] ¬big_q(X1), big_q(skolem_Y15(X1)) -> [211] big_q(X1), ¬big_q(skolem_Y15(X1)) [211] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ U (big_q(U)) -> [319] ¬big_q(U) [319] (⊙ / {(X1, U)}) CLOSURE : ¬big_q(U) [210] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ U (big_q(U)) -> [401] ¬big_q(skolem_Y15(X1)) [401] (⊙ / {(U, skolem_Y15(X1))}) CLOSURE : ¬big_q(skolem_Y15(X1)) [8] (δ∃) DELTA_EXISTS : ∃ X1 (∀ Y1 ((big_q(X1) ⇔ big_q(Y1)))) -> [17] ∀ Y1 ((big_q(skolem_X14) ⇔ big_q(Y1))) [17] (β¬⇔) BETA_NOT_EQUIV : ¬(∃ U (big_q(U)) ⇔ ∀ W (big_q(W))) -> [18] ¬∃ U (big_q(U)), ∀ W (big_q(W)) -> [19] ∃ U (big_q(U)), ¬∀ W (big_q(W)) [18] (β¬⇔) BETA_NOT_EQUIV : ¬(∃ U1 (big_p(U1)) ⇔ ∀ W1 (big_p(W1))) -> [66] ¬∃ U1 (big_p(U1)), ∀ W1 (big_p(W1)) -> [67] ∃ U1 (big_p(U1)), ¬∀ W1 (big_p(W1)) [66] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ X (∀ Y ((big_p(X) ⇔ big_p(Y)))) -> [239] ¬∀ Y ((big_p(X) ⇔ big_p(Y))) [239] (δ¬∀) DELTA_NOT_FORALL : ¬∀ Y ((big_p(X) ⇔ big_p(Y))) -> [240] ¬(big_p(X) ⇔ big_p(skolem_Y1(X))) [240] (β¬⇔) BETA_NOT_EQUIV : ¬(big_p(X) ⇔ big_p(skolem_Y1(X))) -> [242] ¬big_p(X), big_p(skolem_Y1(X)) -> [243] big_p(X), ¬big_p(skolem_Y1(X)) [243] (γ∀) GAMMA_FORALL : ∀ Y1 ((big_q(skolem_X14) ⇔ big_q(Y1))) -> [254] (big_q(skolem_X14) ⇔ big_q(Y1)) [254] (β⇔) BETA_EQUIV : (big_q(skolem_X14) ⇔ big_q(Y1)) -> [258] ¬big_q(skolem_X14), ¬big_q(Y1) -> [259] big_q(skolem_X14), big_q(Y1) [258] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ U (big_q(U)) -> [294] ¬big_q(U) [294] (γ∀) GAMMA_FORALL : ∀ W (big_q(W)) -> [295] big_q(W) [295] (⊙ / {(Y1, W)}) CLOSURE : big_q(W) [259] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ U (big_q(U)) -> [307] ¬big_q(U) [307] (⊙ / {(Y1, U)}) CLOSURE : ¬big_q(U) [242] (γ∀) GAMMA_FORALL : ∀ Y1 ((big_q(skolem_X14) ⇔ big_q(Y1))) -> [289] (big_q(skolem_X14) ⇔ big_q(Y1)) [289] (β⇔) BETA_EQUIV : (big_q(skolem_X14) ⇔ big_q(Y1)) -> [292] ¬big_q(skolem_X14), ¬big_q(Y1) -> [293] big_q(skolem_X14), big_q(Y1) [292] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ U (big_q(U)) -> [410] ¬big_q(U) [410] (γ∀) GAMMA_FORALL : ∀ W (big_q(W)) -> [411] big_q(W) [411] (⊙ / {(Y1, W)}) CLOSURE : big_q(W) [293] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ U (big_q(U)) -> [431] ¬big_q(U) [431] (⊙ / {(Y1, U)}) CLOSURE : ¬big_q(U) [67] (δ∃) DELTA_EXISTS : ∃ U1 (big_p(U1)) -> [73] big_p(skolem_U16) [73] (δ¬∀) DELTA_NOT_FORALL : ¬∀ W1 (big_p(W1)) -> [81] ¬big_p(skolem_W17) [81] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ X (∀ Y ((big_p(X) ⇔ big_p(Y)))) -> [87] ¬∀ Y ((big_p(skolem_W17) ⇔ big_p(Y))) [87] (δ¬∀) DELTA_NOT_FORALL : ¬∀ Y ((big_p(skolem_W17) ⇔ big_p(Y))) -> [89] ¬(big_p(skolem_W17) ⇔ big_p(skolem_Y1(skolem_W17))) [89] (β¬⇔) BETA_NOT_EQUIV : ¬(big_p(skolem_W17) ⇔ big_p(skolem_Y1(skolem_W17))) -> [92] ¬big_p(skolem_W17), big_p(skolem_Y1(skolem_W17)) -> [93] big_p(skolem_W17), ¬big_p(skolem_Y1(skolem_W17)) [93] (⊙ / {(X, skolem_W17)}) CLOSURE : big_p(skolem_W17) [92] (γ∀) GAMMA_FORALL : ∀ Y1 ((big_q(skolem_X14) ⇔ big_q(Y1))) -> [444] (big_q(skolem_X14) ⇔ big_q(Y1)) [444] (β⇔) BETA_EQUIV : (big_q(skolem_X14) ⇔ big_q(Y1)) -> [445] ¬big_q(skolem_X14), ¬big_q(Y1) -> [446] big_q(skolem_X14), big_q(Y1) [445] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ U (big_q(U)) -> [451] ¬big_q(U) [451] (γ∀) GAMMA_FORALL : ∀ W (big_q(W)) -> [452] big_q(W) [452] (⊙ / {(Y1, W)}) CLOSURE : big_q(W) [446] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ U (big_q(U)) -> [454] ¬big_q(U) [454] (⊙ / {(Y1, U)}) CLOSURE : ¬big_q(U) [19] (δ∃) DELTA_EXISTS : ∃ U (big_q(U)) -> [27] big_q(skolem_U2) [27] (δ¬∀) DELTA_NOT_FORALL : ¬∀ W (big_q(W)) -> [38] ¬big_q(skolem_W3) [38] (β¬⇔) BETA_NOT_EQUIV : ¬(∃ U1 (big_p(U1)) ⇔ ∀ W1 (big_p(W1))) -> [42] ¬∃ U1 (big_p(U1)), ∀ W1 (big_p(W1)) -> [43] ∃ U1 (big_p(U1)), ¬∀ W1 (big_p(W1)) [42] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ X (∀ Y ((big_p(X) ⇔ big_p(Y)))) -> [185] ¬∀ Y ((big_p(X) ⇔ big_p(Y))) [185] (δ¬∀) DELTA_NOT_FORALL : ¬∀ Y ((big_p(X) ⇔ big_p(Y))) -> [188] ¬(big_p(X) ⇔ big_p(skolem_Y1(X))) [188] (β¬⇔) BETA_NOT_EQUIV : ¬(big_p(X) ⇔ big_p(skolem_Y1(X))) -> [190] ¬big_p(X), big_p(skolem_Y1(X)) -> [191] big_p(X), ¬big_p(skolem_Y1(X)) [190] (γ∀) GAMMA_FORALL : ∀ Y1 ((big_q(skolem_X14) ⇔ big_q(Y1))) -> [262] (big_q(skolem_X14) ⇔ big_q(skolem_W3)) [262] (β⇔) BETA_EQUIV : (big_q(skolem_X14) ⇔ big_q(skolem_W3)) -> [263] ¬big_q(skolem_X14), ¬big_q(skolem_W3) -> [264] big_q(skolem_X14), big_q(skolem_W3) [264] (⊙ / {(Y1, skolem_W3)}) CLOSURE : big_q(skolem_W3) [263] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ U1 (big_p(U1)) -> [348] ¬big_p(skolem_Y1(X)) [348] (⊙ / {(U1, skolem_Y1(X))}) CLOSURE : ¬big_p(skolem_Y1(X)) [191] (γ∀) GAMMA_FORALL : ∀ Y1 ((big_q(skolem_X14) ⇔ big_q(Y1))) -> [247] (big_q(skolem_X14) ⇔ big_q(skolem_W3)) [247] (β⇔) BETA_EQUIV : (big_q(skolem_X14) ⇔ big_q(skolem_W3)) -> [250] ¬big_q(skolem_X14), ¬big_q(skolem_W3) -> [251] big_q(skolem_X14), big_q(skolem_W3) [251] (⊙ / {(Y1, skolem_W3)}) CLOSURE : big_q(skolem_W3) [250] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ U1 (big_p(U1)) -> [442] ¬big_p(U1) [442] (⊙ / {(X, U1)}) CLOSURE : ¬big_p(U1) [43] (δ∃) DELTA_EXISTS : ∃ U1 (big_p(U1)) -> [60] big_p(skolem_U16) [60] (δ¬∀) DELTA_NOT_FORALL : ¬∀ W1 (big_p(W1)) -> [409] ¬big_p(skolem_W17) [409] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ X (∀ Y ((big_p(X) ⇔ big_p(Y)))) -> [422] ¬∀ Y ((big_p(skolem_W17) ⇔ big_p(Y))) [422] (δ¬∀) DELTA_NOT_FORALL : ¬∀ Y ((big_p(skolem_W17) ⇔ big_p(Y))) -> [423] ¬(big_p(skolem_W17) ⇔ big_p(skolem_Y1(skolem_W17))) [423] (β¬⇔) BETA_NOT_EQUIV : ¬(big_p(skolem_W17) ⇔ big_p(skolem_Y1(skolem_W17))) -> [424] ¬big_p(skolem_W17), big_p(skolem_Y1(skolem_W17)) -> [425] big_p(skolem_W17), ¬big_p(skolem_Y1(skolem_W17)) [425] (⊙ / {(X, skolem_W17)}) CLOSURE : big_p(skolem_W17) [424] (γ∀) GAMMA_FORALL : ∀ Y1 ((big_q(skolem_X14) ⇔ big_q(Y1))) -> [447] (big_q(skolem_X14) ⇔ big_q(skolem_U2)) [447] (β⇔) BETA_EQUIV : (big_q(skolem_X14) ⇔ big_q(skolem_U2)) -> [448] ¬big_q(skolem_X14), ¬big_q(skolem_U2) -> [449] big_q(skolem_X14), big_q(skolem_U2) [448] (⊙ / {(Y1, skolem_U2)}) CLOSURE : ¬big_q(skolem_U2) [449] (Reintroduction) : ¬∃ X (∀ Y ((big_p(X) ⇔ big_p(Y)))) -> [461] ¬∃ X (∀ Y ((big_p(X) ⇔ big_p(Y)))) [461] (γ¬∃) GAMMA_NOT_EXISTS : ¬∃ X (∀ Y ((big_p(X) ⇔ big_p(Y)))) -> [462] ¬∀ Y ((big_p(skolem_U16) ⇔ big_p(Y))) [462] (δ¬∀) DELTA_NOT_FORALL : ¬∀ Y ((big_p(skolem_U16) ⇔ big_p(Y))) -> [463] ¬(big_p(skolem_U16) ⇔ big_p(skolem_Y1(skolem_U16))) [463] (β¬⇔) BETA_NOT_EQUIV : ¬(big_p(skolem_U16) ⇔ big_p(skolem_Y1(skolem_U16))) -> [464] ¬big_p(skolem_U16), big_p(skolem_Y1(skolem_U16)) -> [465] big_p(skolem_U16), ¬big_p(skolem_Y1(skolem_U16)) [464] (⊙ / {(X, skolem_U16)}) CLOSURE : ¬big_p(skolem_U16) [465] (Reintroduction) : ∀ Y1 ((big_q(skolem_X14) ⇔ big_q(Y1))) -> [466] ∀ Y1 ((big_q(skolem_X14) ⇔ big_q(Y1))) [466] (γ∀) GAMMA_FORALL : ∀ Y1 ((big_q(skolem_X14) ⇔ big_q(Y1))) -> [467] (big_q(skolem_X14) ⇔ big_q(skolem_W3)) [467] (β⇔) BETA_EQUIV : (big_q(skolem_X14) ⇔ big_q(skolem_W3)) -> [468] ¬big_q(skolem_X14), ¬big_q(skolem_W3) -> [469] big_q(skolem_X14), big_q(skolem_W3) [468] (⊙ / {}) CLOSURE : ¬big_q(skolem_X14) % SZS output end Proof for SYN036+1.tptp
% SZS output start CNFRefutation thf(tp_complement,type,(complement: (($i>$o)>($i>$o)))). thf(tp_disjoint,type,(disjoint: (($i>$o)>(($i>$o)>$o)))). thf(tp_emptyset,type,(emptyset: ($i>$o))). thf(tp_excl_union,type,(excl_union: (($i>$o)>(($i>$o)>($i>$o))))). thf(tp_in,type,(in: ($i>(($i>$o)>$o)))). thf(tp_intersection,type,(intersection: (($i>$o)>(($i>$o)>($i>$o))))). thf(tp_is_a,type,(is_a: ($i>(($i>$o)>$o)))). thf(tp_meets,type,(meets: (($i>$o)>(($i>$o)>$o)))). thf(tp_misses,type,(misses: (($i>$o)>(($i>$o)>$o)))). thf(tp_sK1_X,type,(sK1_X: ($i>$o))). thf(tp_sK2_SY0,type,(sK2_SY0: ($i>$o))). thf(tp_sK3_SY2,type,(sK3_SY2: ($i>$o))). thf(tp_sK4_SX0,type,(sK4_SX0: $i)). thf(tp_setminus,type,(setminus: (($i>$o)>(($i>$o)>($i>$o))))). thf(tp_singleton,type,(singleton: ($i>($i>$o)))). thf(tp_subset,type,(subset: (($i>$o)>(($i>$o)>$o)))). thf(tp_union,type,(union: (($i>$o)>(($i>$o)>($i>$o))))). thf(tp_unord_pair,type,(unord_pair: ($i>($i>($i>$o))))). thf(complement,definition,(complement = (^[X:($i>$o),U:$i]: (~ (X@U)))), file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',complement)). thf(disjoint,definition,(disjoint = (^[X:($i>$o),Y:($i>$o)]: (((intersection@X)@Y) = emptyset))), file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',disjoint)). thf(emptyset,definition,(emptyset = (^[X:$i]: $false)), file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',emptyset)). thf(excl_union,definition,(excl_union = (^[X:($i>$o),Y:($i>$o),U:$i]: (((X@U) & (~ (Y@U))) | ((~ (X@U)) & (Y@U))))), file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',excl_union)). thf(in,definition,(in = (^[X:$i,M:($i>$o)]: (M@X))), file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',in)). thf(intersection,definition,(intersection = (^[X:($i>$o),Y:($i>$o),U:$i]: ((X@U) & (Y@U)))), file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',intersection)). thf(is_a,definition,(is_a = (^[X:$i,M:($i>$o)]: (M@X))), file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',is_a)). thf(meets,definition,(meets = (^[X:($i>$o),Y:($i>$o)]: (?[U:$i]: ((X@U) & (Y@U))))), file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',meets)). thf(misses,definition,(misses = (^[X:($i>$o),Y:($i>$o)]: (~ (?[U:$i]: ((X@U) & (Y@U)))))), file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',misses)). thf(setminus,definition,(setminus = (^[X:($i>$o),Y:($i>$o),U:$i]: ((X@U) & (~ (Y@U))))), file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',setminus)). thf(singleton,definition,(singleton = (^[X:$i,U:$i]: (U = X))), file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',singleton)). thf(subset,definition,(subset = (^[X:($i>$o),Y:($i>$o)]: (![U:$i]: ((X@U) => (Y@U))))), file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',subset)). thf(union,definition,(union = (^[X:($i>$o),Y:($i>$o),U:$i]: ((X@U) | (Y@U)))), file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',union)). thf(unord_pair,definition,(unord_pair = (^[X:$i,Y:$i,U:$i]: ((U = X) | (U = Y)))), file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',unord_pair)). thf(1,conjecture,(![X:($i>$o),Y:($i>$o),A:($i>$o)]: ((((subset@X)@A) & ((subset@Y)@A)) => ((subset@((union@X)@Y))@A))), file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',thm)). thf(2,negated_conjecture,(((![X:($i>$o),Y:($i>$o),A:($i>$o)]: ((((subset@X)@A) & ((subset@Y)@A)) => ((subset@((union@X)@Y))@A)))=$false)), inference(negate_conjecture,[status(cth)],[1])). thf(3,plain,(((![SY0:($i>$o),SY1:($i>$o)]: ((((subset@sK1_X)@SY1) & ((subset@SY0)@SY1)) => ((subset@((union@sK1_X)@SY0))@SY1)))=$false)), inference(extcnf_forall_neg,[status(esa)],[2])). thf(4,plain,(((![SY2:($i>$o)]: ((((subset@sK1_X)@SY2) & ((subset@sK2_SY0)@SY2)) => ((subset@((union@sK1_X)@sK2_SY0))@SY2)))=$false)), inference(extcnf_forall_neg,[status(esa)],[3])). thf(5,plain,((((((subset@sK1_X)@sK3_SY2) & ((subset@sK2_SY0)@sK3_SY2)) => ((subset@((union@sK1_X)@sK2_SY0))@sK3_SY2))=$false)), inference(extcnf_forall_neg,[status(esa)],[4])). thf(6,plain,((((subset@sK1_X)@sK3_SY2)=$true)), inference(standard_cnf,[status(thm)],[5])). thf(7,plain,((((subset@sK2_SY0)@sK3_SY2)=$true)), inference(standard_cnf,[status(thm)],[5])). thf(8,plain,((((subset@((union@sK1_X)@sK2_SY0))@sK3_SY2)=$false)), inference(standard_cnf,[status(thm)],[5])). thf(9,plain,(((~ ((subset@((union@sK1_X)@sK2_SY0))@sK3_SY2))=$true)), inference(polarity_switch,[status(thm)],[8])). thf(10,plain,((((subset@sK2_SY0)@sK3_SY2)=$true)), inference(copy,[status(thm)],[7])). thf(11,plain,((((subset@sK1_X)@sK3_SY2)=$true)), inference(copy,[status(thm)],[6])). thf(12,plain,(((~ ((subset@((union@sK1_X)@sK2_SY0))@sK3_SY2))=$true)), inference(copy,[status(thm)],[9])). thf(13,plain,(((~ (![SX0:$i]: ((~ ((sK1_X@SX0) | (sK2_SY0@SX0))) | (sK3_SY2@SX0))))=$true)), inference(unfold_def,[status(thm)],[12,complement,disjoint,emptyset,excl_union,in,intersection,is_a,meets,misses,setminus,singleton,subset,union,unord_pair])). thf(14,plain,(((![SX0:$i]: ((~ (sK1_X@SX0)) | (sK3_SY2@SX0)))=$true)), inference(unfold_def,[status(thm)],[11,complement,disjoint,emptyset,excl_union,in,intersection,is_a,meets,misses,setminus,singleton,subset,union,unord_pair])). thf(15,plain,(((![SX0:$i]: ((~ (sK2_SY0@SX0)) | (sK3_SY2@SX0)))=$true)), inference(unfold_def,[status(thm)],[10,complement,disjoint,emptyset,excl_union,in,intersection,is_a,meets,misses,setminus,singleton,subset,union,unord_pair])). thf(16,plain,(((![SX0:$i]: ((~ ((sK1_X@SX0) | (sK2_SY0@SX0))) | (sK3_SY2@SX0)))=$false)), inference(extcnf_not_pos,[status(thm)],[13])). thf(17,plain,(![SV1:$i]: ((((~ (sK1_X@SV1)) | (sK3_SY2@SV1))=$true))), inference(extcnf_forall_pos,[status(thm)],[14])). thf(18,plain,(![SV2:$i]: ((((~ (sK2_SY0@SV2)) | (sK3_SY2@SV2))=$true))), inference(extcnf_forall_pos,[status(thm)],[15])). thf(19,plain,((((~ ((sK1_X@sK4_SX0) | (sK2_SY0@sK4_SX0))) | (sK3_SY2@sK4_SX0))=$false)), inference(extcnf_forall_neg,[status(esa)],[16])). thf(20,plain,(![SV1:$i]: (((~ (sK1_X@SV1))=$true) | ((sK3_SY2@SV1)=$true))), inference(extcnf_or_pos,[status(thm)],[17])). thf(21,plain,(![SV2:$i]: (((~ (sK2_SY0@SV2))=$true) | ((sK3_SY2@SV2)=$true))), inference(extcnf_or_pos,[status(thm)],[18])). thf(22,plain,(((~ ((sK1_X@sK4_SX0) | (sK2_SY0@sK4_SX0)))=$false)), inference(extcnf_or_neg,[status(thm)],[19])). thf(23,plain,(((sK3_SY2@sK4_SX0)=$false)), inference(extcnf_or_neg,[status(thm)],[19])). thf(24,plain,(![SV1:$i]: (((sK1_X@SV1)=$false) | ((sK3_SY2@SV1)=$true))), inference(extcnf_not_pos,[status(thm)],[20])). thf(25,plain,(![SV2:$i]: (((sK2_SY0@SV2)=$false) | ((sK3_SY2@SV2)=$true))), inference(extcnf_not_pos,[status(thm)],[21])). thf(26,plain,((((sK1_X@sK4_SX0) | (sK2_SY0@sK4_SX0))=$true)), inference(extcnf_not_neg,[status(thm)],[22])). thf(27,plain,(((sK1_X@sK4_SX0)=$true) | ((sK2_SY0@sK4_SX0)=$true)), inference(extcnf_or_pos,[status(thm)],[26])). thf(28,plain,((($false)=$true)), inference(fo_atp_e,[status(thm)],[23,27,25,24])). thf(29,plain,($false), inference(solved_all_splits,[solved_all_splits(join,[])],[28])). % SZS output end CNFRefutation
% SZS output start Refutation for /home/lex/TPTP/Problems/SET/SET014^4.p thf(union_type, type, union: (($i > $o) > (($i > $o) > ($i > $o)))). thf(union_def, definition, (union = (^ [A:($i > $o),B:($i > $o),C:$i]: ((A @ C) | (B @ C))))). thf(subset_type, type, subset: (($i > $o) > (($i > $o) > $o))). thf(subset_def, definition, (subset = (^ [A:($i > $o),B:($i > $o)]: ! [C:$i]: ((A @ C) => (B @ C))))). thf(sk1_type, type, sk1: ($i > $o)). thf(sk2_type, type, sk2: ($i > $o)). thf(sk3_type, type, sk3: ($i > $o)). thf(sk4_type, type, sk4: $i). thf(1,conjecture,((! [A:($i > $o),B:($i > $o),C:($i > $o)]: (((subset @ A @ C) & (subset @ B @ C)) => (subset @ (union @ A @ B) @ C)))),file('/home/lex/TPTP/Problems/SET/SET014^4.p',thm)). thf(2,negated_conjecture,((~ (! [A:($i > $o),B:($i > $o),C:($i > $o)]: (((subset @ A @ C) & (subset @ B @ C)) => (subset @ (union @ A @ B) @ C))))),inference(neg_conjecture,[status(cth)],[1])). thf(3,plain,((~ (! [A:($i > $o),B:($i > $o),C:($i > $o)]: ((! [D:$i]: ((A @ D) => (C @ D)) & ! [D:$i]: ((B @ D) => (C @ D))) => (! [D:$i]: (((A @ D) | (B @ D)) => (C @ D))))))),inference(defexp_and_simp_and_etaexpand,[status(thm)],[2])). thf(5,plain,((sk1 @ sk4) | (sk2 @ sk4)),inference(cnf,[status(esa)],[3])). thf(7,plain,(! [A:$i] : ((~ (sk1 @ A)) | (sk3 @ A))),inference(cnf,[status(esa)],[3])). thf(4,plain,((~ (sk3 @ sk4))),inference(cnf,[status(esa)],[3])). thf(9,plain,(! [A:$i] : ((~ (sk1 @ A)) | ((sk3 @ A) != (sk3 @ sk4)))),inference(paramod_ordered,[status(thm)],[7,4])). thf(10,plain,((~ (sk1 @ sk4))),inference(pattern_uni,[status(thm)],[9:[bind(A,$thf(sk4))]])). thf(11,plain,(($false) | (sk2 @ sk4)),inference(rewrite,[status(thm)],[5,10])). thf(12,plain,((sk2 @ sk4)),inference(simp,[status(thm)],[11])). thf(6,plain,(! [A:$i] : ((~ (sk2 @ A)) | (sk3 @ A))),inference(cnf,[status(esa)],[3])). thf(8,plain,(! [A:$i] : ((~ (sk2 @ A)) | (sk3 @ A))),inference(simp,[status(thm)],[6])). thf(13,plain,(! [A:$i] : ((~ (sk2 @ A)) | ((sk3 @ A) != (sk3 @ sk4)))),inference(paramod_ordered,[status(thm)],[8,4])). thf(14,plain,((~ (sk2 @ sk4))),inference(pattern_uni,[status(thm)],[13:[bind(A,$thf(sk4))]])). thf(15,plain,(($false)),inference(rewrite,[status(thm)],[12,14])). thf(16,plain,(($false)),inference(simp,[status(thm)],[15])). % SZS output end Refutation for /home/lex/TPTP/Problems/SET/SET014^4.p
8 (all A all B (subset(A,B) <-> (all C (in(C,A) -> in(C,B))))) # label(d3_tarski) # label(axiom) # label(non_clause). [assumption]. 26 (all A all B (disjoint(A,B) -> disjoint(B,A))) # label(symmetry_r1_xboole_0) # label(axiom) # label(non_clause). [assumption]. 42 (all A all B (-(-disjoint(A,B) & (all C -(in(C,A) & in(C,B)))) & -((exists C (in(C,A) & in(C,B))) & disjoint(A,B)))) # label(t3_xboole_0) # label(lemma) # label(non_clause). [assumption]. 55 -(all A all B all C (subset(A,B) & disjoint(B,C) -> disjoint(A,C))) # label(t63_xboole_1) # label(negated_conjecture) # label(non_clause). [assumption]. 60 subset(c3,c4) # label(t63_xboole_1) # label(negated_conjecture). [clausify(55)]. 61 disjoint(c4,c5) # label(t63_xboole_1) # label(negated_conjecture). [clausify(55)]. 75 disjoint(A,B) | in(f7(A,B),A) # label(t3_xboole_0) # label(lemma). [clausify(42)]. 76 disjoint(A,B) | in(f7(A,B),B) # label(t3_xboole_0) # label(lemma). [clausify(42)]. 92 -disjoint(c3,c5) # label(t63_xboole_1) # label(negated_conjecture). [clausify(55)]. 101 -in(A,B) | -in(A,C) | -disjoint(B,C) # label(t3_xboole_0) # label(lemma). [clausify(42)]. 109 -disjoint(A,B) | disjoint(B,A) # label(symmetry_r1_xboole_0) # label(axiom). [clausify(26)]. 123 -subset(A,B) | -in(C,A) | in(C,B) # label(d3_tarski) # label(axiom). [clausify(8)]. 273 -disjoint(c5,c3). [ur(109,b,92,a)]. 300 -in(A,c3) | in(A,c4). [resolve(123,a,60,a)]. 959 in(f7(c5,c3),c3). [resolve(273,a,76,a)]. 960 in(f7(c5,c3),c5). [resolve(273,a,75,a)]. 1084 -in(f7(c5,c3),c4). [ur(101,b,960,a,c,61,a)]. 1292 $F. [resolve(300,a,959,a),unit_del(a,1084)].
