% Proof found % SZS status Theorem for SEU140+2 % SZS output start Proof %ClaNum:116(EqnAxiom:34) %VarNum:417(SingletonVarNum:163) %MaxLitNum:4 %MaxfuncDepth:2 %SharedTerms:12 %goalClause: 37 38 55 %singleGoalClaCount:3 [35]P1(a1) [36]P1(a2) [37]P3(a3,a5) [38]P2(a5,a6) [54]~P1(a13) [55]~P2(a3,a6) [40]P3(a1,x401) [43]P3(x431,x431) [56]~P4(x561,x561) [39]E(f12(a1,x391),a1) [41]E(f16(x411,a1),x411) [42]E(f12(x421,a1),x421) [44]E(f16(x441,x441),x441) [46]E(f12(x461,f12(x461,a1)),a1) [49]E(f12(x491,f12(x491,x491)),x491) [45]E(f16(x451,x452),f16(x452,x451)) [47]P3(x471,f16(x471,x472)) [48]P3(f12(x481,x482),x481) [50]E(f16(x501,f12(x502,x501)),f16(x501,x502)) [51]E(f12(f16(x511,x512),x512),f12(x511,x512)) [52]E(f12(x521,f12(x521,x522)),f12(x522,f12(x522,x521))) [57]~P1(x571)+E(x571,a1) [61]~P3(x611,a1)+E(x611,a1) [62]P5(f7(x621),x621)+E(x621,a1) [60]~E(x601,x602)+P3(x601,x602) [63]~P5(x632,x631)+~E(x631,a1) [64]~P4(x641,x642)+~E(x641,x642) [65]~P1(x651)+~P5(x652,x651) [70]~P4(x701,x702)+P3(x701,x702) [71]~P2(x712,x711)+P2(x711,x712) [74]~P5(x742,x741)+~P5(x741,x742) [75]~P4(x752,x751)+~P4(x751,x752) [76]~P3(x762,x761)+~P4(x761,x762) [67]~P3(x671,x672)+E(f12(x671,x672),a1) [69]P3(x691,x692)+~E(f12(x691,x692),a1) [72]~P3(x721,x722)+E(f16(x721,x722),x722) [78]P1(x781)+~P1(f16(x782,x781)) [79]P1(x791)+~P1(f16(x791,x792)) [80]P3(x801,x802)+P5(f8(x801,x802),x801) [81]P2(x811,x812)+P5(f14(x811,x812),x812) [82]P2(x821,x822)+P5(f14(x821,x822),x821) [96]P3(x961,x962)+~P5(f8(x961,x962),x962) [88]~P2(x881,x882)+E(f12(x881,f12(x881,x882)),a1) [89]~P3(x891,x892)+E(f16(x891,f12(x892,x891)),x892) [90]~P3(x901,x902)+E(f12(x901,f12(x901,x902)),x901) [95]P2(x951,x952)+~E(f12(x951,f12(x951,x952)),a1) [104]P2(x1041,x1042)+P5(f4(x1041,x1042),f12(x1041,f12(x1041,x1042))) [99]~P3(x991,x993)+P3(f12(x991,x992),f12(x993,x992)) [106]~P2(x1061,x1062)+~P5(x1063,f12(x1061,f12(x1061,x1062))) [107]~P3(x1071,x1073)+P3(f12(x1071,f12(x1071,x1072)),f12(x1073,f12(x1073,x1072))) [58]~P1(x582)+~P1(x581)+E(x581,x582) [73]P4(x731,x732)+~P3(x731,x732)+E(x731,x732) [77]~P3(x772,x771)+~P3(x771,x772)+E(x771,x772) [97]E(x971,x972)+P5(f15(x971,x972),x972)+P5(f15(x971,x972),x971) [103]E(x1031,x1032)+~P5(f15(x1031,x1032),x1032)+~P5(f15(x1031,x1032),x1031) [83]~P3(x833,x832)+P5(x831,x832)+~P5(x831,x833) [84]~P3(x841,x843)+P3(x841,x842)+~P3(x843,x842) [91]~P2(x913,x912)+~P5(x911,x912)+~P5(x911,x913) [98]~P3(x982,x983)+~P3(x981,x983)+P3(f16(x981,x982),x983) [108]P5(f10(x1082,x1083,x1081),x1081)+P5(f10(x1082,x1083,x1081),x1082)+E(x1081,f12(x1082,x1083)) [111]P5(f10(x1112,x1113,x1111),x1111)+~P5(f10(x1112,x1113,x1111),x1113)+E(x1111,f12(x1112,x1113)) [113]~P5(f9(x1132,x1133,x1131),x1131)+~P5(f9(x1132,x1133,x1131),x1133)+E(x1131,f16(x1132,x1133)) [114]~P5(f9(x1142,x1143,x1141),x1141)+~P5(f9(x1142,x1143,x1141),x1142)+E(x1141,f16(x1142,x1143)) [105]~P3(x1051,x1053)+~P3(x1051,x1052)+P3(x1051,f12(x1052,f12(x1052,x1053))) [109]P5(f11(x1092,x1093,x1091),x1091)+P5(f11(x1092,x1093,x1091),x1093)+E(x1091,f12(x1092,f12(x1092,x1093))) [110]P5(f11(x1102,x1103,x1101),x1101)+P5(f11(x1102,x1103,x1101),x1102)+E(x1101,f12(x1102,f12(x1102,x1103))) [85]~P5(x851,x854)+P5(x851,x852)+~E(x852,f16(x853,x854)) [86]~P5(x861,x863)+P5(x861,x862)+~E(x862,f16(x863,x864)) [87]~P5(x871,x873)+P5(x871,x872)+~E(x873,f12(x872,x874)) [92]~P5(x924,x923)+~P5(x924,x921)+~E(x921,f12(x922,x923)) [100]~P5(x1001,x1003)+P5(x1001,x1002)+~E(x1003,f12(x1004,f12(x1004,x1002))) [112]P5(f9(x1122,x1123,x1121),x1121)+P5(f9(x1122,x1123,x1121),x1123)+P5(f9(x1122,x1123,x1121),x1122)+E(x1121,f16(x1122,x1123)) [115]P5(f10(x1152,x1153,x1151),x1153)+~P5(f10(x1152,x1153,x1151),x1151)+~P5(f10(x1152,x1153,x1151),x1152)+E(x1151,f12(x1152,x1153)) [116]~P5(f11(x1162,x1163,x1161),x1161)+~P5(f11(x1162,x1163,x1161),x1163)+~P5(f11(x1162,x1163,x1161),x1162)+E(x1161,f12(x1162,f12(x1162,x1163))) [93]~P5(x931,x934)+P5(x931,x932)+P5(x931,x933)+~E(x932,f12(x934,x933)) [94]~P5(x941,x944)+P5(x941,x942)+P5(x941,x943)+~E(x944,f16(x943,x942)) [102]~P5(x1021,x1024)+~P5(x1021,x1023)+P5(x1021,x1022)+~E(x1022,f12(x1023,f12(x1023,x1024))) %EqnAxiom [1]E(x11,x11) [2]E(x22,x21)+~E(x21,x22) [3]E(x31,x33)+~E(x31,x32)+~E(x32,x33) [4]~E(x41,x42)+E(f12(x41,x43),f12(x42,x43)) [5]~E(x51,x52)+E(f12(x53,x51),f12(x53,x52)) [6]~E(x61,x62)+E(f16(x61,x63),f16(x62,x63)) [7]~E(x71,x72)+E(f16(x73,x71),f16(x73,x72)) [8]~E(x81,x82)+E(f11(x81,x83,x84),f11(x82,x83,x84)) [9]~E(x91,x92)+E(f11(x93,x91,x94),f11(x93,x92,x94)) [10]~E(x101,x102)+E(f11(x103,x104,x101),f11(x103,x104,x102)) [11]~E(x111,x112)+E(f15(x111,x113),f15(x112,x113)) [12]~E(x121,x122)+E(f15(x123,x121),f15(x123,x122)) [13]~E(x131,x132)+E(f8(x131,x133),f8(x132,x133)) [14]~E(x141,x142)+E(f8(x143,x141),f8(x143,x142)) [15]~E(x151,x152)+E(f10(x151,x153,x154),f10(x152,x153,x154)) [16]~E(x161,x162)+E(f10(x163,x161,x164),f10(x163,x162,x164)) [17]~E(x171,x172)+E(f10(x173,x174,x171),f10(x173,x174,x172)) [18]~E(x181,x182)+E(f9(x181,x183,x184),f9(x182,x183,x184)) [19]~E(x191,x192)+E(f9(x193,x191,x194),f9(x193,x192,x194)) [20]~E(x201,x202)+E(f9(x203,x204,x201),f9(x203,x204,x202)) [21]~E(x211,x212)+E(f14(x211,x213),f14(x212,x213)) [22]~E(x221,x222)+E(f14(x223,x221),f14(x223,x222)) [23]~E(x231,x232)+E(f4(x231,x233),f4(x232,x233)) [24]~E(x241,x242)+E(f4(x243,x241),f4(x243,x242)) [25]~E(x251,x252)+E(f7(x251),f7(x252)) [26]~P1(x261)+P1(x262)+~E(x261,x262) [27]P5(x272,x273)+~E(x271,x272)+~P5(x271,x273) [28]P5(x283,x282)+~E(x281,x282)+~P5(x283,x281) [29]P3(x292,x293)+~E(x291,x292)+~P3(x291,x293) [30]P3(x303,x302)+~E(x301,x302)+~P3(x303,x301) [31]P2(x312,x313)+~E(x311,x312)+~P2(x311,x313) [32]P2(x323,x322)+~E(x321,x322)+~P2(x323,x321) [33]P4(x332,x333)+~E(x331,x332)+~P4(x331,x333) [34]P4(x343,x342)+~E(x341,x342)+~P4(x343,x341) %------------------------------------------- cnf(118,plain, (~P5(x1181,a1)), inference(equality_inference,[],[63])). cnf(120,plain, (~P5(x1201,x1202)+P5(x1201,f16(x1203,x1202))), inference(equality_inference,[],[85])). cnf(121,plain, (~P5(x1211,x1212)+P5(x1211,f16(x1212,x1213))), inference(equality_inference,[],[86])). cnf(122,plain, (~P5(x1221,f12(x1222,x1223))+P5(x1221,x1222)), inference(equality_inference,[],[87])). cnf(123,plain, (~P5(x1231,x1232)+~P5(x1231,f12(x1233,x1232))), inference(equality_inference,[],[92])). cnf(124,plain, (~P5(x1241,x1242)+P5(x1241,f12(x1242,x1243))+P5(x1241,x1243)), inference(equality_inference,[],[93])). cnf(125,plain, (~P5(x1251,f16(x1252,x1253))+P5(x1251,x1253)+P5(x1251,x1252)), inference(equality_inference,[],[94])). cnf(126,plain, (~P5(x1261,f12(x1262,f12(x1262,x1263)))+P5(x1261,x1263)), inference(equality_inference,[],[100])). cnf(127,plain, (~P5(x1271,x1272)+~P5(x1271,x1273)+P5(x1271,f12(x1273,f12(x1273,x1272)))), inference(equality_inference,[],[102])). cnf(128,plain, (E(x1281,f16(x1281,x1281))), inference(scs_inference,[],[44,2])). cnf(131,plain, (~P5(x1311,f12(a1,x1312))), inference(scs_inference,[],[118,44,2,126,122])). cnf(133,plain, (P2(x1331,a1)), inference(scs_inference,[],[118,44,2,126,122,104])). cnf(138,plain, (~P2(a6,a3)), inference(scs_inference,[],[118,55,44,39,2,126,122,104,95,71])). cnf(142,plain, (~P5(x1421,a2)), inference(scs_inference,[],[118,55,36,44,39,46,2,126,122,104,95,71,69,65])). cnf(147,plain, (E(f16(x1471,x1471),x1471)), inference(rename_variables,[],[44])). cnf(149,plain, (~E(a1,a6)), inference(scs_inference,[],[118,55,36,44,39,46,2,126,122,104,95,71,69,65,64,63,32])). cnf(150,plain, (~E(a5,a3)), inference(scs_inference,[],[118,38,55,36,44,39,46,2,126,122,104,95,71,69,65,64,63,32,31])). cnf(155,plain, (E(f16(x1551,x1551),x1551)), inference(rename_variables,[],[44])). cnf(156,plain, (~E(a1,f16(a6,a6))), inference(scs_inference,[],[43,40,118,38,55,36,54,44,147,155,39,46,2,126,122,104,95,71,69,65,64,63,32,31,30,29,26,3])). cnf(157,plain, (E(f16(x1571,x1571),x1571)), inference(rename_variables,[],[44])). cnf(165,plain, (~P3(a6,a1)), inference(scs_inference,[],[37,43,40,118,38,55,36,54,44,147,155,47,39,46,2,126,122,104,95,71,69,65,64,63,32,31,30,29,26,3,125,97,84,77])). cnf(166,plain, (P3(a1,x1661)), inference(rename_variables,[],[40])). cnf(174,plain, (E(f16(x1741,x1741),x1741)), inference(rename_variables,[],[44])). cnf(175,plain, (~P5(x1751,a1)), inference(rename_variables,[],[118])). cnf(178,plain, (E(f16(x1781,x1781),x1781)), inference(rename_variables,[],[44])). cnf(180,plain, (P5(f9(a6,a6,a1),a6)), inference(scs_inference,[],[37,43,40,166,118,175,38,55,35,36,54,44,147,155,157,174,47,39,46,2,126,122,104,95,71,69,65,64,63,32,31,30,29,26,3,125,97,84,77,73,58,100,87,112])). cnf(181,plain, (~P5(x1811,a1)), inference(rename_variables,[],[118])). cnf(184,plain, (E(f16(x1841,x1841),x1841)), inference(rename_variables,[],[44])). cnf(186,plain, (~P5(x1861,f16(f16(a1,a1),f16(a1,a1)))), inference(scs_inference,[],[37,43,40,166,118,175,181,38,55,35,36,54,44,147,155,157,174,178,184,47,39,46,2,126,122,104,95,71,69,65,64,63,32,31,30,29,26,3,125,97,84,77,73,58,100,87,112,102,94])). cnf(187,plain, (E(f16(x1871,x1871),x1871)), inference(rename_variables,[],[44])). cnf(190,plain, (E(f16(x1901,x1901),x1901)), inference(rename_variables,[],[44])). cnf(191,plain, (~P5(x1911,a1)), inference(rename_variables,[],[118])). cnf(225,plain, (E(f12(a5,f12(a5,a6)),a1)), inference(scs_inference,[],[37,43,40,166,118,175,181,38,55,35,36,54,44,147,155,157,174,178,184,187,190,47,39,46,2,126,122,104,95,71,69,65,64,63,32,31,30,29,26,3,125,97,84,77,73,58,100,87,112,102,94,93,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,107,106,99,90,89,88])). cnf(237,plain, (~P4(a5,a3)), inference(scs_inference,[],[37,43,40,166,118,175,181,38,55,35,36,54,44,147,155,157,174,178,184,187,190,47,39,46,2,126,122,104,95,71,69,65,64,63,32,31,30,29,26,3,125,97,84,77,73,58,100,87,112,102,94,93,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,107,106,99,90,89,88,82,81,80,79,78,76])). cnf(245,plain, (E(f12(a3,a5),a1)), inference(scs_inference,[],[37,43,40,166,118,175,181,38,55,35,36,54,44,147,155,157,174,178,184,187,190,47,39,46,2,126,122,104,95,71,69,65,64,63,32,31,30,29,26,3,125,97,84,77,73,58,100,87,112,102,94,93,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,107,106,99,90,89,88,82,81,80,79,78,76,75,74,72,67])). cnf(254,plain, (E(f16(x2541,x2541),x2541)), inference(rename_variables,[],[44])). cnf(255,plain, (~P5(f15(a2,f16(a1,a1)),f16(a2,a2))), inference(scs_inference,[],[37,43,56,40,166,118,175,181,38,55,35,36,54,44,147,155,157,174,178,184,187,190,254,45,47,39,46,2,126,122,104,95,71,69,65,64,63,32,31,30,29,26,3,125,97,84,77,73,58,100,87,112,102,94,93,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,107,106,99,90,89,88,82,81,80,79,78,76,75,74,72,67,57,60,34,33,28])). cnf(256,plain, (E(f16(x2561,x2561),x2561)), inference(rename_variables,[],[44])). cnf(259,plain, (P5(f9(a6,a6,a1),f12(a6,f12(a6,a6)))), inference(scs_inference,[],[37,43,56,40,166,118,175,181,38,55,35,36,54,44,147,155,157,174,178,184,187,190,254,256,45,47,39,46,2,126,122,104,95,71,69,65,64,63,32,31,30,29,26,3,125,97,84,77,73,58,100,87,112,102,94,93,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,107,106,99,90,89,88,82,81,80,79,78,76,75,74,72,67,57,60,34,33,28,27,127])). cnf(261,plain, (P5(f9(a6,a6,a1),f12(a6,a1))), inference(scs_inference,[],[37,43,56,40,166,118,175,181,191,38,55,35,36,54,44,147,155,157,174,178,184,187,190,254,256,45,47,39,46,2,126,122,104,95,71,69,65,64,63,32,31,30,29,26,3,125,97,84,77,73,58,100,87,112,102,94,93,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,107,106,99,90,89,88,82,81,80,79,78,76,75,74,72,67,57,60,34,33,28,27,127,124])). cnf(262,plain, (~P5(x2621,a1)), inference(rename_variables,[],[118])). cnf(265,plain, (~P5(x2651,a1)), inference(rename_variables,[],[118])). cnf(269,plain, (~P5(x2691,a1)), inference(rename_variables,[],[118])). cnf(273,plain, (~P5(x2731,a1)), inference(rename_variables,[],[118])). cnf(275,plain, (E(a1,f12(a1,x2751))), inference(scs_inference,[],[37,43,56,40,166,118,175,181,191,262,265,269,273,38,55,35,36,54,44,147,155,157,174,178,184,187,190,254,256,45,47,39,46,2,126,122,104,95,71,69,65,64,63,32,31,30,29,26,3,125,97,84,77,73,58,100,87,112,102,94,93,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,107,106,99,90,89,88,82,81,80,79,78,76,75,74,72,67,57,60,34,33,28,27,127,124,111,110,109,108])). cnf(283,plain, (~P5(f9(a6,a6,a1),a5)), inference(scs_inference,[],[37,43,56,40,166,118,175,181,191,262,265,269,273,38,55,35,36,54,44,147,155,157,174,178,184,187,190,254,256,45,47,39,46,2,126,122,104,95,71,69,65,64,63,32,31,30,29,26,3,125,97,84,77,73,58,100,87,112,102,94,93,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,107,106,99,90,89,88,82,81,80,79,78,76,75,74,72,67,57,60,34,33,28,27,127,124,111,110,109,108,105,98,91])). cnf(313,plain, (P2(a2,x3131)), inference(scs_inference,[],[55,142,261,186,259,62,121,120,123,106,104,95,82])). cnf(314,plain, (~P5(x3141,a2)), inference(rename_variables,[],[142])). cnf(317,plain, (~P5(x3171,a2)), inference(rename_variables,[],[142])). cnf(320,plain, (~P5(x3201,a2)), inference(rename_variables,[],[142])). cnf(322,plain, (~P5(f12(a6,a1),f9(a6,a6,a1))), inference(scs_inference,[],[55,142,314,317,261,186,259,62,121,120,123,106,104,95,82,81,80,74])). cnf(333,plain, (~P5(x3331,a2)), inference(rename_variables,[],[142])). cnf(334,plain, (~P5(x3341,a1)), inference(rename_variables,[],[118])). cnf(337,plain, (~P5(x3371,a2)), inference(rename_variables,[],[142])). cnf(338,plain, (~P5(x3381,a1)), inference(rename_variables,[],[118])). cnf(342,plain, (~P5(x3421,a1)), inference(rename_variables,[],[118])). cnf(350,plain, (~P5(x3501,a1)), inference(rename_variables,[],[118])). cnf(357,plain, (~P5(x3571,a1)), inference(rename_variables,[],[118])). cnf(359,plain, (~P3(a5,a3)), inference(scs_inference,[],[37,48,118,334,338,342,350,38,55,142,314,317,320,333,337,149,150,237,261,186,259,62,121,120,123,106,104,95,82,81,80,74,71,67,63,57,110,109,108,105,98,97,92,91,83,73])). cnf(362,plain, (~P5(x3621,f12(a1,x3622))), inference(rename_variables,[],[131])). cnf(364,plain, (~P5(x3641,a1)), inference(rename_variables,[],[118])). cnf(367,plain, (~P5(x3671,a1)), inference(rename_variables,[],[118])). cnf(371,plain, (~P5(x3711,a1)), inference(rename_variables,[],[118])). cnf(373,plain, (~E(f12(f12(a6,a1),a1),a1)), inference(scs_inference,[],[37,48,118,334,338,342,350,357,364,367,38,55,142,314,317,320,333,337,149,150,237,261,131,186,259,62,121,120,123,106,104,95,82,81,80,74,71,67,63,57,110,109,108,105,98,97,92,91,83,73,112,102,93,69])). cnf(377,plain, (~E(a6,a1)), inference(scs_inference,[],[37,48,118,334,338,342,350,357,364,367,38,55,142,314,317,320,333,337,149,150,165,237,261,131,186,259,62,121,120,123,106,104,95,82,81,80,74,71,67,63,57,110,109,108,105,98,97,92,91,83,73,112,102,93,69,65,60])). cnf(386,plain, (~E(f12(a6,a1),f12(x3861,f12(x3861,a1)))), inference(scs_inference,[],[37,48,40,118,334,338,342,350,357,364,367,371,38,55,142,314,317,320,333,337,149,150,165,237,261,131,255,156,186,259,62,121,120,123,106,104,95,82,81,80,74,71,67,63,57,110,109,108,105,98,97,92,91,83,73,112,102,93,69,65,60,125,84,77,100])). cnf(387,plain, (~P5(x3871,a1)), inference(rename_variables,[],[118])). cnf(389,plain, (~E(f12(a6,a1),f12(a1,x3891))), inference(scs_inference,[],[37,48,40,118,334,338,342,350,357,364,367,371,387,38,55,142,314,317,320,333,337,149,150,165,237,261,131,255,156,186,259,62,121,120,123,106,104,95,82,81,80,74,71,67,63,57,110,109,108,105,98,97,92,91,83,73,112,102,93,69,65,60,125,84,77,100,87])). cnf(390,plain, (~P5(x3901,a1)), inference(rename_variables,[],[118])). cnf(392,plain, (~E(f12(a6,a1),f16(a1,a1))), inference(scs_inference,[],[37,48,40,118,334,338,342,350,357,364,367,371,387,390,38,55,142,314,317,320,333,337,149,150,165,237,261,131,255,156,186,259,62,121,120,123,106,104,95,82,81,80,74,71,67,63,57,110,109,108,105,98,97,92,91,83,73,112,102,93,69,65,60,125,84,77,100,87,94])). cnf(398,plain, (~P4(x3981,f16(x3981,a1))), inference(scs_inference,[],[37,48,41,56,40,118,334,338,342,350,357,364,367,371,387,390,38,55,142,314,317,320,333,337,149,150,165,237,261,131,255,156,186,259,62,121,120,123,106,104,95,82,81,80,74,71,67,63,57,110,109,108,105,98,97,92,91,83,73,112,102,93,69,65,60,125,84,77,100,87,94,5,2,34])). cnf(399,plain, (E(f16(x3991,a1),x3991)), inference(rename_variables,[],[41])). cnf(400,plain, (~P2(a3,f16(a6,a1))), inference(scs_inference,[],[37,48,41,399,56,40,118,334,338,342,350,357,364,367,371,387,390,38,55,142,314,317,320,333,337,149,150,165,237,261,131,255,156,186,259,62,121,120,123,106,104,95,82,81,80,74,71,67,63,57,110,109,108,105,98,97,92,91,83,73,112,102,93,69,65,60,125,84,77,100,87,94,5,2,34,32])). cnf(401,plain, (E(f16(x4011,a1),x4011)), inference(rename_variables,[],[41])). cnf(403,plain, (E(f16(x4031,a1),x4031)), inference(rename_variables,[],[41])). cnf(405,plain, (E(f16(x4051,a1),x4051)), inference(rename_variables,[],[41])). cnf(408,plain, (E(x4081,f16(x4081,x4081))), inference(rename_variables,[],[128])). cnf(410,plain, (E(f16(x4101,a1),x4101)), inference(rename_variables,[],[41])). cnf(413,plain, (~P5(x4131,f12(f16(a1,x4132),x4132))), inference(scs_inference,[],[37,48,41,399,401,403,405,410,51,56,35,40,118,334,338,342,350,357,364,367,371,387,390,54,38,55,142,314,317,320,333,337,149,150,165,237,128,261,131,362,255,156,186,259,62,121,120,123,106,104,95,82,81,80,74,71,67,63,57,110,109,108,105,98,97,92,91,83,73,112,102,93,69,65,60,125,84,77,100,87,94,5,2,34,32,31,30,26,3,33,29,28])). cnf(415,plain, (P5(f16(f9(a6,a6,a1),f9(a6,a6,a1)),f12(a6,a1))), inference(scs_inference,[],[37,48,41,399,401,403,405,410,51,56,35,40,118,334,338,342,350,357,364,367,371,387,390,54,38,55,142,314,317,320,333,337,149,150,165,237,128,408,261,131,362,255,156,186,259,62,121,120,123,106,104,95,82,81,80,74,71,67,63,57,110,109,108,105,98,97,92,91,83,73,112,102,93,69,65,60,125,84,77,100,87,94,5,2,34,32,31,30,26,3,33,29,28,27])). cnf(421,plain, (P5(f4(a3,a6),a6)), inference(scs_inference,[],[37,48,41,399,401,403,405,410,51,56,35,40,118,334,338,342,350,357,364,367,371,387,390,54,38,55,142,314,317,320,333,337,149,150,165,237,128,408,261,131,362,255,156,186,259,62,121,120,123,106,104,95,82,81,80,74,71,67,63,57,110,109,108,105,98,97,92,91,83,73,112,102,93,69,65,60,125,84,77,100,87,94,5,2,34,32,31,30,26,3,33,29,28,27,70,61,126])). cnf(423,plain, (P5(f4(a3,a6),a3)), inference(scs_inference,[],[37,48,41,399,401,403,405,410,51,56,35,40,118,334,338,342,350,357,364,367,371,387,390,54,38,55,142,314,317,320,333,337,149,150,165,237,128,408,261,131,362,255,156,186,259,62,121,120,123,106,104,95,82,81,80,74,71,67,63,57,110,109,108,105,98,97,92,91,83,73,112,102,93,69,65,60,125,84,77,100,87,94,5,2,34,32,31,30,26,3,33,29,28,27,70,61,126,122])). cnf(456,plain, (E(f12(x4561,a1),x4561)), inference(rename_variables,[],[42])). cnf(475,plain, (~E(f12(a6,a1),f12(a1,x4751))), inference(rename_variables,[],[389])). cnf(476,plain, (~P5(x4761,a1)), inference(rename_variables,[],[118])). cnf(479,plain, (~P5(x4791,a1)), inference(rename_variables,[],[118])). cnf(482,plain, (~P5(x4821,a1)), inference(rename_variables,[],[118])). cnf(491,plain, (~P5(x4911,a1)), inference(rename_variables,[],[118])). cnf(495,plain, (~P5(x4951,a1)), inference(rename_variables,[],[118])). cnf(498,plain, (E(f12(x4981,a1),x4981)), inference(rename_variables,[],[42])). cnf(503,plain, (E(f12(x5031,a1),x5031)), inference(rename_variables,[],[42])). cnf(512,plain, (E(f12(x5121,a1),x5121)), inference(rename_variables,[],[42])). cnf(518,plain, (~P5(x5181,a1)), inference(rename_variables,[],[118])). cnf(521,plain, (~P5(x5211,a1)), inference(rename_variables,[],[118])). cnf(526,plain, (E(x5261,f16(x5261,x5261))), inference(rename_variables,[],[128])). cnf(528,plain, (P3(x5281,x5281)), inference(rename_variables,[],[43])). cnf(530,plain, (E(f12(x5301,a1),x5301)), inference(rename_variables,[],[42])). cnf(532,plain, (E(f12(x5321,a1),x5321)), inference(rename_variables,[],[42])). cnf(544,plain, ($false), inference(scs_inference,[],[37,42,456,498,503,512,530,532,49,52,50,43,528,47,48,118,476,479,482,491,495,518,521,54,38,377,133,313,359,138,180,392,415,322,398,389,475,283,423,245,275,421,400,413,386,225,373,128,526,62,123,106,74,71,67,63,92,83,93,82,81,80,65,60,127,110,109,108,73,126,97,112,94,69,100,77,122,87,124,86,85,5,32,31,30,26,3,2,29,28,27,104,57,91]), ['proof']). % SZS output end Proof
% Version : CSE_E---1.3 % Problem : SEU140+2.p % Proof found % SZS status Theorem for SEU140+2.p % SZS output start Proof fof(t6_boole, axiom, ![X1]:(empty(X1)=>X1=empty_set), file('/home/swjtu/Desktop/dist/problems/SEU140+2.p', t6_boole)). fof(rc1_xboole_0, axiom, ?[X1]:empty(X1), file('/home/swjtu/Desktop/dist/problems/SEU140+2.p', rc1_xboole_0)). fof(d3_xboole_0, axiom, ![X1, X2, X3]:(X3=set_intersection2(X1,X2)<=>![X4]:(in(X4,X3)<=>(in(X4,X1)&in(X4,X2)))), file('/home/swjtu/Desktop/dist/problems/SEU140+2.p', d3_xboole_0)). fof(t48_xboole_1, lemma, ![X1, X2]:set_difference(X1,set_difference(X1,X2))=set_intersection2(X1,X2), file('/home/swjtu/Desktop/dist/problems/SEU140+2.p', t48_xboole_1)). fof(l32_xboole_1, lemma, ![X1, X2]:(set_difference(X1,X2)=empty_set<=>subset(X1,X2)), file('/home/swjtu/Desktop/dist/problems/SEU140+2.p', l32_xboole_1)). fof(t63_xboole_1, conjecture, ![X1, X2, X3]:((subset(X1,X2)&disjoint(X2,X3))=>disjoint(X1,X3)), file('/home/swjtu/Desktop/dist/problems/SEU140+2.p', t63_xboole_1)). fof(t3_boole, axiom, ![X1]:set_difference(X1,empty_set)=X1, file('/home/swjtu/Desktop/dist/problems/SEU140+2.p', t3_boole)). fof(t3_xboole_0, lemma, ![X1, X2]:(~((~(disjoint(X1,X2))&![X3]:~((in(X3,X1)&in(X3,X2)))))&~((?[X3]:(in(X3,X1)&in(X3,X2))&disjoint(X1,X2)))), file('/home/swjtu/Desktop/dist/problems/SEU140+2.p', t3_xboole_0)). fof(c_0_8, plain, ![X126]:(~empty(X126)|X126=empty_set), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[t6_boole])])). fof(c_0_9, plain, empty(esk6_0), inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[rc1_xboole_0])])). fof(c_0_10, plain, ![X34, X35, X36, X37, X38, X39, X40, X41]:((((in(X37,X34)|~in(X37,X36)|X36!=set_intersection2(X34,X35))&(in(X37,X35)|~in(X37,X36)|X36!=set_intersection2(X34,X35)))&(~in(X38,X34)|~in(X38,X35)|in(X38,X36)|X36!=set_intersection2(X34,X35)))&((~in(esk4_3(X39,X40,X41),X41)|(~in(esk4_3(X39,X40,X41),X39)|~in(esk4_3(X39,X40,X41),X40))|X41=set_intersection2(X39,X40))&((in(esk4_3(X39,X40,X41),X39)|in(esk4_3(X39,X40,X41),X41)|X41=set_intersection2(X39,X40))&(in(esk4_3(X39,X40,X41),X40)|in(esk4_3(X39,X40,X41),X41)|X41=set_intersection2(X39,X40))))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[d3_xboole_0])])])])])])). fof(c_0_11, lemma, ![X112, X113]:set_difference(X112,set_difference(X112,X113))=set_intersection2(X112,X113), inference(variable_rename,[status(thm)],[t48_xboole_1])). fof(c_0_12, lemma, ![X63, X64]:((set_difference(X63,X64)!=empty_set|subset(X63,X64))&(~subset(X63,X64)|set_difference(X63,X64)=empty_set)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[l32_xboole_1])])). cnf(c_0_13, plain, (X1=empty_set|~empty(X1)), inference(split_conjunct,[status(thm)],[c_0_8])). cnf(c_0_14, plain, (empty(esk6_0)), inference(split_conjunct,[status(thm)],[c_0_9])). fof(c_0_15, negated_conjecture, ~(![X1, X2, X3]:((subset(X1,X2)&disjoint(X2,X3))=>disjoint(X1,X3))), inference(assume_negation,[status(cth)],[t63_xboole_1])). cnf(c_0_16, plain, (in(X1,X2)|~in(X1,X3)|X3!=set_intersection2(X4,X2)), inference(split_conjunct,[status(thm)],[c_0_10])). cnf(c_0_17, lemma, (set_difference(X1,set_difference(X1,X2))=set_intersection2(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_11])). cnf(c_0_18, lemma, (set_difference(X1,X2)=empty_set|~subset(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_12])). cnf(c_0_19, plain, (empty_set=esk6_0), inference(spm,[status(thm)],[c_0_13, c_0_14])). fof(c_0_20, negated_conjecture, ((subset(esk11_0,esk12_0)&disjoint(esk12_0,esk13_0))&~disjoint(esk11_0,esk13_0)), inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_15])])])). fof(c_0_21, plain, ![X100]:set_difference(X100,empty_set)=X100, inference(variable_rename,[status(thm)],[t3_boole])). fof(c_0_22, lemma, ![X101, X102, X104, X105, X106]:(((in(esk9_2(X101,X102),X101)|disjoint(X101,X102))&(in(esk9_2(X101,X102),X102)|disjoint(X101,X102)))&(~in(X106,X104)|~in(X106,X105)|~disjoint(X104,X105))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[t3_xboole_0])])])])])])])). cnf(c_0_23, plain, (in(X1,X2)|X3!=set_difference(X4,set_difference(X4,X2))|~in(X1,X3)), inference(rw,[status(thm)],[c_0_16, c_0_17])). cnf(c_0_24, lemma, (set_difference(X1,X2)=esk6_0|~subset(X1,X2)), inference(rw,[status(thm)],[c_0_18, c_0_19])). cnf(c_0_25, negated_conjecture, (subset(esk11_0,esk12_0)), inference(split_conjunct,[status(thm)],[c_0_20])). cnf(c_0_26, plain, (set_difference(X1,empty_set)=X1), inference(split_conjunct,[status(thm)],[c_0_21])). cnf(c_0_27, lemma, (~in(X1,X2)|~in(X1,X3)|~disjoint(X2,X3)), inference(split_conjunct,[status(thm)],[c_0_22])). cnf(c_0_28, negated_conjecture, (disjoint(esk12_0,esk13_0)), inference(split_conjunct,[status(thm)],[c_0_20])). cnf(c_0_29, negated_conjecture, (~disjoint(esk11_0,esk13_0)), inference(split_conjunct,[status(thm)],[c_0_20])). cnf(c_0_30, lemma, (in(esk9_2(X1,X2),X2)|disjoint(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_22])). cnf(c_0_31, plain, (in(X1,X2)|~in(X1,set_difference(X3,set_difference(X3,X2)))), inference(er,[status(thm)],[c_0_23])). cnf(c_0_32, negated_conjecture, (set_difference(esk11_0,esk12_0)=esk6_0), inference(spm,[status(thm)],[c_0_24, c_0_25])). cnf(c_0_33, plain, (set_difference(X1,esk6_0)=X1), inference(rw,[status(thm)],[c_0_26, c_0_19])). cnf(c_0_34, lemma, (in(esk9_2(X1,X2),X1)|disjoint(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_22])). cnf(c_0_35, negated_conjecture, (~in(X1,esk13_0)|~in(X1,esk12_0)), inference(spm,[status(thm)],[c_0_27, c_0_28])). cnf(c_0_36, negated_conjecture, (in(esk9_2(esk11_0,esk13_0),esk13_0)), inference(spm,[status(thm)],[c_0_29, c_0_30])). cnf(c_0_37, negated_conjecture, (in(X1,esk12_0)|~in(X1,esk11_0)), inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_31, c_0_32]), c_0_33])). cnf(c_0_38, negated_conjecture, (in(esk9_2(esk11_0,esk13_0),esk11_0)), inference(spm,[status(thm)],[c_0_29, c_0_34])). cnf(c_0_39, negated_conjecture, (~in(esk9_2(esk11_0,esk13_0),esk12_0)), inference(spm,[status(thm)],[c_0_35, c_0_36])). cnf(c_0_40, negated_conjecture, ($false), inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_37, c_0_38]), c_0_39]), ['proof']). % SZS output end Proof % Total time : 0.017105 s
% Version : CSE-F---1.0 % Problem : SEU140+2.p % Proof found % SZS status Theorem for SEU140+2.p % SZS output start Proof [40]P1(a1) [48]P1(a2) [49]~P1(a13) [80]~P2(a3,a6) [81]P2(a5,a6) [82]P3(a3,a5) [45]~P4(x451,x451) [50]P3(x501,x501) [62]P3(a1,x621) [43]E(f16(x431,x431),x431) [55]E(f16(x551,a1),x551) [68]E(f12(x681,a1),x681) [76]E(f12(a1,x761),a1) [44]E(f12(x441,f12(x441,x441)),x441) [59]E(f12(x591,f12(x591,a1)),a1) [3]E(f16(x31,x32),f16(x32,x31)) [64]P3(f12(x641,x642),x641) [85]P3(x851,f16(x851,x852)) [4]E(f12(x41,f12(x41,x42)),f12(x42,f12(x42,x41))) [67]E(f16(x671,f12(x672,x671)),f16(x671,x672)) [73]E(f12(f16(x731,x732),x732),f12(x731,x732)) [72]~P3(x721,a1)+E(x721,a1) [83]~P1(x831)+E(x831,a1) [8]P5(f7(x81),x81)+E(x81,a1) [1]~P5(x12,x11)+~P5(x11,x12) [2]~P4(x22,x21)+~P4(x21,x22) [7]~E(x71,x72)+P3(x71,x72) [9]~P5(x92,x91)+~E(x91,a1) [34]~P4(x341,x342)+~E(x341,x342) [35]~P4(x351,x352)+P3(x351,x352) [51]~P2(x512,x511)+P2(x511,x512) [79]~P3(x792,x791)+~P4(x791,x792) [84]~P1(x841)+~P5(x842,x841) [16]P3(x161,x162)+~P5(f8(x161,x162),x162) [17]P3(x171,x172)+P5(f8(x171,x172),x171) [41]P1(x411)+~P1(f16(x411,x412)) [42]P1(x421)+~P1(f16(x422,x421)) [52]~P3(x521,x522)+E(f16(x521,x522),x522) [65]~P3(x651,x652)+E(f12(x651,x652),a1) [66]P3(x661,x662)+~E(f12(x661,x662),a1) [70]P2(x701,x702)+P5(f14(x701,x702),x702) [71]P2(x711,x712)+P5(f14(x711,x712),x711) [31]P2(x311,x312)+~E(f12(x311,f12(x311,x312)),a1) [32]~P2(x321,x322)+E(f12(x321,f12(x321,x322)),a1) [58]~P3(x581,x582)+E(f12(x581,f12(x581,x582)),x581) [74]~P3(x741,x742)+E(f16(x741,f12(x742,x741)),x742) [78]P2(x781,x782)+P5(f4(x781,x782),f12(x781,f12(x781,x782))) [63]~P3(x631,x633)+P3(f12(x631,x632),f12(x633,x632)) [57]~P3(x571,x573)+P3(f12(x571,f12(x571,x572)),f12(x573,f12(x573,x572))) [77]~P2(x771,x772)+~P5(x773,f12(x771,f12(x771,x772))) [5]~P3(x52,x51)+~P3(x51,x52)+E(x51,x52) [33]P4(x331,x332)+~P3(x331,x332)+E(x331,x332) [86]~P1(x862)+~P1(x861)+E(x861,x862) [60]E(x601,x602)+P5(f15(x601,x602),x602)+P5(f15(x601,x602),x601) [61]E(x611,x612)+~P5(f15(x611,x612),x612)+~P5(f15(x611,x612),x611) [18]~P3(x183,x182)+P5(x181,x182)+~P5(x181,x183) [56]~P3(x561,x563)+P3(x561,x562)+~P3(x563,x562) [69]~P2(x693,x692)+~P5(x691,x692)+~P5(x691,x693) [11]~P5(f9(x112,x113,x111),x111)+~P5(f9(x112,x113,x111),x113)+E(x111,f16(x112,x113)) [12]~P5(f9(x122,x123,x121),x121)+~P5(f9(x122,x123,x121),x122)+E(x121,f16(x122,x123)) [25]P5(f10(x252,x253,x251),x251)+~P5(f10(x252,x253,x251),x253)+E(x251,f12(x252,x253)) [26]P5(f10(x262,x263,x261),x261)+P5(f10(x262,x263,x261),x262)+E(x261,f12(x262,x263)) [87]~P3(x872,x873)+~P3(x871,x873)+P3(f16(x871,x872),x873) [19]P5(f11(x192,x193,x191),x191)+P5(f11(x192,x193,x191),x193)+E(x191,f12(x192,f12(x192,x193))) [20]P5(f11(x202,x203,x201),x201)+P5(f11(x202,x203,x201),x202)+E(x201,f12(x202,f12(x202,x203))) [54]~P3(x541,x543)+~P3(x541,x542)+P3(x541,f12(x542,f12(x542,x543))) [13]~P5(x131,x134)+P5(x131,x132)+~E(x132,f16(x133,x134)) [14]~P5(x141,x143)+P5(x141,x142)+~E(x142,f16(x143,x144)) [29]~P5(x294,x293)+~P5(x294,x291)+~E(x291,f12(x292,x293)) [30]~P5(x301,x303)+P5(x301,x302)+~E(x303,f12(x302,x304)) [23]~P5(x231,x233)+P5(x231,x232)+~E(x233,f12(x234,f12(x234,x232))) [10]P5(f9(x102,x103,x101),x101)+P5(f9(x102,x103,x101),x103)+P5(f9(x102,x103,x101),x102)+E(x101,f16(x102,x103)) [27]P5(f10(x272,x273,x271),x273)+~P5(f10(x272,x273,x271),x271)+~P5(f10(x272,x273,x271),x272)+E(x271,f12(x272,x273)) [21]~P5(f11(x212,x213,x211),x211)+~P5(f11(x212,x213,x211),x213)+~P5(f11(x212,x213,x211),x212)+E(x211,f12(x212,f12(x212,x213))) [15]~P5(x151,x154)+P5(x151,x152)+P5(x151,x153)+~E(x154,f16(x153,x152)) [28]~P5(x281,x284)+P5(x281,x282)+P5(x281,x283)+~E(x282,f12(x284,x283)) [22]~P5(x221,x224)+~P5(x221,x223)+P5(x221,x222)+~E(x222,f12(x223,f12(x223,x224))) [88]E(x881,x881) [89]E(x892,x891)+~E(x891,x892) [90]E(x901,x903)+~E(x901,x902)+~E(x902,x903) [91]~E(x911,x912)+E(f12(x911,x913),f12(x912,x913)) [92]~E(x921,x922)+E(f12(x923,x921),f12(x923,x922)) [93]~E(x931,x932)+E(f16(x931,x933),f16(x932,x933)) [94]~E(x941,x942)+E(f16(x943,x941),f16(x943,x942)) [95]~E(x951,x952)+E(f11(x951,x953,x954),f11(x952,x953,x954)) [96]~E(x961,x962)+E(f11(x963,x961,x964),f11(x963,x962,x964)) [97]~E(x971,x972)+E(f11(x973,x974,x971),f11(x973,x974,x972)) [98]~E(x981,x982)+E(f15(x981,x983),f15(x982,x983)) [99]~E(x991,x992)+E(f15(x993,x991),f15(x993,x992)) [100]~E(x1001,x1002)+E(f8(x1001,x1003),f8(x1002,x1003)) [101]~E(x1011,x1012)+E(f8(x1013,x1011),f8(x1013,x1012)) [102]~E(x1021,x1022)+E(f10(x1021,x1023,x1024),f10(x1022,x1023,x1024)) [103]~E(x1031,x1032)+E(f10(x1033,x1031,x1034),f10(x1033,x1032,x1034)) [104]~E(x1041,x1042)+E(f10(x1043,x1044,x1041),f10(x1043,x1044,x1042)) [105]~E(x1051,x1052)+E(f9(x1051,x1053,x1054),f9(x1052,x1053,x1054)) [106]~E(x1061,x1062)+E(f9(x1063,x1061,x1064),f9(x1063,x1062,x1064)) [107]~E(x1071,x1072)+E(f9(x1073,x1074,x1071),f9(x1073,x1074,x1072)) [108]~E(x1081,x1082)+E(f14(x1081,x1083),f14(x1082,x1083)) [109]~E(x1091,x1092)+E(f14(x1093,x1091),f14(x1093,x1092)) [110]~E(x1101,x1102)+E(f4(x1101,x1103),f4(x1102,x1103)) [111]~E(x1111,x1112)+E(f4(x1113,x1111),f4(x1113,x1112)) [112]~E(x1121,x1122)+E(f7(x1121),f7(x1122)) [113]~P1(x1131)+P1(x1132)+~E(x1131,x1132) [114]P5(x1142,x1143)+~E(x1141,x1142)+~P5(x1141,x1143) [115]P5(x1153,x1152)+~E(x1151,x1152)+~P5(x1153,x1151) [116]P3(x1162,x1163)+~E(x1161,x1162)+~P3(x1161,x1163) [117]P3(x1173,x1172)+~E(x1171,x1172)+~P3(x1173,x1171) [118]P2(x1182,x1183)+~E(x1181,x1182)+~P2(x1181,x1183) [119]P2(x1193,x1192)+~E(x1191,x1192)+~P2(x1193,x1191) [120]P4(x1202,x1203)+~E(x1201,x1202)+~P4(x1201,x1203) [121]P4(x1213,x1212)+~E(x1211,x1212)+~P4(x1213,x1211) cnf(123,plain, (~P5(x1231,a1)), inference(equality_inference,[],[9])). cnf(124,plain, (~P5(x1241,x1242)+P5(x1241,f16(x1243,x1242))), inference(equality_inference,[],[13])). cnf(125,plain, (~P5(x1251,x1252)+P5(x1251,f16(x1252,x1253))), inference(equality_inference,[],[14])). cnf(126,plain, (~P5(x1261,f16(x1262,x1263))+P5(x1261,x1263)+P5(x1261,x1262)), inference(equality_inference,[],[15])). cnf(128,plain, (~P5(x1281,f12(x1282,f12(x1282,x1283)))+P5(x1281,x1283)), inference(equality_inference,[],[23])). cnf(130,plain, (~P5(x1301,x1302)+~P5(x1301,f12(x1303,x1302))), inference(equality_inference,[],[29])). cnf(131,plain, (~P5(x1311,f12(x1312,x1313))+P5(x1311,x1312)), inference(equality_inference,[],[30])). cnf(139,plain, (~P5(x1391,a1)), inference(rename_variables,[],[123])). cnf(142,plain, (E(f16(x1421,x1421),x1421)), inference(rename_variables,[],[43])). cnf(168,plain, (E(f16(x1681,a1),x1681)), inference(rename_variables,[],[55])). cnf(174,plain, (~P5(x1741,a1)), inference(rename_variables,[],[123])). cnf(181,plain, (E(f16(x1811,x1811),x1811)), inference(rename_variables,[],[43])). cnf(183,plain, (E(f16(x1831,x1831),x1831)), inference(rename_variables,[],[43])). cnf(185,plain, (E(f16(x1851,x1851),x1851)), inference(rename_variables,[],[43])). cnf(243,plain, (P5(f14(a3,a6),a5)), inference(scs_inference,[],[80,81,82,123,139,174,43,142,181,183,185,55,168,76,59,40,48,49,64,85,51,31,70,9,34,66,84,128,131,89,17,5,56,116,117,118,119,23,30,60,86,126,90,113,15,32,52,57,58,63,65,71,74,77,78,79,7,8,83,130,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,41,42,18])). cnf(245,plain, (~P3(a5,a3)), inference(scs_inference,[],[80,81,82,123,139,174,43,142,181,183,185,55,168,76,59,40,48,49,64,85,51,31,70,9,34,66,84,128,131,89,17,5,56,116,117,118,119,23,30,60,86,126,90,113,15,32,52,57,58,63,65,71,74,77,78,79,7,8,83,130,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,41,42,18,33])). cnf(249,plain, (~P5(f14(a3,a6),a6)), inference(scs_inference,[],[80,81,82,123,139,174,43,142,181,183,185,55,168,76,59,40,48,49,64,85,51,31,70,9,34,66,84,128,131,89,17,5,56,116,117,118,119,23,30,60,86,126,90,113,15,32,52,57,58,63,65,71,74,77,78,79,7,8,83,130,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,41,42,18,33,54,69])). cnf(295,plain, ($false), inference(scs_inference,[],[80,81,245,249,243,16,124,125,51,1,31,65,70]), ['proof']). % SZS output end Proof % Total time : 0.029673 s
% SZS status Theorem for SET014^4 % SZS output start Proof for SET014^4 (proof (let ((_let_1 (not (forall ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (A (-> $$unsorted Bool))) (=> (and ((subset X) A) ((subset Y) A)) ((subset ((union X) Y)) A)))))) (let ((_let_2 (= misses (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool))) (not (exists ((U $$unsorted)) (and (X U) (Y U)))))))) (let ((_let_3 (= meets (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool))) (exists ((U $$unsorted)) (and (X U) (Y U))))))) (let ((_let_4 (= subset (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool))) (forall ((U $$unsorted)) (=> (X U) (Y U))))))) (let ((_let_5 (= disjoint (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool))) (= ((intersection X) Y) emptyset))))) (let ((_let_6 (= complement (lambda ((X (-> $$unsorted Bool)) (U $$unsorted)) (not (X U)))))) (let ((_let_7 (= setminus (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (U $$unsorted)) (and (X U) (not (Y U))))))) (let ((_let_8 (= intersection (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (U $$unsorted)) (and (X U) (Y U)))))) (let ((_let_9 (= excl_union (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (U $$unsorted)) (let ((_let_1 (Y U))) (let ((_let_2 (X U))) (or (and _let_2 (not _let_1)) (and (not _let_2) _let_1)))))))) (let ((_let_10 (= union (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (U $$unsorted)) (or (X U) (Y U)))))) (let ((_let_11 (= singleton (lambda ((X $$unsorted) (U $$unsorted)) (= U X))))) (let ((_let_12 (= unord_pair (lambda ((X $$unsorted) (Y $$unsorted) (U $$unsorted)) (or (= U X) (= U Y)))))) (let ((_let_13 (= emptyset (lambda ((X $$unsorted)) false)))) (let ((_let_14 (= is_a (lambda ((X $$unsorted) (M (-> $$unsorted Bool))) (M X))))) (let ((_let_15 (= in (lambda ((X $$unsorted) (M (-> $$unsorted Bool))) (M X))))) (let ((_let_16 (forall ((BOUND_VARIABLE_596 $$unsorted)) (or (not (ho_1 skv_3 BOUND_VARIABLE_596)) (ho_1 skv_4 BOUND_VARIABLE_596))))) (let ((_let_17 (ho_1 skv_4 skv_5))) (let ((_let_18 (ho_1 skv_3 skv_5))) (let ((_let_19 (not _let_18))) (let ((_let_20 (or _let_19 _let_17))) (let ((_let_21 (ho_1 skv_2 skv_5))) (let ((_let_22 (not _let_21))) (let ((_let_23 (and _let_22 _let_19))) (let ((_let_24 (not _let_16))) (let ((_let_25 (forall ((BOUND_VARIABLE_577 $$unsorted)) (or (not (ho_1 skv_2 BOUND_VARIABLE_577)) (ho_1 skv_4 BOUND_VARIABLE_577))))) (let ((_let_26 (not _let_25))) (let ((_let_27 (or _let_26 _let_24 _let_23 _let_17))) (let ((_let_28 (forall ((BOUND_VARIABLE_711 |u_(-> $$unsorted Bool)|) (BOUND_VARIABLE_708 |u_(-> $$unsorted Bool)|) (BOUND_VARIABLE_704 |u_(-> $$unsorted Bool)|) (BOUND_VARIABLE_658 $$unsorted)) (or (not (forall ((BOUND_VARIABLE_577 $$unsorted)) (or (not (ho_1 BOUND_VARIABLE_711 BOUND_VARIABLE_577)) (ho_1 BOUND_VARIABLE_704 BOUND_VARIABLE_577)))) (not (forall ((BOUND_VARIABLE_596 $$unsorted)) (or (not (ho_1 BOUND_VARIABLE_708 BOUND_VARIABLE_596)) (ho_1 BOUND_VARIABLE_704 BOUND_VARIABLE_596)))) (and (not (ho_1 BOUND_VARIABLE_711 BOUND_VARIABLE_658)) (not (ho_1 BOUND_VARIABLE_708 BOUND_VARIABLE_658))) (ho_1 BOUND_VARIABLE_704 BOUND_VARIABLE_658))))) (let ((_let_29 (not _let_27))) (let ((_let_30 (not _let_28))) (let ((_let_31 (ASSUME |:args| (_let_15)))) (let ((_let_32 (ASSUME |:args| (_let_14)))) (let ((_let_33 (EQ_RESOLVE (ASSUME |:args| (_let_13)) (MACRO_SR_EQ_INTRO |:args| (_let_13 7 12))))) (let ((_let_34 (EQ_RESOLVE (ASSUME |:args| (_let_12)) (MACRO_SR_EQ_INTRO |:args| (_let_12 7 12))))) (let ((_let_35 (EQ_RESOLVE (ASSUME |:args| (_let_11)) (MACRO_SR_EQ_INTRO |:args| (_let_11 7 12))))) (let ((_let_36 (ASSUME |:args| (_let_10)))) (let ((_let_37 (ASSUME |:args| (_let_9)))) (let ((_let_38 (ASSUME |:args| (_let_8)))) (let ((_let_39 (ASSUME |:args| (_let_7)))) (let ((_let_40 (ASSUME |:args| (_let_6)))) (let ((_let_41 (EQ_RESOLVE (ASSUME |:args| (_let_1)) (TRANS (MACRO_SR_EQ_INTRO |:args| (_let_1 7 12)) (MACRO_SR_EQ_INTRO (EQ_RESOLVE (ASSUME |:args| (_let_2)) (MACRO_SR_EQ_INTRO |:args| (_let_2 7 12))) (EQ_RESOLVE (ASSUME |:args| (_let_3)) (MACRO_SR_EQ_INTRO |:args| (_let_3 7 12))) (EQ_RESOLVE (ASSUME |:args| (_let_4)) (MACRO_SR_EQ_INTRO |:args| (_let_4 7 12))) (EQ_RESOLVE (EQ_RESOLVE (ASSUME |:args| (_let_5)) (MACRO_SR_EQ_INTRO |:args| (_let_5 7 12))) (MACRO_SR_EQ_INTRO _let_40 _let_39 _let_38 _let_37 _let_36 _let_35 _let_34 _let_33 _let_32 _let_31 |:args| ((= disjoint (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool))) (= emptyset ((intersection X) Y)))) 7 12))) _let_40 _let_39 _let_38 _let_37 _let_36 _let_35 _let_34 _let_33 _let_32 _let_31 |:args| ((not (forall ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (A (-> $$unsorted Bool))) (or (not ((subset X) A)) (not ((subset Y) A)) ((subset ((union X) Y)) A)))) 7 12)) (PREPROCESS |:args| ((= (not (forall ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (A (-> $$unsorted Bool)) (BOUND_VARIABLE_658 $$unsorted)) (or (not (forall ((BOUND_VARIABLE_577 $$unsorted)) (or (not (X BOUND_VARIABLE_577)) (A BOUND_VARIABLE_577)))) (not (forall ((BOUND_VARIABLE_596 $$unsorted)) (or (not (Y BOUND_VARIABLE_596)) (A BOUND_VARIABLE_596)))) (and (not (X BOUND_VARIABLE_658)) (not (Y BOUND_VARIABLE_658))) (A BOUND_VARIABLE_658)))) _let_30))))))) (let ((_let_42 (20))) (let ((_let_43 (MACRO_RESOLUTION_TRUST (EQ_RESOLVE (IMPLIES_ELIM (SCOPE (SKOLEMIZE _let_41) |:args| (_let_30))) (CONG (MACRO_SR_PRED_INTRO |:args| ((= (not _let_30) _let_28))) (REFL |:args| (_let_29)) |:args| _let_42)) _let_41 |:args| (_let_29 true _let_28)))) (let ((_let_44 (REFL |:args| (_let_27)))) (let ((_let_45 (not _let_20))) (let ((_let_46 (MACRO_RESOLUTION_TRUST (CNF_OR_NEG |:args| (_let_27 3)) _let_43 |:args| ((not _let_17) true _let_27)))) (let ((_let_47 (or _let_22 _let_17))) (let ((_let_48 (_let_25))) (let ((_let_49 (skv_5))) (let ((_let_50 (_let_23))) (let ((_let_51 (_let_16))) (SCOPE (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE (ASSUME |:args| _let_51) |:args| _let_49) |:args| _let_51)) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS |:args| (_let_20)) |:args| ((or _let_19 _let_17 _let_45))) (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (CNF_AND_NEG |:args| _let_50) (CONG (REFL |:args| _let_50) (MACRO_SR_PRED_INTRO |:args| ((= (not _let_22) _let_21))) (MACRO_SR_PRED_INTRO |:args| ((= (not _let_19) _let_18))) |:args| _let_42)) |:args| ((or _let_21 _let_18 _let_23))) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS |:args| (_let_47)) |:args| ((or _let_22 _let_17 (not _let_47)))) _let_46 (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE (ASSUME |:args| _let_48) |:args| _let_49) |:args| _let_48)) (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (CNF_OR_NEG |:args| (_let_27 0)) (CONG _let_44 (MACRO_SR_PRED_INTRO |:args| ((= (not _let_26) _let_25))) |:args| _let_42)) |:args| ((or _let_25 _let_27))) _let_43 |:args| (_let_25 true _let_27)) |:args| (_let_47 false _let_25)) |:args| (_let_22 true _let_17 false _let_47)) (MACRO_RESOLUTION_TRUST (CNF_OR_NEG |:args| (_let_27 2)) _let_43 |:args| ((not _let_23) true _let_27)) |:args| (_let_18 true _let_21 true _let_23)) _let_46 |:args| (_let_45 false _let_18 true _let_17)) (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (CNF_OR_NEG |:args| (_let_27 1)) (CONG _let_44 (MACRO_SR_PRED_INTRO |:args| ((= (not _let_24) _let_16))) |:args| _let_42)) |:args| ((or _let_16 _let_27))) _let_43 |:args| (_let_16 true _let_27)) |:args| (false true _let_20 false _let_16)) |:args| (_let_15 _let_14 _let_13 _let_12 _let_11 _let_10 _let_9 _let_8 _let_7 _let_6 _let_5 _let_4 _let_3 _let_2 _let_1 (not false)))))))))))))))))))))))))))))))))))))))))))))))))))))) ) % SZS output end Proof for SET014^4
--full-saturate-quant at 10... % SZS status Theorem for SEU140+2 % SZS output start Proof for SEU140+2 (proof (let ((_let_1 (forall ((A $$unsorted) (B $$unsorted)) (= (subset A B) (forall ((C $$unsorted)) (=> (in C A) (in C B))))))) (let ((_let_2 (forall ((A $$unsorted) (B $$unsorted)) (=> (disjoint A B) (disjoint B A))))) (let ((_let_3 (forall ((A $$unsorted) (B $$unsorted)) (let ((_let_1 (disjoint A B))) (and (not (and (not _let_1) (forall ((C $$unsorted)) (not (and (in C A) (in C B)))))) (not (and (exists ((C $$unsorted)) (and (in C A) (in C B))) _let_1))))))) (let ((_let_4 (not (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (and (subset A B) (disjoint B C)) (disjoint A C)))))) (let ((_let_5 (in skv_6 skv_3))) (let ((_let_6 (in skv_6 skv_4))) (let ((_let_7 (not _let_5))) (let ((_let_8 (or _let_7 _let_6))) (let ((_let_9 (in skv_6 skv_5))) (let ((_let_10 (not _let_9))) (let ((_let_11 (or _let_7 _let_10))) (let ((_let_12 (forall ((C $$unsorted)) (or (not (in C skv_3)) (not (in C skv_5)))))) (let ((_let_13 (not _let_11))) (let ((_let_14 (not _let_12))) (let ((_let_15 (disjoint skv_3 skv_5))) (let ((_let_16 (or _let_15 _let_14))) (let ((_let_17 (forall ((BOUND_VARIABLE_902 $$unsorted) (BOUND_VARIABLE_904 $$unsorted)) (or (disjoint BOUND_VARIABLE_902 BOUND_VARIABLE_904) (not (forall ((C $$unsorted)) (or (not (in C BOUND_VARIABLE_902)) (not (in C BOUND_VARIABLE_904))))))))) (let ((_let_18 (EQ_RESOLVE (ASSUME |:args| (_let_3)) (MACRO_SR_EQ_INTRO |:args| (_let_3 7 12))))) (let ((_let_19 (_let_17))) (let ((_let_20 (disjoint skv_4 skv_5))) (let ((_let_21 (not _let_20))) (let ((_let_22 (subset skv_3 skv_4))) (let ((_let_23 (not _let_22))) (let ((_let_24 (or _let_23 _let_21 _let_15))) (let ((_let_25 (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (or (not (subset A B)) (not (disjoint B C)) (disjoint A C))))) (let ((_let_26 (not _let_24))) (let ((_let_27 (EQ_RESOLVE (ASSUME |:args| (_let_4)) (MACRO_SR_EQ_INTRO |:args| (_let_4 7 12))))) (let ((_let_28 (20))) (let ((_let_29 (not _let_25))) (let ((_let_30 (MACRO_RESOLUTION_TRUST (EQ_RESOLVE (IMPLIES_ELIM (SCOPE (SKOLEMIZE _let_27) |:args| (_let_29))) (CONG (MACRO_SR_PRED_INTRO |:args| ((= (not _let_29) _let_25))) (REFL |:args| (_let_26)) |:args| _let_28)) _let_27 |:args| (_let_26 true _let_25)))) (let ((_let_31 (_let_14))) (let ((_let_32 (MACRO_RESOLUTION_TRUST (EQ_RESOLVE (IMPLIES_ELIM (SCOPE (SKOLEMIZE (ASSUME |:args| _let_31)) |:args| _let_31)) (CONG (MACRO_SR_PRED_INTRO |:args| ((= (not _let_14) _let_12))) (REFL |:args| (_let_13)) |:args| _let_28)) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS |:args| (_let_16)) |:args| ((or _let_15 _let_14 (not _let_16)))) (MACRO_RESOLUTION_TRUST (CNF_OR_NEG |:args| (_let_24 2)) _let_30 |:args| ((not _let_15) true _let_24)) (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE (ASSUME |:args| _let_19) |:args| (skv_3 skv_5)) |:args| _let_19)) (AND_ELIM _let_18 |:args| (0)) |:args| (_let_16 false _let_17)) |:args| (_let_14 true _let_15 false _let_16)) |:args| (_let_13 true _let_12)))) (let ((_let_33 (REFL |:args| (_let_11)))) (let ((_let_34 (forall ((C $$unsorted)) (or (not (in C skv_3)) (in C skv_4))))) (let ((_let_35 (= _let_22 _let_34))) (let ((_let_36 (forall ((A $$unsorted) (B $$unsorted)) (= (subset A B) (forall ((C $$unsorted)) (or (not (in C A)) (in C B))))))) (let ((_let_37 (EQ_RESOLVE (ASSUME |:args| (_let_1)) (MACRO_SR_EQ_INTRO |:args| (_let_1 7 12))))) (let ((_let_38 (REFL |:args| (_let_24)))) (let ((_let_39 (_let_34))) (let ((_let_40 (not _let_6))) (let ((_let_41 (disjoint skv_5 skv_4))) (let ((_let_42 (not _let_41))) (let ((_let_43 (or _let_42 _let_10 _let_40))) (let ((_let_44 (forall ((BOUND_VARIABLE_917 $$unsorted) (BOUND_VARIABLE_919 $$unsorted) (BOUND_VARIABLE_933 $$unsorted)) (or (not (disjoint BOUND_VARIABLE_917 BOUND_VARIABLE_919)) (not (in BOUND_VARIABLE_933 BOUND_VARIABLE_917)) (not (in BOUND_VARIABLE_933 BOUND_VARIABLE_919)))))) (let ((_let_45 (_let_44))) (let ((_let_46 (or _let_21 _let_41))) (let ((_let_47 (forall ((A $$unsorted) (B $$unsorted)) (or (not (disjoint A B)) (disjoint B A))))) (let ((_let_48 (EQ_RESOLVE (ASSUME |:args| (_let_2)) (MACRO_SR_EQ_INTRO |:args| (_let_2 7 12))))) (SCOPE (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS |:args| (_let_8)) |:args| ((or _let_7 _let_6 (not _let_8)))) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS |:args| (_let_43)) |:args| ((or _let_42 _let_10 _let_40 (not _let_43)))) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS |:args| (_let_46)) |:args| ((or _let_21 _let_41 (not _let_46)))) (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (CNF_OR_NEG |:args| (_let_24 1)) (CONG _let_38 (MACRO_SR_PRED_INTRO |:args| ((= (not _let_21) _let_20))) |:args| _let_28)) |:args| ((or _let_20 _let_24))) _let_30 |:args| (_let_20 true _let_24)) (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE _let_48 |:args| (skv_4 skv_5)) |:args| (_let_47))) _let_48 |:args| (_let_46 false _let_47)) |:args| (_let_41 false _let_20 false _let_46)) (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (CNF_OR_NEG |:args| (_let_11 1)) (CONG _let_33 (MACRO_SR_PRED_INTRO |:args| ((= (not _let_10) _let_9))) |:args| _let_28)) |:args| ((or _let_9 _let_11))) _let_32 |:args| (_let_9 true _let_11)) (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE (ASSUME |:args| _let_45) |:args| (skv_5 skv_4 skv_6)) |:args| _let_45)) (AND_ELIM _let_18 |:args| (1)) |:args| (_let_43 false _let_44)) |:args| (_let_40 false _let_41 false _let_9 false _let_43)) (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE (ASSUME |:args| _let_39) |:args| (skv_6)) |:args| _let_39)) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_EQUIV_POS1 |:args| (_let_35)) |:args| ((or _let_23 _let_34 (not _let_35)))) (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (CNF_OR_NEG |:args| (_let_24 0)) (CONG _let_38 (MACRO_SR_PRED_INTRO |:args| ((= (not _let_23) _let_22))) |:args| _let_28)) |:args| ((or _let_22 _let_24))) _let_30 |:args| (_let_22 true _let_24)) (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE _let_37 |:args| (skv_3 skv_4)) |:args| (_let_36))) _let_37 |:args| (_let_35 false _let_36)) |:args| (_let_34 false _let_22 false _let_35)) |:args| (_let_8 false _let_34)) (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (CNF_OR_NEG |:args| (_let_11 0)) (CONG _let_33 (MACRO_SR_PRED_INTRO |:args| ((= (not _let_7) _let_5))) |:args| _let_28)) |:args| ((or _let_5 _let_11))) _let_32 |:args| (_let_5 true _let_11)) |:args| (false true _let_6 false _let_8 false _let_5)) |:args| ((forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (and (subset A B) (subset C B)) (subset (set_union2 A C) B))) (forall ((A $$unsorted) (B $$unsorted)) (not (and (empty A) (not (= A B)) (empty B)))) _let_4 (forall ((A $$unsorted) (B $$unsorted)) (not (and (in A B) (empty B)))) (forall ((A $$unsorted) (B $$unsorted)) (= (set_difference A (set_difference A B)) (set_intersection2 A B))) (forall ((A $$unsorted)) (=> (empty A) (= A empty_set))) (forall ((A $$unsorted) (B $$unsorted)) (=> (subset A B) (= B (set_union2 A (set_difference B A))))) (forall ((A $$unsorted) (B $$unsorted)) (not (and (subset A B) (proper_subset B A)))) (forall ((A $$unsorted)) (=> (subset A empty_set) (= A empty_set))) _let_3 (forall ((A $$unsorted)) (= (set_difference A empty_set) A)) (forall ((A $$unsorted) (B $$unsorted)) (= (= (set_difference A B) empty_set) (subset A B))) (not false) (forall ((A $$unsorted) (B $$unsorted)) (= (set_difference (set_union2 A B) B) (set_difference A B))) (forall ((A $$unsorted) (B $$unsorted)) (subset (set_difference A B) A)) (forall ((A $$unsorted) (B $$unsorted)) (=> (forall ((C $$unsorted)) (= (in C A) (in C B))) (= A B))) (forall ((A $$unsorted)) (= (set_intersection2 A empty_set) empty_set)) (forall ((A $$unsorted)) (= (set_difference empty_set A) empty_set)) (forall ((A $$unsorted) (B $$unsorted)) (=> (subset A B) (= (set_intersection2 A B) A))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (subset A B) (subset (set_intersection2 A C) (set_intersection2 B C)))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (and (subset A B) (subset B C)) (subset A C))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (and (subset A B) (subset A C)) (subset A (set_intersection2 B C)))) (forall ((A $$unsorted) (B $$unsorted)) (subset (set_intersection2 A B) A)) (forall ((A $$unsorted) (B $$unsorted)) (=> (subset A B) (= (set_union2 A B) B))) (forall ((A $$unsorted) (B $$unsorted)) (subset A (set_union2 A B))) _let_2 (forall ((A $$unsorted) (B $$unsorted)) (= (set_union2 A (set_difference B A)) (set_union2 A B))) (forall ((A $$unsorted) (B $$unsorted)) (subset A A)) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (subset A B) (subset (set_difference A C) (set_difference B C)))) (forall ((A $$unsorted)) (= (set_union2 A empty_set) A)) (forall ((A $$unsorted) (B $$unsorted)) (not (proper_subset A A))) (forall ((A $$unsorted) (B $$unsorted)) (= (set_intersection2 A A) A)) (forall ((A $$unsorted) (B $$unsorted)) (= (set_union2 A A) A)) (forall ((A $$unsorted) (B $$unsorted)) (=> (not (empty A)) (not (empty (set_union2 B A))))) (forall ((A $$unsorted) (B $$unsorted)) (=> (not (empty A)) (not (empty (set_union2 A B))))) (empty empty_set) (forall ((A $$unsorted) (B $$unsorted)) (= (proper_subset A B) (and (subset A B) (not (= A B))))) (forall ((A $$unsorted) (B $$unsorted)) (= (= (set_difference A B) empty_set) (subset A B))) (forall ((A $$unsorted) (B $$unsorted)) (= (disjoint A B) (= (set_intersection2 A B) empty_set))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (= (= C (set_difference A B)) (forall ((D $$unsorted)) (= (in D C) (and (in D A) (not (in D B))))))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (= (= C (set_intersection2 A B)) (forall ((D $$unsorted)) (= (in D C) (and (in D A) (in D B)))))) _let_1 (exists ((A $$unsorted)) (empty A)) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (= (= C (set_union2 A B)) (forall ((D $$unsorted)) (= (in D C) (or (in D A) (in D B)))))) (forall ((A $$unsorted)) (= (= A empty_set) (forall ((B $$unsorted)) (not (in B A))))) (forall ((A $$unsorted) (B $$unsorted)) (= (= A B) (and (subset A B) (subset B A)))) true (forall ((A $$unsorted) (B $$unsorted)) (= (set_intersection2 A B) (set_intersection2 B A))) (forall ((A $$unsorted) (B $$unsorted)) (= (set_union2 A B) (set_union2 B A))) (exists ((A $$unsorted)) (not (empty A))) (forall ((A $$unsorted) (B $$unsorted)) (=> (proper_subset A B) (not (proper_subset B A)))) (forall ((A $$unsorted) (B $$unsorted)) (let ((_let_1 (disjoint A B))) (and (not (and (not _let_1) (forall ((C $$unsorted)) (not (in C (set_intersection2 A B)))))) (not (and (exists ((C $$unsorted)) (in C (set_intersection2 A B))) _let_1))))) (forall ((A $$unsorted)) (subset empty_set A)) (forall ((A $$unsorted) (B $$unsorted)) (=> (in A B) (not (in B A)))))))))))))))))))))))))))))))))))))))))))))))))))))) ) % SZS output end Proof for SEU140+2
