Lisa Manual

January 19, 2025

Laboratory for Automated Reasoning and Analysis

EPFL, Switzerland

Contributors:

Simon Guilloud, Sankalp Gambhir, Viktor Kuncak

Contents

1 Starting with Proofs in Lisa 5
1.1 Imstallation L 6
1.2 Development Environment, 7
1.3 Writing theory fileso 8
1.4 Common Tactics 12

2 Lisa’s Trusted Kernel 17
2.1 A-FOL: First Order Logic with Lambda Terms 17

2.1.1 Expressions 18
2.1.2 Capture-Avoiding Substitution and Beta-Reduction 22
2.1.3 Substitution Lo 23
2.1.4 The Equivalence Checker 24
2.2 Proofs in Sequent Calculus for A-FOL 26
2.2.1 Sequent Calculus 26
2.2.2 Proofs 27
2.2.3 Proof Checker. 32
2.3 Theorems and Theories 34
2.3.1 Definitions 34
2.4 Using Lisa’s Kernel o . 36
24.1 Syntactic Sugar Lo 39

2.4.2 How to write helpers o oL 41

Developping Mathematics with Prooflib

3.1 Richer FOL
3.1.1 Sorts and Expressions
3.1.2 Sequents.,

3.2 Proof Builders
3.2.1 Proofs
3.22 Facts.
3.2.3 Instantiations
3.2.4 Local Definitions

3.3 DSL
3.3.1 Instantiations with “of”

Tactics: Specifications and Use

Library Development: Set Theory

5.1 Using Comprehension and Replacement

Selected Theoretical Topics

6.1 Set Theory and Mathematical Logic

6.1.1 First Order Logic with Schematic Variables

6.1.2 Extensions by Definition

CONTENTS

Chapter 1

Starting with Proofs in Lisa

Lisa is a proof assistant. Proof assistants support development of formal proofs
of mathematical statements.

The centerpiece of Lisa (called the kernel) contains a mechanized implemen-
tation of first order logic (FOL), a logical framework to write mathematical state-
ments and their proofs. This kernel is what provides correctness guarantees to
the user. The kernel only accepts a small set of formal deduction rule such as “if
a is true and b is true then a A b is true”. This is in contrast to human-written
proofs, which may contain a wide variety of complex or implicit arguments. If
a proof is accepted as being correct by the kernel, it is expected to meet objec-
tive criteria for valid proofs according to the field of formal mathematical logic.
Lisa’s kernel is described in more detail in chapter 2.

Writing mathematical theories (for example, group theory, combinatorics,
topology, theory of computation) directly from these primitive constructions
would be tedious. Instead, we use them as building blocs that can be com-
bined and automatized. Beyond the correctness guarantees of the kernel, Lisa’s
purpose is to provide tools to make writing formal proofs easier. This include
automation, via search procedures that automatically prove theorems, and layers
of abstraction (helpers, domain specific language), which make the presentation

Tt is possible that the kernel itself has an implementation bug, but because it is a very small
and simple program available in open source, we can build strong confidence that it is correct.

6 CHAPTER 1. STARTING WITH PROOFS IN LISA

of formal statements and proofs closer to the traditional, human way of writing
proofs. This is similar to programming languages: machine language is sufficient
to write any program on a computer, but high level programming languages of-
fer many convenient features which make writing complex programs easier and
which are ultimately translated into assembly automatically. chapter 3 explains
how these layers of abstraction and automation work. The rest of the present
chapter gives a quick guide on how to use Lisa.

1.1 Installation

Lisa requires the Scala programming language to run. You can download and
install Scala following the instructions at the Scala home page?. Subsequently,
clone the Lisa git repository:

> git clone https://github.com/epfl-lara/lisa

To test your installation, do

> cd lisa
> sbt

sbt is a tool to run a Scala project and manage versions and dependencies. Once
inside sbt, run the following commands:

> project lisa-examples
> run

Wait for the Lisa codebase to be compiled and then press the number correspond-
ing to "Example”. You should obtain the result demonstrating some example
theorems proven, such as the following:

2www.scala-lang.org/

www.scala-lang.org/

1.2. DEVELOPMENT ENVIRONMENT

Theorem fixedPointDoubleApplication :=
V'x. '"P('x) = '"P('f('x)) 'P('x) = 'P('f('f('x)))

Theorem emptySetIsASubset := I subsetOf(emptySet, 'x)

Theorem setWithElementNonEmpty :=
elem('y, 'x) -('x = emptySet)

Theorem powerSetNonEmpty := F -(powerSet('x) = emptySet)

1.2 Development Environment

To write Lisa proofs, you can use any text editor or IDE. We recommend using

Visual Studio Code (henceforth VSCode) with the Metals plugin.

A Note on Special Characters

Math often uses symbols beyond the Latin alphabet. Lisa usually admits both
an English alphabet name and a unicode name for such symbols. By enabling
font ligatures, common character sequences, such as ==> are rendered as =>. The
present document also uses the font Fira Code. Once installed on your system,

you can activate it and ligatures on VSCode the following way:
1. Press Ctrl-Shift-P
2. Search for “Open User Settings (JSON)”

3. in the settings.json file, add:

"editor.fontFamily": "'Fira Code', Consolas, monospace",
"editor.fontLigatures": true,

https://github.com/tonsky/FiraCode

8 CHAPTER 1.

STARTING WITH PROOFS IN LISA

Rendering | Input Name
= === equality
\Y \/ or
A /\ and
= == implies
- |- vdash
v U+2200 forall
3 U+2203 exists
S U+-2208 in
c U+2286 | subseteq
%) U+2205 | emptyset

Table 1.1: Frequently used Unicode symbols and ligatures.

Other symbols such as V¥ are Unicode symbols, which can be entered via their
unicode code, depending on your OS?, or by using an extension for VS Code
such as Fast Unicode Math Characters, Insert Unicode or Unicode Latex. A cheat
sheet of the most common symbols and how to input them is in Table 1.1. Note
that by default, Unicode characters may not be printed correctly on a Windows
console. You will need to activate the corresponding charset and pick a font with
support for unicode in your console’s options, such as Consolas.

1.3 Writing theory files

Lisa provides a canonical way of writing and organizing kernel proofs by mean
of a set of utilities and a domain-specific language (DSL) made possible by some
of Scala’s features. To prove some theorems by yourself, start by creating a file
named MyTheoryName.scala right next to the Example.scala file*. Then simply
write:

3alt+numpad on windows, Ctrl-Shift-U+code on Linux
“The relative path is lisa/lisa-examples/src/main/scala

SO W N

© 0 N O U W N

==
=)

1.3. WRITING THEORY FILES 9

object MyTheoryName extends lisa.Main {

}

and that’s it! This will give you access to all the necessary Lisa features. Let see
how one can use them to prove a theorem:

Ve.P(z) = P(f(z))F P(x) = P(f(f(2)))

To state the theorem, we first need to tell Lisa that x is a variable, f is a function
symbol and P a predicate symbol.

object MyTheoryName extends lisa.Main {
val x = variable
val f = function[1]
val P = predicate[1]

where [1] indicates that the symbol is of arity 1 (it takes a single argument).
The symbols x, f, P are scala identifiers that can be freely used in theorem
statements and proofs, but they are also formal symbols of FOL in Lisa’s kernel.
We now can state our theorem:

object MyTheoryName extends lisa.Main {
val x = variable
val f = function[1]
val P = predicate[1]

val fixedPointDoubleApplication = Theorem(
V(x, P(x) = P(f(x))) F P(x) = P(f(f(x)))
) {
??? // Proof
t
}

The theorem will automatically be named fixedPointDoubleApplication, like

© 00 N O O W N

10 CHAPTER 1. STARTING WITH PROOFS IN LISA

the name of the identifier it is assigned to, and will be available to reuse in future
proofs. The proof itself is built using a sequence of proof step, which will update
the status of the ongoing proof.

object MyTheoryName extends lisa.Main {
val x = variable
val f = function[1]
val P = predicate[1]

val fixedPointDoubleApplication = Theorem(
V(x, P(x) = P(f(x))) F P(x) = P(f(f(x)))

) {
assume(V(x, P(x) = P(f(x))))
val stepl = have(P(x) = P(f(x))) by InstantiateForall
val step2 = have(P(f(x)) = P(f(f(x)))) by InstantiateForall
have(thesis) by Tautology.from(stepl, step2)

t

}

First, we use the assume construct in line 6. This tells to Lisa that the assumed
formula is understood as being implicitly on the left hand side of every statement
in the rest of the proof.

Then, we need to instantiate the quantified formula twice using a specialized
tactic. In lines 7 and 8, we use have to state that a formula or sequent is true
(given the assumption inside assume), and that the proof of this is produced by
the tactic InstantiateForall. We'll see more about the interface of a tactic
later. To be able to reuse intermediate steps at any point later, we also assign
the intermediates step to a variable.

Finally, the last line says that the conclusion of the theorem itself, thesis,
can be proven using the tactic Tautology and the two intermediate steps we
reached. Tautology is a tactic that is able to do reasoning with propositional
connectives. It implements a complete decision procedure for propositional logic
that is described in section 1.4.

Lisa is based on set theory, so you can also use set-theoretic primitives such
as in the following theorem.