% SZS output start Proof thf(ty_eigen__2, type, eigen__2 : ($i>$o)). thf(ty_eigen__1, type, eigen__1 : ($i>$o)). thf(ty_eigen__0, type, eigen__0 : ($i>$o)). thf(ty_eigen__3, type, eigen__3 : $i). thf(sP1,plain,sP1 <=> (eigen__0 @ eigen__3),introduced(definition,[new_symbols(definition,[sP1])])). thf(sP2,plain,sP2 <=> (sP1 => (eigen__2 @ eigen__3)),introduced(definition,[new_symbols(definition,[sP2])])). thf(sP3,plain,sP3 <=> (eigen__1 @ eigen__3),introduced(definition,[new_symbols(definition,[sP3])])). thf(sP4,plain,sP4 <=> (sP3 => (eigen__2 @ eigen__3)),introduced(definition,[new_symbols(definition,[sP4])])). thf(sP5,plain,sP5 <=> (![X1:$i]:((eigen__1 @ X1) => (eigen__2 @ X1))),introduced(definition,[new_symbols(definition,[sP5])])). thf(sP6,plain,sP6 <=> (eigen__2 @ eigen__3),introduced(definition,[new_symbols(definition,[sP6])])). thf(sP7,plain,sP7 <=> (![X1:$i]:((eigen__0 @ X1) => (eigen__2 @ X1))),introduced(definition,[new_symbols(definition,[sP7])])). thf(def_in,definition,(in = (^[X1:$i]:(^[X2:$i>$o]:(X2 @ X1))))). thf(def_is_a,definition,(is_a = (^[X1:$i]:(^[X2:$i>$o]:(X2 @ X1))))). thf(def_emptyset,definition,(emptyset = (^[X1:$i]:$false))). thf(def_unord_pair,definition,(unord_pair = (^[X1:$i]:(^[X2:$i]:(^[X3:$i]:((~((X3 = X1))) => (X3 = X2))))))). thf(def_singleton,definition,(singleton = (^[X1:$i]:(^[X2:$i]:(X2 = X1))))). thf(def_union,definition,(union = (^[X1:$i>$o]:(^[X2:$i>$o]:(^[X3:$i]:((~((X1 @ X3))) => (X2 @ X3))))))). thf(def_excl_union,definition,(excl_union = (^[X1:$i>$o]:(^[X2:$i>$o]:(^[X3:$i]:(((X1 @ X3) => (X2 @ X3)) => (~(((~((X1 @ X3))) => (~((X2 @ X3)))))))))))). thf(def_intersection,definition,(intersection = (^[X1:$i>$o]:(^[X2:$i>$o]:(^[X3:$i]:(~(((X1 @ X3) => (~((X2 @ X3))))))))))). thf(def_setminus,definition,(setminus = (^[X1:$i>$o]:(^[X2:$i>$o]:(^[X3:$i]:(~(((X1 @ X3) => (X2 @ X3))))))))). thf(def_complement,definition,(complement = (^[X1:$i>$o]:(^[X2:$i]:(~((X1 @ X2))))))). thf(def_disjoint,definition,(disjoint = (^[X1:$i>$o]:(^[X2:$i>$o]:(((intersection @ X1) @ X2) = emptyset))))). thf(def_subset,definition,(subset = (^[X1:$i>$o]:(^[X2:$i>$o]:(![X3:$i]:((X1 @ X3) => (X2 @ X3))))))). thf(def_meets,definition,(meets = (^[X1:$i>$o]:(^[X2:$i>$o]:(~((![X3:$i]:((X1 @ X3) => (~((X2 @ X3))))))))))). thf(def_misses,definition,(misses = (^[X1:$i>$o]:(^[X2:$i>$o]:(![X3:$i]:((X1 @ X3) => (~((X2 @ X3))))))))). thf(thm,conjecture,(![X1:$i>$o]:(![X2:$i>$o]:(![X3:$i>$o]:((~(((![X4:$i]:((X1 @ X4) => (X3 @ X4))) => (~((![X4:$i]:((X2 @ X4) => (X3 @ X4)))))))) => (![X4:$i]:(((~((X1 @ X4))) => (X2 @ X4)) => (X3 @ X4)))))))). thf(h0,negated_conjecture,(~((![X1:$i>$o]:(![X2:$i>$o]:(![X3:$i>$o]:((~(((![X4:$i]:((X1 @ X4) => (X3 @ X4))) => (~((![X4:$i]:((X2 @ X4) => (X3 @ X4)))))))) => (![X4:$i]:(((~((X1 @ X4))) => (X2 @ X4)) => (X3 @ X4))))))))),inference(assume_negation,[status(cth)],[thm])). thf(h1,assumption,(~((![X1:$i>$o]:(![X2:$i>$o]:((~(((![X3:$i]:((eigen__0 @ X3) => (X2 @ X3))) => (~((![X3:$i]:((X1 @ X3) => (X2 @ X3)))))))) => (![X3:$i]:(((~((eigen__0 @ X3))) => (X1 @ X3)) => (X2 @ X3)))))))),introduced(assumption,[])). thf(h2,assumption,(~((![X1:$i>$o]:((~(((![X2:$i]:((eigen__0 @ X2) => (X1 @ X2))) => (~((![X2:$i]:((eigen__1 @ X2) => (X1 @ X2)))))))) => (![X2:$i]:(((~((eigen__0 @ X2))) => (eigen__1 @ X2)) => (X1 @ X2))))))),introduced(assumption,[])). thf(h3,assumption,(~(((~((sP7 => (~(sP5))))) => (![X1:$i]:(((~((eigen__0 @ X1))) => (eigen__1 @ X1)) => (eigen__2 @ X1)))))),introduced(assumption,[])). thf(h4,assumption,(~((sP7 => (~(sP5))))),introduced(assumption,[])). thf(h5,assumption,(~((![X1:$i]:(((~((eigen__0 @ X1))) => (eigen__1 @ X1)) => (eigen__2 @ X1))))),introduced(assumption,[])). thf(h6,assumption,sP7,introduced(assumption,[])). thf(h7,assumption,sP5,introduced(assumption,[])). thf(h8,assumption,(~((((~(sP1)) => sP3) => sP6))),introduced(assumption,[])). thf(h9,assumption,((~(sP1)) => sP3),introduced(assumption,[])). thf(h10,assumption,(~(sP6)),introduced(assumption,[])). thf(h11,assumption,sP1,introduced(assumption,[])). thf(h12,assumption,sP3,introduced(assumption,[])). thf(1,plain,(~(sP7) | sP2),inference(all_rule,[status(thm)],[])). thf(2,plain,((~(sP2) | ~(sP1)) | sP6),inference(prop_rule,[status(thm)],[])). thf(3,plain,$false,inference(prop_unsat,[status(thm),assumptions([h11,h9,h10,h8,h6,h7,h4,h5,h3,h2,h1,h0])],[1,2,h6,h11,h10])). thf(4,plain,(~(sP5) | sP4),inference(all_rule,[status(thm)],[])). thf(5,plain,((~(sP4) | ~(sP3)) | sP6),inference(prop_rule,[status(thm)],[])). thf(6,plain,$false,inference(prop_unsat,[status(thm),assumptions([h12,h9,h10,h8,h6,h7,h4,h5,h3,h2,h1,h0])],[4,5,h7,h12,h10])). thf(7,plain,$false,inference(tab_imp,[status(thm),assumptions([h9,h10,h8,h6,h7,h4,h5,h3,h2,h1,h0]),tab_imp(discharge,[h11]),tab_imp(discharge,[h12])],[h9,3,6,h11,h12])). thf(8,plain,$false,inference(tab_negimp,[status(thm),assumptions([h8,h6,h7,h4,h5,h3,h2,h1,h0]),tab_negimp(discharge,[h9,h10])],[h8,7,h9,h10])). thf(9,plain,$false,inference(tab_negall,[status(thm),assumptions([h6,h7,h4,h5,h3,h2,h1,h0]),tab_negall(discharge,[h8]),tab_negall(eigenvar,eigen__3)],[h5,8,h8])). thf(10,plain,$false,inference(tab_negimp,[status(thm),assumptions([h4,h5,h3,h2,h1,h0]),tab_negimp(discharge,[h6,h7])],[h4,9,h6,h7])). thf(11,plain,$false,inference(tab_negimp,[status(thm),assumptions([h3,h2,h1,h0]),tab_negimp(discharge,[h4,h5])],[h3,10,h4,h5])). thf(12,plain,$false,inference(tab_negall,[status(thm),assumptions([h2,h1,h0]),tab_negall(discharge,[h3]),tab_negall(eigenvar,eigen__2)],[h2,11,h3])). thf(13,plain,$false,inference(tab_negall,[status(thm),assumptions([h1,h0]),tab_negall(discharge,[h2]),tab_negall(eigenvar,eigen__1)],[h1,12,h2])). thf(14,plain,$false,inference(tab_negall,[status(thm),assumptions([h0]),tab_negall(discharge,[h1]),tab_negall(eigenvar,eigen__0)],[h0,13,h1])). thf(0,theorem,(![X1:$i>$o]:(![X2:$i>$o]:(![X3:$i>$o]:((~(((![X4:$i]:((X1 @ X4) => (X3 @ X4))) => (~((![X4:$i]:((X2 @ X4) => (X3 @ X4)))))))) => (![X4:$i]:(((~((X1 @ X4))) => (X2 @ X4)) => (X3 @ X4))))))),inference(contra,[status(thm),contra(discharge,[h0])],[14,h0])). % SZS output end Proof
% SZS output start Proof for DAT013=1 tff(type_def_5, type, array: $tType). tff(func_def_0, type, read: (array * $int) > $int). tff(func_def_1, type, write: (array * $int * $int) > array). tff(func_def_7, type, sK0: array). tff(func_def_8, type, sK1: $int). tff(func_def_9, type, sK2: $int). tff(func_def_10, type, sK3: $int). tff(f361,plain,( $false), inference(avatar_sat_refutation,[],[f321,f327,f358])). tff(f358,plain,( ~spl4_6), inference(avatar_contradiction_clause,[],[f357])). tff(f357,plain,( $false | ~spl4_6), inference(subsumption_resolution,[],[f356,f79])). tff(f79,plain,( ~$less(sK1,sK3)), inference(resolution,[],[f75,f11])). tff(f11,plain,( ( ! [X0 : $int] : (~$less(X0,X0)) )), introduced(theory_axiom_146,[])). tff(f75,plain,( ( ! [X2 : $int] : ($less(X2,sK1) | ~$less(X2,sK3)) )), inference(resolution,[],[f12,f32])). tff(f32,plain,( $less(sK3,sK1)), inference(subsumption_resolution,[],[f31,f29])). tff(f29,plain,( ~$less(sK2,sK3)), inference(cnf_transformation,[],[f24])). tff(f24,plain,( (~$less(0,read(sK0,sK3)) & ~$less(sK2,sK3) & ~$less(sK3,$sum(sK1,3))) & ! [X4 : $int] : ($less(0,read(sK0,X4)) | $less(sK2,X4) | $less(X4,sK1))), inference(skolemisation,[status(esa),new_symbols(skolem,[sK0,sK1,sK2,sK3])],[f21,f23,f22])). tff(f22,plain,( ? [X0 : array,X1 : $int,X2 : $int] : (? [X3 : $int] : (~$less(0,read(X0,X3)) & ~$less(X2,X3) & ~$less(X3,$sum(X1,3))) & ! [X4 : $int] : ($less(0,read(X0,X4)) | $less(X2,X4) | $less(X4,X1))) => (? [X3 : $int] : (~$less(0,read(sK0,X3)) & ~$less(sK2,X3) & ~$less(X3,$sum(sK1,3))) & ! [X4 : $int] : ($less(0,read(sK0,X4)) | $less(sK2,X4) | $less(X4,sK1)))), introduced(choice_axiom,[])). tff(f23,plain,( ? [X3 : $int] : (~$less(0,read(sK0,X3)) & ~$less(sK2,X3) & ~$less(X3,$sum(sK1,3))) => (~$less(0,read(sK0,sK3)) & ~$less(sK2,sK3) & ~$less(sK3,$sum(sK1,3)))), introduced(choice_axiom,[])). tff(f21,plain,( ? [X0 : array,X1 : $int,X2 : $int] : (? [X3 : $int] : (~$less(0,read(X0,X3)) & ~$less(X2,X3) & ~$less(X3,$sum(X1,3))) & ! [X4 : $int] : ($less(0,read(X0,X4)) | $less(X2,X4) | $less(X4,X1)))), inference(rectify,[],[f20])). tff(f20,plain,( ? [X0 : array,X1 : $int,X2 : $int] : (? [X4 : $int] : (~$less(0,read(X0,X4)) & ~$less(X2,X4) & ~$less(X4,$sum(X1,3))) & ! [X3 : $int] : ($less(0,read(X0,X3)) | $less(X2,X3) | $less(X3,X1)))), inference(flattening,[],[f19])). tff(f19,plain,( ? [X0 : array,X1 : $int,X2 : $int] : (? [X4 : $int] : (~$less(0,read(X0,X4)) & (~$less(X2,X4) & ~$less(X4,$sum(X1,3)))) & ! [X3 : $int] : ($less(0,read(X0,X3)) | ($less(X2,X3) | $less(X3,X1))))), inference(ennf_transformation,[],[f5])). tff(f5,plain,( ~! [X0 : array,X1 : $int,X2 : $int] : (! [X3 : $int] : ((~$less(X2,X3) & ~$less(X3,X1)) => $less(0,read(X0,X3))) => ! [X4 : $int] : ((~$less(X2,X4) & ~$less(X4,$sum(X1,3))) => $less(0,read(X0,X4))))), inference(theory_normalization,[],[f4])). tff(f4,negated_conjecture,( ~! [X0 : array,X1 : $int,X2 : $int] : (! [X3 : $int] : (($lesseq(X3,X2) & $lesseq(X1,X3)) => $greater(read(X0,X3),0)) => ! [X4 : $int] : (($lesseq(X4,X2) & $lesseq($sum(X1,3),X4)) => $greater(read(X0,X4),0)))), inference(negated_conjecture,[],[f3])). tff(f3,conjecture,( ! [X0 : array,X1 : $int,X2 : $int] : (! [X3 : $int] : (($lesseq(X3,X2) & $lesseq(X1,X3)) => $greater(read(X0,X3),0)) => ! [X4 : $int] : (($lesseq(X4,X2) & $lesseq($sum(X1,3),X4)) => $greater(read(X0,X4),0)))), file('/home/filip/TPTP-v7.5.0/Problems/DAT/DAT013=1.p',unknown)). tff(f31,plain,( $less(sK2,sK3) | $less(sK3,sK1)), inference(resolution,[],[f27,f30])). tff(f30,plain,( ~$less(0,read(sK0,sK3))), inference(cnf_transformation,[],[f24])). tff(f27,plain,( ( ! [X4 : $int] : ($less(0,read(sK0,X4)) | $less(sK2,X4) | $less(X4,sK1)) )), inference(cnf_transformation,[],[f24])). tff(f12,plain,( ( ! [X2 : $int,X0 : $int,X1 : $int] : (~$less(X1,X2) | ~$less(X0,X1) | $less(X0,X2)) )), introduced(theory_axiom_147,[])). tff(f356,plain,( $less(sK1,sK3) | ~spl4_6), inference(evaluation,[],[f353])). tff(f353,plain,( $less(sK1,sK3) | ~$less(0,3) | ~spl4_6), inference(superposition,[],[f347,f38])). tff(f38,plain,( ( ! [X0 : $int] : ($sum(0,X0) = X0) )), inference(superposition,[],[f6,f8])). tff(f8,plain,( ( ! [X0 : $int] : ($sum(X0,0) = X0) )), introduced(theory_axiom_141,[])). tff(f6,plain,( ( ! [X0 : $int,X1 : $int] : ($sum(X0,X1) = $sum(X1,X0)) )), introduced(theory_axiom_139,[])). tff(f347,plain,( ( ! [X2 : $int] : ($less($sum(X2,sK1),sK3) | ~$less(X2,3)) ) | ~spl4_6), inference(resolution,[],[f330,f14])). tff(f14,plain,( ( ! [X2 : $int,X0 : $int,X1 : $int] : ($less($sum(X0,X2),$sum(X1,X2)) | ~$less(X0,X1)) )), introduced(theory_axiom_149,[])). tff(f330,plain,( ( ! [X0 : $int] : (~$less(X0,$sum(3,sK1)) | $less(X0,sK3)) ) | ~spl4_6), inference(resolution,[],[f121,f12])). tff(f121,plain,( $less($sum(3,sK1),sK3) | ~spl4_6), inference(avatar_component_clause,[],[f119])). tff(f119,plain,( spl4_6 <=> $less($sum(3,sK1),sK3)), introduced(avatar_definition,[new_symbols(naming,[spl4_6])])). tff(f327,plain,( spl4_5 | spl4_6), inference(avatar_split_clause,[],[f325,f119,f115])). tff(f115,plain,( spl4_5 <=> sK3 = $sum(3,sK1)), introduced(avatar_definition,[new_symbols(naming,[spl4_5])])). tff(f325,plain,( $less($sum(3,sK1),sK3) | sK3 = $sum(3,sK1)), inference(resolution,[],[f37,f13])). tff(f13,plain,( ( ! [X0 : $int,X1 : $int] : ($less(X0,X1) | $less(X1,X0) | X0 = X1) )), introduced(theory_axiom_148,[])). tff(f37,plain,( ~$less(sK3,$sum(3,sK1))), inference(backward_demodulation,[],[f28,f6])). tff(f28,plain,( ~$less(sK3,$sum(sK1,3))), inference(cnf_transformation,[],[f24])). tff(f321,plain,( ~spl4_5), inference(avatar_contradiction_clause,[],[f320])). tff(f320,plain,( $false | ~spl4_5), inference(subsumption_resolution,[],[f319,f79])). tff(f319,plain,( $less(sK1,sK3) | ~spl4_5), inference(evaluation,[],[f315])). tff(f315,plain,( $less(sK1,sK3) | ~$less(0,3) | ~spl4_5), inference(superposition,[],[f207,f38])). tff(f207,plain,( ( ! [X12 : $int] : ($less($sum(X12,sK1),sK3) | ~$less(X12,3)) ) | ~spl4_5), inference(superposition,[],[f14,f117])). tff(f117,plain,( sK3 = $sum(3,sK1) | ~spl4_5), inference(avatar_component_clause,[],[f115])). % SZS output end Proof for DAT013=1
% SZS output start Proof for SEU140+2 fof(f539,plain,( $false), inference(subsumption_resolution,[],[f523,f416])). fof(f416,plain,( in(sK0(sK2,sK4),sK3)), inference(unit_resulting_resolution,[],[f150,f337,f181])). fof(f181,plain,( ( ! [X3,X0,X1] : (~subset(X0,X1) | ~in(X3,X0) | in(X3,X1)) )), inference(cnf_transformation,[],[f115])). fof(f115,plain,( ! [X0,X1] : ((subset(X0,X1) | (~in(sK8(X0,X1),X1) & in(sK8(X0,X1),X0))) & (! [X3] : (in(X3,X1) | ~in(X3,X0)) | ~subset(X0,X1)))), inference(skolemisation,[status(esa),new_symbols(skolem,[sK8])],[f113,f114])). fof(f114,plain,( ! [X0,X1] : (? [X2] : (~in(X2,X1) & in(X2,X0)) => (~in(sK8(X0,X1),X1) & in(sK8(X0,X1),X0)))), introduced(choice_axiom,[])). fof(f113,plain,( ! [X0,X1] : ((subset(X0,X1) | ? [X2] : (~in(X2,X1) & in(X2,X0))) & (! [X3] : (in(X3,X1) | ~in(X3,X0)) | ~subset(X0,X1)))), inference(rectify,[],[f112])). fof(f112,plain,( ! [X0,X1] : ((subset(X0,X1) | ? [X2] : (~in(X2,X1) & in(X2,X0))) & (! [X2] : (in(X2,X1) | ~in(X2,X0)) | ~subset(X0,X1)))), inference(nnf_transformation,[],[f83])). fof(f83,plain,( ! [X0,X1] : (subset(X0,X1) <=> ! [X2] : (in(X2,X1) | ~in(X2,X0)))), inference(ennf_transformation,[],[f8])). fof(f8,axiom,( ! [X0,X1] : (subset(X0,X1) <=> ! [X2] : (in(X2,X0) => in(X2,X1)))), file('/home/filip/TPTP-v7.5.0/Problems/SEU/SEU140+2.p',unknown)). fof(f337,plain,( in(sK0(sK2,sK4),sK2)), inference(unit_resulting_resolution,[],[f152,f140])). fof(f140,plain,( ( ! [X0,X1] : (in(sK0(X0,X1),X0) | disjoint(X0,X1)) )), inference(cnf_transformation,[],[f92])). fof(f92,plain,( ! [X0,X1] : ((~disjoint(X0,X1) | ! [X2] : (~in(X2,X1) | ~in(X2,X0))) & ((in(sK0(X0,X1),X1) & in(sK0(X0,X1),X0)) | disjoint(X0,X1)))), inference(skolemisation,[status(esa),new_symbols(skolem,[sK0])],[f73,f91])). fof(f91,plain,( ! [X0,X1] : (? [X3] : (in(X3,X1) & in(X3,X0)) => (in(sK0(X0,X1),X1) & in(sK0(X0,X1),X0)))), introduced(choice_axiom,[])). fof(f73,plain,( ! [X0,X1] : ((~disjoint(X0,X1) | ! [X2] : (~in(X2,X1) | ~in(X2,X0))) & (? [X3] : (in(X3,X1) & in(X3,X0)) | disjoint(X0,X1)))), inference(ennf_transformation,[],[f58])). fof(f58,plain,( ! [X0,X1] : (~(disjoint(X0,X1) & ? [X2] : (in(X2,X1) & in(X2,X0))) & ~(! [X3] : ~(in(X3,X1) & in(X3,X0)) & ~disjoint(X0,X1)))), inference(rectify,[],[f43])). fof(f43,axiom,( ! [X0,X1] : (~(disjoint(X0,X1) & ? [X2] : (in(X2,X1) & in(X2,X0))) & ~(! [X2] : ~(in(X2,X1) & in(X2,X0)) & ~disjoint(X0,X1)))), file('/home/filip/TPTP-v7.5.0/Problems/SEU/SEU140+2.p',unknown)). fof(f152,plain,( ~disjoint(sK2,sK4)), inference(cnf_transformation,[],[f96])). fof(f96,plain,( ~disjoint(sK2,sK4) & disjoint(sK3,sK4) & subset(sK2,sK3)), inference(skolemisation,[status(esa),new_symbols(skolem,[sK2,sK3,sK4])],[f79,f95])). fof(f95,plain,( ? [X0,X1,X2] : (~disjoint(X0,X2) & disjoint(X1,X2) & subset(X0,X1)) => (~disjoint(sK2,sK4) & disjoint(sK3,sK4) & subset(sK2,sK3))), introduced(choice_axiom,[])). fof(f79,plain,( ? [X0,X1,X2] : (~disjoint(X0,X2) & disjoint(X1,X2) & subset(X0,X1))), inference(flattening,[],[f78])). fof(f78,plain,( ? [X0,X1,X2] : (~disjoint(X0,X2) & (disjoint(X1,X2) & subset(X0,X1)))), inference(ennf_transformation,[],[f52])). fof(f52,negated_conjecture,( ~! [X0,X1,X2] : ((disjoint(X1,X2) & subset(X0,X1)) => disjoint(X0,X2))), inference(negated_conjecture,[],[f51])). fof(f51,conjecture,( ! [X0,X1,X2] : ((disjoint(X1,X2) & subset(X0,X1)) => disjoint(X0,X2))), file('/home/filip/TPTP-v7.5.0/Problems/SEU/SEU140+2.p',unknown)). fof(f150,plain,( subset(sK2,sK3)), inference(cnf_transformation,[],[f96])). fof(f523,plain,( ~in(sK0(sK2,sK4),sK3)), inference(unit_resulting_resolution,[],[f151,f341,f142])). fof(f142,plain,( ( ! [X2,X0,X1] : (~disjoint(X0,X1) | ~in(X2,X1) | ~in(X2,X0)) )), inference(cnf_transformation,[],[f92])). fof(f341,plain,( in(sK0(sK2,sK4),sK4)), inference(unit_resulting_resolution,[],[f152,f141])). fof(f141,plain,( ( ! [X0,X1] : (in(sK0(X0,X1),X1) | disjoint(X0,X1)) )), inference(cnf_transformation,[],[f92])). fof(f151,plain,( disjoint(sK3,sK4)), inference(cnf_transformation,[],[f96])). % SZS output end Proof for SEU140+2
% (11912)# SZS output start Saturation. cnf(u143,negated_conjecture, patient(sK0,sK4,sK3)). cnf(u146,axiom, ~patient(X0,X1,X3) | ~agent(X0,X1,X3) | ~nonreflexive(X0,X1)). cnf(u142,negated_conjecture, agent(sK0,sK4,sK1)). cnf(u190,negated_conjecture, ~agent(sK0,sK4,sK3)). cnf(u144,negated_conjecture, nonreflexive(sK0,sK4)). cnf(u136,negated_conjecture, of(sK0,sK2,sK1)). cnf(u193,negated_conjecture, ~of(sK0,X0,sK1) | sK2 = X0 | ~forename(sK0,X0)). cnf(u134,axiom, ~of(X0,X3,X1) | X2 = X3 | ~forename(X0,X3) | ~of(X0,X2,X1) | ~forename(X0,X2) | ~entity(X0,X1)). cnf(u177,negated_conjecture, act(sK0,sK4)). cnf(u126,axiom, ~act(X0,X1) | event(X0,X1)). cnf(u175,negated_conjecture, nonexistent(sK0,sK4)). cnf(u129,axiom, ~nonexistent(X0,X1) | ~existent(X0,X1)). cnf(u173,negated_conjecture, eventuality(sK0,sK4)). cnf(u122,axiom, ~eventuality(X0,X1) | unisex(X0,X1)). cnf(u123,axiom, ~eventuality(X0,X1) | nonexistent(X0,X1)). cnf(u124,axiom, ~eventuality(X0,X1) | specific(X0,X1)). cnf(u141,negated_conjecture, event(sK0,sK4)). cnf(u125,axiom, ~event(X0,X1) | eventuality(X0,X1)). cnf(u145,negated_conjecture, order(sK0,sK4)). cnf(u121,axiom, ~order(X0,X1) | event(X0,X1)). cnf(u127,axiom, ~order(X0,X1) | act(X0,X1)). cnf(u140,negated_conjecture, shake_beverage(sK0,sK3)). cnf(u120,axiom, ~shake_beverage(X0,X1) | beverage(X0,X1)). cnf(u163,negated_conjecture, beverage(sK0,sK3)). cnf(u119,axiom, ~beverage(X0,X1) | food(X0,X1)). cnf(u164,negated_conjecture, food(sK0,sK3)). cnf(u118,axiom, ~food(X0,X1) | substance_matter(X0,X1)). cnf(u166,negated_conjecture, substance_matter(sK0,sK3)). cnf(u117,axiom, ~substance_matter(X0,X1) | object(X0,X1)). cnf(u174,negated_conjecture, specific(sK0,sK4)). cnf(u171,negated_conjecture, specific(sK0,sK3)). cnf(u162,negated_conjecture, specific(sK0,sK1)). cnf(u132,axiom, ~specific(X0,X1) | ~general(X0,X1)). cnf(u172,negated_conjecture, existent(sK0,sK3)). cnf(u161,negated_conjecture, existent(sK0,sK1)). cnf(u180,negated_conjecture, ~existent(sK0,sK4)). cnf(u169,negated_conjecture, nonliving(sK0,sK3)). cnf(u128,axiom, ~nonliving(X0,X1) | ~animate(X0,X1)). cnf(u131,axiom, ~nonliving(X0,X1) | ~living(X0,X1)). cnf(u167,negated_conjecture, object(sK0,sK3)). cnf(u112,axiom, ~object(X0,X1) | unisex(X0,X1)). cnf(u113,axiom, ~object(X0,X1) | nonliving(X0,X1)). cnf(u116,axiom, ~object(X0,X1) | entity(X0,X1)). cnf(u155,negated_conjecture, relname(sK0,sK2)). cnf(u110,axiom, ~relname(X0,X1) | relation(X0,X1)). cnf(u156,negated_conjecture, relation(sK0,sK2)). cnf(u109,axiom, ~relation(X0,X1) | abstraction(X0,X1)). cnf(u158,negated_conjecture, nonhuman(sK0,sK2)). cnf(u130,axiom, ~nonhuman(X0,X1) | ~human(X0,X1)). cnf(u159,negated_conjecture, general(sK0,sK2)). cnf(u184,negated_conjecture, ~general(sK0,sK3)). cnf(u183,negated_conjecture, ~general(sK0,sK1)). cnf(u185,negated_conjecture, ~general(sK0,sK4)). cnf(u176,negated_conjecture, unisex(sK0,sK4)). cnf(u170,negated_conjecture, unisex(sK0,sK3)). cnf(u160,negated_conjecture, unisex(sK0,sK2)). cnf(u133,axiom, ~unisex(X0,X1) | ~female(X0,X1)). cnf(u157,negated_conjecture, abstraction(sK0,sK2)). cnf(u106,axiom, ~abstraction(X0,X1) | unisex(X0,X1)). cnf(u107,axiom, ~abstraction(X0,X1) | general(X0,X1)). cnf(u108,axiom, ~abstraction(X0,X1) | nonhuman(X0,X1)). cnf(u139,negated_conjecture, forename(sK0,sK2)). cnf(u111,axiom, ~forename(X0,X1) | relname(X0,X1)). cnf(u138,negated_conjecture, mia_forename(sK0,sK2)). cnf(u105,axiom, ~mia_forename(X0,X1) | forename(X0,X1)). cnf(u168,negated_conjecture, entity(sK0,sK3)). cnf(u153,negated_conjecture, entity(sK0,sK1)). cnf(u114,axiom, ~entity(X0,X1) | existent(X0,X1)). cnf(u115,axiom, ~entity(X0,X1) | specific(X0,X1)). cnf(u154,negated_conjecture, living(sK0,sK1)). cnf(u182,negated_conjecture, ~living(sK0,sK3)). cnf(u149,negated_conjecture, organism(sK0,sK1)). cnf(u101,axiom, ~organism(X0,X1) | living(X0,X1)). cnf(u102,axiom, ~organism(X0,X1) | entity(X0,X1)). cnf(u150,negated_conjecture, human(sK0,sK1)). cnf(u181,negated_conjecture, ~human(sK0,sK2)). cnf(u151,negated_conjecture, animate(sK0,sK1)). cnf(u179,negated_conjecture, ~animate(sK0,sK3)). cnf(u148,negated_conjecture, human_person(sK0,sK1)). cnf(u99,axiom, ~human_person(X0,X1) | animate(X0,X1)). cnf(u100,axiom, ~human_person(X0,X1) | human(X0,X1)). cnf(u103,axiom, ~human_person(X0,X1) | organism(X0,X1)). cnf(u147,negated_conjecture, female(sK0,sK1)). cnf(u187,negated_conjecture, ~female(sK0,sK3)). cnf(u186,negated_conjecture, ~female(sK0,sK2)). cnf(u188,negated_conjecture, ~female(sK0,sK4)). cnf(u137,negated_conjecture, woman(sK0,sK1)). cnf(u98,axiom, ~woman(X0,X1) | female(X0,X1)). cnf(u104,axiom, ~woman(X0,X1) | human_person(X0,X1)). % (11912)# SZS output end Saturation.