% SZS status CounterSatisfiable for NLP042+1 % SZS output start FiniteModel for NLP042+1 ( ; cardinality of $$unsorted is 4 ; rep: (as @uc_$$unsorted_0 $$unsorted) ; rep: (as @uc_$$unsorted_1 $$unsorted) ; rep: (as @uc_$$unsorted_2 $$unsorted) ; rep: (as @uc_$$unsorted_3 $$unsorted) (define-fun woman ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool (and (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8019) (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8020))) (define-fun female ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool (and (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8019) (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8020))) (define-fun human_person ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool (and (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8019) (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8020))) (define-fun animate ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool (and (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8019) (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8020))) (define-fun human ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool (and (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8019) (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8020))) (define-fun organism ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool (and (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8019) (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8020))) (define-fun living ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool (and (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8019) (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8020))) (define-fun impartial ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool true) (define-fun entity (($x1 $$unsorted) ($x2 $$unsorted)) Bool (or (and (= (as @uc_$$unsorted_3 $$unsorted) $x1) (= (as @uc_$$unsorted_1 $$unsorted) $x2)) (and (= (as @uc_$$unsorted_3 $$unsorted) $x1) (= (as @uc_$$unsorted_3 $$unsorted) $x2)))) (define-fun mia_forename ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool (and (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8019) (= (as @uc_$$unsorted_2 $$unsorted) BOUND_VARIABLE_8020))) (define-fun forename ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool (and (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8019) (= (as @uc_$$unsorted_2 $$unsorted) BOUND_VARIABLE_8020))) (define-fun abstraction ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool (and (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8019) (= (as @uc_$$unsorted_2 $$unsorted) BOUND_VARIABLE_8020))) (define-fun unisex (($x1 $$unsorted) ($x2 $$unsorted)) Bool (or (and (= (as @uc_$$unsorted_3 $$unsorted) $x1) (= (as @uc_$$unsorted_0 $$unsorted) $x2)) (and (= (as @uc_$$unsorted_3 $$unsorted) $x1) (= (as @uc_$$unsorted_2 $$unsorted) $x2)) (and (= (as @uc_$$unsorted_3 $$unsorted) $x1) (= (as @uc_$$unsorted_1 $$unsorted) $x2)))) (define-fun general ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool (and (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8019) (= (as @uc_$$unsorted_2 $$unsorted) BOUND_VARIABLE_8020))) (define-fun nonhuman ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool (and (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8019) (= (as @uc_$$unsorted_2 $$unsorted) BOUND_VARIABLE_8020))) (define-fun thing ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool true) (define-fun relation ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool (and (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8019) (= (as @uc_$$unsorted_2 $$unsorted) BOUND_VARIABLE_8020))) (define-fun relname ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool (and (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8019) (= (as @uc_$$unsorted_2 $$unsorted) BOUND_VARIABLE_8020))) (define-fun object ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool (and (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8019) (= (as @uc_$$unsorted_1 $$unsorted) BOUND_VARIABLE_8020))) (define-fun nonliving ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool (and (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8019) (= (as @uc_$$unsorted_1 $$unsorted) BOUND_VARIABLE_8020))) (define-fun existent (($x1 $$unsorted) ($x2 $$unsorted)) Bool (or (and (= (as @uc_$$unsorted_3 $$unsorted) $x1) (= (as @uc_$$unsorted_1 $$unsorted) $x2)) (and (= (as @uc_$$unsorted_3 $$unsorted) $x1) (= (as @uc_$$unsorted_3 $$unsorted) $x2)))) (define-fun specific (($x1 $$unsorted) ($x2 $$unsorted)) Bool (or (and (= (as @uc_$$unsorted_3 $$unsorted) $x1) (= (as @uc_$$unsorted_1 $$unsorted) $x2)) (and (= (as @uc_$$unsorted_3 $$unsorted) $x1) (= (as @uc_$$unsorted_0 $$unsorted) $x2)) (and (= (as @uc_$$unsorted_3 $$unsorted) $x1) (= (as @uc_$$unsorted_3 $$unsorted) $x2)))) (define-fun substance_matter ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool (and (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8019) (= (as @uc_$$unsorted_1 $$unsorted) BOUND_VARIABLE_8020))) (define-fun food ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool (and (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8019) (= (as @uc_$$unsorted_1 $$unsorted) BOUND_VARIABLE_8020))) (define-fun beverage ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool (and (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8019) (= (as @uc_$$unsorted_1 $$unsorted) BOUND_VARIABLE_8020))) (define-fun shake_beverage ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool (and (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8019) (= (as @uc_$$unsorted_1 $$unsorted) BOUND_VARIABLE_8020))) (define-fun order ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool (and (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8019) (= (as @uc_$$unsorted_0 $$unsorted) BOUND_VARIABLE_8020))) (define-fun event ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool (and (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8019) (= (as @uc_$$unsorted_0 $$unsorted) BOUND_VARIABLE_8020))) (define-fun eventuality ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool (and (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8019) (= (as @uc_$$unsorted_0 $$unsorted) BOUND_VARIABLE_8020))) (define-fun nonexistent ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool (and (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8019) (= (as @uc_$$unsorted_0 $$unsorted) BOUND_VARIABLE_8020))) (define-fun singleton ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool true) (define-fun act ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool (and (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8019) (= (as @uc_$$unsorted_0 $$unsorted) BOUND_VARIABLE_8020))) (define-fun of ((BOUND_VARIABLE_8156 $$unsorted) (BOUND_VARIABLE_8157 $$unsorted) (BOUND_VARIABLE_8158 $$unsorted)) Bool true) (define-fun nonreflexive ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool (and (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8019) (= (as @uc_$$unsorted_0 $$unsorted) BOUND_VARIABLE_8020))) (define-fun agent (($x1 $$unsorted) ($x2 $$unsorted) ($x3 $$unsorted)) Bool (and (not (and (= (as @uc_$$unsorted_3 $$unsorted) $x1) (= (as @uc_$$unsorted_0 $$unsorted) $x2) (= (as @uc_$$unsorted_1 $$unsorted) $x3))) (not (and (= (as @uc_$$unsorted_3 $$unsorted) $x1) (= (as @uc_$$unsorted_0 $$unsorted) $x2) (= (as @uc_$$unsorted_0 $$unsorted) $x3))) (not (and (= (as @uc_$$unsorted_3 $$unsorted) $x1) (= (as @uc_$$unsorted_0 $$unsorted) $x2) (= (as @uc_$$unsorted_2 $$unsorted) $x3))))) (define-fun patient (($x1 $$unsorted) ($x2 $$unsorted) ($x3 $$unsorted)) Bool (not (and (= (as @uc_$$unsorted_3 $$unsorted) $x1) (= (as @uc_$$unsorted_0 $$unsorted) $x2) (= (as @uc_$$unsorted_3 $$unsorted) $x3)))) (define-fun actual_world ((BOUND_VARIABLE_8170 $$unsorted)) Bool true) (define-fun past ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool true) ) % SZS output end FiniteModel for NLP042+1
% SZS status Satisfiable for SWV017+1 % SZS output start FiniteModel for SWV017+1 ( ; cardinality of $$unsorted is 2 ; rep: (as @uc_$$unsorted_0 $$unsorted) ; rep: (as @uc_$$unsorted_1 $$unsorted) (define-fun at () $$unsorted (as @uc_$$unsorted_0 $$unsorted)) (define-fun t () $$unsorted (as @uc_$$unsorted_0 $$unsorted)) (define-fun key ((BOUND_VARIABLE_1701 $$unsorted) (BOUND_VARIABLE_1702 $$unsorted)) $$unsorted (as @uc_$$unsorted_0 $$unsorted)) (define-fun a_holds ((BOUND_VARIABLE_1709 $$unsorted)) Bool true) (define-fun a () $$unsorted (as @uc_$$unsorted_0 $$unsorted)) (define-fun party_of_protocol ((BOUND_VARIABLE_1709 $$unsorted)) Bool true) (define-fun b () $$unsorted (as @uc_$$unsorted_0 $$unsorted)) (define-fun an_a_nonce () $$unsorted (as @uc_$$unsorted_0 $$unsorted)) (define-fun pair ((BOUND_VARIABLE_1701 $$unsorted) (BOUND_VARIABLE_1702 $$unsorted)) $$unsorted (as @uc_$$unsorted_0 $$unsorted)) (define-fun sent ((BOUND_VARIABLE_1720 $$unsorted) (BOUND_VARIABLE_1721 $$unsorted) (BOUND_VARIABLE_1722 $$unsorted)) $$unsorted (as @uc_$$unsorted_0 $$unsorted)) (define-fun message ((BOUND_VARIABLE_1709 $$unsorted)) Bool true) (define-fun a_stored ((BOUND_VARIABLE_1709 $$unsorted)) Bool true) (define-fun quadruple ((BOUND_VARIABLE_1737 $$unsorted) (BOUND_VARIABLE_1738 $$unsorted) (BOUND_VARIABLE_1739 $$unsorted) (BOUND_VARIABLE_1740 $$unsorted)) $$unsorted (as @uc_$$unsorted_0 $$unsorted)) (define-fun encrypt ((BOUND_VARIABLE_1701 $$unsorted) (BOUND_VARIABLE_1702 $$unsorted)) $$unsorted (as @uc_$$unsorted_0 $$unsorted)) (define-fun triple ((BOUND_VARIABLE_1720 $$unsorted) (BOUND_VARIABLE_1721 $$unsorted) (BOUND_VARIABLE_1722 $$unsorted)) $$unsorted (as @uc_$$unsorted_0 $$unsorted)) (define-fun bt () $$unsorted (as @uc_$$unsorted_0 $$unsorted)) (define-fun b_holds ((BOUND_VARIABLE_1709 $$unsorted)) Bool true) (define-fun fresh_to_b ((BOUND_VARIABLE_1709 $$unsorted)) Bool true) (define-fun generate_b_nonce ((BOUND_VARIABLE_1755 $$unsorted)) $$unsorted (as @uc_$$unsorted_0 $$unsorted)) (define-fun generate_expiration_time ((BOUND_VARIABLE_1755 $$unsorted)) $$unsorted (as @uc_$$unsorted_0 $$unsorted)) (define-fun b_stored ((BOUND_VARIABLE_1709 $$unsorted)) Bool true) (define-fun a_key ((BOUND_VARIABLE_1709 $$unsorted)) Bool (= (as @uc_$$unsorted_1 $$unsorted) BOUND_VARIABLE_1709)) (define-fun t_holds ((BOUND_VARIABLE_1709 $$unsorted)) Bool true) (define-fun a_nonce ((BOUND_VARIABLE_1709 $$unsorted)) Bool (= (as @uc_$$unsorted_0 $$unsorted) BOUND_VARIABLE_1709)) (define-fun generate_key ((BOUND_VARIABLE_1755 $$unsorted)) $$unsorted (as @uc_$$unsorted_1 $$unsorted)) (define-fun intruder_message ((BOUND_VARIABLE_1709 $$unsorted)) Bool true) (define-fun intruder_holds ((BOUND_VARIABLE_1709 $$unsorted)) Bool true) (define-fun an_intruder_nonce () $$unsorted (as @uc_$$unsorted_0 $$unsorted)) (define-fun fresh_intruder_nonce ((BOUND_VARIABLE_1709 $$unsorted)) Bool true) (define-fun generate_intruder_nonce ((BOUND_VARIABLE_1755 $$unsorted)) $$unsorted (as @uc_$$unsorted_0 $$unsorted)) ) % SZS output end FiniteModel for SWV017+1
% SZS output start CNFRefutation for SEU140+2 fof(f4,axiom,( ((! [A,B] : set_intersection2(A,B) = set_intersection2(B,A) ))), file('/run/media/oscar/Elements/temp/TPTP-v7.3.0.b/Problems/SEU140+2')). fof(f11,axiom,( ((! [A,B] :( disjoint(A,B)<=> set_intersection2(A,B) = empty_set ) ))), file('/run/media/oscar/Elements/temp/TPTP-v7.3.0.b/Problems/SEU140+2')). fof(f23,axiom,( ((! [A,B] :( set_difference(A,B) = empty_set<=> subset(A,B) ) ))), file('/run/media/oscar/Elements/temp/TPTP-v7.3.0.b/Problems/SEU140+2')). fof(f33,axiom,( ((! [A,B,C] :( subset(A,B)=> subset(set_intersection2(A,C),set_intersection2(B,C)) ) ))), file('/run/media/oscar/Elements/temp/TPTP-v7.3.0.b/Problems/SEU140+2')). fof(f42,axiom,( ((! [A] : set_difference(A,empty_set) = A ))), file('/run/media/oscar/Elements/temp/TPTP-v7.3.0.b/Problems/SEU140+2')). fof(f51,conjecture,( ((! [A,B,C] :( ( subset(A,B)& disjoint(B,C) )=> disjoint(A,C) ) ))), file('/run/media/oscar/Elements/temp/TPTP-v7.3.0.b/Problems/SEU140+2')). fof(f52,negated_conjecture,( ~(((! [A,B,C] :( ( subset(A,B)& disjoint(B,C) )=> disjoint(A,C) ) )))), inference(negated_conjecture,[status(cth)],[f51])). fof(f63,plain,( ![X0,X1]: (set_intersection2(X0,X1)=set_intersection2(X1,X0))), inference(cnf_transformation,[status(esa)],[f4])). fof(f108,plain,( ![A,B]: (![A,B]: ((~disjoint(A,B)|set_intersection2(A,B)=empty_set)&(disjoint(A,B)|~set_intersection2(A,B)=empty_set)))), inference(NNF_transformation,[status(esa)],[f11])). fof(f109,plain,( ![A,B]: ((![A,B]: (~disjoint(A,B)|set_intersection2(A,B)=empty_set))&(![A,B]: (disjoint(A,B)|~set_intersection2(A,B)=empty_set)))), inference(miniscoping,[status(esa)],[f108])). fof(f110,plain,( ![X0,X1]: (~disjoint(X0,X1)|set_intersection2(X0,X1)=empty_set)), inference(cnf_transformation,[status(esa)],[f109])). fof(f111,plain,( ![X0,X1]: (disjoint(X0,X1)|~set_intersection2(X0,X1)=empty_set)), inference(cnf_transformation,[status(esa)],[f109])). fof(f130,plain,( ![A,B]: (![A,B]: ((~set_difference(A,B)=empty_set|subset(A,B))&(set_difference(A,B)=empty_set|~subset(A,B))))), inference(NNF_transformation,[status(esa)],[f23])). fof(f131,plain,( ![A,B]: ((![A,B]: (~set_difference(A,B)=empty_set|subset(A,B)))&(![A,B]: (set_difference(A,B)=empty_set|~subset(A,B))))), inference(miniscoping,[status(esa)],[f130])). fof(f133,plain,( ![X0,X1]: (set_difference(X0,X1)=empty_set|~subset(X0,X1))), inference(cnf_transformation,[status(esa)],[f131])). fof(f151,plain,( ![A,B,C]: (![A,B,C]: (~subset(A,B)|subset(set_intersection2(A,C),set_intersection2(B,C))))), inference(pre_NNF_transformation,[status(esa)],[f33])). fof(f152,plain,( ![A,B,C]: (![A,B]: (~subset(A,B)|(![C]: subset(set_intersection2(A,C),set_intersection2(B,C)))))), inference(miniscoping,[status(esa)],[f151])). fof(f153,plain,( ![X0,X1,X2]: (~subset(X0,X1)|subset(set_intersection2(X0,X2),set_intersection2(X1,X2)))), inference(cnf_transformation,[status(esa)],[f152])). fof(f172,plain,( ![X0]: (set_difference(X0,empty_set)=X0)), inference(cnf_transformation,[status(esa)],[f42])). fof(f193,plain,( ![A,B,C]: ((?[A,B,C]: ((subset(A,B)&disjoint(B,C))&~disjoint(A,C))))), inference(pre_NNF_transformation,[status(esa)],[f52])). fof(f194,plain,( ![A,C,B]: (?[A,C]: ((?[B]: (subset(A,B)&disjoint(B,C)))&~disjoint(A,C)))), inference(miniscoping,[status(esa)],[f193])). fof(f195,plain,( ((subset(sk0_10,sk0_12)&disjoint(sk0_12,sk0_11))&~disjoint(sk0_10,sk0_11))), inference(skolemization,[status(esa)],[f194])). fof(f196,plain,( subset(sk0_10,sk0_12)), inference(cnf_transformation,[status(esa)],[f195])). fof(f197,plain,( disjoint(sk0_12,sk0_11)), inference(cnf_transformation,[status(esa)],[f195])). fof(f198,plain,( ~disjoint(sk0_10,sk0_11)), inference(cnf_transformation,[status(esa)],[f195])). fof(f328,plain,( set_intersection2(sk0_12,sk0_11)=empty_set), inference(resolution,[status(thm)],[f110,f197])). fof(f329,plain,( set_intersection2(sk0_11,sk0_12)=empty_set), inference(forward_demodulation,[status(thm)],[f63,f328])). fof(f403,plain,( ![X0]: (subset(set_intersection2(sk0_10,X0),set_intersection2(sk0_12,X0)))), inference(resolution,[status(thm)],[f153,f196])). fof(f7292,plain,( ![X0]: (subset(set_intersection2(sk0_10,X0),set_intersection2(X0,sk0_12)))), inference(paramodulation,[status(thm)],[f63,f403])). fof(f19999,plain,( subset(set_intersection2(sk0_10,sk0_11),empty_set)), inference(paramodulation,[status(thm)],[f329,f7292])). fof(f20866,plain,( set_difference(set_intersection2(sk0_10,sk0_11),empty_set)=empty_set), inference(resolution,[status(thm)],[f19999,f133])). fof(f20867,plain,( set_intersection2(sk0_10,sk0_11)=empty_set), inference(forward_demodulation,[status(thm)],[f172,f20866])). fof(f20935,plain,( disjoint(sk0_10,sk0_11)), inference(resolution,[status(thm)],[f20867,f111])). fof(f20936,plain,( $false), inference(forward_subsumption_resolution,[status(thm)],[f20935,f198])). % SZS output end CNFRefutation for SEU140+2
fof(f1,axiom,( (![V,W,X,Y,Z]: (( multiply(multiply(V,W,X),Y,multiply(V,W,Z)) = multiply(V,W,multiply(X,Y,Z)) )))), file('/run/media/oscar/Elements/temp/TPTP-v7.3.0.b/Problems/BOO001-1')). fof(f2,axiom,( (![Y,X]: (( multiply(Y,X,X) = X )))), file('/run/media/oscar/Elements/temp/TPTP-v7.3.0.b/Problems/BOO001-1')). fof(f3,axiom,( (![X,Y]: (( multiply(X,X,Y) = X )))), file('/run/media/oscar/Elements/temp/TPTP-v7.3.0.b/Problems/BOO001-1')). fof(f5,axiom,( (![X,Y]: (( multiply(X,Y,inverse(Y)) = X )))), file('/run/media/oscar/Elements/temp/TPTP-v7.3.0.b/Problems/BOO001-1')). fof(f6,axiom,( ( inverse(inverse(a)) != a )), file('/run/media/oscar/Elements/temp/TPTP-v7.3.0.b/Problems/BOO001-1')). fof(f7,plain,( ![X0,X1,X2,X3,X4]: (multiply(multiply(X0,X1,X2),X3,multiply(X0,X1,X4))=multiply(X0,X1,multiply(X2,X3,X4)))), inference(cnf_transformation,[status(esa)],[f1])). fof(f8,plain,( ![X0,X1]: (multiply(X0,X1,X1)=X1)), inference(cnf_transformation,[status(esa)],[f2])). fof(f9,plain,( ![X0,X1]: (multiply(X0,X0,X1)=X0)), inference(cnf_transformation,[status(esa)],[f3])). fof(f11,plain,( ![X0,X1]: (multiply(X0,X1,inverse(X1))=X0)), inference(cnf_transformation,[status(esa)],[f5])). fof(f12,plain,( ~inverse(inverse(a))=a), inference(cnf_transformation,[status(esa)],[f6])). fof(f14,plain,( ![X0,X1,X2,X3]: (multiply(X0,X1,X2)=multiply(X0,X1,multiply(X2,multiply(X0,X1,X2),X3)))), inference(paramodulation,[status(thm)],[f9,f7])). fof(f15,plain,( ![X0,X1,X2,X3]: (multiply(X0,X1,multiply(X2,X0,X3))=multiply(X2,X0,multiply(X0,X1,X3)))), inference(paramodulation,[status(thm)],[f8,f7])). fof(f133,plain,( ![X0,X1,X2]: (multiply(X0,X1,inverse(X1))=multiply(X0,X1,multiply(inverse(X1),X0,X2)))), inference(paramodulation,[status(thm)],[f11,f14])). fof(f134,plain,( ![X0,X1,X2]: (X0=multiply(X0,X1,multiply(inverse(X1),X0,X2)))), inference(forward_demodulation,[status(thm)],[f11,f133])). fof(f254,plain,( ![X0,X1,X2]: (X0=multiply(inverse(X1),X0,multiply(X0,X1,X2)))), inference(paramodulation,[status(thm)],[f15,f134])). fof(f293,plain,( ![X0,X1]: (X0=multiply(inverse(X1),X0,X1))), inference(paramodulation,[status(thm)],[f8,f254])). fof(f330,plain,( ![X0]: (X0=inverse(inverse(X0)))), inference(paramodulation,[status(thm)],[f11,f293])). fof(f351,plain,( ~a=a), inference(backward_demodulation,[status(thm)],[f330,f12])). fof(f352,plain,( $false), inference(trivial_equality_resolution,[status(esa)],[f351])). % SZS output end CNFRefutation for BOO001-1
# SZS output start CNFRefutation fof(t4_xboole_0, lemma, ![X1, X2]:(~((~(disjoint(X1,X2))&![X3]:~(in(X3,set_intersection2(X1,X2)))))&~((?[X3]:in(X3,set_intersection2(X1,X2))&disjoint(X1,X2)))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', t4_xboole_0)). fof(t48_xboole_1, lemma, ![X1, X2]:set_difference(X1,set_difference(X1,X2))=set_intersection2(X1,X2), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', t48_xboole_1)). fof(t63_xboole_1, conjecture, ![X1, X2, X3]:((subset(X1,X2)&disjoint(X2,X3))=>disjoint(X1,X3)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', t63_xboole_1)). fof(d1_xboole_0, axiom, ![X1]:(X1=empty_set<=>![X2]:~(in(X2,X1))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', d1_xboole_0)). fof(d3_xboole_0, axiom, ![X1, X2, X3]:(X3=set_intersection2(X1,X2)<=>![X4]:(in(X4,X3)<=>(in(X4,X1)&in(X4,X2)))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', d3_xboole_0)). fof(d4_xboole_0, axiom, ![X1, X2, X3]:(X3=set_difference(X1,X2)<=>![X4]:(in(X4,X3)<=>(in(X4,X1)&~(in(X4,X2))))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', d4_xboole_0)). fof(t3_xboole_0, lemma, ![X1, X2]:(~((~(disjoint(X1,X2))&![X3]:~((in(X3,X1)&in(X3,X2)))))&~((?[X3]:(in(X3,X1)&in(X3,X2))&disjoint(X1,X2)))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', t3_xboole_0)). fof(l32_xboole_1, lemma, ![X1, X2]:(set_difference(X1,X2)=empty_set<=>subset(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', l32_xboole_1)). fof(d10_xboole_0, axiom, ![X1, X2]:(X1=X2<=>(subset(X1,X2)&subset(X2,X1))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', d10_xboole_0)). fof(t36_xboole_1, lemma, ![X1, X2]:subset(set_difference(X1,X2),X1), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', t36_xboole_1)). fof(t3_boole, axiom, ![X1]:set_difference(X1,empty_set)=X1, file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', t3_boole)). fof(c_0_11, lemma, ![X115, X116, X118, X119, X120]:((disjoint(X115,X116)|in(esk10_2(X115,X116),set_intersection2(X115,X116)))&(~in(X120,set_intersection2(X118,X119))|~disjoint(X118,X119))), inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[t4_xboole_0])])])])])])). fof(c_0_12, lemma, ![X112, X113]:set_difference(X112,set_difference(X112,X113))=set_intersection2(X112,X113), inference(variable_rename,[status(thm)],[t48_xboole_1])). fof(c_0_13, negated_conjecture, ~(![X1, X2, X3]:((subset(X1,X2)&disjoint(X2,X3))=>disjoint(X1,X3))), inference(assume_negation,[status(cth)],[t63_xboole_1])). cnf(c_0_14, lemma, (~in(X1,set_intersection2(X2,X3))|~disjoint(X2,X3)), inference(split_conjunct,[status(thm)],[c_0_11])). cnf(c_0_15, lemma, (set_difference(X1,set_difference(X1,X2))=set_intersection2(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_12])). fof(c_0_16, negated_conjecture, ((subset(esk11_0,esk12_0)&disjoint(esk12_0,esk13_0))&~disjoint(esk11_0,esk13_0)), inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_13])])])). cnf(c_0_17, lemma, (~disjoint(X2,X3)|~in(X1,set_difference(X2,set_difference(X2,X3)))), inference(rw,[status(thm)],[c_0_14, c_0_15])). cnf(c_0_18, negated_conjecture, (disjoint(esk12_0,esk13_0)), inference(split_conjunct,[status(thm)],[c_0_16])). fof(c_0_19, plain, ![X15, X16, X17]:((X15!=empty_set|~in(X16,X15))&(in(esk1_1(X17),X17)|X17=empty_set)), inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[d1_xboole_0])])])])])])). fof(c_0_20, plain, ![X34, X35, X36, X37, X38, X39, X40, X41]:((((in(X37,X34)|~in(X37,X36)|X36!=set_intersection2(X34,X35))&(in(X37,X35)|~in(X37,X36)|X36!=set_intersection2(X34,X35)))&(~in(X38,X34)|~in(X38,X35)|in(X38,X36)|X36!=set_intersection2(X34,X35)))&((~in(esk4_3(X39,X40,X41),X41)|(~in(esk4_3(X39,X40,X41),X39)|~in(esk4_3(X39,X40,X41),X40))|X41=set_intersection2(X39,X40))&((in(esk4_3(X39,X40,X41),X39)|in(esk4_3(X39,X40,X41),X41)|X41=set_intersection2(X39,X40))&(in(esk4_3(X39,X40,X41),X40)|in(esk4_3(X39,X40,X41),X41)|X41=set_intersection2(X39,X40))))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[d3_xboole_0])])])])])])). fof(c_0_21, plain, ![X43, X44, X45, X46, X47, X48, X49, X50]:((((in(X46,X43)|~in(X46,X45)|X45!=set_difference(X43,X44))&(~in(X46,X44)|~in(X46,X45)|X45!=set_difference(X43,X44)))&(~in(X47,X43)|in(X47,X44)|in(X47,X45)|X45!=set_difference(X43,X44)))&((~in(esk5_3(X48,X49,X50),X50)|(~in(esk5_3(X48,X49,X50),X48)|in(esk5_3(X48,X49,X50),X49))|X50=set_difference(X48,X49))&((in(esk5_3(X48,X49,X50),X48)|in(esk5_3(X48,X49,X50),X50)|X50=set_difference(X48,X49))&(~in(esk5_3(X48,X49,X50),X49)|in(esk5_3(X48,X49,X50),X50)|X50=set_difference(X48,X49))))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[d4_xboole_0])])])])])])])). fof(c_0_22, lemma, ![X101, X102, X104, X105, X106]:(((in(esk9_2(X101,X102),X101)|disjoint(X101,X102))&(in(esk9_2(X101,X102),X102)|disjoint(X101,X102)))&(~in(X106,X104)|~in(X106,X105)|~disjoint(X104,X105))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[t3_xboole_0])])])])])])])). fof(c_0_23, lemma, ![X63, X64]:((set_difference(X63,X64)!=empty_set|subset(X63,X64))&(~subset(X63,X64)|set_difference(X63,X64)=empty_set)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[l32_xboole_1])])). cnf(c_0_24, negated_conjecture, (~in(X1,set_difference(esk12_0,set_difference(esk12_0,esk13_0)))), inference(spm,[status(thm)],[c_0_17, c_0_18])). cnf(c_0_25, plain, (in(esk1_1(X1),X1)|X1=empty_set), inference(split_conjunct,[status(thm)],[c_0_19])). cnf(c_0_26, plain, (in(X1,X2)|~in(X1,X3)|X3!=set_intersection2(X4,X2)), inference(split_conjunct,[status(thm)],[c_0_20])). cnf(c_0_27, plain, (~in(X1,X2)|~in(X1,X3)|X3!=set_difference(X4,X2)), inference(split_conjunct,[status(thm)],[c_0_21])). cnf(c_0_28, negated_conjecture, (~disjoint(esk11_0,esk13_0)), inference(split_conjunct,[status(thm)],[c_0_16])). cnf(c_0_29, lemma, (in(esk9_2(X1,X2),X2)|disjoint(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_22])). fof(c_0_30, plain, ![X13, X14]:(((subset(X13,X14)|X13!=X14)&(subset(X14,X13)|X13!=X14))&(~subset(X13,X14)|~subset(X14,X13)|X13=X14)), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[d10_xboole_0])])])). cnf(c_0_31, lemma, (subset(X1,X2)|set_difference(X1,X2)!=empty_set), inference(split_conjunct,[status(thm)],[c_0_23])). cnf(c_0_32, negated_conjecture, (set_difference(esk12_0,set_difference(esk12_0,esk13_0))=empty_set), inference(spm,[status(thm)],[c_0_24, c_0_25])). fof(c_0_33, lemma, ![X94, X95]:subset(set_difference(X94,X95),X94), inference(variable_rename,[status(thm)],[t36_xboole_1])). cnf(c_0_34, plain, (in(X1,X2)|X3!=set_difference(X4,set_difference(X4,X2))|~in(X1,X3)), inference(rw,[status(thm)],[c_0_26, c_0_15])). cnf(c_0_35, lemma, (set_difference(X1,X2)=empty_set|~subset(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_23])). cnf(c_0_36, negated_conjecture, (subset(esk11_0,esk12_0)), inference(split_conjunct,[status(thm)],[c_0_16])). fof(c_0_37, plain, ![X100]:set_difference(X100,empty_set)=X100, inference(variable_rename,[status(thm)],[t3_boole])). cnf(c_0_38, plain, (~in(X1,set_difference(X2,X3))|~in(X1,X3)), inference(er,[status(thm)],[c_0_27])). cnf(c_0_39, negated_conjecture, (in(esk9_2(esk11_0,esk13_0),esk13_0)), inference(spm,[status(thm)],[c_0_28, c_0_29])). cnf(c_0_40, plain, (X1=X2|~subset(X1,X2)|~subset(X2,X1)), inference(split_conjunct,[status(thm)],[c_0_30])). cnf(c_0_41, lemma, (subset(esk12_0,set_difference(esk12_0,esk13_0))), inference(spm,[status(thm)],[c_0_31, c_0_32])). cnf(c_0_42, lemma, (subset(set_difference(X1,X2),X1)), inference(split_conjunct,[status(thm)],[c_0_33])). cnf(c_0_43, plain, (in(X1,X2)|~in(X1,set_difference(X3,set_difference(X3,X2)))), inference(er,[status(thm)],[c_0_34])). cnf(c_0_44, negated_conjecture, (set_difference(esk11_0,esk12_0)=empty_set), inference(spm,[status(thm)],[c_0_35, c_0_36])). cnf(c_0_45, plain, (set_difference(X1,empty_set)=X1), inference(split_conjunct,[status(thm)],[c_0_37])). cnf(c_0_46, lemma, (in(esk9_2(X1,X2),X1)|disjoint(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_22])). cnf(c_0_47, negated_conjecture, (~in(esk9_2(esk11_0,esk13_0),set_difference(X1,esk13_0))), inference(spm,[status(thm)],[c_0_38, c_0_39])). cnf(c_0_48, lemma, (set_difference(esk12_0,esk13_0)=esk12_0), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_40, c_0_41]), c_0_42])])). cnf(c_0_49, negated_conjecture, (in(X1,esk12_0)|~in(X1,esk11_0)), inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_43, c_0_44]), c_0_45])). cnf(c_0_50, negated_conjecture, (in(esk9_2(esk11_0,esk13_0),esk11_0)), inference(spm,[status(thm)],[c_0_28, c_0_46])). cnf(c_0_51, lemma, (~in(esk9_2(esk11_0,esk13_0),esk12_0)), inference(spm,[status(thm)],[c_0_47, c_0_48])). cnf(c_0_52, negated_conjecture, ($false), inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_49, c_0_50]), c_0_51]), ['proof']). # SZS output end CNFRefutation
# SZS output start Saturation fof(ax26, axiom, ![X1, X2]:(beverage(X1,X2)=>food(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax26)). fof(ax27, axiom, ![X1, X2]:(shake_beverage(X1,X2)=>beverage(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax27)). fof(ax15, axiom, ![X1, X2]:(relname(X1,X2)=>relation(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax15)). fof(ax16, axiom, ![X1, X2]:(forename(X1,X2)=>relname(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax16)). fof(ax25, axiom, ![X1, X2]:(food(X1,X2)=>substance_matter(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax25)). fof(co1, conjecture, ~(?[X1]:(actual_world(X1)&?[X2, X3, X4, X5]:((((((((((of(X1,X3,X2)&woman(X1,X2))&mia_forename(X1,X3))&forename(X1,X3))&shake_beverage(X1,X4))&event(X1,X5))&agent(X1,X5,X2))&patient(X1,X5,X4))&past(X1,X5))&nonreflexive(X1,X5))&order(X1,X5)))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', co1)). fof(ax41, axiom, ![X1, X2]:(specific(X1,X2)=>~(general(X1,X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax41)). fof(ax21, axiom, ![X1, X2]:(entity(X1,X2)=>specific(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax21)). fof(ax39, axiom, ![X1, X2]:(nonhuman(X1,X2)=>~(human(X1,X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax39)). fof(ax12, axiom, ![X1, X2]:(abstraction(X1,X2)=>nonhuman(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax12)). fof(ax14, axiom, ![X1, X2]:(relation(X1,X2)=>abstraction(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax14)). fof(ax42, axiom, ![X1, X2]:(unisex(X1,X2)=>~(female(X1,X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax42)). fof(ax10, axiom, ![X1, X2]:(abstraction(X1,X2)=>unisex(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax10)). fof(ax24, axiom, ![X1, X2]:(substance_matter(X1,X2)=>object(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax24)). fof(ax31, axiom, ![X1, X2]:(eventuality(X1,X2)=>specific(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax31)). fof(ax34, axiom, ![X1, X2]:(event(X1,X2)=>eventuality(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax34)). fof(ax6, axiom, ![X1, X2]:(organism(X1,X2)=>entity(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax6)). fof(ax7, axiom, ![X1, X2]:(human_person(X1,X2)=>organism(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax7)). fof(ax8, axiom, ![X1, X2]:(woman(X1,X2)=>human_person(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax8)). fof(ax11, axiom, ![X1, X2]:(abstraction(X1,X2)=>general(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax11)). fof(ax40, axiom, ![X1, X2]:(nonliving(X1,X2)=>~(living(X1,X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax40)). fof(ax19, axiom, ![X1, X2]:(object(X1,X2)=>nonliving(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax19)). fof(ax37, axiom, ![X1, X2]:(animate(X1,X2)=>~(nonliving(X1,X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax37)). fof(ax17, axiom, ![X1, X2]:(object(X1,X2)=>unisex(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax17)). fof(ax38, axiom, ![X1, X2]:(existent(X1,X2)=>~(nonexistent(X1,X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax38)). fof(ax30, axiom, ![X1, X2]:(eventuality(X1,X2)=>nonexistent(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax30)). fof(ax29, axiom, ![X1, X2]:(eventuality(X1,X2)=>unisex(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax29)). fof(ax44, axiom, ![X1, X2, X3, X4]:(((nonreflexive(X1,X2)&agent(X1,X2,X3))&patient(X1,X2,X4))=>X3!=X4), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax44)). fof(ax43, axiom, ![X1, X2, X3]:(((entity(X1,X2)&forename(X1,X3))&of(X1,X3,X2))=>~(?[X4]:((forename(X1,X4)&X4!=X3)&of(X1,X4,X2)))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax43)). fof(ax3, axiom, ![X1, X2]:(human_person(X1,X2)=>human(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax3)). fof(ax1, axiom, ![X1, X2]:(woman(X1,X2)=>female(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax1)). fof(ax4, axiom, ![X1, X2]:(organism(X1,X2)=>living(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax4)). fof(ax2, axiom, ![X1, X2]:(human_person(X1,X2)=>animate(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax2)). fof(ax20, axiom, ![X1, X2]:(entity(X1,X2)=>existent(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax20)). fof(ax23, axiom, ![X1, X2]:(object(X1,X2)=>entity(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax23)). fof(ax35, axiom, ![X1, X2]:(act(X1,X2)=>event(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax35)). fof(ax28, axiom, ![X1, X2]:(order(X1,X2)=>event(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax28)). fof(ax36, axiom, ![X1, X2]:(order(X1,X2)=>act(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax36)). fof(ax32, axiom, ![X1, X2]:(thing(X1,X2)=>singleton(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax32)). fof(ax9, axiom, ![X1, X2]:(mia_forename(X1,X2)=>forename(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax9)). fof(ax33, axiom, ![X1, X2]:(eventuality(X1,X2)=>thing(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax33)). fof(ax13, axiom, ![X1, X2]:(abstraction(X1,X2)=>thing(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax13)). fof(ax22, axiom, ![X1, X2]:(entity(X1,X2)=>thing(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax22)). fof(ax18, axiom, ![X1, X2]:(object(X1,X2)=>impartial(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax18)). fof(ax5, axiom, ![X1, X2]:(organism(X1,X2)=>impartial(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax5)). fof(c_0_45, plain, ![X56, X57]:(~beverage(X56,X57)|food(X56,X57)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax26])])). fof(c_0_46, plain, ![X58, X59]:(~shake_beverage(X58,X59)|beverage(X58,X59)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax27])])). fof(c_0_47, plain, ![X34, X35]:(~relname(X34,X35)|relation(X34,X35)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax15])])). fof(c_0_48, plain, ![X36, X37]:(~forename(X36,X37)|relname(X36,X37)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax16])])). fof(c_0_49, plain, ![X54, X55]:(~food(X54,X55)|substance_matter(X54,X55)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax25])])). cnf(c_0_50, plain, (food(X1,X2)|~beverage(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_45]), ['final']). cnf(c_0_51, plain, (beverage(X1,X2)|~shake_beverage(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_46]), ['final']). fof(c_0_52, negated_conjecture, ~(~(?[X1]:(actual_world(X1)&?[X2, X3, X4, X5]:((((((((((of(X1,X3,X2)&woman(X1,X2))&mia_forename(X1,X3))&forename(X1,X3))&shake_beverage(X1,X4))&event(X1,X5))&agent(X1,X5,X2))&patient(X1,X5,X4))&past(X1,X5))&nonreflexive(X1,X5))&order(X1,X5))))), inference(assume_negation,[status(cth)],[co1])). fof(c_0_53, plain, ![X86, X87]:(~specific(X86,X87)|~general(X86,X87)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[ax41])])])). fof(c_0_54, plain, ![X46, X47]:(~entity(X46,X47)|specific(X46,X47)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax21])])). fof(c_0_55, plain, ![X82, X83]:(~nonhuman(X82,X83)|~human(X82,X83)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[ax39])])])). fof(c_0_56, plain, ![X28, X29]:(~abstraction(X28,X29)|nonhuman(X28,X29)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax12])])). fof(c_0_57, plain, ![X32, X33]:(~relation(X32,X33)|abstraction(X32,X33)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax14])])). cnf(c_0_58, plain, (relation(X1,X2)|~relname(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_47]), ['final']). cnf(c_0_59, plain, (relname(X1,X2)|~forename(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_48]), ['final']). fof(c_0_60, plain, ![X88, X89]:(~unisex(X88,X89)|~female(X88,X89)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[ax42])])])). fof(c_0_61, plain, ![X24, X25]:(~abstraction(X24,X25)|unisex(X24,X25)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax10])])). fof(c_0_62, plain, ![X52, X53]:(~substance_matter(X52,X53)|object(X52,X53)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax24])])). cnf(c_0_63, plain, (substance_matter(X1,X2)|~food(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_49]), ['final']). cnf(c_0_64, plain, (food(X1,X2)|~shake_beverage(X1,X2)), inference(spm,[status(thm)],[c_0_50, c_0_51]), ['final']). fof(c_0_65, plain, ![X66, X67]:(~eventuality(X66,X67)|specific(X66,X67)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax31])])). fof(c_0_66, plain, ![X72, X73]:(~event(X72,X73)|eventuality(X72,X73)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax34])])). fof(c_0_67, negated_conjecture, (actual_world(esk1_0)&((((((((((of(esk1_0,esk3_0,esk2_0)&woman(esk1_0,esk2_0))&mia_forename(esk1_0,esk3_0))&forename(esk1_0,esk3_0))&shake_beverage(esk1_0,esk4_0))&event(esk1_0,esk5_0))&agent(esk1_0,esk5_0,esk2_0))&patient(esk1_0,esk5_0,esk4_0))&past(esk1_0,esk5_0))&nonreflexive(esk1_0,esk5_0))&order(esk1_0,esk5_0))), inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_52])])])). fof(c_0_68, plain, ![X16, X17]:(~organism(X16,X17)|entity(X16,X17)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax6])])). fof(c_0_69, plain, ![X18, X19]:(~human_person(X18,X19)|organism(X18,X19)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax7])])). fof(c_0_70, plain, ![X20, X21]:(~woman(X20,X21)|human_person(X20,X21)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax8])])). cnf(c_0_71, plain, (~specific(X1,X2)|~general(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_53]), ['final']). cnf(c_0_72, plain, (specific(X1,X2)|~entity(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_54]), ['final']). fof(c_0_73, plain, ![X26, X27]:(~abstraction(X26,X27)|general(X26,X27)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax11])])). cnf(c_0_74, plain, (~nonhuman(X1,X2)|~human(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_55]), ['final']). cnf(c_0_75, plain, (nonhuman(X1,X2)|~abstraction(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_56]), ['final']). cnf(c_0_76, plain, (abstraction(X1,X2)|~relation(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_57]), ['final']). cnf(c_0_77, plain, (relation(X1,X2)|~forename(X1,X2)), inference(spm,[status(thm)],[c_0_58, c_0_59]), ['final']). cnf(c_0_78, plain, (~unisex(X1,X2)|~female(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_60]), ['final']). cnf(c_0_79, plain, (unisex(X1,X2)|~abstraction(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_61]), ['final']). fof(c_0_80, plain, ![X84, X85]:(~nonliving(X84,X85)|~living(X84,X85)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[ax40])])])). fof(c_0_81, plain, ![X42, X43]:(~object(X42,X43)|nonliving(X42,X43)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax19])])). cnf(c_0_82, plain, (object(X1,X2)|~substance_matter(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_62]), ['final']). cnf(c_0_83, plain, (substance_matter(X1,X2)|~shake_beverage(X1,X2)), inference(spm,[status(thm)],[c_0_63, c_0_64]), ['final']). fof(c_0_84, plain, ![X78, X79]:(~animate(X78,X79)|~nonliving(X78,X79)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[ax37])])])). fof(c_0_85, plain, ![X38, X39]:(~object(X38,X39)|unisex(X38,X39)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax17])])). fof(c_0_86, plain, ![X80, X81]:(~existent(X80,X81)|~nonexistent(X80,X81)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[ax38])])])). fof(c_0_87, plain, ![X64, X65]:(~eventuality(X64,X65)|nonexistent(X64,X65)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax30])])). cnf(c_0_88, plain, (specific(X1,X2)|~eventuality(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_65]), ['final']). cnf(c_0_89, plain, (eventuality(X1,X2)|~event(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_66]), ['final']). cnf(c_0_90, negated_conjecture, (event(esk1_0,esk5_0)), inference(split_conjunct,[status(thm)],[c_0_67]), ['final']). fof(c_0_91, plain, ![X62, X63]:(~eventuality(X62,X63)|unisex(X62,X63)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax29])])). cnf(c_0_92, plain, (entity(X1,X2)|~organism(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_68]), ['final']). cnf(c_0_93, plain, (organism(X1,X2)|~human_person(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_69]), ['final']). cnf(c_0_94, plain, (human_person(X1,X2)|~woman(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_70]), ['final']). cnf(c_0_95, negated_conjecture, (woman(esk1_0,esk2_0)), inference(split_conjunct,[status(thm)],[c_0_67]), ['final']). fof(c_0_96, plain, ![X94, X95, X96, X97]:(~nonreflexive(X94,X95)|~agent(X94,X95,X96)|~patient(X94,X95,X97)|X96!=X97), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax44])])). cnf(c_0_97, plain, (~general(X1,X2)|~entity(X1,X2)), inference(spm,[status(thm)],[c_0_71, c_0_72]), ['final']). cnf(c_0_98, plain, (general(X1,X2)|~abstraction(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_73]), ['final']). cnf(c_0_99, plain, (~abstraction(X1,X2)|~human(X1,X2)), inference(spm,[status(thm)],[c_0_74, c_0_75]), ['final']). cnf(c_0_100, plain, (abstraction(X1,X2)|~forename(X1,X2)), inference(spm,[status(thm)],[c_0_76, c_0_77]), ['final']). cnf(c_0_101, plain, (~abstraction(X1,X2)|~female(X1,X2)), inference(spm,[status(thm)],[c_0_78, c_0_79]), ['final']). cnf(c_0_102, plain, (~nonliving(X1,X2)|~living(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_80]), ['final']). cnf(c_0_103, plain, (nonliving(X1,X2)|~object(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_81]), ['final']). cnf(c_0_104, plain, (object(X1,X2)|~shake_beverage(X1,X2)), inference(spm,[status(thm)],[c_0_82, c_0_83]), ['final']). cnf(c_0_105, negated_conjecture, (shake_beverage(esk1_0,esk4_0)), inference(split_conjunct,[status(thm)],[c_0_67]), ['final']). cnf(c_0_106, plain, (~animate(X1,X2)|~nonliving(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_84]), ['final']). cnf(c_0_107, plain, (unisex(X1,X2)|~object(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_85]), ['final']). cnf(c_0_108, plain, (~existent(X1,X2)|~nonexistent(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_86]), ['final']). cnf(c_0_109, plain, (nonexistent(X1,X2)|~eventuality(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_87]), ['final']). cnf(c_0_110, plain, (~eventuality(X1,X2)|~general(X1,X2)), inference(spm,[status(thm)],[c_0_71, c_0_88]), ['final']). cnf(c_0_111, negated_conjecture, (eventuality(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_89, c_0_90]), ['final']). cnf(c_0_112, plain, (unisex(X1,X2)|~eventuality(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_91]), ['final']). fof(c_0_113, plain, ![X90, X91, X92, X93]:(~entity(X90,X91)|~forename(X90,X92)|~of(X90,X92,X91)|(~forename(X90,X93)|X93=X92|~of(X90,X93,X91))), inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax43])])])). cnf(c_0_114, plain, (entity(X1,X2)|~human_person(X1,X2)), inference(spm,[status(thm)],[c_0_92, c_0_93]), ['final']). cnf(c_0_115, negated_conjecture, (human_person(esk1_0,esk2_0)), inference(spm,[status(thm)],[c_0_94, c_0_95]), ['final']). cnf(c_0_116, plain, (~nonreflexive(X1,X2)|~agent(X1,X2,X3)|~patient(X1,X2,X4)|X3!=X4), inference(split_conjunct,[status(thm)],[c_0_96])). cnf(c_0_117, plain, (~abstraction(X1,X2)|~entity(X1,X2)), inference(spm,[status(thm)],[c_0_97, c_0_98]), ['final']). cnf(c_0_118, plain, (~forename(X1,X2)|~human(X1,X2)), inference(spm,[status(thm)],[c_0_99, c_0_100]), ['final']). cnf(c_0_119, negated_conjecture, (forename(esk1_0,esk3_0)), inference(split_conjunct,[status(thm)],[c_0_67]), ['final']). fof(c_0_120, plain, ![X10, X11]:(~human_person(X10,X11)|human(X10,X11)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax3])])). cnf(c_0_121, plain, (~forename(X1,X2)|~female(X1,X2)), inference(spm,[status(thm)],[c_0_101, c_0_100]), ['final']). fof(c_0_122, plain, ![X6, X7]:(~woman(X6,X7)|female(X6,X7)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax1])])). cnf(c_0_123, plain, (~object(X1,X2)|~living(X1,X2)), inference(spm,[status(thm)],[c_0_102, c_0_103]), ['final']). cnf(c_0_124, negated_conjecture, (object(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_104, c_0_105]), ['final']). fof(c_0_125, plain, ![X12, X13]:(~organism(X12,X13)|living(X12,X13)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax4])])). cnf(c_0_126, plain, (~object(X1,X2)|~animate(X1,X2)), inference(spm,[status(thm)],[c_0_106, c_0_103]), ['final']). fof(c_0_127, plain, ![X8, X9]:(~human_person(X8,X9)|animate(X8,X9)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax2])])). cnf(c_0_128, plain, (~object(X1,X2)|~female(X1,X2)), inference(spm,[status(thm)],[c_0_78, c_0_107]), ['final']). cnf(c_0_129, plain, (~eventuality(X1,X2)|~existent(X1,X2)), inference(spm,[status(thm)],[c_0_108, c_0_109]), ['final']). fof(c_0_130, plain, ![X44, X45]:(~entity(X44,X45)|existent(X44,X45)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax20])])). cnf(c_0_131, negated_conjecture, (~general(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_110, c_0_111]), ['final']). cnf(c_0_132, plain, (~eventuality(X1,X2)|~female(X1,X2)), inference(spm,[status(thm)],[c_0_78, c_0_112]), ['final']). fof(c_0_133, plain, ![X50, X51]:(~object(X50,X51)|entity(X50,X51)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax23])])). cnf(c_0_134, plain, (X4=X3|~entity(X1,X2)|~forename(X1,X3)|~of(X1,X3,X2)|~forename(X1,X4)|~of(X1,X4,X2)), inference(split_conjunct,[status(thm)],[c_0_113]), ['final']). cnf(c_0_135, negated_conjecture, (of(esk1_0,esk3_0,esk2_0)), inference(split_conjunct,[status(thm)],[c_0_67]), ['final']). cnf(c_0_136, negated_conjecture, (entity(esk1_0,esk2_0)), inference(spm,[status(thm)],[c_0_114, c_0_115]), ['final']). fof(c_0_137, plain, ![X74, X75]:(~act(X74,X75)|event(X74,X75)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax35])])). fof(c_0_138, plain, ![X60, X61]:(~order(X60,X61)|event(X60,X61)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax28])])). fof(c_0_139, plain, ![X76, X77]:(~order(X76,X77)|act(X76,X77)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax36])])). fof(c_0_140, plain, ![X68, X69]:(~thing(X68,X69)|singleton(X68,X69)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax32])])). fof(c_0_141, plain, ![X22, X23]:(~mia_forename(X22,X23)|forename(X22,X23)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax9])])). fof(c_0_142, plain, ![X70, X71]:(~eventuality(X70,X71)|thing(X70,X71)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax33])])). fof(c_0_143, plain, ![X30, X31]:(~abstraction(X30,X31)|thing(X30,X31)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax13])])). fof(c_0_144, plain, ![X48, X49]:(~entity(X48,X49)|thing(X48,X49)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax22])])). fof(c_0_145, plain, ![X40, X41]:(~object(X40,X41)|impartial(X40,X41)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax18])])). fof(c_0_146, plain, ![X14, X15]:(~organism(X14,X15)|impartial(X14,X15)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax5])])). cnf(c_0_147, plain, (~patient(X1,X2,X3)|~agent(X1,X2,X3)|~nonreflexive(X1,X2)), inference(er,[status(thm)],[c_0_116]), ['final']). cnf(c_0_148, negated_conjecture, (patient(esk1_0,esk5_0,esk4_0)), inference(split_conjunct,[status(thm)],[c_0_67]), ['final']). cnf(c_0_149, negated_conjecture, (nonreflexive(esk1_0,esk5_0)), inference(split_conjunct,[status(thm)],[c_0_67]), ['final']). cnf(c_0_150, plain, (~forename(X1,X2)|~entity(X1,X2)), inference(spm,[status(thm)],[c_0_117, c_0_100]), ['final']). cnf(c_0_151, negated_conjecture, (~human(esk1_0,esk3_0)), inference(spm,[status(thm)],[c_0_118, c_0_119]), ['final']). cnf(c_0_152, plain, (human(X1,X2)|~human_person(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_120]), ['final']). cnf(c_0_153, negated_conjecture, (~female(esk1_0,esk3_0)), inference(spm,[status(thm)],[c_0_121, c_0_119]), ['final']). cnf(c_0_154, plain, (female(X1,X2)|~woman(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_122]), ['final']). cnf(c_0_155, negated_conjecture, (~living(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_123, c_0_124]), ['final']). cnf(c_0_156, plain, (living(X1,X2)|~organism(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_125]), ['final']). cnf(c_0_157, negated_conjecture, (~animate(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_126, c_0_124]), ['final']). cnf(c_0_158, plain, (animate(X1,X2)|~human_person(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_127]), ['final']). cnf(c_0_159, negated_conjecture, (~female(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_128, c_0_124]), ['final']). cnf(c_0_160, negated_conjecture, (~existent(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_129, c_0_111]), ['final']). cnf(c_0_161, plain, (existent(X1,X2)|~entity(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_130]), ['final']). cnf(c_0_162, negated_conjecture, (~abstraction(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_131, c_0_98]), ['final']). cnf(c_0_163, negated_conjecture, (~female(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_132, c_0_111]), ['final']). cnf(c_0_164, plain, (entity(X1,X2)|~object(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_133]), ['final']). cnf(c_0_165, negated_conjecture, (X1=esk3_0|~of(esk1_0,X1,esk2_0)|~forename(esk1_0,X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_134, c_0_135]), c_0_119])]), c_0_136])]), ['final']). cnf(c_0_166, plain, (event(X1,X2)|~act(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_137]), ['final']). cnf(c_0_167, plain, (event(X1,X2)|~order(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_138]), ['final']). cnf(c_0_168, plain, (act(X1,X2)|~order(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_139]), ['final']). cnf(c_0_169, plain, (singleton(X1,X2)|~thing(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_140]), ['final']). cnf(c_0_170, plain, (forename(X1,X2)|~mia_forename(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_141]), ['final']). cnf(c_0_171, plain, (thing(X1,X2)|~eventuality(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_142]), ['final']). cnf(c_0_172, plain, (thing(X1,X2)|~abstraction(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_143]), ['final']). cnf(c_0_173, plain, (thing(X1,X2)|~entity(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_144]), ['final']). cnf(c_0_174, plain, (impartial(X1,X2)|~object(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_145]), ['final']). cnf(c_0_175, plain, (impartial(X1,X2)|~organism(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_146]), ['final']). cnf(c_0_176, negated_conjecture, (~agent(esk1_0,esk5_0,esk4_0)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_147, c_0_148]), c_0_149])]), ['final']). cnf(c_0_177, negated_conjecture, (~entity(esk1_0,esk3_0)), inference(spm,[status(thm)],[c_0_150, c_0_119]), ['final']). cnf(c_0_178, negated_conjecture, (~human_person(esk1_0,esk3_0)), inference(spm,[status(thm)],[c_0_151, c_0_152]), ['final']). cnf(c_0_179, negated_conjecture, (~woman(esk1_0,esk3_0)), inference(spm,[status(thm)],[c_0_153, c_0_154]), ['final']). cnf(c_0_180, negated_conjecture, (~organism(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_155, c_0_156]), ['final']). cnf(c_0_181, negated_conjecture, (~human_person(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_157, c_0_158]), ['final']). cnf(c_0_182, negated_conjecture, (~woman(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_159, c_0_154]), ['final']). cnf(c_0_183, negated_conjecture, (~entity(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_160, c_0_161]), ['final']). cnf(c_0_184, negated_conjecture, (~forename(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_162, c_0_100]), ['final']). cnf(c_0_185, negated_conjecture, (~woman(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_163, c_0_154]), ['final']). cnf(c_0_186, negated_conjecture, (entity(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_164, c_0_124]), ['final']). cnf(c_0_187, negated_conjecture, (agent(esk1_0,esk5_0,esk2_0)), inference(split_conjunct,[status(thm)],[c_0_67]), ['final']). cnf(c_0_188, negated_conjecture, (past(esk1_0,esk5_0)), inference(split_conjunct,[status(thm)],[c_0_67]), ['final']). cnf(c_0_189, negated_conjecture, (order(esk1_0,esk5_0)), inference(split_conjunct,[status(thm)],[c_0_67]), ['final']). cnf(c_0_190, negated_conjecture, (mia_forename(esk1_0,esk3_0)), inference(split_conjunct,[status(thm)],[c_0_67]), ['final']). cnf(c_0_191, negated_conjecture, (actual_world(esk1_0)), inference(split_conjunct,[status(thm)],[c_0_67]), ['final']). # SZS output end Saturation
# SZS output start Saturation