© 00 N O Otk W N

—
=]

1.3. WRITING THEORY FILES 11

val emptySetIsASubset = Theorem(
@ < X
) {
have((y € @) = (y € x)) by Tautology.from(
emptySetAxiom of (x := y))
val rhs = thenHave (V(y, (y € @) = (y € x))) by RightForall
have(thesis) by Tautology.from(
subsetAxiom of (x := @, y := x), rhs)

We see a number of new constructs in this example. RightForall is another tactic
(in fact it corresponds to a core deduction rules of the kernel) that introduces a
quantifier around a formula, if the bound variable is not free somewhere else in the
sequent. We also see in line 6 another construct: thenHave. It is similar to have
but it will automatically pass the previous statement to the tactic. Formally,

have(X) by Tacticil
thenHave (Y) by Tactic2

is equivalent to

val s1 = have(X) by Tacticil
have (Y) by Tactic2(s1)

thenHave allows us to not give a name to every step when we’re doing
linear reasoning. Finally, in lines 5 and 8, we see that tactic can re-
fer not only to steps of the current proof, but also to previously proven
theorems and axioms, such as emptySetAxiom. The of keyword indicates
the axiom (or step) is instantiated in a particular way. For example:

12 CHAPTER 1. STARTING WITH PROOFS IN LISA

I(x € @)
Iy € 2)

emptySetAxiom //
emptySetAxiom of (x :=vy) //

Lisa also allows to introduce definitions. There are essentially two kind of
definitions, aliases and definition via unique existence. An alias defines a constant,
a function or predicate as being equal (or equivalent) to a given formula or term.
For example,

val succ = DEF(x) --> union(unorderedPair(x, singleton(x)))

defines the function symbol succ as the function taking a single argument x and
mapping it to the element | J{z, {x}}°.

The second way of defining an object is more complicated and involve proving
the existence and uniqueness of an object. This is detailed in chapter 2.

You can now try to run the theory file you just wrote and verify if you made
a mistake. To do so again do > run in the sbt console and select the number
corresponding to your file. If all the output is green, perfect! If there is an error,
it can be either a syntax error reported at compilation or an error in the proof.
In both case, the error message can sometimes be cryptic, but it should at least
consistently indicates which line of your file is incorrect.

Alternatively, if you are using IntelliJ or VS Code and Metals, you can run
your theory file directly in your IDE by clicking either on the green arrow (IntelliJ)
or on “run” (VS Code) next to your main object.

1.4 Common Tactics

Restate

Restate is a tactic that reasons modulo ortholattices, a subtheory of boolean
algebra (see [?] and subsection 2.1.4). Formally, it is very efficient and can prove

5This correspond to the traditional encoding of the successor function for natural numbers
in set theory.

1
2

1.4. COMMON TACTICS 13

a lot of simple propositional transformations, but not everything that is true in
classical logic. In particular, it can’t prove that (a Ab)V (aAc) <= aA(bVc)is
true. It can however prove very limited facts involving equality and quantifiers.
Usage:

have(statement) by Restate
tries to justify statement by showing it is equivalent to True.

have(statement) by Restate(premise)

tries to justify statement by showing it is equivalent to the previously proven
premise.

Tautology

Tautology is a propositional solver based upon restate, but complete. It is able to
prove every formula inference that holds in classical propositional logic. However,
in the worst case its complexity can be exponential in the size of the formula.
Usage:

have(statement) by Tautology

Constructs a proof of statement, if the statement is true and a proof of it using
only classical propositional reasoning exists.

have(statement) by Tautology.from(premisel, premise2, ...)

Construct a proof of statement from the previously proven premisel, premise2,...
using propositional reasoning.

RightForall, InstantiateForall

RightForall will generalize a statement by quantifying it over free variables. For
example,

have(P(x)) by ?2?
thenHave(V(x, P(x))) by RightForall

14 CHAPTER 1. STARTING WITH PROOFS IN LISA

Note that if the statement inside have has more than one formula, x cannot
appear (it cannot be free) in any formula other than P(z). It can also not appear
in any assumption.

InstantiateForall does the opposite: given a universally quantified state-
ment, it will specialize it. For example:

have(V(x, P(x))) by ???
thenHave(P(t)) by InstantiateForall

for any arbitrary term t.

Substitution

Substitutions allows reasoning by substituting equal terms and equivalent formu-
las. Usage:

have(statement) by Substitution.ApplyRules(subst=*)(premise)

substx is an arbitrary number of substitution. Each of those can be a previ-
ously proven fact (or theorem or axiom), or a formula. They must all be of the
form s == t or A & B, otherwise the tactic will fail. The premise is a previ-
ously proven fact. The tactic will try to show that statement can be obtained
from premise by applying the substitutions from subst. In its simplest form,

val subst = have(s = t) by ???
have(P(s)) by ?2?
thenHave(P(t)) by Substitution.ApplyRules(subst)

Moreover, Substitution is also able to automatically unify and instantiate
subst rules. For example

val subst = have(g(x, y) = g(y, x)) by ???
have(P(g(3, 8))) by ???
thenHave(P(g(8, 3))) by Substitution.ApplyRules(subst)

If a subst is a formula rather than a proven fact, then it should be an as-
sumption in the resulting statement. Similarly, if one of the substitution has an
assumption, it should be in the resulting statement. For example,

I N

1.4. COMMON TACTICS

val subst = have(A + Q(s) <= P(s)) by ???
have(Q(s) A s=f(t)) by ???
thenHave(A, f(t) = t - P(s) A s=t)

.by Substitution.ApplyRules(subst, f(t) = t)

File Options

15

Some options can be set at the start of a file, which will affect the behaviour of
Lisa. These options are intended for use at a development stage.

draft()

withCache()

Theorems outside of the current file are assumed to be
true and not checked for correctness. This can speed
up repetitive runs during proof drafts.

Kernel proofs will be stored in binary files when theo-
rems are constructed. On future runs with the option
enabled, theorems will be constructed from the stored
low level proofs. This skips running tactics to construct
or search for proofs.

16

CHAPTER 1.

STARTING WITH PROOFS IN LISA

Chapter 2

Lisa’s Trusted Kernel

Lisa’s kernel is the starting point of Lisa, formalising the foundations of the whole
theorem prover. It is the only trusted code base, meaning that if it is bug-free
then no further erroneous code can violate the soundness property and prove
invalid statements. Hence, the two main goals of the kernel are to be efficient
and trustworthy.

Lisa’s foundations are based on traditional (in the mathematical community)
foundational theory of all mathematics, but with some extensions and modifica-
tions to more closely match common mathematical practice:

e The syntax of Lisa’s statement is an extension of first-order logic with
lambda terms named A-FOL (see section 2.1).

e The deductive system of Lisa’s kernel is Sequent Calculus.

o The axiomatic theory is ZFC Set Theory, but the kernel is actually
theory-agnostic and is sound to use with any other set of axioms. Set
theory (see chapter 5).

2.1 M-FOL: First Order Logic with Lambda Terms

First-order logic has many useful properties, but the way it is usually defined is
not very convenient for practical use. In particular, it does not allow to write

18 CHAPTER 2. LISA’S TRUSTED KERNEL

self-contained terms binding a variable. A typical example of this is integrals:

1
/ r2dz
0

z is a subterm of this expression, but it is bound by the integral sign [...dz.
Another example is notation for set comprehensions:

{zeN|Iyz=1y*

here, x is again a bound variable, and moreover the expression contains a subfor-
mula. Both the integral and the comprehensions are supposed to be terms: they
denote elements of the universe, unlike formulas. But in pure first-order logic,
terms cannot bind variables nor contain formulas. To adress this, Lisa uses an
extension of first-order logic with lambda terms, called A-FOL.

2.1.1 Expressions

The basic elements of Lisa are called Fzpressions, generalising terms and formu-
las. Expressions are terms of the simply typed lambda-calculus, with two basic
types: Prop, or propositions, corresponding to formulas, and Ind, or individu-
als, corresponding to terms. To disambiguate from Scala types and set-theoretic
types, we call Prop and Sort Sorts. Formally:

Definition 1 (Identifiers). Identifiers are pairs of strings and positive integers
used to name symbols. The integer partis convenient to quickly compute fresh
identifiers and.

ID := ID(String, Int) (2.1)

Identifiers cannot contain the symbols ()[1{}?, ; _ nor whitespace. The canonical
representation of an identifier is

ey foo ifi=0
ID("foo”,7) = {foo 7 else

2.1. A-FOL: FIRST ORDER LOGIC WITH LAMBDA TERMS 19

Definition 2 (Sorts). Sorts are defined by the following grammar:

S:=Prop|Ind|S— S (2.3)

A — B is the sort of expressions taking arguments of sort A and returning
a result of sort B. Note that — associates to the right, i.e. A - B — C is the
same as A — (B — C).

Definition 3 (Expressions). We define sets of variables V and constants C:

V := Var(ID,S) (2.5)
C := Cst(ID,S)

When unambiguous, we typically represent variables and constants using the
representation of its identifier, optionally with the sort following a colon, as in
z : Ind.

An expression is either a variable, a constant, an application of an expres-
sion to another expression, or an abstraction of a variable over an expression.
Expressions are always uniquely sorted. Formally:

E=V:S§ (2.8)
|C:S (2.9)

| App(€ : S§1 — 852, :51) : Sy (2.10)

| Abs(V :81,E:82):S:1 = 8 (2.11)
(2.12)

We usually represent App(f,z) as f(z) and Abs(x,e) as Az.e. In Az.e, All the
occurences of z in e are called bound. Every expression must belong to a sort.
Ill-sorted expressions are not forbidden.