% (11974)# SZS output start Saturation. cnf(u126,axiom, intruder_message(encrypt(X1,X2)) | ~intruder_message(X2) | ~intruder_message(X1)). cnf(u166,axiom, ~intruder_message(at)). cnf(u183,axiom, intruder_message(generate_b_nonce(X2)) | ~fresh_to_b(X2) | ~intruder_message(X2)). cnf(u231,axiom, ~fresh_to_b(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))). cnf(u235,axiom, ~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))). cnf(u276,axiom, intruder_message(encrypt(X2,generate_key(an_a_nonce))) | ~intruder_message(X2)). cnf(u327,axiom, ~a_nonce(generate_key(an_a_nonce))). cnf(u334,axiom, ~intruder_message(bt)). cnf(u103,axiom, fresh_intruder_nonce(generate_intruder_nonce(X0)) | ~fresh_intruder_nonce(X0)). cnf(u102,axiom, fresh_intruder_nonce(an_intruder_nonce)). cnf(u104,axiom, ~fresh_intruder_nonce(X0) | fresh_to_b(X0)). cnf(u105,axiom, ~fresh_intruder_nonce(X0) | intruder_message(X0)). cnf(u94,axiom, intruder_holds(key(X0,X1)) | ~party_of_protocol(X1) | ~intruder_message(X0)). cnf(u95,axiom, ~intruder_holds(key(X1,X2)) | ~party_of_protocol(X2) | intruder_message(encrypt(X0,X1)) | ~intruder_message(X0)). cnf(u111,axiom, intruder_message(generate_intruder_nonce(X0)) | ~fresh_intruder_nonce(X0)). cnf(u110,axiom, intruder_message(an_intruder_nonce)). cnf(u148,axiom, intruder_message(generate_b_nonce(an_a_nonce))). cnf(u359,axiom, intruder_message(triple(encrypt(quadruple(b,X0,generate_key(X0),generate_expiration_time(X0)),bt),encrypt(triple(b,generate_key(X0),generate_expiration_time(X0)),bt),X1)) | ~intruder_message(X1) | ~intruder_message(X0) | ~fresh_to_b(X0) | ~a_nonce(X0)). cnf(u351,axiom, intruder_message(triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),at),encrypt(triple(a,generate_key(X1),generate_expiration_time(X1)),bt),X2)) | ~intruder_message(X2) | ~intruder_message(X1) | ~fresh_to_b(X1) | ~a_nonce(X1)). cnf(u348,axiom, intruder_message(triple(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at),encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),X1)) | ~intruder_message(X1)). cnf(u241,axiom, intruder_message(triple(encrypt(quadruple(b,X0,generate_key(X0),generate_expiration_time(X0)),bt),encrypt(triple(b,generate_key(X0),generate_expiration_time(X0)),bt),generate_b_nonce(X0))) | ~fresh_to_b(X0) | ~intruder_message(X0) | ~a_nonce(X0)). cnf(u224,axiom, intruder_message(triple(encrypt(quadruple(b,X0,generate_key(X0),generate_expiration_time(X0)),at),encrypt(triple(a,generate_key(X0),generate_expiration_time(X0)),bt),generate_b_nonce(X0))) | ~fresh_to_b(X0) | ~intruder_message(X0) | ~a_nonce(X0)). cnf(u221,axiom, intruder_message(triple(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at),encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),generate_b_nonce(an_a_nonce)))). cnf(u171,axiom, intruder_message(triple(b,generate_b_nonce(X1),encrypt(triple(X0,X1,generate_expiration_time(X1)),bt))) | ~fresh_to_b(X1) | ~intruder_message(X1) | ~intruder_message(X0) | ~party_of_protocol(X0)). cnf(u145,axiom, intruder_message(triple(b,generate_b_nonce(an_a_nonce),encrypt(triple(a,an_a_nonce,generate_expiration_time(an_a_nonce)),bt)))). cnf(u90,axiom, intruder_message(triple(X0,X1,X2)) | ~intruder_message(X2) | ~intruder_message(X1) | ~intruder_message(X0)). cnf(u226,axiom, intruder_message(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))). cnf(u266,axiom, intruder_message(encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt)) | ~intruder_message(X1) | ~a_nonce(X1) | ~fresh_to_b(X1)). cnf(u175,axiom, intruder_message(encrypt(triple(X1,X0,generate_expiration_time(X0)),bt)) | ~intruder_message(X0) | ~intruder_message(X1) | ~party_of_protocol(X1) | ~fresh_to_b(X0)). cnf(u260,axiom, intruder_message(encrypt(triple(a,generate_key(X1),generate_expiration_time(X1)),bt)) | ~intruder_message(X1) | ~a_nonce(X1) | ~fresh_to_b(X1)). cnf(u227,axiom, intruder_message(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))). cnf(u147,axiom, intruder_message(encrypt(triple(a,an_a_nonce,generate_expiration_time(an_a_nonce)),bt))). cnf(u267,axiom, intruder_message(encrypt(quadruple(b,X2,generate_key(X2),generate_expiration_time(X2)),bt)) | ~intruder_message(X2) | ~a_nonce(X2) | ~fresh_to_b(X2)). cnf(u261,axiom, intruder_message(encrypt(quadruple(b,X2,generate_key(X2),generate_expiration_time(X2)),at)) | ~intruder_message(X2) | ~a_nonce(X2) | ~fresh_to_b(X2)). cnf(u253,axiom, intruder_message(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at))). cnf(u91,axiom, intruder_message(quadruple(X0,X1,X2,X3)) | ~intruder_message(X3) | ~intruder_message(X2) | ~intruder_message(X1) | ~intruder_message(X0)). cnf(u349,axiom, intruder_message(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(X0,generate_key(an_a_nonce)))) | ~intruder_message(X0)). cnf(u222,axiom, intruder_message(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce))))). cnf(u263,axiom, intruder_message(pair(X1,encrypt(X2,generate_key(an_a_nonce)))) | ~intruder_message(X2) | ~intruder_message(X1)). cnf(u89,axiom, intruder_message(pair(X0,X1)) | ~intruder_message(X1) | ~intruder_message(X0)). cnf(u113,axiom, intruder_message(pair(a,an_a_nonce))). cnf(u114,axiom, intruder_message(an_a_nonce)). cnf(u149,axiom, intruder_message(b)). cnf(u115,axiom, intruder_message(a)). cnf(u156,axiom, ~intruder_message(triple(encrypt(quadruple(b,an_a_nonce,X2,X3),at),X0,X1)) | message(sent(a,b,pair(X0,encrypt(X1,X2))))). cnf(u219,axiom, ~intruder_message(triple(b,X3,encrypt(triple(b,X1,X2),bt))) | message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),bt),X3))) | ~a_nonce(X1)). cnf(u190,axiom, ~intruder_message(triple(b,X3,encrypt(triple(a,X1,X2),bt))) | message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),bt),X3))) | ~a_nonce(X1)). cnf(u213,axiom, ~intruder_message(triple(a,X2,encrypt(triple(b,X0,X1),at))) | message(sent(t,b,triple(encrypt(quadruple(a,X0,generate_key(X0),X1),bt),encrypt(triple(b,generate_key(X0),X1),at),X2))) | ~a_nonce(X0)). cnf(u174,axiom, ~intruder_message(triple(a,X2,encrypt(triple(a,X0,X1),at))) | message(sent(t,a,triple(encrypt(quadruple(a,X0,generate_key(X0),X1),at),encrypt(triple(a,generate_key(X0),X1),at),X2))) | ~a_nonce(X0)). cnf(u82,axiom, ~intruder_message(triple(X0,X1,X2)) | intruder_message(X0)). cnf(u83,axiom, ~intruder_message(triple(X0,X1,X2)) | intruder_message(X1)). cnf(u84,axiom, ~intruder_message(triple(X0,X1,X2)) | intruder_message(X2)). cnf(u256,axiom, ~intruder_message(encrypt(triple(b,X1,X2),bt)) | ~a_nonce(X1) | message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),bt),X3))) | ~intruder_message(X3)). cnf(u247,axiom, ~intruder_message(encrypt(triple(a,X1,X2),bt)) | ~a_nonce(X1) | message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),bt),X3))) | ~intruder_message(X3)). cnf(u249,axiom, ~intruder_message(encrypt(triple(b,X0,X1),at)) | ~a_nonce(X0) | message(sent(t,b,triple(encrypt(quadruple(a,X0,generate_key(X0),X1),bt),encrypt(triple(b,generate_key(X0),X1),at),X2))) | ~intruder_message(X2)). cnf(u243,axiom, ~intruder_message(encrypt(triple(a,X0,X1),at)) | ~a_nonce(X0) | message(sent(t,a,triple(encrypt(quadruple(a,X0,generate_key(X0),X1),at),encrypt(triple(a,generate_key(X0),X1),at),X2))) | ~intruder_message(X2)). cnf(u159,axiom, ~intruder_message(encrypt(quadruple(b,an_a_nonce,X2,X3),at)) | ~intruder_message(X1) | ~intruder_message(X0) | message(sent(a,b,pair(X0,encrypt(X1,X2))))). cnf(u85,axiom, ~intruder_message(quadruple(X0,X1,X2,X3)) | intruder_message(X0)). cnf(u86,axiom, ~intruder_message(quadruple(X0,X1,X2,X3)) | intruder_message(X1)). cnf(u87,axiom, ~intruder_message(quadruple(X0,X1,X2,X3)) | intruder_message(X2)). cnf(u88,axiom, ~intruder_message(quadruple(X0,X1,X2,X3)) | intruder_message(X3)). cnf(u80,axiom, ~intruder_message(pair(X0,X1)) | intruder_message(X0)). cnf(u81,axiom, ~intruder_message(pair(X0,X1)) | intruder_message(X1)). cnf(u144,axiom, ~intruder_message(pair(X1,X0)) | message(sent(b,t,triple(b,generate_b_nonce(X0),encrypt(triple(X1,X0,generate_expiration_time(X0)),bt)))) | ~party_of_protocol(X1) | ~fresh_to_b(X0)). cnf(u99,axiom, a_nonce(generate_b_nonce(X0))). cnf(u98,axiom, a_nonce(generate_expiration_time(X0))). cnf(u96,axiom, a_nonce(an_a_nonce)). cnf(u344,axiom, ~a_nonce(generate_key(X0)) | ~a_nonce(X0) | ~fresh_to_b(X0) | ~intruder_message(X0) | message(sent(t,a,triple(encrypt(quadruple(b,generate_key(X0),generate_key(generate_key(X0)),generate_expiration_time(X0)),at),encrypt(triple(a,generate_key(generate_key(X0)),generate_expiration_time(X0)),bt),X1))) | ~intruder_message(X1)). cnf(u345,axiom, ~a_nonce(generate_key(X0)) | ~a_nonce(X0) | ~fresh_to_b(X0) | ~intruder_message(X0) | message(sent(t,b,triple(encrypt(quadruple(b,generate_key(X0),generate_key(generate_key(X0)),generate_expiration_time(X0)),bt),encrypt(triple(b,generate_key(generate_key(X0)),generate_expiration_time(X0)),bt),X1))) | ~intruder_message(X1)). cnf(u100,axiom, ~a_nonce(X0) | ~a_key(X0)). cnf(u76,axiom, t_holds(key(bt,b))). cnf(u75,axiom, t_holds(key(at,a))). cnf(u78,axiom, ~t_holds(key(X6,X2)) | ~a_nonce(X3) | message(sent(t,X2,triple(encrypt(quadruple(X0,X3,generate_key(X3),X4),X6),encrypt(triple(X2,generate_key(X3),X4),X5),X1))) | ~t_holds(key(X5,X0)) | ~message(sent(X0,t,triple(X0,X1,encrypt(triple(X2,X3,X4),X5))))). cnf(u150,axiom, ~t_holds(key(X3,X1)) | message(sent(t,a,triple(encrypt(quadruple(X1,X0,generate_key(X0),X2),at),encrypt(triple(a,generate_key(X0),X2),X3),X4))) | ~a_nonce(X0) | ~message(sent(X1,t,triple(X1,X4,encrypt(triple(a,X0,X2),X3))))). cnf(u151,axiom, ~t_holds(key(X8,X6)) | message(sent(t,b,triple(encrypt(quadruple(X6,X5,generate_key(X5),X7),bt),encrypt(triple(b,generate_key(X5),X7),X8),X9))) | ~a_nonce(X5) | ~message(sent(X6,t,triple(X6,X9,encrypt(triple(b,X5,X7),X8))))). cnf(u101,axiom, a_key(generate_key(X0))). cnf(u108,axiom, ~a_key(generate_b_nonce(X1))). cnf(u107,axiom, ~a_key(generate_expiration_time(X0))). cnf(u106,axiom, ~a_key(an_a_nonce)). cnf(u112,axiom, fresh_to_b(generate_intruder_nonce(X1)) | ~fresh_intruder_nonce(X1)). cnf(u109,axiom, fresh_to_b(an_intruder_nonce)). cnf(u73,axiom, fresh_to_b(an_a_nonce)). cnf(u264,axiom, ~fresh_to_b(encrypt(X0,generate_key(an_a_nonce))) | ~intruder_message(X0) | message(sent(b,t,triple(b,generate_b_nonce(encrypt(X0,generate_key(an_a_nonce))),encrypt(triple(a,encrypt(X0,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X0,generate_key(an_a_nonce)))),bt))))). cnf(u268,axiom, ~fresh_to_b(encrypt(X0,generate_key(an_a_nonce))) | ~intruder_message(X1) | message(sent(b,t,triple(b,generate_b_nonce(encrypt(X0,generate_key(an_a_nonce))),encrypt(triple(X1,encrypt(X0,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X0,generate_key(an_a_nonce)))),bt)))) | ~party_of_protocol(X1) | ~intruder_message(X0)). cnf(u70,axiom, a_stored(pair(b,an_a_nonce))). cnf(u71,axiom, ~a_stored(pair(X4,X5)) | message(sent(a,X4,pair(X3,encrypt(X0,X2)))) | ~message(sent(t,a,triple(encrypt(quadruple(X4,X5,X2,X1),at),X3,X0)))). cnf(u153,axiom, message(sent(b,t,triple(b,generate_b_nonce(X0),encrypt(triple(X1,X0,generate_expiration_time(X0)),bt)))) | ~party_of_protocol(X1) | ~fresh_to_b(X0) | ~intruder_message(X0) | ~intruder_message(X1)). cnf(u143,axiom, message(sent(b,t,triple(b,generate_b_nonce(an_a_nonce),encrypt(triple(a,an_a_nonce,generate_expiration_time(an_a_nonce)),bt))))). cnf(u257,axiom, message(sent(a,b,pair(X1,encrypt(X0,generate_key(an_a_nonce))))) | ~intruder_message(X1) | ~intruder_message(X0)). cnf(u347,axiom, message(sent(a,b,pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(X0,generate_key(an_a_nonce))))) | ~intruder_message(X0)). cnf(u220,axiom, message(sent(a,b,pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))))). cnf(u69,axiom, message(sent(a,b,pair(a,an_a_nonce)))). cnf(u343,axiom, message(sent(t,b,triple(encrypt(quadruple(b,X0,generate_key(X0),generate_expiration_time(X0)),bt),encrypt(triple(b,generate_key(X0),generate_expiration_time(X0)),bt),X1))) | ~a_nonce(X0) | ~intruder_message(X1) | ~intruder_message(X0) | ~fresh_to_b(X0)). cnf(u330,axiom, message(sent(t,a,triple(encrypt(quadruple(b,X2,generate_key(X2),generate_expiration_time(X2)),at),encrypt(triple(a,generate_key(X2),generate_expiration_time(X2)),bt),X3))) | ~a_nonce(X2) | ~intruder_message(X3) | ~intruder_message(X2) | ~fresh_to_b(X2)). cnf(u320,axiom, message(sent(t,a,triple(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at),encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),X0))) | ~intruder_message(X0)). cnf(u217,axiom, message(sent(t,b,triple(encrypt(quadruple(b,X0,generate_key(X0),generate_expiration_time(X0)),bt),encrypt(triple(b,generate_key(X0),generate_expiration_time(X0)),bt),generate_b_nonce(X0)))) | ~a_nonce(X0) | ~fresh_to_b(X0) | ~intruder_message(X0)). cnf(u210,axiom, message(sent(t,a,triple(encrypt(quadruple(b,X0,generate_key(X0),generate_expiration_time(X0)),at),encrypt(triple(a,generate_key(X0),generate_expiration_time(X0)),bt),generate_b_nonce(X0)))) | ~a_nonce(X0) | ~fresh_to_b(X0) | ~intruder_message(X0)). cnf(u188,axiom, message(sent(t,a,triple(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at),encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),generate_b_nonce(an_a_nonce))))). cnf(u93,axiom, message(sent(X1,X2,X0)) | ~party_of_protocol(X2) | ~party_of_protocol(X1) | ~intruder_message(X0)). cnf(u161,axiom, ~message(sent(b,t,triple(b,X5,encrypt(triple(b,X3,X4),bt)))) | ~a_nonce(X3) | message(sent(t,b,triple(encrypt(quadruple(b,X3,generate_key(X3),X4),bt),encrypt(triple(b,generate_key(X3),X4),bt),X5)))). cnf(u158,axiom, ~message(sent(b,t,triple(b,X5,encrypt(triple(a,X3,X4),bt)))) | ~a_nonce(X3) | message(sent(t,a,triple(encrypt(quadruple(b,X3,generate_key(X3),X4),at),encrypt(triple(a,generate_key(X3),X4),bt),X5)))). cnf(u160,axiom, ~message(sent(a,t,triple(a,X2,encrypt(triple(b,X0,X1),at)))) | ~a_nonce(X0) | message(sent(t,b,triple(encrypt(quadruple(a,X0,generate_key(X0),X1),bt),encrypt(triple(b,generate_key(X0),X1),at),X2)))). cnf(u157,axiom, ~message(sent(a,t,triple(a,X2,encrypt(triple(a,X0,X1),at)))) | ~a_nonce(X0) | message(sent(t,a,triple(encrypt(quadruple(a,X0,generate_key(X0),X1),at),encrypt(triple(a,generate_key(X0),X1),at),X2)))). cnf(u146,axiom, ~message(sent(t,a,triple(encrypt(quadruple(b,an_a_nonce,X2,X3),at),X0,X1))) | message(sent(a,b,pair(X0,encrypt(X1,X2))))). cnf(u74,axiom, ~message(sent(X0,b,pair(X0,X1))) | ~fresh_to_b(X1) | message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X0,X1,generate_expiration_time(X1)),bt))))). cnf(u79,axiom, ~message(sent(X0,X1,X2)) | intruder_message(X2)). cnf(u77,axiom, party_of_protocol(t)). cnf(u72,axiom, party_of_protocol(b)). cnf(u68,axiom, party_of_protocol(a)). % (11974)# SZS output end Saturation.