fof(server_t_generates_key, axiom, ![X1, X2, X3, X4, X5, X6, X7]:((((message(sent(X1,t,triple(X1,X2,encrypt(triple(X3,X4,X5),X6))))&t_holds(key(X6,X1)))&t_holds(key(X7,X3)))&a_nonce(X4))=>message(sent(t,X3,triple(encrypt(quadruple(X1,X4,generate_key(X4),X5),X7),encrypt(triple(X3,generate_key(X4),X5),X6),X2)))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', server_t_generates_key)). fof(b_creates_freash_nonces_in_time, axiom, ![X1, X2]:((message(sent(X1,b,pair(X1,X2)))&fresh_to_b(X2))=>(message(sent(b,t,triple(b,generate_b_nonce(X2),encrypt(triple(X1,X2,generate_expiration_time(X2)),bt))))&b_stored(pair(X1,X2)))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', b_creates_freash_nonces_in_time)). fof(t_holds_key_at_for_a, axiom, t_holds(key(at,a)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', t_holds_key_at_for_a)). fof(intruder_can_record, axiom, ![X1, X2, X3]:(message(sent(X1,X2,X3))=>intruder_message(X3)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_can_record)). fof(a_sent_message_i_to_b, axiom, message(sent(a,b,pair(a,an_a_nonce))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', a_sent_message_i_to_b)). fof(nonce_a_is_fresh_to_b, axiom, fresh_to_b(an_a_nonce), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', nonce_a_is_fresh_to_b)). fof(a_forwards_secure, axiom, ![X1, X2, X3, X4, X5, X6]:((message(sent(t,a,triple(encrypt(quadruple(X5,X6,X3,X2),at),X4,X1)))&a_stored(pair(X5,X6)))=>(message(sent(a,X5,pair(X4,encrypt(X1,X3))))&a_holds(key(X3,X5)))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', a_forwards_secure)). fof(t_holds_key_bt_for_b, axiom, t_holds(key(bt,b)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', t_holds_key_bt_for_b)). fof(intruder_message_sent, axiom, ![X1, X2, X3]:(((intruder_message(X1)&party_of_protocol(X2))&party_of_protocol(X3))=>message(sent(X2,X3,X1))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_message_sent)). fof(intruder_decomposes_triples, axiom, ![X1, X2, X3]:(intruder_message(triple(X1,X2,X3))=>((intruder_message(X1)&intruder_message(X2))&intruder_message(X3))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_decomposes_triples)). fof(a_stored_message_i, axiom, a_stored(pair(b,an_a_nonce)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', a_stored_message_i)). fof(an_a_nonce_is_a_nonce, axiom, a_nonce(an_a_nonce), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', an_a_nonce_is_a_nonce)). fof(b_is_party_of_protocol, axiom, party_of_protocol(b), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', b_is_party_of_protocol)). fof(intruder_composes_pairs, axiom, ![X1, X2]:((intruder_message(X1)&intruder_message(X2))=>intruder_message(pair(X1,X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_composes_pairs)). fof(t_is_party_of_protocol, axiom, party_of_protocol(t), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', t_is_party_of_protocol)). fof(intruder_composes_triples, axiom, ![X1, X2, X3]:(((intruder_message(X1)&intruder_message(X2))&intruder_message(X3))=>intruder_message(triple(X1,X2,X3))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_composes_triples)). fof(a_is_party_of_protocol, axiom, party_of_protocol(a), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', a_is_party_of_protocol)). fof(b_accepts_secure_session_key, axiom, ![X2, X4, X5]:(((message(sent(X4,b,pair(encrypt(triple(X4,X2,generate_expiration_time(X5)),bt),encrypt(generate_b_nonce(X5),X2))))&a_key(X2))&b_stored(pair(X4,X5)))=>b_holds(key(X2,X4))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', b_accepts_secure_session_key)). fof(intruder_decomposes_pairs, axiom, ![X1, X2]:(intruder_message(pair(X1,X2))=>(intruder_message(X1)&intruder_message(X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_decomposes_pairs)). fof(intruder_key_encrypts, axiom, ![X1, X2, X3]:(((intruder_message(X1)&intruder_holds(key(X2,X3)))&party_of_protocol(X3))=>intruder_message(encrypt(X1,X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_key_encrypts)). fof(intruder_holds_key, axiom, ![X2, X3]:((intruder_message(X2)&party_of_protocol(X3))=>intruder_holds(key(X2,X3))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_holds_key)). fof(generated_keys_are_keys, axiom, ![X1]:a_key(generate_key(X1)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', generated_keys_are_keys)). fof(fresh_intruder_nonces_are_fresh_to_b, axiom, ![X1]:(fresh_intruder_nonce(X1)=>(fresh_to_b(X1)&intruder_message(X1))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', fresh_intruder_nonces_are_fresh_to_b)). fof(can_generate_more_fresh_intruder_nonces, axiom, ![X1]:(fresh_intruder_nonce(X1)=>fresh_intruder_nonce(generate_intruder_nonce(X1))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', can_generate_more_fresh_intruder_nonces)). fof(intruder_composes_quadruples, axiom, ![X1, X2, X3, X4]:((((intruder_message(X1)&intruder_message(X2))&intruder_message(X3))&intruder_message(X4))=>intruder_message(quadruple(X1,X2,X3,X4))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_composes_quadruples)). fof(intruder_interception, axiom, ![X1, X2, X3]:(((intruder_message(encrypt(X1,X2))&intruder_holds(key(X2,X3)))&party_of_protocol(X3))=>intruder_message(X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_interception)). fof(intruder_decomposes_quadruples, axiom, ![X1, X2, X3, X4]:(intruder_message(quadruple(X1,X2,X3,X4))=>(((intruder_message(X1)&intruder_message(X2))&intruder_message(X3))&intruder_message(X4))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_decomposes_quadruples)). fof(nothing_is_a_nonce_and_a_key, axiom, ![X1]:~((a_key(X1)&a_nonce(X1))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', nothing_is_a_nonce_and_a_key)). fof(generated_keys_are_not_nonces, axiom, ![X1]:~(a_nonce(generate_key(X1))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', generated_keys_are_not_nonces)). fof(an_intruder_nonce_is_a_fresh_intruder_nonce, axiom, fresh_intruder_nonce(an_intruder_nonce), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', an_intruder_nonce_is_a_fresh_intruder_nonce)). fof(generated_times_and_nonces_are_nonces, axiom, ![X1]:(a_nonce(generate_expiration_time(X1))&a_nonce(generate_b_nonce(X1))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', generated_times_and_nonces_are_nonces)). fof(b_hold_key_bt_for_t, axiom, b_holds(key(bt,t)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', b_hold_key_bt_for_t)). fof(a_holds_key_at_for_t, axiom, a_holds(key(at,t)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', a_holds_key_at_for_t)). fof(c_0_33, plain, ![X19, X20, X21, X22, X23, X24, X25]:(~message(sent(X19,t,triple(X19,X20,encrypt(triple(X21,X22,X23),X24))))|~t_holds(key(X24,X19))|~t_holds(key(X25,X21))|~a_nonce(X22)|message(sent(t,X21,triple(encrypt(quadruple(X19,X22,generate_key(X22),X23),X25),encrypt(triple(X21,generate_key(X22),X23),X24),X20)))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[server_t_generates_key])])). fof(c_0_34, plain, ![X14, X15]:((message(sent(b,t,triple(b,generate_b_nonce(X15),encrypt(triple(X14,X15,generate_expiration_time(X15)),bt))))|(~message(sent(X14,b,pair(X14,X15)))|~fresh_to_b(X15)))&(b_stored(pair(X14,X15))|(~message(sent(X14,b,pair(X14,X15)))|~fresh_to_b(X15)))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[b_creates_freash_nonces_in_time])])])). cnf(c_0_35, plain, (message(sent(t,X3,triple(encrypt(quadruple(X1,X4,generate_key(X4),X5),X7),encrypt(triple(X3,generate_key(X4),X5),X6),X2)))|~message(sent(X1,t,triple(X1,X2,encrypt(triple(X3,X4,X5),X6))))|~t_holds(key(X6,X1))|~t_holds(key(X7,X3))|~a_nonce(X4)), inference(split_conjunct,[status(thm)],[c_0_33]), ['final']). cnf(c_0_36, plain, (t_holds(key(at,a))), inference(split_conjunct,[status(thm)],[t_holds_key_at_for_a]), ['final']). fof(c_0_37, plain, ![X26, X27, X28]:(~message(sent(X26,X27,X28))|intruder_message(X28)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_can_record])])). cnf(c_0_38, plain, (message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X2,X1,generate_expiration_time(X1)),bt))))|~message(sent(X2,b,pair(X2,X1)))|~fresh_to_b(X1)), inference(split_conjunct,[status(thm)],[c_0_34]), ['final']). cnf(c_0_39, plain, (message(sent(a,b,pair(a,an_a_nonce)))), inference(split_conjunct,[status(thm)],[a_sent_message_i_to_b]), ['final']). cnf(c_0_40, plain, (fresh_to_b(an_a_nonce)), inference(split_conjunct,[status(thm)],[nonce_a_is_fresh_to_b]), ['final']). fof(c_0_41, plain, ![X8, X9, X10, X11, X12, X13]:((message(sent(a,X12,pair(X11,encrypt(X8,X10))))|(~message(sent(t,a,triple(encrypt(quadruple(X12,X13,X10,X9),at),X11,X8)))|~a_stored(pair(X12,X13))))&(a_holds(key(X10,X12))|(~message(sent(t,a,triple(encrypt(quadruple(X12,X13,X10,X9),at),X11,X8)))|~a_stored(pair(X12,X13))))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[a_forwards_secure])])])). cnf(c_0_42, plain, (message(sent(t,a,triple(encrypt(quadruple(X1,X2,generate_key(X2),X3),at),encrypt(triple(a,generate_key(X2),X3),X4),X5)))|~a_nonce(X2)|~t_holds(key(X4,X1))|~message(sent(X1,t,triple(X1,X5,encrypt(triple(a,X2,X3),X4))))), inference(spm,[status(thm)],[c_0_35, c_0_36]), ['final']). cnf(c_0_43, plain, (t_holds(key(bt,b))), inference(split_conjunct,[status(thm)],[t_holds_key_bt_for_b]), ['final']). fof(c_0_44, plain, ![X50, X51, X52]:(~intruder_message(X50)|~party_of_protocol(X51)|~party_of_protocol(X52)|message(sent(X51,X52,X50))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_message_sent])])). fof(c_0_45, plain, ![X31, X32, X33]:(((intruder_message(X31)|~intruder_message(triple(X31,X32,X33)))&(intruder_message(X32)|~intruder_message(triple(X31,X32,X33))))&(intruder_message(X33)|~intruder_message(triple(X31,X32,X33)))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_decomposes_triples])])])). cnf(c_0_46, plain, (intruder_message(X3)|~message(sent(X1,X2,X3))), inference(split_conjunct,[status(thm)],[c_0_37]), ['final']). cnf(c_0_47, plain, (message(sent(b,t,triple(b,generate_b_nonce(an_a_nonce),encrypt(triple(a,an_a_nonce,generate_expiration_time(an_a_nonce)),bt))))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_38, c_0_39]), c_0_40])]), ['final']). cnf(c_0_48, plain, (message(sent(a,X1,pair(X2,encrypt(X3,X4))))|~message(sent(t,a,triple(encrypt(quadruple(X1,X5,X4,X6),at),X2,X3)))|~a_stored(pair(X1,X5))), inference(split_conjunct,[status(thm)],[c_0_41]), ['final']). cnf(c_0_49, plain, (a_stored(pair(b,an_a_nonce))), inference(split_conjunct,[status(thm)],[a_stored_message_i]), ['final']). cnf(c_0_50, plain, (message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),bt),X3)))|~a_nonce(X1)|~message(sent(b,t,triple(b,X3,encrypt(triple(a,X1,X2),bt))))), inference(spm,[status(thm)],[c_0_42, c_0_43]), ['final']). cnf(c_0_51, plain, (a_nonce(an_a_nonce)), inference(split_conjunct,[status(thm)],[an_a_nonce_is_a_nonce]), ['final']). cnf(c_0_52, plain, (b_stored(pair(X1,X2))|~message(sent(X1,b,pair(X1,X2)))|~fresh_to_b(X2)), inference(split_conjunct,[status(thm)],[c_0_34]), ['final']). cnf(c_0_53, plain, (message(sent(X2,X3,X1))|~intruder_message(X1)|~party_of_protocol(X2)|~party_of_protocol(X3)), inference(split_conjunct,[status(thm)],[c_0_44]), ['final']). cnf(c_0_54, plain, (party_of_protocol(b)), inference(split_conjunct,[status(thm)],[b_is_party_of_protocol]), ['final']). fof(c_0_55, plain, ![X38, X39]:(~intruder_message(X38)|~intruder_message(X39)|intruder_message(pair(X38,X39))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_composes_pairs])])). cnf(c_0_56, plain, (party_of_protocol(t)), inference(split_conjunct,[status(thm)],[t_is_party_of_protocol]), ['final']). fof(c_0_57, plain, ![X40, X41, X42]:(~intruder_message(X40)|~intruder_message(X41)|~intruder_message(X42)|intruder_message(triple(X40,X41,X42))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_composes_triples])])). cnf(c_0_58, plain, (intruder_message(X1)|~intruder_message(triple(X1,X2,X3))), inference(split_conjunct,[status(thm)],[c_0_45]), ['final']). cnf(c_0_59, plain, (intruder_message(triple(b,generate_b_nonce(an_a_nonce),encrypt(triple(a,an_a_nonce,generate_expiration_time(an_a_nonce)),bt)))), inference(spm,[status(thm)],[c_0_46, c_0_47]), ['final']). cnf(c_0_60, plain, (message(sent(a,b,pair(X1,encrypt(X2,X3))))|~message(sent(t,a,triple(encrypt(quadruple(b,an_a_nonce,X3,X4),at),X1,X2)))), inference(spm,[status(thm)],[c_0_48, c_0_49]), ['final']). cnf(c_0_61, plain, (party_of_protocol(a)), inference(split_conjunct,[status(thm)],[a_is_party_of_protocol]), ['final']). cnf(c_0_62, plain, (message(sent(t,a,triple(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at),encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),generate_b_nonce(an_a_nonce))))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_50, c_0_47]), c_0_51])]), ['final']). fof(c_0_63, plain, ![X16, X17, X18]:(~message(sent(X17,b,pair(encrypt(triple(X17,X16,generate_expiration_time(X18)),bt),encrypt(generate_b_nonce(X18),X16))))|~a_key(X16)|~b_stored(pair(X17,X18))|b_holds(key(X16,X17))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[b_accepts_secure_session_key])])). cnf(c_0_64, plain, (b_stored(pair(X1,X2))|~intruder_message(pair(X1,X2))|~fresh_to_b(X2)|~party_of_protocol(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_52, c_0_53]), c_0_54])]), ['final']). cnf(c_0_65, plain, (intruder_message(pair(X1,X2))|~intruder_message(X1)|~intruder_message(X2)), inference(split_conjunct,[status(thm)],[c_0_55]), ['final']). fof(c_0_66, plain, ![X29, X30]:((intruder_message(X29)|~intruder_message(pair(X29,X30)))&(intruder_message(X30)|~intruder_message(pair(X29,X30)))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_decomposes_pairs])])])). cnf(c_0_67, plain, (message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),bt),X3)))|~intruder_message(triple(b,X3,encrypt(triple(a,X1,X2),bt)))|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_50, c_0_53]), c_0_56]), c_0_54])]), ['final']). cnf(c_0_68, plain, (intruder_message(triple(X1,X2,X3))|~intruder_message(X1)|~intruder_message(X2)|~intruder_message(X3)), inference(split_conjunct,[status(thm)],[c_0_57]), ['final']). cnf(c_0_69, plain, (intruder_message(b)), inference(spm,[status(thm)],[c_0_58, c_0_59]), ['final']). cnf(c_0_70, plain, (intruder_message(X1)|~intruder_message(triple(X2,X3,X1))), inference(split_conjunct,[status(thm)],[c_0_45]), ['final']). cnf(c_0_71, plain, (message(sent(a,b,pair(X1,encrypt(X2,X3))))|~intruder_message(triple(encrypt(quadruple(b,an_a_nonce,X3,X4),at),X1,X2))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_60, c_0_53]), c_0_61]), c_0_56])]), ['final']). cnf(c_0_72, plain, (intruder_message(triple(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at),encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),generate_b_nonce(an_a_nonce)))), inference(spm,[status(thm)],[c_0_46, c_0_62]), ['final']). cnf(c_0_73, plain, (message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X2,X1,generate_expiration_time(X1)),bt))))|~intruder_message(pair(X2,X1))|~fresh_to_b(X1)|~party_of_protocol(X2)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_38, c_0_53]), c_0_54])]), ['final']). cnf(c_0_74, plain, (b_holds(key(X2,X1))|~message(sent(X1,b,pair(encrypt(triple(X1,X2,generate_expiration_time(X3)),bt),encrypt(generate_b_nonce(X3),X2))))|~a_key(X2)|~b_stored(pair(X1,X3))), inference(split_conjunct,[status(thm)],[c_0_63]), ['final']). cnf(c_0_75, plain, (b_stored(pair(X1,X2))|~intruder_message(X2)|~intruder_message(X1)|~fresh_to_b(X2)|~party_of_protocol(X1)), inference(spm,[status(thm)],[c_0_64, c_0_65]), ['final']). fof(c_0_76, plain, ![X55, X56, X57]:(~intruder_message(X55)|~intruder_holds(key(X56,X57))|~party_of_protocol(X57)|intruder_message(encrypt(X55,X56))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_key_encrypts])])). fof(c_0_77, plain, ![X53, X54]:(~intruder_message(X53)|~party_of_protocol(X54)|intruder_holds(key(X53,X54))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_holds_key])])). cnf(c_0_78, plain, (intruder_message(X1)|~intruder_message(pair(X1,X2))), inference(split_conjunct,[status(thm)],[c_0_66]), ['final']). cnf(c_0_79, plain, (intruder_message(pair(a,an_a_nonce))), inference(spm,[status(thm)],[c_0_46, c_0_39]), ['final']). cnf(c_0_80, plain, (message(sent(t,b,triple(encrypt(quadruple(X1,X2,generate_key(X2),X3),bt),encrypt(triple(b,generate_key(X2),X3),X4),X5)))|~a_nonce(X2)|~t_holds(key(X4,X1))|~message(sent(X1,t,triple(X1,X5,encrypt(triple(b,X2,X3),X4))))), inference(spm,[status(thm)],[c_0_35, c_0_43]), ['final']). cnf(c_0_81, plain, (b_stored(pair(a,an_a_nonce))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_52, c_0_39]), c_0_40])]), ['final']). cnf(c_0_82, plain, (message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),bt),X3)))|~intruder_message(encrypt(triple(a,X1,X2),bt))|~intruder_message(X3)|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_67, c_0_68]), c_0_69])]), ['final']). cnf(c_0_83, plain, (intruder_message(encrypt(triple(a,an_a_nonce,generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_70, c_0_59]), ['final']). cnf(c_0_84, plain, (message(sent(a,b,pair(X1,encrypt(X2,X3))))|~intruder_message(encrypt(quadruple(b,an_a_nonce,X3,X4),at))|~intruder_message(X2)|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_71, c_0_68]), ['final']). cnf(c_0_85, plain, (intruder_message(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at))), inference(spm,[status(thm)],[c_0_58, c_0_72]), ['final']). cnf(c_0_86, plain, (message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X2,X1,generate_expiration_time(X1)),bt))))|~intruder_message(X1)|~intruder_message(X2)|~fresh_to_b(X1)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_73, c_0_65]), ['final']). cnf(c_0_87, plain, (b_holds(key(X1,X2))|~intruder_message(X3)|~intruder_message(X2)|~a_key(X1)|~fresh_to_b(X3)|~message(sent(X2,b,pair(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt),encrypt(generate_b_nonce(X3),X1))))|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_74, c_0_75]), ['final']). cnf(c_0_88, plain, (intruder_message(encrypt(X1,X2))|~intruder_message(X1)|~intruder_holds(key(X2,X3))|~party_of_protocol(X3)), inference(split_conjunct,[status(thm)],[c_0_76]), ['final']). cnf(c_0_89, plain, (intruder_holds(key(X1,X2))|~intruder_message(X1)|~party_of_protocol(X2)), inference(split_conjunct,[status(thm)],[c_0_77]), ['final']). cnf(c_0_90, plain, (intruder_message(a)), inference(spm,[status(thm)],[c_0_78, c_0_79]), ['final']). cnf(c_0_91, plain, (message(sent(a,b,pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))))), inference(spm,[status(thm)],[c_0_60, c_0_62]), ['final']). cnf(c_0_92, plain, (message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),bt),X3)))|~a_nonce(X1)|~message(sent(b,t,triple(b,X3,encrypt(triple(b,X1,X2),bt))))), inference(spm,[status(thm)],[c_0_80, c_0_43]), ['final']). cnf(c_0_93, plain, (b_holds(key(X1,a))|~a_key(X1)|~message(sent(a,b,pair(encrypt(triple(a,X1,generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),X1))))), inference(spm,[status(thm)],[c_0_74, c_0_81]), ['final']). cnf(c_0_94, plain, (a_holds(key(X1,X2))|~message(sent(t,a,triple(encrypt(quadruple(X2,X3,X1,X4),at),X5,X6)))|~a_stored(pair(X2,X3))), inference(split_conjunct,[status(thm)],[c_0_41]), ['final']). cnf(c_0_95, plain, (message(sent(t,a,triple(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at),encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),X1)))|~intruder_message(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_82, c_0_83]), c_0_51])]), ['final']). cnf(c_0_96, plain, (message(sent(a,b,pair(X1,encrypt(X2,generate_key(an_a_nonce)))))|~intruder_message(X2)|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_84, c_0_85]), ['final']). cnf(c_0_97, plain, (message(sent(t,a,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),at),X3)))|~a_nonce(X1)|~message(sent(a,t,triple(a,X3,encrypt(triple(a,X1,X2),at))))), inference(spm,[status(thm)],[c_0_42, c_0_36]), ['final']). cnf(c_0_98, plain, (intruder_message(triple(b,generate_b_nonce(X1),encrypt(triple(X2,X1,generate_expiration_time(X1)),bt)))|~intruder_message(X1)|~intruder_message(X2)|~fresh_to_b(X1)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_46, c_0_86]), ['final']). cnf(c_0_99, plain, (b_holds(key(X1,X2))|~intruder_message(pair(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt),encrypt(generate_b_nonce(X3),X1)))|~intruder_message(X3)|~intruder_message(X2)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_87, c_0_53]), c_0_54])]), ['final']). cnf(c_0_100, plain, (intruder_message(encrypt(X1,X2))|~intruder_message(X1)|~intruder_message(X2)|~party_of_protocol(X3)), inference(spm,[status(thm)],[c_0_88, c_0_89])). cnf(c_0_101, plain, (intruder_message(X1)|~intruder_message(triple(X2,X1,X3))), inference(split_conjunct,[status(thm)],[c_0_45]), ['final']). cnf(c_0_102, plain, (message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),at),encrypt(triple(a,generate_key(X1),generate_expiration_time(X1)),bt),generate_b_nonce(X1))))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_50, c_0_86]), c_0_90]), c_0_61])]), ['final']). fof(c_0_103, plain, ![X61]:a_key(generate_key(X61)), inference(variable_rename,[status(thm)],[generated_keys_are_keys])). cnf(c_0_104, plain, (intruder_message(X1)|~intruder_message(pair(X2,X1))), inference(split_conjunct,[status(thm)],[c_0_66]), ['final']). cnf(c_0_105, plain, (intruder_message(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce))))), inference(spm,[status(thm)],[c_0_46, c_0_91]), ['final']). cnf(c_0_106, plain, (message(sent(t,b,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),at),X3)))|~a_nonce(X1)|~message(sent(a,t,triple(a,X3,encrypt(triple(b,X1,X2),at))))), inference(spm,[status(thm)],[c_0_80, c_0_36]), ['final']). cnf(c_0_107, plain, (message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),bt),X3)))|~intruder_message(triple(b,X3,encrypt(triple(b,X1,X2),bt)))|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_92, c_0_53]), c_0_56]), c_0_54])]), ['final']). cnf(c_0_108, plain, (message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),bt),encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt),generate_b_nonce(X1))))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_92, c_0_86]), c_0_69]), c_0_54])]), ['final']). cnf(c_0_109, plain, (b_holds(key(X1,a))|~intruder_message(pair(encrypt(triple(a,X1,generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),X1)))|~a_key(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_93, c_0_53]), c_0_54]), c_0_61])]), ['final']). cnf(c_0_110, plain, (a_holds(key(X1,b))|~message(sent(t,a,triple(encrypt(quadruple(b,an_a_nonce,X1,X2),at),X3,X4)))), inference(spm,[status(thm)],[c_0_94, c_0_49]), ['final']). fof(c_0_111, plain, ![X63]:((fresh_to_b(X63)|~fresh_intruder_nonce(X63))&(intruder_message(X63)|~fresh_intruder_nonce(X63))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[fresh_intruder_nonces_are_fresh_to_b])])])). cnf(c_0_112, plain, (message(sent(a,b,pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(X1,generate_key(an_a_nonce)))))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_60, c_0_95]), ['final']). cnf(c_0_113, plain, (intruder_message(pair(X1,encrypt(X2,generate_key(an_a_nonce))))|~intruder_message(X2)|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_46, c_0_96]), ['final']). cnf(c_0_114, plain, (message(sent(t,a,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),at),X3)))|~intruder_message(triple(a,X3,encrypt(triple(a,X1,X2),at)))|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_97, c_0_53]), c_0_56]), c_0_61])]), ['final']). cnf(c_0_115, plain, (intruder_message(encrypt(triple(X1,X2,generate_expiration_time(X2)),bt))|~intruder_message(X2)|~intruder_message(X1)|~fresh_to_b(X2)|~party_of_protocol(X1)), inference(spm,[status(thm)],[c_0_70, c_0_98]), ['final']). cnf(c_0_116, plain, (b_holds(key(X1,X2))|~intruder_message(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt))|~intruder_message(encrypt(generate_b_nonce(X3),X1))|~intruder_message(X3)|~intruder_message(X2)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_99, c_0_65]), ['final']). cnf(c_0_117, plain, (intruder_message(encrypt(X1,X2))|~intruder_message(X1)|~intruder_message(X2)), inference(spm,[status(thm)],[c_0_100, c_0_54]), ['final']). cnf(c_0_118, plain, (intruder_message(generate_b_nonce(X1))|~intruder_message(X1)|~intruder_message(X2)|~fresh_to_b(X1)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_101, c_0_98]), ['final']). cnf(c_0_119, plain, (intruder_message(triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),at),encrypt(triple(a,generate_key(X1),generate_expiration_time(X1)),bt),generate_b_nonce(X1)))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_46, c_0_102]), ['final']). cnf(c_0_120, plain, (a_key(generate_key(X1))), inference(split_conjunct,[status(thm)],[c_0_103]), ['final']). cnf(c_0_121, plain, (intruder_message(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))), inference(spm,[status(thm)],[c_0_104, c_0_105]), ['final']). cnf(c_0_122, plain, (intruder_message(an_a_nonce)), inference(spm,[status(thm)],[c_0_104, c_0_79]), ['final']). cnf(c_0_123, plain, (message(sent(t,b,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),at),X3)))|~intruder_message(triple(a,X3,encrypt(triple(b,X1,X2),at)))|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_106, c_0_53]), c_0_56]), c_0_61])]), ['final']). cnf(c_0_124, plain, (message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),bt),X3)))|~intruder_message(encrypt(triple(b,X1,X2),bt))|~intruder_message(X3)|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_107, c_0_68]), c_0_69])]), ['final']). cnf(c_0_125, plain, (intruder_message(triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),bt),encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt),generate_b_nonce(X1)))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_46, c_0_108]), ['final']). cnf(c_0_126, plain, (b_holds(key(X1,a))|~intruder_message(encrypt(triple(a,X1,generate_expiration_time(an_a_nonce)),bt))|~intruder_message(encrypt(generate_b_nonce(an_a_nonce),X1))|~a_key(X1)), inference(spm,[status(thm)],[c_0_109, c_0_65]), ['final']). cnf(c_0_127, plain, (intruder_message(generate_b_nonce(an_a_nonce))), inference(spm,[status(thm)],[c_0_101, c_0_59]), ['final']). cnf(c_0_128, plain, (a_holds(key(X1,b))|~intruder_message(triple(encrypt(quadruple(b,an_a_nonce,X1,X2),at),X3,X4))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_110, c_0_53]), c_0_61]), c_0_56])]), ['final']). fof(c_0_129, plain, ![X62]:(~fresh_intruder_nonce(X62)|fresh_intruder_nonce(generate_intruder_nonce(X62))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[can_generate_more_fresh_intruder_nonces])])). cnf(c_0_130, plain, (message(sent(b,t,triple(b,generate_b_nonce(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce))),encrypt(triple(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)),generate_expiration_time(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))),bt))))|~fresh_to_b(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_73, c_0_105]), ['final']). cnf(c_0_131, plain, (fresh_to_b(X1)|~fresh_intruder_nonce(X1)), inference(split_conjunct,[status(thm)],[c_0_111]), ['final']). cnf(c_0_132, plain, (intruder_message(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(X1,generate_key(an_a_nonce))))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_46, c_0_112]), ['final']). cnf(c_0_133, plain, (message(sent(b,t,triple(b,generate_b_nonce(encrypt(X1,generate_key(an_a_nonce))),encrypt(triple(X2,encrypt(X1,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X1,generate_key(an_a_nonce)))),bt))))|~intruder_message(X1)|~intruder_message(X2)|~fresh_to_b(encrypt(X1,generate_key(an_a_nonce)))|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_73, c_0_113]), ['final']). cnf(c_0_134, plain, (message(sent(t,a,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),at),X3)))|~intruder_message(encrypt(triple(a,X1,X2),at))|~intruder_message(X3)|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_114, c_0_68]), c_0_90])]), ['final']). cnf(c_0_135, plain, (message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),at),encrypt(triple(a,generate_key(X1),generate_expiration_time(X1)),bt),X2)))|~intruder_message(X2)|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_82, c_0_115]), c_0_90]), c_0_61])]), ['final']). cnf(c_0_136, plain, (message(sent(b,t,triple(b,generate_b_nonce(encrypt(X1,generate_key(an_a_nonce))),encrypt(triple(a,encrypt(X1,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X1,generate_key(an_a_nonce)))),bt))))|~intruder_message(X1)|~fresh_to_b(encrypt(X1,generate_key(an_a_nonce)))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_38, c_0_96]), c_0_90])]), ['final']). cnf(c_0_137, plain, (b_stored(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce))))|~fresh_to_b(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_64, c_0_105]), ['final']). cnf(c_0_138, plain, (b_holds(key(X1,X2))|~intruder_message(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt))|~intruder_message(X3)|~intruder_message(X2)|~intruder_message(X1)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)), inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_116, c_0_117]), c_0_118]), ['final']). cnf(c_0_139, plain, (intruder_message(encrypt(triple(a,generate_key(X1),generate_expiration_time(X1)),bt))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_101, c_0_119]), ['final']). cnf(c_0_140, plain, (b_holds(key(generate_key(an_a_nonce),X1))|~intruder_message(encrypt(triple(X1,generate_key(an_a_nonce),generate_expiration_time(X2)),bt))|~intruder_message(X2)|~intruder_message(X1)|~fresh_to_b(X2)|~party_of_protocol(X1)), inference(csr,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_99, c_0_113]), c_0_120])]), c_0_118]), ['final']). cnf(c_0_141, plain, (b_stored(pair(X1,encrypt(X2,generate_key(an_a_nonce))))|~intruder_message(X2)|~intruder_message(X1)|~fresh_to_b(encrypt(X2,generate_key(an_a_nonce)))|~party_of_protocol(X1)), inference(spm,[status(thm)],[c_0_64, c_0_113]), ['final']). cnf(c_0_142, plain, (b_stored(pair(a,encrypt(X1,generate_key(an_a_nonce))))|~intruder_message(X1)|~fresh_to_b(encrypt(X1,generate_key(an_a_nonce)))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_52, c_0_96]), c_0_90])]), ['final']). cnf(c_0_143, plain, (intruder_message(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)|~intruder_message(X2)), inference(spm,[status(thm)],[c_0_104, c_0_113])). cnf(c_0_144, plain, (b_holds(key(generate_key(an_a_nonce),X1))|~intruder_message(encrypt(triple(X1,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))|~intruder_message(X1)|~party_of_protocol(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_116, c_0_121]), c_0_122]), c_0_120]), c_0_40])]), ['final']). cnf(c_0_145, plain, (message(sent(t,b,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),at),X3)))|~intruder_message(encrypt(triple(b,X1,X2),at))|~intruder_message(X3)|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_123, c_0_68]), c_0_90])]), ['final']). cnf(c_0_146, plain, (message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),bt),encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt),X2)))|~intruder_message(X2)|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_124, c_0_115]), c_0_69]), c_0_54])]), ['final']). cnf(c_0_147, plain, (intruder_message(encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_101, c_0_125]), ['final']). cnf(c_0_148, plain, (b_holds(key(X1,a))|~intruder_message(encrypt(triple(a,X1,generate_expiration_time(an_a_nonce)),bt))|~intruder_message(X1)|~a_key(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_126, c_0_117]), c_0_127])]), ['final']). cnf(c_0_149, plain, (a_holds(key(X1,b))|~intruder_message(encrypt(quadruple(b,an_a_nonce,X1,X2),at))|~intruder_message(X3)|~intruder_message(X4)), inference(spm,[status(thm)],[c_0_128, c_0_68]), ['final']). fof(c_0_150, plain, ![X43, X44, X45, X46]:(~intruder_message(X43)|~intruder_message(X44)|~intruder_message(X45)|~intruder_message(X46)|intruder_message(quadruple(X43,X44,X45,X46))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_composes_quadruples])])). fof(c_0_151, plain, ![X47, X48, X49]:(~intruder_message(encrypt(X47,X48))|~intruder_holds(key(X48,X49))|~party_of_protocol(X49)|intruder_message(X48)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_interception])])). fof(c_0_152, plain, ![X34, X35, X36, X37]:((((intruder_message(X34)|~intruder_message(quadruple(X34,X35,X36,X37)))&(intruder_message(X35)|~intruder_message(quadruple(X34,X35,X36,X37))))&(intruder_message(X36)|~intruder_message(quadruple(X34,X35,X36,X37))))&(intruder_message(X37)|~intruder_message(quadruple(X34,X35,X36,X37)))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_decomposes_quadruples])])])). cnf(c_0_153, plain, (intruder_message(X1)|~fresh_intruder_nonce(X1)), inference(split_conjunct,[status(thm)],[c_0_111]), ['final']). cnf(c_0_154, plain, (fresh_intruder_nonce(generate_intruder_nonce(X1))|~fresh_intruder_nonce(X1)), inference(split_conjunct,[status(thm)],[c_0_129]), ['final']). fof(c_0_155, plain, ![X60]:(~a_key(X60)|~a_nonce(X60)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[nothing_is_a_nonce_and_a_key])])). fof(c_0_156, plain, ![X58]:~a_nonce(generate_key(X58)), inference(variable_rename,[status(thm)],[inference(fof_simplification,[status(thm)],[generated_keys_are_not_nonces])])). cnf(c_0_157, plain, (fresh_intruder_nonce(an_intruder_nonce)), inference(split_conjunct,[status(thm)],[an_intruder_nonce_is_a_fresh_intruder_nonce]), ['final']). fof(c_0_158, plain, ![X59]:(a_nonce(generate_expiration_time(X59))&a_nonce(generate_b_nonce(X59))), inference(variable_rename,[status(thm)],[generated_times_and_nonces_are_nonces])). cnf(c_0_159, plain, (message(sent(b,t,triple(b,generate_b_nonce(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce))),encrypt(triple(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)),generate_expiration_time(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))),bt))))|~fresh_intruder_nonce(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_130, c_0_131]), ['final']). cnf(c_0_160, plain, (message(sent(b,t,triple(b,generate_b_nonce(encrypt(X1,generate_key(an_a_nonce))),encrypt(triple(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(X1,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X1,generate_key(an_a_nonce)))),bt))))|~intruder_message(X1)|~fresh_to_b(encrypt(X1,generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_73, c_0_132]), ['final']). cnf(c_0_161, plain, (message(sent(b,t,triple(b,generate_b_nonce(encrypt(X1,generate_key(an_a_nonce))),encrypt(triple(X2,encrypt(X1,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X1,generate_key(an_a_nonce)))),bt))))|~fresh_intruder_nonce(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)|~intruder_message(X2)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_133, c_0_131]), ['final']). cnf(c_0_162, plain, (message(sent(t,a,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),at),X3)))|~intruder_message(triple(a,X1,X2))|~intruder_message(at)|~intruder_message(X3)|~a_nonce(X1)), inference(spm,[status(thm)],[c_0_134, c_0_117]), ['final']). cnf(c_0_163, plain, (message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),bt),X3)))|~intruder_message(triple(a,X1,X2))|~intruder_message(bt)|~intruder_message(X3)|~a_nonce(X1)), inference(spm,[status(thm)],[c_0_82, c_0_117]), ['final']). cnf(c_0_164, plain, (intruder_message(triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),at),encrypt(triple(a,generate_key(X1),generate_expiration_time(X1)),bt),X2))|~intruder_message(X2)|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_46, c_0_135]), ['final']). cnf(c_0_165, plain, (b_stored(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(X1,generate_key(an_a_nonce))))|~intruder_message(X1)|~fresh_to_b(encrypt(X1,generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_64, c_0_132]), ['final']). cnf(c_0_166, plain, (intruder_message(triple(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at),encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),X1))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_46, c_0_95]), ['final']). cnf(c_0_167, plain, (message(sent(b,t,triple(b,generate_b_nonce(encrypt(X1,generate_key(an_a_nonce))),encrypt(triple(a,encrypt(X1,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X1,generate_key(an_a_nonce)))),bt))))|~fresh_intruder_nonce(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_136, c_0_131]), ['final']). cnf(c_0_168, plain, (b_stored(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce))))|~fresh_intruder_nonce(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_137, c_0_131]), ['final']). cnf(c_0_169, plain, (intruder_message(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),at))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_58, c_0_119]), ['final']). cnf(c_0_170, plain, (b_holds(key(generate_key(X1),a))|~intruder_message(generate_key(X1))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_138, c_0_139]), c_0_90]), c_0_120]), c_0_61])]), ['final']). cnf(c_0_171, plain, (b_holds(key(generate_key(an_a_nonce),X1))|~intruder_message(triple(X1,generate_key(an_a_nonce),generate_expiration_time(X2)))|~intruder_message(bt)|~intruder_message(X2)|~fresh_to_b(X2)|~party_of_protocol(X1)), inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_140, c_0_117]), c_0_58]), ['final']). cnf(c_0_172, plain, (b_holds(key(generate_key(an_a_nonce),X1))|~intruder_message(generate_key(an_a_nonce))|~intruder_message(X1)|~fresh_to_b(generate_key(an_a_nonce))|~party_of_protocol(X1)), inference(spm,[status(thm)],[c_0_140, c_0_115]), ['final']). cnf(c_0_173, plain, (b_stored(pair(X1,encrypt(X2,generate_key(an_a_nonce))))|~fresh_intruder_nonce(encrypt(X2,generate_key(an_a_nonce)))|~intruder_message(X2)|~intruder_message(X1)|~party_of_protocol(X1)), inference(spm,[status(thm)],[c_0_141, c_0_131]), ['final']). cnf(c_0_174, plain, (b_stored(pair(a,encrypt(X1,generate_key(an_a_nonce))))|~fresh_intruder_nonce(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_142, c_0_131]), ['final']). cnf(c_0_175, plain, (intruder_message(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_143, c_0_72]), ['final']). cnf(c_0_176, plain, (b_holds(key(generate_key(an_a_nonce),X1))|~intruder_message(triple(X1,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)))|~intruder_message(bt)|~party_of_protocol(X1)), inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_144, c_0_117]), c_0_58]), ['final']). cnf(c_0_177, plain, (message(sent(t,b,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),at),X3)))|~intruder_message(triple(b,X1,X2))|~intruder_message(at)|~intruder_message(X3)|~a_nonce(X1)), inference(spm,[status(thm)],[c_0_145, c_0_117]), ['final']). cnf(c_0_178, plain, (message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),bt),X3)))|~intruder_message(triple(b,X1,X2))|~intruder_message(bt)|~intruder_message(X3)|~a_nonce(X1)), inference(spm,[status(thm)],[c_0_124, c_0_117]), ['final']). cnf(c_0_179, plain, (intruder_message(triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),bt),encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt),X2))|~intruder_message(X2)|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_46, c_0_146]), ['final']). cnf(c_0_180, plain, (intruder_message(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),bt))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_58, c_0_125]), ['final']). cnf(c_0_181, plain, (b_holds(key(generate_key(X1),b))|~intruder_message(generate_key(X1))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_138, c_0_147]), c_0_69]), c_0_120]), c_0_54])]), ['final']). cnf(c_0_182, plain, (intruder_message(generate_b_nonce(X1))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_70, c_0_125]), ['final']). cnf(c_0_183, plain, (b_holds(key(X1,X2))|~intruder_message(triple(X2,X1,generate_expiration_time(X3)))|~intruder_message(bt)|~intruder_message(X3)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)), inference(csr,[status(thm)],[inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_138, c_0_117]), c_0_101]), c_0_58]), ['final']). cnf(c_0_184, plain, (b_holds(key(X1,X2))|~intruder_message(X1)|~intruder_message(X2)|~a_key(X1)|~fresh_to_b(X1)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_138, c_0_115]), ['final']). cnf(c_0_185, plain, (message(sent(a,b,pair(X1,encrypt(X2,X3))))|~intruder_message(quadruple(b,an_a_nonce,X3,X4))|~intruder_message(at)|~intruder_message(X2)|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_84, c_0_117]), ['final']). cnf(c_0_186, plain, (b_holds(key(X1,a))|~intruder_message(triple(a,X1,generate_expiration_time(an_a_nonce)))|~intruder_message(bt)|~a_key(X1)), inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_148, c_0_117]), c_0_101]), ['final']). cnf(c_0_187, plain, (b_holds(key(an_a_nonce,a))|~a_key(an_a_nonce)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_148, c_0_83]), c_0_122])]), ['final']). cnf(c_0_188, plain, (a_holds(key(X1,b))|~intruder_message(quadruple(b,an_a_nonce,X1,X2))|~intruder_message(at)|~intruder_message(X3)|~intruder_message(X4)), inference(spm,[status(thm)],[c_0_149, c_0_117]), ['final']). cnf(c_0_189, plain, (intruder_message(quadruple(X1,X2,X3,X4))|~intruder_message(X1)|~intruder_message(X2)|~intruder_message(X3)|~intruder_message(X4)), inference(split_conjunct,[status(thm)],[c_0_150]), ['final']). cnf(c_0_190, plain, (intruder_message(X2)|~intruder_message(encrypt(X1,X2))|~intruder_holds(key(X2,X3))|~party_of_protocol(X3)), inference(split_conjunct,[status(thm)],[c_0_151]), ['final']). cnf(c_0_191, plain, (intruder_message(X1)|~intruder_message(quadruple(X1,X2,X3,X4))), inference(split_conjunct,[status(thm)],[c_0_152]), ['final']). cnf(c_0_192, plain, (intruder_message(X1)|~intruder_message(quadruple(X2,X1,X3,X4))), inference(split_conjunct,[status(thm)],[c_0_152]), ['final']). cnf(c_0_193, plain, (intruder_message(X1)|~intruder_message(quadruple(X2,X3,X1,X4))), inference(split_conjunct,[status(thm)],[c_0_152]), ['final']). cnf(c_0_194, plain, (intruder_message(X1)|~intruder_message(quadruple(X2,X3,X4,X1))), inference(split_conjunct,[status(thm)],[c_0_152]), ['final']). cnf(c_0_195, plain, (intruder_message(generate_intruder_nonce(X1))|~fresh_intruder_nonce(X1)), inference(spm,[status(thm)],[c_0_153, c_0_154]), ['final']). cnf(c_0_196, plain, (~a_key(X1)|~a_nonce(X1)), inference(split_conjunct,[status(thm)],[c_0_155]), ['final']). cnf(c_0_197, plain, (~a_nonce(generate_key(X1))), inference(split_conjunct,[status(thm)],[c_0_156]), ['final']). cnf(c_0_198, plain, (b_holds(key(generate_key(an_a_nonce),b))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_144, c_0_147]), c_0_69]), c_0_54]), c_0_122]), c_0_51]), c_0_40])]), ['final']). cnf(c_0_199, plain, (intruder_message(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_78, c_0_105]), ['final']). cnf(c_0_200, plain, (b_holds(key(generate_key(an_a_nonce),a))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_87, c_0_91]), c_0_122]), c_0_90]), c_0_120]), c_0_40]), c_0_61])]), ['final']). cnf(c_0_201, plain, (a_holds(key(generate_key(an_a_nonce),b))), inference(spm,[status(thm)],[c_0_110, c_0_62]), ['final']). cnf(c_0_202, plain, (b_holds(key(bt,t))), inference(split_conjunct,[status(thm)],[b_hold_key_bt_for_t]), ['final']). cnf(c_0_203, plain, (a_holds(key(at,t))), inference(split_conjunct,[status(thm)],[a_holds_key_at_for_t]), ['final']). cnf(c_0_204, plain, (intruder_message(an_intruder_nonce)), inference(spm,[status(thm)],[c_0_153, c_0_157]), ['final']). cnf(c_0_205, plain, (a_nonce(generate_expiration_time(X1))), inference(split_conjunct,[status(thm)],[c_0_158]), ['final']). cnf(c_0_206, plain, (a_nonce(generate_b_nonce(X1))), inference(split_conjunct,[status(thm)],[c_0_158]), ['final']). # SZS output end Saturation
# SZS output start CNFRefutation cnf(associativity, axiom, (multiply(multiply(X1,X2,X3),X4,multiply(X1,X2,X5))=multiply(X1,X2,multiply(X3,X4,X5))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/Axioms/BOO001-0.ax', associativity)). cnf(ternary_multiply_1, axiom, (multiply(X1,X2,X2)=X2), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/Axioms/BOO001-0.ax', ternary_multiply_1)). cnf(right_inverse, axiom, (multiply(X1,X2,inverse(X2))=X1), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/Axioms/BOO001-0.ax', right_inverse)). cnf(ternary_multiply_2, axiom, (multiply(X1,X1,X2)=X1), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/Axioms/BOO001-0.ax', ternary_multiply_2)). cnf(left_inverse, axiom, (multiply(inverse(X1),X1,X2)=X2), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/Axioms/BOO001-0.ax', left_inverse)). cnf(prove_inverse_is_self_cancelling, negated_conjecture, (inverse(inverse(a))!=a), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/BOO001-1.p', prove_inverse_is_self_cancelling)). cnf(c_0_6, axiom, (multiply(multiply(X1,X2,X3),X4,multiply(X1,X2,X5))=multiply(X1,X2,multiply(X3,X4,X5))), associativity). cnf(c_0_7, axiom, (multiply(X1,X2,X2)=X2), ternary_multiply_1). cnf(c_0_8, plain, (multiply(multiply(X1,X2,X3),X4,X2)=multiply(X1,X2,multiply(X3,X4,X2))), inference(spm,[status(thm)],[c_0_6, c_0_7])). cnf(c_0_9, axiom, (multiply(X1,X2,inverse(X2))=X1), right_inverse). cnf(c_0_10, plain, (multiply(X1,X2,X3)=multiply(X1,X3,multiply(inverse(X3),X2,X3))), inference(spm,[status(thm)],[c_0_8, c_0_9])). cnf(c_0_11, axiom, (multiply(X1,X1,X2)=X1), ternary_multiply_2). cnf(c_0_12, axiom, (multiply(inverse(X1),X1,X2)=X2), left_inverse). cnf(c_0_13, plain, (multiply(X1,inverse(X2),X2)=X1), inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_10, c_0_11]), c_0_9])). cnf(c_0_14, negated_conjecture, (inverse(inverse(a))!=a), prove_inverse_is_self_cancelling). cnf(c_0_15, plain, (inverse(inverse(X1))=X1), inference(spm,[status(thm)],[c_0_12, c_0_13])). cnf(c_0_16, negated_conjecture, ($false), inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_14, c_0_15])]), ['proof']). # SZS output end CNFRefutation
# SZS output start CNFRefutation fof(conj_thm_2Ebool_2ETRUTH, conjecture, $true, file('/Users/schulz/Desktop/HL400001_5.p', conj_thm_2Ebool_2ETRUTH)). fof(c_0_1, negated_conjecture, ~($true), inference(assume_negation,[status(cth)],[conj_thm_2Ebool_2ETRUTH])). fof(c_0_2, negated_conjecture, ~$true, inference(fof_simplification,[status(thm)],[c_0_1])). cnf(c_0_3, negated_conjecture, ($false), inference(split_conjunct,[status(thm)],[c_0_2])). cnf(c_0_4, negated_conjecture, ($false), inference(cn,[status(thm)],[c_0_3]), ['proof']). # SZS output end CNFRefutation
# SZS output start CNFRefutation tff(thm_2Ebool_2ETRUTH, conjecture, p(mono_2Ec_2Ebool_2ET_2E0), file('/Users/schulz/Desktop/HL400001_4.p', thm_2Ebool_2ETRUTH)). tff(reserved_2Eho_2Etruth, axiom, p(mono_2Ec_2Ebool_2ET_2E0), file('/Users/schulz/Desktop/Axioms/HL4002_4.ax', reserved_2Eho_2Etruth)). tff(c_0_2, negated_conjecture, ~(p(mono_2Ec_2Ebool_2ET_2E0)), inference(assume_negation,[status(cth)],[thm_2Ebool_2ETRUTH])). tff(c_0_3, negated_conjecture, ~p(mono_2Ec_2Ebool_2ET_2E0), inference(fof_simplification,[status(thm)],[c_0_2])). tcf(c_0_4, negated_conjecture, ~p(mono_2Ec_2Ebool_2ET_2E0), inference(split_conjunct,[status(thm)],[c_0_3])). tcf(c_0_5, plain, p(mono_2Ec_2Ebool_2ET_2E0), inference(split_conjunct,[status(thm)],[reserved_2Eho_2Etruth])). cnf(c_0_6, negated_conjecture, ($false), inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_4, c_0_5])]), ['proof']). # SZS output end CNFRefutation
# SZS output start CNFRefutation fof(conj_thm_2Ebool_2ETRUTH, conjecture, $true, file('/Users/schulz/Desktop/HL400001+5.p', conj_thm_2Ebool_2ETRUTH)). fof(c_0_1, negated_conjecture, ~($true), inference(assume_negation,[status(cth)],[conj_thm_2Ebool_2ETRUTH])). fof(c_0_2, negated_conjecture, ~$true, inference(fof_simplification,[status(thm)],[c_0_1])). cnf(c_0_3, negated_conjecture, ($false), inference(split_conjunct,[status(thm)],[c_0_2])). cnf(c_0_4, negated_conjecture, ($false), inference(cn,[status(thm)],[c_0_3]), ['proof']). # SZS output end CNFRefutation
# SZS output start CNFRefutation fof(thm_2Ebool_2ETRUTH, conjecture, p(s(tyop_2Emin_2Ebool,c_2Ebool_2ET_2E0)), file('/Users/schulz/Desktop/HL400001+4.p', thm_2Ebool_2ETRUTH)). fof(reserved_2Eho_2Etruth, axiom, p(s(tyop_2Emin_2Ebool,c_2Ebool_2ET_2E0)), file('/Users/schulz/Desktop/Axioms/HL4002+4.ax', reserved_2Eho_2Etruth)). fof(c_0_2, negated_conjecture, ~(p(s(tyop_2Emin_2Ebool,c_2Ebool_2ET_2E0))), inference(assume_negation,[status(cth)],[thm_2Ebool_2ETRUTH])). fof(c_0_3, negated_conjecture, ~p(s(tyop_2Emin_2Ebool,c_2Ebool_2ET_2E0)), inference(fof_simplification,[status(thm)],[c_0_2])). cnf(c_0_4, negated_conjecture, (~p(s(tyop_2Emin_2Ebool,c_2Ebool_2ET_2E0))), inference(split_conjunct,[status(thm)],[c_0_3])). cnf(c_0_5, plain, (p(s(tyop_2Emin_2Ebool,c_2Ebool_2ET_2E0))), inference(split_conjunct,[status(thm)],[reserved_2Eho_2Etruth])). cnf(c_0_6, negated_conjecture, ($false), inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_4, c_0_5])]), ['proof']). # SZS output end CNFRefutation
# SZS output start CNFRefutation fof(t4_xboole_0, lemma, ![X1, X2]:(~((~(disjoint(X1,X2))&![X3]:~(in(X3,set_intersection2(X1,X2)))))&~((?[X3]:in(X3,set_intersection2(X1,X2))&disjoint(X1,X2)))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', t4_xboole_0)). fof(t48_xboole_1, lemma, ![X1, X2]:set_difference(X1,set_difference(X1,X2))=set_intersection2(X1,X2), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', t48_xboole_1)). fof(t63_xboole_1, conjecture, ![X1, X2, X3]:((subset(X1,X2)&disjoint(X2,X3))=>disjoint(X1,X3)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', t63_xboole_1)). fof(d1_xboole_0, axiom, ![X1]:(X1=empty_set<=>![X2]:~(in(X2,X1))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', d1_xboole_0)). fof(d3_xboole_0, axiom, ![X1, X2, X3]:(X3=set_intersection2(X1,X2)<=>![X4]:(in(X4,X3)<=>(in(X4,X1)&in(X4,X2)))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', d3_xboole_0)). fof(d4_xboole_0, axiom, ![X1, X2, X3]:(X3=set_difference(X1,X2)<=>![X4]:(in(X4,X3)<=>(in(X4,X1)&~(in(X4,X2))))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', d4_xboole_0)). fof(t3_xboole_0, lemma, ![X1, X2]:(~((~(disjoint(X1,X2))&![X3]:~((in(X3,X1)&in(X3,X2)))))&~((?[X3]:(in(X3,X1)&in(X3,X2))&disjoint(X1,X2)))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', t3_xboole_0)). fof(l32_xboole_1, lemma, ![X1, X2]:(set_difference(X1,X2)=empty_set<=>subset(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', l32_xboole_1)). fof(d10_xboole_0, axiom, ![X1, X2]:(X1=X2<=>(subset(X1,X2)&subset(X2,X1))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', d10_xboole_0)). fof(t36_xboole_1, lemma, ![X1, X2]:subset(set_difference(X1,X2),X1), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', t36_xboole_1)). fof(t3_boole, axiom, ![X1]:set_difference(X1,empty_set)=X1, file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', t3_boole)). fof(c_0_11, lemma, ![X115, X116, X118, X119, X120]:((disjoint(X115,X116)|in(esk10_2(X115,X116),set_intersection2(X115,X116)))&(~in(X120,set_intersection2(X118,X119))|~disjoint(X118,X119))), inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[t4_xboole_0])])])])])])). fof(c_0_12, lemma, ![X112, X113]:set_difference(X112,set_difference(X112,X113))=set_intersection2(X112,X113), inference(variable_rename,[status(thm)],[t48_xboole_1])). fof(c_0_13, negated_conjecture, ~(![X1, X2, X3]:((subset(X1,X2)&disjoint(X2,X3))=>disjoint(X1,X3))), inference(assume_negation,[status(cth)],[t63_xboole_1])). cnf(c_0_14, lemma, (~in(X1,set_intersection2(X2,X3))|~disjoint(X2,X3)), inference(split_conjunct,[status(thm)],[c_0_11])). cnf(c_0_15, lemma, (set_difference(X1,set_difference(X1,X2))=set_intersection2(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_12])). fof(c_0_16, negated_conjecture, ((subset(esk11_0,esk12_0)&disjoint(esk12_0,esk13_0))&~disjoint(esk11_0,esk13_0)), inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_13])])])). cnf(c_0_17, lemma, (~disjoint(X2,X3)|~in(X1,set_difference(X2,set_difference(X2,X3)))), inference(rw,[status(thm)],[c_0_14, c_0_15])). cnf(c_0_18, negated_conjecture, (disjoint(esk12_0,esk13_0)), inference(split_conjunct,[status(thm)],[c_0_16])). fof(c_0_19, plain, ![X15, X16, X17]:((X15!=empty_set|~in(X16,X15))&(in(esk1_1(X17),X17)|X17=empty_set)), inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[d1_xboole_0])])])])])])). fof(c_0_20, plain, ![X34, X35, X36, X37, X38, X39, X40, X41]:((((in(X37,X34)|~in(X37,X36)|X36!=set_intersection2(X34,X35))&(in(X37,X35)|~in(X37,X36)|X36!=set_intersection2(X34,X35)))&(~in(X38,X34)|~in(X38,X35)|in(X38,X36)|X36!