Expressions of sort Propare called formulas. Expressions of sort Indare called
terms. Expressions of sort Ind — Ind — ... — Ind are called functionals. Expres-
sions of sort Prop — Prop — ... = Prop are called predicates.

20 CHAPTER 2. LISA’S TRUSTED KERNEL

Definition 4 (Constants). We predefine some important logical constants:

:Ind — Ind — Prop
:Prop

-

:Prop

J

:Prop — Prop

:Prop — Prop — Prop
:Prop — Prop — Prop
:Prop — Prop — Prop
:Prop — Prop — Prop
:(Ind — Prop) — Prop

w < g | <>

:(Ind — Prop) — Prop
¢ :(Ind — Prop) — Ind

They have special meaning for the deduction system of lisa, but syntactically
behave the same as user-defined constants.

We call V, 3 and € binders. We often write bound expressions such as
V(Az.P(x) A Q(x)) as Vx.P(x) A Q(x), like in traditional first-order logic.

Example 1. The following are examples of expressions:

2.1. A-FOL: FIRST ORDER LOGIC WITH LAMBDA TERMS 21

Ind The sort of individuals, i.e. elements of the uni-
verse such as sets, numbers, etc.

() : Ind The empty set

7:Ind The number 7

Prop The sort of formulas, which can be either true or
false.

T : Prop The constant true

L : Prop The constant false

Ind — Ind The sort of functionals, taking one individuals as
argument and returning an individual.

P :Ind — Ind The powerset operator

P(®) : Ind The powerset of the empty set

(214+6)/3 : Ind

The result of the division of an arithmetic expres-
sion

Ind — Ind — Prop

The sort of predicates of arity 2.

€: Ind — Ind — Prop

The membership predicate

3 € N: Prop

The formula stating that 3 is a natural number

Prop — Prop — Prop

The sort of connectors of arity 2.

A : Prop — Prop — Prop

The conjunction connector

1 A3 eN:Prop

A formula

Ax.z2 +1:Ind — Ind

The functional mapping = to 22 + 1

Az.x = f(x) : Prop

The predicate mapping x to whether x is a fixpoint

of f

Convention Throughout this document, and in the code base, we adopt the
following conventions:We use e, e1, e2 to denote arbitrary expressions. We use 7,
s, t, u to denote arbitrary terms, a, b, ¢ to denote constants of type Ind, z, y, z
to denote variables of type Indand f, g, h to denote constant or variables of type

Ind — ...Ind.

We use greek letters such as ¢, ¢, 7 to denote arbitrary formulas and X, Y,
Z to denote variables of type Prop. We use P,), R to denote constants and
variables of type Prop — ... — Prop. Sets or sequences of formulas are denoted
with capital greek letters I, 3, I'; A, etc.

22 CHAPTER 2. LISA’S TRUSTED KERNEL

= represents both = and <= , depending on whether the arguments are
terms or formulas.

2.1.2 Capture-Avoiding Substitution and Beta-Reduction

An important operation on expressions is the substitution of variables by expres-
sions of the same type.

Definition 5 (Capture-avoiding Substitution of variables). Given a base expres-
sion e, a variable x : A and another expression ey : A, the substitution of x by e;
inside t is denoted by t[x := €] and is computed by replacing all occurences of x

by r.
Formally:
()[z:=€l= e
Wz:=e = y if 2 4y
(fle))z =€l = flelr:=e¢])
(Az.e1)[z =€ = Az.e;
(Ay.er)[z :=€] = Ay.e1]r = €] if x # y and y ¢ free(e)
(A\y.e1)[x:=e€] = Az.ei]y := z][z := €] otherwise, with z fresh

This is called capture-avoiding substitution, because the last two lines ensure that
the free variables of e stay free, independently of the name of bound variables.

Applications of an abstraction to an argument beta-reduce, as usual in lambda
calculus. For example,
(Az.z? +1)(3) ~ 32+ 1

It is a theorem of the simply typed lambda calculus, called the Church-Rosser the-
orem, that when we keep applying such reduction, we eventually reach a normal
form that cannot be further reduced. This is called the beta normal form. Two
expressions with the same beta normal form are called alpha-equivalent Moreover,
if two expressions are identical up to renaming of bound variables, the expres-
sions are called alpha-equivalent. In Lisa, expressions whose beta normal forms

2.1. A-FOL: FIRST ORDER LOGIC WITH LAMBDA TERMS 23

are alpha-equivalent are considered logicaly the same. Note however that their
representation as datastructure may not be the same, and this can influence the
behaviour of programs acting on them.

2.1.3 Substitution

On top of basic building blocks of terms and formulas, there is one important type
of operation: substitution of schematic symbols, which has to be implemented in
a capture-avoiding way. We start with the subcase of variable substitution:

Definition 6 (Capture-avoiding Substitution of variables). Given a base term ¢,
a variable x and another term r, the substitution of by r inside t is denoted by
t[z := r] and is computed by replacing all occurences of = by r.

Given a formula ¢, the substitution of x by r inside ¢ is defined recursively
in the standard way for connectors and predicates

6 Ao i=r] = ol =1 Al =1]
P(t1,to, ..., ty)[x:=71] = P(t1[z :==r], ta]z :=7], ..., tplz :=7]) ,

and for binders as

(Vxp)[z :=r]| =V

(Vyh)[z :=r] = Vy.plx :=r]
if y # x and y does not appear in r, and
(Vy)[x =71 =Vzply = z][x :==1] ,
with any fresh variable z (which is not free in r and ¢) otherwise.

Example 2 (Combined substitution and beta-reduction).

24 CHAPTER 2. LISA’S TRUSTED KERNEL

Base term Substitution Result
£(0,3) f = dryx+ty 0+3
£(0,3) f = \yzzxz—y 3—-0
7(0,3) f = Azyy+y—10 3+3-10
10 x g(x) g — Az’ 10 x 22
10 x g(50) g — A.'f(z+2,2) 10 x f(50 42, 2)
flz,x+y) f = Azy.cos(z—y)*xy | cos(z — (z+y))*(z+y)
£(0,3) = f(z,x) f = dryx+y 0O+3=x+x
Vx.f(0,3) = f(z,x) | f — Azyax+y Vr.0+3=z+=x
Jyfly) < fB) | f = drwa+ty Ty +y<5+y

2.1.4 The Equivalence Checker

While proving theorems, trivial syntactical transformations such as p A g = ¢ A
p increase the length of proofs, which is desirable neither to the user nor the
machine. Moreover, the proof checker will very often have to check whether two
formulas that appear in different sequents are the same. Hence, instead of using
pure syntactical equality, Lisa implements an equivalence checker able to detect
a class of equivalence-preserving logical transformations. For example, we would
like the formulas p A ¢ and ¢ A p to be naturally treated as equivalent.

For soundness, the relation decided by the algorithm should be contained in
the <= “if and only if” relation of first order logic. However, it is well known
that this relationship is in general undecidable, and even the <= relation for
propositional logic is coNP-complete. For practicality, we need a relation that is
efficiently computable.

Orthologic is such a relation: It is a weaker theory than classical logic, because
it does not include the distributivity law of A and V, but it admits a quadratic-
time normalization algorithm for propositional formulas [?]. The structure under-
lying orthologic (its Lindenbaum algebra) is that of ortholattices, similar to the
relationshipbetween classical logic and Boolean algebra. The laws of orthologic
are shown in Table 2.1.

As a special kind of lattices, ortholattices can be viewed as partially ordered
sets, with the ordering relation on two elements a and b of an ortholattice defined
asa < b <= aAb = a, which, by absorption (L9), is also equivalent to aVb = b.

2.1. A-FOL: FIRST ORDER LOGIC WITH LAMBDA TERMS 25

L1: rVy=yVzx L1 TANy=yAzx

L2: zVvV(yVz)=(xVy)Vz L2: zA(yNhz)=(xAy) Az
L3: xVr==zx L3 TANr==z

L4: xVv1i=1 L4’ xA0=0

L5: zV0==z L5 zNANl==zx

L6: - = L6 same as L6

L7: zV-x=1 L7: z Az =0

L8: —(xVy)=—-zA-y L8 —(xAy)=—xV -y
L9: zV(zAy) ==z L9’ zA(xVy) ==z

Table 2.1: Laws of ortholattices, an algebraic theory with signature
(57/\7 \/707]" _|)'

If s and t are propositional formulas, we denote s <y, ¢ if and only if s < ¢, is
provable from the axioms of Table 2.1. We write s ~, t if both s <, t and
s >or t hold. Theorem 1 is the main result we rely on.

Theorem 1 ([?]). There exists an algorithm running in worst case quadratic time
producing, for any terms s over the signature (A,V, =), a normal form NF o (s)
such that for any t, s ~op t if and only if NFor(s) = NFor(t). The algorithm is
also capable of deciding if s <or t holds in quadratic time.

Moreover, the algorithm works with structure sharing with the same com-
plexity, which is very relevant for example when z < vy is expanded to
(x Ay) V (—x A —y). It can produce a normal form in this case as well.

Lisa’s kernel contains a generalization of this algorithm to A-FOL, which also
includes additional reasoning rules. It first beta-normalize expressions, expresses
the formula using de Bruijn indices, and desugars 3.¢ into —V.—¢, ¢ < ¢ into
(¢ = Y)A (Y = ¢), and ¢ = 1 into =¢ V 1. It then applies OL normalization,
with the the additional rules of Table 2.2.