% SZS output start Proof for BOO001-1 fof(f209,plain,( $false), inference(trivial_inequality_removal,[],[f204])). fof(f204,plain,( a != a), inference(superposition,[],[f6,f146])). fof(f146,plain,( ( ! [X21] : (inverse(inverse(X21)) = X21) )), inference(superposition,[],[f130,f5])). fof(f5,axiom,( ( ! [X2,X3] : (multiply(X2,X3,inverse(X3)) = X2) )), file('/home/filip/TPTP-v7.5.0/Problems/BOO/BOO001-1.p',unknown)). fof(f130,plain,( ( ! [X31,X32] : (multiply(X32,inverse(X32),X31) = X31) )), inference(superposition,[],[f32,f5])). fof(f32,plain,( ( ! [X3,X4,X5] : (multiply(X5,X3,X4) = multiply(X3,X4,multiply(X5,X3,X4))) )), inference(superposition,[],[f7,f2])). fof(f2,axiom,( ( ! [X2,X3] : (multiply(X3,X2,X2) = X2) )), file('/home/filip/TPTP-v7.5.0/Problems/BOO/BOO001-1.p',unknown)). fof(f7,plain,( ( ! [X2,X3,X0,X1] : (multiply(X0,X1,multiply(X1,X2,X3)) = multiply(X1,X2,multiply(X0,X1,X3))) )), inference(superposition,[],[f1,f2])). fof(f1,axiom,( ( ! [X2,X3,X0,X1,X4] : (multiply(multiply(X0,X1,X2),X3,multiply(X0,X1,X4)) = multiply(X0,X1,multiply(X2,X3,X4))) )), file('/home/filip/TPTP-v7.5.0/Problems/BOO/BOO001-1.p',unknown)). fof(f6,axiom,( a != inverse(inverse(a))), file('/home/filip/TPTP-v7.5.0/Problems/BOO/BOO001-1.p',unknown)). % SZS output end Proof for BOO001-1
% SZS status Unsatisfiable % SZS output start Proof To show the unsatisfiability, it suffices to show that multiply(a,a) = a (skolemized goal) is valid under the axioms. This is an equational proof: 0: add(X,Y) = add(Y,X). Proof: Axiom. 2: add(X,multiply(Y,Z)) = multiply(add(X,Y),add(X,Z)). Proof: Axiom. 3: multiply(X,add(Y,Z)) = add(multiply(X,Y),multiply(X,Z)). Proof: Axiom. 4: add(X,additive_identity) = X. Proof: Axiom. 5: multiply(X,multiplicative_identity) = X. Proof: Axiom. 6: add(X,inverse(X)) = multiplicative_identity. Proof: Axiom. 7: multiply(X,inverse(X)) = additive_identity. Proof: Axiom. 8: multiply(X,add(Y,Z)) = multiply(multiply(add(X,X),add(X,Y)),add(multiply(X,Y),Z)). Proof: Rewrite equation 3, lhs with equations [] rhs with equations [2,0,2]. 10: X1 = add(additive_identity,X1). Proof: A critical pair between equations 4 and 0. 11: multiply(add(X0,X3),add(X0,multiplicative_identity)) = add(X0,X3). Proof: A critical pair between equations 2 and 5. 12: multiply(add(X0,X3),add(X0,inverse(X3))) = add(X0,additive_identity). Proof: A critical pair between equations 2 and 7. 14: multiply(X3,add(multiplicative_identity,Z2)) = multiply(multiply(add(X3,X3),add(X3,multiplicative_identity)),add(X3,Z2)). Proof: A critical pair between equations 8 and 5. 19: multiply(X3,add(inverse(X3),Z2)) = multiply(multiply(add(X3,X3),add(X3,inverse(X3))),add(additive_identity,Z2)). Proof: A critical pair between equations 8 and 7. 20: multiply(X3,add(inverse(X3),Z2)) = multiply(multiply(add(X3,X3),multiplicative_identity),add(multiply(X3,inverse(X3)),Z2)). Proof: A critical pair between equations 8 and 6. 21: multiply(add(X0,X3),add(X0,inverse(X3))) = X0. Proof: Rewrite equation 12, lhs with equations [] rhs with equations [4]. 22: multiply(X3,add(multiplicative_identity,Z2)) = multiply(add(X3,X3),add(X3,Z2)). Proof: Rewrite equation 14, lhs with equations [] rhs with equations [11]. 27: multiply(X3,add(inverse(X3),Z2)) = multiply(X3,Z2). Proof: Rewrite equation 19, lhs with equations [] rhs with equations [21,10]. 28: multiply(X3,Z2) = multiply(add(X3,X3),add(multiply(X3,inverse(X3)),Z2)). Proof: Rewrite equation 20, lhs with equations [27] rhs with equations [5]. 29: inverse(additive_identity) = multiplicative_identity. Proof: A critical pair between equations 10 and 6. 30: X2 = multiply(add(X2,X2),multiplicative_identity). Proof: A critical pair between equations 21 and 6. 37: X2 = multiply(X2,add(X2,inverse(additive_identity))). Proof: A critical pair between equations 21 and 4. 41: multiply(X3,Z2) = multiply(add(X3,X3),Z2). Proof: Rewrite equation 28, lhs with equations [] rhs with equations [7,10]. 44: multiply(X3,add(multiplicative_identity,Z2)) = multiply(X3,add(X3,Z2)). Proof: Rewrite equation 22, lhs with equations [] rhs with equations [41]. 48: X2 = add(X2,X2). Proof: Rewrite equation 30, lhs with equations [] rhs with equations [5]. 51: X2 = multiply(X2,add(X2,multiplicative_identity)). Proof: Rewrite equation 37, lhs with equations [] rhs with equations [29]. 57: X1 = multiply(X1,add(multiplicative_identity,X1)). Proof: A critical pair between equations 51 and 0. 59: multiply(X22,add(multiplicative_identity,X22)) = multiply(X22,X22). Proof: A critical pair between equations 44 and 48. 68: X1 = multiply(X1,X1). Proof: Rewrite equation 57, lhs with equations [] rhs with equations [59]. 70: multiply(a,a) = a. Proof: Rewrite lhs with equations [68] rhs with equations []. % SZS output end Proof
% SZS status Unsatisfiable % SZS output start Proof Axiom 1 (ternary_multiply_1): multiply(X, Y, Y) = Y. Axiom 2 (right_inverse): multiply(X, Y, inverse(Y)) = X. Axiom 3 (associativity): multiply(multiply(X, Y, Z), W, multiply(X, Y, V)) = multiply(X, Y, multiply(Z, W, V)). Goal 1 (prove_inverse_is_self_cancelling): inverse(inverse(a)) = a. Proof: inverse(inverse(a)) = { by axiom 2 (right_inverse) R->L } multiply(inverse(inverse(a)), a, inverse(a)) = { by axiom 1 (ternary_multiply_1) R->L } multiply(inverse(inverse(a)), a, multiply(a, inverse(a), inverse(a))) = { by axiom 3 (associativity) R->L } multiply(multiply(inverse(inverse(a)), a, a), inverse(a), multiply(inverse(inverse(a)), a, inverse(a))) = { by axiom 1 (ternary_multiply_1) } multiply(a, inverse(a), multiply(inverse(inverse(a)), a, inverse(a))) = { by axiom 2 (right_inverse) } multiply(a, inverse(a), inverse(inverse(a))) = { by axiom 2 (right_inverse) } a % SZS output end Proof
% SZS output start Proof Axiom 1 (ternary_multiply_1): multiply(X, Y, Y) = Y. Axiom 2 (right_inverse): multiply(X, Y, inverse(Y)) = X. Axiom 3 (associativity): multiply(multiply(X, Y, Z), W, multiply(X, Y, V)) = multiply(X, Y, multiply(Z, W, V)). Goal 1 (prove_inverse_is_self_cancelling): inverse(inverse(a)) = a. Proof: inverse(inverse(a)) = { by axiom 2 (right_inverse) R->L } multiply(inverse(inverse(a)), a, inverse(a)) = { by axiom 1 (ternary_multiply_1) R->L } multiply(inverse(inverse(a)), a, multiply(a, inverse(a), inverse(a))) = { by axiom 3 (associativity) R->L } multiply(multiply(inverse(inverse(a)), a, a), inverse(a), multiply(inverse(inverse(a)), a, inverse(a))) = { by axiom 1 (ternary_multiply_1) } multiply(a, inverse(a), multiply(inverse(inverse(a)), a, inverse(a))) = { by axiom 2 (right_inverse) } multiply(a, inverse(a), inverse(inverse(a))) = { by axiom 2 (right_inverse) } a % SZS output end Proof
% SZS output start Proof for DAT013=1 tff(type_def_5, type, array: $tType). tff(func_def_0, type, read: (array * $int) > $int). tff(func_def_1, type, write: (array * $int * $int) > array). tff(func_def_7, type, sK0: array). tff(func_def_8, type, sK1: $int). tff(func_def_9, type, sK2: $int). tff(func_def_10, type, sK3: $int). tff(f2323,plain,( $false), inference(subsumption_resolution,[],[f2316,f143])). tff(f143,plain,( $less(sK3,sK1)), inference(subsumption_resolution,[],[f140,f29])). tff(f29,plain,( ~$less(sK2,sK3)), inference(cnf_transformation,[],[f24])). tff(f24,plain,( (~$less(0,read(sK0,sK3)) & ~$less(sK2,sK3) & ~$less(sK3,$sum(sK1,3))) & ! [X4 : $int] : ($less(0,read(sK0,X4)) | $less(sK2,X4) | $less(X4,sK1))), inference(skolemisation,[status(esa),new_symbols(skolem,[sK0,sK1,sK2,sK3])],[f21,f23,f22])). tff(f22,plain,( ? [X0 : array,X1 : $int,X2 : $int] : (? [X3 : $int] : (~$less(0,read(X0,X3)) & ~$less(X2,X3) & ~$less(X3,$sum(X1,3))) & ! [X4 : $int] : ($less(0,read(X0,X4)) | $less(X2,X4) | $less(X4,X1))) => (? [X3 : $int] : (~$less(0,read(sK0,X3)) & ~$less(sK2,X3) & ~$less(X3,$sum(sK1,3))) & ! [X4 : $int] : ($less(0,read(sK0,X4)) | $less(sK2,X4) | $less(X4,sK1)))), introduced(choice_axiom,[])). tff(f23,plain,( ? [X3 : $int] : (~$less(0,read(sK0,X3)) & ~$less(sK2,X3) & ~$less(X3,$sum(sK1,3))) => (~$less(0,read(sK0,sK3)) & ~$less(sK2,sK3) & ~$less(sK3,$sum(sK1,3)))), introduced(choice_axiom,[])). tff(f21,plain,( ? [X0 : array,X1 : $int,X2 : $int] : (? [X3 : $int] : (~$less(0,read(X0,X3)) & ~$less(X2,X3) & ~$less(X3,$sum(X1,3))) & ! [X4 : $int] : ($less(0,read(X0,X4)) | $less(X2,X4) | $less(X4,X1)))), inference(rectify,[],[f20])). tff(f20,plain,( ? [X0 : array,X1 : $int,X2 : $int] : (? [X4 : $int] : (~$less(0,read(X0,X4)) & ~$less(X2,X4) & ~$less(X4,$sum(X1,3))) & ! [X3 : $int] : ($less(0,read(X0,X3)) | $less(X2,X3) | $less(X3,X1)))), inference(flattening,[],[f19])). tff(f19,plain,( ? [X0 : array,X1 : $int,X2 : $int] : (? [X4 : $int] : (~$less(0,read(X0,X4)) & (~$less(X2,X4) & ~$less(X4,$sum(X1,3)))) & ! [X3 : $int] : ($less(0,read(X0,X3)) | ($less(X2,X3) | $less(X3,X1))))), inference(ennf_transformation,[],[f5])). tff(f5,plain,( ~! [X0 : array,X1 : $int,X2 : $int] : (! [X3 : $int] : ((~$less(X2,X3) & ~$less(X3,X1)) => $less(0,read(X0,X3))) => ! [X4 : $int] : ((~$less(X2,X4) & ~$less(X4,$sum(X1,3))) => $less(0,read(X0,X4))))), inference(theory_normalization,[],[f4])). tff(f4,negated_conjecture,( ~! [X0 : array,X1 : $int,X2 : $int] : (! [X3 : $int] : (($lesseq(X3,X2) & $lesseq(X1,X3)) => $greater(read(X0,X3),0)) => ! [X4 : $int] : (($lesseq(X4,X2) & $lesseq($sum(X1,3),X4)) => $greater(read(X0,X4),0)))), inference(negated_conjecture,[],[f3])). tff(f3,conjecture,( ! [X0 : array,X1 : $int,X2 : $int] : (! [X3 : $int] : (($lesseq(X3,X2) & $lesseq(X1,X3)) => $greater(read(X0,X3),0)) => ! [X4 : $int] : (($lesseq(X4,X2) & $lesseq($sum(X1,3),X4)) => $greater(read(X0,X4),0)))), file('Problems/DAT/DAT013=1.p',unknown)). tff(f140,plain,( $less(sK2,sK3) | $less(sK3,sK1)), inference(resolution,[],[f27,f30])). tff(f30,plain,( ~$less(0,read(sK0,sK3))), inference(cnf_transformation,[],[f24])). tff(f27,plain,( ( ! [X4:$int] : ($less(0,read(sK0,X4)) | $less(sK2,X4) | $less(X4,sK1)) )), inference(cnf_transformation,[],[f24])). tff(f2316,plain,( ~$less(sK3,sK1)), inference(backward_demodulation,[],[f31,f2315])). tff(f2315,plain,( sK1 = $sum(3,sK1)), inference(subsumption_resolution,[],[f2282,f1467])). tff(f1467,plain,( ( ! [X3:$int] : (~$less($sum(3,X3),X3)) )), inference(resolution,[],[f1229,f125])). tff(f125,plain,( ( ! [X6:$int,X4:$int,X5:$int] : ($less($sum(X6,X5),$sum(X5,X4)) | ~$less(X6,X4)) )), inference(superposition,[],[f14,f6])). tff(f6,plain,( ( ! [X0:$int,X1:$int] : ($sum(X0,X1) = $sum(X1,X0)) )), introduced(theory_axiom,[])). tff(f14,plain,( ( ! [X2:$int,X0:$int,X1:$int] : ($less($sum(X0,X2),$sum(X1,X2)) | ~$less(X0,X1)) )), introduced(theory_axiom,[])). tff(f1229,plain,( ( ! [X8:$int] : (~$less($sum(X8,3),X8)) )), inference(evaluation,[],[f1219])). tff(f1219,plain,( ( ! [X8:$int] : (~$less($sum($sum(X8,1),2),X8)) )), inference(resolution,[],[f1070,f73])). tff(f73,plain,( ( ! [X4:$int,X3:$int] : ($less(X3,$sum(X4,1)) | ~$less(X3,X4)) )), inference(resolution,[],[f12,f43])). tff(f43,plain,( ( ! [X0:$int] : ($less(X0,$sum(X0,1))) )), inference(resolution,[],[f15,f11])). tff(f11,plain,( ( ! [X0:$int] : (~$less(X0,X0)) )), introduced(theory_axiom,[])). tff(f15,plain,( ( ! [X0:$int,X1:$int] : ($less(X1,$sum(X0,1)) | $less(X0,X1)) )), introduced(theory_axiom,[])). tff(f12,plain,( ( ! [X2:$int,X0:$int,X1:$int] : (~$less(X1,X2) | ~$less(X0,X1) | $less(X0,X2)) )), introduced(theory_axiom,[])). tff(f1070,plain,( ( ! [X8:$int] : (~$less($sum(X8,2),X8)) )), inference(evaluation,[],[f1060])). tff(f1060,plain,( ( ! [X8:$int] : (~$less($sum($sum(X8,1),1),X8)) )), inference(resolution,[],[f986,f73])). tff(f986,plain,( ( ! [X6:$int] : (~$less($sum(X6,1),X6)) )), inference(resolution,[],[f73,f11])). tff(f2282,plain,( $less($sum(3,sK1),sK1) | sK1 = $sum(3,sK1)), inference(resolution,[],[f742,f31])). tff(f742,plain,( ( ! [X56:$int] : ($less(sK3,X56) | $less(X56,sK1) | sK1 = X56) )), inference(resolution,[],[f84,f143])). tff(f84,plain,( ( ! [X4:$int,X5:$int,X3:$int] : (~$less(X5,X4) | X3 = X4 | $less(X3,X4) | $less(X5,X3)) )), inference(resolution,[],[f13,f12])). tff(f13,plain,( ( ! [X0:$int,X1:$int] : ($less(X1,X0) | $less(X0,X1) | X0 = X1) )), introduced(theory_axiom,[])). tff(f31,plain,( ~$less(sK3,$sum(3,sK1))), inference(forward_demodulation,[],[f28,f6])). tff(f28,plain,( ~$less(sK3,$sum(sK1,3))), inference(cnf_transformation,[],[f24])). % SZS output end Proof for DAT013=1
% SZS status Theorem for SEU140+2 % SZS output start Proof for SEU140+2 fof(f746,plain,( $false), inference(subsumption_resolution,[],[f697,f465])). fof(f465,plain,( in(sK10(sK6,sK8),sK7)), inference(unit_resulting_resolution,[],[f176,f420,f249])). fof(f249,plain,( ( ! [X0 : $i,X3 : $i,X1 : $i] : (in(X3,X1) | ~in(X3,X0) | ~subset(X0,X1)) )), inference(cnf_transformation,[],[f170])). fof(f170,plain,( ! [X0,X1] : ((subset(X0,X1) | (~in(sK15(X0,X1),X1) & in(sK15(X0,X1),X0))) & (! [X3] : (in(X3,X1) | ~in(X3,X0)) | ~subset(X0,X1)))), inference(skolemisation,[status(esa),new_symbols(skolem,[sK15])],[f168,f169])). fof(f169,plain,( ! [X0,X1] : (? [X2] : (~in(X2,X1) & in(X2,X0)) => (~in(sK15(X0,X1),X1) & in(sK15(X0,X1),X0)))), introduced(choice_axiom,[])). fof(f168,plain,( ! [X0,X1] : ((subset(X0,X1) | ? [X2] : (~in(X2,X1) & in(X2,X0))) & (! [X3] : (in(X3,X1) | ~in(X3,X0)) | ~subset(X0,X1)))), inference(rectify,[],[f167])). fof(f167,plain,( ! [X0,X1] : ((subset(X0,X1) | ? [X2] : (~in(X2,X1) & in(X2,X0))) & (! [X2] : (in(X2,X1) | ~in(X2,X0)) | ~subset(X0,X1)))), inference(nnf_transformation,[],[f115])). fof(f115,plain,( ! [X0,X1] : (subset(X0,X1) <=> ! [X2] : (in(X2,X1) | ~in(X2,X0)))), inference(ennf_transformation,[],[f91])). fof(f91,plain,( ! [X0,X1] : (subset(X0,X1) <=> ! [X2] : (in(X2,X0) => in(X2,X1)))), inference(flattening,[],[f8])). fof(f8,axiom,( ! [X0] : ! [X1] : (subset(X0,X1) <=> ! [X2] : (in(X2,X0) => in(X2,X1)))), file('/tmp/SystemOnTPTP17979/SEU140+2.tptp',d3_tarski)). fof(f420,plain,( in(sK10(sK6,sK8),sK6)), inference(unit_resulting_resolution,[],[f178,f189])). fof(f189,plain,( ( ! [X0 : $i,X1 : $i] : (disjoint(X0,X1) | in(sK10(X0,X1),X0)) )), inference(cnf_transformation,[],[f133])). fof(f133,plain,( ! [X0,X1] : ((~disjoint(X0,X1) | ! [X2] : (~in(X2,X1) | ~in(X2,X0))) & ((in(sK10(X0,X1),X1) & in(sK10(X0,X1),X0)) | disjoint(X0,X1)))), inference(skolemisation,[status(esa),new_symbols(skolem,[sK10])],[f101,f132])). fof(f132,plain,( ! [X0,X1] : (? [X3] : (in(X3,X1) & in(X3,X0)) => (in(sK10(X0,X1),X1) & in(sK10(X0,X1),X0)))), introduced(choice_axiom,[])). fof(f101,plain,( ! [X0,X1] : ((~disjoint(X0,X1) | ! [X2] : (~in(X2,X1) | ~in(X2,X0))) & (? [X3] : (in(X3,X1) & in(X3,X0)) | disjoint(X0,X1)))), inference(ennf_transformation,[],[f68])). fof(f68,plain,( ! [X0,X1] : (~(disjoint(X0,X1) & ? [X2] : (in(X2,X1) & in(X2,X0))) & ~(! [X3] : ~(in(X3,X1) & in(X3,X0)) & ~disjoint(X0,X1)))), inference(flattening,[],[f67])). fof(f67,plain,( ! [X0] : ! [X1] : (~(disjoint(X0,X1) & ? [X2] : (in(X2,X1) & in(X2,X0))) & ~(! [X3] : ~(in(X3,X1) & in(X3,X0)) & ~disjoint(X0,X1)))), inference(rectify,[],[f43])). fof(f43,axiom,( ! [X0] : ! [X1] : (~(disjoint(X0,X1) & ? [X2] : (in(X2,X1) & in(X2,X0))) & ~(! [X2] : ~(in(X2,X1) & in(X2,X0)) & ~disjoint(X0,X1)))), file('/tmp/SystemOnTPTP17979/SEU140+2.tptp',t3_xboole_0)). fof(f178,plain,( ~disjoint(sK6,sK8)), inference(cnf_transformation,[],[f129])). fof(f129,plain,( ~disjoint(sK6,sK8) & disjoint(sK7,sK8) & subset(sK6,sK7)), inference(skolemisation,[status(esa),new_symbols(skolem,[sK6,sK7,sK8])],[f98,f128])). fof(f128,plain,( ? [X0,X1,X2] : (~disjoint(X0,X2) & disjoint(X1,X2) & subset(X0,X1)) => (~disjoint(sK6,sK8) & disjoint(sK7,sK8) & subset(sK6,sK7))), introduced(choice_axiom,[])). fof(f98,plain,( ? [X0,X1,X2] : (~disjoint(X0,X2) & disjoint(X1,X2) & subset(X0,X1))), inference(flattening,[],[f97])). fof(f97,plain,( ? [X0,X1,X2] : (~disjoint(X0,X2) & (disjoint(X1,X2) & subset(X0,X1)))), inference(ennf_transformation,[],[f58])). fof(f58,plain,( ~! [X0,X1,X2] : ((disjoint(X1,X2) & subset(X0,X1)) => disjoint(X0,X2))), inference(flattening,[],[f52])). fof(f52,negated_conjecture,( ~! [X0] : ! [X1] : ! [X2] : ((disjoint(X1,X2) & subset(X0,X1)) => disjoint(X0,X2))), inference(negated_conjecture,[],[f51])). fof(f51,conjecture,( ! [X0] : ! [X1] : ! [X2] : ((disjoint(X1,X2) & subset(X0,X1)) => disjoint(X0,X2))), file('/tmp/SystemOnTPTP17979/SEU140+2.tptp',t63_xboole_1)). fof(f176,plain,( subset(sK6,sK7)), inference(cnf_transformation,[],[f129])). fof(f697,plain,( ~in(sK10(sK6,sK8),sK7)), inference(unit_resulting_resolution,[],[f429,f287,f191])). fof(f191,plain,( ( ! [X2 : $i,X0 : $i,X1 : $i] : (~disjoint(X0,X1) | ~in(X2,X1) | ~in(X2,X0)) )), inference(cnf_transformation,[],[f133])). fof(f287,plain,( disjoint(sK8,sK7)), inference(unit_resulting_resolution,[],[f177,f207])). fof(f207,plain,( ( ! [X0 : $i,X1 : $i] : (disjoint(X1,X0) | ~disjoint(X0,X1)) )), inference(cnf_transformation,[],[f114])). fof(f114,plain,( ! [X0,X1] : (disjoint(X1,X0) | ~disjoint(X0,X1))), inference(ennf_transformation,[],[f81])). fof(f81,plain,( ! [X0,X1] : (disjoint(X0,X1) => disjoint(X1,X0))), inference(flattening,[],[f27])). fof(f27,axiom,( ! [X0] : ! [X1] : (disjoint(X0,X1) => disjoint(X1,X0))), file('/tmp/SystemOnTPTP17979/SEU140+2.tptp',symmetry_r1_xboole_0)). fof(f177,plain,( disjoint(sK7,sK8)), inference(cnf_transformation,[],[f129])). fof(f429,plain,( in(sK10(sK6,sK8),sK8)), inference(unit_resulting_resolution,[],[f178,f190])). fof(f190,plain,( ( ! [X0 : $i,X1 : $i] : (disjoint(X0,X1) | in(sK10(X0,X1),X1)) )), inference(cnf_transformation,[],[f133])). % SZS output end Proof for SEU140+2