=set_intersection2(X34,X35)))&((~in(esk4_3(X39,X40,X41),X41)|(~in(esk4_3(X39,X40,X41),X39)|~in(esk4_3(X39,X40,X41),X40))|X41=set_intersection2(X39,X40))&((in(esk4_3(X39,X40,X41),X39)|in(esk4_3(X39,X40,X41),X41)|X41=set_intersection2(X39,X40))&(in(esk4_3(X39,X40,X41),X40)|in(esk4_3(X39,X40,X41),X41)|X41=set_intersection2(X39,X40))))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[d3_xboole_0])])])])])])). fof(c_0_21, plain, ![X43, X44, X45, X46, X47, X48, X49, X50]:((((in(X46,X43)|~in(X46,X45)|X45!=set_difference(X43,X44))&(~in(X46,X44)|~in(X46,X45)|X45!=set_difference(X43,X44)))&(~in(X47,X43)|in(X47,X44)|in(X47,X45)|X45!=set_difference(X43,X44)))&((~in(esk5_3(X48,X49,X50),X50)|(~in(esk5_3(X48,X49,X50),X48)|in(esk5_3(X48,X49,X50),X49))|X50=set_difference(X48,X49))&((in(esk5_3(X48,X49,X50),X48)|in(esk5_3(X48,X49,X50),X50)|X50=set_difference(X48,X49))&(~in(esk5_3(X48,X49,X50),X49)|in(esk5_3(X48,X49,X50),X50)|X50=set_difference(X48,X49))))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[d4_xboole_0])])])])])])])). fof(c_0_22, lemma, ![X101, X102, X104, X105, X106]:(((in(esk9_2(X101,X102),X101)|disjoint(X101,X102))&(in(esk9_2(X101,X102),X102)|disjoint(X101,X102)))&(~in(X106,X104)|~in(X106,X105)|~disjoint(X104,X105))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[t3_xboole_0])])])])])])])). fof(c_0_23, lemma, ![X63, X64]:((set_difference(X63,X64)!=empty_set|subset(X63,X64))&(~subset(X63,X64)|set_difference(X63,X64)=empty_set)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[l32_xboole_1])])). cnf(c_0_24, negated_conjecture, (~in(X1,set_difference(esk12_0,set_difference(esk12_0,esk13_0)))), inference(spm,[status(thm)],[c_0_17, c_0_18])). cnf(c_0_25, plain, (in(esk1_1(X1),X1)|X1=empty_set), inference(split_conjunct,[status(thm)],[c_0_19])). cnf(c_0_26, plain, (in(X1,X2)|~in(X1,X3)|X3!=set_intersection2(X4,X2)), inference(split_conjunct,[status(thm)],[c_0_20])). cnf(c_0_27, plain, (~in(X1,X2)|~in(X1,X3)|X3!=set_difference(X4,X2)), inference(split_conjunct,[status(thm)],[c_0_21])). cnf(c_0_28, negated_conjecture, (~disjoint(esk11_0,esk13_0)), inference(split_conjunct,[status(thm)],[c_0_16])). cnf(c_0_29, lemma, (in(esk9_2(X1,X2),X2)|disjoint(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_22])). fof(c_0_30, plain, ![X13, X14]:(((subset(X13,X14)|X13!=X14)&(subset(X14,X13)|X13!=X14))&(~subset(X13,X14)|~subset(X14,X13)|X13=X14)), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[d10_xboole_0])])])). cnf(c_0_31, lemma, (subset(X1,X2)|set_difference(X1,X2)!=empty_set), inference(split_conjunct,[status(thm)],[c_0_23])). cnf(c_0_32, negated_conjecture, (set_difference(esk12_0,set_difference(esk12_0,esk13_0))=empty_set), inference(spm,[status(thm)],[c_0_24, c_0_25])). fof(c_0_33, lemma, ![X94, X95]:subset(set_difference(X94,X95),X94), inference(variable_rename,[status(thm)],[t36_xboole_1])). cnf(c_0_34, plain, (in(X1,X2)|X3!=set_difference(X4,set_difference(X4,X2))|~in(X1,X3)), inference(rw,[status(thm)],[c_0_26, c_0_15])). cnf(c_0_35, lemma, (set_difference(X1,X2)=empty_set|~subset(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_23])). cnf(c_0_36, negated_conjecture, (subset(esk11_0,esk12_0)), inference(split_conjunct,[status(thm)],[c_0_16])). fof(c_0_37, plain, ![X100]:set_difference(X100,empty_set)=X100, inference(variable_rename,[status(thm)],[t3_boole])). cnf(c_0_38, plain, (~in(X1,set_difference(X2,X3))|~in(X1,X3)), inference(er,[status(thm)],[c_0_27])). cnf(c_0_39, negated_conjecture, (in(esk9_2(esk11_0,esk13_0),esk13_0)), inference(spm,[status(thm)],[c_0_28, c_0_29])). cnf(c_0_40, plain, (X1=X2|~subset(X1,X2)|~subset(X2,X1)), inference(split_conjunct,[status(thm)],[c_0_30])). cnf(c_0_41, lemma, (subset(esk12_0,set_difference(esk12_0,esk13_0))), inference(spm,[status(thm)],[c_0_31, c_0_32])). cnf(c_0_42, lemma, (subset(set_difference(X1,X2),X1)), inference(split_conjunct,[status(thm)],[c_0_33])). cnf(c_0_43, plain, (in(X1,X2)|~in(X1,set_difference(X3,set_difference(X3,X2)))), inference(er,[status(thm)],[c_0_34])). cnf(c_0_44, negated_conjecture, (set_difference(esk11_0,esk12_0)=empty_set), inference(spm,[status(thm)],[c_0_35, c_0_36])). cnf(c_0_45, plain, (set_difference(X1,empty_set)=X1), inference(split_conjunct,[status(thm)],[c_0_37])). cnf(c_0_46, lemma, (in(esk9_2(X1,X2),X1)|disjoint(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_22])). cnf(c_0_47, negated_conjecture, (~in(esk9_2(esk11_0,esk13_0),set_difference(X1,esk13_0))), inference(spm,[status(thm)],[c_0_38, c_0_39])). cnf(c_0_48, lemma, (set_difference(esk12_0,esk13_0)=esk12_0), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_40, c_0_41]), c_0_42])])). cnf(c_0_49, negated_conjecture, (in(X1,esk12_0)|~in(X1,esk11_0)), inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_43, c_0_44]), c_0_45])). cnf(c_0_50, negated_conjecture, (in(esk9_2(esk11_0,esk13_0),esk11_0)), inference(spm,[status(thm)],[c_0_28, c_0_46])). cnf(c_0_51, lemma, (~in(esk9_2(esk11_0,esk13_0),esk12_0)), inference(spm,[status(thm)],[c_0_47, c_0_48])). cnf(c_0_52, negated_conjecture, ($false), inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_49, c_0_50]), c_0_51]), ['proof']). # SZS output end CNFRefutation
# SZS output start Saturation fof(ax26, axiom, ![X1, X2]:(beverage(X1,X2)=>food(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax26)). fof(ax27, axiom, ![X1, X2]:(shake_beverage(X1,X2)=>beverage(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax27)). fof(ax15, axiom, ![X1, X2]:(relname(X1,X2)=>relation(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax15)). fof(ax16, axiom, ![X1, X2]:(forename(X1,X2)=>relname(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax16)). fof(ax25, axiom, ![X1, X2]:(food(X1,X2)=>substance_matter(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax25)). fof(co1, conjecture, ~(?[X1]:(actual_world(X1)&?[X2, X3, X4, X5]:((((((((((of(X1,X3,X2)&woman(X1,X2))&mia_forename(X1,X3))&forename(X1,X3))&shake_beverage(X1,X4))&event(X1,X5))&agent(X1,X5,X2))&patient(X1,X5,X4))&past(X1,X5))&nonreflexive(X1,X5))&order(X1,X5)))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', co1)). fof(ax41, axiom, ![X1, X2]:(specific(X1,X2)=>~(general(X1,X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax41)). fof(ax21, axiom, ![X1, X2]:(entity(X1,X2)=>specific(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax21)). fof(ax39, axiom, ![X1, X2]:(nonhuman(X1,X2)=>~(human(X1,X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax39)). fof(ax12, axiom, ![X1, X2]:(abstraction(X1,X2)=>nonhuman(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax12)). fof(ax14, axiom, ![X1, X2]:(relation(X1,X2)=>abstraction(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax14)). fof(ax42, axiom, ![X1, X2]:(unisex(X1,X2)=>~(female(X1,X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax42)). fof(ax10, axiom, ![X1, X2]:(abstraction(X1,X2)=>unisex(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax10)). fof(ax24, axiom, ![X1, X2]:(substance_matter(X1,X2)=>object(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax24)). fof(ax31, axiom, ![X1, X2]:(eventuality(X1,X2)=>specific(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax31)). fof(ax34, axiom, ![X1, X2]:(event(X1,X2)=>eventuality(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax34)). fof(ax6, axiom, ![X1, X2]:(organism(X1,X2)=>entity(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax6)). fof(ax7, axiom, ![X1, X2]:(human_person(X1,X2)=>organism(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax7)). fof(ax8, axiom, ![X1, X2]:(woman(X1,X2)=>human_person(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax8)). fof(ax11, axiom, ![X1, X2]:(abstraction(X1,X2)=>general(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax11)). fof(ax40, axiom, ![X1, X2]:(nonliving(X1,X2)=>~(living(X1,X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax40)). fof(ax19, axiom, ![X1, X2]:(object(X1,X2)=>nonliving(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax19)). fof(ax37, axiom, ![X1, X2]:(animate(X1,X2)=>~(nonliving(X1,X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax37)). fof(ax17, axiom, ![X1, X2]:(object(X1,X2)=>unisex(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax17)). fof(ax38, axiom, ![X1, X2]:(existent(X1,X2)=>~(nonexistent(X1,X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax38)). fof(ax30, axiom, ![X1, X2]:(eventuality(X1,X2)=>nonexistent(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax30)). fof(ax29, axiom, ![X1, X2]:(eventuality(X1,X2)=>unisex(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax29)). fof(ax44, axiom, ![X1, X2, X3, X4]:(((nonreflexive(X1,X2)&agent(X1,X2,X3))&patient(X1,X2,X4))=>X3!=X4), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax44)). fof(ax43, axiom, ![X1, X2, X3]:(((entity(X1,X2)&forename(X1,X3))&of(X1,X3,X2))=>~(?[X4]:((forename(X1,X4)&X4!=X3)&of(X1,X4,X2)))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax43)). fof(ax3, axiom, ![X1, X2]:(human_person(X1,X2)=>human(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax3)). fof(ax1, axiom, ![X1, X2]:(woman(X1,X2)=>female(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax1)). fof(ax4, axiom, ![X1, X2]:(organism(X1,X2)=>living(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax4)). fof(ax2, axiom, ![X1, X2]:(human_person(X1,X2)=>animate(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax2)). fof(ax20, axiom, ![X1, X2]:(entity(X1,X2)=>existent(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax20)). fof(ax23, axiom, ![X1, X2]:(object(X1,X2)=>entity(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax23)). fof(ax35, axiom, ![X1, X2]:(act(X1,X2)=>event(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax35)). fof(ax28, axiom, ![X1, X2]:(order(X1,X2)=>event(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax28)). fof(ax36, axiom, ![X1, X2]:(order(X1,X2)=>act(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax36)). fof(ax32, axiom, ![X1, X2]:(thing(X1,X2)=>singleton(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax32)). fof(ax9, axiom, ![X1, X2]:(mia_forename(X1,X2)=>forename(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax9)). fof(ax33, axiom, ![X1, X2]:(eventuality(X1,X2)=>thing(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax33)). fof(ax13, axiom, ![X1, X2]:(abstraction(X1,X2)=>thing(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax13)). fof(ax22, axiom, ![X1, X2]:(entity(X1,X2)=>thing(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax22)). fof(ax18, axiom, ![X1, X2]:(object(X1,X2)=>impartial(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax18)). fof(ax5, axiom, ![X1, X2]:(organism(X1,X2)=>impartial(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax5)). fof(c_0_45, plain, ![X56, X57]:(~beverage(X56,X57)|food(X56,X57)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax26])])). fof(c_0_46, plain, ![X58, X59]:(~shake_beverage(X58,X59)|beverage(X58,X59)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax27])])). fof(c_0_47, plain, ![X34, X35]:(~relname(X34,X35)|relation(X34,X35)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax15])])). fof(c_0_48, plain, ![X36, X37]:(~forename(X36,X37)|relname(X36,X37)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax16])])). fof(c_0_49, plain, ![X54, X55]:(~food(X54,X55)|substance_matter(X54,X55)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax25])])). cnf(c_0_50, plain, (food(X1,X2)|~beverage(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_45]), ['final']). cnf(c_0_51, plain, (beverage(X1,X2)|~shake_beverage(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_46]), ['final']). fof(c_0_52, negated_conjecture, ~(~(?[X1]:(actual_world(X1)&?[X2, X3, X4, X5]:((((((((((of(X1,X3,X2)&woman(X1,X2))&mia_forename(X1,X3))&forename(X1,X3))&shake_beverage(X1,X4))&event(X1,X5))&agent(X1,X5,X2))&patient(X1,X5,X4))&past(X1,X5))&nonreflexive(X1,X5))&order(X1,X5))))), inference(assume_negation,[status(cth)],[co1])). fof(c_0_53, plain, ![X86, X87]:(~specific(X86,X87)|~general(X86,X87)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[ax41])])])). fof(c_0_54, plain, ![X46, X47]:(~entity(X46,X47)|specific(X46,X47)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax21])])). fof(c_0_55, plain, ![X82, X83]:(~nonhuman(X82,X83)|~human(X82,X83)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[ax39])])])). fof(c_0_56, plain, ![X28, X29]:(~abstraction(X28,X29)|nonhuman(X28,X29)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax12])])). fof(c_0_57, plain, ![X32, X33]:(~relation(X32,X33)|abstraction(X32,X33)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax14])])). cnf(c_0_58, plain, (relation(X1,X2)|~relname(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_47]), ['final']). cnf(c_0_59, plain, (relname(X1,X2)|~forename(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_48]), ['final']). fof(c_0_60, plain, ![X88, X89]:(~unisex(X88,X89)|~female(X88,X89)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[ax42])])])). fof(c_0_61, plain, ![X24, X25]:(~abstraction(X24,X25)|unisex(X24,X25)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax10])])). fof(c_0_62, plain, ![X52, X53]:(~substance_matter(X52,X53)|object(X52,X53)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax24])])). cnf(c_0_63, plain, (substance_matter(X1,X2)|~food(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_49]), ['final']). cnf(c_0_64, plain, (food(X1,X2)|~shake_beverage(X1,X2)), inference(spm,[status(thm)],[c_0_50, c_0_51]), ['final']). fof(c_0_65, plain, ![X66, X67]:(~eventuality(X66,X67)|specific(X66,X67)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax31])])). fof(c_0_66, plain, ![X72, X73]:(~event(X72,X73)|eventuality(X72,X73)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax34])])). fof(c_0_67, negated_conjecture, (actual_world(esk1_0)&((((((((((of(esk1_0,esk3_0,esk2_0)&woman(esk1_0,esk2_0))&mia_forename(esk1_0,esk3_0))&forename(esk1_0,esk3_0))&shake_beverage(esk1_0,esk4_0))&event(esk1_0,esk5_0))&agent(esk1_0,esk5_0,esk2_0))&patient(esk1_0,esk5_0,esk4_0))&past(esk1_0,esk5_0))&nonreflexive(esk1_0,esk5_0))&order(esk1_0,esk5_0))), inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_52])])])). fof(c_0_68, plain, ![X16, X17]:(~organism(X16,X17)|entity(X16,X17)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax6])])). fof(c_0_69, plain, ![X18, X19]:(~human_person(X18,X19)|organism(X18,X19)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax7])])). fof(c_0_70, plain, ![X20, X21]:(~woman(X20,X21)|human_person(X20,X21)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax8])])). cnf(c_0_71, plain, (~specific(X1,X2)|~general(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_53]), ['final']). cnf(c_0_72, plain, (specific(X1,X2)|~entity(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_54]), ['final']). fof(c_0_73, plain, ![X26, X27]:(~abstraction(X26,X27)|general(X26,X27)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax11])])). cnf(c_0_74, plain, (~nonhuman(X1,X2)|~human(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_55]), ['final']). cnf(c_0_75, plain, (nonhuman(X1,X2)|~abstraction(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_56]), ['final']). cnf(c_0_76, plain, (abstraction(X1,X2)|~relation(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_57]), ['final']). cnf(c_0_77, plain, (relation(X1,X2)|~forename(X1,X2)), inference(spm,[status(thm)],[c_0_58, c_0_59]), ['final']). cnf(c_0_78, plain, (~unisex(X1,X2)|~female(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_60]), ['final']). cnf(c_0_79, plain, (unisex(X1,X2)|~abstraction(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_61]), ['final']). fof(c_0_80, plain, ![X84, X85]:(~nonliving(X84,X85)|~living(X84,X85)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[ax40])])])). fof(c_0_81, plain, ![X42, X43]:(~object(X42,X43)|nonliving(X42,X43)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax19])])). cnf(c_0_82, plain, (object(X1,X2)|~substance_matter(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_62]), ['final']). cnf(c_0_83, plain, (substance_matter(X1,X2)|~shake_beverage(X1,X2)), inference(spm,[status(thm)],[c_0_63, c_0_64]), ['final']). fof(c_0_84, plain, ![X78, X79]:(~animate(X78,X79)|~nonliving(X78,X79)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[ax37])])])). fof(c_0_85, plain, ![X38, X39]:(~object(X38,X39)|unisex(X38,X39)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax17])])). fof(c_0_86, plain, ![X80, X81]:(~existent(X80,X81)|~nonexistent(X80,X81)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[ax38])])])). fof(c_0_87, plain, ![X64, X65]:(~eventuality(X64,X65)|nonexistent(X64,X65)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax30])])). cnf(c_0_88, plain, (specific(X1,X2)|~eventuality(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_65]), ['final']). cnf(c_0_89, plain, (eventuality(X1,X2)|~event(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_66]), ['final']). cnf(c_0_90, negated_conjecture, (event(esk1_0,esk5_0)), inference(split_conjunct,[status(thm)],[c_0_67]), ['final']). fof(c_0_91, plain, ![X62, X63]:(~eventuality(X62,X63)|unisex(X62,X63)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax29])])). cnf(c_0_92, plain, (entity(X1,X2)|~organism(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_68]), ['final']). cnf(c_0_93, plain, (organism(X1,X2)|~human_person(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_69]), ['final']). cnf(c_0_94, plain, (human_person(X1,X2)|~woman(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_70]), ['final']). cnf(c_0_95, negated_conjecture, (woman(esk1_0,esk2_0)), inference(split_conjunct,[status(thm)],[c_0_67]), ['final']). fof(c_0_96, plain, ![X94, X95, X96, X97]:(~nonreflexive(X94,X95)|~agent(X94,X95,X96)|~patient(X94,X95,X97)|X96!=X97), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax44])])). cnf(c_0_97, plain, (~general(X1,X2)|~entity(X1,X2)), inference(spm,[status(thm)],[c_0_71, c_0_72]), ['final']). cnf(c_0_98, plain, (general(X1,X2)|~abstraction(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_73]), ['final']). cnf(c_0_99, plain, (~abstraction(X1,X2)|~human(X1,X2)), inference(spm,[status(thm)],[c_0_74, c_0_75]), ['final']). cnf(c_0_100, plain, (abstraction(X1,X2)|~forename(X1,X2)), inference(spm,[status(thm)],[c_0_76, c_0_77]), ['final']). cnf(c_0_101, plain, (~abstraction(X1,X2)|~female(X1,X2)), inference(spm,[status(thm)],[c_0_78, c_0_79]), ['final']). cnf(c_0_102, plain, (~nonliving(X1,X2)|~living(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_80]), ['final']). cnf(c_0_103, plain, (nonliving(X1,X2)|~object(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_81]), ['final']). cnf(c_0_104, plain, (object(X1,X2)|~shake_beverage(X1,X2)), inference(spm,[status(thm)],[c_0_82, c_0_83]), ['final']). cnf(c_0_105, negated_conjecture, (shake_beverage(esk1_0,esk4_0)), inference(split_conjunct,[status(thm)],[c_0_67]), ['final']). cnf(c_0_106, plain, (~animate(X1,X2)|~nonliving(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_84]), ['final']). cnf(c_0_107, plain, (unisex(X1,X2)|~object(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_85]), ['final']). cnf(c_0_108, plain, (~existent(X1,X2)|~nonexistent(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_86]), ['final']). cnf(c_0_109, plain, (nonexistent(X1,X2)|~eventuality(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_87]), ['final']). cnf(c_0_110, plain, (~eventuality(X1,X2)|~general(X1,X2)), inference(spm,[status(thm)],[c_0_71, c_0_88]), ['final']). cnf(c_0_111, negated_conjecture, (eventuality(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_89, c_0_90]), ['final']). cnf(c_0_112, plain, (unisex(X1,X2)|~eventuality(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_91]), ['final']). fof(c_0_113, plain, ![X90, X91, X92, X93]:(~entity(X90,X91)|~forename(X90,X92)|~of(X90,X92,X91)|(~forename(X90,X93)|X93=X92|~of(X90,X93,X91))), inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax43])])])). cnf(c_0_114, plain, (entity(X1,X2)|~human_person(X1,X2)), inference(spm,[status(thm)],[c_0_92, c_0_93]), ['final']). cnf(c_0_115, negated_conjecture, (human_person(esk1_0,esk2_0)), inference(spm,[status(thm)],[c_0_94, c_0_95]), ['final']). cnf(c_0_116, plain, (~nonreflexive(X1,X2)|~agent(X1,X2,X3)|~patient(X1,X2,X4)|X3!=X4), inference(split_conjunct,[status(thm)],[c_0_96])). cnf(c_0_117, plain, (~abstraction(X1,X2)|~entity(X1,X2)), inference(spm,[status(thm)],[c_0_97, c_0_98]), ['final']). cnf(c_0_118, plain, (~forename(X1,X2)|~human(X1,X2)), inference(spm,[status(thm)],[c_0_99, c_0_100]), ['final']). cnf(c_0_119, negated_conjecture, (forename(esk1_0,esk3_0)), inference(split_conjunct,[status(thm)],[c_0_67]), ['final']). fof(c_0_120, plain, ![X10, X11]:(~human_person(X10,X11)|human(X10,X11)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax3])])). cnf(c_0_121, plain, (~forename(X1,X2)|~female(X1,X2)), inference(spm,[status(thm)],[c_0_101, c_0_100]), ['final']). fof(c_0_122, plain, ![X6, X7]:(~woman(X6,X7)|female(X6,X7)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax1])])). cnf(c_0_123, plain, (~object(X1,X2)|~living(X1,X2)), inference(spm,[status(thm)],[c_0_102, c_0_103]), ['final']). cnf(c_0_124, negated_conjecture, (object(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_104, c_0_105]), ['final']). fof(c_0_125, plain, ![X12, X13]:(~organism(X12,X13)|living(X12,X13)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax4])])). cnf(c_0_126, plain, (~object(X1,X2)|~animate(X1,X2)), inference(spm,[status(thm)],[c_0_106, c_0_103]), ['final']). fof(c_0_127, plain, ![X8, X9]:(~human_person(X8,X9)|animate(X8,X9)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax2])])). cnf(c_0_128, plain, (~object(X1,X2)|~female(X1,X2)), inference(spm,[status(thm)],[c_0_78, c_0_107]), ['final']). cnf(c_0_129, plain, (~eventuality(X1,X2)|~existent(X1,X2)), inference(spm,[status(thm)],[c_0_108, c_0_109]), ['final']). fof(c_0_130, plain, ![X44, X45]:(~entity(X44,X45)|existent(X44,X45)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax20])])). cnf(c_0_131, negated_conjecture, (~general(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_110, c_0_111]), ['final']). cnf(c_0_132, plain, (~eventuality(X1,X2)|~female(X1,X2)), inference(spm,[status(thm)],[c_0_78, c_0_112]), ['final']). fof(c_0_133, plain, ![X50, X51]:(~object(X50,X51)|entity(X50,X51)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax23])])). cnf(c_0_134, plain, (X4=X3|~entity(X1,X2)|~forename(X1,X3)|~of(X1,X3,X2)|~forename(X1,X4)|~of(X1,X4,X2)), inference(split_conjunct,[status(thm)],[c_0_113]), ['final']). cnf(c_0_135, negated_conjecture, (of(esk1_0,esk3_0,esk2_0)), inference(split_conjunct,[status(thm)],[c_0_67]), ['final']). cnf(c_0_136, negated_conjecture, (entity(esk1_0,esk2_0)), inference(spm,[status(thm)],[c_0_114, c_0_115]), ['final']). fof(c_0_137, plain, ![X74, X75]:(~act(X74,X75)|event(X74,X75)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax35])])). fof(c_0_138, plain, ![X60, X61]:(~order(X60,X61)|event(X60,X61)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax28])])). fof(c_0_139, plain, ![X76, X77]:(~order(X76,X77)|act(X76,X77)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax36])])). fof(c_0_140, plain, ![X68, X69]:(~thing(X68,X69)|singleton(X68,X69)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax32])])). fof(c_0_141, plain, ![X22, X23]:(~mia_forename(X22,X23)|forename(X22,X23)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax9])])). fof(c_0_142, plain, ![X70, X71]:(~eventuality(X70,X71)|thing(X70,X71)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax33])])). fof(c_0_143, plain, ![X30, X31]:(~abstraction(X30,X31)|thing(X30,X31)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax13])])). fof(c_0_144, plain, ![X48, X49]:(~entity(X48,X49)|thing(X48,X49)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax22])])). fof(c_0_145, plain, ![X40, X41]:(~object(X40,X41)|impartial(X40,X41)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax18])])). fof(c_0_146, plain, ![X14, X15]:(~organism(X14,X15)|impartial(X14,X15)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax5])])). cnf(c_0_147, plain, (~patient(X1,X2,X3)|~agent(X1,X2,X3)|~nonreflexive(X1,X2)), inference(er,[status(thm)],[c_0_116]), ['final']). cnf(c_0_148, negated_conjecture, (patient(esk1_0,esk5_0,esk4_0)), inference(split_conjunct,[status(thm)],[c_0_67]), ['final']). cnf(c_0_149, negated_conjecture, (nonreflexive(esk1_0,esk5_0)), inference(split_conjunct,[status(thm)],[c_0_67]), ['final']). cnf(c_0_150, plain, (~forename(X1,X2)|~entity(X1,X2)), inference(spm,[status(thm)],[c_0_117, c_0_100]), ['final']). cnf(c_0_151, negated_conjecture, (~human(esk1_0,esk3_0)), inference(spm,[status(thm)],[c_0_118, c_0_119]), ['final']). cnf(c_0_152, plain, (human(X1,X2)|~human_person(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_120]), ['final']). cnf(c_0_153, negated_conjecture, (~female(esk1_0,esk3_0)), inference(spm,[status(thm)],[c_0_121, c_0_119]), ['final']). cnf(c_0_154, plain, (female(X1,X2)|~woman(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_122]), ['final']). cnf(c_0_155, negated_conjecture, (~living(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_123, c_0_124]), ['final']). cnf(c_0_156, plain, (living(X1,X2)|~organism(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_125]), ['final']). cnf(c_0_157, negated_conjecture, (~animate(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_126, c_0_124]), ['final']). cnf(c_0_158, plain, (animate(X1,X2)|~human_person(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_127]), ['final']). cnf(c_0_159, negated_conjecture, (~female(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_128, c_0_124]), ['final']). cnf(c_0_160, negated_conjecture, (~existent(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_129, c_0_111]), ['final']). cnf(c_0_161, plain, (existent(X1,X2)|~entity(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_130]), ['final']). cnf(c_0_162, negated_conjecture, (~abstraction(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_131, c_0_98]), ['final']). cnf(c_0_163, negated_conjecture, (~female(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_132, c_0_111]), ['final']). cnf(c_0_164, plain, (entity(X1,X2)|~object(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_133]), ['final']). cnf(c_0_165, negated_conjecture, (X1=esk3_0|~of(esk1_0,X1,esk2_0)|~forename(esk1_0,X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_134, c_0_135]), c_0_119])]), c_0_136])]), ['final']). cnf(c_0_166, plain, (event(X1,X2)|~act(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_137]), ['final']). cnf(c_0_167, plain, (event(X1,X2)|~order(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_138]), ['final']). cnf(c_0_168, plain, (act(X1,X2)|~order(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_139]), ['final']). cnf(c_0_169, plain, (singleton(X1,X2)|~thing(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_140]), ['final']). cnf(c_0_170, plain, (forename(X1,X2)|~mia_forename(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_141]), ['final']). cnf(c_0_171, plain, (thing(X1,X2)|~eventuality(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_142]), ['final']). cnf(c_0_172, plain, (thing(X1,X2)|~abstraction(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_143]), ['final']). cnf(c_0_173, plain, (thing(X1,X2)|~entity(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_144]), ['final']). cnf(c_0_174, plain, (impartial(X1,X2)|~object(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_145]), ['final']). cnf(c_0_175, plain, (impartial(X1,X2)|~organism(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_146]), ['final']). cnf(c_0_176, negated_conjecture, (~agent(esk1_0,esk5_0,esk4_0)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_147, c_0_148]), c_0_149])]), ['final']). cnf(c_0_177, negated_conjecture, (~entity(esk1_0,esk3_0)), inference(spm,[status(thm)],[c_0_150, c_0_119]), ['final']). cnf(c_0_178, negated_conjecture, (~human_person(esk1_0,esk3_0)), inference(spm,[status(thm)],[c_0_151, c_0_152]), ['final']). cnf(c_0_179, negated_conjecture, (~woman(esk1_0,esk3_0)), inference(spm,[status(thm)],[c_0_153, c_0_154]), ['final']). cnf(c_0_180, negated_conjecture, (~organism(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_155, c_0_156]), ['final']). cnf(c_0_181, negated_conjecture, (~human_person(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_157, c_0_158]), ['final']). cnf(c_0_182, negated_conjecture, (~woman(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_159, c_0_154]), ['final']). cnf(c_0_183, negated_conjecture, (~entity(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_160, c_0_161]), ['final']). cnf(c_0_184, negated_conjecture, (~forename(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_162, c_0_100]), ['final']). cnf(c_0_185, negated_conjecture, (~woman(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_163, c_0_154]), ['final']). cnf(c_0_186, negated_conjecture, (entity(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_164, c_0_124]), ['final']). cnf(c_0_187, negated_conjecture, (agent(esk1_0,esk5_0,esk2_0)), inference(split_conjunct,[status(thm)],[c_0_67]), ['final']). cnf(c_0_188, negated_conjecture, (past(esk1_0,esk5_0)), inference(split_conjunct,[status(thm)],[c_0_67]), ['final']). cnf(c_0_189, negated_conjecture, (order(esk1_0,esk5_0)), inference(split_conjunct,[status(thm)],[c_0_67]), ['final']). cnf(c_0_190, negated_conjecture, (mia_forename(esk1_0,esk3_0)), inference(split_conjunct,[status(thm)],[c_0_67]), ['final']). cnf(c_0_191, negated_conjecture, (actual_world(esk1_0)), inference(split_conjunct,[status(thm)],[c_0_67]), ['final']). # SZS output end Saturation
# SZS output start Saturation fof(server_t_generates_key, axiom, ![X1, X2, X3, X4, X5, X6, X7]:((((message(sent(X1,t,triple(X1,X2,encrypt(triple(X3,X4,X5),X6))))&t_holds(key(X6,X1)))&t_holds(key(X7,X3)))&a_nonce(X4))=>message(sent(t,X3,triple(encrypt(quadruple(X1,X4,generate_key(X4),X5),X7),encrypt(triple(X3,generate_key(X4),X5),X6),X2)))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', server_t_generates_key)). fof(b_creates_freash_nonces_in_time, axiom, ![X1, X2]:((message(sent(X1,b,pair(X1,X2)))&fresh_to_b(X2))=>(message(sent(b,t,triple(b,generate_b_nonce(X2),encrypt(triple(X1,X2,generate_expiration_time(X2)),bt))))&b_stored(pair(X1,X2)))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', b_creates_freash_nonces_in_time)). fof(t_holds_key_at_for_a, axiom, t_holds(key(at,a)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', t_holds_key_at_for_a)). fof(intruder_can_record, axiom, ![X1, X2, X3]:(message(sent(X1,X2,X3))=>intruder_message(X3)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_can_record)). fof(a_sent_message_i_to_b, axiom, message(sent(a,b,pair(a,an_a_nonce))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', a_sent_message_i_to_b)). fof(nonce_a_is_fresh_to_b, axiom, fresh_to_b(an_a_nonce), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', nonce_a_is_fresh_to_b)). fof(a_forwards_secure, axiom, ![X1, X2, X3, X4, X5, X6]:((message(sent(t,a,triple(encrypt(quadruple(X5,X6,X3,X2),at),X4,X1)))&a_stored(pair(X5,X6)))=>(message(sent(a,X5,pair(X4,encrypt(X1,X3))))&a_holds(key(X3,X5)))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', a_forwards_secure)). fof(t_holds_key_bt_for_b, axiom, t_holds(key(bt,b)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', t_holds_key_bt_for_b)). fof(intruder_message_sent, axiom, ![X1, X2, X3]:(((intruder_message(X1)&party_of_protocol(X2))&party_of_protocol(X3))=>message(sent(X2,X3,X1))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_message_sent)). fof(intruder_decomposes_triples, axiom, ![X1, X2, X3]:(intruder_message(triple(X1,X2,X3))=>((intruder_message(X1)&intruder_message(X2))&intruder_message(X3))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_decomposes_triples)). fof(a_stored_message_i, axiom, a_stored(pair(b,an_a_nonce)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', a_stored_message_i)). fof(an_a_nonce_is_a_nonce, axiom, a_nonce(an_a_nonce), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', an_a_nonce_is_a_nonce)). fof(b_is_party_of_protocol, axiom, party_of_protocol(b), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', b_is_party_of_protocol)). fof(intruder_composes_pairs, axiom, ![X1, X2]:((intruder_message(X1)&intruder_message(X2))=>intruder_message(pair(X1,X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_composes_pairs)). fof(t_is_party_of_protocol, axiom, party_of_protocol(t), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', t_is_party_of_protocol)). fof(intruder_composes_triples, axiom, ![X1, X2, X3]:(((intruder_message(X1)&intruder_message(X2))&intruder_message(X3))=>intruder_message(triple(X1,X2,X3))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_composes_triples)). fof(a_is_party_of_protocol, axiom, party_of_protocol(a), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', a_is_party_of_protocol)). fof(b_accepts_secure_session_key, axiom, ![X2, X4, X5]:(((message(sent(X4,b,pair(encrypt(triple(X4,X2,generate_expiration_time(X5)),bt),encrypt(generate_b_nonce(X5),X2))))&a_key(X2))&b_stored(pair(X4,X5)))=>b_holds(key(X2,X4))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', b_accepts_secure_session_key)). fof(intruder_decomposes_pairs, axiom, ![X1, X2]:(intruder_message(pair(X1,X2))=>(intruder_message(X1)&intruder_message(X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_decomposes_pairs)). fof(intruder_key_encrypts, axiom, ![X1, X2, X3]:(((intruder_message(X1)&intruder_holds(key(X2,X3)))&party_of_protocol(X3))=>intruder_message(encrypt(X1,X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_key_encrypts)). fof(intruder_holds_key, axiom, ![X2, X3]:((intruder_message(X2)&party_of_protocol(X3))=>intruder_holds(key(X2,X3))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_holds_key)). fof(generated_keys_are_keys, axiom, ![X1]:a_key(generate_key(X1)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', generated_keys_are_keys)). fof(fresh_intruder_nonces_are_fresh_to_b, axiom, ![X1]:(fresh_intruder_nonce(X1)=>(fresh_to_b(X1)&intruder_message(X1))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', fresh_intruder_nonces_are_fresh_to_b)). fof(can_generate_more_fresh_intruder_nonces, axiom, ![X1]:(fresh_intruder_nonce(X1)=>fresh_intruder_nonce(generate_intruder_nonce(X1))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', can_generate_more_fresh_intruder_nonces)). fof(intruder_composes_quadruples, axiom, ![X1, X2, X3, X4]:((((intruder_message(X1)&intruder_message(X2))&intruder_message(X3))&intruder_message(X4))=>intruder_message(quadruple(X1,X2,X3,X4))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_composes_quadruples)). fof(intruder_interception, axiom, ![X1, X2, X3]:(((intruder_message(encrypt(X1,X2))&intruder_holds(key(X2,X3)))&party_of_protocol(X3))=>intruder_message(X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_interception)). fof(intruder_decomposes_quadruples, axiom, ![X1, X2, X3, X4]:(intruder_message(quadruple(X1,X2,X3,X4))=>(((intruder_message(X1)&intruder_message(X2))&intruder_message(X3))&intruder_message(X4))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_decomposes_quadruples)). fof(nothing_is_a_nonce_and_a_key, axiom, ![X1]:~((a_key(X1)&a_nonce(X1))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', nothing_is_a_nonce_and_a_key)). fof(generated_keys_are_not_nonces, axiom, ![X1]:~(a_nonce(generate_key(X1))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', generated_keys_are_not_nonces)). fof(an_intruder_nonce_is_a_fresh_intruder_nonce, axiom, fresh_intruder_nonce(an_intruder_nonce), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', an_intruder_nonce_is_a_fresh_intruder_nonce)). fof(generated_times_and_nonces_are_nonces, axiom, ![X1]:(a_nonce(generate_expiration_time(X1))&a_nonce(generate_b_nonce(X1))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', generated_times_and_nonces_are_nonces)). fof(b_hold_key_bt_for_t, axiom, b_holds(key(bt,t)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', b_hold_key_bt_for_t)). fof(a_holds_key_at_for_t, axiom, a_holds(key(at,t)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', a_holds_key_at_for_t)). fof(c_0_33, plain, ![X19, X20, X21, X22, X23, X24, X25]:(~message(sent(X19,t,triple(X19,X20,encrypt(triple(X21,X22,X23),X24))))|~t_holds(key(X24,X19))|~t_holds(key(X25,X21))|~a_nonce(X22)|message(sent(t,X21,triple(encrypt(quadruple(X19,X22,generate_key(X22),X23),X25),encrypt(triple(X21,generate_key(X22),X23),X24),X20)))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[server_t_generates_key])])). fof(c_0_34, plain, ![X14, X15]:((message(sent(b,t,triple(b,generate_b_nonce(X15),encrypt(triple(X14,X15,generate_expiration_time(X15)),bt))))|(~message(sent(X14,b,pair(X14,X15)))|~fresh_to_b(X15)))&(b_stored(pair(X14,X15))|(~message(sent(X14,b,pair(X14,X15)))|~fresh_to_b(X15)))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[b_creates_freash_nonces_in_time])])])). cnf(c_0_35, plain, (message(sent(t,X3,triple(encrypt(quadruple(X1,X4,generate_key(X4),X5),X7),encrypt(triple(X3,generate_key(X4),X5),X6),X2)))|~message(sent(X1,t,triple(X1,X2,encrypt(triple(X3,X4,X5),X6))))|~t_holds(key(X6,X1))|~t_holds(key(X7,X3))|~a_nonce(X4)), inference(split_conjunct,[status(thm)],[c_0_33]), ['final']). cnf(c_0_36, plain, (t_holds(key(at,a))), inference(split_conjunct,[status(thm)],[t_holds_key_at_for_a]), ['final']). fof(c_0_37, plain, ![X26, X27, X28]:(~message(sent(X26,X27,X28))|intruder_message(X28)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_can_record])])). cnf(c_0_38, plain, (message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X2,X1,generate_expiration_time(X1)),bt))))|~message(sent(X2,b,pair(X2,X1)))|~fresh_to_b(X1)), inference(split_conjunct,[status(thm)],[c_0_34]), ['final']). cnf(c_0_39, plain, (message(sent(a,b,pair(a,an_a_nonce)))), inference(split_conjunct,[status(thm)],[a_sent_message_i_to_b]), ['final']). cnf(c_0_40, plain, (fresh_to_b(an_a_nonce)), inference(split_conjunct,[status(thm)],[nonce_a_is_fresh_to_b]), ['final']). fof(c_0_41, plain, ![X8, X9, X10, X11, X12, X13]:((message(sent(a,X12,pair(X11,encrypt(X8,X10))))|(~message(sent(t,a,triple(encrypt(quadruple(X12,X13,X10,X9),at),X11,X8)))|~a_stored(pair(X12,X13))))&(a_holds(key(X10,X12))|(~message(sent(t,a,triple(encrypt(quadruple(X12,X13,X10,X9),at),X11,X8)))|~a_stored(pair(X12,X13))))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[a_forwards_secure])])])). cnf(c_0_42, plain, (message(sent(t,a,triple(encrypt(quadruple(X1,X2,generate_key(X2),X3),at),encrypt(triple(a,generate_key(X2),X3),X4),X5)))|~a_nonce(X2)|~t_holds(key(X4,X1))|~message(sent(X1,t,triple(X1,X5,encrypt(triple(a,X2,X3),X4))))), inference(spm,[status(thm)],[c_0_35, c_0_36]), ['final']). cnf(c_0_43, plain, (t_holds(key(bt,b))), inference(split_conjunct,[status(thm)],[t_holds_key_bt_for_b]), ['final']). fof(c_0_44, plain, ![X50, X51, X52]:(~intruder_message(X50)|~party_of_protocol(X51)|~party_of_protocol(X52)|message(sent(X51,X52,X50))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_message_sent])])). fof(c_0_45, plain, ![X31, X32, X33]:(((intruder_message(X31)|~intruder_message(triple(X31,X32,X33)))&(intruder_message(X32)|~intruder_message(triple(X31,X32,X33))))&(intruder_message(X33)|~intruder_message(triple(X31,X32,X33)))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_decomposes_triples])])])). cnf(c_0_46, plain, (intruder_message(X3)|~message(sent(X1,X2,X3))), inference(split_conjunct,[status(thm)],[c_0_37]), ['final']). cnf(c_0_47, plain, (message(sent(b,t,triple(b,generate_b_nonce(an_a_nonce),encrypt(triple(a,an_a_nonce,generate_expiration_time(an_a_nonce)),bt))))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_38, c_0_39]), c_0_40])]), ['final']). cnf(c_0_48, plain, (message(sent(a,X1,pair(X2,encrypt(X3,X4))))|~message(sent(t,a,triple(encrypt(quadruple(X1,X5,X4,X6),at),X2,X3)))|~a_stored(pair(X1,X5))), inference(split_conjunct,[status(thm)],[c_0_41]), ['final']). cnf(c_0_49, plain, (a_stored(pair(b,an_a_nonce))), inference(split_conjunct,[status(thm)],[a_stored_message_i]), ['final']). cnf(c_0_50, plain, (message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),bt),X3)))|~a_nonce(X1)|~message(sent(b,t,triple(b,X3,encrypt(triple(a,X1,X2),bt))))), inference(spm,[status(thm)],[c_0_42, c_0_43]), ['final']). cnf(c_0_51, plain, (a_nonce(an_a_nonce)), inference(split_conjunct,[status(thm)],[an_a_nonce_is_a_nonce]), ['final']). cnf(c_0_52, plain, (b_stored(pair(X1,X2))|~message(sent(X1,b,pair(X1,X2)))|~fresh_to_b(X2)), inference(split_conjunct,[status(thm)],[c_0_34]), ['final']). cnf(c_0_53, plain, (message(sent(X2,X3,X1))|~intruder_message(X1)|~party_of_protocol(X2)|~party_of_protocol(X3)), inference(split_conjunct,[status(thm)],[c_0_44]), ['final']). cnf(c_0_54, plain, (party_of_protocol(b)), inference(split_conjunct,[status(thm)],[b_is_party_of_protocol]), ['final']). fof(c_0_55, plain, ![X38, X39]:(~intruder_message(X38)|~intruder_message(X39)|intruder_message(pair(X38,X39))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_composes_pairs])])). cnf(c_0_56, plain, (party_of_protocol(t)), inference(split_conjunct,[status(thm)],[t_is_party_of_protocol]), ['final']). fof(c_0_57, plain, ![X40, X41, X42]:(~intruder_message(X40)|~intruder_message(X41)|~intruder_message(X42)|intruder_message(triple(X40,X41,X42))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_composes_triples])])). cnf(c_0_58, plain, (intruder_message(X1)|~intruder_message(triple(X1,X2,X3))), inference(split_conjunct,[status(thm)],[c_0_45]), ['final']). cnf(c_0_59, plain, (intruder_message(triple(b,generate_b_nonce(an_a_nonce),encrypt(triple(a,an_a_nonce,generate_expiration_time(an_a_nonce)),bt)))), inference(spm,[status(thm)],[c_0_46, c_0_47]), ['final']). cnf(c_0_60, plain, (message(sent(a,b,pair(X1,encrypt(X2,X3))))|~message(sent(t,a,triple(encrypt(quadruple(b,an_a_nonce,X3,X4),at),X1,X2)))), inference(spm,[status(thm)],[c_0_48, c_0_49]), ['final']). cnf(c_0_61, plain, (party_of_protocol(a)), inference(split_conjunct,[status(thm)],[a_is_party_of_protocol]), ['final']). cnf(c_0_62, plain, (message(sent(t,a,triple(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at),encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),generate_b_nonce(an_a_nonce))))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_50, c_0_47]), c_0_51])]), ['final']). fof(c_0_63, plain, ![X16, X17, X18]:(~message(sent(X17,b,pair(encrypt(triple(X17,X16,generate_expiration_time(X18)),bt),encrypt(generate_b_nonce(X18),X16))))|~a_key(X16)|~b_stored(pair(X17,X18))|b_holds(key(X16,X17))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[b_accepts_secure_session_key])])). cnf(c_0_64, plain, (b_stored(pair(X1,X2))|~intruder_message(pair(X1,X2))|~fresh_to_b(X2)|~party_of_protocol(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_52, c_0_53]), c_0_54])]), ['final']). cnf(c_0_65, plain, (intruder_message(pair(X1,X2))|~intruder_message(X1)|~intruder_message(X2)), inference(split_conjunct,[status(thm)],[c_0_55]), ['final']). fof(c_0_66, plain, ![X29, X30]:((intruder_message(X29)|~intruder_message(pair(X29,X30)))&(intruder_message(X30)|~intruder_message(pair(X29,X30)))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_decomposes_pairs])])])). cnf(c_0_67, plain, (message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),bt),X3)))|~intruder_message(triple(b,X3,encrypt(triple(a,X1,X2),bt)))|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_50, c_0_53]), c_0_56]), c_0_54])]), ['final']). cnf(c_0_68, plain, (intruder_message(triple(X1,X2,X3))|~intruder_message(X1)|~intruder_message(X2)|~intruder_message(X3)), inference(split_conjunct,[status(thm)],[c_0_57]), ['final']). cnf(c_0_69, plain, (intruder_message(b)), inference(spm,[status(thm)],[c_0_58, c_0_59]), ['final']). cnf(c_0_70, plain, (intruder_message(X1)|~intruder_message(triple(X2,X3,X1))), inference(split_conjunct,[status(thm)],[c_0_45]), ['final']). cnf(c_0_71, plain, (message(sent(a,b,pair(X1,encrypt(X2,X3))))|~intruder_message(triple(encrypt(quadruple(b,an_a_nonce,X3,X4),at),X1,X2))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_60, c_0_53]), c_0_61]), c_0_56])]), ['final']). cnf(c_0_72, plain, (intruder_message(triple(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at),encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),generate_b_nonce(an_a_nonce)))), inference(spm,[status(thm)],[c_0_46, c_0_62]), ['final']). cnf(c_0_73, plain, (message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X2,X1,generate_expiration_time(X1)),bt))))|~intruder_message(pair(X2,X1))|~fresh_to_b(X1)|~party_of_protocol(X2)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_38, c_0_53]), c_0_54])]), ['final']). cnf(c_0_74, plain, (b_holds(key(X2,X1))|~message(sent(X1,b,pair(encrypt(triple(X1,X2,generate_expiration_time(X3)),bt),encrypt(generate_b_nonce(X3),X2))))|~a_key(X2)|~b_stored(pair(X1,X3))), inference(split_conjunct,[status(thm)],[c_0_63]), ['final']). cnf(c_0_75, plain, (b_stored(pair(X1,X2))|~intruder_message(X2)|~intruder_message(X1)|~fresh_to_b(X2)|~party_of_protocol(X1)), inference(spm,[status(thm)],[c_0_64, c_0_65]), ['final']). fof(c_0_76, plain, ![X55, X56, X57]:(~intruder_message(X55)|~intruder_holds(key(X56,X57))|~party_of_protocol(X57)|intruder_message(encrypt(X55,X56))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_key_encrypts])])). fof(c_0_77, plain, ![X53, X54]:(~intruder_message(X53)|~party_of_protocol(X54)|intruder_holds(key(X53,X54))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_holds_key])])). cnf(c_0_78, plain, (intruder_message(X1)|~intruder_message(pair(X1,X2))), inference(split_conjunct,[status(thm)],[c_0_66]), ['final']). cnf(c_0_79, plain, (intruder_message(pair(a,an_a_nonce))), inference(spm,[status(thm)],[c_0_46, c_0_39]), ['final']). cnf(c_0_80, plain, (message(sent(t,b,triple(encrypt(quadruple(X1,X2,generate_key(X2),X3),bt),encrypt(triple(b,generate_key(X2),X3),X4),X5)))|~a_nonce(X2)|~t_holds(key(X4,X1))|~message(sent(X1,t,triple(X1,X5,encrypt(triple(b,X2,X3),X4))))), inference(spm,[status(thm)],[c_0_35, c_0_43]), ['final']). cnf(c_0_81, plain, (b_stored(pair(a,an_a_nonce))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_52, c_0_39]), c_0_40])]), ['final']). cnf(c_0_82, plain, (message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),bt),X3)))|~intruder_message(encrypt(triple(a,X1,X2),bt))|~intruder_message(X3)|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_67, c_0_68]), c_0_69])]), ['final']). cnf(c_0_83, plain, (intruder_message(encrypt(triple(a,an_a_nonce,generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_70, c_0_59]), ['final']). cnf(c_0_84, plain, (message(sent(a,b,pair(X1,encrypt(X2,X3))))|~intruder_message(encrypt(quadruple(b,an_a_nonce,X3,X4),at))|~intruder_message(X2)|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_71, c_0_68]), ['final']). cnf(c_0_85, plain, (intruder_message(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at))), inference(spm,[status(thm)],[c_0_58, c_0_72]), ['final']). cnf(c_0_86, plain, (message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X2,X1,generate_expiration_time(X1)),bt))))|~intruder_message(X1)|~intruder_message(X2)|~fresh_to_b(X1)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_73, c_0_65]), ['final']). cnf(c_0_87, plain, (b_holds(key(X1,X2))|~intruder_message(X3)|~intruder_message(X2)|~a_key(X1)|~fresh_to_b(X3)|~message(sent(X2,b,pair(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt),encrypt(generate_b_nonce(X3),X1))))|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_74, c_0_75]), ['final']). cnf(c_0_88, plain, (intruder_message(encrypt(X1,X2))|~intruder_message(X1)|~intruder_holds(key(X2,X3))|~party_of_protocol(X3)), inference(split_conjunct,[status(thm)],[c_0_76]), ['final']). cnf(c_0_89, plain, (intruder_holds(key(X1,X2))|~intruder_message(X1)|~party_of_protocol(X2)), inference(split_conjunct,[status(thm)],[c_0_77]), ['final']). cnf(c_0_90, plain, (intruder_message(a)), inference(spm,[status(thm)],[c_0_78, c_0_79]), ['final']). cnf(c_0_91, plain, (message(sent(a,b,pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))))), inference(spm,[status(thm)],[c_0_60, c_0_62]), ['final']). cnf(c_0_92, plain, (message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),bt),X3)))|~a_nonce(X1)|~message(sent(b,t,triple(b,X3,encrypt(triple(b,X1,X2),bt))))), inference(spm,[status(thm)],[c_0_80, c_0_43]), ['final']). cnf(c_0_93, plain, (b_holds(key(X1,a))|~a_key(X1)|~message(sent(a,b,pair(encrypt(triple(a,X1,generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),X1))))), inference(spm,[status(thm)],[c_0_74, c_0_81]), ['final']). cnf(c_0_94, plain, (a_holds(key(X1,X2))|~message(sent(t,a,triple(encrypt(quadruple(X2,X3,X1,X4),at),X5,X6)))|~a_stored(pair(X2,X3))), inference(split_conjunct,[status(thm)],[c_0_41]), ['final']). cnf(c_0_95, plain, (message(sent(t,a,triple(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at),encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),X1)))|~intruder_message(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_82, c_0_83]), c_0_51])]), ['final']). cnf(c_0_96, plain, (message(sent(a,b,pair(X1,encrypt(X2,generate_key(an_a_nonce)))))|~intruder_message(X2)|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_84, c_0_85]), ['final']). cnf(c_0_97, plain, (message(sent(t,a,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),at),X3)))|~a_nonce(X1)|~message(sent(a,t,triple(a,X3,encrypt(triple(a,X1,X2),at))))), inference(spm,[status(thm)],[c_0_42, c_0_36]), ['final']). cnf(c_0_98, plain, (intruder_message(triple(b,generate_b_nonce(X1),encrypt(triple(X2,X1,generate_expiration_time(X1)),bt)))|~intruder_message(X1)|~intruder_message(X2)|~fresh_to_b(X1)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_46, c_0_86]), ['final']). cnf(c_0_99, plain, (b_holds(key(X1,X2))|~intruder_message(pair(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt),encrypt(generate_b_nonce(X3),X1)))|~intruder_message(X3)|~intruder_message(X2)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_87, c_0_53]), c_0_54])]), ['final']). cnf(c_0_100, plain, (intruder_message(encrypt(X1,X2))|~intruder_message(X1)|~intruder_message(X2)|~party_of_protocol(X3)), inference(spm,[status(thm)],[c_0_88, c_0_89])). cnf(c_0_101, plain, (intruder_message(X1)|~intruder_message(triple(X2,X1,X3))), inference(split_conjunct,[status(thm)],[c_0_45]), ['final']). cnf(c_0_102, plain, (message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),at),encrypt(triple(a,generate_key(X1),generate_expiration_time(X1)),bt),generate_b_nonce(X1))))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_50, c_0_86]), c_0_90]), c_0_61])]), ['final']). fof(c_0_103, plain, ![X61]:a_key(generate_key(X61)), inference(variable_rename,[status(thm)],[generated_keys_are_keys])). cnf(c_0_104, plain, (intruder_message(X1)|~intruder_message(pair(X2,X1))), inference(split_conjunct,[status(thm)],[c_0_66]), ['final']). cnf(c_0_105, plain, (intruder_message(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce))))), inference(spm,[status(thm)],[c_0_46, c_0_91]), ['final']). cnf(c_0_106, plain, (message(sent(t,b,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),at),X3)))|~a_nonce(X1)|~message(sent(a,t,triple(a,X3,encrypt(triple(b,X1,X2),at))))), inference(spm,[status(thm)],[c_0_80, c_0_36]), ['final']). cnf(c_0_107, plain, (message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),bt),X3)))|~intruder_message(triple(b,X3,encrypt(triple(b,X1,X2),bt)))|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_92, c_0_53]), c_0_56]), c_0_54])]), ['final']). cnf(c_0_108, plain, (message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),bt),encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt),generate_b_nonce(X1))))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_92, c_0_86]), c_0_69]), c_0_54])]), ['final']). cnf(c_0_109, plain, (b_holds(key(X1,a))|~intruder_message(pair(encrypt(triple(a,X1,generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),X1)))|~a_key(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_93, c_0_53]), c_0_54]), c_0_61])]), ['final']). cnf(c_0_110, plain, (a_holds(key(X1,b))|~message(sent(t,a,triple(encrypt(quadruple(b,an_a_nonce,X1,X2),at),X3,X4)))), inference(spm,[status(thm)],[c_0_94, c_0_49]), ['final']). fof(c_0_111, plain, ![X63]:((fresh_to_b(X63)|~fresh_intruder_nonce(X63))&(intruder_message(X63)|~fresh_intruder_nonce(X63))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[fresh_intruder_nonces_are_fresh_to_b])])])). cnf(c_0_112, plain, (message(sent(a,b,pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(X1,generate_key(an_a_nonce)))))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_60, c_0_95]), ['final']). cnf(c_0_113, plain, (intruder_message(pair(X1,encrypt(X2,generate_key(an_a_nonce))))|~intruder_message(X2)|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_46, c_0_96]), ['final']). cnf(c_0_114, plain, (message(sent(t,a,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),at),X3)))|~intruder_message(triple(a,X3,encrypt(triple(a,X1,X2),at)))|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_97, c_0_53]), c_0_56]), c_0_61])]), ['final']). cnf(c_0_115, plain, (intruder_message(encrypt(triple(X1,X2,generate_expiration_time(X2)),bt))|~intruder_message(X2)|~intruder_message(X1)|~fresh_to_b(X2)|~party_of_protocol(X1)), inference(spm,[status(thm)],[c_0_70, c_0_98]), ['final']). cnf(c_0_116, plain, (b_holds(key(X1,X2))|~intruder_message(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt))|~intruder_message(encrypt(generate_b_nonce(X3),X1))|~intruder_message(X3)|~intruder_message(X2)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_99, c_0_65]), ['final']). cnf(c_0_117, plain, (intruder_message(encrypt(X1,X2))|~intruder_message(X1)|~intruder_message(X2)), inference(spm,[status(thm)],[c_0_100, c_0_54]), ['final']). cnf(c_0_118, plain, (intruder_message(generate_b_nonce(X1))|~intruder_message(X1)|~intruder_message(X2)|~fresh_to_b(X1)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_101, c_0_98]), ['final']). cnf(c_0_119, plain, (intruder_message(triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),at),encrypt(triple(a,generate_key(X1),generate_expiration_time(X1)),bt),generate_b_nonce(X1)))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_46, c_0_102]), ['final']). cnf(c_0_120, plain, (a_key(generate_key(X1))), inference(split_conjunct,[status(thm)],[c_0_103]), ['final']). cnf(c_0_121, plain, (intruder_message(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))), inference(spm,[status(thm)],[c_0_104, c_0_105]), ['final']). cnf(c_0_122, plain, (intruder_message(an_a_nonce)), inference(spm,[status(thm)],[c_0_104, c_0_79]), ['final']). cnf(c_0_123, plain, (message(sent(t,b,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),at),X3)))|~intruder_message(triple(a,X3,encrypt(triple(b,X1,X2),at)))|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_106, c_0_53]), c_0_56]), c_0_61])]), ['final']). cnf(c_0_124, plain, (message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),bt),X3)))|~intruder_message(encrypt(triple(b,X1,X2),bt))|~intruder_message(X3)|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_107, c_0_68]), c_0_69])]), ['final']). cnf(c_0_125, plain, (intruder_message(triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),bt),encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt),generate_b_nonce(X1)))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_46, c_0_108]), ['final']). cnf(c_0_126, plain, (b_holds(key(X1,a))|~intruder_message(encrypt(triple(a,X1,generate_expiration_time(an_a_nonce)),bt))|~intruder_message(encrypt(generate_b_nonce(an_a_nonce),X1))|~a_key(X1)), inference(spm,[status(thm)],[c_0_109, c_0_65]), ['final']). cnf(c_0_127, plain, (intruder_message(generate_b_nonce(an_a_nonce))), inference(spm,[status(thm)],[c_0_101, c_0_59]), ['final']). cnf(c_0_128, plain, (a_holds(key(X1,b))|~intruder_message(triple(encrypt(quadruple(b,an_a_nonce,X1,X2),at),X3,X4))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_110, c_0_53]), c_0_61]), c_0_56])]), ['final']). fof(c_0_129, plain, ![X62]:(~fresh_intruder_nonce(X62)|fresh_intruder_nonce(generate_intruder_nonce(X62))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[can_generate_more_fresh_intruder_nonces])])). cnf(c_0_130, plain, (message(sent(b,t,triple(b,generate_b_nonce(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce))),encrypt(triple(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)),generate_expiration_time(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))),bt))))|~fresh_to_b(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_73, c_0_105]), ['final']). cnf(c_0_131, plain, (fresh_to_b(X1)|~fresh_intruder_nonce(X1)), inference(split_conjunct,[status(thm)],[c_0_111]), ['final']). cnf(c_0_132, plain, (intruder_message(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(X1,generate_key(an_a_nonce))))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_46, c_0_112]), ['final']). cnf(c_0_133, plain, (message(sent(b,t,triple(b,generate_b_nonce(encrypt(X1,generate_key(an_a_nonce))),encrypt(triple(X2,encrypt(X1,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X1,generate_key(an_a_nonce)))),bt))))|~intruder_message(X1)|~intruder_message(X2)|~fresh_to_b(encrypt(X1,generate_key(an_a_nonce)))|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_73, c_0_113]), ['final']). cnf(c_0_134, plain, (message(sent(t,a,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),at),X3)))|~intruder_message(encrypt(triple(a,X1,X2),at))|~intruder_message(X3)|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_114, c_0_68]), c_0_90])]), ['final']). cnf(c_0_135, plain, (message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),at),encrypt(triple(a,generate_key(X1),generate_expiration_time(X1)),bt),X2)))|~intruder_message(X2)|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_82, c_0_115]), c_0_90]), c_0_61])]), ['final']). cnf(c_0_136, plain, (message(sent(b,t,triple(b,generate_b_nonce(encrypt(X1,generate_key(an_a_nonce))),encrypt(triple(a,encrypt(X1,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X1,generate_key(an_a_nonce)))),bt))))|~intruder_message(X1)|~fresh_to_b(encrypt(X1,generate_key(an_a_nonce)))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_38, c_0_96]), c_0_90])]), ['final']). cnf(c_0_137, plain, (b_stored(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce))))|~fresh_to_b(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_64, c_0_105]), ['final']). cnf(c_0_138, plain, (b_holds(key(X1,X2))|~intruder_message(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt))|~intruder_message(X3)|~intruder_message(X2)|~intruder_message(X1)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)), inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_116, c_0_117]), c_0_118]), ['final']). cnf(c_0_139, plain, (intruder_message(encrypt(triple(a,generate_key(X1),generate_expiration_time(X1)),bt))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_101, c_0_119]), ['final']). cnf(c_0_140, plain, (b_holds(key(generate_key(an_a_nonce),X1))|~intruder_message(encrypt(triple(X1,generate_key(an_a_nonce),generate_expiration_time(X2)),bt))|~intruder_message(X2)|~intruder_message(X1)|~fresh_to_b(X2)|~party_of_protocol(X1)), inference(csr,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_99, c_0_113]), c_0_120])]), c_0_118]), ['final']). cnf(c_0_141, plain, (b_stored(pair(X1,encrypt(X2,generate_key(an_a_nonce))))|~intruder_message(X2)|~intruder_message(X1)|~fresh_to_b(encrypt(X2,generate_key(an_a_nonce)))|~party_of_protocol(X1)), inference(spm,[status(thm)],[c_0_64, c_0_113]), ['final']). cnf(c_0_142, plain, (b_stored(pair(a,encrypt(X1,generate_key(an_a_nonce))))|~intruder_message(X1)|~fresh_to_b(encrypt(X1,generate_key(an_a_nonce)))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_52, c_0_96]), c_0_90])]), ['final']). cnf(c_0_143, plain, (intruder_message(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)|~intruder_message(X2)), inference(spm,[status(thm)],[c_0_104, c_0_113])). cnf(c_0_144, plain, (b_holds(key(generate_key(an_a_nonce),X1))|~intruder_message(encrypt(triple(X1,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))|~intruder_message(X1)|~party_of_protocol(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_116, c_0_121]), c_0_122]), c_0_120]), c_0_40])]), ['final']). cnf(c_0_145, plain, (message(sent(t,b,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),at),X3)))|~intruder_message(encrypt(triple(b,X1,X2),at))|~intruder_message(X3)|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_123, c_0_68]), c_0_90])]), ['final']). cnf(c_0_146, plain, (message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),bt),encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt),X2)))|~intruder_message(X2)|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_124, c_0_115]), c_0_69]), c_0_54])]), ['final']). cnf(c_0_147, plain, (intruder_message(encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_101, c_0_125]), ['final']). cnf(c_0_148, plain, (b_holds(key(X1,a))|~intruder_message(encrypt(triple(a,X1,generate_expiration_time(an_a_nonce)),bt))|~intruder_message(X1)|~a_key(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_126, c_0_117]), c_0_127])]), ['final']). cnf(c_0_149, plain, (a_holds(key(X1,b))|~intruder_message(encrypt(quadruple(b,an_a_nonce,X1,X2),at))|~intruder_message(X3)|~intruder_message(X4)), inference(spm,[status(thm)],[c_0_128, c_0_68]), ['final']). fof(c_0_150, plain, ![X43, X44, X45, X46]:(~intruder_message(X43)|~intruder_message(X44)|~intruder_message(X45)|~intruder_message(X46)|intruder_message(quadruple(X43,X44,X45,X46))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_composes_quadruples])])). fof(c_0_151, plain, ![X47, X48, X49]:(~intruder_message(encrypt(X47,X48))|~intruder_holds(key(X48,X49))|~party_of_protocol(X49)|intruder_message(X48)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_interception])])). fof(c_0_152, plain, ![X34, X35, X36, X37]:((((intruder_message(X34)|~intruder_message(quadruple(X34,X35,X36,X37)))&(intruder_message(X35)|~intruder_message(quadruple(X34,X35,X36,X37))))&(intruder_message(X36)|~intruder_message(quadruple(X34,X35,X36,X37))))&(intruder_message(X37)|~intruder_message(quadruple(X34,X35,X36,X37)))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_decomposes_quadruples])])])). cnf(c_0_153, plain, (intruder_message(X1)|~fresh_intruder_nonce(X1)), inference(split_conjunct,[status(thm)],[c_0_111]), ['final']). cnf(c_0_154, plain, (fresh_intruder_nonce(generate_intruder_nonce(X1))|~fresh_intruder_nonce(X1)), inference(split_conjunct,[status(thm)],[c_0_129]), ['final']). fof(c_0_155, plain, ![X60]:(~a_key(X60)|~a_nonce(X60)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[nothing_is_a_nonce_and_a_key])])). fof(c_0_156, plain, ![X58]:~a_nonce(generate_key(X58)), inference(variable_rename,[status(thm)],[inference(fof_simplification,[status(thm)],[generated_keys_are_not_nonces])])). cnf(c_0_157, plain, (fresh_intruder_nonce(an_intruder_nonce)), inference(split_conjunct,[status(thm)],[an_intruder_nonce_is_a_fresh_intruder_nonce]), ['final']). fof(c_0_158, plain, ![X59]:(a_nonce(generate_expiration_time(X59))&a_nonce(generate_b_nonce(X59))), inference(variable_rename,[status(thm)],[generated_times_and_nonces_are_nonces])). cnf(c_0_159, plain, (message(sent(b,t,triple(b,generate_b_nonce(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce))),encrypt(triple(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)),generate_expiration_time(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))),bt))))|~fresh_intruder_nonce(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_130, c_0_131]), ['final']). cnf(c_0_160, plain, (message(sent(b,t,triple(b,generate_b_nonce(encrypt(X1,generate_key(an_a_nonce))),encrypt(triple(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(X1,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X1,generate_key(an_a_nonce)))),bt))))|~intruder_message(X1)|~fresh_to_b(encrypt(X1,generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_73, c_0_132]), ['final']). cnf(c_0_161, plain, (message(sent(b,t,triple(b,generate_b_nonce(encrypt(X1,generate_key(an_a_nonce))),encrypt(triple(X2,encrypt(X1,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X1,generate_key(an_a_nonce)))),bt))))|~fresh_intruder_nonce(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)|~intruder_message(X2)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_133, c_0_131]), ['final']). cnf(c_0_162, plain, (message(sent(t,a,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),at),X3)))|~intruder_message(triple(a,X1,X2))|~intruder_message(at)|~intruder_message(X3)|~a_nonce(X1)), inference(spm,[status(thm)],[c_0_134, c_0_117]), ['final']). cnf(c_0_163, plain, (message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),bt),X3)))|~intruder_message(triple(a,X1,X2))|~intruder_message(bt)|~intruder_message(X3)|~a_nonce(X1)), inference(spm,[status(thm)],[c_0_82, c_0_117]), ['final']). cnf(c_0_164, plain, (intruder_message(triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),at),encrypt(triple(a,generate_key(X1),generate_expiration_time(X1)),bt),X2))|~intruder_message(X2)|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_46, c_0_135]), ['final']). cnf(c_0_165, plain, (b_stored(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(X1,generate_key(an_a_nonce))))|~intruder_message(X1)|~fresh_to_b(encrypt(X1,generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_64, c_0_132]), ['final']). cnf(c_0_166, plain, (intruder_message(triple(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at),encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),X1))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_46, c_0_95]), ['final']). cnf(c_0_167, plain, (message(sent(b,t,triple(b,generate_b_nonce(encrypt(X1,generate_key(an_a_nonce))),encrypt(triple(a,encrypt(X1,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X1,generate_key(an_a_nonce)))),bt))))|~fresh_intruder_nonce(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_136, c_0_131]), ['final']). cnf(c_0_168, plain, (b_stored(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce))))|~fresh_intruder_nonce(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_137, c_0_131]), ['final']). cnf(c_0_169, plain, (intruder_message(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),at))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_58, c_0_119]), ['final']). cnf(c_0_170, plain, (b_holds(key(generate_key(X1),a))|~intruder_message(generate_key(X1))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_138, c_0_139]), c_0_90]), c_0_120]), c_0_61])]), ['final']). cnf(c_0_171, plain, (b_holds(key(generate_key(an_a_nonce),X1))|~intruder_message(triple(X1,generate_key(an_a_nonce),generate_expiration_time(X2)))|~intruder_message(bt)|~intruder_message(X2)|~fresh_to_b(X2)|~party_of_protocol(X1)), inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_140, c_0_117]), c_0_58]), ['final']). cnf(c_0_172, plain, (b_holds(key(generate_key(an_a_nonce),X1))|~intruder_message(generate_key(an_a_nonce))|~intruder_message(X1)|~fresh_to_b(generate_key(an_a_nonce))|~party_of_protocol(X1)), inference(spm,[status(thm)],[c_0_140, c_0_115]), ['final']). cnf(c_0_173, plain, (b_stored(pair(X1,encrypt(X2,generate_key(an_a_nonce))))|~fresh_intruder_nonce(encrypt(X2,generate_key(an_a_nonce)))|~intruder_message(X2)|~intruder_message(X1)|~party_of_protocol(X1)), inference(spm,[status(thm)],[c_0_141, c_0_131]), ['final']). cnf(c_0_174, plain, (b_stored(pair(a,encrypt(X1,generate_key(an_a_nonce))))|~fresh_intruder_nonce(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_142, c_0_131]), ['final']). cnf(c_0_175, plain, (intruder_message(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_143, c_0_72]), ['final']). cnf(c_0_176, plain, (b_holds(key(generate_key(an_a_nonce),X1))|~intruder_message(triple(X1,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)))|~intruder_message(bt)|~party_of_protocol(X1)), inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_144, c_0_117]), c_0_58]), ['final']). cnf(c_0_177, plain, (message(sent(t,b,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),at),X3)))|~intruder_message(triple(b,X1,X2))|~intruder_message(at)|~intruder_message(X3)|~a_nonce(X1)), inference(spm,[status(thm)],[c_0_145, c_0_117]), ['final']). cnf(c_0_178, plain, (message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),bt),X3)))|~intruder_message(triple(b,X1,X2))|~intruder_message(bt)|~intruder_message(X3)|~a_nonce(X1)), inference(spm,[status(thm)],[c_0_124, c_0_117]), ['final']). cnf(c_0_179, plain, (intruder_message(triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),bt),encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt),X2))|~intruder_message(X2)|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_46, c_0_146]), ['final']). cnf(c_0_180, plain, (intruder_message(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),bt))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_58, c_0_125]), ['final']). cnf(c_0_181, plain, (b_holds(key(generate_key(X1),b))|~intruder_message(generate_key(X1))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_138, c_0_147]), c_0_69]), c_0_120]), c_0_54])]), ['final']). cnf(c_0_182, plain, (intruder_message(generate_b_nonce(X1))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_70, c_0_125]), ['final']). cnf(c_0_183, plain, (b_holds(key(X1,X2))|~intruder_message(triple(X2,X1,generate_expiration_time(X3)))|~intruder_message(bt)|~intruder_message(X3)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)), inference(csr,[status(thm)],[inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_138, c_0_117]), c_0_101]), c_0_58]), ['final']). cnf(c_0_184, plain, (b_holds(key(X1,X2))|~intruder_message(X1)|~intruder_message(X2)|~a_key(X1)|~fresh_to_b(X1)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_138, c_0_115]), ['final']). cnf(c_0_185, plain, (message(sent(a,b,pair(X1,encrypt(X2,X3))))|~intruder_message(quadruple(b,an_a_nonce,X3,X4))|~intruder_message(at)|~intruder_message(X2)|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_84, c_0_117]), ['final']). cnf(c_0_186, plain, (b_holds(key(X1,a))|~intruder_message(triple(a,X1,generate_expiration_time(an_a_nonce)))|~intruder_message(bt)|~a_key(X1)), inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_148, c_0_117]), c_0_101]), ['final']). cnf(c_0_187, plain, (b_holds(key(an_a_nonce,a))|~a_key(an_a_nonce)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_148, c_0_83]), c_0_122])]), ['final']). cnf(c_0_188, plain, (a_holds(key(X1,b))|~intruder_message(quadruple(b,an_a_nonce,X1,X2))|~intruder_message(at)|~intruder_message(X3)|~intruder_message(X4)), inference(spm,[status(thm)],[c_0_149, c_0_117]), ['final']). cnf(c_0_189, plain, (intruder_message(quadruple(X1,X2,X3,X4))|~intruder_message(X1)|~intruder_message(X2)|~intruder_message(X3)|~intruder_message(X4)), inference(split_conjunct,[status(thm)],[c_0_150]), ['final']). cnf(c_0_190, plain, (intruder_message(X2)|~intruder_message(encrypt(X1,X2))|~intruder_holds(key(X2,X3))|~party_of_protocol(X3)), inference(split_conjunct,[status(thm)],[c_0_151]), ['final']). cnf(c_0_191, plain, (intruder_message(X1)|~intruder_message(quadruple(X1,X2,X3,X4))), inference(split_conjunct,[status(thm)],[c_0_152]), ['final']). cnf(c_0_192, plain, (intruder_message(X1)|~intruder_message(quadruple(X2,X1,X3,X4))), inference(split_conjunct,[status(thm)],[c_0_152]), ['final']). cnf(c_0_193, plain, (intruder_message(X1)|~intruder_message(quadruple(X2,X3,X1,X4))), inference(split_conjunct,[status(thm)],[c_0_152]), ['final']). cnf(c_0_194, plain, (intruder_message(X1)|~intruder_message(quadruple(X2,X3,X4,X1))), inference(split_conjunct,[status(thm)],[c_0_152]), ['final']). cnf(c_0_195, plain, (intruder_message(generate_intruder_nonce(X1))|~fresh_intruder_nonce(X1)), inference(spm,[status(thm)],[c_0_153, c_0_154]), ['final']). cnf(c_0_196, plain, (~a_key(X1)|~a_nonce(X1)), inference(split_conjunct,[status(thm)],[c_0_155]), ['final']). cnf(c_0_197, plain, (~a_nonce(generate_key(X1))), inference(split_conjunct,[status(thm)],[c_0_156]), ['final']). cnf(c_0_198, plain, (b_holds(key(generate_key(an_a_nonce),b))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_144, c_0_147]), c_0_69]), c_0_54]), c_0_122]), c_0_51]), c_0_40])]), ['final']). cnf(c_0_199, plain, (intruder_message(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_78, c_0_105]), ['final']). cnf(c_0_200, plain, (b_holds(key(generate_key(an_a_nonce),a))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_87, c_0_91]), c_0_122]), c_0_90]), c_0_120]), c_0_40]), c_0_61])]), ['final']). cnf(c_0_201, plain, (a_holds(key(generate_key(an_a_nonce),b))), inference(spm,[status(thm)],[c_0_110, c_0_62]), ['final']). cnf(c_0_202, plain, (b_holds(key(bt,t))), inference(split_conjunct,[status(thm)],[b_hold_key_bt_for_t]), ['final']). cnf(c_0_203, plain, (a_holds(key(at,t))), inference(split_conjunct,[status(thm)],[a_holds_key_at_for_t]), ['final']). cnf(c_0_204, plain, (intruder_message(an_intruder_nonce)), inference(spm,[status(thm)],[c_0_153, c_0_157]), ['final']). cnf(c_0_205, plain, (a_nonce(generate_expiration_time(X1))), inference(split_conjunct,[status(thm)],[c_0_158]), ['final']). cnf(c_0_206, plain, (a_nonce(generate_b_nonce(X1))), inference(split_conjunct,[status(thm)],[c_0_158]), ['final']). # SZS output end Saturation
# SZS output start CNFRefutation cnf(associativity, axiom, (multiply(multiply(X1,X2,X3),X4,multiply(X1,X2,X5))=multiply(X1,X2,multiply(X3,X4,X5))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/Axioms/BOO001-0.ax', associativity)). cnf(ternary_multiply_1, axiom, (multiply(X1,X2,X2)=X2), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/Axioms/BOO001-0.ax', ternary_multiply_1)). cnf(right_inverse, axiom, (multiply(X1,X2,inverse(X2))=X1), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/Axioms/BOO001-0.ax', right_inverse)). cnf(ternary_multiply_2, axiom, (multiply(X1,X1,X2)=X1), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/Axioms/BOO001-0.ax', ternary_multiply_2)). cnf(left_inverse, axiom, (multiply(inverse(X1),X1,X2)=X2), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/Axioms/BOO001-0.ax', left_inverse)). cnf(prove_inverse_is_self_cancelling, negated_conjecture, (inverse(inverse(a))!=a), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/BOO001-1.p', prove_inverse_is_self_cancelling)). cnf(c_0_6, axiom, (multiply(multiply(X1,X2,X3),X4,multiply(X1,X2,X5))=multiply(X1,X2,multiply(X3,X4,X5))), associativity). cnf(c_0_7, axiom, (multiply(X1,X2,X2)=X2), ternary_multiply_1). cnf(c_0_8, plain, (multiply(multiply(X1,X2,X3),X4,X2)=multiply(X1,X2,multiply(X3,X4,X2))), inference(spm,[status(thm)],[c_0_6, c_0_7])). cnf(c_0_9, axiom, (multiply(X1,X2,inverse(X2))=X1), right_inverse). cnf(c_0_10, plain, (multiply(X1,X2,X3)=multiply(X1,X3,multiply(inverse(X3),X2,X3))), inference(spm,[status(thm)],[c_0_8, c_0_9])). cnf(c_0_11, axiom, (multiply(X1,X1,X2)=X1), ternary_multiply_2). cnf(c_0_12, axiom, (multiply(inverse(X1),X1,X2)=X2), left_inverse). cnf(c_0_13, plain, (multiply(X1,inverse(X2),X2)=X1), inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_10, c_0_11]), c_0_9])). cnf(c_0_14, negated_conjecture, (inverse(inverse(a))!=a), prove_inverse_is_self_cancelling). cnf(c_0_15, plain, (inverse(inverse(X1))=X1), inference(spm,[status(thm)],[c_0_12, c_0_13])). cnf(c_0_16, negated_conjecture, ($false), inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_14, c_0_15])]), ['proof']). # SZS output end CNFRefutation
# No SInE strategy applied # Trying AutoSched0 for 149 seconds # AutoSched0-Mode selected heuristic G_E___207_C18_F1_SE_CS_SP_PI_PS_S00A # and selection function NoSelection. # # Presaturation interreduction done # Proof found! # SZS status Theorem # SZS output start CNFRefutation thf(thm, conjecture, ![X22:$i > $o, X23:$i > $o, X24:$i > $o]:((subset @ X22 @ X24&subset @ X23 @ X24)=>subset @ (union @ X22 @ X23) @ X24), file('/home/petar/Documents/tptp/Problems/SET/SET014^4.p', thm)). thf(union, axiom, (union)=(^[X5:$i > $o, X6:$i > $o, X4:$i]:(X5 @ X4|X6 @ X4)), file('/home/petar/Documents/tptp/Problems/SET/Axioms/SET008^0.ax', union)). thf(subset, axiom, (subset)=(^[X16:$i > $o, X17:$i > $o]:![X4:$i]:(X16 @ X4=>X17 @ X4)), file('/home/petar/Documents/tptp/Problems/SET/Axioms/SET008^0.ax', subset)). thf(c_0_3, negated_conjecture, ~(![X22:$i > $o, X23:$i > $o, X24:$i > $o]:((![X29:$i]:(X22 @ X29=>X24 @ X29)&![X30:$i]:(X23 @ X30=>X24 @ X30))=>![X32:$i]:((X22 @ X32|X23 @ X32)=>X24 @ X32))), inference(apply_def,[status(thm)],[inference(apply_def,[status(thm)],[inference(assume_negation,[status(cth)],[thm]), union]), subset])). thf(c_0_4, negated_conjecture, ![X37:$i, X38:$i]:(((~epred1_0 @ X37|epred3_0 @ X37)&(~epred2_0 @ X38|epred3_0 @ X38))&((epred1_0 @ esk1_0|epred2_0 @ esk1_0)&~epred3_0 @ esk1_0)), inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_3])])])])). thf(c_0_5, negated_conjecture, ![X1:$i]:(epred3_0 @ X1|~epred2_0 @ X1), inference(split_conjunct,[status(thm)],[c_0_4])). thf(c_0_6, negated_conjecture, (epred1_0 @ esk1_0|epred2_0 @ esk1_0), inference(split_conjunct,[status(thm)],[c_0_4])). thf(c_0_7, negated_conjecture, ~epred3_0 @ esk1_0, inference(split_conjunct,[status(thm)],[c_0_4])). thf(c_0_8, negated_conjecture, ![X1:$i]:(epred3_0 @ X1|~epred1_0 @ X1), inference(split_conjunct,[status(thm)],[c_0_4])). thf(c_0_9, negated_conjecture, epred1_0 @ esk1_0, inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_5, c_0_6]), c_0_7])). thf(c_0_10, negated_conjecture, ($false), inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_8, c_0_9]), c_0_7]), ['proof']). # SZS output end CNFRefutation # Training examples: 0 positive, 0 negative
# SZS status Theorem for /home/hesterj/Projects/Testing/FOL/SEU140+2.p # SZS output start for /home/hesterj/Projects/Testing/FOL/SEU140+2.p # Begin clausification derivation # End clausification derivation # Begin listing active clauses obtained from FOF to CNF conversion cnf(i_0_82, negated_conjecture, (subset(esk11_0,esk12_0))). cnf(i_0_81, negated_conjecture, (disjoint(esk12_0,esk13_0))). cnf(i_0_40, plain, (empty(empty_set))). cnf(i_0_48, plain, (empty(esk6_0))). cnf(i_0_62, lemma, (subset(empty_set,X1))). cnf(i_0_50, plain, (subset(X1,X1))). cnf(i_0_76, plain, (set_difference(empty_set,X1)=empty_set)). cnf(i_0_55, plain, (set_union2(X1,empty_set)=X1)). cnf(i_0_68, plain, (set_difference(X1,empty_set)=X1)). cnf(i_0_43, plain, (set_union2(X1,X1)=X1)). cnf(i_0_85, lemma, (subset(X1,set_union2(X1,X2)))). cnf(i_0_64, lemma, (subset(set_difference(X1,X2),X1))). cnf(i_0_59, plain, (set_difference(X1,X1)=empty_set)). cnf(i_0_67, lemma, (set_union2(X1,set_difference(X2,X1))=set_union2(X1,X2))). cnf(i_0_73, lemma, (set_difference(set_union2(X1,X2),X2)=set_difference(X1,X2))). cnf(i_0_3, plain, (set_union2(X1,X2)=set_union2(X2,X1))). cnf(i_0_4, plain, (set_difference(X1,set_difference(X1,X2))=set_difference(X2,set_difference(X2,X1)))). cnf(i_0_80, negated_conjecture, (~disjoint(esk11_0,esk13_0))). cnf(i_0_49, plain, (~empty(esk7_0))). cnf(i_0_45, plain, (~proper_subset(X1,X1))). cnf(i_0_9, plain, (~in(X1,empty_set))). cnf(i_0_84, plain, (~empty(X1)|~in(X2,X1))). cnf(i_0_83, plain, (X1=empty_set|~empty(X1))). cnf(i_0_72, lemma, (X1=empty_set|~subset(X1,empty_set))). cnf(i_0_79, lemma, (~subset(X1,X2)|~proper_subset(X2,X1))). cnf(i_0_1, plain, (~in(X1,X2)|~in(X2,X1))). cnf(i_0_2, plain, (~proper_subset(X1,X2)|~proper_subset(X2,X1))). cnf(i_0_35, plain, (subset(X1,X2)|~proper_subset(X1,X2))). cnf(i_0_51, plain, (disjoint(X1,X2)|~disjoint(X2,X1))). cnf(i_0_86, plain, (X1=X2|~empty(X2)|~empty(X1))). cnf(i_0_69, lemma, (~disjoint(X1,X2)|~in(X3,X2)|~in(X3,X1))). cnf(i_0_42, plain, (empty(X1)|~empty(set_union2(X2,X1)))). cnf(i_0_41, plain, (empty(X1)|~empty(set_union2(X1,X2)))). cnf(i_0_77, lemma, (~disjoint(X1,X2)|~in(X3,set_difference(X1,set_difference(X1,X2))))). cnf(i_0_47, lemma, (subset(X1,X2)|set_difference(X1,X2)!=empty_set)). cnf(i_0_46, lemma, (set_difference(X1,X2)=empty_set|~subset(X1,X2))). cnf(i_0_8, plain, (X1=empty_set|in(esk1_1(X1),X1))). cnf(i_0_52, lemma, (set_union2(X1,X2)=X2|~subset(X1,X2))). cnf(i_0_18, plain, (in(X1,X2)|~subset(X3,X2)|~in(X1,X3))). cnf(i_0_29, plain, (~in(X1,set_difference(X2,X3))|~in(X1,X3))). cnf(i_0_5, plain, (X1=X2|~subset(X2,X1)|~subset(X1,X2))). cnf(i_0_16, plain, (subset(X1,X2)|~in(esk3_2(X1,X2),X2))). cnf(i_0_31, plain, (disjoint(X1,X2)|set_difference(X1,set_difference(X1,X2))!=empty_set)). cnf(i_0_56, lemma, (subset(X1,X2)|~subset(X3,X2)|~subset(X1,X3))). cnf(i_0_32, plain, (set_difference(X1,set_difference(X1,X2))=empty_set|~disjoint(X1,X2))). cnf(i_0_33, plain, (X1=X2|proper_subset(X1,X2)|~subset(X1,X2))). cnf(i_0_58, lemma, (set_difference(X1,set_difference(X1,X2))=X1|~subset(X1,X2))). cnf(i_0_17, plain, (subset(X1,X2)|in(esk3_2(X1,X2),X1))). cnf(i_0_70, lemma, (disjoint(X1,X2)|in(esk9_2(X1,X2),X2))). cnf(i_0_71, lemma, (disjoint(X1,X2)|in(esk9_2(X1,X2),X1))). cnf(i_0_87, lemma, (subset(set_union2(X1,X2),X3)|~subset(X2,X3)|~subset(X1,X3))). cnf(i_0_13, plain, (in(X1,set_union2(X2,X3))|~in(X1,X3))). cnf(i_0_30, plain, (in(X1,X2)|~in(X1,set_difference(X2,X3)))). cnf(i_0_14, plain, (in(X1,set_union2(X2,X3))|~in(X1,X2))). cnf(i_0_63, lemma, (subset(set_difference(X1,X2),set_difference(X3,X2))|~subset(X1,X3))). cnf(i_0_23, plain, (in(X1,X2)|~in(X1,set_difference(X3,set_difference(X3,X2))))). cnf(i_0_78, lemma, (disjoint(X1,X2)|in(esk10_2(X1,X2),set_difference(X1,set_difference(X1,X2))))). cnf(i_0_61, plain, (X1=X2|~in(esk8_2(X1,X2),X2)|~in(esk8_2(X1,X2),X1))). cnf(i_0_28, plain, (in(X1,set_difference(X2,X3))|in(X1,X3)|~in(X1,X2))). cnf(i_0_54, lemma, (subset(X1,set_difference(X2,set_difference(X2,X3)))|~subset(X1,X3)|~subset(X1,X2))). cnf(i_0_22, plain, (in(X1,set_difference(X2,set_difference(X2,X3)))|~in(X1,X3)|~in(X1,X2))). cnf(i_0_15, plain, (in(X1,X2)|in(X1,X3)|~in(X1,set_union2(X3,X2)))). cnf(i_0_60, plain, (X1=X2|in(esk8_2(X1,X2),X1)|in(esk8_2(X1,X2),X2))). cnf(i_0_11, plain, (X1=set_union2(X2,X3)|~in(esk2_3(X2,X3,X1),X1)|~in(esk2_3(X2,X3,X1),X3))). cnf(i_0_12, plain, (X1=set_union2(X2,X3)|~in(esk2_3(X2,X3,X1),X1)|~in(esk2_3(X2,X3,X1),X2))). cnf(i_0_25, plain, (X1=set_difference(X2,X3)|in(esk5_3(X2,X3,X1),X1)|~in(esk5_3(X2,X3,X1),X3))). cnf(i_0_57, lemma, (subset(set_difference(X1,set_difference(X1,X2)),set_difference(X3,set_difference(X3,X2)))|~subset(X1,X3))). cnf(i_0_26, plain, (X1=set_difference(X2,X3)|in(esk5_3(X2,X3,X1),X2)|in(esk5_3(X2,X3,X1),X1))). cnf(i_0_19, plain, (X1=set_difference(X2,set_difference(X2,X3))|in(esk4_3(X2,X3,X1),X3)|in(esk4_3(X2,X3,X1),X1))). cnf(i_0_20, plain, (X1=set_difference(X2,set_difference(X2,X3))|in(esk4_3(X2,X3,X1),X2)|in(esk4_3(X2,X3,X1),X1))). cnf(i_0_21, plain, (X1=set_difference(X2,set_difference(X2,X3))|~in(esk4_3(X2,X3,X1),X1)|~in(esk4_3(X2,X3,X1),X3)|~in(esk4_3(X2,X3,X1),X2))). cnf(i_0_27, plain, (X1=set_difference(X2,X3)|in(esk5_3(X2,X3,X1),X3)|~in(esk5_3(X2,X3,X1),X1)|~in(esk5_3(X2,X3,X1),X2))). cnf(i_0_10, plain, (X1=set_union2(X2,X3)|in(esk2_3(X2,X3,X1),X2)|in(esk2_3(X2,X3,X1),X3)|in(esk2_3(X2,X3,X1),X1))). # End listing active clauses. There is an equivalent clause to each of these in the clausification! # Begin printing tableau # Found 4 steps cnf(i_0_80, negated_conjecture, (~disjoint(esk11_0,esk13_0)), inference(start_rule)). cnf(i_0_101, plain, (~disjoint(esk11_0,esk13_0)), inference(extension_rule, [i_0_51])). cnf(i_0_119, plain, (~disjoint(esk13_0,esk11_0)), inference(extension_rule, [i_0_31])). cnf(i_0_165, plain, (set_difference(esk13_0,set_difference(esk13_0,esk11_0))!=empty_set), inference(etableau_closure_rule, [i_0_165, ...])). # End printing tableau # SZS output end
# SZS status CounterSatisfiable for /home/hesterj/Projects/Testing/FOL/NLP042+1.p # SZS output start for /home/hesterj/Projects/Testing/FOL/NLP042+1.p # Begin clausification derivation # End clausification derivation # Begin listing active clauses obtained from FOF to CNF conversion cnf(i_0_56, negated_conjecture, (actual_world(esk1_0))). cnf(i_0_54, negated_conjecture, (woman(esk1_0,esk2_0))). cnf(i_0_53, negated_conjecture, (mia_forename(esk1_0,esk3_0))). cnf(i_0_52, negated_conjecture, (forename(esk1_0,esk3_0))). cnf(i_0_51, negated_conjecture, (shake_beverage(esk1_0,esk4_0))). cnf(i_0_45, negated_conjecture, (order(esk1_0,esk5_0))). cnf(i_0_50, negated_conjecture, (event(esk1_0,esk5_0))). cnf(i_0_46, negated_conjecture, (nonreflexive(esk1_0,esk5_0))). cnf(i_0_47, negated_conjecture, (past(esk1_0,esk5_0))). cnf(i_0_55, negated_conjecture, (of(esk1_0,esk3_0,esk2_0))). cnf(i_0_49, negated_conjecture, (agent(esk1_0,esk5_0,esk2_0))). cnf(i_0_48, negated_conjecture, (patient(esk1_0,esk5_0,esk4_0))). cnf(i_0_42, plain, (~unisex(X1,X2)|~female(X1,X2))). cnf(i_0_37, plain, (~nonliving(X1,X2)|~animate(X1,X2))). cnf(i_0_39, plain, (~nonhuman(X1,X2)|~human(X1,X2))). cnf(i_0_40, plain, (~nonliving(X1,X2)|~living(X1,X2))). cnf(i_0_1, plain, (female(X1,X2)|~woman(X1,X2))). cnf(i_0_9, plain, (forename(X1,X2)|~mia_forename(X1,X2))). cnf(i_0_41, plain, (~specific(X1,X2)|~general(X1,X2))). cnf(i_0_38, plain, (~nonexistent(X1,X2)|~existent(X1,X2))). cnf(i_0_8, plain, (human_person(X1,X2)|~woman(X1,X2))). cnf(i_0_6, plain, (entity(X1,X2)|~organism(X1,X2))). cnf(i_0_28, plain, (event(X1,X2)|~order(X1,X2))). cnf(i_0_35, plain, (event(X1,X2)|~act(X1,X2))). cnf(i_0_34, plain, (eventuality(X1,X2)|~event(X1,X2))). cnf(i_0_16, plain, (relname(X1,X2)|~forename(X1,X2))). cnf(i_0_27, plain, (beverage(X1,X2)|~shake_beverage(X1,X2))). cnf(i_0_2, plain, (animate(X1,X2)|~human_person(X1,X2))). cnf(i_0_36, plain, (act(X1,X2)|~order(X1,X2))). cnf(i_0_23, plain, (entity(X1,X2)|~object(X1,X2))). cnf(i_0_14, plain, (abstraction(X1,X2)|~relation(X1,X2))). cnf(i_0_15, plain, (relation(X1,X2)|~relname(X1,X2))). cnf(i_0_24, plain, (object(X1,X2)|~substance_matter(X1,X2))). cnf(i_0_3, plain, (human(X1,X2)|~human_person(X1,X2))). cnf(i_0_25, plain, (substance_matter(X1,X2)|~food(X1,X2))). cnf(i_0_26, plain, (food(X1,X2)|~beverage(X1,X2))). cnf(i_0_7, plain, (organism(X1,X2)|~human_person(X1,X2))). cnf(i_0_4, plain, (living(X1,X2)|~organism(X1,X2))). cnf(i_0_5, plain, (impartial(X1,X2)|~organism(X1,X2))). cnf(i_0_18, plain, (impartial(X1,X2)|~object(X1,X2))). cnf(i_0_10, plain, (unisex(X1,X2)|~abstraction(X1,X2))). cnf(i_0_17, plain, (unisex(X1,X2)|~object(X1,X2))). cnf(i_0_29, plain, (unisex(X1,X2)|~eventuality(X1,X2))). cnf(i_0_11, plain, (general(X1,X2)|~abstraction(X1,X2))). cnf(i_0_12, plain, (nonhuman(X1,X2)|~abstraction(X1,X2))). cnf(i_0_22, plain, (thing(X1,X2)|~entity(X1,X2))). cnf(i_0_13, plain, (thing(X1,X2)|~abstraction(X1,X2))). cnf(i_0_33, plain, (thing(X1,X2)|~eventuality(X1,X2))). cnf(i_0_19, plain, (nonliving(X1,X2)|~object(X1,X2))). cnf(i_0_20, plain, (existent(X1,X2)|~entity(X1,X2))). cnf(i_0_21, plain, (specific(X1,X2)|~entity(X1,X2))). cnf(i_0_31, plain, (specific(X1,X2)|~eventuality(X1,X2))). cnf(i_0_30, plain, (nonexistent(X1,X2)|~eventuality(X1,X2))). cnf(i_0_32, plain, (singleton(X1,X2)|~thing(X1,X2))). cnf(i_0_44, plain, (~patient(X1,X2,X3)|~agent(X1,X2,X3)|~nonreflexive(X1,X2))). cnf(i_0_43, plain, (X1=X2|~of(X3,X2,X4)|~of(X3,X1,X4)|~forename(X3,X2)|~forename(X3,X1)|~entity(X3,X4))). # End listing active clauses. There is an equivalent clause to each of these in the clausification! # Begin printing tableau # Found 3 steps cnf(i_0_54, negated_conjecture, (woman(esk1_0,esk2_0)), inference(start_rule)). cnf(i_0_68, plain, (woman(esk1_0,esk2_0)), inference(extension_rule, [i_0_1])). cnf(i_0_816, plain, (female(esk1_0,esk2_0)), inference(extension_rule, [i_0_42])). # End printing tableau # SZS output end
# SZS status Satisfiable for /home/hesterj/Projects/Testing/FOL/SWV017+1.p # SZS output start for /home/hesterj/Projects/Testing/FOL/SWV017+1.p # Begin clausification derivation # End clausification derivation # Begin listing active clauses obtained from FOF to CNF conversion cnf(i_0_15, plain, (party_of_protocol(t))). cnf(i_0_2, plain, (party_of_protocol(a))). cnf(i_0_8, plain, (party_of_protocol(b))). cnf(i_0_9, plain, (fresh_to_b(an_a_nonce))). cnf(i_0_34, plain, (a_nonce(an_a_nonce))). cnf(i_0_40, plain, (fresh_intruder_nonce(an_intruder_nonce))). cnf(i_0_39, plain, (a_key(generate_key(X1)))). cnf(i_0_36, plain, (a_nonce(generate_b_nonce(X1)))). cnf(i_0_37, plain, (a_nonce(generate_expiration_time(X1)))). cnf(i_0_1, plain, (a_holds(key(at,t)))). cnf(i_0_4, plain, (a_stored(pair(b,an_a_nonce)))). cnf(i_0_7, plain, (b_holds(key(bt,t)))). cnf(i_0_13, plain, (t_holds(key(at,a)))). cnf(i_0_14, plain, (t_holds(key(bt,b)))). cnf(i_0_3, plain, (message(sent(a,b,pair(a,an_a_nonce))))). cnf(i_0_35, plain, (~a_nonce(generate_key(X1)))). cnf(i_0_38, plain, (~a_nonce(X1)|~a_key(X1))). cnf(i_0_42, plain, (intruder_message(X1)|~fresh_intruder_nonce(X1))). cnf(i_0_43, plain, (fresh_to_b(X1)|~fresh_intruder_nonce(X1))). cnf(i_0_41, plain, (fresh_intruder_nonce(generate_intruder_nonce(X1))|~fresh_intruder_nonce(X1))). cnf(i_0_18, plain, (intruder_message(X1)|~intruder_message(pair(X2,X1)))). cnf(i_0_19, plain, (intruder_message(X1)|~intruder_message(pair(X1,X2)))). cnf(i_0_17, plain, (intruder_message(X1)|~message(sent(X2,X3,X1)))). cnf(i_0_20, plain, (intruder_message(X1)|~intruder_message(triple(X2,X3,X1)))). cnf(i_0_21, plain, (intruder_message(X1)|~intruder_message(triple(X2,X1,X3)))). cnf(i_0_22, plain, (intruder_message(X1)|~intruder_message(triple(X1,X2,X3)))). cnf(i_0_23, plain, (intruder_message(X1)|~intruder_message(quadruple(X2,X3,X4,X1)))). cnf(i_0_24, plain, (intruder_message(X1)|~intruder_message(quadruple(X2,X3,X1,X4)))). cnf(i_0_27, plain, (intruder_message(pair(X1,X2))|~intruder_message(X2)|~intruder_message(X1))). cnf(i_0_25, plain, (intruder_message(X1)|~intruder_message(quadruple(X2,X1,X3,X4)))). cnf(i_0_26, plain, (intruder_message(X1)|~intruder_message(quadruple(X1,X2,X3,X4)))). cnf(i_0_32, plain, (intruder_holds(key(X1,X2))|~intruder_message(X1)|~party_of_protocol(X2))). cnf(i_0_30, plain, (intruder_message(X1)|~intruder_holds(key(X1,X2))|~intruder_message(encrypt(X3,X1))|~party_of_protocol(X2))). cnf(i_0_31, plain, (message(sent(X1,X2,X3))|~intruder_message(X3)|~party_of_protocol(X2)|~party_of_protocol(X1))). cnf(i_0_28, plain, (intruder_message(triple(X1,X2,X3))|~intruder_message(X3)|~intruder_message(X2)|~intruder_message(X1))). cnf(i_0_33, plain, (intruder_message(encrypt(X1,X2))|~intruder_holds(key(X2,X3))|~intruder_message(X1)|~party_of_protocol(X3))). cnf(i_0_10, plain, (b_stored(pair(X1,X2))|~fresh_to_b(X2)|~message(sent(X1,b,pair(X1,X2))))). cnf(i_0_29, plain, (intruder_message(quadruple(X1,X2,X3,X4))|~intruder_message(X4)|~intruder_message(X3)|~intruder_message(X2)|~intruder_message(X1))). cnf(i_0_11, plain, (message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X2,X1,generate_expiration_time(X1)),bt))))|~fresh_to_b(X1)|~message(sent(X2,b,pair(X2,X1))))). cnf(i_0_5, plain, (a_holds(key(X1,X2))|~a_stored(pair(X2,X3))|~message(sent(t,a,triple(encrypt(quadruple(X2,X3,X1,X4),at),X5,X6))))). cnf(i_0_12, plain, (b_holds(key(X1,X2))|~a_key(X1)|~b_stored(pair(X2,X3))|~message(sent(X2,b,pair(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt),encrypt(generate_b_nonce(X3),X1)))))). cnf(i_0_6, plain, (message(sent(a,X1,pair(X2,encrypt(X3,X4))))|~a_stored(pair(X1,X5))|~message(sent(t,a,triple(encrypt(quadruple(X1,X5,X4,X6),at),X2,X3))))). cnf(i_0_16, plain, (message(sent(t,X1,triple(encrypt(quadruple(X2,X3,generate_key(X3),X4),X5),encrypt(triple(X1,generate_key(X3),X4),X6),X7)))|~a_nonce(X3)|~t_holds(key(X5,X1))|~t_holds(key(X6,X2))|~message(sent(X2,t,triple(X2,X7,encrypt(triple(X1,X3,X4),X6)))))). # End listing active clauses. There is an equivalent clause to each of these in the clausification! # Begin printing tableau # Found 6 steps cnf(i_0_15, plain, (party_of_protocol(t)), inference(start_rule)). cnf(i_0_9052, plain, (~intruder_message(pair(t,an_a_nonce))), inference(closure_rule, [i_0_0])). cnf(i_0_44, plain, (party_of_protocol(t)), inference(extension_rule, [i_0_31])). cnf(i_0_9051, plain, (message(sent(t,b,pair(t,an_a_nonce)))), inference(extension_rule, [i_0_10])). cnf(i_0_9053, plain, (~party_of_protocol(b)), inference(closure_rule, [i_0_8])). cnf(i_0_10922, plain, (~fresh_to_b(an_a_nonce)), inference(closure_rule, [i_0_9])). # End printing tableau # SZS output end
# SZS status Unsatisfiable for /home/hesterj/Projects/Testing/FOL/BOO001-1.p # SZS output start for /home/hesterj/Projects/Testing/FOL/BOO001-1.p # Begin clausification derivation # End clausification derivation # Begin listing active clauses obtained from FOF to CNF conversion cnf(i_0_8, plain, (multiply(X1,X2,X2)=X2)). cnf(i_0_9, plain, (multiply(X1,X1,X2)=X1)). cnf(i_0_11, plain, (multiply(X1,X2,inverse(X2))=X1)). cnf(i_0_10, plain, (multiply(inverse(X1),X1,X2)=X2)). cnf(i_0_7, plain, (multiply(multiply(X1,X2,X3),X4,multiply(X1,X2,X5))=multiply(X1,X2,multiply(X3,X4,X5)))). cnf(i_0_12, negated_conjecture, (inverse(inverse(a))!=a)). cnf(i_0_14, plain, (X6=X6)). # End listing active clauses. There is an equivalent clause to each of these in the clausification! # Begin printing tableau # Found 7 steps cnf(i_0_14, plain, (X5=X5), inference(start_rule)). cnf(i_0_26, plain, (X5=X5), inference(extension_rule, [i_0_18])). cnf(i_0_36, plain, (multiply(X5,X5,X5)!=X5), inference(closure_rule, [i_0_8])). cnf(i_0_37, plain, (multiply(X5,X5,X5)!=X5), inference(closure_rule, [i_0_8])). cnf(i_0_34, plain, (multiply(X5,multiply(X5,X5,X5),multiply(X5,X5,X5))=multiply(X5,X5,X5)), inference(extension_rule, [i_0_17])). cnf(i_0_44, plain, (multiply(X5,X5,X5)!=X5), inference(closure_rule, [i_0_8])). cnf(i_0_42, plain, (multiply(X5,multiply(X5,X5,X5),multiply(X5,X5,X5))=X5), inference(etableau_closure_rule, [i_0_42, ...])). # End printing tableau # SZS output end
% SZS status Theorem for /opt/TPTP/Problems/SEU/SEU140+2.p % SZS output start CNFRefutation for /opt/TPTP/Problems/SEU/SEU140+2.p fof('t3_xboole_0_$sk', plain, ((~disjoint(X2,X1) | (~in(X3,X1) | ~in(X3,X2))) & ((in($sk5(X4,X5),X5) & in($sk5(X4,X5),X4)) | disjoint(X4,X5))), inference(negpush_and_skolemize,[],['t3_xboole_0'])). fof('t3_xboole_0', lemma, (! [A,B] : (~(~disjoint(A,B) & (! [C] : ~(in(C,A) & in(C,B)))) & ~((? [C] : (in(C,A) & in(C,B))) & disjoint(A,B)))), input). fof('symmetry_r1_xboole_0_$sk', plain, (disjoint(X2,X1) | ~disjoint(X1,X2)), inference(negpush_and_skolemize,[],['symmetry_r1_xboole_0'])). fof('symmetry_r1_xboole_0', axiom, (! [A,B] : (disjoint(A,B) => disjoint(B,A))), input). fof('t63_xboole_1_$sk', plain, (~disjoint($sk3,$sk2) & (disjoint($sk1,$sk2) & subset($sk3,$sk1))), inference(negpush_and_skolemize,[],['t63_xboole_1'])). fof('t63_xboole_1', conjecture, (! [A,B,C] : ((subset(A,B) & disjoint(B,C)) => disjoint(A,C))), input). fof('d3_tarski_$sk', plain, ((~subset(X2,X1) | (in(X3,X1) | ~in(X3,X2))) & (subset(X5,X4) | (~in($sk14(X4,X5),X4) & in($sk14(X4,X5),X5)))), inference(negpush_and_skolemize,[],['d3_tarski'])). fof('d3_tarski', axiom, (! [A,B] : (subset(A,B) <=> (! [C] : (in(C,A) => in(C,B))))), input). cnf('1', plain, (~disjoint(X,Y) | ~in(Z,Y) | ~in(Z,X)), inference(cnf_transformation,[],['t3_xboole_0_$sk'])). cnf('2', plain, (~disjoint(X,Y) | disjoint(Y,X)), inference(cnf_transformation,[],['symmetry_r1_xboole_0_$sk'])). cnf('3', plain, (disjoint($sk1,$sk2)), inference(cnf_transformation,[],['t63_xboole_1_$sk'])). cnf('4', plain, (disjoint($sk2,$sk1)), inference(resolution,[],['2','3'])). cnf('5', plain, (~in(X,$sk1) | ~in(X,$sk2)), inference(resolution,[],['1','4'])). cnf('6', plain, (~subset(X,Y) | ~in(Z,X) | in(Z,Y)), inference(cnf_transformation,[],['d3_tarski_$sk'])). cnf('7', plain, (subset($sk3,$sk1)), inference(cnf_transformation,[],['t63_xboole_1_$sk'])). cnf('8', plain, (~in(X,$sk3) | in(X,$sk1)), inference(resolution,[],['6','7'])). cnf('9', plain, (in($sk5(X,Y),Y) | disjoint(X,Y)), inference(cnf_transformation,[],['t3_xboole_0_$sk'])). cnf('10', plain, (in($sk5(X,$sk3),$sk1) | disjoint(X,$sk3)), inference(resolution,[],['8','9'])). cnf('11', plain, (~in($sk5(X,$sk3),$sk2) | disjoint(X,$sk3)), inference(resolution,[],['5','10'])). cnf('12', plain, (in($sk5(X,Y),X) | disjoint(X,Y)), inference(cnf_transformation,[],['t3_xboole_0_$sk'])). cnf('13', plain, (disjoint($sk2,$sk3)), inference(resolution,[],['11','12'])). cnf('14', plain, (~disjoint($sk3,$sk2)), inference(cnf_transformation,[],['t63_xboole_1_$sk'])). cnf('15', plain, ($false), inference(resolution,[then_simplify],['13','2','14'])). % SZS output end CNFRefutation for /opt/TPTP/Problems/SEU/SEU140+2.p
% SZS status Unsatisfiable for /opt/TPTP/Problems/BOO/BOO001-1.p % SZS output start CNFRefutation for /opt/TPTP/Problems/BOO/BOO001-1.p cnf('1', plain, (multiply(X,Y,inverse(Y)) = X), inference(cnf_transformation,[],['$inc_right_inverse'])). cnf('2', plain, (multiply(X,Y,Y) = Y), inference(cnf_transformation,[],['$inc_ternary_multiply_1'])). cnf('3', plain, (multiply(multiply(X,Y,Z),U,multiply(X,Y,V)) = multiply(X,Y,multiply(Z,U,V))), inference(cnf_transformation,[],['$inc_associativity'])). cnf('4', plain, (multiply(X,Y,multiply(Z,X,U)) = multiply(Z,X,multiply(X,Y,U))), inference(paramodulation,[],['2','3'])). cnf('5', plain, (multiply(X,X,Y) = X), inference(cnf_transformation,[],['$inc_ternary_multiply_2'])). cnf('6', plain, (multiply(X,Y,multiply(Z,multiply(X,Y,Z),U)) = multiply(X,Y,Z)), inference(paramodulation,[],['3','5'])). cnf('7', plain, (multiply(X3,Y3,multiply(inverse(Y3),X3,Z3)) = multiply(X3,Y3,inverse(Y3))), inference(paramodulation,[],['1','6'])). cnf('8', plain, (multiply(X,Y,multiply(inverse(Y),X,Z)) = X), inference(simplify,[],['7','1'])). cnf('9', plain, (multiply(inverse(X),Y,multiply(Y,X,Z)) = Y), inference(paramodulation,[],['4','8'])). cnf('10', plain, (multiply(inverse(X),Y,X) = Y), inference(paramodulation,[],['2','9'])). cnf('11', plain, (inverse(inverse(a)) != a), inference(cnf_transformation,[],['prove_inverse_is_self_cancelling'])). cnf('12', plain, ($false), inference(paramodulation,[then_simplify],['1','10','11'])). % SZS output end CNFRefutation for /opt/TPTP/Problems/BOO/BOO001-1.p
% SZS status Theorem for SEU140+2.p % SZS output start CNFRefutation for SEU140+2.p fof(f8,axiom,( ! [X0,X1] : (subset(X0,X1) <=> ! [X2] : (in(X2,X0) => in(X2,X1)))), file('/Users/korovin/TPTP-v7.3.0/Problems/SEU/SEU140+2.p',unknown)). fof(f67,plain,( ! [X0,X1] : (subset(X0,X1) <=> ! [X2] : (in(X2,X1) | ~in(X2,X0)))), inference(ennf_transformation,[],[f8])). fof(f105,plain,( ! [X0,X1] : ((subset(X0,X1) | ? [X2] : (~in(X2,X1) & in(X2,X0))) & (! [X2] : (in(X2,X1) | ~in(X2,X0)) | ~subset(X0,X1)))), inference(nnf_transformation,[],[f67])). fof(f106,plain,( ! [X0,X1] : ((subset(X0,X1) | ? [X2] : (~in(X2,X1) & in(X2,X0))) & (! [X3] : (in(X3,X1) | ~in(X3,X0)) | ~subset(X0,X1)))), inference(rectify,[],[f105])). fof(f107,plain,( ! [X1,X0] : (? [X2] : (~in(X2,X1) & in(X2,X0)) => (~in(sK2(X0,X1),X1) & in(sK2(X0,X1),X0)))), introduced(choice_axiom,[])). fof(f108,plain,( ! [X0,X1] : ((subset(X0,X1) | (~in(sK2(X0,X1),X1) & in(sK2(X0,X1),X0))) & (! [X3] : (in(X3,X1) | ~in(X3,X0)) | ~subset(X0,X1)))), inference(skolemisation,[status(esa),new_symbols(skolem,[sK2])],[f106,f107])). fof(f150,plain,( ( ! [X0,X3,X1] : (in(X3,X1) | ~in(X3,X0) | ~subset(X0,X1)) )), inference(cnf_transformation,[],[f108])). fof(f43,axiom,( ! [X0,X1] : (~(disjoint(X0,X1) & ? [X2] : (in(X2,X1) & in(X2,X0))) & ~(! [X2] : ~(in(X2,X1) & in(X2,X0)) & ~disjoint(X0,X1)))), file('/Users/korovin/TPTP-v7.3.0/Problems/SEU/SEU140+2.p',unknown)). fof(f62,plain,( ! [X0,X1] : (~(disjoint(X0,X1) & ? [X2] : (in(X2,X1) & in(X2,X0))) & ~(! [X3] : ~(in(X3,X1) & in(X3,X0)) & ~disjoint(X0,X1)))), inference(rectify,[],[f43])). fof(f82,plain,( ! [X0,X1] : ((~disjoint(X0,X1) | ! [X2] : (~in(X2,X1) | ~in(X2,X0))) & (? [X3] : (in(X3,X1) & in(X3,X0)) | disjoint(X0,X1)))), inference(ennf_transformation,[],[f62])). fof(f129,plain,( ! [X1,X0] : (? [X3] : (in(X3,X1) & in(X3,X0)) => (in(sK8(X0,X1),X1) & in(sK8(X0,X1),X0)))), introduced(choice_axiom,[])). fof(f130,plain,( ! [X0,X1] : ((~disjoint(X0,X1) | ! [X2] : (~in(X2,X1) | ~in(X2,X0))) & ((in(sK8(X0,X1),X1) & in(sK8(X0,X1),X0)) | disjoint(X0,X1)))), inference(skolemisation,[status(esa),new_symbols(skolem,[sK8])],[f82,f129])). fof(f199,plain,( ( ! [X2,X0,X1] : (~disjoint(X0,X1) | ~in(X2,X1) | ~in(X2,X0)) )), inference(cnf_transformation,[],[f130])). fof(f197,plain,( ( ! [X0,X1] : (in(sK8(X0,X1),X0) | disjoint(X0,X1)) )), inference(cnf_transformation,[],[f130])). fof(f198,plain,( ( ! [X0,X1] : (in(sK8(X0,X1),X1) | disjoint(X0,X1)) )), inference(cnf_transformation,[],[f130])). fof(f51,conjecture,( ! [X0,X1,X2] : ((disjoint(X1,X2) & subset(X0,X1)) => disjoint(X0,X2))), file('/Users/korovin/TPTP-v7.3.0/Problems/SEU/SEU140+2.p',unknown)). fof(f52,negated_conjecture,( ~! [X0,X1,X2] : ((disjoint(X1,X2) & subset(X0,X1)) => disjoint(X0,X2))), inference(negated_conjecture,[],[f51])). fof(f87,plain,( ? [X0,X1,X2] : (~disjoint(X0,X2) & (disjoint(X1,X2) & subset(X0,X1)))), inference(ennf_transformation,[],[f52])). fof(f88,plain,( ? [X0,X1,X2] : (~disjoint(X0,X2) & disjoint(X1,X2) & subset(X0,X1))), inference(flattening,[],[f87])). fof(f133,plain,( ? [X0,X1,X2] : (~disjoint(X0,X2) & disjoint(X1,X2) & subset(X0,X1)) => (~disjoint(sK10,sK12) & disjoint(sK11,sK12) & subset(sK10,sK11))), introduced(choice_axiom,[])). fof(f134,plain,( ~disjoint(sK10,sK12) & disjoint(sK11,sK12) & subset(sK10,sK11)), inference(skolemisation,[status(esa),new_symbols(skolem,[sK10,sK11,sK12])],[f88,f133])). fof(f210,plain,( ~disjoint(sK10,sK12)), inference(cnf_transformation,[],[f134])). fof(f209,plain,( disjoint(sK11,sK12)), inference(cnf_transformation,[],[f134])). fof(f208,plain,( subset(sK10,sK11)), inference(cnf_transformation,[],[f134])). cnf(c_17,plain, ( ~ in(X0,X1) | ~ subset(X1,X2) | in(X0,X2) ), inference(cnf_transformation,[],[f150]) ). cnf(c_1637,plain, ( ~ in(sK8(sK10,sK12),sK10) | ~ subset(sK10,X0) | in(sK8(sK10,sK12),X0) ), inference(instantiation,[status(thm)],[c_17]) ). cnf(c_3953,plain, ( ~ in(sK8(sK10,sK12),sK10) | ~ subset(sK10,sK11) | in(sK8(sK10,sK12),sK11) ), inference(instantiation,[status(thm)],[c_1637]) ). cnf(c_62,plain, ( ~ in(X0,X1) | ~ in(X0,X2) | ~ disjoint(X2,X1) ), inference(cnf_transformation,[],[f199]) ). cnf(c_1582,plain, ( ~ in(sK8(sK10,sK12),X0) | ~ in(sK8(sK10,sK12),sK12) | ~ disjoint(X0,sK12) ), inference(instantiation,[status(thm)],[c_62]) ). cnf(c_3796,plain, ( ~ in(sK8(sK10,sK12),sK12) | ~ in(sK8(sK10,sK12),sK11) | ~ disjoint(sK11,sK12) ), inference(instantiation,[status(thm)],[c_1582]) ). cnf(c_64,plain, ( in(sK8(X0,X1),X0) | disjoint(X0,X1) ), inference(cnf_transformation,[],[f197]) ). cnf(c_1542,plain, ( in(sK8(sK10,sK12),sK10) | disjoint(sK10,sK12) ), inference(instantiation,[status(thm)],[c_64]) ). cnf(c_63,plain, ( in(sK8(X0,X1),X1) | disjoint(X0,X1) ), inference(cnf_transformation,[],[f198]) ). cnf(c_1541,plain, ( in(sK8(sK10,sK12),sK12) | disjoint(sK10,sK12) ), inference(instantiation,[status(thm)],[c_63]) ). cnf(c_72,negated_conjecture, ( ~ disjoint(sK10,sK12) ), inference(cnf_transformation,[],[f210]) ). cnf(c_73,negated_conjecture, ( disjoint(sK11,sK12) ), inference(cnf_transformation,[],[f209]) ). cnf(c_74,negated_conjecture, ( subset(sK10,sK11) ), inference(cnf_transformation,[],[f208]) ). cnf(contradiction,plain, ( $false ), inference(minisat, [status(thm)], [c_3953,c_3796,c_1542,c_1541,c_72,c_73,c_74]) ). % SZS output end CNFRefutation for SEU140+2.p