A more detailed discussion of extension of ortholattices to first-order logic,
proof of correctness and implementation details can be found in [?] and [?].

26 CHAPTER 2. LISA’S TRUSTED KERNEL

To decide... Try...
1| {A,V, =, ¢, —}(d?) < Base algorithm
2 | ¢ <NV, =, <, W) Base algorithm
3| s1=s5<1t1 =t {s1,82} == {t1,t2}
41 o<t =t 1 ==1to
5| V.p<Vy ¢ <
6 | C(d1,..n) < C(1, .., %n) | i ~or i, for every 1 <i<mn
7 | Anything else false

Table 2.2: Extension of OL algorithm to first-order logic. We call it the F(OL)?
algorithm. = denotes the equality predicate in FOL, while == denotes syntactic
equality of terms.

2.2 Proofs in Sequent Calculus for \-FOL

2.2.1 Sequent Calculus

The deductive system used by Lisa is an extended version of the classical Sequent
Calculus.

Definition 7. A sequent is a pair (I, X)) of (possibly empty) sets of formulas,
noted:

rex.

The intended semantic of such a sequent is:

/\F:>\/E.

The sequent may also be written with the elements of the sets enumerated
explicitly as
Y1, Y2y e sV FO1, 02, ... 0m .
A sequent ¢ I 1) is logically (but not conceptually) equivalent to a sequent

F ¢ — 1. The distinction is similar to the distinction between meta-implication
and inner implication in Isabelle [?], for example. Typically, a theorem or a lemma

2.2. PROOFS IN SEQUENT CALCULUS FOR X\-FOL 27

should have its various assumptions on the left-hand side of the sequent and a
single conclusion on the right. During proofs however, there may be multiple
elements on the right side. !

Sequents are manipulated in a proof using deduction rules. A deduction rule,
also called a proof step, has zero or more prerequisite sequents (which we call
premises of the rule) and one conclusion sequent. All the basic deduction rules
used in Lisa’s kernel are shown in Figure 2.1 and Figure 2.2. This includes
first rules of propositional logic, then rules for quantifiers, then equality rules.
Moreover, we include equal-for-equal and equivalent-for-equivalent substitutions.
While those substitution rules are deduced steps, and hence could technically be
omitted, simulating them can sometimes take a high number of steps, so they are
included as base steps for efficiency. Finally, the two rules Restate and Weakening
leverage the F(OL)? algorithm.

2.2.2 Proofs

A sequent calculus proof is a tree whose nodes are proof steps. The root of
the proof shows the concluding statement, and the leaves are either assumptions
(for example, set theoretic axioms) or proof steps taking no premise (Hypothesis,
RightRefl and RestateTrue). Figure 2.3 shows an example of a proof tree for
Pierce’s Law in strict Sequent Calculus.

In the Lisa kernel, proof steps are organised linearly, in a list, to form actual
proofs. Each proof step refers to its premises using numbers, which indicate the
place of the premise in the proof. a proof step can also be referred to by multiple
subsequent proof steps, so that proofs are actually directed acyclic graphs (DAG)
rather than trees. For the proof to be the linearization of a rooted DAG, the proof
steps must only refer to numbers smaller than their own in the proof. Indeed,
using topological sorting, it is always possible to order the nodes of a directed
acyclic graph such that for any node, its predecessors appear earlier in the list.
Figure 2.4 shows the proof of Pierce’s Law as linearized in Lisa’s kernel.

Note however that thanks to the F(OL)? equivalence checker, Pierce’s law can
be proven in a single step:

In a strict description of Sequent Calculus, this is in particular needed to have double
negation elimination.

28

m HypOtheSlS

LovEA) And
T.orgF A cithn

ToFA Skl
.Y 6VoF AT

LeftOr

TFo,A kIl
T,%,6 >k AL

LeftImplies

M LeftIff
Tooora o
ERALLT S
T,—oFA ettNot
T, glz:=tFA

TVzol A LeftForall
MLfE'
T.3z.6F A elftkxists

CHAPTER 2. LISA’S TRUSTED KERNEL

TFo, A X,¢FII
TS F AT

Cut

I'-¢,A Yy I
DoAY, AT

RightAnd

THopA
Trove A luehtor
Dobv,A .
m nghtImphes
Tko—uv,A SFo— Il
[, F ¢ ¢ ¢, A

RightIff

ToFA .
m nghtNOt

'kFo A .
m nghtForaH
Ik glx:=t],A

TF 32.6,A

RightExists

Figure 2.1: Deduction rules allowed by Lisa’s kernel (Part 1). These are typical
rules for a sequent calculus for FOL. Different occurrences of the same symbols
need not represent equal elements, but only elements with the same F(OL)?

normal form.

2.2. PROOFS IN SEQUENT CALCULUS FOR X\-FOL 29

L'k oz :=t],A
'k ¢lx := (ex.)], A

RightEpsilon

3yve.(z=y) < oF A

F, H'IL'QS A LeftExistsOne
LF3lz.¢, A RightExistsOne
A InstSchema

T[(z:A):=(e: A)]FAl(z: A) :=(e: A)]

[olf :=s]FA
LeftSubstE
[VZ.s(Z) = t(Z), o[f :==t] F A eftSubstEq
I'Folf:=s],A _
htSubstE
T,VZ.s(Z) = t(Z) F o[f == 1], A RightSubstEq
T Tra LeftRefl —— RightRefl

hEA .
ﬁ Restate if (/\ Iy — \/Al) ROL)2 (/\FQ — VAQ)

— RestateTrue if True ~ I's - VA
Ty F Ay RoL)2 (AT2 =V Ay)

I'MFA . .
7F; = A; Weakening if (AT1 — VA) < < Rron? 2 (AT2 =V Ay)

TEA Sorry: admit a statement without proof. Usage transitively tracked.

Figure 2.2: Deduction rules allowed by Lisa’s kernel (Part 2). Different occur-
rences of the same symbols need not represent equal elements, but only elements
with the same F(OL)? normal form.

30 CHAPTER 2. LISA’S TRUSTED KERNEL

——— Hypothesis
m RightWeakening
——— = Rightlmplies = ——— Hypothesis
- 6,(6—) oo P
LeftImplies
(p2y) 2ot ¢ RightImplies
(0 —=v)—=9)— ¢

Figure 2.3: A proof of Pierce’s law in Sequent Calculus. The bottommost sequent
(root) is the conclusion.

0 Hypothesis (o) 0]

1 weakening(0) oF o0

2 RightImplies(1) = ¢, (¢ — 1)

3 LeftImplies(2,0) (@—=Y) =k

4 RightImplies(3) F(p—=v)—9)— ¢

Figure 2.4: The proof of Pierce’s Law as a sequence of steps using classical Sequent
Calculus rules.

0 RestateTrue F ((¢ = ¢) — ¢) — ¢.

Moreover, proofs are conditional: they can carry an explicit set of assumed
sequents, named “imports”, which give some starting points to the proof. Typ-
ically, these imports will contain previously proven theorems, definitions, or ax-
ioms (More on that in section 2.3). For a proof step to refer to an imported
sequent, one uses negative integers. —1 corresponds to the first sequent of the
import list of the proof, —2 to the second, etc.

Formally, a proof is a pair made of a list of proof steps and a list of sequents:

Proof(steps:List[ProofStep], imports:List[Sequent])

2.2. PROOFS IN SEQUENT CALCULUS FOR X\-FOL 31

We call the bottom-most sequent of the last proof step of the proof the “conclu-
sion” of the proof.
Figure 2.5 shows a proof using an import.

—1 Imported Axiom F—(ze0)
0 Restate(—1) (x ek
1 LeftSubstEq(0) (zey),y=0F
2 Restate(1) (zey) k-(y=10)

Figure 2.5: A proof that if x € y, then —(y = 0), using the empty set axiom. z
and y are free variables.

Finally, Figure 2.6 shows a proof with quantifiers.

0 RestateTrue P(x),Q(z) F P(x) N Q(x)
1 LeftForall(0) P(x),¥Y(z,Q(z)) F P(z) A Q(x)
2 LeftForall(l) Y(x, P(z)),V(z,Q(z)) F P(x) A Q(x)
3 RightForall(2) Y(x, P(z)),V(z,Q(z)) F V(x, P(z) A Q(x))
4 Restate(3) V(z, P(x)) AV(z,Q(z)) F V(z, P(z) A Q(x))

Figure 2.6: A proof showing that V factorizes over conjunction.

For every proof step, Lisa’s kernel actually expects more than only the
premises and conclusion of the rule. The proof step also contains some param-
eters indicating how the deduction rule is precisely applied. This makes proof
checking much simpler, and hence more trustworthy. Outside the kernel, Lisa
includes tactic which will infer such parameters automatically (see chapter 4), so
that in practice the user never has to write them. Figure 2.7 shows how a kernel
proof is written in scala.

32 CHAPTER 2. LISA’S TRUSTED KERNEL

val PiercelLawProof = SCProof(IndexedSeq(
Hypothesis(@ ~ o, o),
wWeakening(@ — (¢, v), 0),
RightImplies(() = (o, ¢ = v), 1, o, y)
LeftImplies((¢ = y) oo, 2,0 ¢=uy,),
RightImplies(() + ((¢ P) = @) = o,
3, (g = v) = 0, 9)

=
=
), Seq.empty /* no imports */)

Figure 2.7: The proof from Figure 2.3 written for Lisa’s kernel. The second
argument (empty here) is the sequence of proof imports. The symbols = and -|
are ligatures for ==> and |- and are syntactic sugar defined outside the kernel.