% SZS status CounterSatisfiable for NLP042+1 % # SZS output start Saturation. tff(u703,negated_conjecture, ((~~woman(sK0,sK3)) | ~woman(sK0,sK3))). tff(u702,negated_conjecture, ((~~woman(sK0,sK4)) | ~woman(sK0,sK4))). tff(u701,negated_conjecture, ((~~woman(sK0,sK2)) | ~woman(sK0,sK2))). tff(u700,axiom, ((~(![X1, X0] : ((~woman(X0,X1) | ~unisex(X0,X1))))) | (![X1, X0] : ((~woman(X0,X1) | ~unisex(X0,X1)))))). tff(u699,negated_conjecture, ((~woman(sK0,sK1)) | woman(sK0,sK1))). tff(u698,axiom, ((~(![X1, X0] : ((~female(X0,X1) | ~unisex(X0,X1))))) | (![X1, X0] : ((~female(X0,X1) | ~unisex(X0,X1)))))). tff(u697,axiom, ((~(![X1, X0] : ((female(X0,X1) | ~woman(X0,X1))))) | (![X1, X0] : ((female(X0,X1) | ~woman(X0,X1)))))). tff(u696,negated_conjecture, ((~~human_person(sK0,sK2)) | ~human_person(sK0,sK2))). tff(u695,negated_conjecture, ((~~human_person(sK0,sK3)) | ~human_person(sK0,sK3))). tff(u694,negated_conjecture, ((~~human_person(sK0,sK4)) | ~human_person(sK0,sK4))). tff(u693,axiom, ((~(![X1, X0] : ((human_person(X0,X1) | ~woman(X0,X1))))) | (![X1, X0] : ((human_person(X0,X1) | ~woman(X0,X1)))))). tff(u692,negated_conjecture, ((~~animate(sK0,sK3)) | ~animate(sK0,sK3))). tff(u691,axiom, ((~(![X1, X0] : ((animate(X0,X1) | ~human_person(X0,X1))))) | (![X1, X0] : ((animate(X0,X1) | ~human_person(X0,X1)))))). tff(u690,negated_conjecture, ((~~human(sK0,sK2)) | ~human(sK0,sK2))). tff(u689,axiom, ((~(![X1, X0] : ((human(X0,X1) | ~human_person(X0,X1))))) | (![X1, X0] : ((human(X0,X1) | ~human_person(X0,X1)))))). tff(u688,negated_conjecture, ((~~organism(sK0,sK3)) | ~organism(sK0,sK3))). tff(u687,negated_conjecture, ((~~organism(sK0,sK4)) | ~organism(sK0,sK4))). tff(u686,negated_conjecture, ((~~organism(sK0,sK2)) | ~organism(sK0,sK2))). tff(u685,axiom, ((~(![X1, X0] : ((organism(X0,X1) | ~human_person(X0,X1))))) | (![X1, X0] : ((organism(X0,X1) | ~human_person(X0,X1)))))). tff(u684,negated_conjecture, ((~~living(sK0,sK3)) | ~living(sK0,sK3))). tff(u683,axiom, ((~(![X1, X0] : ((living(X0,X1) | ~organism(X0,X1))))) | (![X1, X0] : ((living(X0,X1) | ~organism(X0,X1)))))). tff(u682,negated_conjecture, ((~~entity(sK0,sK4)) | ~entity(sK0,sK4))). tff(u681,negated_conjecture, ((~~entity(sK0,sK2)) | ~entity(sK0,sK2))). tff(u680,axiom, ((~(![X1, X0] : ((entity(X0,X1) | ~organism(X0,X1))))) | (![X1, X0] : ((entity(X0,X1) | ~organism(X0,X1)))))). tff(u679,negated_conjecture, ((~entity(sK0,sK3)) | entity(sK0,sK3))). tff(u678,axiom, ((~(![X1, X0] : ((~mia_forename(X0,X1) | abstraction(X0,X1))))) | (![X1, X0] : ((~mia_forename(X0,X1) | abstraction(X0,X1)))))). tff(u677,negated_conjecture, ((~mia_forename(sK0,sK2)) | mia_forename(sK0,sK2))). tff(u676,axiom, ((~(![X1, X0] : ((~forename(X0,X1) | abstraction(X0,X1))))) | (![X1, X0] : ((~forename(X0,X1) | abstraction(X0,X1)))))). tff(u675,negated_conjecture, ((~forename(sK0,sK2)) | forename(sK0,sK2))). tff(u674,axiom, ((~(![X1, X0] : ((forename(X0,X1) | ~mia_forename(X0,X1))))) | (![X1, X0] : ((forename(X0,X1) | ~mia_forename(X0,X1)))))). tff(u673,axiom, ((~(![X1, X0] : ((~abstraction(X0,X1) | ~entity(X0,X1))))) | (![X1, X0] : ((~abstraction(X0,X1) | ~entity(X0,X1)))))). tff(u672,axiom, ((~(![X1, X0] : ((~abstraction(X0,X1) | nonhuman(X0,X1))))) | (![X1, X0] : ((~abstraction(X0,X1) | nonhuman(X0,X1)))))). tff(u671,negated_conjecture, ((~~abstraction(sK0,sK4)) | ~abstraction(sK0,sK4))). tff(u670,negated_conjecture, ((~~abstraction(sK0,sK1)) | ~abstraction(sK0,sK1))). tff(u669,negated_conjecture, ((~abstraction(sK0,sK2)) | abstraction(sK0,sK2))). tff(u668,negated_conjecture, ((~~unisex(sK0,sK1)) | ~unisex(sK0,sK1))). tff(u667,axiom, ((~(![X1, X0] : ((unisex(X0,X1) | ~abstraction(X0,X1))))) | (![X1, X0] : ((unisex(X0,X1) | ~abstraction(X0,X1)))))). tff(u666,negated_conjecture, ((~unisex(sK0,sK3)) | unisex(sK0,sK3))). tff(u665,negated_conjecture, ((~unisex(sK0,sK4)) | unisex(sK0,sK4))). tff(u664,negated_conjecture, ((~~general(sK0,sK4)) | ~general(sK0,sK4))). tff(u663,axiom, ((~(![X1, X0] : ((~general(X0,X1) | ~entity(X0,X1))))) | (![X1, X0] : ((~general(X0,X1) | ~entity(X0,X1)))))). tff(u662,axiom, ((~(![X1, X0] : ((general(X0,X1) | ~abstraction(X0,X1))))) | (![X1, X0] : ((general(X0,X1) | ~abstraction(X0,X1)))))). tff(u661,axiom, ((~(![X1, X0] : ((~nonhuman(X0,X1) | ~human(X0,X1))))) | (![X1, X0] : ((~nonhuman(X0,X1) | ~human(X0,X1)))))). tff(u660,negated_conjecture, ((~nonhuman(sK0,sK2)) | nonhuman(sK0,sK2))). tff(u659,axiom, ((~(![X1, X0] : ((~relation(X0,X1) | abstraction(X0,X1))))) | (![X1, X0] : ((~relation(X0,X1) | abstraction(X0,X1)))))). tff(u658,axiom, ((~(![X1, X0] : ((relation(X0,X1) | ~forename(X0,X1))))) | (![X1, X0] : ((relation(X0,X1) | ~forename(X0,X1)))))). tff(u657,axiom, ((~(![X1, X0] : ((~relname(X0,X1) | relation(X0,X1))))) | (![X1, X0] : ((~relname(X0,X1) | relation(X0,X1)))))). tff(u656,axiom, ((~(![X1, X0] : ((relname(X0,X1) | ~forename(X0,X1))))) | (![X1, X0] : ((relname(X0,X1) | ~forename(X0,X1)))))). tff(u655,axiom, ((~(![X1, X0] : ((~object(X0,X1) | unisex(X0,X1))))) | (![X1, X0] : ((~object(X0,X1) | unisex(X0,X1)))))). tff(u654,axiom, ((~(![X1, X0] : ((~object(X0,X1) | entity(X0,X1))))) | (![X1, X0] : ((~object(X0,X1) | entity(X0,X1)))))). tff(u653,axiom, ((~(![X1, X0] : ((~object(X0,X1) | nonliving(X0,X1))))) | (![X1, X0] : ((~object(X0,X1) | nonliving(X0,X1)))))). tff(u652,negated_conjecture, ((~object(sK0,sK3)) | object(sK0,sK3))). tff(u651,axiom, ((~(![X1, X0] : ((~nonliving(X0,X1) | ~living(X0,X1))))) | (![X1, X0] : ((~nonliving(X0,X1) | ~living(X0,X1)))))). tff(u650,axiom, ((~(![X1, X0] : ((~nonliving(X0,X1) | ~animate(X0,X1))))) | (![X1, X0] : ((~nonliving(X0,X1) | ~animate(X0,X1)))))). tff(u649,negated_conjecture, ((~nonliving(sK0,sK3)) | nonliving(sK0,sK3))). tff(u648,negated_conjecture, ((~~existent(sK0,sK4)) | ~existent(sK0,sK4))). tff(u647,axiom, ((~(![X1, X0] : ((existent(X0,X1) | ~entity(X0,X1))))) | (![X1, X0] : ((existent(X0,X1) | ~entity(X0,X1)))))). tff(u646,axiom, ((~(![X1, X0] : ((~specific(X0,X1) | ~general(X0,X1))))) | (![X1, X0] : ((~specific(X0,X1) | ~general(X0,X1)))))). tff(u645,axiom, ((~(![X1, X0] : ((specific(X0,X1) | ~entity(X0,X1))))) | (![X1, X0] : ((specific(X0,X1) | ~entity(X0,X1)))))). tff(u644,negated_conjecture, ((~specific(sK0,sK4)) | specific(sK0,sK4))). tff(u643,axiom, ((~(![X1, X0] : ((~substance_matter(X0,X1) | object(X0,X1))))) | (![X1, X0] : ((~substance_matter(X0,X1) | object(X0,X1)))))). tff(u642,negated_conjecture, ((~substance_matter(sK0,sK3)) | substance_matter(sK0,sK3))). tff(u641,axiom, ((~(![X1, X0] : ((~food(X0,X1) | substance_matter(X0,X1))))) | (![X1, X0] : ((~food(X0,X1) | substance_matter(X0,X1)))))). tff(u640,negated_conjecture, ((~food(sK0,sK3)) | food(sK0,sK3))). tff(u639,axiom, ((~(![X1, X0] : ((~beverage(X0,X1) | food(X0,X1))))) | (![X1, X0] : ((~beverage(X0,X1) | food(X0,X1)))))). tff(u638,negated_conjecture, ((~beverage(sK0,sK3)) | beverage(sK0,sK3))). tff(u637,axiom, ((~(![X1, X0] : ((~shake_beverage(X0,X1) | beverage(X0,X1))))) | (![X1, X0] : ((~shake_beverage(X0,X1) | beverage(X0,X1)))))). tff(u636,negated_conjecture, ((~shake_beverage(sK0,sK3)) | shake_beverage(sK0,sK3))). tff(u635,axiom, ((~(![X1, X0] : ((~order(X0,X1) | eventuality(X0,X1))))) | (![X1, X0] : ((~order(X0,X1) | eventuality(X0,X1)))))). tff(u634,negated_conjecture, ((~order(sK0,sK4)) | order(sK0,sK4))). tff(u633,axiom, ((~(![X1, X0] : ((~event(X0,X1) | eventuality(X0,X1))))) | (![X1, X0] : ((~event(X0,X1) | eventuality(X0,X1)))))). tff(u632,negated_conjecture, ((~event(sK0,sK4)) | event(sK0,sK4))). tff(u631,axiom, ((~(![X1, X0] : ((event(X0,X1) | ~order(X0,X1))))) | (![X1, X0] : ((event(X0,X1) | ~order(X0,X1)))))). tff(u630,axiom, ((~(![X1, X0] : ((~eventuality(X0,X1) | unisex(X0,X1))))) | (![X1, X0] : ((~eventuality(X0,X1) | unisex(X0,X1)))))). tff(u629,axiom, ((~(![X1, X0] : ((~eventuality(X0,X1) | specific(X0,X1))))) | (![X1, X0] : ((~eventuality(X0,X1) | specific(X0,X1)))))). tff(u628,axiom, ((~(![X1, X0] : ((~eventuality(X0,X1) | nonexistent(X0,X1))))) | (![X1, X0] : ((~eventuality(X0,X1) | nonexistent(X0,X1)))))). tff(u627,negated_conjecture, ((~eventuality(sK0,sK4)) | eventuality(sK0,sK4))). tff(u626,axiom, ((~(![X1, X0] : ((~nonexistent(X0,X1) | ~existent(X0,X1))))) | (![X1, X0] : ((~nonexistent(X0,X1) | ~existent(X0,X1)))))). tff(u625,negated_conjecture, ((~nonexistent(sK0,sK4)) | nonexistent(sK0,sK4))). tff(u624,axiom, ((~(![X1, X0] : ((~act(X0,X1) | event(X0,X1))))) | (![X1, X0] : ((~act(X0,X1) | event(X0,X1)))))). tff(u623,axiom, ((~(![X1, X0] : ((act(X0,X1) | ~order(X0,X1))))) | (![X1, X0] : ((act(X0,X1) | ~order(X0,X1)))))). tff(u622,axiom, ((~(![X1, X3, X0, X2] : ((~of(X0,X3,X1) | ~forename(X0,X2) | ~of(X0,X2,X1) | ~forename(X0,X3) | (X2 = X3) | ~entity(X0,X1))))) | (![X1, X3, X0, X2] : ((~of(X0,X3,X1) | ~forename(X0,X2) | ~of(X0,X2,X1) | ~forename(X0,X3) | (X2 = X3) | ~entity(X0,X1)))))). tff(u621,negated_conjecture, ((~(![X0] : ((~of(sK0,X0,sK1) | (sK2 = X0) | ~forename(sK0,X0))))) | (![X0] : ((~of(sK0,X0,sK1) | (sK2 = X0) | ~forename(sK0,X0)))))). tff(u620,negated_conjecture, ((~of(sK0,sK2,sK1)) | of(sK0,sK2,sK1))). tff(u619,axiom, ((~(![X1, X3, X0] : ((~nonreflexive(X0,X1) | ~agent(X0,X1,X3) | ~patient(X0,X1,X3))))) | (![X1, X3, X0] : ((~nonreflexive(X0,X1) | ~agent(X0,X1,X3) | ~patient(X0,X1,X3)))))). tff(u618,negated_conjecture, ((~nonreflexive(sK0,sK4)) | nonreflexive(sK0,sK4))). tff(u617,negated_conjecture, ((~~agent(sK0,sK4,sK3)) | ~agent(sK0,sK4,sK3))). tff(u616,negated_conjecture, ((~agent(sK0,sK4,sK1)) | agent(sK0,sK4,sK1))). tff(u615,negated_conjecture, ((~(![X0] : ((~patient(sK0,sK4,X0) | ~agent(sK0,sK4,X0))))) | (![X0] : ((~patient(sK0,sK4,X0) | ~agent(sK0,sK4,X0)))))). tff(u614,negated_conjecture, ((~patient(sK0,sK4,sK3)) | patient(sK0,sK4,sK3))). % # SZS output end Saturation.
% SZS status Satisfiable for SWV017+1 % SZS output start FiniteModel for SWV017+1 tff(declare_$i,type,$i:$tType). tff(declare_$i1,type,at:$i). tff(declare_$i2,type,t:$i). tff(finite_domain,axiom, ! [X:$i] : ( X = at | X = t ) ). tff(distinct_domain,axiom, at != t ). tff(declare_bool,type,$o:$tType). tff(declare_bool1,type,fmb_bool_1:$o). tff(finite_domain,axiom, ! [X:$o] : ( X = fmb_bool_1 ) ). tff(declare_a,type,a:$i). tff(a_definition,axiom,a = at). tff(declare_b,type,b:$i). tff(b_definition,axiom,b = at). tff(declare_an_a_nonce,type,an_a_nonce:$i). tff(an_a_nonce_definition,axiom,an_a_nonce = at). tff(declare_bt,type,bt:$i). tff(bt_definition,axiom,bt = t). tff(declare_an_intruder_nonce,type,an_intruder_nonce:$i). tff(an_intruder_nonce_definition,axiom,an_intruder_nonce = at). tff(declare_key,type,key: $i * $i > $i). tff(function_key,axiom, key(at,at) = at & key(at,t) = at & key(t,at) = t & key(t,t) = t ). tff(declare_pair,type,pair: $i * $i > $i). tff(function_pair,axiom, pair(at,at) = at & pair(at,t) = t & pair(t,at) = t & pair(t,t) = t ). tff(declare_sent,type,sent: $i * $i * $i > $i). tff(function_sent,axiom, sent(at,at,at) = at & sent(at,at,t) = t & sent(at,t,at) = at & sent(at,t,t) = t & sent(t,at,at) = at & sent(t,at,t) = t & sent(t,t,at) = at & sent(t,t,t) = t ). tff(declare_quadruple,type,quadruple: $i * $i * $i * $i > $i). tff(function_quadruple,axiom, quadruple(at,at,at,at) = at & quadruple(at,at,at,t) = t & quadruple(at,at,t,at) = t & quadruple(at,at,t,t) = t & quadruple(at,t,at,at) = t & quadruple(at,t,at,t) = t & quadruple(at,t,t,at) = t & quadruple(at,t,t,t) = t & quadruple(t,at,at,at) = t & quadruple(t,at,at,t) = t & quadruple(t,at,t,at) = t & quadruple(t,at,t,t) = t & quadruple(t,t,at,at) = t & quadruple(t,t,at,t) = t & quadruple(t,t,t,at) = t & quadruple(t,t,t,t) = t ). tff(declare_encrypt,type,encrypt: $i * $i > $i). tff(function_encrypt,axiom, encrypt(at,at) = at & encrypt(at,t) = at & encrypt(t,at) = at & encrypt(t,t) = at ). tff(declare_triple,type,triple: $i * $i * $i > $i). tff(function_triple,axiom, triple(at,at,at) = at & triple(at,at,t) = t & triple(at,t,at) = t & triple(at,t,t) = t & triple(t,at,at) = t & triple(t,at,t) = t & triple(t,t,at) = t & triple(t,t,t) = t ). tff(declare_generate_b_nonce,type,generate_b_nonce: $i > $i). tff(function_generate_b_nonce,axiom, generate_b_nonce(at) = at & generate_b_nonce(t) = at ). tff(declare_generate_expiration_time,type,generate_expiration_time: $i > $i). tff(function_generate_expiration_time,axiom, generate_expiration_time(at) = at & generate_expiration_time(t) = at ). tff(declare_generate_key,type,generate_key: $i > $i). tff(function_generate_key,axiom, generate_key(at) = t & generate_key(t) = t ). tff(declare_generate_intruder_nonce,type,generate_intruder_nonce: $i > $i). tff(function_generate_intruder_nonce,axiom, generate_intruder_nonce(at) = at & generate_intruder_nonce(t) = t ). tff(declare_a_holds,type,a_holds: $i > $o ). tff(predicate_a_holds,axiom, % a_holds(at) undefined in model % a_holds(t) undefined in model ). tff(declare_party_of_protocol,type,party_of_protocol: $i > $o ). tff(predicate_party_of_protocol,axiom, party_of_protocol(at) & party_of_protocol(t) ). tff(declare_message,type,message: $i > $o ). tff(predicate_message,axiom, message(at) & ~message(t) ). tff(declare_a_stored,type,a_stored: $i > $o ). tff(predicate_a_stored,axiom, a_stored(at) & ~a_stored(t) ). tff(declare_b_holds,type,b_holds: $i > $o ). tff(predicate_b_holds,axiom, % b_holds(at) undefined in model % b_holds(t) undefined in model ). tff(declare_fresh_to_b,type,fresh_to_b: $i > $o ). tff(predicate_fresh_to_b,axiom, fresh_to_b(at) & fresh_to_b(t) ). tff(declare_b_stored,type,b_stored: $i > $o ). tff(predicate_b_stored,axiom, % b_stored(at) undefined in model % b_stored(t) undefined in model ). tff(declare_a_key,type,a_key: $i > $o ). tff(predicate_a_key,axiom, ~a_key(at) & a_key(t) ). tff(declare_t_holds,type,t_holds: $i > $o ). tff(predicate_t_holds,axiom, t_holds(at) & t_holds(t) ). tff(declare_a_nonce,type,a_nonce: $i > $o ). tff(predicate_a_nonce,axiom, a_nonce(at) & ~a_nonce(t) ). tff(declare_intruder_message,type,intruder_message: $i > $o ). tff(predicate_intruder_message,axiom, intruder_message(at) & ~intruder_message(t) ). tff(declare_intruder_holds,type,intruder_holds: $i > $o ). tff(predicate_intruder_holds,axiom, intruder_holds(at) & ~intruder_holds(t) ). tff(declare_fresh_intruder_nonce,type,fresh_intruder_nonce: $i > $o ). tff(predicate_fresh_intruder_nonce,axiom, fresh_intruder_nonce(at) & ~fresh_intruder_nonce(t) ). % SZS output end FiniteModel for SWV017+1
% SZS output start Proof for SET014^4 thf(type_def_5, type, sTfun: ($tType * $tType) > $tType). thf(func_def_0, type, in: $i > ($i > $o) > $o). thf(func_def_2, type, is_a: $i > ($i > $o) > $o). thf(func_def_3, type, emptyset: $i > $o). thf(func_def_4, type, unord_pair: $i > $i > $i > $o). thf(func_def_5, type, singleton: $i > $i > $o). thf(func_def_6, type, union: ($i > $o) > ($i > $o) > $i > $o). thf(func_def_7, type, excl_union: ($i > $o) > ($i > $o) > $i > $o). thf(func_def_8, type, intersection: ($i > $o) > ($i > $o) > $i > $o). thf(func_def_9, type, setminus: ($i > $o) > ($i > $o) > $i > $o). thf(func_def_10, type, complement: ($i > $o) > $i > $o). thf(func_def_11, type, disjoint: ($i > $o) > ($i > $o) > $o). thf(func_def_12, type, subset: ($i > $o) > ($i > $o) > $o). thf(func_def_13, type, meets: ($i > $o) > ($i > $o) > $o). thf(func_def_14, type, misses: ($i > $o) > ($i > $o) > $o). thf(func_def_15, type, vEPSILON: !>[X0: $tType]:((X0 > $o) > X0)). thf(func_def_18, type, vEQ: !>[X0: $tType]:(X0 > X0 > $o)). thf(func_def_19, type, bCOMB: !>[X0: $tType, X1: $tType, X2: $tType]:((X1 > X2) > (X0 > X1) > X0 > X2)). thf(func_def_20, type, vNOT: $o > $o). thf(func_def_21, type, vAND: $o > $o > $o). thf(func_def_22, type, vSIGMA: !>[X0: $tType]:((X0 > $o) > $o)). thf(func_def_23, type, sCOMB: !>[X0: $tType, X1: $tType, X2: $tType]:((X0 > X1 > X2) > (X0 > X1) > X0 > X2)). thf(func_def_24, type, iCOMB: !>[X0: $tType]:(X0 > X0)). thf(func_def_25, type, cCOMB: !>[X0: $tType, X1: $tType, X2: $tType]:((X0 > X1 > X2) > X1 > X0 > X2)). thf(func_def_26, type, vOR: $o > $o > $o). thf(func_def_27, type, kCOMB: !>[X0: $tType, X1: $tType]:(X0 > X1 > X0)). thf(func_def_28, type, vIMP: $o > $o > $o). thf(func_def_29, type, vPI: !