% SZS status CounterSatisfiable for NLP042+1.p % SZS output start Saturation for NLP042+1.p fof(f45,conjecture,( ~? [X0] : (? [X1,X2,X3,X4] : (order(X0,X4) & nonreflexive(X0,X4) & past(X0,X4) & patient(X0,X4,X3) & agent(X0,X4,X1) & event(X0,X4) & shake_beverage(X0,X3) & forename(X0,X2) & mia_forename(X0,X2) & woman(X0,X1) & of(X0,X2,X1)) & actual_world(X0))), file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)). fof(f46,negated_conjecture,( ~~? [X0] : (? [X1,X2,X3,X4] : (order(X0,X4) & nonreflexive(X0,X4) & past(X0,X4) & patient(X0,X4,X3) & agent(X0,X4,X1) & event(X0,X4) & shake_beverage(X0,X3) & forename(X0,X2) & mia_forename(X0,X2) & woman(X0,X1) & of(X0,X2,X1)) & actual_world(X0))), inference(negated_conjecture,[],[f45])). fof(f47,plain,( ? [X0] : (? [X1,X2,X3,X4] : (order(X0,X4) & nonreflexive(X0,X4) & past(X0,X4) & patient(X0,X4,X3) & agent(X0,X4,X1) & event(X0,X4) & shake_beverage(X0,X3) & forename(X0,X2) & mia_forename(X0,X2) & woman(X0,X1) & of(X0,X2,X1)) & actual_world(X0))), inference(flattening,[],[f46])). fof(f48,plain,( ? [X0] : (? [X1,X2,X3,X4] : (order(X0,X4) & nonreflexive(X0,X4) & patient(X0,X4,X3) & agent(X0,X4,X1) & event(X0,X4) & shake_beverage(X0,X3) & forename(X0,X2) & mia_forename(X0,X2) & woman(X0,X1) & of(X0,X2,X1)) & actual_world(X0))), inference(pure_predicate_removal,[],[f47])). fof(f49,plain,( ? [X0,X1,X2,X3,X4] : (order(X0,X4) & nonreflexive(X0,X4) & patient(X0,X4,X3) & agent(X0,X4,X1) & event(X0,X4) & shake_beverage(X0,X3) & forename(X0,X2) & mia_forename(X0,X2) & woman(X0,X1) & of(X0,X2,X1))), inference(pure_predicate_removal,[],[f48])). fof(f96,plain,( ? [X0,X1,X2,X3,X4] : (order(X0,X4) & nonreflexive(X0,X4) & patient(X0,X4,X3) & agent(X0,X4,X1) & event(X0,X4) & shake_beverage(X0,X3) & forename(X0,X2) & mia_forename(X0,X2) & woman(X0,X1) & of(X0,X2,X1)) => (order(sK0,sK4) & nonreflexive(sK0,sK4) & patient(sK0,sK4,sK3) & agent(sK0,sK4,sK1) & event(sK0,sK4) & shake_beverage(sK0,sK3) & forename(sK0,sK2) & mia_forename(sK0,sK2) & woman(sK0,sK1) & of(sK0,sK2,sK1))), introduced(choice_axiom,[])). fof(f97,plain,( order(sK0,sK4) & nonreflexive(sK0,sK4) & patient(sK0,sK4,sK3) & agent(sK0,sK4,sK1) & event(sK0,sK4) & shake_beverage(sK0,sK3) & forename(sK0,sK2) & mia_forename(sK0,sK2) & woman(sK0,sK1) & of(sK0,sK2,sK1)), inference(skolemisation,[status(esa),new_symbols(skolem,[sK0,sK1,sK2,sK3,sK4])],[f49,f96])). fof(f136,plain,( of(sK0,sK2,sK1)), inference(cnf_transformation,[],[f97])). fof(f43,axiom,( ! [X0,X1,X2] : ((of(X0,X2,X1) & forename(X0,X2) & entity(X0,X1)) => ~? [X3] : (of(X0,X3,X1) & X2 != X3 & forename(X0,X3)))), file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)). fof(f92,plain,( ! [X0,X1,X2] : (! [X3] : (~of(X0,X3,X1) | X2 = X3 | ~forename(X0,X3)) | (~of(X0,X2,X1) | ~forename(X0,X2) | ~entity(X0,X1)))), inference(ennf_transformation,[],[f43])). fof(f93,plain,( ! [X0,X1,X2] : (! [X3] : (~of(X0,X3,X1) | X2 = X3 | ~forename(X0,X3)) | ~of(X0,X2,X1) | ~forename(X0,X2) | ~entity(X0,X1))), inference(flattening,[],[f92])). fof(f134,plain,( ( ! [X2,X0,X3,X1] : (~of(X0,X3,X1) | X2 = X3 | ~forename(X0,X3) | ~of(X0,X2,X1) | ~forename(X0,X2) | ~entity(X0,X1)) )), inference(cnf_transformation,[],[f93])). fof(f6,axiom,( ! [X0,X1] : (organism(X0,X1) => entity(X0,X1))), file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)). fof(f60,plain,( ! [X0,X1] : (entity(X0,X1) | ~organism(X0,X1))), inference(ennf_transformation,[],[f6])). fof(f102,plain,( ( ! [X0,X1] : (entity(X0,X1) | ~organism(X0,X1)) )), inference(cnf_transformation,[],[f60])). fof(f7,axiom,( ! [X0,X1] : (human_person(X0,X1) => organism(X0,X1))), file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)). fof(f61,plain,( ! [X0,X1] : (organism(X0,X1) | ~human_person(X0,X1))), inference(ennf_transformation,[],[f7])). fof(f103,plain,( ( ! [X0,X1] : (organism(X0,X1) | ~human_person(X0,X1)) )), inference(cnf_transformation,[],[f61])). fof(f8,axiom,( ! [X0,X1] : (woman(X0,X1) => human_person(X0,X1))), file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)). fof(f62,plain,( ! [X0,X1] : (human_person(X0,X1) | ~woman(X0,X1))), inference(ennf_transformation,[],[f8])). fof(f104,plain,( ( ! [X0,X1] : (human_person(X0,X1) | ~woman(X0,X1)) )), inference(cnf_transformation,[],[f62])). fof(f137,plain,( woman(sK0,sK1)), inference(cnf_transformation,[],[f97])). fof(f139,plain,( forename(sK0,sK2)), inference(cnf_transformation,[],[f97])). fof(f24,axiom,( ! [X0,X1] : (substance_matter(X0,X1) => object(X0,X1))), file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)). fof(f75,plain,( ! [X0,X1] : (object(X0,X1) | ~substance_matter(X0,X1))), inference(ennf_transformation,[],[f24])). fof(f117,plain,( ( ! [X0,X1] : (object(X0,X1) | ~substance_matter(X0,X1)) )), inference(cnf_transformation,[],[f75])). fof(f25,axiom,( ! [X0,X1] : (food(X0,X1) => substance_matter(X0,X1))), file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)). fof(f76,plain,( ! [X0,X1] : (substance_matter(X0,X1) | ~food(X0,X1))), inference(ennf_transformation,[],[f25])). fof(f118,plain,( ( ! [X0,X1] : (substance_matter(X0,X1) | ~food(X0,X1)) )), inference(cnf_transformation,[],[f76])). fof(f26,axiom,( ! [X0,X1] : (beverage(X0,X1) => food(X0,X1))), file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)). fof(f77,plain,( ! [X0,X1] : (food(X0,X1) | ~beverage(X0,X1))), inference(ennf_transformation,[],[f26])). fof(f119,plain,( ( ! [X0,X1] : (food(X0,X1) | ~beverage(X0,X1)) )), inference(cnf_transformation,[],[f77])). fof(f27,axiom,( ! [X0,X1] : (shake_beverage(X0,X1) => beverage(X0,X1))), file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)). fof(f78,plain,( ! [X0,X1] : (beverage(X0,X1) | ~shake_beverage(X0,X1))), inference(ennf_transformation,[],[f27])). fof(f120,plain,( ( ! [X0,X1] : (beverage(X0,X1) | ~shake_beverage(X0,X1)) )), inference(cnf_transformation,[],[f78])). fof(f140,plain,( shake_beverage(sK0,sK3)), inference(cnf_transformation,[],[f97])). fof(f19,axiom,( ! [X0,X1] : (object(X0,X1) => nonliving(X0,X1))), file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)). fof(f71,plain,( ! [X0,X1] : (nonliving(X0,X1) | ~object(X0,X1))), inference(ennf_transformation,[],[f19])). fof(f113,plain,( ( ! [X0,X1] : (nonliving(X0,X1) | ~object(X0,X1)) )), inference(cnf_transformation,[],[f71])). fof(f2,axiom,( ! [X0,X1] : (human_person(X0,X1) => animate(X0,X1))), file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)). fof(f57,plain,( ! [X0,X1] : (animate(X0,X1) | ~human_person(X0,X1))), inference(ennf_transformation,[],[f2])). fof(f99,plain,( ( ! [X0,X1] : (animate(X0,X1) | ~human_person(X0,X1)) )), inference(cnf_transformation,[],[f57])). fof(f37,axiom,( ! [X0,X1] : (animate(X0,X1) => ~nonliving(X0,X1))), file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)). fof(f86,plain,( ! [X0,X1] : (~nonliving(X0,X1) | ~animate(X0,X1))), inference(ennf_transformation,[],[f37])). fof(f128,plain,( ( ! [X0,X1] : (~nonliving(X0,X1) | ~animate(X0,X1)) )), inference(cnf_transformation,[],[f86])). fof(f34,axiom,( ! [X0,X1] : (event(X0,X1) => eventuality(X0,X1))), file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)). fof(f83,plain,( ! [X0,X1] : (eventuality(X0,X1) | ~event(X0,X1))), inference(ennf_transformation,[],[f34])). fof(f125,plain,( ( ! [X0,X1] : (eventuality(X0,X1) | ~event(X0,X1)) )), inference(cnf_transformation,[],[f83])). fof(f141,plain,( event(sK0,sK4)), inference(cnf_transformation,[],[f97])). fof(f29,axiom,( ! [X0,X1] : (eventuality(X0,X1) => unisex(X0,X1))), file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)). fof(f80,plain,( ! [X0,X1] : (unisex(X0,X1) | ~eventuality(X0,X1))), inference(ennf_transformation,[],[f29])). fof(f122,plain,( ( ! [X0,X1] : (unisex(X0,X1) | ~eventuality(X0,X1)) )), inference(cnf_transformation,[],[f80])). fof(f1,axiom,( ! [X0,X1] : (woman(X0,X1) => female(X0,X1))), file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)). fof(f56,plain,( ! [X0,X1] : (female(X0,X1) | ~woman(X0,X1))), inference(ennf_transformation,[],[f1])). fof(f98,plain,( ( ! [X0,X1] : (female(X0,X1) | ~woman(X0,X1)) )), inference(cnf_transformation,[],[f56])). fof(f42,axiom,( ! [X0,X1] : (unisex(X0,X1) => ~female(X0,X1))), file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)). fof(f91,plain,( ! [X0,X1] : (~female(X0,X1) | ~unisex(X0,X1))), inference(ennf_transformation,[],[f42])). fof(f133,plain,( ( ! [X0,X1] : (~female(X0,X1) | ~unisex(X0,X1)) )), inference(cnf_transformation,[],[f91])). fof(f23,axiom,( ! [X0,X1] : (object(X0,X1) => entity(X0,X1))), file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)). fof(f74,plain,( ! [X0,X1] : (entity(X0,X1) | ~object(X0,X1))), inference(ennf_transformation,[],[f23])). fof(f116,plain,( ( ! [X0,X1] : (entity(X0,X1) | ~object(X0,X1)) )), inference(cnf_transformation,[],[f74])). fof(f30,axiom,( ! [X0,X1] : (eventuality(X0,X1) => nonexistent(X0,X1))), file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)). fof(f81,plain,( ! [X0,X1] : (nonexistent(X0,X1) | ~eventuality(X0,X1))), inference(ennf_transformation,[],[f30])). fof(f123,plain,( ( ! [X0,X1] : (nonexistent(X0,X1) | ~eventuality(X0,X1)) )), inference(cnf_transformation,[],[f81])). fof(f20,axiom,( ! [X0,X1] : (entity(X0,X1) => existent(X0,X1))), file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)). fof(f72,plain,( ! [X0,X1] : (existent(X0,X1) | ~entity(X0,X1))), inference(ennf_transformation,[],[f20])). fof(f114,plain,( ( ! [X0,X1] : (existent(X0,X1) | ~entity(X0,X1)) )), inference(cnf_transformation,[],[f72])). fof(f38,axiom,( ! [X0,X1] : (existent(X0,X1) => ~nonexistent(X0,X1))), file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)). fof(f87,plain,( ! [X0,X1] : (~nonexistent(X0,X1) | ~existent(X0,X1))), inference(ennf_transformation,[],[f38])). fof(f129,plain,( ( ! [X0,X1] : (~nonexistent(X0,X1) | ~existent(X0,X1)) )), inference(cnf_transformation,[],[f87])). fof(f21,axiom,( ! [X0,X1] : (entity(X0,X1) => specific(X0,X1))), file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)). fof(f73,plain,( ! [X0,X1] : (specific(X0,X1) | ~entity(X0,X1))), inference(ennf_transformation,[],[f21])). fof(f115,plain,( ( ! [X0,X1] : (specific(X0,X1) | ~entity(X0,X1)) )), inference(cnf_transformation,[],[f73])). fof(f16,axiom,( ! [X0,X1] : (forename(X0,X1) => relname(X0,X1))), file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)). fof(f69,plain,( ! [X0,X1] : (relname(X0,X1) | ~forename(X0,X1))), inference(ennf_transformation,[],[f16])). fof(f111,plain,( ( ! [X0,X1] : (relname(X0,X1) | ~forename(X0,X1)) )), inference(cnf_transformation,[],[f69])). fof(f15,axiom,( ! [X0,X1] : (relname(X0,X1) => relation(X0,X1))), file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)). fof(f68,plain,( ! [X0,X1] : (relation(X0,X1) | ~relname(X0,X1))), inference(ennf_transformation,[],[f15])). fof(f110,plain,( ( ! [X0,X1] : (relation(X0,X1) | ~relname(X0,X1)) )), inference(cnf_transformation,[],[f68])). fof(f14,axiom,( ! [X0,X1] : (relation(X0,X1) => abstraction(X0,X1))), file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)). fof(f67,plain,( ! [X0,X1] : (abstraction(X0,X1) | ~relation(X0,X1))), inference(ennf_transformation,[],[f14])). fof(f109,plain,( ( ! [X0,X1] : (abstraction(X0,X1) | ~relation(X0,X1)) )), inference(cnf_transformation,[],[f67])). fof(f11,axiom,( ! [X0,X1] : (abstraction(X0,X1) => general(X0,X1))), file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)). fof(f65,plain,( ! [X0,X1] : (general(X0,X1) | ~abstraction(X0,X1))), inference(ennf_transformation,[],[f11])). fof(f107,plain,( ( ! [X0,X1] : (general(X0,X1) | ~abstraction(X0,X1)) )), inference(cnf_transformation,[],[f65])). fof(f41,axiom,( ! [X0,X1] : (specific(X0,X1) => ~general(X0,X1))), file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)). fof(f90,plain,( ! [X0,X1] : (~general(X0,X1) | ~specific(X0,X1))), inference(ennf_transformation,[],[f41])). fof(f132,plain,( ( ! [X0,X1] : (~general(X0,X1) | ~specific(X0,X1)) )), inference(cnf_transformation,[],[f90])). fof(f31,axiom,( ! [X0,X1] : (eventuality(X0,X1) => specific(X0,X1))), file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)). fof(f82,plain,( ! [X0,X1] : (specific(X0,X1) | ~eventuality(X0,X1))), inference(ennf_transformation,[],[f31])). fof(f124,plain,( ( ! [X0,X1] : (specific(X0,X1) | ~eventuality(X0,X1)) )), inference(cnf_transformation,[],[f82])). fof(f12,axiom,( ! [X0,X1] : (abstraction(X0,X1) => nonhuman(X0,X1))), file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)). fof(f66,plain,( ! [X0,X1] : (nonhuman(X0,X1) | ~abstraction(X0,X1))), inference(ennf_transformation,[],[f12])). fof(f108,plain,( ( ! [X0,X1] : (nonhuman(X0,X1) | ~abstraction(X0,X1)) )), inference(cnf_transformation,[],[f66])). fof(f3,axiom,( ! [X0,X1] : (human_person(X0,X1) => human(X0,X1))), file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)). fof(f58,plain,( ! [X0,X1] : (human(X0,X1) | ~human_person(X0,X1))), inference(ennf_transformation,[],[f3])). fof(f100,plain,( ( ! [X0,X1] : (human(X0,X1) | ~human_person(X0,X1)) )), inference(cnf_transformation,[],[f58])). fof(f39,axiom,( ! [X0,X1] : (nonhuman(X0,X1) => ~human(X0,X1))), file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)). fof(f88,plain,( ! [X0,X1] : (~human(X0,X1) | ~nonhuman(X0,X1))), inference(ennf_transformation,[],[f39])). fof(f130,plain,( ( ! [X0,X1] : (~human(X0,X1) | ~nonhuman(X0,X1)) )), inference(cnf_transformation,[],[f88])). cnf(c_258,plain, ( X0 != X1 | X2 != X3 | ~ nonreflexive(X1,X3) | nonreflexive(X0,X2) ), theory(equality) ). cnf(c_636,plain, ( X0 != X1 | X2 != X3 | X4 != X5 | ~ agent(X1,X3,X5) | agent(X0,X2,X4) ), theory(equality) ). cnf(c_256,plain, ( X0 != X1 | X2 != X3 | X4 != X5 | ~ patient(X1,X3,X5) | patient(X0,X2,X4) ), theory(equality) ). cnf(c_254,plain, ( X0 != X1 | X2 != X3 | ~ order(X1,X3) | order(X0,X2) ), theory(equality) ). cnf(c_253,plain, ( X0 != X1 | X2 != X3 | ~ event(X1,X3) | event(X0,X2) ), theory(equality) ). cnf(c_252,plain, ( X0 != X1 | X2 != X3 | ~ shake_beverage(X1,X3) | shake_beverage(X0,X2) ), theory(equality) ). cnf(c_251,plain, ( X0 != X1 | X2 != X3 | ~ mia_forename(X1,X3) | mia_forename(X0,X2) ), theory(equality) ). cnf(c_249,plain, ( X0 != X1 | X2 != X3 | ~ woman(X1,X3) | woman(X0,X2) ), theory(equality) ). cnf(c_658,plain,( X0_2 = X0_2 ),theory(equality) ). cnf(c_47,negated_conjecture, ( of(sK0,sK2,sK1) ), inference(cnf_transformation,[],[f136]) ). cnf(c_36,plain, ( ~ of(X0,X1,X2) | ~ of(X0,X3,X2) | ~ entity(X0,X2) | ~ forename(X0,X1) | ~ forename(X0,X3) | X1 = X3 ), inference(cnf_transformation,[],[f134]) ). cnf(c_4,plain, ( ~ organism(X0,X1) | entity(X0,X1) ), inference(cnf_transformation,[],[f102]) ). cnf(c_5,plain, ( ~ human_person(X0,X1) | organism(X0,X1) ), inference(cnf_transformation,[],[f103]) ). cnf(c_6,plain, ( ~ woman(X0,X1) | human_person(X0,X1) ), inference(cnf_transformation,[],[f104]) ). cnf(c_46,negated_conjecture, ( woman(sK0,sK1) ), inference(cnf_transformation,[],[f137]) ). cnf(c_300,plain, ( X0 != sK0 | X1 != sK1 | human_person(X0,X1) ), inference(resolution_lifted,[status(thm)],[c_6,c_46]) ). cnf(c_301,plain, ( human_person(sK0,sK1) ), inference(unflattening,[status(thm)],[c_300]) ). cnf(c_444,plain, ( X0 != sK0 | X1 != sK1 | organism(X0,X1) ), inference(resolution_lifted,[status(thm)],[c_5,c_301]) ). cnf(c_445,plain, ( organism(sK0,sK1) ), inference(unflattening,[status(thm)],[c_444]) ). cnf(c_454,plain, ( X0 != sK0 | X1 != sK1 | entity(X0,X1) ), inference(resolution_lifted,[status(thm)],[c_4,c_445]) ). cnf(c_455,plain, ( entity(sK0,sK1) ), inference(unflattening,[status(thm)],[c_454]) ). cnf(c_556,plain, ( X0 != sK0 | X1 != sK1 | ~ of(X0,X2,X1) | ~ of(X0,X3,X1) | ~ forename(X0,X2) | ~ forename(X0,X3) | X2 = X3 ), inference(resolution_lifted,[status(thm)],[c_36,c_455]) ). cnf(c_557,plain, ( ~ of(sK0,X0,sK1) | ~ of(sK0,X1,sK1) | ~ forename(sK0,X0) | ~ forename(sK0,X1) | X0 = X1 ), inference(unflattening,[status(thm)],[c_556]) ). cnf(c_681,plain, ( ~ of(sK0,X0,sK1) | ~ forename(sK0,X0) | ~ forename(sK0,sK2) | X0 = sK2 ), inference(superposition,[status(thm)],[c_47,c_557]) ). cnf(c_44,negated_conjecture, ( forename(sK0,sK2) ), inference(cnf_transformation,[],[f139]) ). cnf(c_682,plain, ( ~ of(sK0,X0,sK1) | ~ forename(sK0,X0) | X0 = sK2 ), inference(forward_subsumption_resolution,[status(thm)],[c_681,c_44]) ). cnf(c_19,plain, ( ~ substance_matter(X0,X1) | object(X0,X1) ), inference(cnf_transformation,[],[f117]) ). cnf(c_20,plain, ( ~ food(X0,X1) | substance_matter(X0,X1) ), inference(cnf_transformation,[],[f118]) ). cnf(c_21,plain, ( ~ beverage(X0,X1) | food(X0,X1) ), inference(cnf_transformation,[],[f119]) ). cnf(c_22,plain, ( ~ shake_beverage(X0,X1) | beverage(X0,X1) ), inference(cnf_transformation,[],[f120]) ). cnf(c_43,negated_conjecture, ( shake_beverage(sK0,sK3) ), inference(cnf_transformation,[],[f140]) ). cnf(c_261,plain, ( X0 != sK0 | X1 != sK3 | beverage(X0,X1) ), inference(resolution_lifted,[status(thm)],[c_22,c_43]) ). cnf(c_262,plain, ( beverage(sK0,sK3) ), inference(unflattening,[status(thm)],[c_261]) ). cnf(c_267,plain, ( X0 != sK0 | X1 != sK3 | food(X0,X1) ), inference(resolution_lifted,[status(thm)],[c_21,c_262]) ). cnf(c_268,plain, ( food(sK0,sK3) ), inference(unflattening,[status(thm)],[c_267]) ). cnf(c_273,plain, ( X0 != sK0 | X1 != sK3 | substance_matter(X0,X1) ), inference(resolution_lifted,[status(thm)],[c_20,c_268]) ). cnf(c_274,plain, ( substance_matter(sK0,sK3) ), inference(unflattening,[status(thm)],[c_273]) ). cnf(c_279,plain, ( X0 != sK0 | X1 != sK3 | object(X0,X1) ), inference(resolution_lifted,[status(thm)],[c_19,c_274]) ). cnf(c_280,plain, ( object(sK0,sK3) ), inference(unflattening,[status(thm)],[c_279]) ). cnf(c_15,plain, ( ~ object(X0,X1) | nonliving(X0,X1) ), inference(cnf_transformation,[],[f113]) ). cnf(c_1,plain, ( ~ human_person(X0,X1) | animate(X0,X1) ), inference(cnf_transformation,[],[f99]) ). cnf(c_30,plain, ( ~ animate(X0,X1) | ~ nonliving(X0,X1) ), inference(cnf_transformation,[],[f128]) ). cnf(c_307,plain, ( ~ human_person(X0,X1) | ~ nonliving(X0,X1) ), inference(resolution,[status(thm)],[c_1,c_30]) ). cnf(c_439,plain, ( X0 != sK0 | X1 != sK1 | ~ nonliving(X0,X1) ), inference(resolution_lifted,[status(thm)],[c_307,c_301]) ). cnf(c_440,plain, ( ~ nonliving(sK0,sK1) ), inference(unflattening,[status(thm)],[c_439]) ). cnf(c_460,plain, ( X0 != sK0 | X1 != sK1 | ~ object(X0,X1) ), inference(resolution_lifted,[status(thm)],[c_15,c_440]) ). cnf(c_461,plain, ( ~ object(sK0,sK1) ), inference(unflattening,[status(thm)],[c_460]) ). cnf(c_476,plain, ( sK0 != sK0 | sK3 != sK1 ), inference(resolution_lifted,[status(thm)],[c_280,c_461]) ). cnf(c_615,plain, ( sK3 != sK1 ), inference(equality_resolution_simp,[status(thm)],[c_476]) ). cnf(c_27,plain, ( ~ event(X0,X1) | eventuality(X0,X1) ), inference(cnf_transformation,[],[f125]) ). cnf(c_42,negated_conjecture, ( event(sK0,sK4) ), inference(cnf_transformation,[],[f141]) ). cnf(c_397,plain, ( X0 != sK0 | X1 != sK4 | eventuality(X0,X1) ), inference(resolution_lifted,[status(thm)],[c_27,c_42]) ). cnf(c_398,plain, ( eventuality(sK0,sK4) ), inference(unflattening,[status(thm)],[c_397]) ). cnf(c_24,plain, ( ~ eventuality(X0,X1) | unisex(X0,X1) ), inference(cnf_transformation,[],[f122]) ). cnf(c_0,plain, ( ~ woman(X0,X1) | female(X0,X1) ), inference(cnf_transformation,[],[f98]) ). cnf(c_35,plain, ( ~ female(X0,X1) | ~ unisex(X0,X1) ), inference(cnf_transformation,[],[f133]) ). cnf(c_285,plain, ( ~ woman(X0,X1) | ~ unisex(X0,X1) ), inference(resolution,[status(thm)],[c_0,c_35]) ). cnf(c_295,plain, ( X0 != sK0 | X1 != sK1 | ~ unisex(X0,X1) ), inference(resolution_lifted,[status(thm)],[c_285,c_46]) ). cnf(c_296,plain, ( ~ unisex(sK0,sK1) ), inference(unflattening,[status(thm)],[c_295]) ). cnf(c_487,plain, ( X0 != sK0 | X1 != sK1 | ~ eventuality(X0,X1) ), inference(resolution_lifted,[status(thm)],[c_24,c_296]) ). cnf(c_488,plain, ( ~ eventuality(sK0,sK1) ), inference(unflattening,[status(thm)],[c_487]) ). cnf(c_506,plain, ( sK0 != sK0 | sK4 != sK1 ), inference(resolution_lifted,[status(thm)],[c_398,c_488]) ). cnf(c_614,plain, ( sK4 != sK1 ), inference(equality_resolution_simp,[status(thm)],[c_506]) ). cnf(c_18,plain, ( ~ object(X0,X1) | entity(X0,X1) ), inference(cnf_transformation,[],[f116]) ). cnf(c_466,plain, ( X0 != sK0 | X1 != sK3 | entity(X0,X1) ), inference(resolution_lifted,[status(thm)],[c_18,c_280]) ). cnf(c_467,plain, ( entity(sK0,sK3) ), inference(unflattening,[status(thm)],[c_466]) ). cnf(c_25,plain, ( ~ eventuality(X0,X1) | nonexistent(X0,X1) ), inference(cnf_transformation,[],[f123]) ). cnf(c_16,plain, ( ~ entity(X0,X1) | existent(X0,X1) ), inference(cnf_transformation,[],[f114]) ). cnf(c_31,plain, ( ~ existent(X0,X1) | ~ nonexistent(X0,X1) ), inference(cnf_transformation,[],[f129]) ). cnf(c_377,plain, ( ~ entity(X0,X1) | ~ nonexistent(X0,X1) ), inference(resolution,[status(thm)],[c_16,c_31]) ). cnf(c_403,plain, ( ~ entity(X0,X1) | ~ eventuality(X0,X1) ), inference(resolution,[status(thm)],[c_25,c_377]) ). cnf(c_496,plain, ( X0 != sK0 | X1 != sK4 | ~ entity(X0,X1) ), inference(resolution_lifted,[status(thm)],[c_403,c_398]) ). cnf(c_497,plain, ( ~ entity(sK0,sK4) ), inference(unflattening,[status(thm)],[c_496]) ). cnf(c_593,plain, ( sK0 != sK0 | sK4 != sK3 ), inference(resolution_lifted,[status(thm)],[c_467,c_497]) ). cnf(c_613,plain, ( sK4 != sK3 ), inference(equality_resolution_simp,[status(thm)],[c_593]) ). cnf(c_574,plain, ( X0 != sK0 | X1 != sK3 | ~ of(X0,X2,X1) | ~ of(X0,X3,X1) | ~ forename(X0,X2) | ~ forename(X0,X3) | X2 = X3 ), inference(resolution_lifted,[status(thm)],[c_36,c_467]) ). cnf(c_575,plain, ( ~ of(sK0,X0,sK3) | ~ of(sK0,X1,sK3) | ~ forename(sK0,X0) | ~ forename(sK0,X1) | X0 = X1 ), inference(unflattening,[status(thm)],[c_574]) ). cnf(c_17,plain, ( ~ entity(X0,X1) | specific(X0,X1) ), inference(cnf_transformation,[],[f115]) ). cnf(c_13,plain, ( ~ forename(X0,X1) | relname(X0,X1) ), inference(cnf_transformation,[],[f111]) ). cnf(c_12,plain, ( ~ relname(X0,X1) | relation(X0,X1) ), inference(cnf_transformation,[],[f110]) ). cnf(c_11,plain, ( ~ relation(X0,X1) | abstraction(X0,X1) ), inference(cnf_transformation,[],[f109]) ). cnf(c_357,plain, ( ~ relname(X0,X1) | abstraction(X0,X1) ), inference(resolution,[status(thm)],[c_12,c_11]) ). cnf(c_367,plain, ( ~ forename(X0,X1) | abstraction(X0,X1) ), inference(resolution,[status(thm)],[c_13,c_357]) ). cnf(c_9,plain, ( ~ abstraction(X0,X1) | general(X0,X1) ), inference(cnf_transformation,[],[f107]) ). cnf(c_34,plain, ( ~ general(X0,X1) | ~ specific(X0,X1) ), inference(cnf_transformation,[],[f132]) ). cnf(c_337,plain, ( ~ abstraction(X0,X1) | ~ specific(X0,X1) ), inference(resolution,[status(thm)],[c_9,c_34]) ). cnf(c_517,plain, ( ~ forename(X0,X1) | ~ specific(X0,X1) ), inference(resolution,[status(thm)],[c_367,c_337]) ). cnf(c_533,plain, ( ~ entity(X0,X1) | ~ forename(X0,X1) ), inference(resolution,[status(thm)],[c_17,c_517]) ). cnf(c_551,plain, ( X0 != sK0 | X1 != sK3 | ~ forename(X0,X1) ), inference(resolution_lifted,[status(thm)],[c_533,c_467]) ). cnf(c_552,plain, ( ~ forename(sK0,sK3) ), inference(unflattening,[status(thm)],[c_551]) ). cnf(c_26,plain, ( ~ eventuality(X0,X1) | specific(X0,X1) ), inference(cnf_transformation,[],[f124]) ). cnf(c_501,plain, ( X0 != sK0 | X1 != sK4 | specific(X0,X1) ), inference(resolution_lifted,[status(thm)],[c_26,c_398]) ). cnf(c_502,plain, ( specific(sK0,sK4) ), inference(unflattening,[status(thm)],[c_501]) ). cnf(c_541,plain, ( X0 != sK0 | X1 != sK4 | ~ forename(X0,X1) ), inference(resolution_lifted,[status(thm)],[c_517,c_502]) ). cnf(c_542,plain, ( ~ forename(sK0,sK4) ), inference(unflattening,[status(thm)],[c_541]) ). cnf(c_10,plain, ( ~ abstraction(X0,X1) | nonhuman(X0,X1) ), inference(cnf_transformation,[],[f108]) ). cnf(c_2,plain, ( ~ human_person(X0,X1) | human(X0,X1) ), inference(cnf_transformation,[],[f100]) ). cnf(c_32,plain, ( ~ human(X0,X1) | ~ nonhuman(X0,X1) ), inference(cnf_transformation,[],[f130]) ). cnf(c_317,plain, ( ~ human_person(X0,X1) | ~ nonhuman(X0,X1) ), inference(resolution,[status(thm)],[c_2,c_32]) ). cnf(c_347,plain, ( ~ human_person(X0,X1) | ~ abstraction(X0,X1) ), inference(resolution,[status(thm)],[c_10,c_317]) ). cnf(c_434,plain, ( X0 != sK0 | X1 != sK1 | ~ abstraction(X0,X1) ), inference(resolution_lifted,[status(thm)],[c_347,c_301]) ). cnf(c_435,plain, ( ~ abstraction(sK0,sK1) ), inference(unflattening,[status(thm)],[c_434]) ). cnf(c_525,plain, ( X0 != sK0 | X1 != sK1 | ~ forename(X0,X1) ), inference(resolution_lifted,[status(thm)],[c_367,c_435]) ). cnf(c_526,plain, ( ~ forename(sK0,sK1) ), inference(unflattening,[status(thm)],[c_525]) ). % SZS output end Saturation for NLP042+1.p
% SZS status Satisfiable for SWV017+1.p % SZS output start Saturation for SWV017+1.p fof(f33,axiom,( ! [X0] : (fresh_intruder_nonce(X0) => (intruder_message(X0) & fresh_to_b(X0)))), file('/Users/korovin/TPTP-v7.3.0/Problems/SWV/SWV017+1.p',unknown)). fof(f67,plain,( ! [X0] : ((intruder_message(X0) & fresh_to_b(X0)) | ~fresh_intruder_nonce(X0))), inference(ennf_transformation,[],[f33])). fof(f104,plain,( ( ! [X0] : (fresh_to_b(X0) | ~fresh_intruder_nonce(X0)) )), inference(cnf_transformation,[],[f67])). fof(f105,plain,( ( ! [X0] : (intruder_message(X0) | ~fresh_intruder_nonce(X0)) )), inference(cnf_transformation,[],[f67])). fof(f32,axiom,( ! [X0] : (fresh_intruder_nonce(X0) => fresh_intruder_nonce(generate_intruder_nonce(X0)))), file('/Users/korovin/TPTP-v7.3.0/Problems/SWV/SWV017+1.p',unknown)). fof(f66,plain,( ! [X0] : (fresh_intruder_nonce(generate_intruder_nonce(X0)) | ~fresh_intruder_nonce(X0))), inference(ennf_transformation,[],[f32])). fof(f103,plain,( ( ! [X0] : (fresh_intruder_nonce(generate_intruder_nonce(X0)) | ~fresh_intruder_nonce(X0)) )), inference(cnf_transformation,[],[f66])). fof(f31,axiom,( fresh_intruder_nonce(an_intruder_nonce)), file('/Users/korovin/TPTP-v7.3.0/Problems/SWV/SWV017+1.p',unknown)). fof(f102,plain,( fresh_intruder_nonce(an_intruder_nonce)), inference(cnf_transformation,[],[f31])). fof(f27,axiom,( ! [X0] : ~a_nonce(generate_key(X0))), file('/Users/korovin/TPTP-v7.3.0/Problems/SWV/SWV017+1.p',unknown)). fof(f97,plain,( ( ! [X0] : (~a_nonce(generate_key(X0))) )), inference(cnf_transformation,[],[f27])). fof(f25,axiom,( ! [X0,X1,X2] : ((party_of_protocol(X2) & intruder_holds(key(X1,X2)) & intruder_message(X0)) => intruder_message(encrypt(X0,X1)))), file('/Users/korovin/TPTP-v7.3.0/Problems/SWV/SWV017+1.p',unknown)). fof(f63,plain,( ! [X0,X1,X2] : (intruder_message(encrypt(X0,X1)) | (~party_of_protocol(X2) | ~intruder_holds(key(X1,X2)) | ~intruder_message(X0)))), inference(ennf_transformation,[],[f25])). fof(f64,plain,( ! [X0,X1,X2] : (intruder_message(encrypt(X0,X1)) | ~party_of_protocol(X2) | ~intruder_holds(key(X1,X2)) | ~intruder_message(X0))), inference(flattening,[],[f63])). fof(f95,plain,( ( ! [X2,X0,X1] : (intruder_message(encrypt(X0,X1)) | ~party_of_protocol(X2) | ~intruder_holds(key(X1,X2)) | ~intruder_message(X0)) )), inference(cnf_transformation,[],[f64])). fof(f24,axiom,( ! [X1,X2] : ((party_of_protocol(X2) & intruder_message(X1)) => intruder_holds(key(X1,X2)))), file('/Users/korovin/TPTP-v7.3.0/Problems/SWV/SWV017+1.p',unknown)). fof(f35,plain,( ! [X0,X1] : ((party_of_protocol(X1) & intruder_message(X0)) => intruder_holds(key(X0,X1)))), inference(rectify,[],[f24])). fof(f61,plain,( ! [X0,X1] : (intruder_holds(key(X0,X1)) | (~party_of_protocol(X1) | ~intruder_message(X0)))), inference(ennf_transformation,[],[f35])). fof(f62,plain,( ! [X0,X1] : (intruder_holds(key(X0,X1)) | ~party_of_protocol(X1) | ~intruder_message(X0))), inference(flattening,[],[f61])). fof(f94,plain,( ( ! [X0,X1] : (intruder_holds(key(X0,X1)) | ~party_of_protocol(X1) | ~intruder_message(X0)) )), inference(cnf_transformation,[],[f62])). fof(f23,axiom,( ! [X0,X1,X2] : ((party_of_protocol(X2) & party_of_protocol(X1) & intruder_message(X0)) => message(sent(X1,X2,X0)))), file('/Users/korovin/TPTP-v7.3.0/Problems/SWV/SWV017+1.p',unknown)). fof(f59,plain,( ! [X0,X1,X2] : (message(sent(X1,X2,X0)) | (~party_of_protocol(X2) | ~party_of_protocol(X1) | ~intruder_message(X0)))), inference(ennf_transformation,[],[f23])). fof(f60,plain,( ! [X0,X1,X2] : (message(sent(X1,X2,X0)) | ~party_of_protocol(X2) | ~party_of_protocol(X1) | ~intruder_message(X0))), inference(flattening,[],[f59])). fof(f93,plain,( ( ! [X2,X0,X1] : (message(sent(X1,X2,X0)) | ~party_of_protocol(X2) | ~party_of_protocol(X1) | ~intruder_message(X0)) )), inference(cnf_transformation,[],[f60])). fof(f22,axiom,( ! [X0,X1,X2] : ((party_of_protocol(X2) & intruder_holds(key(X1,X2)) & intruder_message(encrypt(X0,X1))) => intruder_message(X1))), file('/Users/korovin/TPTP-v7.3.0/Problems/SWV/SWV017+1.p',unknown)). fof(f57,plain,( ! [X0,X1,X2] : (intruder_message(X1) | (~party_of_protocol(X2) | ~intruder_holds(key(X1,X2)) | ~intruder_message(encrypt(X0,X1))))), inference(ennf_transformation,[],[f22])). fof(f58,plain,( ! [X0,X1,X2] : (intruder_message(X1) | ~party_of_protocol(X2) | ~intruder_holds(key(X1,X2)) | ~intruder_message(encrypt(X0,X1)))), inference(flattening,[],[f57])). fof(f92,plain,( ( ! [X2,X0,X1] : (intruder_message(X1) | ~party_of_protocol(X2) | ~intruder_holds(key(X1,X2)) | ~intruder_message(encrypt(X0,X1))) )), inference(cnf_transformation,[],[f58])). fof(f21,axiom,( ! [X0,X1,X2,X3] : ((intruder_message(X3) & intruder_message(X2) & intruder_message(X1) & intruder_message(X0)) => intruder_message(quadruple(X0,X1,X2,X3)))), file('/Users/korovin/TPTP-v7.3.0/Problems/SWV/SWV017+1.p',unknown)). fof(f55,plain,( ! [X0,X1,X2,X3] : (intruder_message(quadruple(X0,X1,X2,X3)) | (~intruder_message(X3) | ~intruder_message(X2) | ~intruder_message(X1) | ~intruder_message(X0)))), inference(ennf_transformation,[],[f21])). fof(f56,plain,( ! [X0,X1,X2,X3] : (intruder_message(quadruple(X0,X1,X2,X3)) | ~intruder_message(X3) | ~intruder_message(X2) | ~intruder_message(X1) | ~intruder_message(X0))), inference(flattening,[],[f55])). fof(f91,plain,( ( ! [X2,X0,X3,X1] : (intruder_message(quadruple(X0,X1,X2,X3)) | ~intruder_message(X3) | ~intruder_message(X2) | ~intruder_message(X1) | ~intruder_message(X0)) )), inference(cnf_transformation,[],[f56])). fof(f20,axiom,( ! [X0,X1,X2] : ((intruder_message(X2) & intruder_message(X1) & intruder_message(X0)) => intruder_message(triple(X0,X1,X2)))), file('/Users/korovin/TPTP-v7.3.0/Problems/SWV/SWV017+1.p',unknown)). fof(f53,plain,( ! [X0,X1,X2] : (intruder_message(triple(X0,X1,X2)) | (~intruder_message(X2) | ~intruder_message(X1) | ~intruder_message(X0)))), inference(ennf_transformation,[],[f20])). fof(f54,plain,( ! [X0,X1,X2] : (intruder_message(triple(X0,X1,X2)) | ~intruder_message(X2) | ~intruder_message(X1) | ~intruder_message(X0))), inference(flattening,[],[f53])). fof(f90,plain,( ( ! [X2,X0,X1] : (intruder_message(triple(X0,X1,X2)) | ~intruder_message(X2) | ~intruder_message(X1) | ~intruder_message(X0)) )), inference(cnf_transformation,[],[f54])). fof(f19,axiom,( ! [X0,X1] : ((intruder_message(X1) & intruder_message(X0)) => intruder_message(pair(X0,X1)))), file('/Users/korovin/TPTP-v7.3.0/Problems/SWV/SWV017+1.p',unknown)). fof(f51,plain,( ! [X0,X1] : (intruder_message(pair(X0,X1)) | (~intruder_message(X1) | ~intruder_message(X0)))), inference(ennf_transformation,[],[f19])). fof(f52,plain,( ! [X0,X1] : (intruder_message(pair(X0,X1)) | ~intruder_message(X1) | ~intruder_message(X0))), inference(flattening,[],[f51])). fof(f89,plain,( ( ! [X0,X1] : (intruder_message(pair(X0,X1)) | ~intruder_message(X1) | ~intruder_message(X0)) )), inference(cnf_transformation,[],[f52])). fof(f18,axiom,( ! [X0,X1,X2,X3] : (intruder_message(quadruple(X0,X1,X2,X3)) => (intruder_message(X3) & intruder_message(X2) & intruder_message(X1) & intruder_message(X0)))), file('/Users/korovin/TPTP-v7.3.0/Problems/SWV/SWV017+1.p',unknown)). fof(f50,plain,( ! [X0,X1,X2,X3] : ((intruder_message(X3) & intruder_message(X2) & intruder_message(X1) & intruder_message(X0)) | ~intruder_message(quadruple(X0,X1,X2,X3)))), inference(ennf_transformation,[],[f18])). fof(f85,plain,( ( ! [X2,X0,X3,X1] : (intruder_message(X0) | ~intruder_message(quadruple(X0,X1,X2,X3))) )), inference(cnf_transformation,[],[f50])). fof(f86,plain,( ( ! [X2,X0,X3,X1] : (intruder_message(X1) | ~intruder_message(quadruple(X0,X1,X2,X3))) )), inference(cnf_transformation,[],[f50])). fof(f87,plain,( ( ! [X2,X0,X3,X1] : (intruder_message(X2) | ~intruder_message(quadruple(X0,X1,X2,X3))) )), inference(cnf_transformation,[],[f50])). fof(f88,plain,( ( ! [X2,X0,X3,X1] : (intruder_message(X3) | ~intruder_message(quadruple(X0,X1,X2,X3))) )), inference(cnf_transformation,[],[f50])). fof(f17,axiom,( ! [X0,X1,X2] : (intruder_message(triple(X0,X1,X2)) => (intruder_message(X2) & intruder_message(X1) & intruder_message(X0)))), file('/Users/korovin/TPTP-v7.3.0/Problems/SWV/SWV017+1.p',unknown)). fof(f49,plain,( ! [X0,X1,X2] : ((intruder_message(X2) & intruder_message(X1) & intruder_message(X0)) | ~intruder_message(triple(X0,X1,X2)))), inference(ennf_transformation,[],[f17])). fof(f82,plain,( ( ! [X2,X0,X1] : (intruder_message(X0) | ~intruder_message(triple(X0,X1,X2))) )), inference(cnf_transformation,[],[f49])). fof(f83,plain,( ( ! [X2,X0,X1] : (intruder_message(X1) | ~intruder_message(triple(X0,X1,X2))) )), inference(cnf_transformation,[],[f49])). fof(f84,plain,( ( ! [X2,X0,X1] : (intruder_message(X2) | ~intruder_message(triple(X0,X1,X2))) )), inference(cnf_transformation,[],[f49])). fof(f16,axiom,( ! [X0,X1] : (intruder_message(pair(X0,X1)) => (intruder_message(X1) & intruder_message(X0)))), file('/Users/korovin/TPTP-v7.3.0/Problems/SWV/SWV017+1.p',unknown)). fof(f48,plain,( ! [X0,X1] : ((intruder_message(X1) & intruder_message(X0)) | ~intruder_message(pair(X0,X1)))), inference(ennf_transformation,[],[f16])). fof(f80,plain,( ( ! [X0,X1] : (intruder_message(X0) | ~intruder_message(pair(X0,X1))) )), inference(cnf_transformation,[],[f48])). fof(f81,plain,( ( ! [X0,X1] : (intruder_message(X1) | ~intruder_message(pair(X0,X1))) )), inference(cnf_transformation,[],[f48])). fof(f15,axiom,( ! [X0,X1,X2] : (message(sent(X0,X1,X2)) => intruder_message(X2))), file('/Users/korovin/TPTP-v7.3.0/Problems/SWV/SWV017+1.p',unknown)). fof(f47,plain,( ! [X0,X1,X2] : (intruder_message(X2) | ~message(sent(X0,X1,X2)))), inference(ennf_transformation,[],[f15])). fof(f79,plain,( ( ! [X2,X0,X1] : (intruder_message(X2) | ~message(sent(X0,X1,X2))) )), inference(cnf_transformation,[],[f47])). fof(f14,axiom,( ! [X0,X1,X2,X3,X4,X5,X6] : ((a_nonce(X3) & t_holds(key(X6,X2)) & t_holds(key(X5,X0)) & message(sent(X0,t,triple(X0,X1,encrypt(triple(X2,X3,X4),X5))))) => message(sent(t,X2,triple(encrypt(quadruple(X0,X3,generate_key(X3),X4),X6),encrypt(triple(X2,generate_key(X3),X4),X5),X1))))), file('/Users/korovin/TPTP-v7.3.0/Problems/SWV/SWV017+1.p',unknown)). fof(f45,plain,( ! [X0,X1,X2,X3,X4,X5,X6] : (message(sent(t,X2,triple(encrypt(quadruple(X0,X3,generate_key(X3),X4),X6),encrypt(triple(X2,generate_key(X3),X4),X5),X1))) | (~a_nonce(X3) | ~t_holds(key(X6,X2)) | ~t_holds(key(X5,X0)) | ~message(sent(X0,t,triple(X0,X1,encrypt(triple(X2,X3,X4),X5))))))), inference(ennf_transformation,[],[f14])). fof(f46,plain,( ! [X0,X1,X2,X3,X4,X5,X6] : (message(sent(t,X2,triple(encrypt(quadruple(X0,X3,generate_key(X3),X4),X6),encrypt(triple(X2,generate_key(X3),X4),X5),X1))) | ~a_nonce(X3) | ~t_holds(key(X6,X2)) | ~t_holds(key(X5,X0)) | ~message(sent(X0,t,triple(X0,X1,encrypt(triple(X2,X3,X4),X5)))))), inference(flattening,[],[f45])). fof(f78,plain,( ( ! [X6,X4,X2,X0,X5,X3,X1] : (message(sent(t,X2,triple(encrypt(quadruple(X0,X3,generate_key(X3),X4),X6),encrypt(triple(X2,generate_key(X3),X4),X5),X1))) | ~a_nonce(X3) | ~t_holds(key(X6,X2)) | ~t_holds(key(X5,X0)) | ~message(sent(X0,t,triple(X0,X1,encrypt(triple(X2,X3,X4),X5))))) )), inference(cnf_transformation,[],[f46])). fof(f13,axiom,( party_of_protocol(t)), file('/Users/korovin/TPTP-v7.3.0/Problems/SWV/SWV017+1.p',unknown)). fof(f77,plain,( party_of_protocol(t)), inference(cnf_transformation,[],[f13])). fof(f12,axiom,( t_holds(key(bt,b))), file('/Users/korovin/TPTP-v7.3.0/Problems/SWV/SWV017+1.p',unknown)). fof(f76,plain,( t_holds(key(bt,b))), inference(cnf_transformation,[],[f12])). fof(f11,axiom,( t_holds(key(at,a))), file('/Users/korovin/TPTP-v7.3.0/Problems/SWV/SWV017+1.p',unknown)). fof(f75,plain,( t_holds(key(at,a))), inference(cnf_transformation,[],[f11])). fof(f9,axiom,( ! [X0,X1] : ((fresh_to_b(X1) & message(sent(X0,b,pair(X0,X1)))) => (b_stored(pair(X0,X1)) & message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X0,X1,generate_expiration_time(X1)),bt))))))), file('/Users/korovin/TPTP-v7.3.0/Problems/SWV/SWV017+1.p',unknown)). fof(f38,plain,( ! [X0,X1] : ((fresh_to_b(X1) & message(sent(X0,b,pair(X0,X1)))) => message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X0,X1,generate_expiration_time(X1)),bt)))))), inference(pure_predicate_removal,[],[f9])). fof(f43,plain,( ! [X0,X1] : (message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X0,X1,generate_expiration_time(X1)),bt)))) | (~fresh_to_b(X1) | ~message(sent(X0,b,pair(X0,X1)))))), inference(ennf_transformation,[],[f38])). fof(f44,plain,( ! [X0,X1] : (message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X0,X1,generate_expiration_time(X1)),bt)))) | ~fresh_to_b(X1) | ~message(sent(X0,b,pair(X0,X1))))), inference(flattening,[],[f43])). fof(f74,plain,( ( ! [X0,X1] : (message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X0,X1,generate_expiration_time(X1)),bt)))) | ~fresh_to_b(X1) | ~message(sent(X0,b,pair(X0,X1)))) )), inference(cnf_transformation,[],[f44])). fof(f8,axiom,( fresh_to_b(an_a_nonce)), file('/Users/korovin/TPTP-v7.3.0/Problems/SWV/SWV017+1.p',unknown)). fof(f73,plain,( fresh_to_b(an_a_nonce)), inference(cnf_transformation,[],[f8])). fof(f7,axiom,( party_of_protocol(b)), file('/Users/korovin/TPTP-v7.3.0/Problems/SWV/SWV017+1.p',unknown)). fof(f72,plain,( party_of_protocol(b)), inference(cnf_transformation,[],[f7])). fof(f5,axiom,( ! [X0,X1,X2,X3,X4,X5] : ((a_stored(pair(X4,X5)) & message(sent(t,a,triple(encrypt(quadruple(X4,X5,X2,X1),at),X3,X0)))) => (a_holds(key(X2,X4)) & message(sent(a,X4,pair(X3,encrypt(X0,X2))))))), file('/Users/korovin/TPTP-v7.3.0/Problems/SWV/SWV017+1.p',unknown)). fof(f39,plain,( ! [X0,X1,X2,X3,X4,X5] : ((a_stored(pair(X4,X5)) & message(sent(t,a,triple(encrypt(quadruple(X4,X5,X2,X1),at),X3,X0)))) => message(sent(a,X4,pair(X3,encrypt(X0,X2)))))), inference(pure_predicate_removal,[],[f5])). fof(f41,plain,( ! [X0,X1,X2,X3,X4,X5] : (message(sent(a,X4,pair(X3,encrypt(X0,X2)))) | (~a_stored(pair(X4,X5)) | ~message(sent(t,a,triple(encrypt(quadruple(X4,X5,X2,X1),at),X3,X0)))))), inference(ennf_transformation,[],[f39])). fof(f42,plain,( ! [X0,X1,X2,X3,X4,X5] : (message(sent(a,X4,pair(X3,encrypt(X0,X2)))) | ~a_stored(pair(X4,X5)) | ~message(sent(t,a,triple(encrypt(quadruple(X4,X5,X2,X1),at),X3,X0))))), inference(flattening,[],[f41])). fof(f71,plain,( ( ! [X4,X2,X0,X5,X3,X1] : (message(sent(a,X4,pair(X3,encrypt(X0,X2)))) | ~a_stored(pair(X4,X5)) | ~message(sent(t,a,triple(encrypt(quadruple(X4,X5,X2,X1),at),X3,X0)))) )), inference(cnf_transformation,[],[f42])). fof(f4,axiom,( a_stored(pair(b,an_a_nonce))), file('/Users/korovin/TPTP-v7.3.0/Problems/SWV/SWV017+1.p',unknown)). fof(f70,plain,( a_stored(pair(b,an_a_nonce))), inference(cnf_transformation,[],[f4])). fof(f3,axiom,( message(sent(a,b,pair(a,an_a_nonce)))), file('/Users/korovin/TPTP-v7.3.0/Problems/SWV/SWV017+1.p',unknown)). fof(f69,plain,( message(sent(a,b,pair(a,an_a_nonce)))), inference(cnf_transformation,[],[f3])). fof(f2,axiom,( party_of_protocol(a)), file('/Users/korovin/TPTP-v7.3.0/Problems/SWV/SWV017+1.p',unknown)). fof(f68,plain,( party_of_protocol(a)), inference(cnf_transformation,[],[f2])). cnf(c_37,plain, ( ~ fresh_intruder_nonce(X0) | fresh_to_b(X0) ), inference(cnf_transformation,[],[f104]) ). cnf(c_36,plain, ( ~ fresh_intruder_nonce(X0) | intruder_message(X0) ), inference(cnf_transformation,[],[f105]) ). cnf(c_35,plain, ( ~ fresh_intruder_nonce(X0) | fresh_intruder_nonce(generate_intruder_nonce(X0)) ), inference(cnf_transformation,[],[f103]) ). cnf(c_34,plain, ( fresh_intruder_nonce(an_intruder_nonce) ), inference(cnf_transformation,[],[f102]) ). cnf(c_29,plain, ( ~ a_nonce(generate_key(X0)) ), inference(cnf_transformation,[],[f97]) ). cnf(c_27,plain, ( ~ intruder_holds(key(X0,X1)) | ~ party_of_protocol(X1) | ~ intruder_message(X2) | intruder_message(encrypt(X2,X0)) ), inference(cnf_transformation,[],[f95]) ). cnf(c_26,plain, ( ~ party_of_protocol(X0) | ~ intruder_message(X1) | intruder_holds(key(X1,X0)) ), inference(cnf_transformation,[],[f94]) ). cnf(c_25,plain, ( ~ party_of_protocol(X0) | ~ party_of_protocol(X1) | ~ intruder_message(X2) | message(sent(X1,X0,X2)) ), inference(cnf_transformation,[],[f93]) ). cnf(c_24,plain, ( ~ intruder_message(encrypt(X0,X1)) | ~ intruder_holds(key(X1,X2)) | ~ party_of_protocol(X2) | intruder_message(X1) ), inference(cnf_transformation,[],[f92]) ). cnf(c_23,plain, ( ~ intruder_message(X0) | ~ intruder_message(X1) | ~ intruder_message(X2) | ~ intruder_message(X3) | intruder_message(quadruple(X1,X3,X2,X0)) ), inference(cnf_transformation,[],[f91]) ). cnf(c_22,plain, ( ~ intruder_message(X0) | ~ intruder_message(X1) | ~ intruder_message(X2) | intruder_message(triple(X0,X2,X1)) ), inference(cnf_transformation,[],[f90]) ). cnf(c_21,plain, ( ~ intruder_message(X0) | ~ intruder_message(X1) | intruder_message(pair(X0,X1)) ), inference(cnf_transformation,[],[f89]) ). cnf(c_20,plain, ( ~ intruder_message(quadruple(X0,X1,X2,X3)) | intruder_message(X0) ), inference(cnf_transformation,[],[f85]) ). cnf(c_19,plain, ( ~ intruder_message(quadruple(X0,X1,X2,X3)) | intruder_message(X1) ), inference(cnf_transformation,[],[f86]) ). cnf(c_18,plain, ( ~ intruder_message(quadruple(X0,X1,X2,X3)) | intruder_message(X2) ), inference(cnf_transformation,[],[f87]) ). cnf(c_17,plain, ( ~ intruder_message(quadruple(X0,X1,X2,X3)) | intruder_message(X3) ), inference(cnf_transformation,[],[f88]) ). cnf(c_16,plain, ( ~ intruder_message(triple(X0,X1,X2)) | intruder_message(X0) ), inference(cnf_transformation,[],[f82]) ). cnf(c_15,plain, ( ~ intruder_message(triple(X0,X1,X2)) | intruder_message(X1) ), inference(cnf_transformation,[],[f83]) ). cnf(c_14,plain, ( ~ intruder_message(triple(X0,X1,X2)) | intruder_message(X2) ), inference(cnf_transformation,[],[f84]) ). cnf(c_13,plain, ( ~ intruder_message(pair(X0,X1)) | intruder_message(X0) ), inference(cnf_transformation,[],[f80]) ). cnf(c_12,plain, ( ~ intruder_message(pair(X0,X1)) | intruder_message(X1) ), inference(cnf_transformation,[],[f81]) ). cnf(c_11,plain, ( ~ message(sent(X0,X1,X2)) | intruder_message(X2) ), inference(cnf_transformation,[],[f79]) ). cnf(c_10,plain, ( ~ message(sent(X0,t,triple(X0,X1,encrypt(triple(X2,X3,X4),X5)))) | ~ t_holds(key(X5,X0)) | ~ t_holds(key(X6,X2)) | ~ a_nonce(X3) | message(sent(t,X2,triple(encrypt(quadruple(X0,X3,generate_key(X3),X4),X6),encrypt(triple(X2,generate_key(X3),X4),X5),X1))) ), inference(cnf_transformation,[],[f78]) ). cnf(c_9,plain, ( party_of_protocol(t) ), inference(cnf_transformation,[],[f77]) ). cnf(c_8,plain, ( t_holds(key(bt,b)) ), inference(cnf_transformation,[],[f76]) ). cnf(c_7,plain, ( t_holds(key(at,a)) ), inference(cnf_transformation,[],[f75]) ). cnf(c_6,plain, ( ~ message(sent(X0,b,pair(X0,X1))) | ~ fresh_to_b(X1) | message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X0,X1,generate_expiration_time(X1)),bt)))) ), inference(cnf_transformation,[],[f74]) ). cnf(c_5,plain, ( fresh_to_b(an_a_nonce) ), inference(cnf_transformation,[],[f73]) ). cnf(c_4,plain, ( party_of_protocol(b) ), inference(cnf_transformation,[],[f72]) ). cnf(c_3,plain, ( ~ message(sent(t,a,triple(encrypt(quadruple(X0,X1,X2,X3),at),X4,X5))) | ~ a_stored(pair(X0,X1)) | message(sent(a,X0,pair(X4,encrypt(X5,X2)))) ), inference(cnf_transformation,[],[f71]) ). cnf(c_2,plain, ( a_stored(pair(b,an_a_nonce)) ), inference(cnf_transformation,[],[f70]) ). cnf(c_1,plain, ( message(sent(a,b,pair(a,an_a_nonce))) ), inference(cnf_transformation,[],[f69]) ). cnf(c_0,plain, ( party_of_protocol(a) ), inference(cnf_transformation,[],[f68]) ). % SZS output end Saturation for SWV017+1.p
% SZS status Unsatisfiable for BOO001-1.p % SZS output start CNFRefutation for BOO001-1.p cnf(c_0,negated_conjecture, ( inverse(inverse(a)) != a ), file('/Users/korovin/TPTP-v7.3.0/Problems/BOO/BOO001-1.p', prove_inverse_is_self_cancelling) ). cnf(c_4,plain, ( multiply(inverse(X0),X0,X1) = X1 ), file('/Users/korovin/TPTP-v7.3.0/Axioms/BOO001-0.ax', left_inverse) ). cnf(c_3,plain, ( multiply(X0,X0,X1) = X0 ), file('/Users/korovin/TPTP-v7.3.0/Axioms/BOO001-0.ax', ternary_multiply_2) ). cnf(c_5,plain, ( multiply(X0,X1,inverse(X1)) = X0 ), file('/Users/korovin/TPTP-v7.3.0/Axioms/BOO001-0.ax', right_inverse) ). cnf(c_1,plain, ( multiply(multiply(X0,X1,X2),X3,multiply(X0,X1,X4)) = multiply(X0,X1,multiply(X2,X3,X4)) ), file('/Users/korovin/TPTP-v7.3.0/Axioms/BOO001-0.ax', associativity) ). cnf(c_45,plain, ( multiply(X0,X1,multiply(inverse(X1),X2,X3)) = multiply(X0,X2,multiply(X0,X1,X3)) ), inference(superposition,[status(thm)],[c_5,c_1]) ). cnf(c_154,plain, ( multiply(X0,inverse(X1),multiply(X0,X1,X2)) = multiply(X0,X1,inverse(X1)) ), inference(superposition,[status(thm)],[c_3,c_45]) ). cnf(c_48,plain, ( multiply(multiply(X0,X0,X1),X2,X0) = multiply(X0,X0,multiply(X1,X2,X3)) ), inference(superposition,[status(thm)],[c_3,c_1]) ). cnf(c_55,plain, ( multiply(X0,X1,X0) = X0 ), inference(demodulation,[status(thm)],[c_48,c_3]) ). cnf(c_62,plain, ( multiply(X0,X1,multiply(X0,X2,X3)) = multiply(X0,X2,multiply(X0,X1,X3)) ), inference(superposition,[status(thm)],[c_55,c_1]) ). cnf(c_203,plain, ( multiply(X0,X1,multiply(X0,inverse(X1),X2)) = X0 ), inference(demodulation,[status(thm)],[c_154,c_5,c_62]) ). cnf(c_765,plain, ( multiply(inverse(inverse(X0)),X0,X1) = inverse(inverse(X0)) ), inference(superposition,[status(thm)],[c_4,c_203]) ). cnf(c_2,plain, ( multiply(X0,X1,X1) = X1 ), file('/Users/korovin/TPTP-v7.3.0/Axioms/BOO001-0.ax', ternary_multiply_1) ). cnf(c_842,plain, ( inverse(inverse(X0)) = X0 ), inference(superposition,[status(thm)],[c_765,c_2]) ). cnf(c_853,plain, ( a != a ), inference(demodulation,[status(thm)],[c_0,c_842]) ). cnf(c_855,plain, ( $false ), inference(equality_resolution_simp,[status(thm)],[c_853]) ). % SZS output end CNFRefutation for BOO001-1.p