Subproofs To organize proofs, Lisa’s kernel also defines the Subproof proof
step. A Subproof is a single proof step in a large proof with arbitrarily many
premises:

SCSubproof(sp: SCProof, premises: Seq[Int])

The first argument contain a sequent calculus proof, with one conclusion and
arbitrarily many imports. The second arguments must justify all the imports of
the inner proof with previous steps of the outer proof. A Subproof only has an
organizational purpose and allows to more easily write tactics (see chapter 4). In
particular, the numbering of proof steps in the inner proof is independent of the
location of the subproof step in the outer proof.

Sorry

2.2.3 Proof Checker

In Lisa, a proof object by itself has no guarantee to be correct. It is possible
to write a wrong proof. Lisa contains a proof checking function, which, given a
proof, will verify if it is correct. To be correct, a proof must satisfy the following
conditions:

2.2. PROOFS IN SEQUENT CALCULUS FOR X\-FOL 33

1. No proof step must refer to itself or a posterior proof step as a premise.

2. Every proof step must be correctly constructed, with the bottom sequent
correctly following from the premises by the deduction rule and its argu-
ments.

Given some proof p, the proof checker will verify these points. For most proof
steps, this typically involve verifying that the premises and the conclusion match
according to a transformation specific to the deduction rule.

Hence, most of the proof checker’s work consists in verifying that some formu-
las, or subformulas thereof, are identical. This is where the equivalence checker
comes into play. By checking equivalence rather than strict syntactic equality,
a lot of steps become redundant and can be merged. That way, any number
of consecutive LeftAnd, RightOr, LeftNot, RightNot, LeftImplies, RightImplies,
LeftIff, LeftRefl, RightRefl, LeftExistsOne and RightExistsOne proof steps can
always be replaced by a singleWeakening rule. This gives some intuition about
how useful the equivalence checker is to simplify proof length.

While most proof steps are oblivious to formula transformations allowed by
the equivalence checker, they don’t allow transformations of the whole sequent:
to easily rearrange sequents according to the sequent semantics (Definition 7),
one should use the Rewrite or Weakening steps.

Depending on wether the proof is correct or incorrect, the proof checking
function will output a judgement:

SCvalidProof(proof: SCProof)
or
SCInvalidProof(proof: SCProof, path: Seq[Int], message: String)

SCInvalidProof indicates an erroneous proof. The second argument point to
the faulty proofstep (through subproofs, if any), and the third argument is an
error message hinting at why the step is incorrectly applied.

Note that there exists a proof step, called Sorry, used to represent unimple-
mented proofs. The conclusion of a Sorry step will always be accepted by the
proof checker. Any theorem relying on a Sorry step is not guaranteed to be cor-
rect. The usage is, however, transitively tracked and the theorem is marked as
relying on Sorry.

34 CHAPTER 2. LISA’S TRUSTED KERNEL

2.3 Theorems and Theories

In mathematics as a discipline, theorems don’t exist in isolation. They depend
on some agreed upon set of axioms, definitions, and previously proven theorems.
Formally, theorems are developed within theories. A theory is defined by a lan-
guage, which contains the symbols allowed in the theory, and by a set of axioms,
which are assumed to hold true within it.

In Lisa, a Theory is a mutable object that starts as the pure theory of predicate
logic: It has no known symbols and no axioms. Then we can introduce into it
elements of Set Theory (symbols €, (), | J and set theory axioms, see Chapter 5)
or of any other theory.

To conduct a proof inside a Theory, using its axioms, the proof should be
normally constructed and the needed axioms specified in the imports of the proof.
Then, the proof can be given to the Theory to check, along with justifications for
all imports of the proof. A justification is either an axiom, a previously proven
theorem, or a definition. The Theory object will check that every import of the
proof is properly justified by a justification in the theory, i.e. that the proof is
in fact not conditional in the theory. Then, it will pass the proof to the proof
checker. If the proof is correct, it will return a Theorem encapsulating the sequent.
This theorem will be allowed to be used in all further proofs as an import, exactly
like an axiom. Axioms and theorems also have a name.

2.3.1 Definitions

The user can also introduce definitions in the Theory. Lisa’s kernel allows to
define two kinds of objects: Function (or Term) symbols and Predicate symbols.

Figure 2.8 shows how to define and use new function and predicate symbols.
To define a predicate on n variables, we must provide a formula along with n
distinguished free variables. Then, this predicate can be freely used and at any
time substituted by its definition. Functions are slightly more complicated: to
define a function f, one must first prove a statement of the form

H!y'¢y’m1"“)xk

2.3. THEOREMS AND THEORIES 35

A definition in Lisa is one of those two kinds of objects: A predicate definition
or a function definition.

PredicateDefinition(
label: ConstantAtomiclabel,
expression: LambdaTermFormula

)
So that
PredicateDefinition(P, lambda(Seq(x1, ... ,x2), ©))

corresponds to
“For any 7, let P"(Z) := ¢z”

FunctionDefinition(
label: ConstantFunctionLabel,
out: Variablelabel,
expression: LambdaTermFormula

)
So that
FunctionDefinition(f, y, lambda(Seq(x1, ... ,x2), ®))

corresponds to
“For any Z, let f™(Z) be the unique y such that ¢ holds.”

Figure 2.8: Definitions in Lisa.

36 CHAPTER 2. LISA’S TRUSTED KERNEL

Then we obtain the defining property

Vy.(f(xl, ey wk) = y) A ¢y,zl,...,rk

from which we can deduce in particular ¢[f(x1, ..., zx)/y]. The special case where
n = 0 defines constant symbols. The special case where ¢ is of the form y = ¢,
with possibly the x’s free in t lets us recover a more simple definition by alias,
i.e. where f is simply a shortcut for a more complex term ¢. This definitional
mechanism requiring a proof of unique existence is typically called extension by
definition, and allows us to extend the theory without changing what is or isn’t
provable, see subsection 6.1.2.

The Theory object is responsible of keeping track of all symbols which have
been defined so that it can detect and refuse conflicting definitions. As a general
rule, definitions should have a unique identifier and can’t contain free schematic
symbols.

Once a definition has been introduced, future theorems can refer to those
definitional axioms by importing the corresponding sequents in their proof and
providing justification for those imports when the proof is verified, just like with
axioms and theorems.

Figure 2.9 shows the types of justification in a theory (Theorem, Axiom,
Definition). Figure 2.10 shows how to introduce new justifications in the theory.

2.4 Using Lisa’s Kernel

The kernel itself is a logical core, whose main purpose is to attest correctness of
mathematical developments and proofs. In particular, it is not intended to be
used directly to formalise a large library, as doing so would be very verbose. It
instead serves as either a foundation for Lisa’s user interface and automation, or as
a tool to write and verify formal proofs produced by other programs. Nonetheless,
Lisa’s kernel comes with a set of utilities and features and syntactic sugar that
make the kernel more user-friendly.

2.4. USING LISA’S KERNEL

Explanation

Data Type

A proven theorem

An axiom of the theory

A predicate definition

A function definition

Figure 2.9: The different types of justification in a Theory object.

Theorem(
name: String,
proposition: Sequent

)

Axiom(
name: String,
ax: Formula

)

PredicateDefinition(
label: ConstantAtomiclLabel,
expression: LambdaTermFormula

)

FunctionDefinition(
label: ConstantFunctionLabel,
out: Variablelabel,
expression: LambdaTermFormula

)

37

38 CHAPTER 2. LISA’S TRUSTED KERNEL

Explanation Function

makeTheorem(
name: String,

Add a new theorem statement: Sequent,

to the theory proof: SCProof,. .
justs: Seq[Justification]
)
addAxiom(

name: String,
f: Formula

)

Add a new axiom
to the theory

makePredicateDefinition(
label: ConstantAtomiclLabel,
expression: LambdaTermFormula

)

Make a new
predicate definition

makeFunctionDefinition(
proof: SCProof,
justifications: Seq[Justification],

Make a new label: ConstantFunctionLabel,
function definition out: Variablelabel,
expression: LambdaTermFormula
)

Figure 2.10: The interface of a Theory object to introduce new theorems, axioms
and definitions.

2.4. USING LISA’S KERNEL 39

2.4.1 Syntactic Sugar

Aliases Scala accepts most unicode symbols in identifiers, allowing Lisa to de-
fine alternative representation for logical symbols

Original symbol Alias
top True, T
bot False, 1
And and, A
Or or, V
Implies implies, =
Iff iff, &
Forall forall, V
Exists exists, 3
ExistsOne existsOne, 3!

Identifiers An identifier is a pair of a string and a number. Note that Lisa
kernel does not accept whitespace nor symbols among ()[]{}_ as part of identi-
fiers. The underscore can be used to write both the string and the integer part
of an identifier at once. For example,

val x: VariableLabel("x_4")
is automatically transformed to

val x: VariableLabel(Identifier("x", 4))

Application With the following symbols:

val x: VariableLabel("x")
val y: VariableLabel("x")
val f: SchematicFunctionLabel("f", 2)

the strict syntax to construct the term f(x, y) is
Term(f, Seq(Term(x, Nil), Term(y, Nil)))

Extensions and implicit conversions allow one to simply write

40 CHAPTER 2. LISA’S TRUSTED KERNEL

f(x, y)

for the same result. The same holds with predicates and connectors. Moreover,
binary symbols can be written infix, allowing the following syntax:

(f(x, y) = f(y, x)) = (x =vy)

Sequents The strict syntax to construct the sequent ¢,y - ~,d is
Sequent(Set(phi, psi), Set(phi, psi))

but thanks again to extensions and implicit conversions, Lisa accepts
(phi, psi) + (phi, psi)

Where | is the ligature for |- or | + -. More generally, the left and right sides

of I can be any of:

e () — Unit, translated to an empty set
e a Formula

a Tuple[Formula]

an Iterable[Formula] (Set, List...)