>[X0: $tType]:((X0 > $o) > $o)). thf(func_def_30, type, sK0: $i > $o). thf(func_def_31, type, sK1: $i > $o). thf(func_def_32, type, sK2: $i > $o). thf(f95,plain,( $false), inference(trivial_inequality_removal,[],[f94])). thf(f94,plain,( ($true = $false)), inference(backward_demodulation,[],[f89,f93])). thf(f93,plain,( ($false = vAPP($i,$o,sK1,sK3))), inference(trivial_inequality_removal,[],[f90])). thf(f90,plain,( ($true = $false) | ($false = vAPP($i,$o,sK1,sK3))), inference(superposition,[],[f77,f81])). thf(f81,plain,( ($false = vAPP($i,$o,sK2,sK3))), inference(binary_proxy_clausification,[],[f80])). thf(f80,plain,( ($false = vAPP($o,$o,vAPP($o,sTfun($o,$o),vIMP,vAPP($o,$o,vAPP($o,sTfun($o,$o),vOR,vAPP($i,$o,sK0,sK3)),vAPP($i,$o,sK1,sK3))),vAPP($i,$o,sK2,sK3)))), inference(combinator_demodulation,[],[f79])). thf(f79,plain,( ($false = vAPP($i,$o,vAPP(sTfun($i,$o),sTfun($i,$o),vAPP(sTfun($i,sTfun($o,$o)),sTfun(sTfun($i,$o),sTfun($i,$o)),sCOMB,vAPP(sTfun($i,$o),sTfun($i,sTfun($o,$o)),vAPP(sTfun($o,sTfun($o,$o)),sTfun(sTfun($i,$o),sTfun($i,sTfun($o,$o))),bCOMB,vIMP),vAPP(sTfun($i,$o),sTfun($i,$o),vAPP(sTfun($i,sTfun($o,$o)),sTfun(sTfun($i,$o),sTfun($i,$o)),sCOMB,vAPP(sTfun($i,$o),sTfun($i,sTfun($o,$o)),vAPP(sTfun($o,sTfun($o,$o)),sTfun(sTfun($i,$o),sTfun($i,sTfun($o,$o))),bCOMB,vOR),sK0)),sK1))),sK2),sK3))), inference(sigma_clausification,[],[f78])). thf(f78,plain,( ($true != vAPP(sTfun($i,$o),$o,vPI($i),vAPP(sTfun($i,$o),sTfun($i,$o),vAPP(sTfun($i,sTfun($o,$o)),sTfun(sTfun($i,$o),sTfun($i,$o)),sCOMB,vAPP(sTfun($i,$o),sTfun($i,sTfun($o,$o)),vAPP(sTfun($o,sTfun($o,$o)),sTfun(sTfun($i,$o),sTfun($i,sTfun($o,$o))),bCOMB,vIMP),vAPP(sTfun($i,$o),sTfun($i,$o),vAPP(sTfun($i,sTfun($o,$o)),sTfun(sTfun($i,$o),sTfun($i,$o)),sCOMB,vAPP(sTfun($i,$o),sTfun($i,sTfun($o,$o)),vAPP(sTfun($o,sTfun($o,$o)),sTfun(sTfun($i,$o),sTfun($i,sTfun($o,$o))),bCOMB,vOR),sK0)),sK1))),sK2)))), inference(combinator_demodulation,[],[f67])). thf(f67,plain,( ($true != vAPP(sTfun($i,$o),$o,vAPP(sTfun($i,$o),sTfun(sTfun($i,$o),$o),vAPP(sTfun(sTfun($i,$o),sTfun(sTfun($i,$o),sTfun($i,$o))),sTfun(sTfun($i,$o),sTfun(sTfun($i,$o),$o)),vAPP(sTfun(sTfun(sTfun($i,$o),sTfun($i,$o)),sTfun(sTfun($i,$o),$o)),sTfun(sTfun(sTfun($i,$o),sTfun(sTfun($i,$o),sTfun($i,$o))),sTfun(sTfun($i,$o),sTfun(sTfun($i,$o),$o))),bCOMB,vAPP(sTfun(sTfun($i,$o),$o),sTfun(sTfun(sTfun($i,$o),sTfun($i,$o)),sTfun(sTfun($i,$o),$o)),bCOMB,vPI($i))),vAPP(sTfun(sTfun($i,$o),sTfun($i,sTfun($o,$o))),sTfun(sTfun($i,$o),sTfun(sTfun($i,$o),sTfun($i,$o))),vAPP(sTfun(sTfun($i,sTfun($o,$o)),sTfun(sTfun($i,$o),sTfun($i,$o))),sTfun(sTfun(sTfun($i,$o),sTfun($i,sTfun($o,$o))),sTfun(sTfun($i,$o),sTfun(sTfun($i,$o),sTfun($i,$o)))),bCOMB,sCOMB),vAPP(sTfun($o,sTfun($o,$o)),sTfun(sTfun($i,$o),sTfun($i,sTfun($o,$o))),bCOMB,vIMP))),vAPP(sTfun($i,$o),sTfun($i,$o),vAPP(sTfun($i,$o),sTfun(sTfun($i,$o),sTfun($i,$o)),vAPP(sTfun(sTfun($i,$o),sTfun($i,sTfun($o,$o))),sTfun(sTfun($i,$o),sTfun(sTfun($i,$o),sTfun($i,$o))),vAPP(sTfun(sTfun($i,sTfun($o,$o)),sTfun(sTfun($i,$o),sTfun($i,$o))),sTfun(sTfun(sTfun($i,$o),sTfun($i,sTfun($o,$o))),sTfun(sTfun($i,$o),sTfun(sTfun($i,$o),sTfun($i,$o)))),bCOMB,sCOMB),vAPP(sTfun($o,sTfun($o,$o)),sTfun(sTfun($i,$o),sTfun($i,sTfun($o,$o))),bCOMB,vOR)),sK0),sK1)),sK2))), inference(definition_unfolding,[],[f51,f65,f64])). thf(f64,plain,( (union = vAPP(sTfun(sTfun($i,$o),sTfun($i,sTfun($o,$o))),sTfun(sTfun($i,$o),sTfun(sTfun($i,$o),sTfun($i,$o))),vAPP(sTfun(sTfun($i,sTfun($o,$o)),sTfun(sTfun($i,$o),sTfun($i,$o))),sTfun(sTfun(sTfun($i,$o),sTfun($i,sTfun($o,$o))),sTfun(sTfun($i,$o),sTfun(sTfun($i,$o),sTfun($i,$o)))),bCOMB,sCOMB),vAPP(sTfun($o,sTfun($o,$o)),sTfun(sTfun($i,$o),sTfun($i,sTfun($o,$o))),bCOMB,vOR)))), inference(cnf_transformation,[],[f42])). thf(f42,plain,( (union = vAPP(sTfun(sTfun($i,$o),sTfun($i,sTfun($o,$o))),sTfun(sTfun($i,$o),sTfun(sTfun($i,$o),sTfun($i,$o))),vAPP(sTfun(sTfun($i,sTfun($o,$o)),sTfun(sTfun($i,$o),sTfun($i,$o))),sTfun(sTfun(sTfun($i,$o),sTfun($i,sTfun($o,$o))),sTfun(sTfun($i,$o),sTfun(sTfun($i,$o),sTfun($i,$o)))),bCOMB,sCOMB),vAPP(sTfun($o,sTfun($o,$o)),sTfun(sTfun($i,$o),sTfun($i,sTfun($o,$o))),bCOMB,vOR)))), inference(fool_elimination,[],[f41])). thf(f41,plain,( (union = (^[X0 : $i > $o, X1 : $i > $o, X2 : $i] : (vAPP($i,$o,X1,X2) | vAPP($i,$o,X0,X2))))), inference(rectify,[],[f6])). thf(f6,axiom,( (union = (^[X0 : $i > $o, X2 : $i > $o, X3 : $i] : (vAPP($i,$o,X2,X3) | vAPP($i,$o,X0,X3))))), file('samples/SET014^4.p',unknown)). thf(f65,plain,( (subset = vAPP(sTfun(sTfun($i,$o),sTfun(sTfun($i,$o),sTfun($i,$o))),sTfun(sTfun($i,$o),sTfun(sTfun($i,$o),$o)),vAPP(sTfun(sTfun(sTfun($i,$o),sTfun($i,$o)),sTfun(sTfun($i,$o),$o)),sTfun(sTfun(sTfun($i,$o),sTfun(sTfun($i,$o),sTfun($i,$o))),sTfun(sTfun($i,$o),sTfun(sTfun($i,$o),$o))),bCOMB,vAPP(sTfun(sTfun($i,$o),$o),sTfun(sTfun(sTfun($i,$o),sTfun($i,$o)),sTfun(sTfun($i,$o),$o)),bCOMB,vPI($i))),vAPP(sTfun(sTfun($i,$o),sTfun($i,sTfun($o,$o))),sTfun(sTfun($i,$o),sTfun(sTfun($i,$o),sTfun($i,$o))),vAPP(sTfun(sTfun($i,sTfun($o,$o)),sTfun(sTfun($i,$o),sTfun($i,$o))),sTfun(sTfun(sTfun($i,$o),sTfun($i,sTfun($o,$o))),sTfun(sTfun($i,$o),sTfun(sTfun($i,$o),sTfun($i,$o)))),bCOMB,sCOMB),vAPP(sTfun($o,sTfun($o,$o)),sTfun(sTfun($i,$o),sTfun($i,sTfun($o,$o))),bCOMB,vIMP))))), inference(cnf_transformation,[],[f44])). thf(f44,plain,( (subset = vAPP(sTfun(sTfun($i,$o),sTfun(sTfun($i,$o),sTfun($i,$o))),sTfun(sTfun($i,$o),sTfun(sTfun($i,$o),$o)),vAPP(sTfun(sTfun(sTfun($i,$o),sTfun($i,$o)),sTfun(sTfun($i,$o),$o)),sTfun(sTfun(sTfun($i,$o),sTfun(sTfun($i,$o),sTfun($i,$o))),sTfun(sTfun($i,$o),sTfun(sTfun($i,$o),$o))),bCOMB,vAPP(sTfun(sTfun($i,$o),$o),sTfun(sTfun(sTfun($i,$o),sTfun($i,$o)),sTfun(sTfun($i,$o),$o)),bCOMB,vPI($i))),vAPP(sTfun(sTfun($i,$o),sTfun($i,sTfun($o,$o))),sTfun(sTfun($i,$o),sTfun(sTfun($i,$o),sTfun($i,$o))),vAPP(sTfun(sTfun($i,sTfun($o,$o)),sTfun(sTfun($i,$o),sTfun($i,$o))),sTfun(sTfun(sTfun($i,$o),sTfun($i,sTfun($o,$o))),sTfun(sTfun($i,$o),sTfun(sTfun($i,$o),sTfun($i,$o)))),bCOMB,sCOMB),vAPP(sTfun($o,sTfun($o,$o)),sTfun(sTfun($i,$o),sTfun($i,sTfun($o,$o))),bCOMB,vIMP))))), inference(fool_elimination,[],[f43])). thf(f43,plain,( (subset = (^[X0 : $i > $o, X1 : $i > $o] : (! [X2] : (vAPP($i,$o,X0,X2) => vAPP($i,$o,X1,X2)))))), inference(rectify,[],[f12])). thf(f12,axiom,( (subset = (^[X0 : $i > $o, X2 : $i > $o] : (! [X3] : (vAPP($i,$o,X0,X3) => vAPP($i,$o,X2,X3)))))), file('samples/SET014^4.p',unknown)). thf(f51,plain,( ($true != vAPP(sTfun($i,$o),$o,vAPP(sTfun($i,$o),sTfun(sTfun($i,$o),$o),subset,vAPP(sTfun($i,$o),sTfun($i,$o),vAPP(sTfun($i,$o),sTfun(sTfun($i,$o),sTfun($i,$o)),union,sK0),sK1)),sK2))), inference(cnf_transformation,[],[f48])). thf(f48,plain,( ($true != vAPP(sTfun($i,$o),$o,vAPP(sTfun($i,$o),sTfun(sTfun($i,$o),$o),subset,vAPP(sTfun($i,$o),sTfun($i,$o),vAPP(sTfun($i,$o),sTfun(sTfun($i,$o),sTfun($i,$o)),union,sK0),sK1)),sK2)) & ($true = vAPP(sTfun($i,$o),$o,vAPP(sTfun($i,$o),sTfun(sTfun($i,$o),$o),subset,sK1),sK2)) & ($true = vAPP(sTfun($i,$o),$o,vAPP(sTfun($i,$o),sTfun(sTfun($i,$o),$o),subset,sK0),sK2))), inference(skolemisation,[status(esa),new_symbols(skolem,[sK0,sK1,sK2])],[f46,f47])). thf(f47,plain,( ? [X0 : $i > $o,X1 : $i > $o,X2 : $i > $o] : (($true != vAPP(sTfun($i,$o),$o,vAPP(sTfun($i,$o),sTfun(sTfun($i,$o),$o),subset,vAPP(sTfun($i,$o),sTfun($i,$o),vAPP(sTfun($i,$o),sTfun(sTfun($i,$o),sTfun($i,$o)),union,X0),X1)),X2)) & ($true = vAPP(sTfun($i,$o),$o,vAPP(sTfun($i,$o),sTfun(sTfun($i,$o),$o),subset,X1),X2)) & ($true = vAPP(sTfun($i,$o),$o,vAPP(sTfun($i,$o),sTfun(sTfun($i,$o),$o),subset,X0),X2))) => (($true != vAPP(sTfun($i,$o),$o,vAPP(sTfun($i,$o),sTfun(sTfun($i,$o),$o),subset,vAPP(sTfun($i,$o),sTfun($i,$o),vAPP(sTfun($i,$o),sTfun(sTfun($i,$o),sTfun($i,$o)),union,sK0),sK1)),sK2)) & ($true = vAPP(sTfun($i,$o),$o,vAPP(sTfun($i,$o),sTfun(sTfun($i,$o),$o),subset,sK1),sK2)) & ($true = vAPP(sTfun($i,$o),$o,vAPP(sTfun($i,$o),sTfun(sTfun($i,$o),$o),subset,sK0),sK2)))), introduced(choice_axiom,[])). thf(f46,plain,( ? [X0 : $i > $o,X1 : $i > $o,X2 : $i > $o] : (($true != vAPP(sTfun($i,$o),$o,vAPP(sTfun($i,$o),sTfun(sTfun($i,$o),$o),subset,vAPP(sTfun($i,$o),sTfun($i,$o),vAPP(sTfun($i,$o),sTfun(sTfun($i,$o),sTfun($i,$o)),union,X0),X1)),X2)) & ($true = vAPP(sTfun($i,$o),$o,vAPP(sTfun($i,$o),sTfun(sTfun($i,$o),$o),subset,X1),X2)) & ($true = vAPP(sTfun($i,$o),$o,vAPP(sTfun($i,$o),sTfun(sTfun($i,$o),$o),subset,X0),X2)))), inference(flattening,[],[f45])). thf(f45,plain,( ? [X0 : $i > $o,X1 : $i > $o,X2 : $i > $o] : (($true != vAPP(sTfun($i,$o),$o,vAPP(sTfun($i,$o),sTfun(sTfun($i,$o),$o),subset,vAPP(sTfun($i,$o),sTfun($i,$o),vAPP(sTfun($i,$o),sTfun(sTfun($i,$o),sTfun($i,$o)),union,X0),X1)),X2)) & (($true = vAPP(sTfun($i,$o),$o,vAPP(sTfun($i,$o),sTfun(sTfun($i,$o),$o),subset,X1),X2)) & ($true = vAPP(sTfun($i,$o),$o,vAPP(sTfun($i,$o),sTfun(sTfun($i,$o),$o),subset,X0),X2))))), inference(ennf_transformation,[],[f19])). thf(f19,plain,( ~! [X0 : $i > $o,X1 : $i > $o,X2 : $i > $o] : ((($true = vAPP(sTfun($i,$o),$o,vAPP(sTfun($i,$o),sTfun(sTfun($i,$o),$o),subset,X1),X2)) & ($true = vAPP(sTfun($i,$o),$o,vAPP(sTfun($i,$o),sTfun(sTfun($i,$o),$o),subset,X0),X2))) => ($true = vAPP(sTfun($i,$o),$o,vAPP(sTfun($i,$o),sTfun(sTfun($i,$o),$o),subset,vAPP(sTfun($i,$o),sTfun($i,$o),vAPP(sTfun($i,$o),sTfun(sTfun($i,$o),sTfun($i,$o)),union,X0),X1)),X2)))), inference(fool_elimination,[],[f18])). thf(f18,plain,( ~! [X0 : $i > $o,X1 : $i > $o,X2 : $i > $o] : ((vAPP(sTfun($i,$o),$o,vAPP(sTfun($i,$o),sTfun(sTfun($i,$o),$o),subset,X1),X2) & vAPP(sTfun($i,$o),$o,vAPP(sTfun($i,$o),sTfun(sTfun($i,$o),$o),subset,X0),X2)) => vAPP(sTfun($i,$o),$o,vAPP(sTfun($i,$o),sTfun(sTfun($i,$o),$o),subset,vAPP(sTfun($i,$o),sTfun($i,$o),vAPP(sTfun($i,$o),sTfun(sTfun($i,$o),sTfun($i,$o)),union,X0),X1)),X2))), inference(rectify,[],[f16])). thf(f16,negated_conjecture,( ~! [X0 : $i > $o,X2 : $i > $o,X4 : $i > $o] : ((vAPP(sTfun($i,$o),$o,vAPP(sTfun($i,$o),sTfun(sTfun($i,$o),$o),subset,X2),X4) & vAPP(sTfun($i,$o),$o,vAPP(sTfun($i,$o),sTfun(sTfun($i,$o),$o),subset,X0),X4)) => vAPP(sTfun($i,$o),$o,vAPP(sTfun($i,$o),sTfun(sTfun($i,$o),$o),subset,vAPP(sTfun($i,$o),sTfun($i,$o),vAPP(sTfun($i,$o),sTfun(sTfun($i,$o),sTfun($i,$o)),union,X0),X2)),X4))), inference(negated_conjecture,[],[f15])). thf(f15,conjecture,( ! [X0 : $i > $o,X2 : $i > $o,X4 : $i > $o] : ((vAPP(sTfun($i,$o),$o,vAPP(sTfun($i,$o),sTfun(sTfun($i,$o),$o),subset,X2),X4) & vAPP(sTfun($i,$o),$o,vAPP(sTfun($i,$o),sTfun(sTfun($i,$o),$o),subset,X0),X4)) => vAPP(sTfun($i,$o),$o,vAPP(sTfun($i,$o),sTfun(sTfun($i,$o),$o),subset,vAPP(sTfun($i,$o),sTfun($i,$o),vAPP(sTfun($i,$o),sTfun(sTfun($i,$o),sTfun($i,$o)),union,X0),X2)),X4))), file('samples/SET014^4.p',unknown)). thf(f77,plain,( ( ! [X1 : $i] : (($true = vAPP($i,$o,sK2,X1)) | ($false = vAPP($i,$o,sK1,X1))) )), inference(binary_proxy_clausification,[],[f76])). thf(f76,plain,( ( ! [X1 : $i] : (($true = vAPP($o,$o,vAPP($o,sTfun($o,$o),vIMP,vAPP($i,$o,sK1,X1)),vAPP($i,$o,sK2,X1)))) )), inference(combinator_demodulation,[],[f75])). thf(f75,plain,( ( ! [X1 : $i] : (($true = vAPP($i,$o,vAPP(sTfun($i,$o),sTfun($i,$o),vAPP(sTfun($i,sTfun($o,$o)),sTfun(sTfun($i,$o),sTfun($i,$o)),sCOMB,vAPP(sTfun($i,$o),sTfun($i,sTfun($o,$o)),vAPP(sTfun($o,sTfun($o,$o)),sTfun(sTfun($i,$o),sTfun($i,sTfun($o,$o))),bCOMB,vIMP),sK1)),sK2),X1))) )), inference(pi_clausification,[],[f74])). thf(f74,plain,( ($true = vAPP(sTfun($i,$o),$o,vPI($i),vAPP(sTfun($i,$o),sTfun($i,$o),vAPP(sTfun($i,sTfun($o,$o)),sTfun(sTfun($i,$o),sTfun($i,$o)),sCOMB,vAPP(sTfun($i,$o),sTfun($i,sTfun($o,$o)),vAPP(sTfun($o,sTfun($o,$o)),sTfun(sTfun($i,$o),sTfun($i,sTfun($o,$o))),bCOMB,vIMP),sK1)),sK2)))), inference(combinator_demodulation,[],[f68])). thf(f68,plain,( ($true = vAPP(sTfun($i,$o),$o,vAPP(sTfun($i,$o),sTfun(sTfun($i,$o),$o),vAPP(sTfun(sTfun($i,$o),sTfun(sTfun($i,$o),sTfun($i,$o))),sTfun(sTfun($i,$o),sTfun(sTfun($i,$o),$o)),vAPP(sTfun(sTfun(sTfun($i,$o),sTfun($i,$o)),sTfun(sTfun($i,$o),$o)),sTfun(sTfun(sTfun($i,$o),sTfun(sTfun($i,$o),sTfun($i,$o))),sTfun(sTfun($i,$o),sTfun(sTfun($i,$o),$o))),bCOMB,vAPP(sTfun(sTfun($i,$o),$o),sTfun(sTfun(sTfun($i,$o),sTfun($i,$o)),sTfun(sTfun($i,$o),$o)),bCOMB,vPI($i))),vAPP(sTfun(sTfun($i,$o),sTfun($i,sTfun($o,$o))),sTfun(sTfun($i,$o),sTfun(sTfun($i,$o),sTfun($i,$o))),vAPP(sTfun(sTfun($i,sTfun($o,$o)),sTfun(sTfun($i,$o),sTfun($i,$o))),sTfun(sTfun(sTfun($i,$o),sTfun($i,sTfun($o,$o))),sTfun(sTfun($i,$o),sTfun(sTfun($i,$o),sTfun($i,$o)))),bCOMB,sCOMB),vAPP(sTfun($o,sTfun($o,$o)),sTfun(sTfun($i,$o),sTfun($i,sTfun($o,$o))),bCOMB,vIMP))),sK1),sK2))), inference(definition_unfolding,[],[f50,f65])). thf(f50,plain,( ($true = vAPP(sTfun($i,$o),$o,vAPP(sTfun($i,$o),sTfun(sTfun($i,$o),$o),subset,sK1),sK2))), inference(cnf_transformation,[],[f48])). thf(f89,plain,( ($true = vAPP($i,$o,sK1,sK3))), inference(trivial_inequality_removal,[],[f88])). thf(f88,plain,( ($true = $false) | ($true = vAPP($i,$o,sK1,sK3))), inference(backward_demodulation,[],[f83,f87])). thf(f87,plain,( ($false = vAPP($i,$o,sK0,sK3))), inference(trivial_inequality_removal,[],[f84])). thf(f84,plain,( ($true = $false) | ($false = vAPP($i,$o,sK0,sK3))), inference(superposition,[],[f73,f81])). thf(f73,plain,( ( ! [X1 : $i] : (($true = vAPP($i,$o,sK2,X1)) | ($false = vAPP($i,$o,sK0,X1))) )), inference(binary_proxy_clausification,[],[f72])). thf(f72,plain,( ( ! [X1 : $i] : (($true = vAPP($o,$o,vAPP($o,sTfun($o,$o),vIMP,vAPP($i,$o,sK0,X1)),vAPP($i,$o,sK2,X1)))) )), inference(combinator_demodulation,[],[f71])). thf(f71,plain,( ( ! [X1 : $i] : (($true = vAPP($i,$o,vAPP(sTfun($i,$o),sTfun($i,$o),vAPP(sTfun($i,sTfun($o,$o)),sTfun(sTfun($i,$o),sTfun($i,$o)),sCOMB,vAPP(sTfun($i,$o),sTfun($i,sTfun($o,$o)),vAPP(sTfun($o,sTfun($o,$o)),sTfun(sTfun($i,$o),sTfun($i,sTfun($o,$o))),bCOMB,vIMP),sK0)),sK2),X1))) )), inference(pi_clausification,[],[f70])). thf(f70,plain,( ($true = vAPP(sTfun($i,$o),$o,vPI($i),vAPP(sTfun($i,$o),sTfun($i,$o),vAPP(sTfun($i,sTfun($o,$o)),sTfun(sTfun($i,$o),sTfun($i,$o)),sCOMB,vAPP(sTfun($i,$o),sTfun($i,sTfun($o,$o)),vAPP(sTfun($o,sTfun($o,$o)),sTfun(sTfun($i,$o),sTfun($i,sTfun($o,$o))),bCOMB,vIMP),sK0)),sK2)))), inference(combinator_demodulation,[],[f69])). thf(f69,plain,( ($true = vAPP(sTfun($i,$o),$o,vAPP(sTfun($i,$o),sTfun(sTfun($i,$o),$o),vAPP(sTfun(sTfun($i,$o),sTfun(sTfun($i,$o),sTfun($i,$o))),sTfun(sTfun($i,$o),sTfun(sTfun($i,$o),$o)),vAPP(sTfun(sTfun(sTfun($i,$o),sTfun($i,$o)),sTfun(sTfun($i,$o),$o)),sTfun(sTfun(sTfun($i,$o),sTfun(sTfun($i,$o),sTfun($i,$o))),sTfun(sTfun($i,$o),sTfun(sTfun($i,$o),$o))),bCOMB,vAPP(sTfun(sTfun($i,$o),$o),sTfun(sTfun(sTfun($i,$o),sTfun($i,$o)),sTfun(sTfun($i,$o),$o)),bCOMB,vPI($i))),vAPP(sTfun(sTfun($i,$o),sTfun($i,sTfun($o,$o))),sTfun(sTfun($i,$o),sTfun(sTfun($i,$o),sTfun($i,$o))),vAPP(sTfun(sTfun($i,sTfun($o,$o)),sTfun(sTfun($i,$o),sTfun($i,$o))),sTfun(sTfun(sTfun($i,$o),sTfun($i,sTfun($o,$o))),sTfun(sTfun($i,$o),sTfun(sTfun($i,$o),sTfun($i,$o)))),bCOMB,sCOMB),vAPP(sTfun($o,sTfun($o,$o)),sTfun(sTfun($i,$o),sTfun($i,sTfun($o,$o))),bCOMB,vIMP))),sK0),sK2))), inference(definition_unfolding,[],[f49,f65])). thf(f49,plain,( ($true = vAPP(sTfun($i,$o),$o,vAPP(sTfun($i,$o),sTfun(sTfun($i,$o),$o),subset,sK0),sK2))), inference(cnf_transformation,[],[f48])). thf(f83,plain,( ($true = vAPP($i,$o,sK1,sK3)) | ($true = vAPP($i,$o,sK0,sK3))), inference(binary_proxy_clausification,[],[f82])). thf(f82,plain,( ($true = vAPP($o,$o,vAPP($o,sTfun($o,$o),vOR,vAPP($i,$o,sK0,sK3)),vAPP($i,$o,sK1,sK3)))), inference(binary_proxy_clausification,[],[f80])). % SZS output end Proof for SET014^4
% SZS output start Proof for DAT013=1 tff(type_def_5, type, array: $tType). tff(func_def_0, type, read: (array * $int) > $int). tff(func_def_1, type, write: (array * $int * $int) > array). tff(func_def_7, type, sK0: array). tff(func_def_8, type, sK1: $int). tff(func_def_9, type, sK2: $int). tff(func_def_10, type, sK3: $int). tff(f1876,plain,( $false), inference(avatar_sat_refutation,[],[f123,f1541,f1875])). tff(f1875,plain,( ~spl4_6), inference(avatar_contradiction_clause,[],[f1874])). tff(f1874,plain,( $false | ~spl4_6), inference(subsumption_resolution,[],[f1870,f11])). tff(f11,plain,( ( ! [X0 : $int] : (~$less(X0,X0)) )), introduced(theory_axiom_146,[])). tff(f1870,plain,( $less(sK1,sK1) | ~spl4_6), inference(resolution,[],[f1866,f693])). tff(f693,plain,( ( ! [X1 : $int] : (~$less(X1,sK3) | $less(X1,sK1)) )), inference(resolution,[],[f689,f12])). tff(f12,plain,( ( ! [X2 : $int,X0 : $int,X1 : $int] : (~$less(X1,X2) | ~$less(X0,X1) | $less(X0,X2)) )), introduced(theory_axiom_147,[])). tff(f689,plain,( $less(sK3,sK1)), inference(subsumption_resolution,[],[f685,f29])). tff(f29,plain,( ~$less(sK2,sK3)), inference(cnf_transformation,[],[f24])). tff(f24,plain,( (~$less(0,read(sK0,sK3)) & ~$less(sK2,sK3) & ~$less(sK3,$sum(sK1,3))) & ! [X4 : $int] : ($less(0,read(sK0,X4)) | $less(sK2,X4) | $less(X4,sK1))), inference(skolemisation,[status(esa),new_symbols(skolem,[sK0,sK1,sK2,sK3])],[f21,f23,f22])). tff(f22,plain,( ? [X0 : array,X1 : $int,X2 : $int] : (? [X3 : $int] : (~$less(0,read(X0,X3)) & ~$less(X2,X3) & ~$less(X3,$sum(X1,3))) & ! [X4 : $int] : ($less(0,read(X0,X4)) | $less(X2,X4) | $less(X4,X1))) => (? [X3 : $int] : (~$less(0,read(sK0,X3)) & ~$less(sK2,X3) & ~$less(X3,$sum(sK1,3))) & ! [X4 : $int] : ($less(0,read(sK0,X4)) | $less(sK2,X4) | $less(X4,sK1)))), introduced(choice_axiom,[])). tff(f23,plain,( ? [X3 : $int] : (~$less(0,read(sK0,X3)) & ~$less(sK2,X3) & ~$less(X3,$sum(sK1,3))) => (~$less(0,read(sK0,sK3)) & ~$less(sK2,sK3) & ~$less(sK3,$sum(sK1,3)))), introduced(choice_axiom,[])). tff(f21,plain,( ? [X0 : array,X1 : $int,X2 : $int] : (? [X3 : $int] : (~$less(0,read(X0,X3)) & ~$less(X2,X3) & ~$less(X3,$sum(X1,3))) & ! [X4 : $int] : ($less(0,read(X0,X4)) | $less(X2,X4) | $less(X4,X1)))), inference(rectify,[],[f20])). tff(f20,plain,( ? [X0 : array,X1 : $int,X2 : $int] : (? [X4 : $int] : (~$less(0,read(X0,X4)) & ~$less(X2,X4) & ~$less(X4,$sum(X1,3))) & ! [X3 : $int] : ($less(0,read(X0,X3)) | $less(X2,X3) | $less(X3,X1)))), inference(flattening,[],[f19])). tff(f19,plain,( ? [X0 : array,X1 : $int,X2 : $int] : (? [X4 : $int] : (~$less(0,read(X0,X4)) & (~$less(X2,X4) & ~$less(X4,$sum(X1,3)))) & ! [X3 : $int] : ($less(0,read(X0,X3)) | ($less(X2,X3) | $less(X3,X1))))), inference(ennf_transformation,[],[f5])). tff(f5,plain,( ~! [X0 : array,X1 : $int,X2 : $int] : (! [X3 : $int] : ((~$less(X2,X3) & ~$less(X3,X1)) => $less(0,read(X0,X3))) => ! [X4 : $int] : ((~$less(X2,X4) & ~$less(X4,$sum(X1,3))) => $less(0,read(X0,X4))))), inference(theory_normalization,[],[f4])). tff(f4,negated_conjecture,( ~! [X0 : array,X1 : $int,X2 : $int] : (! [X3 : $int] : (($lesseq(X3,X2) & $lesseq(X1,X3)) => $greater(read(X0,X3),0)) => ! [X4 : $int] : (($lesseq(X4,X2) & $lesseq($sum(X1,3),X4)) => $greater(read(X0,X4),0)))), inference(negated_conjecture,[],[f3])). tff(f3,conjecture,( ! [X0 : array,X1 : $int,X2 : $int] : (! [X3 : $int] : (($lesseq(X3,X2) & $lesseq(X1,X3)) => $greater(read(X0,X3),0)) => ! [X4 : $int] : (($lesseq(X4,X2) & $lesseq($sum(X1,3),X4)) => $greater(read(X0,X4),0)))), file('samples/DAT013=1.p',unknown)). tff(f685,plain,( $less(sK2,sK3) | $less(sK3,sK1)), inference(resolution,[],[f27,f30])). tff(f30,plain,( ~$less(0,read(sK0,sK3))), inference(cnf_transformation,[],[f24])). tff(f27,plain,( ( ! [X4 : $int] : ($less(0,read(sK0,X4)) | $less(sK2,X4) | $less(X4,sK1)) )), inference(cnf_transformation,[],[f24])). tff(f1866,plain,( $less(sK1,sK3) | ~spl4_6), inference(evaluation,[],[f1846])). tff(f1846,plain,( ~$less(0,3) | $less(sK1,sK3) | ~spl4_6), inference(resolution,[],[f157,f1563])). tff(f1563,plain,( ( ! [X2 : $int] : (~$less(X2,$sum(3,sK1)) | $less(X2,sK3)) ) | ~spl4_6), inference(resolution,[],[f119,f12])). tff(f119,plain,( $less($sum(3,sK1),sK3) | ~spl4_6), inference(avatar_component_clause,[],[f117])). tff(f117,plain,( spl4_6 <=> $less($sum(3,sK1),sK3)), introduced(avatar_definition,[new_symbols(naming,[spl4_6])])). tff(f157,plain,( ( ! [X10 : $int,X11 : $int] : ($less(X10,$sum(X11,X10)) | ~$less(0,X11)) )), inference(superposition,[],[f14,f33])). tff(f33,plain,( ( ! [X0 : $int] : ($sum(0,X0) = X0) )), inference(superposition,[],[f6,f8])). tff(f8,plain,( ( ! [X0 : $int] : ($sum(X0,0) = X0) )), introduced(theory_axiom_141,[])). tff(f6,plain,( ( ! [X0 : $int,X1 : $int] : ($sum(X0,X1) = $sum(X1,X0)) )), introduced(theory_axiom_139,[])). tff(f14,plain,( ( ! [X2 : $int,X0 : $int,X1 : $int] : ($less($sum(X0,X2),$sum(X1,X2)) | ~$less(X0,X1)) )), introduced(theory_axiom_149,[])). tff(f1541,plain,( ~spl4_5), inference(avatar_contradiction_clause,[],[f1540])). tff(f1540,plain,( $false | ~spl4_5), inference(subsumption_resolution,[],[f1535,f11])). tff(f1535,plain,( $less(sK1,sK1) | ~spl4_5), inference(resolution,[],[f1525,f693])). tff(f1525,plain,( $less(sK1,sK3) | ~spl4_5), inference(evaluation,[],[f1520])). tff(f1520,plain,( $less(sK1,sK3) | ~$less(0,3) | ~spl4_5), inference(superposition,[],[f702,f33])). tff(f702,plain,( ( ! [X1 : $int] : ($less($sum(X1,sK1),sK3) | ~$less(X1,3)) ) | ~spl4_5), inference(superposition,[],[f14,f115])). tff(f115,plain,( sK3 = $sum(3,sK1) | ~spl4_5), inference(avatar_component_clause,[],[f113])). tff(f113,plain,( spl4_5 <=> sK3 = $sum(3,sK1)), introduced(avatar_definition,[new_symbols(naming,[spl4_5])])). tff(f123,plain,( spl4_5 | spl4_6), inference(avatar_split_clause,[],[f92,f117,f113])). tff(f92,plain,( $less($sum(3,sK1),sK3) | sK3 = $sum(3,sK1)), inference(resolution,[],[f13,f31])). tff(f31,plain,( ~$less(sK3,$sum(3,sK1))), inference(forward_demodulation,[],[f28,f6])). tff(f28,plain,( ~$less(sK3,$sum(sK1,3))), inference(cnf_transformation,[],[f24])). tff(f13,plain,( ( ! [X0 : $int,X1 : $int] : ($less(X1,X0) | $less(X0,X1) | X0 = X1) )), introduced(theory_axiom_148,[])). % SZS output end Proof for DAT013=1