# SZS status Theorem for /home/apease/ontology/TPTP-v7.3.0/Problems/PUZ/PUZ001+1.p % SZS output start CNFRefutation for /home/apease/ontology/TPTP-v7.3.0/Problems/PUZ/PUZ001+1.p fof(pel55_11,axiom,~agatha=butler,input). fof(f64,axiom,~agatha=butler,inference(fof_simplification, status(thm), [pel55_11])). cnf(cnf13,axiom,~agatha=butler,inference(split_conjunct, status(thm), [f64])). fof(pel55_7,axiom,(![X]:(~X=butler=>hates(agatha,X))),input). fof(f40,axiom,(![X]:(~X=butler=>hates(agatha,X))),inference(fof_simplification, status(thm), [pel55_7])). fof(f41,axiom,(![X]:(X=butler|hates(agatha,X))),inference(fof_nnf, status(thm), [f40])). fof(f42,axiom,(![VAR8]:(VAR8=butler|hates(agatha,VAR8))),inference(variable_rename, status(thm), [f41])). fof(f43,axiom,(VAR8=butler|hates(agatha,VAR8)),inference(shift_quantors, status(thm), [f42])). cnf(cnf9,axiom,X12=butler|hates(agatha,X12),inference(split_conjunct, status(thm), [f43])). cnf(c7,plain,hates(agatha,agatha),inference(resolution, status(thm), [cnf9, cnf13])). fof(pel55_6,axiom,(![X]:(hates(agatha,X)=>(~hates(charles,X)))),input). fof(f34,axiom,(![X]:(hates(agatha,X)=>~hates(charles,X))),inference(fof_simplification, status(thm), [pel55_6])). fof(f35,axiom,(![X]:(~hates(agatha,X)|~hates(charles,X))),inference(fof_nnf, status(thm), [f34])). fof(f36,axiom,(![VAR7]:(~hates(agatha,VAR7)|~hates(charles,VAR7))),inference(variable_rename, status(thm), [f35])). fof(f37,axiom,(~hates(agatha,VAR7)|~hates(charles,VAR7)),inference(shift_quantors, status(thm), [f36])). cnf(cnf8,axiom,~hates(agatha,X11)|~hates(charles,X11),inference(split_conjunct, status(thm), [f37])). cnf(reflexivity,axiom,X1=X1,inference(eq_axioms, , [])). fof(pel55_1,axiom,(?[X]:(lives(X)&killed(X,agatha))),input). fof(f2,axiom,(?[X]:(lives(X)&killed(X,agatha))),inference(fof_simplification, status(thm), [pel55_1])). fof(f3,axiom,(?[VAR0]:(lives(VAR0)&killed(VAR0,agatha))),inference(variable_rename, status(thm), [f2])). fof(f4,axiom,(lives(skf1)&killed(skf1,agatha)),inference(skolemize, status(esa), [f3])). cnf(cnf1,axiom,killed(skf1,agatha),inference(split_conjunct, status(thm), [f4])). fof(pel55_4,axiom,(![X]:(![Y]:(killed(X,Y)=>hates(X,Y)))),input). fof(f22,axiom,(![X]:(![Y]:(killed(X,Y)=>hates(X,Y)))),inference(fof_simplification, status(thm), [pel55_4])). fof(f23,axiom,(![X]:(![Y]:(~killed(X,Y)|hates(X,Y)))),inference(fof_nnf, status(thm), [f22])). fof(f24,axiom,(![VAR4]:(![VAR3]:(~killed(VAR4,VAR3)|hates(VAR4,VAR3)))),inference(variable_rename, status(thm), [f23])). fof(f25,axiom,(~killed(VAR4,VAR3)|hates(VAR4,VAR3)),inference(shift_quantors, status(thm), [f24])). cnf(cnf6,axiom,~killed(X3,X4)|hates(X3,X4),inference(split_conjunct, status(thm), [f25])). cnf(c0,plain,hates(skf1,agatha),inference(resolution, status(thm), [cnf6, cnf1])). cnf(predcompat3,plain,~X35=X36|~X37=X38|~hates(X35,X37)|hates(X36,X38),eq_axiom). cnf(c65,plain,~skf1=X117|~agatha=X118|hates(X117,X118),inference(resolution, status(thm), [predcompat3, c0])). cnf(c675,plain,~skf1=X119|hates(X119,agatha),inference(resolution, status(thm), [c65, reflexivity])). fof(pel55_5,axiom,(![X]:(![Y]:(killed(X,Y)=>(~richer(X,Y))))),input). fof(f28,axiom,(![X]:(![Y]:(killed(X,Y)=>~richer(X,Y)))),inference(fof_simplification, status(thm), [pel55_5])). fof(f29,axiom,(![X]:(![Y]:(~killed(X,Y)|~richer(X,Y)))),inference(fof_nnf, status(thm), [f28])). fof(f30,axiom,(![VAR6]:(![VAR5]:(~killed(VAR6,VAR5)|~richer(VAR6,VAR5)))),inference(variable_rename, status(thm), [f29])). fof(f31,axiom,(~killed(VAR6,VAR5)|~richer(VAR6,VAR5)),inference(shift_quantors, status(thm), [f30])). cnf(cnf7,axiom,~killed(X6,X7)|~richer(X6,X7),inference(split_conjunct, status(thm), [f31])). cnf(reflexivity,axiom,X1=X1,inference(eq_axioms, , [])). fof(pel55_10,axiom,(![X]:(?[Y]:(~hates(X,Y)))),input). fof(f58,axiom,(![X]:(?[Y]:~hates(X,Y))),inference(fof_simplification, status(thm), [pel55_10])). fof(f59,axiom,(![VAR12]:(?[VAR11]:~hates(VAR12,VAR11))),inference(variable_rename, status(thm), [f58])). fof(f60,axiom,(![VAR12]:~hates(VAR12,skf13(VAR12))),inference(skolemize, status(esa), [f59])). fof(f61,axiom,~hates(VAR12,skf13(VAR12)),inference(shift_quantors, status(thm), [f60])). cnf(cnf12,axiom,~hates(X2,skf13(X2)),inference(split_conjunct, status(thm), [f61])). fof(pel55_7,axiom,(![X]:(~X=butler=>hates(agatha,X))),input). fof(f40,axiom,(![X]:(~X=butler=>hates(agatha,X))),inference(fof_simplification, status(thm), [pel55_7])). fof(f41,axiom,(![X]:(X=butler|hates(agatha,X))),inference(fof_nnf, status(thm), [f40])). fof(f42,axiom,(![VAR8]:(VAR8=butler|hates(agatha,VAR8))),inference(variable_rename, status(thm), [f41])). fof(f43,axiom,(VAR8=butler|hates(agatha,VAR8)),inference(shift_quantors, status(thm), [f42])). cnf(cnf9,axiom,X12=butler|hates(agatha,X12),inference(split_conjunct, status(thm), [f43])). fof(pel55_9,axiom,(![X]:(hates(agatha,X)=>hates(butler,X))),input). fof(f52,axiom,(![X]:(hates(agatha,X)=>hates(butler,X))),inference(fof_simplification, status(thm), [pel55_9])). fof(f53,axiom,(![X]:(~hates(agatha,X)|hates(butler,X))),inference(fof_nnf, status(thm), [f52])). fof(f54,axiom,(![VAR10]:(~hates(agatha,VAR10)|hates(butler,VAR10))),inference(variable_rename, status(thm), [f53])). fof(f55,axiom,(~hates(agatha,VAR10)|hates(butler,VAR10)),inference(shift_quantors, status(thm), [f54])). cnf(cnf11,axiom,~hates(agatha,X14)|hates(butler,X14),inference(split_conjunct, status(thm), [f55])). cnf(c14,plain,hates(butler,X29)|X29=butler,inference(resolution, status(thm), [cnf11, cnf9])). cnf(c36,plain,skf13(butler)=butler,inference(resolution, status(thm), [c14, cnf12])). fof(pel55_10,axiom,(![X]:(?[Y]:(~hates(X,Y)))),input). fof(f58,axiom,(![X]:(?[Y]:~hates(X,Y))),inference(fof_simplification, status(thm), [pel55_10])). fof(f59,axiom,(![VAR12]:(?[VAR11]:~hates(VAR12,VAR11))),inference(variable_rename, status(thm), [f58])). fof(f60,axiom,(![VAR12]:~hates(VAR12,skf13(VAR12))),inference(skolemize, status(esa), [f59])). fof(f61,axiom,~hates(VAR12,skf13(VAR12)),inference(shift_quantors, status(thm), [f60])). cnf(cnf12,axiom,~hates(X2,skf13(X2)),inference(split_conjunct, status(thm), [f61])). fof(pel55_8,axiom,(![X]:((~richer(X,agatha))=>hates(butler,X))),input). fof(f46,axiom,(![X]:(~richer(X,agatha)=>hates(butler,X))),inference(fof_simplification, status(thm), [pel55_8])). fof(f47,axiom,(![X]:(richer(X,agatha)|hates(butler,X))),inference(fof_nnf, status(thm), [f46])). fof(f48,axiom,(![VAR9]:(richer(VAR9,agatha)|hates(butler,VAR9))),inference(variable_rename, status(thm), [f47])). fof(f49,axiom,(richer(VAR9,agatha)|hates(butler,VAR9)),inference(shift_quantors, status(thm), [f48])). cnf(cnf10,axiom,richer(X13,agatha)|hates(butler,X13),inference(split_conjunct, status(thm), [f49])). cnf(c10,plain,richer(skf13(butler),agatha),inference(resolution, status(thm), [cnf10, cnf12])). cnf(predcompat4,plain,~X41=X42|~X43=X44|~richer(X41,X43)|richer(X42,X44),eq_axiom). cnf(c68,plain,~skf13(butler)=X124|~agatha=X125|richer(X124,X125),inference(resolution, status(thm), [predcompat4, c10])). cnf(c735,plain,~agatha=X131|richer(butler,X131),inference(resolution, status(thm), [c68, c36])). cnf(c759,plain,richer(butler,agatha),inference(resolution, status(thm), [c735, reflexivity])). cnf(c761,plain,~killed(butler,agatha),inference(resolution, status(thm), [c759, cnf7])). cnf(reflexivity,axiom,X1=X1,inference(eq_axioms, , [])). fof(pel55_1,axiom,(?[X]:(lives(X)&killed(X,agatha))),input). fof(f2,axiom,(?[X]:(lives(X)&killed(X,agatha))),inference(fof_simplification, status(thm), [pel55_1])). fof(f3,axiom,(?[VAR0]:(lives(VAR0)&killed(VAR0,agatha))),inference(variable_rename, status(thm), [f2])). fof(f4,axiom,(lives(skf1)&killed(skf1,agatha)),inference(skolemize, status(esa), [f3])). cnf(cnf1,axiom,killed(skf1,agatha),inference(split_conjunct, status(thm), [f4])). cnf(predcompat2,plain,~X30=X31|~X32=X33|~killed(X30,X32)|killed(X31,X33),eq_axiom). cnf(c50,plain,~skf1=X74|~agatha=X75|killed(X74,X75),inference(resolution, status(thm), [predcompat2, cnf1])). cnf(c276,plain,~skf1=X76|killed(X76,agatha),inference(resolution, status(thm), [c50, reflexivity])). fof(pel55,conjecture,killed(agatha,agatha),input). fof(f66,negated_conjecture,(~killed(agatha,agatha)),inference(assume_negation, status(cth), [pel55])). fof(f69,negated_conjecture,~killed(agatha,agatha),inference(fof_simplification, status(thm), [f66])). cnf(cnf14,negated_conjecture,~killed(agatha,agatha),inference(split_conjunct, status(thm), [f69])). fof(pel55_1,axiom,(?[X]:(lives(X)&killed(X,agatha))),input). fof(f2,axiom,(?[X]:(lives(X)&killed(X,agatha))),inference(fof_simplification, status(thm), [pel55_1])). fof(f3,axiom,(?[VAR0]:(lives(VAR0)&killed(VAR0,agatha))),inference(variable_rename, status(thm), [f2])). fof(f4,axiom,(lives(skf1)&killed(skf1,agatha)),inference(skolemize, status(esa), [f3])). cnf(cnf0,axiom,lives(skf1),inference(split_conjunct, status(thm), [f4])). fof(pel55_3,axiom,(![X]:(lives(X)=>((X=agatha|X=butler)|X=charles))),input). fof(f16,axiom,(![X]:(lives(X)=>((X=agatha|X=butler)|X=charles))),inference(fof_simplification, status(thm), [pel55_3])). fof(f17,axiom,(![X]:(~lives(X)|((X=agatha|X=butler)|X=charles))),inference(fof_nnf, status(thm), [f16])). fof(f18,axiom,(![VAR2]:(~lives(VAR2)|((VAR2=agatha|VAR2=butler)|VAR2=charles))),inference(variable_rename, status(thm), [f17])). fof(f19,axiom,(~lives(VAR2)|((VAR2=agatha|VAR2=butler)|VAR2=charles)),inference(shift_quantors, status(thm), [f18])). cnf(cnf5,axiom,~lives(X5)|X5=agatha|X5=butler|X5=charles,inference(split_conjunct, status(thm), [f19])). cnf(c1,plain,skf1=agatha|skf1=butler|skf1=charles,inference(resolution, status(thm), [cnf5, cnf0])). cnf(reflexivity,axiom,X1=X1,inference(eq_axioms, , [])). fof(pel55_1,axiom,(?[X]:(lives(X)&killed(X,agatha))),input). fof(f2,axiom,(?[X]:(lives(X)&killed(X,agatha))),inference(fof_simplification, status(thm), [pel55_1])). fof(f3,axiom,(?[VAR0]:(lives(VAR0)&killed(VAR0,agatha))),inference(variable_rename, status(thm), [f2])). fof(f4,axiom,(lives(skf1)&killed(skf1,agatha)),inference(skolemize, status(esa), [f3])). cnf(cnf1,axiom,killed(skf1,agatha),inference(split_conjunct, status(thm), [f4])). cnf(predcompat2,plain,~X30=X31|~X32=X33|~killed(X30,X32)|killed(X31,X33),eq_axiom). cnf(c50,plain,~skf1=X74|~agatha=X75|killed(X74,X75),inference(resolution, status(thm), [predcompat2, cnf1])). cnf(c276,plain,~skf1=X76|killed(X76,agatha),inference(resolution, status(thm), [c50, reflexivity])). cnf(c282,plain,killed(agatha,agatha)|skf1=butler|skf1=charles,inference(resolution, status(thm), [c276, c1])). cnf(c4388,plain,skf1=butler|skf1=charles,inference(resolution, status(thm), [c282, cnf14])). cnf(c4464,plain,skf1=charles|killed(butler,agatha),inference(resolution, status(thm), [c4388, c276])). cnf(c4537,plain,skf1=charles,inference(resolution, status(thm), [c4464, c761])). cnf(c4548,plain,hates(charles,agatha),inference(resolution, status(thm), [c4537, c675])). cnf(c4564,plain,~hates(agatha,agatha),inference(resolution, status(thm), [c4548, cnf8])). cnf(c4598,plain,$false,inference(resolution, status(thm), [c4564, c7])). % SZS output end CNFRefutation for /home/apease/ontology/TPTP-v7.3.0/Problems/PUZ/PUZ001+1.p
% SZS output start CNFRefutation thf(tp_complement,type,(complement: (($i>$o)>($i>$o)))). thf(tp_disjoint,type,(disjoint: (($i>$o)>(($i>$o)>$o)))). thf(tp_emptyset,type,(emptyset: ($i>$o))). thf(tp_excl_union,type,(excl_union: (($i>$o)>(($i>$o)>($i>$o))))). thf(tp_in,type,(in: ($i>(($i>$o)>$o)))). thf(tp_intersection,type,(intersection: (($i>$o)>(($i>$o)>($i>$o))))). thf(tp_is_a,type,(is_a: ($i>(($i>$o)>$o)))). thf(tp_meets,type,(meets: (($i>$o)>(($i>$o)>$o)))). thf(tp_misses,type,(misses: (($i>$o)>(($i>$o)>$o)))). thf(tp_sK1_X,type,(sK1_X: ($i>$o))). thf(tp_sK2_SY0,type,(sK2_SY0: ($i>$o))). thf(tp_sK3_SY2,type,(sK3_SY2: ($i>$o))). thf(tp_sK4_SX0,type,(sK4_SX0: $i)). thf(tp_setminus,type,(setminus: (($i>$o)>(($i>$o)>($i>$o))))). thf(tp_singleton,type,(singleton: ($i>($i>$o)))). thf(tp_subset,type,(subset: (($i>$o)>(($i>$o)>$o)))). thf(tp_union,type,(union: (($i>$o)>(($i>$o)>($i>$o))))). thf(tp_unord_pair,type,(unord_pair: ($i>($i>($i>$o))))). thf(complement,definition,(complement = (^[X:($i>$o),U:$i]: (~ (X@U)))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',complement)). thf(disjoint,definition,(disjoint = (^[X:($i>$o),Y:($i>$o)]: (((intersection@X)@Y) = emptyset))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',disjoint)). thf(emptyset,definition,(emptyset = (^[X:$i]: $false)),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',emptyset)). thf(excl_union,definition,(excl_union = (^[X:($i>$o),Y:($i>$o),U:$i]: (((X@U) & (~ (Y@U))) | ((~ (X@U)) & (Y@U))))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',excl_union)). thf(in,definition,(in = (^[X:$i,M:($i>$o)]: (M@X))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',in)). thf(intersection,definition,(intersection = (^[X:($i>$o),Y:($i>$o),U:$i]: ((X@U) & (Y@U)))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',intersection)). thf(is_a,definition,(is_a = (^[X:$i,M:($i>$o)]: (M@X))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',is_a)). thf(meets,definition,(meets = (^[X:($i>$o),Y:($i>$o)]: (?[U:$i]: ((X@U) & (Y@U))))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',meets)). thf(misses,definition,(misses = (^[X:($i>$o),Y:($i>$o)]: (~ (?[U:$i]: ((X@U) & (Y@U)))))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',misses)). thf(setminus,definition,(setminus = (^[X:($i>$o),Y:($i>$o),U:$i]: ((X@U) & (~ (Y@U))))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',setminus)). thf(singleton,definition,(singleton = (^[X:$i,U:$i]: (U = X))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',singleton)). thf(subset,definition,(subset = (^[X:($i>$o),Y:($i>$o)]: (![U:$i]: ((X@U) => (Y@U))))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',subset)). thf(union,definition,(union = (^[X:($i>$o),Y:($i>$o),U:$i]: ((X@U) | (Y@U)))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',union)). thf(unord_pair,definition,(unord_pair = (^[X:$i,Y:$i,U:$i]: ((U = X) | (U = Y)))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',unord_pair)). thf(1,conjecture,(![X:($i>$o),Y:($i>$o),A:($i>$o)]: ((((subset@X)@A) & ((subset@Y)@A)) => ((subset@((union@X)@Y))@A))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',thm)). thf(2,negated_conjecture,(((![X:($i>$o),Y:($i>$o),A:($i>$o)]: ((((subset@X)@A) & ((subset@Y)@A)) => ((subset@((union@X)@Y))@A)))=$false)),inference(negate_conjecture,[status(cth)],[1])). thf(3,plain,(((![SY0:($i>$o),SY1:($i>$o)]: ((((subset@sK1_X)@SY1) & ((subset@SY0)@SY1)) => ((subset@((union@sK1_X)@SY0))@SY1)))=$false)),inference(extcnf_forall_neg,[status(esa)],[2])). thf(4,plain,(((![SY2:($i>$o)]: ((((subset@sK1_X)@SY2) & ((subset@sK2_SY0)@SY2)) => ((subset@((union@sK1_X)@sK2_SY0))@SY2)))=$false)),inference(extcnf_forall_neg,[status(esa)],[3])). thf(5,plain,((((((subset@sK1_X)@sK3_SY2) & ((subset@sK2_SY0)@sK3_SY2)) => ((subset@((union@sK1_X)@sK2_SY0))@sK3_SY2))=$false)),inference(extcnf_forall_neg,[status(esa)],[4])). thf(6,plain,((((subset@sK1_X)@sK3_SY2)=$true)),inference(standard_cnf,[status(thm)],[5])). thf(7,plain,((((subset@sK2_SY0)@sK3_SY2)=$true)),inference(standard_cnf,[status(thm)],[5])). thf(8,plain,((((subset@((union@sK1_X)@sK2_SY0))@sK3_SY2)=$false)),inference(standard_cnf,[status(thm)],[5])). thf(9,plain,(((~ ((subset@((union@sK1_X)@sK2_SY0))@sK3_SY2))=$true)),inference(polarity_switch,[status(thm)],[8])). thf(10,plain,((((subset@sK2_SY0)@sK3_SY2)=$true)),inference(copy,[status(thm)],[7])). thf(11,plain,((((subset@sK1_X)@sK3_SY2)=$true)),inference(copy,[status(thm)],[6])). thf(12,plain,(((~ ((subset@((union@sK1_X)@sK2_SY0))@sK3_SY2))=$true)),inference(copy,[status(thm)],[9])). thf(13,plain,(((~ (![SX0:$i]: ((~ ((sK1_X@SX0) | (sK2_SY0@SX0))) | (sK3_SY2@SX0))))=$true)),inference(unfold_def,[status(thm)],[12,complement,disjoint,emptyset,excl_union,in,intersection,is_a,meets,misses,setminus,singleton,subset,union,unord_pair])). thf(14,plain,(((![SX0:$i]: ((~ (sK1_X@SX0)) | (sK3_SY2@SX0)))=$true)),inference(unfold_def,[status(thm)],[11,complement,disjoint,emptyset,excl_union,in,intersection,is_a,meets,misses,setminus,singleton,subset,union,unord_pair])). thf(15,plain,(((![SX0:$i]: ((~ (sK2_SY0@SX0)) | (sK3_SY2@SX0)))=$true)),inference(unfold_def,[status(thm)],[10,complement,disjoint,emptyset,excl_union,in,intersection,is_a,meets,misses,setminus,singleton,subset,union,unord_pair])). thf(16,plain,(((![SX0:$i]: ((~ ((sK1_X@SX0) | (sK2_SY0@SX0))) | (sK3_SY2@SX0)))=$false)),inference(extcnf_not_pos,[status(thm)],[13])). thf(17,plain,(![SV1:$i]: ((((~ (sK1_X@SV1)) | (sK3_SY2@SV1))=$true))),inference(extcnf_forall_pos,[status(thm)],[14])). thf(18,plain,(![SV2:$i]: ((((~ (sK2_SY0@SV2)) | (sK3_SY2@SV2))=$true))),inference(extcnf_forall_pos,[status(thm)],[15])). thf(19,plain,((((~ ((sK1_X@sK4_SX0) | (sK2_SY0@sK4_SX0))) | (sK3_SY2@sK4_SX0))=$false)),inference(extcnf_forall_neg,[status(esa)],[16])). thf(20,plain,(![SV1:$i]: (((~ (sK1_X@SV1))=$true) | ((sK3_SY2@SV1)=$true))),inference(extcnf_or_pos,[status(thm)],[17])). thf(21,plain,(![SV2:$i]: (((~ (sK2_SY0@SV2))=$true) | ((sK3_SY2@SV2)=$true))),inference(extcnf_or_pos,[status(thm)],[18])). thf(22,plain,(((~ ((sK1_X@sK4_SX0) | (sK2_SY0@sK4_SX0)))=$false)),inference(extcnf_or_neg,[status(thm)],[19])). thf(23,plain,(((sK3_SY2@sK4_SX0)=$false)),inference(extcnf_or_neg,[status(thm)],[19])). thf(24,plain,(![SV1:$i]: (((sK1_X@SV1)=$false) | ((sK3_SY2@SV1)=$true))),inference(extcnf_not_pos,[status(thm)],[20])). thf(25,plain,(![SV2:$i]: (((sK2_SY0@SV2)=$false) | ((sK3_SY2@SV2)=$true))),inference(extcnf_not_pos,[status(thm)],[21])). thf(26,plain,((((sK1_X@sK4_SX0) | (sK2_SY0@sK4_SX0))=$true)),inference(extcnf_not_neg,[status(thm)],[22])). thf(27,plain,(((sK1_X@sK4_SX0)=$true) | ((sK2_SY0@sK4_SX0)=$true)),inference(extcnf_or_pos,[status(thm)],[26])). thf(28,plain,((($false)=$true)),inference(fo_atp_e,[status(thm)],[23,27,25,24])). thf(29,plain,($false),inference(solved_all_splits,[solved_all_splits(join,[])],[28])). % SZS output end CNFRefutation
% Time passed: 887ms (effective reasoning time: 492ms) % Solved by strategy% Axioms used in derivation (0): % No. of inferences in proof: 16 % SZS status Theorem for SET014^4.p : 887 ms resp. 492 ms w/o parsing % SZS output start Refutation for SET014^4.p thf(union_type, type, union: (($i > $o) > (($i > $o) > ($i > $o)))). thf(union_def, definition, (union = (^ [A:($i > $o),B:($i > $o),C:$i]: ((A @ C) | (B @ C))))). thf(subset_type, type, subset: (($i > $o) > (($i > $o) > $o))). thf(subset_def, definition, (subset = (^ [A:($i > $o),B:($i > $o)]: ! [C:$i]: ((A @ C) => (B @ C))))). thf(sk1_type, type, sk1: ($i > $o)). thf(sk2_type, type, sk2: ($i > $o)). thf(sk3_type, type, sk3: ($i > $o)). thf(sk4_type, type, sk4: $i). thf(1,conjecture,((! [A:($i > $o),B:($i > $o),C:($i > $o)]: (((subset @ A @ C) & (subset @ B @ C)) => (subset @ (union @ A @ B) @ C)))),file('SET014^4.p',thm)). thf(2,negated_conjecture,((~ (! [A:($i > $o),B:($i > $o),C:($i > $o)]: (((subset @ A @ C) & (subset @ B @ C)) => (subset @ (union @ A @ B) @ C))))),inference(neg_conjecture,[status(cth)],[1])). thf(3,plain,((~ (! [A:($i > $o),B:($i > $o),C:($i > $o)]: ((! [D:$i]: ((A @ D) => (C @ D)) & ! [D:$i]: ((B @ D) => (C @ D))) => (! [D:$i]: (((A @ D) | (B @ D)) => (C @ D))))))),inference(defexp_and_simp_and_etaexpand,[status(thm)],[2])). thf(5,plain,((sk1 @ sk4) | (sk2 @ sk4)),inference(cnf,[status(esa)],[3])). thf(7,plain,(! [A:$i] : ((~ (sk1 @ A)) | (sk3 @ A))),inference(cnf,[status(esa)],[3])). thf(4,plain,((~ (sk3 @ sk4))),inference(cnf,[status(esa)],[3])). thf(9,plain,(! [A:$i] : ((~ (sk1 @ A)) | ((sk3 @ A) != (sk3 @ sk4)))),inference(paramod_ordered,[status(thm)],[7,4])). thf(10,plain,((~ (sk1 @ sk4))),inference(pattern_uni,[status(thm)],[9:[bind(A, $thf(sk4))]])). thf(11,plain,($false | (sk2 @ sk4)),inference(rewrite,[status(thm)],[5,10])). thf(12,plain,((sk2 @ sk4)),inference(simp,[status(thm)],[11])). thf(6,plain,(! [A:$i] : ((~ (sk2 @ A)) | (sk3 @ A))),inference(cnf,[status(esa)],[3])). thf(8,plain,(! [A:$i] : ((~ (sk2 @ A)) | (sk3 @ A))),inference(simp,[status(thm)],[6])). thf(13,plain,(! [A:$i] : ((~ (sk2 @ A)) | ((sk3 @ A) != (sk3 @ sk4)))),inference(paramod_ordered,[status(thm)],[8,4])). thf(14,plain,((~ (sk2 @ sk4))),inference(pattern_uni,[status(thm)],[13:[bind(A, $thf(sk4))]])). thf(15,plain,($false),inference(rewrite,[status(thm)],[12,14])). thf(16,plain,($false),inference(simp,[status(thm)],[15])). % SZS output end Refutation for SET014^4.p
8 (all A all B (subset(A,B) <-> (all C (in(C,A) -> in(C,B))))) # label(d3_tarski) # label(axiom) # label(non_clause). [assumption]. 26 (all A all B (disjoint(A,B) -> disjoint(B,A))) # label(symmetry_r1_xboole_0) # label(axiom) # label(non_clause). [assumption]. 42 (all A all B (-(-disjoint(A,B) & (all C -(in(C,A) & in(C,B)))) & -((exists C (in(C,A) & in(C,B))) & disjoint(A,B)))) # label(t3_xboole_0) # label(lemma) # label(non_clause). [assumption]. 55 -(all A all B all C (subset(A,B) & disjoint(B,C) -> disjoint(A,C))) # label(t63_xboole_1) # label(negated_conjecture) # label(non_clause). [assumption]. 60 subset(c3,c4) # label(t63_xboole_1) # label(negated_conjecture). [clausify(55)]. 61 disjoint(c4,c5) # label(t63_xboole_1) # label(negated_conjecture). [clausify(55)]. 75 disjoint(A,B) | in(f7(A,B),A) # label(t3_xboole_0) # label(lemma). [clausify(42)]. 76 disjoint(A,B) | in(f7(A,B),B) # label(t3_xboole_0) # label(lemma). [clausify(42)]. 92 -disjoint(c3,c5) # label(t63_xboole_1) # label(negated_conjecture). [clausify(55)]. 101 -in(A,B) | -in(A,C) | -disjoint(B,C) # label(t3_xboole_0) # label(lemma). [clausify(42)]. 109 -disjoint(A,B) | disjoint(B,A) # label(symmetry_r1_xboole_0) # label(axiom). [clausify(26)]. 123 -subset(A,B) | -in(C,A) | in(C,B) # label(d3_tarski) # label(axiom). [clausify(8)]. 273 -disjoint(c5,c3). [ur(109,b,92,a)]. 300 -in(A,c3) | in(A,c4). [resolve(123,a,60,a)]. 959 in(f7(c5,c3),c3). [resolve(273,a,76,a)]. 960 in(f7(c5,c3),c5). [resolve(273,a,75,a)]. 1084 -in(f7(c5,c3),c4). [ur(101,b,960,a,c,61,a)]. 1292 $F. [resolve(300,a,959,a),unit_del(a,1084)].
% SZS status Theorem for SEU140+2 % SZS output begin ListOfCNF for SEU140+2 cnf(g0, plain, subset(sK10,sK11), inference(ground_cnf, [], [file('Problems/SEU/SEU140+2.p', t63_xboole_1)])). cnf(g1, plain, disjoint(sK11,sK12), inference(ground_cnf, [], [file('Problems/SEU/SEU140+2.p', t63_xboole_1)])). cnf(g2, plain, ~disjoint(sK10,sK12), inference(ground_cnf, [], [file('Problems/SEU/SEU140+2.p', t63_xboole_1)])). cnf(g3, plain, ~disjoint(sK11,sK12) | disjoint(sK12,sK11), inference(ground_cnf, [], [file('Problems/SEU/SEU140+2.p', symmetry_r1_xboole_0)])). cnf(g4, plain, in(sK8(sK10,sK12),sK12) | disjoint(sK10,sK12), inference(ground_cnf, [], [file('Problems/SEU/SEU140+2.p', t3_xboole_0)])). cnf(g5, plain, in(sK8(sK10,sK12),sK10) | disjoint(sK10,sK12), inference(ground_cnf, [], [file('Problems/SEU/SEU140+2.p', t3_xboole_0)])). cnf(g6, plain, ~in(sK8(sK10,sK12),sK10) | ~subset(sK10,sK11) | in(sK8(sK10,sK12),sK11), inference(ground_cnf, [], [file('Problems/SEU/SEU140+2.p', d3_tarski)])). cnf(g7, plain, ~in(sK8(sK10,sK12),sK12) | ~in(sK8(sK10,sK12),sK11) | ~disjoint(sK12,sK11), inference(ground_cnf, [], [file('Problems/SEU/SEU140+2.p', t3_xboole_0)])). % SZS output end ListOfCNF for SEU140+2
% SZS status Theorem % SZS output start Proof Take the following subset of the input axioms: fof(commutativity_k3_xboole_0, axiom, ![A, B]: set_intersection2(A, B)=set_intersection2(B, A)). fof(d7_xboole_0, axiom, ![A, B]: (disjoint(A, B) <=> set_intersection2(A, B)=empty_set)). fof(l32_xboole_1, lemma, ![A, B]: (set_difference(A, B)=empty_set <=> subset(A, B))). fof(rc1_xboole_0, axiom, ?[A]: empty(A)). fof(symmetry_r1_xboole_0, axiom, ![A, B]: (disjoint(A, B) => disjoint(B, A))). fof(t26_xboole_1, lemma, ![A, B, C]: (subset(A, B) => subset(set_intersection2(A, C), set_intersection2(B, C)))). fof(t3_boole, axiom, ![A]: set_difference(A, empty_set)=A). fof(t63_xboole_1, conjecture, ![A, B, C]: ((subset(A, B) & disjoint(B, C)) => disjoint(A, C))). fof(t6_boole, axiom, ![A]: (empty(A) => A=empty_set)). Now clausify the problem and encode Horn clauses using encoding 3 of http://www.cse.chalmers.se/~nicsma/papers/horn.pdf. We repeatedly replace C & s=t => u=v by the two clauses: fresh(y, y, x1...xn) = u C => fresh(s, t, x1...xn) = v where fresh is a fresh function symbol and x1..xn are the free variables of u and v. A predicate p(X) is encoded as p(X)=true (this is sound, because the input problem has no model of domain size 1). The encoding turns the above axioms into the following unit equations and goals: Axiom 1 (rc1_xboole_0): empty(a3) = true2. Axiom 2 (t63_xboole_1_1): disjoint(b, c) = true2. Axiom 3 (commutativity_k3_xboole_0): set_intersection2(X, Y) = set_intersection2(Y, X). Axiom 4 (t3_boole): set_difference(X, empty_set) = X. Axiom 5 (t63_xboole_1): subset(a, b) = true2. Axiom 6 (t6_boole): fresh15(X, X, Y) = empty_set. Axiom 7 (d7_xboole_0): fresh32(X, X, Y, Z) = true2. Axiom 8 (d7_xboole_0_1): fresh31(X, X, Y, Z) = empty_set. Axiom 9 (l32_xboole_1_1): fresh26(X, X, Y, Z) = empty_set. Axiom 10 (symmetry_r1_xboole_0): fresh25(X, X, Y, Z) = true2. Axiom 11 (t6_boole): fresh15(empty(X), true2, X) = X. Axiom 12 (t26_xboole_1): fresh20(X, X, Y, Z, W) = true2. Axiom 13 (d7_xboole_0): fresh32(set_intersection2(X, Y), empty_set, X, Y) = disjoint(X, Y). Axiom 14 (d7_xboole_0_1): fresh31(disjoint(X, Y), true2, X, Y) = set_intersection2(X, Y). Axiom 15 (l32_xboole_1_1): fresh26(subset(X, Y), true2, X, Y) = set_difference(X, Y). Axiom 16 (symmetry_r1_xboole_0): fresh25(disjoint(X, Y), true2, X, Y) = disjoint(Y, X). Axiom 17 (t26_xboole_1): fresh20(subset(X, Y), true2, X, Y, Z) = subset(set_intersection2(X, Z), set_intersection2(Y, Z)). Lemma 18: empty_set = a3. Proof: empty_set = { by axiom 6 (t6_boole) R->L } fresh15(true2, true2, a3) = { by axiom 1 (rc1_xboole_0) R->L } fresh15(empty(a3), true2, a3) = { by axiom 11 (t6_boole) } a3 Goal 1 (t63_xboole_1_2): disjoint(a, c) = true2. Proof: disjoint(a, c) = { by axiom 16 (symmetry_r1_xboole_0) R->L } fresh25(disjoint(c, a), true2, c, a) = { by axiom 13 (d7_xboole_0) R->L } fresh25(fresh32(set_intersection2(c, a), empty_set, c, a), true2, c, a) = { by axiom 4 (t3_boole) R->L } fresh25(fresh32(set_difference(set_intersection2(c, a), empty_set), empty_set, c, a), true2, c, a) = { by lemma 18 } fresh25(fresh32(set_difference(set_intersection2(c, a), a3), empty_set, c, a), true2, c, a) = { by axiom 15 (l32_xboole_1_1) R->L } fresh25(fresh32(fresh26(subset(set_intersection2(c, a), a3), true2, set_intersection2(c, a), a3), empty_set, c, a), true2, c, a) = { by axiom 3 (commutativity_k3_xboole_0) R->L } fresh25(fresh32(fresh26(subset(set_intersection2(a, c), a3), true2, set_intersection2(c, a), a3), empty_set, c, a), true2, c, a) = { by lemma 18 R->L } fresh25(fresh32(fresh26(subset(set_intersection2(a, c), empty_set), true2, set_intersection2(c, a), a3), empty_set, c, a), true2, c, a) = { by axiom 8 (d7_xboole_0_1) R->L } fresh25(fresh32(fresh26(subset(set_intersection2(a, c), fresh31(true2, true2, b, c)), true2, set_intersection2(c, a), a3), empty_set, c, a), true2, c, a) = { by axiom 2 (t63_xboole_1_1) R->L } fresh25(fresh32(fresh26(subset(set_intersection2(a, c), fresh31(disjoint(b, c), true2, b, c)), true2, set_intersection2(c, a), a3), empty_set, c, a), true2, c, a) = { by axiom 14 (d7_xboole_0_1) } fresh25(fresh32(fresh26(subset(set_intersection2(a, c), set_intersection2(b, c)), true2, set_intersection2(c, a), a3), empty_set, c, a), true2, c, a) = { by axiom 17 (t26_xboole_1) R->L } fresh25(fresh32(fresh26(fresh20(subset(a, b), true2, a, b, c), true2, set_intersection2(c, a), a3), empty_set, c, a), true2, c, a) = { by axiom 5 (t63_xboole_1) } fresh25(fresh32(fresh26(fresh20(true2, true2, a, b, c), true2, set_intersection2(c, a), a3), empty_set, c, a), true2, c, a) = { by axiom 12 (t26_xboole_1) } fresh25(fresh32(fresh26(true2, true2, set_intersection2(c, a), a3), empty_set, c, a), true2, c, a) = { by axiom 9 (l32_xboole_1_1) } fresh25(fresh32(empty_set, empty_set, c, a), true2, c, a) = { by lemma 18 } fresh25(fresh32(a3, empty_set, c, a), true2, c, a) = { by lemma 18 } fresh25(fresh32(a3, a3, c, a), true2, c, a) = { by axiom 7 (d7_xboole_0) } fresh25(true2, true2, c, a) = { by axiom 10 (symmetry_r1_xboole_0) } true2 % SZS output end Proof
% SZS status Unsatisfiable % SZS output start Proof Axiom 1 (ternary_multiply_1): multiply(X, Y, Y) = Y. Axiom 2 (right_inverse): multiply(X, Y, inverse(Y)) = X. Axiom 3 (associativity): multiply(multiply(X, Y, Z), W, multiply(X, Y, V)) = multiply(X, Y, multiply(Z, W, V)). Goal 1 (prove_inverse_is_self_cancelling): inverse(inverse(a)) = a. Proof: inverse(inverse(a)) = { by axiom 2 (right_inverse) R->L } multiply(inverse(inverse(a)), a, inverse(a)) = { by axiom 1 (ternary_multiply_1) R->L } multiply(inverse(inverse(a)), a, multiply(a, inverse(a), inverse(a))) = { by axiom 3 (associativity) R->L } multiply(multiply(inverse(inverse(a)), a, a), inverse(a), multiply(inverse(inverse(a)), a, inverse(a))) = { by axiom 1 (ternary_multiply_1) } multiply(a, inverse(a), multiply(inverse(inverse(a)), a, inverse(a))) = { by axiom 2 (right_inverse) } multiply(a, inverse(a), inverse(inverse(a))) = { by axiom 2 (right_inverse) } a % SZS output end Proof
% SZS output start Proof for SET014^4 tff(func_def_3, type, ->: ('$tType' * '$tType') > '$tType'). tff(func_def_4, type, in: '$i' -> ('$i' -> '$o') -> '$o'). tff(func_def_5, type, vAPP: !>[X0: $ttype, X1: $ttype]:(X0 -> X1 * X0) > X1). tff(func_def_6, type, is_a: '$i' -> ('$i' -> '$o') -> '$o'). tff(func_def_7, type, emptyset: '$i' -> '$o'). tff(func_def_8, type, unord_pair: '$i' -> '$i' -> '$i' -> '$o'). tff(func_def_9, type, singleton: '$i' -> '$i' -> '$o'). tff(func_def_10, type, union: ('$i' -> '$o') -> ('$i' -> '$o') -> '$i' -> '$o'). tff(func_def_11, type, excl_union: ('$i' -> '$o') -> ('$i' -> '$o') -> '$i' -> '$o'). tff(func_def_12, type, intersection: ('$i' -> '$o') -> ('$i' -> '$o') -> '$i' -> '$o'). tff(func_def_13, type, setminus: ('$i' -> '$o') -> ('$i' -> '$o') -> '$i' -> '$o'). tff(func_def_14, type, complement: ('$i' -> '$o') -> '$i' -> '$o'). tff(func_def_15, type, disjoint: ('$i' -> '$o') -> ('$i' -> '$o') -> '$o'). tff(func_def_16, type, subset: ('$i' -> '$o') -> ('$i' -> '$o') -> '$o'). tff(func_def_17, type, meets: ('$i' -> '$o') -> ('$i' -> '$o') -> '$o'). tff(func_def_18, type, misses: ('$i' -> '$o') -> ('$i' -> '$o') -> '$o'). tff(func_def_21, type, iCOMB: !>[X2: $ttype]:X2 -> X2). tff(func_def_22, type, cCOMB: !>[X0: $ttype, X1: $ttype, X2: $ttype]:(X0 -> X1 -> X2) -> X1 -> X0 -> X2). tff(func_def_23, type, vEQ: !>[X0: $ttype]:X0 -> X0 -> '$o'). tff(func_def_24, type, bCOMB: !>[X0: $ttype, X1: $ttype, X2: $ttype]:(X1 -> X2) -> (X0 -> X1) -> X0 -> X2). tff(func_def_25, type, vNOT: '$o' -> '$o'). tff(func_def_26, type, vAND: '$o' -> '$o' -> '$o'). tff(func_def_27, type, vSIGMA: !>[X0: $ttype]:(X0 -> '$o') -> '$o'). tff(func_def_28, type, sCOMB: !>[X0: $ttype, X1: $ttype, X2: $ttype]:(X0 -> X1 -> X2) -> (X0 -> X1) -> X0 -> X2). tff(func_def_29, type, vOR: '$o' -> '$o' -> '$o'). tff(func_def_30, type, kCOMB: !>[X1: $ttype, X2: $ttype]:X1 -> X2 -> X1). tff(func_def_31, type, vIMP: '$o' -> '$o' -> '$o'). tff(func_def_32, type, vPI: !>[X0: $ttype]:(X0 -> '$o') -> '$o'). tff(func_def_33, type, sK0: '$i' -> '$o'). tff(func_def_34, type, sK1: '$i' -> '$o'). tff(func_def_35, type, sK2: '$i' -> '$o'). tff(f6,axiom,( union = (^[X0 : '$i' -> '$o', X2 : '$i' -> '$o', X3 : '$i'] : X2 @ X3 | X0 @ X3)), file('Problems/SET/SET014^4.p',unknown)). tff(f12,axiom,( subset = (^[X0 : '$i' -> '$o', X2 : '$i' -> '$o'] : ! [X3] : (X0 @ X3 => X2 @ X3))), file('Problems/SET/SET014^4.p',unknown)). tff(f15,conjecture,( ! [X0 : '$i' -> '$o',X2 : '$i' -> '$o',X4 : '$i' -> '$o'] : ((subset @ X2 @ X4 & subset @ X0 @ X4) => subset @ (union @ X0 @ X2) @ X4)), file('Problems/SET/SET014^4.p',unknown)). tff(f16,negated_conjecture,( ~! [X0 : '$i' -> '$o',X2 : '$i' -> '$o',X4 : '$i' -> '$o'] : ((subset @ X2 @ X4 & subset @ X0 @ X4) => subset @ (union @ X0 @ X2) @ X4)), inference(negated_conjecture,[],[f15])). tff(f17,plain,( ~! [X0 : '$i' -> '$o',X1 : '$i' -> '$o',X2 : '$i' -> '$o'] : ((subset @ X1 @ X2 & subset @ X0 @ X2) => subset @ (union @ X0 @ X1) @ X2)), inference(rectify,[],[f16])). tff(f18,plain,( ~! [X0 : '$i' -> '$o',X1 : '$i' -> '$o',X2 : '$i' -> '$o'] : (((subset @ X1 @ X2 = $true) & (subset @ X0 @ X2 = $true)) => (subset @ (union @ X0 @ X1) @ X2 = $true))), inference(fool_elimination,[],[f17])). tff(f40,plain,( union = (^[X0 : '$i' -> '$o', X1 : '$i' -> '$o', X2 : '$i'] : X1 @ X2 | X0 @ X2)), inference(rectify,[],[f6])). tff(f41,plain,( bCOMB @ sCOMB @ (bCOMB @ vOR) = union), inference(fool_elimination,[],[f40])). tff(f42,plain,( subset = (^[X0 : '$i' -> '$o', X1 : '$i' -> '$o'] : ! [X2] : (X0 @ X2 => X1 @ X2))), inference(rectify,[],[f12])). tff(f43,plain,( bCOMB @ (bCOMB @ vPI('$i')) @ (bCOMB @ sCOMB @ (bCOMB @ vIMP)) = subset), inference(fool_elimination,[],[f42])). tff(f44,plain,( ? [X0 : '$i' -> '$o',X1 : '$i' -> '$o',X2 : '$i' -> '$o'] : ((subset @ (union @ X0 @ X1) @ X2 != $true) & ((subset @ X1 @ X2 = $true) & (subset @ X0 @ X2 = $true)))), inference(ennf_transformation,[],[f18])). tff(f45,plain,( ? [X0 : '$i' -> '$o',X1 : '$i' -> '$o',X2 : '$i' -> '$o'] : ((subset @ (union @ X0 @ X1) @ X2 != $true) & (subset @ X1 @ X2 = $true) & (subset @ X0 @ X2 = $true))), inference(flattening,[],[f44])). tff(f46,plain,( ? [X0 : '$i' -> '$o',X1 : '$i' -> '$o',X2 : '$i' -> '$o'] : ((subset @ (union @ X0 @ X1) @ X2 != $true) & (subset @ X1 @ X2 = $true) & (subset @ X0 @ X2 = $true)) => ((subset @ (union @ sK0 @ sK1) @ sK2 != $true) & (subset @ sK1 @ sK2 = $true) & (subset @ sK0 @ sK2 = $true))), introduced(choice_axiom,[])). tff(f47,plain,( (subset @ (union @ sK0 @ sK1) @ sK2 != $true) & (subset @ sK1 @ sK2 = $true) & (subset @ sK0 @ sK2 = $true)), inference(skolemisation,[status(esa),new_symbols(skolem,[sK0,sK1,sK2])],[f45,f46])). tff(f48,plain,( (subset @ sK0 @ sK2 = $true)), inference(cnf_transformation,[],[f47])). tff(f49,plain,( (subset @ sK1 @ sK2 = $true)), inference(cnf_transformation,[],[f47])). tff(f50,plain,( (subset @ (union @ sK0 @ sK1) @ sK2 != $true)), inference(cnf_transformation,[],[f47])). tff(f63,plain,( bCOMB @ sCOMB @ (bCOMB @ vOR) = union), inference(cnf_transformation,[],[f41])). tff(f64,plain,( bCOMB @ (bCOMB @ vPI('$i')) @ (bCOMB @ sCOMB @ (bCOMB @ vIMP)) = subset), inference(cnf_transformation,[],[f43])). tff(f66,plain,( (bCOMB @ (bCOMB @ vPI('$i')) @ (bCOMB @ sCOMB @ (bCOMB @ vIMP)) @ (bCOMB @ sCOMB @ (bCOMB @ vOR) @ sK0 @ sK1) @ sK2 != $true)), inference(definition_unfolding,[],[f50,f64,f63])). tff(f67,plain,( (bCOMB @ (bCOMB @ vPI('$i')) @ (bCOMB @ sCOMB @ (bCOMB @ vIMP)) @ sK1 @ sK2 = $true)), inference(definition_unfolding,[],[f49,f64])). tff(f68,plain,( (bCOMB @ (bCOMB @ vPI('$i')) @ (bCOMB @ sCOMB @ (bCOMB @ vIMP)) @ sK0 @ sK2 = $true)), inference(definition_unfolding,[],[f48,f64])). tff(f69,plain,( (vPI('$i') @ (sCOMB @ (bCOMB @ vIMP @ sK0) @ sK2) = $true)), inference(combinator_demodulation,[],[f68])). tff(f70,plain,( ( ! [X1] : ((sCOMB @ (bCOMB @ vIMP @ sK0) @ sK2 @ X1 = $true)) )), inference(pi_clausification,[],[f69])). tff(f71,plain,( ( ! [X1] : ((vIMP @ (sK0 @ X1) @ (sK2 @ X1) = $true)) )), inference(combinator_demodulation,[],[f70])). tff(f72,plain,( ( ! [X1] : ((sK2 @ X1 = $true) | (sK0 @ X1 = $false)) )), inference(binary_proxy_clausification,[],[f71])). tff(f73,plain,( (vPI('$i') @ (sCOMB @ (bCOMB @ vIMP @ sK1) @ sK2) = $true)), inference(combinator_demodulation,[],[f67])). tff(f74,plain,( ( ! [X1] : ((sCOMB @ (bCOMB @ vIMP @ sK1) @ sK2 @ X1 = $true)) )), inference(pi_clausification,[],[f73])). tff(f75,plain,( ( ! [X1] : ((vIMP @ (sK1 @ X1) @ (sK2 @ X1) = $true)) )), inference(combinator_demodulation,[],[f74])). tff(f76,plain,( ( ! [X1] : ((sK2 @ X1 = $true) | (sK1 @ X1 = $false)) )), inference(binary_proxy_clausification,[],[f75])). tff(f77,plain,( (vPI('$i') @ (sCOMB @ (bCOMB @ vIMP @ (sCOMB @ (bCOMB @ vOR @ sK0) @ sK1)) @ sK2) != $true)), inference(combinator_demodulation,[],[f66])). tff(f78,plain,( (sCOMB @ (bCOMB @ vIMP @ (sCOMB @ (bCOMB @ vOR @ sK0) @ sK1)) @ sK2 @ sK3 = $false)), inference(sigma_clausification,[],[f77])). tff(f79,plain,( (vIMP @ (vOR @ (sK0 @ sK3) @ (sK1 @ sK3)) @ (sK2 @ sK3) = $false)), inference(combinator_demodulation,[],[f78])). tff(f80,plain,( (vOR @ (sK0 @ sK3) @ (sK1 @ sK3) = $true)), inference(binary_proxy_clausification,[],[f79])). tff(f81,plain,( (sK2 @ sK3 = $false)), inference(binary_proxy_clausification,[],[f79])). tff(f82,plain,( (sK0 @ sK3 = $true) | (sK1 @ sK3 = $true)), inference(binary_proxy_clausification,[],[f80])). tff(f83,plain,( ($false = $true) | (sK0 @ sK3 = $false)), inference(superposition,[],[f72,f81])). tff(f86,plain,( (sK0 @ sK3 = $false)), inference(trivial_inequality_removal,[],[f83])). tff(f87,plain,( ($false = $true) | (sK1 @ sK3 = $true)), inference(backward_demodulation,[],[f86,f82])). tff(f88,plain,( (sK1 @ sK3 = $true)), inference(trivial_inequality_removal,[],[f87])). tff(f89,plain,( ($false = $true) | (sK1 @ sK3 = $false)), inference(superposition,[],[f76,f81])). tff(f92,plain,( (sK1 @ sK3 = $false)), inference(trivial_inequality_removal,[],[f89])). tff(f93,plain,( ($false = $true)), inference(backward_demodulation,[],[f92,f88])). tff(f94,plain,( $false), inference(trivial_inequality_removal,[],[f93])). % SZS output end Proof for SET014^4
% SZS output start Proof for DAT013=1 tff(type_def_5, type, array: $tType). tff(func_def_0, type, read: (array * $int) > $int). tff(func_def_1, type, write: (array * $int * $int) > array). tff(func_def_7, type, sK0: array). tff(func_def_8, type, sK1: $int). tff(func_def_9, type, sK2: $int). tff(func_def_10, type, sK3: $int). tff(f2323,plain,( $false), inference(subsumption_resolution,[],[f2316,f143])). tff(f143,plain,( $less(sK3,sK1)), inference(subsumption_resolution,[],[f140,f29])). tff(f29,plain,( ~$less(sK2,sK3)), inference(cnf_transformation,[],[f24])). tff(f24,plain,( (~$less(0,read(sK0,sK3)) & ~$less(sK2,sK3) & ~$less(sK3,$sum(sK1,3))) & ! [X4 : $int] : ($less(0,read(sK0,X4)) | $less(sK2,X4) | $less(X4,sK1))), inference(skolemisation,[status(esa),new_symbols(skolem,[sK0,sK1,sK2,sK3])],[f21,f23,f22])). tff(f22,plain,( ? [X0 : array,X1 : $int,X2 : $int] : (? [X3 : $int] : (~$less(0,read(X0,X3)) & ~$less(X2,X3) & ~$less(X3,$sum(X1,3))) & ! [X4 : $int] : ($less(0,read(X0,X4)) | $less(X2,X4) | $less(X4,X1))) => (? [X3 : $int] : (~$less(0,read(sK0,X3)) & ~$less(sK2,X3) & ~$less(X3,$sum(sK1,3))) & ! [X4 : $int] : ($less(0,read(sK0,X4)) | $less(sK2,X4) | $less(X4,sK1)))), introduced(choice_axiom,[])). tff(f23,plain,( ? [X3 : $int] : (~$less(0,read(sK0,X3)) & ~$less(sK2,X3) & ~$less(X3,$sum(sK1,3))) => (~$less(0,read(sK0,sK3)) & ~$less(sK2,sK3) & ~$less(sK3,$sum(sK1,3)))), introduced(choice_axiom,[])). tff(f21,plain,( ? [X0 : array,X1 : $int,X2 : $int] : (? [X3 : $int] : (~$less(0,read(X0,X3)) & ~$less(X2,X3) & ~$less(X3,$sum(X1,3))) & ! [X4 : $int] : ($less(0,read(X0,X4)) | $less(X2,X4) | $less(X4,X1)))), inference(rectify,[],[f20])). tff(f20,plain,( ? [X0 : array,X1 : $int,X2 : $int] : (? [X4 : $int] : (~$less(0,read(X0,X4)) & ~$less(X2,X4) & ~$less(X4,$sum(X1,3))) & ! [X3 : $int] : ($less(0,read(X0,X3)) | $less(X2,X3) | $less(X3,X1)))), inference(flattening,[],[f19])). tff(f19,plain,( ? [X0 : array,X1 : $int,X2 : $int] : (? [X4 : $int] : (~$less(0,read(X0,X4)) & (~$less(X2,X4) & ~$less(X4,$sum(X1,3)))) & ! [X3 : $int] : ($less(0,read(X0,X3)) | ($less(X2,X3) | $less(X3,X1))))), inference(ennf_transformation,[],[f5])). tff(f5,plain,( ~! [X0 : array,X1 : $int,X2 : $int] : (! [X3 : $int] : ((~$less(X2,X3) & ~$less(X3,X1)) => $less(0,read(X0,X3))) => ! [X4 : $int] : ((~$less(X2,X4) & ~$less(X4,$sum(X1,3))) => $less(0,read(X0,X4))))), inference(theory_normalization,[],[f4])). tff(f4,negated_conjecture,( ~! [X0 : array,X1 : $int,X2 : $int] : (! [X3 : $int] : (($lesseq(X3,X2) & $lesseq(X1,X3)) => $greater(read(X0,X3),0)) => ! [X4 : $int] : (($lesseq(X4,X2) & $lesseq($sum(X1,3),X4)) => $greater(read(X0,X4),0)))), inference(negated_conjecture,[],[f3])). tff(f3,conjecture,( ! [X0 : array,X1 : $int,X2 : $int] : (! [X3 : $int] : (($lesseq(X3,X2) & $lesseq(X1,X3)) => $greater(read(X0,X3),0)) => ! [X4 : $int] : (($lesseq(X4,X2) & $lesseq($sum(X1,3),X4)) => $greater(read(X0,X4),0)))), file('Problems/DAT/DAT013=1.p',unknown)). tff(f140,plain,( $less(sK2,sK3) | $less(sK3,sK1)), inference(resolution,[],[f27,f30])). tff(f30,plain,( ~$less(0,read(sK0,sK3))), inference(cnf_transformation,[],[f24])). tff(f27,plain,( ( ! [X4:$int] : ($less(0,read(sK0,X4)) | $less(sK2,X4) | $less(X4,sK1)) )), inference(cnf_transformation,[],[f24])). tff(f2316,plain,( ~$less(sK3,sK1)), inference(backward_demodulation,[],[f31,f2315])). tff(f2315,plain,( sK1 = $sum(3,sK1)), inference(subsumption_resolution,[],[f2282,f1467])). tff(f1467,plain,( ( ! [X3:$int] : (~$less($sum(3,X3),X3)) )), inference(resolution,[],[f1229,f125])). tff(f125,plain,( ( ! [X6:$int,X4:$int,X5:$int] : ($less($sum(X6,X5),$sum(X5,X4)) | ~$less(X6,X4)) )), inference(superposition,[],[f14,f6])). tff(f6,plain,( ( ! [X0:$int,X1:$int] : ($sum(X0,X1) = $sum(X1,X0)) )), introduced(theory_axiom,[])). tff(f14,plain,( ( ! [X2:$int,X0:$int,X1:$int] : ($less($sum(X0,X2),$sum(X1,X2)) | ~$less(X0,X1)) )), introduced(theory_axiom,[])). tff(f1229,plain,( ( ! [X8:$int] : (~$less($sum(X8,3),X8)) )), inference(evaluation,[],[f1219])). tff(f1219,plain,( ( ! [X8:$int] : (~$less($sum($sum(X8,1),2),X8)) )), inference(resolution,[],[f1070,f73])). tff(f73,plain,( ( ! [X4:$int,X3:$int] : ($less(X3,$sum(X4,1)) | ~$less(X3,X4)) )), inference(resolution,[],[f12,f43])). tff(f43,plain,( ( ! [X0:$int] : ($less(X0,$sum(X0,1))) )), inference(resolution,[],[f15,f11])). tff(f11,plain,( ( ! [X0:$int] : (~$less(X0,X0)) )), introduced(theory_axiom,[])). tff(f15,plain,( ( ! [X0:$int,X1:$int] : ($less(X1,$sum(X0,1)) | $less(X0,X1)) )), introduced(theory_axiom,[])). tff(f12,plain,( ( ! [X2:$int,X0:$int,X1:$int] : (~$less(X1,X2) | ~$less(X0,X1) | $less(X0,X2)) )), introduced(theory_axiom,[])). tff(f1070,plain,( ( ! [X8:$int] : (~$less($sum(X8,2),X8)) )), inference(evaluation,[],[f1060])). tff(f1060,plain,( ( ! [X8:$int] : (~$less($sum($sum(X8,1),1),X8)) )), inference(resolution,[],[f986,f73])). tff(f986,plain,( ( ! [X6:$int] : (~$less($sum(X6,1),X6)) )), inference(resolution,[],[f73,f11])). tff(f2282,plain,( $less($sum(3,sK1),sK1) | sK1 = $sum(3,sK1)), inference(resolution,[],[f742,f31])). tff(f742,plain,( ( ! [X56:$int] : ($less(sK3,X56) | $less(X56,sK1) | sK1 = X56) )), inference(resolution,[],[f84,f143])). tff(f84,plain,( ( ! [X4:$int,X5:$int,X3:$int] : (~$less(X5,X4) | X3 = X4 | $less(X3,X4) | $less(X5,X3)) )), inference(resolution,[],[f13,f12])). tff(f13,plain,( ( ! [X0:$int,X1:$int] : ($less(X1,X0) | $less(X0,X1) | X0 = X1) )), introduced(theory_axiom,[])). tff(f31,plain,( ~$less(sK3,$sum(3,sK1))), inference(forward_demodulation,[],[f28,f6])). tff(f28,plain,( ~$less(sK3,$sum(sK1,3))), inference(cnf_transformation,[],[f24])). % SZS output end Proof for DAT013=1
% SZS output start Proof for SEU140+2 fof(f4471,plain,( $false), inference(subsumption_resolution,[],[f4465,f210])). fof(f210,plain,( ~disjoint(sK10,sK12)), inference(cnf_transformation,[],[f134])). fof(f134,plain,( ~disjoint(sK10,sK12) & disjoint(sK11,sK12) & subset(sK10,sK11)), inference(skolemisation,[status(esa),new_symbols(skolem,[sK10,sK11,sK12])],[f88,f133])). fof(f133,plain,( ? [X0,X1,X2] : (~disjoint(X0,X2) & disjoint(X1,X2) & subset(X0,X1)) => (~disjoint(sK10,sK12) & disjoint(sK11,sK12) & subset(sK10,sK11))), introduced(choice_axiom,[])). fof(f88,plain,( ? [X0,X1,X2] : (~disjoint(X0,X2) & disjoint(X1,X2) & subset(X0,X1))), inference(flattening,[],[f87])). fof(f87,plain,( ? [X0,X1,X2] : (~disjoint(X0,X2) & (disjoint(X1,X2) & subset(X0,X1)))), inference(ennf_transformation,[],[f52])). fof(f52,negated_conjecture,( ~! [X0,X1,X2] : ((disjoint(X1,X2) & subset(X0,X1)) => disjoint(X0,X2))), inference(negated_conjecture,[],[f51])). fof(f51,conjecture,( ! [X0,X1,X2] : ((disjoint(X1,X2) & subset(X0,X1)) => disjoint(X0,X2))), file('Problems/SEU/SEU140+2.p',unknown)). fof(f4465,plain,( disjoint(sK10,sK12)), inference(superposition,[],[f4351,f2135])). fof(f2135,plain,( sK12 = set_difference(set_union2(sK11,sK12),sK11)), inference(superposition,[],[f741,f931])). fof(f931,plain,( sK11 = set_difference(sK11,sK12)), inference(forward_demodulation,[],[f930,f338])). fof(f338,plain,( ( ! [X6,X7] : (set_union2(set_difference(X6,X7),X6) = X6) )), inference(resolution,[],[f180,f192])). fof(f192,plain,( ( ! [X0,X1] : (subset(set_difference(X0,X1),X0)) )), inference(cnf_transformation,[],[f39])). fof(f39,axiom,( ! [X0,X1] : subset(set_difference(X0,X1),X0)), file('Problems/SEU/SEU140+2.p',unknown)). fof(f180,plain,( ( ! [X0,X1] : (~subset(X0,X1) | set_union2(X0,X1) = X1) )), inference(cnf_transformation,[],[f73])). fof(f73,plain,( ! [X0,X1] : (set_union2(X0,X1) = X1 | ~subset(X0,X1))), inference(ennf_transformation,[],[f28])). fof(f28,axiom,( ! [X0,X1] : (subset(X0,X1) => set_union2(X0,X1) = X1)), file('Problems/SEU/SEU140+2.p',unknown)). fof(f930,plain,( set_difference(sK11,sK12) = set_union2(set_difference(sK11,sK12),sK11)), inference(forward_demodulation,[],[f929,f281])). fof(f281,plain,( ( ! [X1] : (set_union2(empty_set,X1) = X1) )), inference(superposition,[],[f137,f183])). fof(f183,plain,( ( ! [X0] : (set_union2(X0,empty_set) = X0) )), inference(cnf_transformation,[],[f31])). fof(f31,axiom,( ! [X0] : set_union2(X0,empty_set) = X0), file('Problems/SEU/SEU140+2.p',unknown)). fof(f137,plain,( ( ! [X0,X1] : (set_union2(X0,X1) = set_union2(X1,X0)) )), inference(cnf_transformation,[],[f3])). fof(f3,axiom,( ! [X0,X1] : set_union2(X0,X1) = set_union2(X1,X0)), file('Problems/SEU/SEU140+2.p',unknown)). fof(f929,plain,( set_union2(set_difference(sK11,sK12),sK11) = set_union2(empty_set,set_difference(sK11,sK12))), inference(forward_demodulation,[],[f914,f137])). fof(f914,plain,( set_union2(set_difference(sK11,sK12),sK11) = set_union2(set_difference(sK11,sK12),empty_set)), inference(superposition,[],[f195,f587])). fof(f587,plain,( empty_set = set_difference(sK11,set_difference(sK11,sK12))), inference(resolution,[],[f224,f209])). fof(f209,plain,( disjoint(sK11,sK12)), inference(cnf_transformation,[],[f134])). fof(f224,plain,( ( ! [X0,X1] : (~disjoint(X0,X1) | empty_set = set_difference(X0,set_difference(X0,X1))) )), inference(definition_unfolding,[],[f165,f203])). fof(f203,plain,( ( ! [X0,X1] : (set_intersection2(X0,X1) = set_difference(X0,set_difference(X0,X1))) )), inference(cnf_transformation,[],[f47])). fof(f47,axiom,( ! [X0,X1] : set_intersection2(X0,X1) = set_difference(X0,set_difference(X0,X1))), file('Problems/SEU/SEU140+2.p',unknown)). fof(f165,plain,( ( ! [X0,X1] : (set_intersection2(X0,X1) = empty_set | ~disjoint(X0,X1)) )), inference(cnf_transformation,[],[f119])). fof(f119,plain,( ! [X0,X1] : ((disjoint(X0,X1) | set_intersection2(X0,X1) != empty_set) & (set_intersection2(X0,X1) = empty_set | ~disjoint(X0,X1)))), inference(nnf_transformation,[],[f11])). fof(f11,axiom,( ! [X0,X1] : (disjoint(X0,X1) <=> set_intersection2(X0,X1) = empty_set)), file('Problems/SEU/SEU140+2.p',unknown)). fof(f195,plain,( ( ! [X0,X1] : (set_union2(X0,X1) = set_union2(X0,set_difference(X1,X0))) )), inference(cnf_transformation,[],[f41])). fof(f41,axiom,( ! [X0,X1] : set_union2(X0,X1) = set_union2(X0,set_difference(X1,X0))), file('Problems/SEU/SEU140+2.p',unknown)). fof(f741,plain,( ( ! [X6,X7] : (set_difference(set_union2(X6,X7),set_difference(X6,X7)) = X7) )), inference(forward_demodulation,[],[f740,f196])). fof(f196,plain,( ( ! [X0] : (set_difference(X0,empty_set) = X0) )), inference(cnf_transformation,[],[f42])). fof(f42,axiom,( ! [X0] : set_difference(X0,empty_set) = X0), file('Problems/SEU/SEU140+2.p',unknown)). fof(f740,plain,( ( ! [X6,X7] : (set_difference(set_union2(X6,X7),set_difference(X6,X7)) = set_difference(X7,empty_set)) )), inference(forward_demodulation,[],[f690,f324])). fof(f324,plain,( ( ! [X4,X3] : (empty_set = set_difference(X3,set_union2(X4,X3))) )), inference(resolution,[],[f175,f286])). fof(f286,plain,( ( ! [X6,X7] : (subset(X6,set_union2(X7,X6))) )), inference(superposition,[],[f213,f137])). fof(f213,plain,( ( ! [X0,X1] : (subset(X0,set_union2(X0,X1))) )), inference(cnf_transformation,[],[f55])). fof(f55,axiom,( ! [X0,X1] : subset(X0,set_union2(X0,X1))), file('Problems/SEU/SEU140+2.p',unknown)). fof(f175,plain,( ( ! [X0,X1] : (~subset(X0,X1) | empty_set = set_difference(X0,X1)) )), inference(cnf_transformation,[],[f120])). fof(f120,plain,( ! [X0,X1] : ((empty_set = set_difference(X0,X1) | ~subset(X0,X1)) & (subset(X0,X1) | empty_set != set_difference(X0,X1)))), inference(nnf_transformation,[],[f23])). fof(f23,axiom,( ! [X0,X1] : (empty_set = set_difference(X0,X1) <=> subset(X0,X1))), file('Problems/SEU/SEU140+2.p',unknown)). fof(f690,plain,( ( ! [X6,X7] : (set_difference(set_union2(X6,X7),set_difference(X6,X7)) = set_difference(X7,set_difference(X7,set_union2(X6,X7)))) )), inference(superposition,[],[f216,f201])). fof(f201,plain,( ( ! [X0,X1] : (set_difference(X0,X1) = set_difference(set_union2(X0,X1),X1)) )), inference(cnf_transformation,[],[f45])). fof(f45,axiom,( ! [X0,X1] : set_difference(X0,X1) = set_difference(set_union2(X0,X1),X1)), file('Problems/SEU/SEU140+2.p',unknown)). fof(f216,plain,( ( ! [X0,X1] : (set_difference(X0,set_difference(X0,X1)) = set_difference(X1,set_difference(X1,X0))) )), inference(definition_unfolding,[],[f138,f203,f203])). fof(f138,plain,( ( ! [X0,X1] : (set_intersection2(X0,X1) = set_intersection2(X1,X0)) )), inference(cnf_transformation,[],[f4])). fof(f4,axiom,( ! [X0,X1] : set_intersection2(X0,X1) = set_intersection2(X1,X0)), file('Problems/SEU/SEU140+2.p',unknown)). fof(f4351,plain,( ( ! [X41] : (disjoint(sK10,set_difference(X41,sK11))) )), inference(superposition,[],[f4323,f2122])). fof(f2122,plain,( sK10 = set_difference(sK11,set_difference(sK11,sK10))), inference(superposition,[],[f741,f434])). fof(f434,plain,( sK11 = set_union2(sK11,sK10)), inference(forward_demodulation,[],[f433,f281])). fof(f433,plain,( set_union2(sK11,sK10) = set_union2(empty_set,sK11)), inference(forward_demodulation,[],[f421,f137])). fof(f421,plain,( set_union2(sK11,sK10) = set_union2(sK11,empty_set)), inference(superposition,[],[f195,f328])). fof(f328,plain,( empty_set = set_difference(sK10,sK11)), inference(resolution,[],[f175,f208])). fof(f208,plain,( subset(sK10,sK11)), inference(cnf_transformation,[],[f134])). fof(f4323,plain,( ( ! [X4,X2,X3] : (disjoint(set_difference(X2,X3),set_difference(X4,X2))) )), inference(duplicate_literal_removal,[],[f4288])). fof(f4288,plain,( ( ! [X4,X2,X3] : (disjoint(set_difference(X2,X3),set_difference(X4,X2)) | disjoint(set_difference(X2,X3),set_difference(X4,X2))) )), inference(resolution,[],[f401,f395])). fof(f395,plain,( ( ! [X10,X8,X9] : (~in(sK8(X8,set_difference(X9,X10)),X10) | disjoint(X8,set_difference(X9,X10))) )), inference(resolution,[],[f243,f198])). fof(f198,plain,( ( ! [X0,X1] : (in(sK8(X0,X1),X1) | disjoint(X0,X1)) )), inference(cnf_transformation,[],[f130])). fof(f130,plain,( ! [X0,X1] : ((~disjoint(X0,X1) | ! [X2] : (~in(X2,X1) | ~in(X2,X0))) & ((in(sK8(X0,X1),X1) & in(sK8(X0,X1),X0)) | disjoint(X0,X1)))), inference(skolemisation,[status(esa),new_symbols(skolem,[sK8])],[f82,f129])). fof(f129,plain,( ! [X1,X0] : (? [X3] : (in(X3,X1) & in(X3,X0)) => (in(sK8(X0,X1),X1) & in(sK8(X0,X1),X0)))), introduced(choice_axiom,[])). fof(f82,plain,( ! [X0,X1] : ((~disjoint(X0,X1) | ! [X2] : (~in(X2,X1) | ~in(X2,X0))) & (? [X3] : (in(X3,X1) & in(X3,X0)) | disjoint(X0,X1)))), inference(ennf_transformation,[],[f62])). fof(f62,plain,( ! [X0,X1] : (~(disjoint(X0,X1) & ? [X2] : (in(X2,X1) & in(X2,X0))) & ~(! [X3] : ~(in(X3,X1) & in(X3,X0)) & ~disjoint(X0,X1)))), inference(rectify,[],[f43])). fof(f43,axiom,( ! [X0,X1] : (~(disjoint(X0,X1) & ? [X2] : (in(X2,X1) & in(X2,X0))) & ~(! [X2] : ~(in(X2,X1) & in(X2,X0)) & ~disjoint(X0,X1)))), file('Problems/SEU/SEU140+2.p',unknown)). fof(f243,plain,( ( ! [X4,X0,X1] : (~in(X4,set_difference(X0,X1)) | ~in(X4,X1)) )), inference(equality_resolution,[],[f160])). fof(f160,plain,( ( ! [X4,X2,X0,X1] : (~in(X4,X1) | ~in(X4,X2) | set_difference(X0,X1) != X2) )), inference(cnf_transformation,[],[f118])). fof(f118,plain,( ! [X0,X1,X2] : ((set_difference(X0,X1) = X2 | ((in(sK4(X0,X1,X2),X1) | ~in(sK4(X0,X1,X2),X0) | ~in(sK4(X0,X1,X2),X2)) & ((~in(sK4(X0,X1,X2),X1) & in(sK4(X0,X1,X2),X0)) | in(sK4(X0,X1,X2),X2)))) & (! [X4] : ((in(X4,X2) | in(X4,X1) | ~in(X4,X0)) & ((~in(X4,X1) & in(X4,X0)) | ~in(X4,X2))) | set_difference(X0,X1) != X2))), inference(skolemisation,[status(esa),new_symbols(skolem,[sK4])],[f116,f117])). fof(f117,plain,( ! [X2,X1,X0] : (? [X3] : ((in(X3,X1) | ~in(X3,X0) | ~in(X3,X2)) & ((~in(X3,X1) & in(X3,X0)) | in(X3,X2))) => ((in(sK4(X0,X1,X2),X1) | ~in(sK4(X0,X1,X2),X0) | ~in(sK4(X0,X1,X2),X2)) & ((~in(sK4(X0,X1,X2),X1) & in(sK4(X0,X1,X2),X0)) | in(sK4(X0,X1,X2),X2))))), introduced(choice_axiom,[])). fof(f116,plain,( ! [X0,X1,X2] : ((set_difference(X0,X1) = X2 | ? [X3] : ((in(X3,X1) | ~in(X3,X0) | ~in(X3,X2)) & ((~in(X3,X1) & in(X3,X0)) | in(X3,X2)))) & (! [X4] : ((in(X4,X2) | in(X4,X1) | ~in(X4,X0)) & ((~in(X4,X1) & in(X4,X0)) | ~in(X4,X2))) | set_difference(X0,X1) != X2))), inference(rectify,[],[f115])). fof(f115,plain,( ! [X0,X1,X2] : ((set_difference(X0,X1) = X2 | ? [X3] : ((in(X3,X1) | ~in(X3,X0) | ~in(X3,X2)) & ((~in(X3,X1) & in(X3,X0)) | in(X3,X2)))) & (! [X3] : ((in(X3,X2) | in(X3,X1) | ~in(X3,X0)) & ((~in(X3,X1) & in(X3,X0)) | ~in(X3,X2))) | set_difference(X0,X1) != X2))), inference(flattening,[],[f114])). fof(f114,plain,( ! [X0,X1,X2] : ((set_difference(X0,X1) = X2 | ? [X3] : (((in(X3,X1) | ~in(X3,X0)) | ~in(X3,X2)) & ((~in(X3,X1) & in(X3,X0)) | in(X3,X2)))) & (! [X3] : ((in(X3,X2) | (in(X3,X1) | ~in(X3,X0))) & ((~in(X3,X1) & in(X3,X0)) | ~in(X3,X2))) | set_difference(X0,X1) != X2))), inference(nnf_transformation,[],[f10])). fof(f10,axiom,( ! [X0,X1,X2] : (set_difference(X0,X1) = X2 <=> ! [X3] : (in(X3,X2) <=> (~in(X3,X1) & in(X3,X0))))), file('Problems/SEU/SEU140+2.p',unknown)). fof(f401,plain,( ( ! [X4,X2,X3] : (in(sK8(set_difference(X2,X3),X4),X2) | disjoint(set_difference(X2,X3),X4)) )), inference(resolution,[],[f244,f197])). fof(f197,plain,( ( ! [X0,X1] : (in(sK8(X0,X1),X0) | disjoint(X0,X1)) )), inference(cnf_transformation,[],[f130])). fof(f244,plain,( ( ! [X4,X0,X1] : (~in(X4,set_difference(X0,X1)) | in(X4,X0)) )), inference(equality_resolution,[],[f159])). fof(f159,plain,( ( ! [X4,X2,X0,X1] : (in(X4,X0) | ~in(X4,X2) | set_difference(X0,X1) != X2) )), inference(cnf_transformation,[],[f118])). % SZS output end Proof for SEU140+2
% # SZS output start Saturation. tff(u283,axiom, (![X1, X0] : ((~woman(X0,X1) | human_person(X0,X1))))). tff(u282,axiom, (![X1, X0] : ((~woman(X0,X1) | female(X0,X1))))). tff(u281,negated_conjecture, woman(sK0,sK1)). tff(u280,negated_conjecture, ~female(sK0,sK4)). tff(u279,negated_conjecture, ~female(sK0,sK2)). tff(u278,negated_conjecture, ~female(sK0,sK3)). tff(u277,negated_conjecture, female(sK0,sK1)). tff(u276,axiom, (![X1, X0] : ((~human_person(X0,X1) | organism(X0,X1))))). tff(u275,axiom, (![X1, X0] : ((~human_person(X0,X1) | human(X0,X1))))). tff(u274,axiom, (![X1, X0] : ((~human_person(X0,X1) | animate(X0,X1))))). tff(u273,negated_conjecture, human_person(sK0,sK1)). tff(u272,negated_conjecture, ~animate(sK0,sK3)). tff(u271,negated_conjecture, animate(sK0,sK1)). tff(u270,negated_conjecture, ~human(sK0,sK2)). tff(u269,negated_conjecture, human(sK0,sK1)). tff(u268,axiom, (![X1, X0] : ((~organism(X0,X1) | entity(X0,X1))))). tff(u267,axiom, (![X1, X0] : ((~organism(X0,X1) | living(X0,X1))))). tff(u266,negated_conjecture, organism(sK0,sK1)). tff(u265,negated_conjecture, ~living(sK0,sK3)). tff(u264,negated_conjecture, living(sK0,sK1)). tff(u263,axiom, (![X1, X0] : ((~entity(X0,X1) | specific(X0,X1))))). tff(u262,axiom, (![X1, X0] : ((~entity(X0,X1) | existent(X0,X1))))). tff(u261,negated_conjecture, entity(sK0,sK1)). tff(u260,negated_conjecture, entity(sK0,sK3)). tff(u259,axiom, (![X1, X0] : ((~mia_forename(X0,X1) | forename(X0,X1))))). tff(u258,negated_conjecture, mia_forename(sK0,sK2)). tff(u257,axiom, (![X1, X0] : ((~forename(X0,X1) | relname(X0,X1))))). tff(u256,negated_conjecture, forename(sK0,sK2)). tff(u255,axiom, (![X1, X0] : ((~abstraction(X0,X1) | nonhuman(X0,X1))))). tff(u254,axiom, (![X1, X0] : ((~abstraction(X0,X1) | general(X0,X1))))). tff(u253,axiom, (![X1, X0] : ((~abstraction(X0,X1) | unisex(X0,X1))))). tff(u252,negated_conjecture, abstraction(sK0,sK2)). tff(u251,axiom, (![X1, X0] : ((~unisex(X0,X1) | ~female(X0,X1))))). tff(u250,negated_conjecture, unisex(sK0,sK2)). tff(u249,negated_conjecture, unisex(sK0,sK4)). tff(u248,negated_conjecture, unisex(sK0,sK3)). tff(u247,negated_conjecture, ~general(sK0,sK4)). tff(u246,negated_conjecture, ~general(sK0,sK1)). tff(u245,negated_conjecture, ~general(sK0,sK3)). tff(u244,negated_conjecture, general(sK0,sK2)). tff(u243,axiom, (![X1, X0] : ((~nonhuman(X0,X1) | ~human(X0,X1))))). tff(u242,negated_conjecture, nonhuman(sK0,sK2)). tff(u241,axiom, (![X1, X0] : ((~relation(X0,X1) | abstraction(X0,X1))))). tff(u240,negated_conjecture, relation(sK0,sK2)). tff(u239,axiom, (![X1, X0] : ((~relname(X0,X1) | relation(X0,X1))))). tff(u238,negated_conjecture, relname(sK0,sK2)). tff(u237,axiom, (![X1, X0] : ((~object(X0,X1) | entity(X0,X1))))). tff(u236,axiom, (![X1, X0] : ((~object(X0,X1) | nonliving(X0,X1))))). tff(u235,axiom, (![X1, X0] : ((~object(X0,X1) | unisex(X0,X1))))). tff(u234,negated_conjecture, object(sK0,sK3)). tff(u233,axiom, (![X1, X0] : ((~nonliving(X0,X1) | ~living(X0,X1))))). tff(u232,axiom, (![X1, X0] : ((~nonliving(X0,X1) | ~animate(X0,X1))))). tff(u231,negated_conjecture, nonliving(sK0,sK3)). tff(u230,negated_conjecture, ~existent(sK0,sK4)). tff(u229,negated_conjecture, existent(sK0,sK1)). tff(u228,negated_conjecture, existent(sK0,sK3)). tff(u227,axiom, (![X1, X0] : ((~specific(X0,X1) | ~general(X0,X1))))). tff(u226,negated_conjecture, specific(sK0,sK1)). tff(u225,negated_conjecture, specific(sK0,sK4)). tff(u224,negated_conjecture, specific(sK0,sK3)). tff(u223,axiom, (![X1, X0] : ((~substance_matter(X0,X1) | object(X0,X1))))). tff(u222,negated_conjecture, substance_matter(sK0,sK3)). tff(u221,axiom, (![X1, X0] : ((~food(X0,X1) | substance_matter(X0,X1))))). tff(u220,negated_conjecture, food(sK0,sK3)). tff(u219,axiom, (![X1, X0] : ((~beverage(X0,X1) | food(X0,X1))))). tff(u218,negated_conjecture, beverage(sK0,sK3)). tff(u217,axiom, (![X1, X0] : ((~shake_beverage(X0,X1) | beverage(X0,X1))))). tff(u216,negated_conjecture, shake_beverage(sK0,sK3)). tff(u215,axiom, (![X1, X0] : ((~order(X0,X1) | act(X0,X1))))). tff(u214,axiom, (![X1, X0] : ((~order(X0,X1) | event(X0,X1))))). tff(u213,negated_conjecture, order(sK0,sK4)). tff(u212,axiom, (![X1, X0] : ((~event(X0,X1) | eventuality(X0,X1))))). tff(u211,negated_conjecture, event(sK0,sK4)). tff(u210,axiom, (![X1, X0] : ((~eventuality(X0,X1) | specific(X0,X1))))). tff(u209,axiom, (![X1, X0] : ((~eventuality(X0,X1) | nonexistent(X0,X1))))). tff(u208,axiom, (![X1, X0] : ((~eventuality(X0,X1) | unisex(X0,X1))))). tff(u207,negated_conjecture, eventuality(sK0,sK4)). tff(u206,axiom, (![X1, X0] : ((~nonexistent(X0,X1) | ~existent(X0,X1))))). tff(u205,negated_conjecture, nonexistent(sK0,sK4)). tff(u204,axiom, (![X1, X0] : ((~act(X0,X1) | event(X0,X1))))). tff(u203,negated_conjecture, act(sK0,sK4)). tff(u202,axiom, (![X1, X3, X0, X2] : ((~of(X0,X3,X1) | (X2 = X3) | ~forename(X0,X3) | ~of(X0,X2,X1) | ~forename(X0,X2) | ~entity(X0,X1))))). tff(u201,negated_conjecture, (![X0] : ((~of(sK0,X0,sK1) | (sK2 = X0) | ~forename(sK0,X0))))). tff(u200,negated_conjecture, of(sK0,sK2,sK1)). tff(u199,negated_conjecture, nonreflexive(sK0,sK4)). tff(u198,negated_conjecture, ~agent(sK0,sK4,sK3)). tff(u197,negated_conjecture, agent(sK0,sK4,sK1)). tff(u196,axiom, (![X1, X3, X0] : ((~patient(X0,X1,X3) | ~agent(X0,X1,X3) | ~nonreflexive(X0,X1))))). tff(u195,negated_conjecture, patient(sK0,sK4,sK3)). % # SZS output end Saturation.