Lambdas A Lambda expression can be created with the lambda keyword, writ-
ing a single variable by itself, or providing a sequence if the function takes multiple
arguments. For example,

lambda(x, x+x): LambdaTermTerm
lambda(Seq(x, y, z), x+y+z): LambdaTermTerm

lambda(x, x = x): LambdaTermFormula
lambda(Seq(x, y), (x+x) = y)): LambdaTermFormula
lambda(X, X A y = y): LambdaFormulaFormula

lambda(Seq(X, Y), X <= Y): LambdaFormulaFormula

Moreover, a term t is automatically converted to a LambdaTermTerm
lambda(Seq(), t) with an empty list of arguments when needed, and similarly
for LambdaTermFormula and LambdaFormulaFormula.

2.4. USING LISA’S KERNEL 41

2.4.2 How to write helpers

These helpers and syntactic sugar are made possible by Scala’s extensions and
implicit conversions. Extension allow to add methods to an object a posteriori of
its definition. This is especially convenient for use, as it allows us to define such
helpers outside of the kernel, keeping it small. For example, to write f(x, y),
the object f: SchematicFunctionLabel must have a method called apply. It is
defined as

extension (label: TermLabel) {
def apply(args: Termx): Term = Term(label, args)

}
where Termx indicates that the function can take arbitrary many Terms as argu-
ments. We can also defines infix symbols this way. An expression a == b is in
fact syntactic sugar for a.==(b). So we define:

extension (t: Term) {
infix def =(u: Term): Term = Term(equality, Seq(t, u))
}

And similarly for other symbols such as A, V, =, & .
Now, consider again

val x: TermLabel = VariablelLabel("x")
val y: TermLabel = VariableLabel("x")
val f: SchematicFunctionLabel("f", 2)

even with the above apply trick, f(x, y) would not compile, since f can apply to
Term arguments, but not to TermLabel. Hence we first need to apply x and y to an
empty list of argument, such as in f(x(), y()). This can be done automatically
with implicit conversions. Implicit conversion is the mechanism allowing to cast
an object of a type to an other in a canonical way. It is defined with the given
keyword:

given Conversion[TermLabel, Term] = (t: Term) = Term(t, Seq())

Now, every time a TermLabel is written in a place where a Term is expected, it
will be converted implicitly.

42 CHAPTER 2. LISA’S TRUSTED KERNEL

To learn more about Scala 3 and its capabilities, see its documentation at
https://docs.scala-lang.org/scala3/book/introduction.html.

https://docs.scala-lang.org/scala3/book/introduction.html

Chapter 3

Developping Mathematics with
Prooflib

Lisa’s kernel offers all the necessary tools to develops proofs, but reading and
writing proofs written directly in its language is cumbersome. To develop and
maintain a library of mathematical development, Lisa offers a dedicate interface
and DSL to write proofs: Prooflib Lisa provides a canonical way of writing and
organizing Kernel proofs by mean of a set of utilities and a DSL made possible
by some of Scala 3’s features. Listing 3.1 is a reminder from chapter 1 of the
canonical way to write a theory file in Lisa.

In this chapter, we will describe how each of these construct is made possible
and how they translate to statements in the Kernel.

3.1 Richer FOL

The syntax of Prooflib is similar to the syntax of Lisa’s kernel, but the Sorts,
such as Ind and Prop, are reflected in Scala’s type system, making well-sortedness
checked at compile time and offering more detailed documentation and features.
Prooflib’s syntax also supports custom printing, such as infix notation, special
handling for binders, and more.

© 00 N O Ot W N

44

CHAPTER 3. DEVELOPPING MATHEMATICS WITH PROOFLIB

Listing 3.1: An example of a theory file in Lisa

object MyTheoryName extends lisa.Main:

val x = variable[Ind]

val y = variable[Ind]

val f = function[Ind >>: Ind]
val P = predicate[Prop >>: Ind]

val fixedPointDoubleApplication = Theorem(
V(x, P(x) = P(f(x))) + P(x) = P(f(f(x)))
) {
assume(V(x, P(x) = P(f(x))))
val stepl = have(P(x) = P(f(x))) by InstantiateForall
val step2 have(P(f(x)) = P(f(f(x)))) by InstantiateForall
have(thesis) by Tautology.from(stepl, step2)
}

val emptySetIsASubset = Theorem(
@ < X
)
have((y € ©) = (y € x)) by Tautology.from(
emptySetAxiom of (x := y))
val rhs = thenHave (V(y, (y € @) = (y € x))) by RightForall
have(thesis) by Tautology.from(
subsetAxiom of (x := @, y := x), rhs)
}

amain def show = println(emptySetAxiom)

src/MyTheoryName.scala

3.1. RICHER FOL 45

3.1.1 Sorts and Expressions

Definition 8 (Sorts).

trait Ind
trait Prop
infix trait >>:[I, 0]

Definition 9 (Expressions). Expressions in Prooflib always correspond to
an underlying expression in lisa’s kernel, which can bee accessed using
myExpr.underlying. Expressions are always sorted, and this sort reflects in their
scala type.

trait Expr[S]

case class Variables[S](name: String) extends Expr[S]

case class Constants[S](name: String) extends Expr[S]

case class App[S, TI(f: Expr[S >>: T], arg: Expr[S]) extends Expr[T]

case class Abs[S, T](v: Vvariable[S], body: Expr[T]) extends Expr[S >>: T]

Expressions are usually built with the following helpers:

Example 3.

val x = variable[Ind] //the name "x" is used automatically
val ¢ = variable[Ind]

val € = constant[Ind >>: Ind >>: Prop]

val f = variable[(Ind >>: Prop) >>: Ind]

X € c : Expr[Prop]
lambda(x, x € c¢) : Expr[Ind >>: Prop]
f(lambda(x, x € c)) : Expr[Ind]

Expressions also support substitutions.

Definition 10 (Substitution). Substitution are most often performed with
SubstPairs, which guarantee well-sortedness.

46 CHAPTER 3. DEVELOPPING MATHEMATICS WITH PROOFLIB

trait SubstPair extends Product:
type S
val _1: Variable[S]
val _2: Expr[S]

(x := f(®)) : SubstPair
g(x, y).subst(x := f(@), vy := x) // = g(f(®), x)

but can also be performed unsafely, when sorts are not necessarily known:

//if ill-sorted, may crash in unpredictable ways.
myExpr.substituteUnsafe(Map(x -> s, y -> t))

//with sanity runtime check for well-sortedness
myExpr.substituteWithCheck(Map(x -> s, y -> t))

3.1.2 Sequents

Expressions build into sequents, which again have an underlying sequent in the
kernel.

Definition 11 (Sequents). Sequents are formally pairs of sets of Expr[Prop].
case class Sequent(left: Set[Expr[Propl], right: Set[Expr[Propl])

Sequent can be built from formulas and collections of formulas:

val s1 = (x € ¢) + (f(x) € f(c))

val s2 = () - (f(x) € f(c))

val s3 = (x € c) ()

val s4 = Set(x € ¢, y € ¢) I Set(x =y, x \in y)
val s& = assumptions (x = c)

the logical semantics of sequents is the same as in the kernel, i.e. a sequent is
valid if and only if the conjunction of its left side implies the disjunction of its

3.2. PROOF BUILDERS 47

right side. But it is usually discouraged to have multiple formulas on the right
side of a sequent in theorems and lemmas, as it is harder to understand. Using
multiple formulas on the right side of a sequent is however allowed in intermediate
steps of a proof and in proof tactics.

Sequents, like expressions, support substitutions:

val s = Sequent(Set(x € c), Set(f(x) € f(c)))
s.substitute(x := g(@))
// = Sequent(Set(g(®) € c), Set(f(g(w)) € f(c)))

3.2 Proof Builders

3.2.1 Proofs

3.2.2 Facts

3.2.3 Instantiations
3.2.4 Local Definitions

The following line of reasoning is standard in mathematical proofs. Suppose we
have already proven the following fact:

dz.P(x)

And want to prove the property ¢. A proof of ¢ using the previous theorem
would naturally be obtained the following way:

Since we have proven Jx.P(z), let ¢ be an arbitrary value such
that P(c) holds. Hence we prove ¢, using the fact that P(c): (...).