% SZS output start Proof for SEU140+2 fof(f4471,plain,( $false), inference(subsumption_resolution,[],[f4465,f210])). fof(f210,plain,( ~disjoint(sK10,sK12)), inference(cnf_transformation,[],[f134])). fof(f134,plain,( ~disjoint(sK10,sK12) & disjoint(sK11,sK12) & subset(sK10,sK11)), inference(skolemisation,[status(esa),new_symbols(skolem,[sK10,sK11,sK12])],[f88,f133])). fof(f133,plain,( ? [X0,X1,X2] : (~disjoint(X0,X2) & disjoint(X1,X2) & subset(X0,X1)) => (~disjoint(sK10,sK12) & disjoint(sK11,sK12) & subset(sK10,sK11))), introduced(choice_axiom,[])). fof(f88,plain,( ? [X0,X1,X2] : (~disjoint(X0,X2) & disjoint(X1,X2) & subset(X0,X1))), inference(flattening,[],[f87])). fof(f87,plain,( ? [X0,X1,X2] : (~disjoint(X0,X2) & (disjoint(X1,X2) & subset(X0,X1)))), inference(ennf_transformation,[],[f52])). fof(f52,negated_conjecture,( ~! [X0,X1,X2] : ((disjoint(X1,X2) & subset(X0,X1)) => disjoint(X0,X2))), inference(negated_conjecture,[],[f51])). fof(f51,conjecture,( ! [X0,X1,X2] : ((disjoint(X1,X2) & subset(X0,X1)) => disjoint(X0,X2))), file('samples/SEU140+2.p',unknown)). fof(f4465,plain,( disjoint(sK10,sK12)), inference(superposition,[],[f4351,f2135])). fof(f2135,plain,( sK12 = set_difference(set_union2(sK11,sK12),sK11)), inference(superposition,[],[f741,f931])). fof(f931,plain,( sK11 = set_difference(sK11,sK12)), inference(forward_demodulation,[],[f930,f338])). fof(f338,plain,( ( ! [X6,X7] : (set_union2(set_difference(X6,X7),X6) = X6) )), inference(resolution,[],[f180,f192])). fof(f192,plain,( ( ! [X0,X1] : (subset(set_difference(X0,X1),X0)) )), inference(cnf_transformation,[],[f39])). fof(f39,axiom,( ! [X0,X1] : subset(set_difference(X0,X1),X0)), file('samples/SEU140+2.p',unknown)). fof(f180,plain,( ( ! [X0,X1] : (~subset(X0,X1) | set_union2(X0,X1) = X1) )), inference(cnf_transformation,[],[f73])). fof(f73,plain,( ! [X0,X1] : (set_union2(X0,X1) = X1 | ~subset(X0,X1))), inference(ennf_transformation,[],[f28])). fof(f28,axiom,( ! [X0,X1] : (subset(X0,X1) => set_union2(X0,X1) = X1)), file('samples/SEU140+2.p',unknown)). fof(f930,plain,( set_difference(sK11,sK12) = set_union2(set_difference(sK11,sK12),sK11)), inference(forward_demodulation,[],[f929,f281])). fof(f281,plain,( ( ! [X1] : (set_union2(empty_set,X1) = X1) )), inference(superposition,[],[f137,f183])). fof(f183,plain,( ( ! [X0] : (set_union2(X0,empty_set) = X0) )), inference(cnf_transformation,[],[f31])). fof(f31,axiom,( ! [X0] : set_union2(X0,empty_set) = X0), file('samples/SEU140+2.p',unknown)). fof(f137,plain,( ( ! [X0,X1] : (set_union2(X0,X1) = set_union2(X1,X0)) )), inference(cnf_transformation,[],[f3])). fof(f3,axiom,( ! [X0,X1] : set_union2(X0,X1) = set_union2(X1,X0)), file('samples/SEU140+2.p',unknown)). fof(f929,plain,( set_union2(set_difference(sK11,sK12),sK11) = set_union2(empty_set,set_difference(sK11,sK12))), inference(forward_demodulation,[],[f914,f137])). fof(f914,plain,( set_union2(set_difference(sK11,sK12),sK11) = set_union2(set_difference(sK11,sK12),empty_set)), inference(superposition,[],[f195,f587])). fof(f587,plain,( empty_set = set_difference(sK11,set_difference(sK11,sK12))), inference(resolution,[],[f224,f209])). fof(f209,plain,( disjoint(sK11,sK12)), inference(cnf_transformation,[],[f134])). fof(f224,plain,( ( ! [X0,X1] : (~disjoint(X0,X1) | empty_set = set_difference(X0,set_difference(X0,X1))) )), inference(definition_unfolding,[],[f165,f203])). fof(f203,plain,( ( ! [X0,X1] : (set_intersection2(X0,X1) = set_difference(X0,set_difference(X0,X1))) )), inference(cnf_transformation,[],[f47])). fof(f47,axiom,( ! [X0,X1] : set_intersection2(X0,X1) = set_difference(X0,set_difference(X0,X1))), file('samples/SEU140+2.p',unknown)). fof(f165,plain,( ( ! [X0,X1] : (set_intersection2(X0,X1) = empty_set | ~disjoint(X0,X1)) )), inference(cnf_transformation,[],[f119])). fof(f119,plain,( ! [X0,X1] : ((disjoint(X0,X1) | set_intersection2(X0,X1) != empty_set) & (set_intersection2(X0,X1) = empty_set | ~disjoint(X0,X1)))), inference(nnf_transformation,[],[f11])). fof(f11,axiom,( ! [X0,X1] : (disjoint(X0,X1) <=> set_intersection2(X0,X1) = empty_set)), file('samples/SEU140+2.p',unknown)). fof(f195,plain,( ( ! [X0,X1] : (set_union2(X0,X1) = set_union2(X0,set_difference(X1,X0))) )), inference(cnf_transformation,[],[f41])). fof(f41,axiom,( ! [X0,X1] : set_union2(X0,X1) = set_union2(X0,set_difference(X1,X0))), file('samples/SEU140+2.p',unknown)). fof(f741,plain,( ( ! [X6,X7] : (set_difference(set_union2(X6,X7),set_difference(X6,X7)) = X7) )), inference(forward_demodulation,[],[f740,f196])). fof(f196,plain,( ( ! [X0] : (set_difference(X0,empty_set) = X0) )), inference(cnf_transformation,[],[f42])). fof(f42,axiom,( ! [X0] : set_difference(X0,empty_set) = X0), file('samples/SEU140+2.p',unknown)). fof(f740,plain,( ( ! [X6,X7] : (set_difference(set_union2(X6,X7),set_difference(X6,X7)) = set_difference(X7,empty_set)) )), inference(forward_demodulation,[],[f690,f324])). fof(f324,plain,( ( ! [X3,X4] : (empty_set = set_difference(X3,set_union2(X4,X3))) )), inference(resolution,[],[f175,f286])). fof(f286,plain,( ( ! [X6,X7] : (subset(X6,set_union2(X7,X6))) )), inference(superposition,[],[f213,f137])). fof(f213,plain,( ( ! [X0,X1] : (subset(X0,set_union2(X0,X1))) )), inference(cnf_transformation,[],[f55])). fof(f55,axiom,( ! [X0,X1] : subset(X0,set_union2(X0,X1))), file('samples/SEU140+2.p',unknown)). fof(f175,plain,( ( ! [X0,X1] : (~subset(X0,X1) | empty_set = set_difference(X0,X1)) )), inference(cnf_transformation,[],[f120])). fof(f120,plain,( ! [X0,X1] : ((empty_set = set_difference(X0,X1) | ~subset(X0,X1)) & (subset(X0,X1) | empty_set != set_difference(X0,X1)))), inference(nnf_transformation,[],[f23])). fof(f23,axiom,( ! [X0,X1] : (empty_set = set_difference(X0,X1) <=> subset(X0,X1))), file('samples/SEU140+2.p',unknown)). fof(f690,plain,( ( ! [X6,X7] : (set_difference(set_union2(X6,X7),set_difference(X6,X7)) = set_difference(X7,set_difference(X7,set_union2(X6,X7)))) )), inference(superposition,[],[f216,f201])). fof(f201,plain,( ( ! [X0,X1] : (set_difference(X0,X1) = set_difference(set_union2(X0,X1),X1)) )), inference(cnf_transformation,[],[f45])). fof(f45,axiom,( ! [X0,X1] : set_difference(X0,X1) = set_difference(set_union2(X0,X1),X1)), file('samples/SEU140+2.p',unknown)). fof(f216,plain,( ( ! [X0,X1] : (set_difference(X0,set_difference(X0,X1)) = set_difference(X1,set_difference(X1,X0))) )), inference(definition_unfolding,[],[f138,f203,f203])). fof(f138,plain,( ( ! [X0,X1] : (set_intersection2(X0,X1) = set_intersection2(X1,X0)) )), inference(cnf_transformation,[],[f4])). fof(f4,axiom,( ! [X0,X1] : set_intersection2(X0,X1) = set_intersection2(X1,X0)), file('samples/SEU140+2.p',unknown)). fof(f4351,plain,( ( ! [X41] : (disjoint(sK10,set_difference(X41,sK11))) )), inference(superposition,[],[f4323,f2122])). fof(f2122,plain,( sK10 = set_difference(sK11,set_difference(sK11,sK10))), inference(superposition,[],[f741,f434])). fof(f434,plain,( sK11 = set_union2(sK11,sK10)), inference(forward_demodulation,[],[f433,f281])). fof(f433,plain,( set_union2(sK11,sK10) = set_union2(empty_set,sK11)), inference(forward_demodulation,[],[f421,f137])). fof(f421,plain,( set_union2(sK11,sK10) = set_union2(sK11,empty_set)), inference(superposition,[],[f195,f328])). fof(f328,plain,( empty_set = set_difference(sK10,sK11)), inference(resolution,[],[f175,f208])). fof(f208,plain,( subset(sK10,sK11)), inference(cnf_transformation,[],[f134])). fof(f4323,plain,( ( ! [X2,X3,X4] : (disjoint(set_difference(X2,X3),set_difference(X4,X2))) )), inference(duplicate_literal_removal,[],[f4288])). fof(f4288,plain,( ( ! [X2,X3,X4] : (disjoint(set_difference(X2,X3),set_difference(X4,X2)) | disjoint(set_difference(X2,X3),set_difference(X4,X2))) )), inference(resolution,[],[f401,f395])). fof(f395,plain,( ( ! [X10,X8,X9] : (~in(sK8(X8,set_difference(X9,X10)),X10) | disjoint(X8,set_difference(X9,X10))) )), inference(resolution,[],[f243,f198])). fof(f198,plain,( ( ! [X0,X1] : (in(sK8(X0,X1),X1) | disjoint(X0,X1)) )), inference(cnf_transformation,[],[f130])). fof(f130,plain,( ! [X0,X1] : ((~disjoint(X0,X1) | ! [X2] : (~in(X2,X1) | ~in(X2,X0))) & ((in(sK8(X0,X1),X1) & in(sK8(X0,X1),X0)) | disjoint(X0,X1)))), inference(skolemisation,[status(esa),new_symbols(skolem,[sK8])],[f82,f129])). fof(f129,plain,( ! [X0,X1] : (? [X3] : (in(X3,X1) & in(X3,X0)) => (in(sK8(X0,X1),X1) & in(sK8(X0,X1),X0)))), introduced(choice_axiom,[])). fof(f82,plain,( ! [X0,X1] : ((~disjoint(X0,X1) | ! [X2] : (~in(X2,X1) | ~in(X2,X0))) & (? [X3] : (in(X3,X1) & in(X3,X0)) | disjoint(X0,X1)))), inference(ennf_transformation,[],[f62])). fof(f62,plain,( ! [X0,X1] : (~(disjoint(X0,X1) & ? [X2] : (in(X2,X1) & in(X2,X0))) & ~(! [X3] : ~(in(X3,X1) & in(X3,X0)) & ~disjoint(X0,X1)))), inference(rectify,[],[f43])). fof(f43,axiom,( ! [X0,X1] : (~(disjoint(X0,X1) & ? [X2] : (in(X2,X1) & in(X2,X0))) & ~(! [X2] : ~(in(X2,X1) & in(X2,X0)) & ~disjoint(X0,X1)))), file('samples/SEU140+2.p',unknown)). fof(f243,plain,( ( ! [X0,X1,X4] : (~in(X4,set_difference(X0,X1)) | ~in(X4,X1)) )), inference(equality_resolution,[],[f160])). fof(f160,plain,( ( ! [X2,X0,X1,X4] : (~in(X4,X1) | ~in(X4,X2) | set_difference(X0,X1) != X2) )), inference(cnf_transformation,[],[f118])). fof(f118,plain,( ! [X0,X1,X2] : ((set_difference(X0,X1) = X2 | ((in(sK4(X0,X1,X2),X1) | ~in(sK4(X0,X1,X2),X0) | ~in(sK4(X0,X1,X2),X2)) & ((~in(sK4(X0,X1,X2),X1) & in(sK4(X0,X1,X2),X0)) | in(sK4(X0,X1,X2),X2)))) & (! [X4] : ((in(X4,X2) | in(X4,X1) | ~in(X4,X0)) & ((~in(X4,X1) & in(X4,X0)) | ~in(X4,X2))) | set_difference(X0,X1) != X2))), inference(skolemisation,[status(esa),new_symbols(skolem,[sK4])],[f116,f117])). fof(f117,plain,( ! [X0,X1,X2] : (? [X3] : ((in(X3,X1) | ~in(X3,X0) | ~in(X3,X2)) & ((~in(X3,X1) & in(X3,X0)) | in(X3,X2))) => ((in(sK4(X0,X1,X2),X1) | ~in(sK4(X0,X1,X2),X0) | ~in(sK4(X0,X1,X2),X2)) & ((~in(sK4(X0,X1,X2),X1) & in(sK4(X0,X1,X2),X0)) | in(sK4(X0,X1,X2),X2))))), introduced(choice_axiom,[])). fof(f116,plain,( ! [X0,X1,X2] : ((set_difference(X0,X1) = X2 | ? [X3] : ((in(X3,X1) | ~in(X3,X0) | ~in(X3,X2)) & ((~in(X3,X1) & in(X3,X0)) | in(X3,X2)))) & (! [X4] : ((in(X4,X2) | in(X4,X1) | ~in(X4,X0)) & ((~in(X4,X1) & in(X4,X0)) | ~in(X4,X2))) | set_difference(X0,X1) != X2))), inference(rectify,[],[f115])). fof(f115,plain,( ! [X0,X1,X2] : ((set_difference(X0,X1) = X2 | ? [X3] : ((in(X3,X1) | ~in(X3,X0) | ~in(X3,X2)) & ((~in(X3,X1) & in(X3,X0)) | in(X3,X2)))) & (! [X3] : ((in(X3,X2) | in(X3,X1) | ~in(X3,X0)) & ((~in(X3,X1) & in(X3,X0)) | ~in(X3,X2))) | set_difference(X0,X1) != X2))), inference(flattening,[],[f114])). fof(f114,plain,( ! [X0,X1,X2] : ((set_difference(X0,X1) = X2 | ? [X3] : (((in(X3,X1) | ~in(X3,X0)) | ~in(X3,X2)) & ((~in(X3,X1) & in(X3,X0)) | in(X3,X2)))) & (! [X3] : ((in(X3,X2) | (in(X3,X1) | ~in(X3,X0))) & ((~in(X3,X1) & in(X3,X0)) | ~in(X3,X2))) | set_difference(X0,X1) != X2))), inference(nnf_transformation,[],[f10])). fof(f10,axiom,( ! [X0,X1,X2] : (set_difference(X0,X1) = X2 <=> ! [X3] : (in(X3,X2) <=> (~in(X3,X1) & in(X3,X0))))), file('samples/SEU140+2.p',unknown)). fof(f401,plain,( ( ! [X2,X3,X4] : (in(sK8(set_difference(X2,X3),X4),X2) | disjoint(set_difference(X2,X3),X4)) )), inference(resolution,[],[f244,f197])). fof(f197,plain,( ( ! [X0,X1] : (in(sK8(X0,X1),X0) | disjoint(X0,X1)) )), inference(cnf_transformation,[],[f130])). fof(f244,plain,( ( ! [X0,X1,X4] : (~in(X4,set_difference(X0,X1)) | in(X4,X0)) )), inference(equality_resolution,[],[f159])). fof(f159,plain,( ( ! [X2,X0,X1,X4] : (in(X4,X0) | ~in(X4,X2) | set_difference(X0,X1) != X2) )), inference(cnf_transformation,[],[f118])). % SZS output end Proof for SEU140+2
% # SZS output start Saturation. cnf(u143,negated_conjecture, patient(sK0,sK4,sK3)). cnf(u146,axiom, ~patient(X0,X1,X3) | ~agent(X0,X1,X3) | ~nonreflexive(X0,X1)). cnf(u142,negated_conjecture, agent(sK0,sK4,sK1)). cnf(u188,negated_conjecture, ~agent(sK0,sK4,sK3)). cnf(u144,negated_conjecture, nonreflexive(sK0,sK4)). cnf(u136,negated_conjecture, of(sK0,sK2,sK1)). cnf(u192,negated_conjecture, ~of(sK0,X0,sK1) | sK2 = X0 | ~forename(sK0,X0)). cnf(u134,axiom, ~of(X0,X3,X1) | X2 = X3 | ~forename(X0,X3) | ~of(X0,X2,X1) | ~forename(X0,X2) | ~entity(X0,X1)). cnf(u177,negated_conjecture, act(sK0,sK4)). cnf(u126,axiom, ~act(X0,X1) | event(X0,X1)). cnf(u175,negated_conjecture, nonexistent(sK0,sK4)). cnf(u129,axiom, ~nonexistent(X0,X1) | ~existent(X0,X1)). cnf(u173,negated_conjecture, eventuality(sK0,sK4)). cnf(u122,axiom, ~eventuality(X0,X1) | unisex(X0,X1)). cnf(u123,axiom, ~eventuality(X0,X1) | nonexistent(X0,X1)). cnf(u124,axiom, ~eventuality(X0,X1) | specific(X0,X1)). cnf(u141,negated_conjecture, event(sK0,sK4)). cnf(u125,axiom, ~event(X0,X1) | eventuality(X0,X1)). cnf(u145,negated_conjecture, order(sK0,sK4)). cnf(u121,axiom, ~order(X0,X1) | event(X0,X1)). cnf(u127,axiom, ~order(X0,X1) | act(X0,X1)). cnf(u140,negated_conjecture, shake_beverage(sK0,sK3)). cnf(u120,axiom, ~shake_beverage(X0,X1) | beverage(X0,X1)). cnf(u163,negated_conjecture, beverage(sK0,sK3)). cnf(u119,axiom, ~beverage(X0,X1) | food(X0,X1)). cnf(u164,negated_conjecture, food(sK0,sK3)). cnf(u118,axiom, ~food(X0,X1) | substance_matter(X0,X1)). cnf(u166,negated_conjecture, substance_matter(sK0,sK3)). cnf(u117,axiom, ~substance_matter(X0,X1) | object(X0,X1)). cnf(u171,negated_conjecture, specific(sK0,sK3)). cnf(u174,negated_conjecture, specific(sK0,sK4)). cnf(u162,negated_conjecture, specific(sK0,sK1)). cnf(u132,axiom, ~specific(X0,X1) | ~general(X0,X1)). cnf(u172,negated_conjecture, existent(sK0,sK3)). cnf(u158,negated_conjecture, existent(sK0,sK1)). cnf(u179,negated_conjecture, ~existent(sK0,sK4)). cnf(u169,negated_conjecture, nonliving(sK0,sK3)). cnf(u128,axiom, ~nonliving(X0,X1) | ~animate(X0,X1)). cnf(u131,axiom, ~nonliving(X0,X1) | ~living(X0,X1)). cnf(u167,negated_conjecture, object(sK0,sK3)). cnf(u112,axiom, ~object(X0,X1) | unisex(X0,X1)). cnf(u113,axiom, ~object(X0,X1) | nonliving(X0,X1)). cnf(u116,axiom, ~object(X0,X1) | entity(X0,X1)). cnf(u155,negated_conjecture, relname(sK0,sK2)). cnf(u110,axiom, ~relname(X0,X1) | relation(X0,X1)). cnf(u156,negated_conjecture, relation(sK0,sK2)). cnf(u109,axiom, ~relation(X0,X1) | abstraction(X0,X1)). cnf(u159,negated_conjecture, nonhuman(sK0,sK2)). cnf(u130,axiom, ~nonhuman(X0,X1) | ~human(X0,X1)). cnf(u160,negated_conjecture, general(sK0,sK2)). cnf(u194,negated_conjecture, ~general(sK0,sK3)). cnf(u183,negated_conjecture, ~general(sK0,sK1)). cnf(u184,negated_conjecture, ~general(sK0,sK4)). cnf(u170,negated_conjecture, unisex(sK0,sK3)). cnf(u176,negated_conjecture, unisex(sK0,sK4)). cnf(u161,negated_conjecture, unisex(sK0,sK2)). cnf(u133,axiom, ~unisex(X0,X1) | ~female(X0,X1)). cnf(u157,negated_conjecture, abstraction(sK0,sK2)). cnf(u106,axiom, ~abstraction(X0,X1) | unisex(X0,X1)). cnf(u107,axiom, ~abstraction(X0,X1) | general(X0,X1)). cnf(u108,axiom, ~abstraction(X0,X1) | nonhuman(X0,X1)). cnf(u139,negated_conjecture, forename(sK0,sK2)). cnf(u111,axiom, ~forename(X0,X1) | relname(X0,X1)). cnf(u138,negated_conjecture, mia_forename(sK0,sK2)). cnf(u105,axiom, ~mia_forename(X0,X1) | forename(X0,X1)). cnf(u168,negated_conjecture, entity(sK0,sK3)). cnf(u153,negated_conjecture, entity(sK0,sK1)). cnf(u114,axiom, ~entity(X0,X1) | existent(X0,X1)). cnf(u115,axiom, ~entity(X0,X1) | specific(X0,X1)). cnf(u154,negated_conjecture, living(sK0,sK1)). cnf(u181,negated_conjecture, ~living(sK0,sK3)). cnf(u149,negated_conjecture, organism(sK0,sK1)). cnf(u101,axiom, ~organism(X0,X1) | living(X0,X1)). cnf(u102,axiom, ~organism(X0,X1) | entity(X0,X1)). cnf(u150,negated_conjecture, human(sK0,sK1)). cnf(u180,negated_conjecture, ~human(sK0,sK2)). cnf(u151,negated_conjecture, animate(sK0,sK1)). cnf(u182,negated_conjecture, ~animate(sK0,sK3)). cnf(u148,negated_conjecture, human_person(sK0,sK1)). cnf(u99,axiom, ~human_person(X0,X1) | animate(X0,X1)). cnf(u100,axiom, ~human_person(X0,X1) | human(X0,X1)). cnf(u103,axiom, ~human_person(X0,X1) | organism(X0,X1)). cnf(u147,negated_conjecture, female(sK0,sK1)). cnf(u189,negated_conjecture, ~female(sK0,sK3)). cnf(u185,negated_conjecture, ~female(sK0,sK2)). cnf(u186,negated_conjecture, ~female(sK0,sK4)). cnf(u137,negated_conjecture, woman(sK0,sK1)). cnf(u98,axiom, ~woman(X0,X1) | female(X0,X1)). cnf(u104,axiom, ~woman(X0,X1) | human_person(X0,X1)). % # SZS output end Saturation.
