0.00/0.12 % Problem : theBenchmark.p : TPTP v0.0.0. Released v0.0.0. 0.00/0.13 % Command : etableau --auto --tsmdo --quicksat=10000 --tableau=1 --tableau-saturation=1 -s -p --tableau-cores=8 --cpu-limit=%d %s 0.13/0.34 % Computer : n005.cluster.edu 0.13/0.34 % Model : x86_64 x86_64 0.13/0.34 % CPU : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz 0.13/0.34 % Memory : 8042.1875MB 0.13/0.34 % OS : Linux 3.10.0-693.el7.x86_64 0.13/0.34 % CPULimit : 1200 0.13/0.34 % WCLimit : 120 0.13/0.34 % DateTime : Tue Jul 13 13:32:33 EDT 2021 0.13/0.34 % CPUTime : 0.20/0.37 # No SInE strategy applied 0.20/0.37 # Auto-Mode selected heuristic G_E___302_C18_F1_URBAN_S5PRR_RG_S04BN 0.20/0.37 # and selection function PSelectComplexExceptUniqMaxHorn. 0.20/0.37 # 0.20/0.37 # Number of axioms: 14 Number of unprocessed: 14 0.20/0.37 # Tableaux proof search. 0.20/0.37 # APR header successfully linked. 0.20/0.37 # Hello from C++ 0.20/0.37 # The folding up rule is enabled... 0.20/0.37 # Local unification is enabled... 0.20/0.37 # Any saturation attempts will use folding labels... 0.20/0.37 # 14 beginning clauses after preprocessing and clausification 0.20/0.37 # Creating start rules for all 1 conjectures. 0.20/0.37 # There are 1 start rule candidates: 0.20/0.37 # Found 14 unit axioms. 0.20/0.37 # 1 start rule tableaux created. 0.20/0.37 # 0 extension rule candidate clauses 0.20/0.37 # 14 unit axiom clauses 0.20/0.37 0.20/0.37 # Requested 8, 32 cores available to the main process. 0.20/0.37 # There are not enough tableaux to fork, creating more from the initial 1 0.20/0.37 # Creating equality axioms 0.20/0.37 # Ran out of tableaux, making start rules for all clauses 0.20/0.37 # Returning from population with 20 new_tableaux and 0 remaining starting tableaux. 0.20/0.37 # We now have 20 tableaux to operate on 0.20/0.50 # There were 1 total branch saturation attempts. 0.20/0.50 # There were 0 of these attempts blocked. 0.20/0.50 # There were 0 deferred branch saturation attempts. 0.20/0.50 # There were 0 free duplicated saturations. 0.20/0.50 # There were 1 total successful branch saturations. 0.20/0.50 # There were 0 successful branch saturations in interreduction. 0.20/0.50 # There were 0 successful branch saturations on the branch. 0.20/0.50 # There were 1 successful branch saturations after the branch. 0.20/0.50 # SZS status Unsatisfiable for /export/starexec/sandbox/benchmark/theBenchmark.p 0.20/0.50 # SZS output start for /export/starexec/sandbox/benchmark/theBenchmark.p 0.20/0.50 # Begin clausification derivation 0.20/0.50 0.20/0.50 # End clausification derivation 0.20/0.50 # Begin listing active clauses obtained from FOF to CNF conversion 0.20/0.50 cnf(i_0_21, plain, (additive_inverse(additive_inverse(X1))=X1)). 0.20/0.50 cnf(i_0_24, plain, (multiply(X1,additive_identity)=additive_identity)). 0.20/0.50 cnf(i_0_27, plain, (multiply(additive_identity,X1)=additive_identity)). 0.20/0.50 cnf(i_0_17, plain, (add(X1,additive_identity)=X1)). 0.20/0.50 cnf(i_0_31, plain, (add(additive_identity,X1)=X1)). 0.20/0.50 cnf(i_0_30, plain, (add(X1,additive_inverse(X1))=additive_identity)). 0.20/0.50 cnf(i_0_20, plain, (add(additive_inverse(X1),X1)=additive_identity)). 0.20/0.50 cnf(i_0_23, plain, (add(X1,X2)=add(X2,X1))). 0.20/0.50 cnf(i_0_19, plain, (add(add(X1,X2),X3)=add(X1,add(X2,X3)))). 0.20/0.50 cnf(i_0_26, plain, (multiply(multiply(X1,X2),X2)=multiply(X1,multiply(X2,X2)))). 0.20/0.50 cnf(i_0_18, plain, (multiply(multiply(X1,X1),X2)=multiply(X1,multiply(X1,X2)))). 0.20/0.50 cnf(i_0_28, plain, (add(multiply(X1,X3),multiply(X2,X3))=multiply(add(X1,X2),X3))). 0.20/0.50 cnf(i_0_29, plain, (add(multiply(X1,X2),multiply(X1,X3))=multiply(X1,add(X2,X3)))). 0.20/0.50 cnf(i_0_32, negated_conjecture, (add(additive_inverse(multiply(x,z)),additive_inverse(multiply(y,z)))!=multiply(add(x,y),additive_inverse(z)))). 0.20/0.50 cnf(i_0_34, plain, (X4=X4)). 0.20/0.50 # End listing active clauses. There is an equivalent clause to each of these in the clausification! 0.20/0.50 # Begin printing tableau 0.20/0.50 # Found 6 steps 0.20/0.50 cnf(i_0_21, plain, (additive_inverse(additive_inverse(multiply(add(x,y),additive_inverse(z))))=multiply(add(x,y),additive_inverse(z))), inference(start_rule)). 0.20/0.50 cnf(i_0_41, plain, (additive_inverse(additive_inverse(multiply(add(x,y),additive_inverse(z))))=multiply(add(x,y),additive_inverse(z))), inference(extension_rule, [i_0_37])). 0.20/0.50 cnf(i_0_60, plain, (add(additive_inverse(multiply(x,z)),additive_inverse(multiply(y,z)))=multiply(add(x,y),additive_inverse(z))), inference(closure_rule, [i_0_32])). 0.20/0.50 cnf(i_0_61, plain, (add(additive_inverse(multiply(x,z)),additive_inverse(multiply(y,z)))!=additive_inverse(additive_inverse(multiply(add(x,y),additive_inverse(z))))), inference(extension_rule, [i_0_37])). 0.20/0.50 cnf(i_0_76, plain, (add(additive_inverse(multiply(x,z)),additive_inverse(multiply(y,z)))!=additive_inverse(additive_inverse(add(additive_inverse(multiply(x,z)),additive_inverse(multiply(y,z)))))), inference(closure_rule, [i_0_21])). 0.20/0.50 cnf(i_0_77, plain, (additive_inverse(additive_inverse(add(additive_inverse(multiply(x,z)),additive_inverse(multiply(y,z)))))!=additive_inverse(additive_inverse(multiply(add(x,y),additive_inverse(z))))), inference(etableau_closure_rule, [i_0_77, ...])). 0.20/0.50 # End printing tableau 0.20/0.50 # SZS output end 0.20/0.50 # Branches closed with saturation will be marked with an "s" 0.20/0.51 # Child (11544) has found a proof. 0.20/0.51 0.20/0.51 # Proof search is over... 0.20/0.51 # Freeing feature tree 0.20/0.51 EOF