However, introducing a definition locally corresponding to a statement of the
form

dz.P(x)

is not a built-in feature of first order logic. This can however be simulated by
introducing a fresh variable symbol ¢, that must stay fresh in the rest of the proof,

N O O W N

1
2

48 CHAPTER 3. DEVELOPPING MATHEMATICS WITH PROOFLIB

val existentialAxiom = Axiom(exists(x, in(x, emptySet)))
val falso = Theorem(1) {
val ¢ = witness(existentialAxiom)
have(+) by Tautology.from(
c.definition, emptySetAxiom of (x := c))

Figure 3.1: An example use of local definitions in Lisa

and the assumption P(c). The rest of the proof is then carried out under this
assumption. When the proof is finished, the end statement should not contain
c free as it is a local definition, and the assumption can be eliminated using the
LeftExists and Cut rules. Such a c is called a witness. Formally, the proof in (...)
is a proof of P(c) ¢. This can be transformed into a proof of ¢ by mean of the
following steps:

Not that for this step to be correct, ¢ must not be free in ¢. This correspond to
the fact that c is an arbitrary free symbol.

This simulation is provided by Lisa through the witness method. It takes as
argument a fact showing 3z.P(z), and introduce a new symbol with the desired
property. For an example, see figure 3.1.

3.3 DSL

3.3.1 Instantiations with “of”

With lisa’s kernel, it is possible to instantiate a theorem proving P(x) to obtain
a proof of P(t), for any term ¢, using the Inst rule from Figure 2.1. Lisa’s DSL
provides a more convenient way to do so, using the of keyword. It is used like so:

val ax = Axiom(P(x))
val falso = Theorem(P(c) A P(d)) {

N R

1

3.3. DSL 49

have(thesis) by RightAnd(ax of (x := c), ax of (x := d))
}

x := d is called a substitution pair, and is equivalent to the tuple (x, d). Arbi-
trarily many substitution pairs can be given as argument to of, and the instanti-
ations are done simultaneously. ax of (x := c) is called an InstantiatedFact,
whose statement is P(c), and which can be used exactly like theorems, axioms
and intermediate steps in the proof. Internally, Lisa produces a proof step cor-
responding to the instantiation using the Inst rule.

The of keyword can also instantiate universally quantified formulas of a fact,
when it contains a single formula. For example, the following code is valid:

val ax = Axiom(V(x, P(x)))

val thm = Theorem(P(c) A P(d)) {
have(thesis) by RightAnd(ax of c, ax of d)

}

Here, ax of c is a fact whose proven statement is again P(c). It is possible
to instantiate multiple V quantifiers at once. For example if ax is an axiom of
the form Vx,Vy, P(z,y), then ax of (c, d) is a fact whose proven statement is
P(c,d). Tt is also possible to combine instantiation of free symbols and quanti-
fied variables. For example, if ax is an axiom of the form Vz,Vy, P(z,y), then
ax of (c, y, P := =) is a fact whose proven statement is (¢ = y).

Formally, the of keyword takes as argument arbitrarily many terms and sub-
stitution pairs. If there is at least one term given as argument, the base fact must
have a single universally quantified formula on the right (an arbitrarily many for-
mulas on the left). The number of given terms must be at most the number
of leading universal quantifiers. Moreover, a substitution cannot instantiate any
locked symbol (i.e. a symbol part of an assumption or definition). The ordering
of substitution pairs does not matter, but the ordering of terms does. The result-
ing fact is obtained by first replacing the free symbols in the formula by the given
substitution pairs, and then instantiating the quantified variables in the formula
by the given terms

In general, for the following proof

val ax = Axiom(V(x, V(y, P(x, y))))

2

50 CHAPTER 3. DEVELOPPING MATHEMATICS WITH PROOFLIB

val thm = Theorem(c = d) {
have(thesis) by Restate.from(ax of (c, d, P := =))

}

Lisa will produce the following inner statements:

-1 Import 0 ¢) r V(x, V(y, P(x, y)))
0 SequentInstantiationRule ()+ ¢ = d

Chapter 4

Tactics: Specifications and Use

Congruence

The Congruence tactic is used to prove sequents whose validity directly follow
from the congruence closure of all equalities and formula equivalences given left
of the sequent. Specifically, it works in the following cases:

e The right side contains an equality s ===t or equivalence a <=> b prov-
able in the congruence closure.

o The left side contains an negated equality !(s === t) or equivalence !(a
<=> b) provable in the congruence closure.

e There is a formula a on the left and b on the right such that a and b are
congruent.

e There are two formulas a and !b on the left such that a and b are congruent.
e There are two formulas a and !b on the right such that a and b are congruent.
e The sequent is Ol-valid without equality reasoning

Note that congruence closure modulo OL is an open problem.

Example 4. The following statements are provable by Congruence:

S O A W N

SO W N

52 CHAPTER 4. TACTICS: SPECIFICATIONS AND USE

val congruencel = Theorem ((a = b, b c) f(a) = f(c)) {

have(thesis) by Congruence

}

val congruence2 = Theorem (
(FCFCFCF(F(F(F(x))))))) = x, F(F(F(F(F(x))))) = x)
F (F(x) = x)

) {
have(thesis) by Congruence

}

val congruence3 = Theorem (
(a = b, b = c, P(f(c)) <= Qq, P(f(a)))
F Q

) {
have(thesis) by Congruence

}

The tactic computes the congruence closure of all terms and formulas, with
respect to the given equalities and equivalences, using an egraph datastructure [?,
?]. The egraph contains two union-find datastructure which maintain equivalence
classes of formulas and terms, respectively. The union-finds are equiped with an
explain method, which can output a path of equalities between any two points
in the same equivalence class, as in [?]. Each such equality can come from the
left hand-side of the sequent being proven (we call those external equalities), or
be consequences of congruence. For an equality labelled by a congruence, the
equalities between all children terms can recursively be explained.

Example 5. Consider again the sequent
a=bb=ck f(a) = £(c)

the domain of our egraph is{a,b,c, f(a), f(c)}. When a and b are merged
and then b and c¢ are emrged, the egraph detects that f(a) and f(c)

© 00 N O Ot W N

53

are congruent and should also be merged. The explanation of f(a) =
f(e) is then Congruence(f(a), f(c)), and the explanation of a = ¢ is
External(a, b), External(d, c).

Once the congruence closure is computed, the tactic checks if the sequent is
satisfies any of the above conditions and returns a proof if it does (and otherwise
fails).

Goeland

Goeland|[?] is an Automated Theorem prover for first order logic. The Goeland
tactic exports a statement in SC-TPTP format, and call Goeland to prove it.
Goeland produce a proof file in the SC-TPTP format, from which Lisa rebuilds
a kernel proof.

Usage

val gothm = Theorem (() F 3(x, V(y, Q(x) = Q(y)))) {
have(thesis) by Goeland

}
//or
val gothm = Theorem (() F 3(x, V(y, Q(x) = Q(y)))) {

have(thesis) by Goeland("goeland/Test.gothm_sol")
}

Goeland can only be used from linux systems, and the proof files produced by
Goeland should be published along the Lisa library. Calling Goeland without
arguments is only available in draft mode. It will produce a proof file for the
theorem (if it succeeds). When the draft mode is disabled, for publication, Lisa
will provide a file name that should be happended to the tactic. This ensures
that the proof can be replayed in any system using the Lisa library.

Goeland is a complete solver for first order logic, but equality is not yet
supported. It is a faster alternative to the Tableau tactic.

54

CHAPTER 4. TACTICS: SPECIFICATIONS AND USE

Chapter 5

Library Development: Set
Theory

It is important to remember that in the context of Set Theory, function symbols
are not the usual mathematical functions and predicate symbols are not the usual
mathematical predicates. Indeed, a predicate on the natural numbers N is simply
a subset of N. For example a number is even if and only if it is in the set £ C N
of all even numbers. Similarly, the < relation on natural numbers can be thought
of as a subset of N x N. There, E and < are themselves sets, and in particular
terms in first order logic. Actual mathematical functions on the other hand, are
proper sets which contains the graph of a function on some domain. Their domain
must be restricted to a proper set, and it is possible to quantify over such set-
like functions or to use them without applications. These set-like functions are
represented by constant symbols. For example “f is derivable” cannot be stated
about a function symbol. We will come back to this in Chapter 5, but for now let
us remember that (non-constant) function symbols are suitable for intersection
() between sets but not for, say, the Riemann ¢ function.

Indeed, on one hand a predicate symbol defines a truth value on all possible
sets, but on the other hand it is impossible to use the symbol alone, without
applying it to arguments, or to quantify over function symbol.

Lisa is based on set theory. More specifically, it is based on ZF with (still not

56 CHAPTER 5. LIBRARY DEVELOPMENT: SET THEORY

Math symbol | Lisa Kernel
Set Membership predicate € in(s,t)
Subset predicate - subset(s,t)
Empty Set constant 1) emptyset()
Ordered Pair constant (,4) pair(s,t)
Power Set function P powerSet(s)
Set Union/Flatten function U union(x)

Figure 5.1: The basic symbols of ZF.

decided) an axiom of choice, of global choice, or Tarski’s universes.

ZF Set Theory stands for Zermelo-Fraenkel Set Theory. It contains a set of
initial predicate symbols and function symbols, as shown in Figure 5.1. It also
contains the 7 axioms of Zermelo (Figure 5.2), which are technically sufficient
to formalize a large portion of mathematics, plus the axiom of replacement of
Fraenkel (Figure 5.3), which is needed to formalize more complex mathematical
theories. In a more typical mathematical introduction to Set Theory, ZF would
naturally only contain the set membership symbol €. Axioms defining the other
symbols would then only express the existence of functions or predicates with
those properties, from which we could get the same symbols using extensions by
definitions.