% SZS output start FiniteModel for SWV017+1 tff(declare_$i,type,$i:$tType). tff(declare_$i1,type,at:$i). tff(declare_$i2,type,t:$i). tff(finite_domain,axiom, ! [X:$i] : ( X = at | X = t ) ). tff(distinct_domain,axiom, at != t ). tff(declare_bool,type,$o:$tType). tff(declare_bool1,type,fmb_bool_1:$o). tff(finite_domain,axiom, ! [X:$o] : ( X = fmb_bool_1 ) ). tff(declare_a,type,a:$i). tff(a_definition,axiom,a = t). tff(declare_b,type,b:$i). tff(b_definition,axiom,b = t). tff(declare_an_a_nonce,type,an_a_nonce:$i). tff(an_a_nonce_definition,axiom,an_a_nonce = t). tff(declare_bt,type,bt:$i). tff(bt_definition,axiom,bt = at). tff(declare_an_intruder_nonce,type,an_intruder_nonce:$i). tff(an_intruder_nonce_definition,axiom,an_intruder_nonce = t). tff(declare_key,type,key: $i * $i > $i). tff(function_key,axiom, key(at,at) = at & key(at,t) = at & key(t,at) = t & key(t,t) = t ). tff(declare_pair,type,pair: $i * $i > $i). tff(function_pair,axiom, pair(at,at) = at & pair(at,t) = at & pair(t,at) = at & pair(t,t) = t ). tff(declare_sent,type,sent: $i * $i * $i > $i). tff(function_sent,axiom, sent(at,at,at) = t & sent(at,at,t) = at & sent(at,t,at) = t & sent(at,t,t) = at & sent(t,at,at) = t & sent(t,at,t) = at & sent(t,t,at) = t & sent(t,t,t) = at ). tff(declare_quadruple,type,quadruple: $i * $i * $i * $i > $i). tff(function_quadruple,axiom, quadruple(at,at,at,at) = at & quadruple(at,at,at,t) = at & quadruple(at,at,t,at) = at & quadruple(at,at,t,t) = at & quadruple(at,t,at,at) = at & quadruple(at,t,at,t) = at & quadruple(at,t,t,at) = at & quadruple(at,t,t,t) = at & quadruple(t,at,at,at) = at & quadruple(t,at,at,t) = at & quadruple(t,at,t,at) = at & quadruple(t,at,t,t) = at & quadruple(t,t,at,at) = at & quadruple(t,t,at,t) = at & quadruple(t,t,t,at) = at & quadruple(t,t,t,t) = t ). tff(declare_encrypt,type,encrypt: $i * $i > $i). tff(function_encrypt,axiom, encrypt(at,at) = t & encrypt(at,t) = t & encrypt(t,at) = t & encrypt(t,t) = t ). tff(declare_triple,type,triple: $i * $i * $i > $i). tff(function_triple,axiom, triple(at,at,at) = at & triple(at,at,t) = at & triple(at,t,at) = at & triple(at,t,t) = at & triple(t,at,at) = at & triple(t,at,t) = at & triple(t,t,at) = at & triple(t,t,t) = t ). tff(declare_generate_b_nonce,type,generate_b_nonce: $i > $i). tff(function_generate_b_nonce,axiom, generate_b_nonce(at) = t & generate_b_nonce(t) = t ). tff(declare_generate_expiration_time,type,generate_expiration_time: $i > $i). tff(function_generate_expiration_time,axiom, generate_expiration_time(at) = t & generate_expiration_time(t) = t ). tff(declare_generate_key,type,generate_key: $i > $i). tff(function_generate_key,axiom, generate_key(at) = at & generate_key(t) = at ). tff(declare_generate_intruder_nonce,type,generate_intruder_nonce: $i > $i). tff(function_generate_intruder_nonce,axiom, generate_intruder_nonce(at) = at & generate_intruder_nonce(t) = t ). tff(declare_a_holds,type,a_holds: $i > $o ). tff(predicate_a_holds,axiom, % a_holds(at) undefined in model % a_holds(t) undefined in model ). tff(declare_party_of_protocol,type,party_of_protocol: $i > $o ). tff(predicate_party_of_protocol,axiom, party_of_protocol(at) & party_of_protocol(t) ). tff(declare_message,type,message: $i > $o ). tff(predicate_message,axiom, message(at) & ~message(t) ). tff(declare_a_stored,type,a_stored: $i > $o ). tff(predicate_a_stored,axiom, ~a_stored(at) & a_stored(t) ). tff(declare_b_holds,type,b_holds: $i > $o ). tff(predicate_b_holds,axiom, % b_holds(at) undefined in model % b_holds(t) undefined in model ). tff(declare_fresh_to_b,type,fresh_to_b: $i > $o ). tff(predicate_fresh_to_b,axiom, fresh_to_b(at) & fresh_to_b(t) ). tff(declare_b_stored,type,b_stored: $i > $o ). tff(predicate_b_stored,axiom, % b_stored(at) undefined in model % b_stored(t) undefined in model ). tff(declare_a_key,type,a_key: $i > $o ). tff(predicate_a_key,axiom, a_key(at) & ~a_key(t) ). tff(declare_t_holds,type,t_holds: $i > $o ). tff(predicate_t_holds,axiom, t_holds(at) & ~t_holds(t) ). tff(declare_a_nonce,type,a_nonce: $i > $o ). tff(predicate_a_nonce,axiom, ~a_nonce(at) & a_nonce(t) ). tff(declare_intruder_message,type,intruder_message: $i > $o ). tff(predicate_intruder_message,axiom, ~intruder_message(at) & intruder_message(t) ). tff(declare_intruder_holds,type,intruder_holds: $i > $o ). tff(predicate_intruder_holds,axiom, ~intruder_holds(at) & intruder_holds(t) ). tff(declare_fresh_intruder_nonce,type,fresh_intruder_nonce: $i > $o ). tff(predicate_fresh_intruder_nonce,axiom, ~fresh_intruder_nonce(at) & fresh_intruder_nonce(t) ). % SZS output end FiniteModel for SWV017+1
% SZS output start Proof for BOO001-1 fof(f263,plain,( $false), inference(trivial_inequality_removal,[],[f258])). fof(f258,plain,( a != a), inference(superposition,[],[f6,f186])). fof(f186,plain,( ( ! [X24] : (inverse(inverse(X24)) = X24) )), inference(superposition,[],[f132,f5])). fof(f5,axiom,( ( ! [X2,X3] : (multiply(X2,X3,inverse(X3)) = X2) )), file('samples/BOO001-1.p',unknown)). fof(f132,plain,( ( ! [X31,X32] : (multiply(X32,inverse(X32),X31) = X31) )), inference(superposition,[],[f32,f5])). fof(f32,plain,( ( ! [X3,X4,X5] : (multiply(X5,X3,X4) = multiply(X3,X4,multiply(X5,X3,X4))) )), inference(superposition,[],[f7,f2])). fof(f2,axiom,( ( ! [X2,X3] : (multiply(X3,X2,X2) = X2) )), file('samples/BOO001-1.p',unknown)). fof(f7,plain,( ( ! [X2,X3,X0,X1] : (multiply(X0,X1,multiply(X1,X2,X3)) = multiply(X1,X2,multiply(X0,X1,X3))) )), inference(superposition,[],[f1,f2])). fof(f1,axiom,( ( ! [X2,X3,X0,X1,X4] : (multiply(multiply(X0,X1,X2),X3,multiply(X0,X1,X4)) = multiply(X0,X1,multiply(X2,X3,X4))) )), file('samples/BOO001-1.p',unknown)). fof(f6,axiom,( a != inverse(inverse(a))), file('samples/BOO001-1.p',unknown)). % SZS output end Proof for BOO001-1
% SZS status Theorem for '/home/petar/Documents/tptp/Problems/SET/SET014^4.p' % SZS output start Refutation thf(sk__5_type, type, sk__5: $i > $o). thf(sk__3_type, type, sk__3: $i > $o). thf(union_type, type, union: ($i > $o) > ($i > $o) > $i > $o). thf(sk__6_type, type, sk__6: $i). thf(sk__4_type, type, sk__4: $i > $o). thf(subset_type, type, subset: ($i > $o) > ($i > $o) > $o). thf(subset, axiom,(( subset ) = (^[X:( $i > $o ),Y:( $i > $o )]: ( ![U:$i]: ( ( X @ U ) => ( Y @ U ) ) )))). thf('0', plain, (( subset ) = ( ^[X:( $i > $o ),Y:( $i > $o )]: ( ![U:$i]: ( ( X @ U ) => ( Y @ U ) ) ) )), inference('simplify_rw_rule', [status(thm)], [subset])). thf('1', plain, (( subset ) = ( ^[V_1:( $i > $o ),V_2:( $i > $o )]: ( ![X4:$i]: ( ( V_1 @ X4 ) => ( V_2 @ X4 ) ) ) )), define([status(thm)])). thf(union, axiom,(( union ) = (^[X:( $i > $o ),Y:( $i > $o ),U:$i]: ( ( X @ U ) | ( Y @ U ) )))). thf('2', plain, (( union ) = ( ^[X:( $i > $o ),Y:( $i > $o ),U:$i]: ( ( X @ U ) | ( Y @ U ) ) )), inference('simplify_rw_rule', [status(thm)], [union])). thf('3', plain, (( union ) = ( ^[V_1:( $i > $o ),V_2:( $i > $o ),V_3:$i]: ( ( V_1 @ V_3 ) | ( V_2 @ V_3 ) ) )), define([status(thm)])). thf(thm, conjecture, (![X:( $i > $o ),Y:( $i > $o ),A:( $i > $o )]: ( ( ( subset @ X @ A ) & ( subset @ Y @ A ) ) => ( subset @ ( union @ X @ Y ) @ A ) ))). thf(zf_stmt_0, conjecture, (![X4:( $i > $o ),X6:( $i > $o ),X8:( $i > $o )]: ( ( ( ![X10:$i]: ( ( X4 @ X10 ) => ( X8 @ X10 ) ) ) & ( ![X12:$i]: ( ( X6 @ X12 ) => ( X8 @ X12 ) ) ) ) => ( ![X14:$i]: ( ( ( X4 @ X14 ) | ( X6 @ X14 ) ) => ( X8 @ X14 ) ) ) ))). thf(zf_stmt_1, negated_conjecture, (~( ![X4:( $i > $o ),X6:( $i > $o ),X8:( $i > $o )]: ( ( ( ![X10:$i]: ( ( X4 @ X10 ) => ( X8 @ X10 ) ) ) & ( ![X12:$i]: ( ( X6 @ X12 ) => ( X8 @ X12 ) ) ) ) => ( ![X14:$i]: ( ( ( X4 @ X14 ) | ( X6 @ X14 ) ) => ( X8 @ X14 ) ) ) ) )), inference('cnf.neg', [status(esa)], [zf_stmt_0])). thf(zip_derived_cl2, plain, (~ (sk__5 @ sk__6)), inference('cnf', [status(esa)], [zf_stmt_1])). thf(zip_derived_cl3, plain, (( (sk__3 @ sk__6) | (sk__4 @ sk__6))), inference('cnf', [status(esa)], [zf_stmt_1])). thf(zip_derived_cl1, plain, (![X1 : $i]: ( (sk__5 @ X1) | ~ (sk__4 @ X1))), inference('cnf', [status(esa)], [zf_stmt_1])). thf(zip_derived_cl5, plain, (( (sk__3 @ sk__6) | (sk__5 @ sk__6))), inference('sup-', [status(thm)], [zip_derived_cl3, zip_derived_cl1])). thf(zip_derived_cl2, plain, (~ (sk__5 @ sk__6)), inference('cnf', [status(esa)], [zf_stmt_1])). thf(zip_derived_cl8, plain, ( (sk__3 @ sk__6)), inference('demod', [status(thm)], [zip_derived_cl5, zip_derived_cl2])). thf(zip_derived_cl0, plain, (![X0 : $i]: ( (sk__5 @ X0) | ~ (sk__3 @ X0))), inference('cnf', [status(esa)], [zf_stmt_1])). thf(zip_derived_cl12, plain, ( (sk__5 @ sk__6)), inference('sup-', [status(thm)], [zip_derived_cl8, zip_derived_cl0])). thf(zip_derived_cl16, plain, ($false), inference('demod', [status(thm)], [zip_derived_cl2, zip_derived_cl12])). % SZS output end Refutation
% SZS status Theorem for '/Users/blanchette/gits/zipperposition/examples/ho/SET014^4.p' % SZS output start Refutation thf(sk__6_type, type, sk__6: $i). thf(sk__4_type, type, sk__4: $i > $o). thf(union_type, type, union: ($i > $o) > ($i > $o) > $i > $o). thf(sk__3_type, type, sk__3: $i > $o). thf(sk__5_type, type, sk__5: $i > $o). thf(subset_type, type, subset: ($i > $o) > ($i > $o) > $o). thf(subset, axiom,(( subset ) = (^[X:( $i > $o ),Y:( $i > $o )]: ( ![U:$i]: ( ( X @ U ) => ( Y @ U ) ) )))). thf('0', plain, (( subset ) = ( ^[X:( $i > $o ),Y:( $i > $o )]: ( ![U:$i]: ( ( X @ U ) => ( Y @ U ) ) ) )), inference('simplify_rw_rule', [status(thm)], [subset])). thf('1', plain, (( subset ) = ( ^[V_1:( $i > $o ),V_2:( $i > $o )]: ( ![X4:$i]: ( ( V_1 @ X4 ) => ( V_2 @ X4 ) ) ) )), define([status(thm)])). thf(union, axiom,(( union ) = (^[X:( $i > $o ),Y:( $i > $o ),U:$i]: ( ( X @ U ) | ( Y @ U ) )))). thf('2', plain, (( union ) = ( ^[X:( $i > $o ),Y:( $i > $o ),U:$i]: ( ( X @ U ) | ( Y @ U ) ) )), inference('simplify_rw_rule', [status(thm)], [union])). thf('3', plain, (( union ) = ( ^[V_1:( $i > $o ),V_2:( $i > $o ),V_3:$i]: ( ( V_1 @ V_3 ) | ( V_2 @ V_3 ) ) )), define([status(thm)])). thf(thm, conjecture, (![X:( $i > $o ),Y:( $i > $o ),A:( $i > $o )]: ( ( ( subset @ X @ A ) & ( subset @ Y @ A ) ) => ( subset @ ( union @ X @ Y ) @ A ) ))). thf(zf_stmt_0, conjecture, (![X4:( $i > $o ),X6:( $i > $o ),X8:( $i > $o )]: ( ( ( ![X10:$i]: ( ( X4 @ X10 ) => ( X8 @ X10 ) ) ) & ( ![X12:$i]: ( ( X6 @ X12 ) => ( X8 @ X12 ) ) ) ) => ( ![X14:$i]: ( ( ( X4 @ X14 ) | ( X6 @ X14 ) ) => ( X8 @ X14 ) ) ) ))). thf(zf_stmt_1, negated_conjecture, (~( ![X4:( $i > $o ),X6:( $i > $o ),X8:( $i > $o )]: ( ( ( ![X10:$i]: ( ( X4 @ X10 ) => ( X8 @ X10 ) ) ) & ( ![X12:$i]: ( ( X6 @ X12 ) => ( X8 @ X12 ) ) ) ) => ( ![X14:$i]: ( ( ( X4 @ X14 ) | ( X6 @ X14 ) ) => ( X8 @ X14 ) ) ) ) )), inference('cnf.neg', [status(esa)], [zf_stmt_0])). thf(zip_derived_cl2, plain, (~ (sk__5 @ sk__6)), inference('cnf', [status(esa)], [zf_stmt_1])). thf(zip_derived_cl3, plain, (( (sk__3 @ sk__6) | (sk__4 @ sk__6))), inference('cnf', [status(esa)], [zf_stmt_1])). thf(zip_derived_cl0, plain, (![X0 : $i]: ( (sk__5 @ X0) | ~ (sk__3 @ X0))), inference('cnf', [status(esa)], [zf_stmt_1])). thf(zip_derived_cl4, plain, (( (sk__4 @ sk__6) | (sk__5 @ sk__6))), inference('dp-resolution', [status(thm)], [zip_derived_cl3, zip_derived_cl0])). thf(zip_derived_cl1, plain, (![X1 : $i]: ( (sk__5 @ X1) | ~ (sk__4 @ X1))), inference('cnf', [status(esa)], [zf_stmt_1])). thf(zip_derived_cl5, plain, (( (sk__5 @ sk__6) | (sk__5 @ sk__6))), inference('dp-resolution', [status(thm)], [zip_derived_cl4, zip_derived_cl1])). thf(zip_derived_cl6, plain, ( (sk__5 @ sk__6)), inference('simplify', [status(thm)], [zip_derived_cl5])). thf(zip_derived_cl7, plain, ($false), inference('demod', [status(thm)], [zip_derived_cl2, zip_derived_cl6])). % SZS output end Refutation
% SZS status Theorem for '/Users/blanchette/gits/zipperposition/examples/SEU140+2.p' % SZS output start Refutation thf(sk__11_type, type, sk__11: $i). thf(sk__10_type, type, sk__10: $i). thf(disjoint_type, type, disjoint: $i > $i > $o). thf(empty_set_type, type, empty_set: $i). thf(sk__12_type, type, sk__12: $i). thf(subset_type, type, subset: $i > $i > $o). thf(set_intersection2_type, type, set_intersection2: $i > $i > $i). thf(d7_xboole_0, axiom, (![A:$i,B:$i]: ( ( disjoint @ A @ B ) <=> ( ( set_intersection2 @ A @ B ) = ( empty_set ) ) ))). thf(zip_derived_cl30, plain, (![X0 : $i, X1 : $i]: (((set_intersection2 @ X0 @ X1) = (empty_set)) | ~ (disjoint @ X0 @ X1))), inference('cnf', [status(esa)], [d7_xboole_0])). thf(t63_xboole_1, conjecture, (![A:$i,B:$i,C:$i]: ( ( ( subset @ A @ B ) & ( disjoint @ B @ C ) ) => ( disjoint @ A @ C ) ))). thf(zf_stmt_0, negated_conjecture, (~( ![A:$i,B:$i,C:$i]: ( ( ( subset @ A @ B ) & ( disjoint @ B @ C ) ) => ( disjoint @ A @ C ) ) )), inference('cnf.neg', [status(esa)], [t63_xboole_1])). thf(zip_derived_cl80, plain, ( (disjoint @ sk__11 @ sk__12)), inference('cnf', [status(esa)], [zf_stmt_0])). thf(zip_derived_cl526, plain, (((set_intersection2 @ sk__11 @ sk__12) = (empty_set))), inference('sup+', [status(thm)], [zip_derived_cl30, zip_derived_cl80])). thf(t26_xboole_1, axiom, (![A:$i,B:$i,C:$i]: ( ( subset @ A @ B ) => ( subset @ ( set_intersection2 @ A @ C ) @ ( set_intersection2 @ B @ C ) ) ))). thf(zip_derived_cl56, plain, (![X0 : $i, X1 : $i, X2 : $i]: (~ (subset @ X0 @ X1) | (subset @ (set_intersection2 @ X0 @ X2) @ (set_intersection2 @ X1 @ X2)))), inference('cnf', [status(esa)], [t26_xboole_1])). thf(zip_derived_cl600, plain, (![X0 : $i]: ( (subset @ (set_intersection2 @ X0 @ sk__12) @ empty_set) | ~ (subset @ X0 @ sk__11))), inference('sup+', [status(thm)], [zip_derived_cl526, zip_derived_cl56])). thf(t3_xboole_1, axiom, (![A:$i]: ( ( subset @ A @ empty_set ) => ( ( A ) = ( empty_set ) ) ))). thf(zip_derived_cl71, plain, (![X0 : $i]: (((X0) = (empty_set)) | ~ (subset @ X0 @ empty_set))), inference('cnf', [status(esa)], [t3_xboole_1])). thf(zip_derived_cl649, plain, (![X0 : $i]: (~ (subset @ X0 @ sk__11) | ((set_intersection2 @ X0 @ sk__12) = (empty_set)))), inference('sup-', [status(thm)], [zip_derived_cl600, zip_derived_cl71])). thf(zip_derived_cl31, plain, (![X0 : $i, X1 : $i]: ( (disjoint @ X0 @ X1) | ((set_intersection2 @ X0 @ X1) != (empty_set)))), inference('cnf', [status(esa)], [d7_xboole_0])). thf(zip_derived_cl79, plain, (~ (disjoint @ sk__10 @ sk__12)), inference('cnf', [status(esa)], [zf_stmt_0])). thf(zip_derived_cl367, plain, (((set_intersection2 @ sk__10 @ sk__12) != (empty_set))), inference('sup-', [status(thm)], [zip_derived_cl31, zip_derived_cl79])). thf(zip_derived_cl681, plain, ((((empty_set) != (empty_set)) | ~ (subset @ sk__10 @ sk__11))), inference('sup-', [status(thm)], [zip_derived_cl649, zip_derived_cl367])). thf(zip_derived_cl81, plain, ( (subset @ sk__10 @ sk__11)), inference('cnf', [status(esa)], [zf_stmt_0])). thf(zip_derived_cl701, plain, (((empty_set) != (empty_set))), inference('demod', [status(thm)], [zip_derived_cl681, zip_derived_cl81])). thf(zip_derived_cl702, plain, ($false), inference('simplify', [status(thm)], [zip_derived_cl701])). % SZS output end Refutation