In a very traditional sense, an axiomatization is any possibly infinite semi-
recursive set of axioms. Hence, in its full generality, Axioms should be any
function producing possibly infinitely many formulas. This is however not a con-
venient definition. In practice, all infinite axiomatizations are schematic, meaning
that they are expressible using schematic variables. Axioms Z8 (comprehension
schema) and ZF1 (replacement schema) are such examples of axiom schema, and
motivates the use of schematic variables in Lisa.

57

Z2 (extensionality). (Vz.z € x <= z€vy) < (z=y)

pair). (z € {z,y}) = ((z=2)V(y=2))

(
(
(
(
Z5 (union). (z € U(z)) <= (Jy.(y € 2) A (2 € y))
(
(
(
(

Z6 (power). (x € P(y)) <= (x Cy)

Z7 (foundation). Vz.(z # 0) = (Jy.(y €) A (Vz.z € 2))
Z8 (comprehension schema). Jy.Vr.x € y < (x € 2z A ¢(x))
Z9 (infinity). Jz.0 € x A Vy.y € 2 = U({y,{y,y}}) € x)

Figure 5.2: Axioms for Zermelo set theory.

ZF1 (replacement schema).
Vo.(z € a) = Vy,z.(d(@,y) Nb(z,y) — y=2 =

(FIbNy.(y € B) = (Fz.(x € a) NY(z,y)))

Figure 5.3: Axioms for Zermelo-Fraenkel set theory.

58 CHAPTER 5. LIBRARY DEVELOPMENT: SET THEORY

5.1 Using Comprehension and Replacement

In traditional mathematics and set theory, it is standard to use set builder nota-
tions, to denote sets built from comprehension and replacement, for example

{—z | x € NAisEven(z)}

This also naturally corresponds to comprehensions over collections in
programming languages, as in Table b5.1. Those are typically syn-

Language ‘ Comprehension

Python [-x for x in range(10) if x % 2 = 0]
Haskell [-x | x « [0..9], even x]
Scala for (x < 0 to 9 if x % 2 = 0) yield -x

Table 5.1: Comprehensions in various programming languages

tactic sugar for a more verbose expression. For example in scala,
(0 to 9).filter(x = x % 2 = 0).map(x = -x). However this kind of ex-
pressions is not possible in first order logic: We can’t built in any way a term
that contains formulas as subexpressions, as in filter. So if we want to use such
constructions, we need to simulate it as we did for local definitions in subsec-
tion 3.2.4.

It turns out that the comprehension schema is a consequence of the replace-
ment schema when the value plugged for ¥ (z,y) is ¢(x) Ay = z, i.e. when 9
denotes a restriction of the diagonal relation. Hence, what follows is built only
from replacement. Note that the replacement axiom Axiom ZF1 is conditional
of the schematic symbol 1 being a functional relation. It is more convenient to
move this condition inside the axiom, to obtain a non-conditional equivalence.
This is the approach adopted in Isabelle/ZF [?]. We instead can prove and use

dB,Vyy € B <= (Bz.x € ANP(y,e) A\Vzp(z,2) = z=1y)

Which maps elements of A through the functional component of) only. If 9 is
functional, those are equivalent.

5.1. USING COMPREHENSION AND REPLACEMENT 59

Lisa allows to write, for an arbitrary term t and lambda expression
P: (Term, Term) \mapsto Formula,

val ¢ = t.replace(P)

One can then use c.elim(e) to obtain the fact e € B <= (Jz.x € AANP(z,e) A
Vzap(z,z) = z = y). As in the case of local definitions, this statement will
automatically be eliminated from the context at the end of the proof.

Moreover, we most often want to map a set by a known function. In those
case, Lisa provides refined versions t.filter, t.map and t.collect, which are
detailed in table 5.2. In particular, these versions already prove the functionality
requirement of replacement.

val ¢ = ‘ c.elim(e)

t.replace(P) e€c < (Jrx€tNP(x,e) \Vz.P(z,2) = z=c¢e)
t.collect(F, M) |e€c <= (Fr.x €t NF(z)\NM(z) =e)

t.map(M) e€c < (JrxectANM(z)=e)

t.filter(F) e€c < ectNF(e)

Table 5.2: Comprehensions in Lisa

Note that each of those expressions is represented as a variable symbol in the
kernel proof, and the definitions are only valid inside the current proof. They
should not appear in theorem statements (in which case they should be properly
introduced as defined constants).

60

CHAPTER 5. LIBRARY DEVELOPMENT: SET THEORY

Chapter 6

Selected Theoretical Topics

Algorithms and techniques to solve and reduce formulas in propositional logic
(and its generalizations) are a major field of study. They have prime relevance in
SAT and SMT solving algorithms. Lisa makes use of some of them: some of the
in the kernel, others as available tactics.

6.1 Set Theory and Mathematical Logic

6.1.1 First Order Logic with Schematic Variables
6.1.2 Extensions by Definition

An extension by definition is the formal way of introducing new symbols in a
mathematical theory. Theories can be extended into new ones by adding new
symbols and new axioms to it. We’re interested in a special kind of extension,
called conservative extension.

Definition 12 (Conservative Extension). A theory 7z is a conservative extension
of a theory 7 if:

s i CTs

e For any formula ¢ in the language of 71, if To = ¢ then 71 F ¢

62 CHAPTER 6. SELECTED THEORETICAL TOPICS

An extension by definition is a special kind of extension obtained by adding
a new symbol and an axiom defining that symbol to a theory. If done properly,
it should be a conservative extension.

Definition 13 (Extension by Definition). A theory 73 is an extension by defini-
tion of a theory 77 if:

o L(T2) = L(T2) U{S}, where S is a single new function or predicate symbol,
and

e 75 contains all the axioms of 77, and one more of the following form:

— If S is a predicate symbol, then the axiom is of the form ¢,, .. . <=
S(x1,...,xk), where ¢ is any formula with free variables among
Tlyeeey Lo

— If S is a function symbol, then the axiom is of the form ¢y 4, .. ., <=
y = S(x1,...,x), where ¢ is any formula with free variables among
Y, 21, ..., . Moreover, in that case we require that

H!y'¢y,$1,..‘,{z‘k

is a theorem of 77.

We also say that a theory 7y is an extension by definition of a theory 7y if
there exists a chain 7Ty, 7, ... , Ti of extensions by definitions.

For function definition, it is common in logic textbooks to only require the ex-
istence of y and not its uniqueness. The axiom one would then obtain would only
be @[f(x1,...,xy)/y] This also leads to conservative extension, but it turns out
not to be enough in the presence of axiom schemas (axioms containing schematic
symbols).

Lemma 1. In ZF, an extension by definition without uniqueness doesn’t neces-
sarily yield a conservative extension if the use of the new symbol is allowed in
axiom schemas.

6.1. SET THEORY AND MATHEMATICAL LOGIC 63

Proof. In ZF, consider the formula ¢, := Vz.3y.(x #) = y € x expressing
that nonempty sets contain an element, which is provable in ZFC.

Use this formula to introduce a new unary function symbol choice such that
choice(z) € z. Using it within the axiom schema of replacement we can obtain
for any A

{(z, choice(z)) | x € A}

which is a choice function for any set A. Hence using the new symbol we can
prove the axiom of choice, which is well known to be independent of ZF, so the
extension is not conservative. O

Note that this example wouldn’t work if the definition required uniqueness
on top of existence. For the definition with uniqueness, there is a stronger result
than only conservativity.

Definition 14. A theory 75 is a fully conservative extension over a theory 77 if:
e it is conservative, and

o for any formula ¢o with free variables x1, ..., xx in the language of 7T, there
exists a formula ¢; in the language of 7; with free variables among 1, ..., g
such that

/TQ ~ Vxlwk(¢1 <~ (;52)
Theorem 2. An extension by definition with uniqueness is fully conservative.

The proof is done by induction on the height of the formula and isn’t difficult,
but fairly tedious.

Theorem 3. If an extension T5 of a theory Ti with axiom schemas is fully
conservative, then for any instance of the axiom schemas containing a new symbol
a, ' a where I' contains no axiom schema instantiated with new symbols.

Proof. Suppose
a = aol¢/?p]

64 CHAPTER 6. SELECTED THEORETICAL TOPICS

Where ¢ has free variables among x1, ..., £, and contains a defined function sym-
bol f. By the previous theorem, there exists 1) such that

FVA, w,...,wn, 2.0 <> ¢

or equivalently, as in a formula and its universal closure are deducible from each
other,
OB

which reduces to
aolY/7p] F «

Since ag[/?p] is an axiom of T;, we reach the conclusion. O

	Starting with Proofs in Lisa
	Installation
	Development Environment
	Writing theory files
	Common Tactics

	Lisa's Trusted Kernel
	-FOL: First Order Logic with Lambda Terms
	Expressions
	Capture-Avoiding Substitution and Beta-Reduction
	Substitution
	The Equivalence Checker

	Proofs in Sequent Calculus for -FOL
	Sequent Calculus
	Proofs
	Proof Checker

	Theorems and Theories
	Definitions

	Using Lisa's Kernel
	Syntactic Sugar
	How to write helpers

	Developping Mathematics with Prooflib
	Richer FOL
	Sorts and Expressions
	Sequents

	Proof Builders
	Proofs
	Facts
	Instantiations
	Local Definitions

	DSL
	Instantiations with ``of''

	Tactics: Specifications and Use
	Library Development: Set Theory
	Using Comprehension and Replacement

	Selected Theoretical Topics
	Set Theory and Mathematical Logic
	First Order Logic with Schematic Variables
	Extensions by Definition