% SZS output start FiniteModel for SWV017+1 tff(declare_$i,type,$i:$tType). tff(declare_$i1,type,at:$i). tff(declare_$i2,type,t:$i). tff(finite_domain,axiom, ! [X:$i] : ( X = at | X = t ) ). tff(distinct_domain,axiom, at != t ). tff(declare_a,type,a:$i). tff(a_definition,axiom,a = at). tff(declare_b,type,b:$i). tff(b_definition,axiom,b = at). tff(declare_an_a_nonce,type,an_a_nonce:$i). tff(an_a_nonce_definition,axiom,an_a_nonce = t). tff(declare_bt,type,bt:$i). tff(bt_definition,axiom,bt = at). tff(declare_an_intruder_nonce,type,an_intruder_nonce:$i). tff(an_intruder_nonce_definition,axiom,an_intruder_nonce = at). tff(declare_key,type,key: $i * $i > $i). tff(function_key,axiom, key(at,at) = at & key(at,t) = t & key(t,at) = t & key(t,t) = t ). tff(declare_pair,type,pair: $i * $i > $i). tff(function_pair,axiom, pair(at,at) = at & pair(at,t) = t & pair(t,at) = at & pair(t,t) = at ). tff(declare_sent,type,sent: $i * $i * $i > $i). tff(function_sent,axiom, sent(at,at,at) = at & sent(at,at,t) = at & sent(at,t,at) = at & sent(at,t,t) = at & sent(t,at,at) = at & sent(t,at,t) = at & sent(t,t,at) = at & sent(t,t,t) = at ). tff(declare_quadruple,type,quadruple: $i * $i * $i * $i > $i). tff(function_quadruple,axiom, quadruple(at,at,at,at) = t & quadruple(at,at,at,t) = at & quadruple(at,at,t,at) = t & quadruple(at,at,t,t) = t & quadruple(at,t,at,at) = t & quadruple(at,t,at,t) = at & quadruple(at,t,t,at) = at & quadruple(at,t,t,t) = at & quadruple(t,at,at,at) = t & quadruple(t,at,at,t) = at & quadruple(t,at,t,at) = t & quadruple(t,at,t,t) = t & quadruple(t,t,at,at) = t & quadruple(t,t,at,t) = at & quadruple(t,t,t,at) = t & quadruple(t,t,t,t) = t ). tff(declare_encrypt,type,encrypt: $i * $i > $i). tff(function_encrypt,axiom, encrypt(at,at) = at & encrypt(at,t) = at & encrypt(t,at) = at & encrypt(t,t) = t ). tff(declare_triple,type,triple: $i * $i * $i > $i). tff(function_triple,axiom, triple(at,at,at) = t & triple(at,at,t) = at & triple(at,t,at) = at & triple(at,t,t) = at & triple(t,at,at) = t & triple(t,at,t) = t & triple(t,t,at) = at & triple(t,t,t) = at ). tff(declare_generate_b_nonce,type,generate_b_nonce: $i > $i). tff(function_generate_b_nonce,axiom, generate_b_nonce(at) = t & generate_b_nonce(t) = t ). tff(declare_generate_expiration_time,type,generate_expiration_time: $i > $i). tff(function_generate_expiration_time,axiom, generate_expiration_time(at) = t & generate_expiration_time(t) = t ). tff(declare_generate_key,type,generate_key: $i > $i). tff(function_generate_key,axiom, generate_key(at) = at & generate_key(t) = at ). tff(declare_generate_intruder_nonce,type,generate_intruder_nonce: $i > $i). tff(function_generate_intruder_nonce,axiom, generate_intruder_nonce(at) = at & generate_intruder_nonce(t) = t ). tff(declare_a_holds,type,a_holds: $i > $o ). tff(predicate_a_holds,axiom, % a_holds(at) undefined in model % a_holds(t) undefined in model ). tff(declare_party_of_protocol,type,party_of_protocol: $i > $o ). tff(predicate_party_of_protocol,axiom, party_of_protocol(at) & party_of_protocol(t) ). tff(declare_message,type,message: $i > $o ). tff(predicate_message,axiom, message(at) & ~message(t) ). tff(declare_a_stored,type,a_stored: $i > $o ). tff(predicate_a_stored,axiom, ~a_stored(at) & a_stored(t) ). tff(declare_b_holds,type,b_holds: $i > $o ). tff(predicate_b_holds,axiom, % b_holds(at) undefined in model % b_holds(t) undefined in model ). tff(declare_fresh_to_b,type,fresh_to_b: $i > $o ). tff(predicate_fresh_to_b,axiom, fresh_to_b(at) & fresh_to_b(t) ). tff(declare_b_stored,type,b_stored: $i > $o ). tff(predicate_b_stored,axiom, % b_stored(at) undefined in model % b_stored(t) undefined in model ). tff(declare_a_key,type,a_key: $i > $o ). tff(predicate_a_key,axiom, a_key(at) & ~a_key(t) ). tff(declare_t_holds,type,t_holds: $i > $o ). tff(predicate_t_holds,axiom, t_holds(at) & ~t_holds(t) ). tff(declare_a_nonce,type,a_nonce: $i > $o ). tff(predicate_a_nonce,axiom, ~a_nonce(at) & a_nonce(t) ). tff(declare_intruder_message,type,intruder_message: $i > $o ). tff(predicate_intruder_message,axiom, intruder_message(at) & intruder_message(t) ). tff(declare_intruder_holds,type,intruder_holds: $i > $o ). tff(predicate_intruder_holds,axiom, intruder_holds(at) & intruder_holds(t) ). tff(declare_fresh_intruder_nonce,type,fresh_intruder_nonce: $i > $o ). tff(predicate_fresh_intruder_nonce,axiom, fresh_intruder_nonce(at) & ~fresh_intruder_nonce(t) ). % SZS output end FiniteModel for SWV017+1
% SZS output start Proof for BOO001-1 fof(f263,plain,( $false), inference(trivial_inequality_removal,[],[f258])). fof(f258,plain,( a != a), inference(superposition,[],[f6,f186])). fof(f186,plain,( ( ! [X24] : (inverse(inverse(X24)) = X24) )), inference(superposition,[],[f132,f5])). fof(f5,axiom,( ( ! [X2,X3] : (multiply(X2,X3,inverse(X3)) = X2) )), file('Problems/BOO/BOO001-1.p',unknown)). fof(f132,plain,( ( ! [X31,X32] : (multiply(X32,inverse(X32),X31) = X31) )), inference(superposition,[],[f32,f5])). fof(f32,plain,( ( ! [X4,X5,X3] : (multiply(X5,X3,X4) = multiply(X3,X4,multiply(X5,X3,X4))) )), inference(superposition,[],[f7,f2])). fof(f2,axiom,( ( ! [X2,X3] : (multiply(X3,X2,X2) = X2) )), file('Problems/BOO/BOO001-1.p',unknown)). fof(f7,plain,( ( ! [X2,X0,X3,X1] : (multiply(X0,X1,multiply(X1,X2,X3)) = multiply(X1,X2,multiply(X0,X1,X3))) )), inference(superposition,[],[f1,f2])). fof(f1,axiom,( ( ! [X4,X2,X0,X3,X1] : (multiply(multiply(X0,X1,X2),X3,multiply(X0,X1,X4)) = multiply(X0,X1,multiply(X2,X3,X4))) )), file('Problems/BOO/BOO001-1.p',unknown)). fof(f6,axiom,( a != inverse(inverse(a))), file('Problems/BOO/BOO001-1.p',unknown)). % SZS output end Proof for BOO001-1
% SZS status Theorem for SET014^4 % SZS output start Proof for SET014^4 thf(type_def_6, type, >: ($tType * $tType) > $tType). thf(func_def_7, type, in: $i > ($i > $o) > $o). thf(func_def_9, type, is_a: $i > ($i > $o) > $o). thf(func_def_10, type, emptyset: $i > $o). thf(func_def_11, type, unord_pair: $i > $i > $i > $o). thf(func_def_12, type, singleton: $i > $i > $o). thf(func_def_13, type, union: ($i > $o) > ($i > $o) > $i > $o). thf(func_def_14, type, excl_union: ($i > $o) > ($i > $o) > $i > $o). thf(func_def_15, type, intersection: ($i > $o) > ($i > $o) > $i > $o). thf(func_def_16, type, setminus: ($i > $o) > ($i > $o) > $i > $o). thf(func_def_17, type, complement: ($i > $o) > $i > $o). thf(func_def_18, type, disjoint: ($i > $o) > ($i > $o) > $o). thf(func_def_19, type, subset: ($i > $o) > ($i > $o) > $o). thf(func_def_20, type, meets: ($i > $o) > ($i > $o) > $o). thf(func_def_21, type, misses: ($i > $o) > ($i > $o) > $o). thf(func_def_22, type, vEPSILON: !>[X0: $tType]:((X0 > $o) > X0)). thf(func_def_25, type, vEQ: !>[X0: $tType]:(X0 > X0 > $o)). thf(func_def_26, type, bCOMB: !>[X0: $tType, X1: $tType, X2: $tType]:((X1 > X2) > (X0 > X1) > X0 > X2)). thf(func_def_27, type, vNOT: $o > $o). thf(func_def_28, type, vAND: $o > $o > $o). thf(func_def_29, type, vSIGMA: !>[X0: $tType]:((X0 > $o) > $o)). thf(func_def_30, type, sCOMB: !>[X0: $tType, X1: $tType, X2: $tType]:((X0 > X1 > X2) > (X0 > X1) > X0 > X2)). thf(func_def_31, type, iCOMB: !>[X0: $tType]:(X0 > X0)). thf(func_def_32, type, cCOMB: !>[X0: $tType, X1: $tType, X2: $tType]:((X0 > X1 > X2) > X1 > X0 > X2)). thf(func_def_33, type, vOR: $o > $o > $o). thf(func_def_34, type, kCOMB: !>[X0: $tType, X1: $tType]:(X0 > X1 > X0)). thf(func_def_35, type, vIMP: $o > $o > $o). thf(func_def_36, type, vPI: !>[X0: $tType]:((X0 > $o) > $o)). thf(func_def_37, type, sK0: $i > $o). thf(func_def_38, type, sK1: $i > $o). thf(func_def_39, type, sK2: $i > $o). thf(f96,plain,( $false), inference(trivial_inequality_removal,[],[f95])). thf(f95,plain,( ($true = $false)), inference(backward_demodulation,[],[f90,f94])). thf(f94,plain,( ($false = (sK1 @ sK3))), inference(trivial_inequality_removal,[],[f91])). thf(f91,plain,( ($true = $false) | ($false = (sK1 @ sK3))), inference(superposition,[],[f78,f82])). thf(f82,plain,( ($false = (sK2 @ sK3))), inference(binary_proxy_clausification,[],[f81])). thf(f81,plain,( ($false = ((vIMP @ ((vOR @ (sK0 @ sK3)) @ (sK1 @ sK3))) @ (sK2 @ sK3)))), inference(combinator_demodulation,[],[f80])). thf(f80,plain,( ($false = (((sCOMB @ ((bCOMB @ vIMP) @ ((sCOMB @ ((bCOMB @ vOR) @ sK0)) @ sK1))) @ sK2) @ sK3))), inference(sigma_clausification,[],[f79])). thf(f79,plain,( ($true != (vPI($i) @ ((sCOMB @ ((bCOMB @ vIMP) @ ((sCOMB @ ((bCOMB @ vOR) @ sK0)) @ sK1))) @ sK2)))), inference(combinator_demodulation,[],[f68])). thf(f68,plain,( ($true != ((((bCOMB @ (bCOMB @ vPI($i))) @ ((bCOMB @ sCOMB) @ (bCOMB @ vIMP))) @ ((((bCOMB @ sCOMB) @ (bCOMB @ vOR)) @ sK0) @ sK1)) @ sK2))), inference(definition_unfolding,[],[f52,f66,f65])). thf(f65,plain,( (union = ((bCOMB @ sCOMB) @ (bCOMB @ vOR)))), inference(cnf_transformation,[],[f42])). thf(f42,plain,( (union = ((bCOMB @ sCOMB) @ (bCOMB @ vOR)))), inference(fool_elimination,[],[f41])). thf(f41,plain,( (union = (^[X0 : $i > $o, X1 : $i > $o, X2 : $i] : ((X1 @ X2) | (X0 @ X2))))), inference(rectify,[],[f6])). thf(f6,axiom,( (union = (^[X0 : $i > $o, X2 : $i > $o, X3 : $i] : ((X2 @ X3) | (X0 @ X3))))), file('/tmp/SystemOnTPTP14842/SET014^4.tptp',unknown)). thf(f66,plain,( (subset = ((bCOMB @ (bCOMB @ vPI($i))) @ ((bCOMB @ sCOMB) @ (bCOMB @ vIMP))))), inference(cnf_transformation,[],[f44])). thf(f44,plain,( (subset = ((bCOMB @ (bCOMB @ vPI($i))) @ ((bCOMB @ sCOMB) @ (bCOMB @ vIMP))))), inference(fool_elimination,[],[f43])). thf(f43,plain,( (subset = (^[X0 : $i > $o, X1 : $i > $o] : (! [X2] : ((X0 @ X2) => (X1 @ X2)))))), inference(rectify,[],[f12])). thf(f12,axiom,( (subset = (^[X0 : $i > $o, X2 : $i > $o] : (! [X3] : ((X0 @ X3) => (X2 @ X3)))))), file('/tmp/SystemOnTPTP14842/SET014^4.tptp',unknown)). thf(f52,plain,( ($true != ((subset @ ((union @ sK0) @ sK1)) @ sK2))), inference(cnf_transformation,[],[f49])). thf(f49,plain,( ($true != ((subset @ ((union @ sK0) @ sK1)) @ sK2)) & ($true = ((subset @ sK1) @ sK2)) & ($true = ((subset @ sK0) @ sK2))), inference(skolemisation,[status(esa),new_symbols(skolem,[sK0,sK1,sK2])],[f47,f48])). thf(f48,plain,( ? [X0 : $i > $o,X1 : $i > $o,X2 : $i > $o] : (($true != ((subset @ ((union @ X0) @ X1)) @ X2)) & ($true = ((subset @ X1) @ X2)) & ($true = ((subset @ X0) @ X2))) => (($true != ((subset @ ((union @ sK0) @ sK1)) @ sK2)) & ($true = ((subset @ sK1) @ sK2)) & ($true = ((subset @ sK0) @ sK2)))), introduced(choice_axiom,[])). thf(f47,plain,( ? [X0 : $i > $o,X1 : $i > $o,X2 : $i > $o] : (($true != ((subset @ ((union @ X0) @ X1)) @ X2)) & ($true = ((subset @ X1) @ X2)) & ($true = ((subset @ X0) @ X2)))), inference(flattening,[],[f46])). thf(f46,plain,( ? [X0 : $i > $o,X1 : $i > $o,X2 : $i > $o] : (($true != ((subset @ ((union @ X0) @ X1)) @ X2)) & (($true = ((subset @ X1) @ X2)) & ($true = ((subset @ X0) @ X2))))), inference(ennf_transformation,[],[f45])). thf(f45,plain,( ~! [X0 : $i > $o,X1 : $i > $o,X2 : $i > $o] : ((($true = ((subset @ X1) @ X2)) & ($true = ((subset @ X0) @ X2))) => ($true = ((subset @ ((union @ X0) @ X1)) @ X2)))), inference(flattening,[],[f19])). thf(f19,plain,( ~! [X0 : $i > $o] : ! [X1 : $i > $o] : ! [X2 : $i > $o] : ((($true = ((subset @ X1) @ X2)) & ($true = ((subset @ X0) @ X2))) => ($true = ((subset @ ((union @ X0) @ X1)) @ X2)))), inference(fool_elimination,[],[f18])). thf(f18,plain,( ~! [X0 : $i > $o] : ! [X1 : $i > $o] : ! [X2 : $i > $o] : ((((subset @ X1) @ X2) & ((subset @ X0) @ X2)) => ((subset @ ((union @ X0) @ X1)) @ X2))), inference(rectify,[],[f16])). thf(f16,negated_conjecture,( ~! [X0 : $i > $o] : ! [X2 : $i > $o] : ! [X4 : $i > $o] : ((((subset @ X2) @ X4) & ((subset @ X0) @ X4)) => ((subset @ ((union @ X0) @ X2)) @ X4))), inference(negated_conjecture,[],[f15])). thf(f15,conjecture,( ! [X0 : $i > $o] : ! [X2 : $i > $o] : ! [X4 : $i > $o] : ((((subset @ X2) @ X4) & ((subset @ X0) @ X4)) => ((subset @ ((union @ X0) @ X2)) @ X4))), file('/tmp/SystemOnTPTP14842/SET014^4.tptp',unknown)). thf(f78,plain,( ( ! [X1 : $i] : (($true = (sK2 @ X1)) | ($false = (sK1 @ X1))) )), inference(binary_proxy_clausification,[],[f77])). thf(f77,plain,( ( ! [X1 : $i] : (($true = ((vIMP @ (sK1 @ X1)) @ (sK2 @ X1)))) )), inference(combinator_demodulation,[],[f76])). thf(f76,plain,( ( ! [X1 : $i] : (($true = (((sCOMB @ ((bCOMB @ vIMP) @ sK1)) @ sK2) @ X1))) )), inference(pi_clausification,[],[f75])). thf(f75,plain,( ($true = (vPI($i) @ ((sCOMB @ ((bCOMB @ vIMP) @ sK1)) @ sK2)))), inference(combinator_demodulation,[],[f69])). thf(f69,plain,( ($true = ((((bCOMB @ (bCOMB @ vPI($i))) @ ((bCOMB @ sCOMB) @ (bCOMB @ vIMP))) @ sK1) @ sK2))), inference(definition_unfolding,[],[f51,f66])). thf(f51,plain,( ($true = ((subset @ sK1) @ sK2))), inference(cnf_transformation,[],[f49])). thf(f90,plain,( ($true = (sK1 @ sK3))), inference(trivial_inequality_removal,[],[f89])). thf(f89,plain,( ($true = $false) | ($true = (sK1 @ sK3))), inference(backward_demodulation,[],[f84,f88])). thf(f88,plain,( ($false = (sK0 @ sK3))), inference(trivial_inequality_removal,[],[f85])). thf(f85,plain,( ($true = $false) | ($false = (sK0 @ sK3))), inference(superposition,[],[f74,f82])). thf(f74,plain,( ( ! [X1 : $i] : (($true = (sK2 @ X1)) | ($false = (sK0 @ X1))) )), inference(binary_proxy_clausification,[],[f73])). thf(f73,plain,( ( ! [X1 : $i] : (($true = ((vIMP @ (sK0 @ X1)) @ (sK2 @ X1)))) )), inference(combinator_demodulation,[],[f72])). thf(f72,plain,( ( ! [X1 : $i] : (($true = (((sCOMB @ ((bCOMB @ vIMP) @ sK0)) @ sK2) @ X1))) )), inference(pi_clausification,[],[f71])). thf(f71,plain,( ($true = (vPI($i) @ ((sCOMB @ ((bCOMB @ vIMP) @ sK0)) @ sK2)))), inference(combinator_demodulation,[],[f70])). thf(f70,plain,( ($true = ((((bCOMB @ (bCOMB @ vPI($i))) @ ((bCOMB @ sCOMB) @ (bCOMB @ vIMP))) @ sK0) @ sK2))), inference(definition_unfolding,[],[f50,f66])). thf(f50,plain,( ($true = ((subset @ sK0) @ sK2))), inference(cnf_transformation,[],[f49])). thf(f84,plain,( ($true = (sK1 @ sK3)) | ($true = (sK0 @ sK3))), inference(binary_proxy_clausification,[],[f83])). thf(f83,plain,( ($true = ((vOR @ (sK0 @ sK3)) @ (sK1 @ sK3)))), inference(binary_proxy_clausification,[],[f81])). % SZS output end Proof for SET014^4
% SZS status Theorem for SEU140+2 % SZS output start Proof for SEU140+2 fof(f746,plain,( $false), inference(subsumption_resolution,[],[f697,f465])). fof(f465,plain,( in(sK10(sK6,sK8),sK7)), inference(unit_resulting_resolution,[],[f176,f420,f249])). fof(f249,plain,( ( ! [X0 : $i,X3 : $i,X1 : $i] : (in(X3,X1) | ~in(X3,X0) | ~subset(X0,X1)) )), inference(cnf_transformation,[],[f170])). fof(f170,plain,( ! [X0,X1] : ((subset(X0,X1) | (~in(sK15(X0,X1),X1) & in(sK15(X0,X1),X0))) & (! [X3] : (in(X3,X1) | ~in(X3,X0)) | ~subset(X0,X1)))), inference(skolemisation,[status(esa),new_symbols(skolem,[sK15])],[f168,f169])). fof(f169,plain,( ! [X0,X1] : (? [X2] : (~in(X2,X1) & in(X2,X0)) => (~in(sK15(X0,X1),X1) & in(sK15(X0,X1),X0)))), introduced(choice_axiom,[])). fof(f168,plain,( ! [X0,X1] : ((subset(X0,X1) | ? [X2] : (~in(X2,X1) & in(X2,X0))) & (! [X3] : (in(X3,X1) | ~in(X3,X0)) | ~subset(X0,X1)))), inference(rectify,[],[f167])). fof(f167,plain,( ! [X0,X1] : ((subset(X0,X1) | ? [X2] : (~in(X2,X1) & in(X2,X0))) & (! [X2] : (in(X2,X1) | ~in(X2,X0)) | ~subset(X0,X1)))), inference(nnf_transformation,[],[f115])). fof(f115,plain,( ! [X0,X1] : (subset(X0,X1) <=> ! [X2] : (in(X2,X1) | ~in(X2,X0)))), inference(ennf_transformation,[],[f91])). fof(f91,plain,( ! [X0,X1] : (subset(X0,X1) <=> ! [X2] : (in(X2,X0) => in(X2,X1)))), inference(flattening,[],[f8])). fof(f8,axiom,( ! [X0] : ! [X1] : (subset(X0,X1) <=> ! [X2] : (in(X2,X0) => in(X2,X1)))), file('/tmp/SystemOnTPTP17979/SEU140+2.tptp',d3_tarski)). fof(f420,plain,( in(sK10(sK6,sK8),sK6)), inference(unit_resulting_resolution,[],[f178,f189])). fof(f189,plain,( ( ! [X0 : $i,X1 : $i] : (disjoint(X0,X1) | in(sK10(X0,X1),X0)) )), inference(cnf_transformation,[],[f133])). fof(f133,plain,( ! [X0,X1] : ((~disjoint(X0,X1) | ! [X2] : (~in(X2,X1) | ~in(X2,X0))) & ((in(sK10(X0,X1),X1) & in(sK10(X0,X1),X0)) | disjoint(X0,X1)))), inference(skolemisation,[status(esa),new_symbols(skolem,[sK10])],[f101,f132])). fof(f132,plain,( ! [X0,X1] : (? [X3] : (in(X3,X1) & in(X3,X0)) => (in(sK10(X0,X1),X1) & in(sK10(X0,X1),X0)))), introduced(choice_axiom,[])). fof(f101,plain,( ! [X0,X1] : ((~disjoint(X0,X1) | ! [X2] : (~in(X2,X1) | ~in(X2,X0))) & (? [X3] : (in(X3,X1) & in(X3,X0)) | disjoint(X0,X1)))), inference(ennf_transformation,[],[f68])). fof(f68,plain,( ! [X0,X1] : (~(disjoint(X0,X1) & ? [X2] : (in(X2,X1) & in(X2,X0))) & ~(! [X3] : ~(in(X3,X1) & in(X3,X0)) & ~disjoint(X0,X1)))), inference(flattening,[],[f67])). fof(f67,plain,( ! [X0] : ! [X1] : (~(disjoint(X0,X1) & ? [X2] : (in(X2,X1) & in(X2,X0))) & ~(! [X3] : ~(in(X3,X1) & in(X3,X0)) & ~disjoint(X0,X1)))), inference(rectify,[],[f43])). fof(f43,axiom,( ! [X0] : ! [X1] : (~(disjoint(X0,X1) & ? [X2] : (in(X2,X1) & in(X2,X0))) & ~(! [X2] : ~(in(X2,X1) & in(X2,X0)) & ~disjoint(X0,X1)))), file('/tmp/SystemOnTPTP17979/SEU140+2.tptp',t3_xboole_0)). fof(f178,plain,( ~disjoint(sK6,sK8)), inference(cnf_transformation,[],[f129])). fof(f129,plain,( ~disjoint(sK6,sK8) & disjoint(sK7,sK8) & subset(sK6,sK7)), inference(skolemisation,[status(esa),new_symbols(skolem,[sK6,sK7,sK8])],[f98,f128])). fof(f128,plain,( ? [X0,X1,X2] : (~disjoint(X0,X2) & disjoint(X1,X2) & subset(X0,X1)) => (~disjoint(sK6,sK8) & disjoint(sK7,sK8) & subset(sK6,sK7))), introduced(choice_axiom,[])). fof(f98,plain,( ? [X0,X1,X2] : (~disjoint(X0,X2) & disjoint(X1,X2) & subset(X0,X1))), inference(flattening,[],[f97])). fof(f97,plain,( ? [X0,X1,X2] : (~disjoint(X0,X2) & (disjoint(X1,X2) & subset(X0,X1)))), inference(ennf_transformation,[],[f58])). fof(f58,plain,( ~! [X0,X1,X2] : ((disjoint(X1,X2) & subset(X0,X1)) => disjoint(X0,X2))), inference(flattening,[],[f52])). fof(f52,negated_conjecture,( ~! [X0] : ! [X1] : ! [X2] : ((disjoint(X1,X2) & subset(X0,X1)) => disjoint(X0,X2))), inference(negated_conjecture,[],[f51])). fof(f51,conjecture,( ! [X0] : ! [X1] : ! [X2] : ((disjoint(X1,X2) & subset(X0,X1)) => disjoint(X0,X2))), file('/tmp/SystemOnTPTP17979/SEU140+2.tptp',t63_xboole_1)). fof(f176,plain,( subset(sK6,sK7)), inference(cnf_transformation,[],[f129])). fof(f697,plain,( ~in(sK10(sK6,sK8),sK7)), inference(unit_resulting_resolution,[],[f429,f287,f191])). fof(f191,plain,( ( ! [X2 : $i,X0 : $i,X1 : $i] : (~disjoint(X0,X1) | ~in(X2,X1) | ~in(X2,X0)) )), inference(cnf_transformation,[],[f133])). fof(f287,plain,( disjoint(sK8,sK7)), inference(unit_resulting_resolution,[],[f177,f207])). fof(f207,plain,( ( ! [X0 : $i,X1 : $i] : (disjoint(X1,X0) | ~disjoint(X0,X1)) )), inference(cnf_transformation,[],[f114])). fof(f114,plain,( ! [X0,X1] : (disjoint(X1,X0) | ~disjoint(X0,X1))), inference(ennf_transformation,[],[f81])). fof(f81,plain,( ! [X0,X1] : (disjoint(X0,X1) => disjoint(X1,X0))), inference(flattening,[],[f27])). fof(f27,axiom,( ! [X0] : ! [X1] : (disjoint(X0,X1) => disjoint(X1,X0))), file('/tmp/SystemOnTPTP17979/SEU140+2.tptp',symmetry_r1_xboole_0)). fof(f177,plain,( disjoint(sK7,sK8)), inference(cnf_transformation,[],[f129])). fof(f429,plain,( in(sK10(sK6,sK8),sK8)), inference(unit_resulting_resolution,[],[f178,f190])). fof(f190,plain,( ( ! [X0 : $i,X1 : $i] : (disjoint(X0,X1) | in(sK10(X0,X1),X1)) )), inference(cnf_transformation,[],[f133])). % SZS output end Proof for SEU140+2
% SZS status CounterSatisfiable for NLP042+1 % # SZS output start Saturation. tff(u703,negated_conjecture, ((~~woman(sK0,sK3)) | ~woman(sK0,sK3))). tff(u702,negated_conjecture, ((~~woman(sK0,sK4)) | ~woman(sK0,sK4))). tff(u701,negated_conjecture, ((~~woman(sK0,sK2)) | ~woman(sK0,sK2))). tff(u700,axiom, ((~(![X1, X0] : ((~woman(X0,X1) | ~unisex(X0,X1))))) | (![X1, X0] : ((~woman(X0,X1) | ~unisex(X0,X1)))))). tff(u699,negated_conjecture, ((~woman(sK0,sK1)) | woman(sK0,sK1))). tff(u698,axiom, ((~(![X1, X0] : ((~female(X0,X1) | ~unisex(X0,X1))))) | (![X1, X0] : ((~female(X0,X1) | ~unisex(X0,X1)))))). tff(u697,axiom, ((~(![X1, X0] : ((female(X0,X1) | ~woman(X0,X1))))) | (![X1, X0] : ((female(X0,X1) | ~woman(X0,X1)))))). tff(u696,negated_conjecture, ((~~human_person(sK0,sK2)) | ~human_person(sK0,sK2))). tff(u695,negated_conjecture, ((~~human_person(sK0,sK3)) | ~human_person(sK0,sK3))). tff(u694,negated_conjecture, ((~~human_person(sK0,sK4)) | ~human_person(sK0,sK4))). tff(u693,axiom, ((~(![X1, X0] : ((human_person(X0,X1) | ~woman(X0,X1))))) | (![X1, X0] : ((human_person(X0,X1) | ~woman(X0,X1)))))). tff(u692,negated_conjecture, ((~~animate(sK0,sK3)) | ~animate(sK0,sK3))). tff(u691,axiom, ((~(![X1, X0] : ((animate(X0,X1) | ~human_person(X0,X1))))) | (![X1, X0] : ((animate(X0,X1) | ~human_person(X0,X1)))))). tff(u690,negated_conjecture, ((~~human(sK0,sK2)) | ~human(sK0,sK2))). tff(u689,axiom, ((~(![X1, X0] : ((human(X0,X1) | ~human_person(X0,X1))))) | (![X1, X0] : ((human(X0,X1) | ~human_person(X0,X1)))))). tff(u688,negated_conjecture, ((~~organism(sK0,sK3)) | ~organism(sK0,sK3))). tff(u687,negated_conjecture, ((~~organism(sK0,sK4)) | ~organism(sK0,sK4))). tff(u686,negated_conjecture, ((~~organism(sK0,sK2)) | ~organism(sK0,sK2))). tff(u685,axiom, ((~(![X1, X0] : ((organism(X0,X1) | ~human_person(X0,X1))))) | (![X1, X0] : ((organism(X0,X1) | ~human_person(X0,X1)))))). tff(u684,negated_conjecture, ((~~living(sK0,sK3)) | ~living(sK0,sK3))). tff(u683,axiom, ((~(![X1, X0] : ((living(X0,X1) | ~organism(X0,X1))))) | (![X1, X0] : ((living(X0,X1) | ~organism(X0,X1)))))). tff(u682,negated_conjecture, ((~~entity(sK0,sK4)) | ~entity(sK0,sK4))). tff(u681,negated_conjecture, ((~~entity(sK0,sK2)) | ~entity(sK0,sK2))). tff(u680,axiom, ((~(![X1, X0] : ((entity(X0,X1) | ~organism(X0,X1))))) | (![X1, X0] : ((entity(X0,X1) | ~organism(X0,X1)))))). tff(u679,negated_conjecture, ((~entity(sK0,sK3)) | entity(sK0,sK3))). tff(u678,axiom, ((~(![X1, X0] : ((~mia_forename(X0,X1) | abstraction(X0,X1))))) | (![X1, X0] : ((~mia_forename(X0,X1) | abstraction(X0,X1)))))). tff(u677,negated_conjecture, ((~mia_forename(sK0,sK2)) | mia_forename(sK0,sK2))). tff(u676,axiom, ((~(![X1, X0] : ((~forename(X0,X1) | abstraction(X0,X1))))) | (![X1, X0] : ((~forename(X0,X1) | abstraction(X0,X1)))))). tff(u675,negated_conjecture, ((~forename(sK0,sK2)) | forename(sK0,sK2))). tff(u674,axiom, ((~(![X1, X0] : ((forename(X0,X1) | ~mia_forename(X0,X1))))) | (![X1, X0] : ((forename(X0,X1) | ~mia_forename(X0,X1)))))). tff(u673,axiom, ((~(![X1, X0] : ((~abstraction(X0,X1) | ~entity(X0,X1))))) | (![X1, X0] : ((~abstraction(X0,X1) | ~entity(X0,X1)))))). tff(u672,axiom, ((~(![X1, X0] : ((~abstraction(X0,X1) | nonhuman(X0,X1))))) | (![X1, X0] : ((~abstraction(X0,X1) | nonhuman(X0,X1)))))). tff(u671,negated_conjecture, ((~~abstraction(sK0,sK4)) | ~abstraction(sK0,sK4))). tff(u670,negated_conjecture, ((~~abstraction(sK0,sK1)) | ~abstraction(sK0,sK1))). tff(u669,negated_conjecture, ((~abstraction(sK0,sK2)) | abstraction(sK0,sK2))). tff(u668,negated_conjecture, ((~~unisex(sK0,sK1)) | ~unisex(sK0,sK1))). tff(u667,axiom, ((~(![X1, X0] : ((unisex(X0,X1) | ~abstraction(X0,X1))))) | (![X1, X0] : ((unisex(X0,X1) | ~abstraction(X0,X1)))))). tff(u666,negated_conjecture, ((~unisex(sK0,sK3)) | unisex(sK0,sK3))). tff(u665,negated_conjecture, ((~unisex(sK0,sK4)) | unisex(sK0,sK4))). tff(u664,negated_conjecture, ((~~general(sK0,sK4)) | ~general(sK0,sK4))). tff(u663,axiom, ((~(![X1, X0] : ((~general(X0,X1) | ~entity(X0,X1))))) | (![X1, X0] : ((~general(X0,X1) | ~entity(X0,X1)))))). tff(u662,axiom, ((~(![X1, X0] : ((general(X0,X1) | ~abstraction(X0,X1))))) | (![X1, X0] : ((general(X0,X1) | ~abstraction(X0,X1)))))). tff(u661,axiom, ((~(![X1, X0] : ((~nonhuman(X0,X1) | ~human(X0,X1))))) | (![X1, X0] : ((~nonhuman(X0,X1) | ~human(X0,X1)))))). tff(u660,negated_conjecture, ((~nonhuman(sK0,sK2)) | nonhuman(sK0,sK2))). tff(u659,axiom, ((~(![X1, X0] : ((~relation(X0,X1) | abstraction(X0,X1))))) | (![X1, X0] : ((~relation(X0,X1) | abstraction(X0,X1)))))). tff(u658,axiom, ((~(![X1, X0] : ((relation(X0,X1) | ~forename(X0,X1))))) | (![X1, X0] : ((relation(X0,X1) | ~forename(X0,X1)))))). tff(u657,axiom, ((~(![X1, X0] : ((~relname(X0,X1) | relation(X0,X1))))) | (![X1, X0] : ((~relname(X0,X1) | relation(X0,X1)))))). tff(u656,axiom, ((~(![X1, X0] : ((relname(X0,X1) | ~forename(X0,X1))))) | (![X1, X0] : ((relname(X0,X1) | ~forename(X0,X1)))))). tff(u655,axiom, ((~(![X1, X0] : ((~object(X0,X1) | unisex(X0,X1))))) | (![X1, X0] : ((~object(X0,X1) | unisex(X0,X1)))))). tff(u654,axiom, ((~(![X1, X0] : ((~object(X0,X1) | entity(X0,X1))))) | (![X1, X0] : ((~object(X0,X1) | entity(X0,X1)))))). tff(u653,axiom, ((~(![X1, X0] : ((~object(X0,X1) | nonliving(X0,X1))))) | (![X1, X0] : ((~object(X0,X1) | nonliving(X0,X1)))))). tff(u652,negated_conjecture, ((~object(sK0,sK3)) | object(sK0,sK3))). tff(u651,axiom, ((~(![X1, X0] : ((~nonliving(X0,X1) | ~living(X0,X1))))) | (![X1, X0] : ((~nonliving(X0,X1) | ~living(X0,X1)))))). tff(u650,axiom, ((~(![X1, X0] : ((~nonliving(X0,X1) | ~animate(X0,X1))))) | (![X1, X0] : ((~nonliving(X0,X1) | ~animate(X0,X1)))))). tff(u649,negated_conjecture, ((~nonliving(sK0,sK3)) | nonliving(sK0,sK3))). tff(u648,negated_conjecture, ((~~existent(sK0,sK4)) | ~existent(sK0,sK4))). tff(u647,axiom, ((~(![X1, X0] : ((existent(X0,X1) | ~entity(X0,X1))))) | (![X1, X0] : ((existent(X0,X1) | ~entity(X0,X1)))))). tff(u646,axiom, ((~(![X1, X0] : ((~specific(X0,X1) | ~general(X0,X1))))) | (![X1, X0] : ((~specific(X0,X1) | ~general(X0,X1)))))). tff(u645,axiom, ((~(![X1, X0] : ((specific(X0,X1) | ~entity(X0,X1))))) | (![X1, X0] : ((specific(X0,X1) | ~entity(X0,X1)))))). tff(u644,negated_conjecture, ((~specific(sK0,sK4)) | specific(sK0,sK4))). tff(u643,axiom, ((~(![X1, X0] : ((~substance_matter(X0,X1) | object(X0,X1))))) | (![X1, X0] : ((~substance_matter(X0,X1) | object(X0,X1)))))). tff(u642,negated_conjecture, ((~substance_matter(sK0,sK3)) | substance_matter(sK0,sK3))). tff(u641,axiom, ((~(![X1, X0] : ((~food(X0,X1) | substance_matter(X0,X1))))) | (![X1, X0] : ((~food(X0,X1) | substance_matter(X0,X1)))))). tff(u640,negated_conjecture, ((~food(sK0,sK3)) | food(sK0,sK3))). tff(u639,axiom, ((~(![X1, X0] : ((~beverage(X0,X1) | food(X0,X1))))) | (![X1, X0] : ((~beverage(X0,X1) | food(X0,X1)))))). tff(u638,negated_conjecture, ((~beverage(sK0,sK3)) | beverage(sK0,sK3))). tff(u637,axiom, ((~(![X1, X0] : ((~shake_beverage(X0,X1) | beverage(X0,X1))))) | (![X1, X0] : ((~shake_beverage(X0,X1) | beverage(X0,X1)))))). tff(u636,negated_conjecture, ((~shake_beverage(sK0,sK3)) | shake_beverage(sK0,sK3))). tff(u635,axiom, ((~(![X1, X0] : ((~order(X0,X1) | eventuality(X0,X1))))) | (![X1, X0] : ((~order(X0,X1) | eventuality(X0,X1)))))). tff(u634,negated_conjecture, ((~order(sK0,sK4)) | order(sK0,sK4))). tff(u633,axiom, ((~(![X1, X0] : ((~event(X0,X1) | eventuality(X0,X1))))) | (![X1, X0] : ((~event(X0,X1) | eventuality(X0,X1)))))). tff(u632,negated_conjecture, ((~event(sK0,sK4)) | event(sK0,sK4))). tff(u631,axiom, ((~(![X1, X0] : ((event(X0,X1) | ~order(X0,X1))))) | (![X1, X0] : ((event(X0,X1) | ~order(X0,X1)))))). tff(u630,axiom, ((~(![X1, X0] : ((~eventuality(X0,X1) | unisex(X0,X1))))) | (![X1, X0] : ((~eventuality(X0,X1) | unisex(X0,X1)))))). tff(u629,axiom, ((~(![X1, X0] : ((~eventuality(X0,X1) | specific(X0,X1))))) | (![X1, X0] : ((~eventuality(X0,X1) | specific(X0,X1)))))). tff(u628,axiom, ((~(![X1, X0] : ((~eventuality(X0,X1) | nonexistent(X0,X1))))) | (![X1, X0] : ((~eventuality(X0,X1) | nonexistent(X0,X1)))))). tff(u627,negated_conjecture, ((~eventuality(sK0,sK4)) | eventuality(sK0,sK4))). tff(u626,axiom, ((~(![X1, X0] : ((~nonexistent(X0,X1) | ~existent(X0,X1))))) | (![X1, X0] : ((~nonexistent(X0,X1) | ~existent(X0,X1)))))). tff(u625,negated_conjecture, ((~nonexistent(sK0,sK4)) | nonexistent(sK0,sK4))). tff(u624,axiom, ((~(![X1, X0] : ((~act(X0,X1) | event(X0,X1))))) | (![X1, X0] : ((~act(X0,X1) | event(X0,X1)))))). tff(u623,axiom, ((~(![X1, X0] : ((act(X0,X1) | ~order(X0,X1))))) | (![X1, X0] : ((act(X0,X1) | ~order(X0,X1)))))). tff(u622,axiom, ((~(![X1, X3, X0, X2] : ((~of(X0,X3,X1) | ~forename(X0,X2) | ~of(X0,X2,X1) | ~forename(X0,X3) | (X2 = X3) | ~entity(X0,X1))))) | (![X1, X3, X0, X2] : ((~of(X0,X3,X1) | ~forename(X0,X2) | ~of(X0,X2,X1) | ~forename(X0,X3) | (X2 = X3) | ~entity(X0,X1)))))). tff(u621,negated_conjecture, ((~(![X0] : ((~of(sK0,X0,sK1) | (sK2 = X0) | ~forename(sK0,X0))))) | (![X0] : ((~of(sK0,X0,sK1) | (sK2 = X0) | ~forename(sK0,X0)))))). tff(u620,negated_conjecture, ((~of(sK0,sK2,sK1)) | of(sK0,sK2,sK1))). tff(u619,axiom, ((~(![X1, X3, X0] : ((~nonreflexive(X0,X1) | ~agent(X0,X1,X3) | ~patient(X0,X1,X3))))) | (![X1, X3, X0] : ((~nonreflexive(X0,X1) | ~agent(X0,X1,X3) | ~patient(X0,X1,X3)))))). tff(u618,negated_conjecture, ((~nonreflexive(sK0,sK4)) | nonreflexive(sK0,sK4))). tff(u617,negated_conjecture, ((~~agent(sK0,sK4,sK3)) | ~agent(sK0,sK4,sK3))). tff(u616,negated_conjecture, ((~agent(sK0,sK4,sK1)) | agent(sK0,sK4,sK1))). tff(u615,negated_conjecture, ((~(![X0] : ((~patient(sK0,sK4,X0) | ~agent(sK0,sK4,X0))))) | (![X0] : ((~patient(sK0,sK4,X0) | ~agent(sK0,sK4,X0)))))). tff(u614,negated_conjecture, ((~patient(sK0,sK4,sK3)) | patient(sK0,sK4,sK3))). % # SZS output end Saturation.
% SZS status Satisfiable for SWV017+1 % SZS output start FiniteModel for SWV017+1 tff(declare_$i,type,$i:$tType). tff(declare_$i1,type,at:$i). tff(declare_$i2,type,t:$i). tff(finite_domain,axiom, ! [X:$i] : ( X = at | X = t ) ). tff(distinct_domain,axiom, at != t ). tff(declare_bool,type,$o:$tType). tff(declare_bool1,type,fmb_bool_1:$o). tff(finite_domain,axiom, ! [X:$o] : ( X = fmb_bool_1 ) ). tff(declare_a,type,a:$i). tff(a_definition,axiom,a = at). tff(declare_b,type,b:$i). tff(b_definition,axiom,b = at). tff(declare_an_a_nonce,type,an_a_nonce:$i). tff(an_a_nonce_definition,axiom,an_a_nonce = at). tff(declare_bt,type,bt:$i). tff(bt_definition,axiom,bt = t). tff(declare_an_intruder_nonce,type,an_intruder_nonce:$i). tff(an_intruder_nonce_definition,axiom,an_intruder_nonce = at). tff(declare_key,type,key: $i * $i > $i). tff(function_key,axiom, key(at,at) = at & key(at,t) = at & key(t,at) = t & key(t,t) = t ). tff(declare_pair,type,pair: $i * $i > $i). tff(function_pair,axiom, pair(at,at) = at & pair(at,t) = t & pair(t,at) = t & pair(t,t) = t ). tff(declare_sent,type,sent: $i * $i * $i > $i). tff(function_sent,axiom, sent(at,at,at) = at & sent(at,at,t) = t & sent(at,t,at) = at & sent(at,t,t) = t & sent(t,at,at) = at & sent(t,at,t) = t & sent(t,t,at) = at & sent(t,t,t) = t ). tff(declare_quadruple,type,quadruple: $i * $i * $i * $i > $i). tff(function_quadruple,axiom, quadruple(at,at,at,at) = at & quadruple(at,at,at,t) = t & quadruple(at,at,t,at) = t & quadruple(at,at,t,t) = t & quadruple(at,t,at,at) = t & quadruple(at,t,at,t) = t & quadruple(at,t,t,at) = t & quadruple(at,t,t,t) = t & quadruple(t,at,at,at) = t & quadruple(t,at,at,t) = t & quadruple(t,at,t,at) = t & quadruple(t,at,t,t) = t & quadruple(t,t,at,at) = t & quadruple(t,t,at,t) = t & quadruple(t,t,t,at) = t & quadruple(t,t,t,t) = t ). tff(declare_encrypt,type,encrypt: $i * $i > $i). tff(function_encrypt,axiom, encrypt(at,at) = at & encrypt(at,t) = at & encrypt(t,at) = at & encrypt(t,t) = at ). tff(declare_triple,type,triple: $i * $i * $i > $i). tff(function_triple,axiom, triple(at,at,at) = at & triple(at,at,t) = t & triple(at,t,at) = t & triple(at,t,t) = t & triple(t,at,at) = t & triple(t,at,t) = t & triple(t,t,at) = t & triple(t,t,t) = t ). tff(declare_generate_b_nonce,type,generate_b_nonce: $i > $i). tff(function_generate_b_nonce,axiom, generate_b_nonce(at) = at & generate_b_nonce(t) = at ). tff(declare_generate_expiration_time,type,generate_expiration_time: $i > $i). tff(function_generate_expiration_time,axiom, generate_expiration_time(at) = at & generate_expiration_time(t) = at ). tff(declare_generate_key,type,generate_key: $i > $i). tff(function_generate_key,axiom, generate_key(at) = t & generate_key(t) = t ). tff(declare_generate_intruder_nonce,type,generate_intruder_nonce: $i > $i). tff(function_generate_intruder_nonce,axiom, generate_intruder_nonce(at) = at & generate_intruder_nonce(t) = t ). tff(declare_a_holds,type,a_holds: $i > $o ). tff(predicate_a_holds,axiom, % a_holds(at) undefined in model % a_holds(t) undefined in model ). tff(declare_party_of_protocol,type,party_of_protocol: $i > $o ). tff(predicate_party_of_protocol,axiom, party_of_protocol(at) & party_of_protocol(t) ). tff(declare_message,type,message: $i > $o ). tff(predicate_message,axiom, message(at) & ~message(t) ). tff(declare_a_stored,type,a_stored: $i > $o ). tff(predicate_a_stored,axiom, a_stored(at) & ~a_stored(t) ). tff(declare_b_holds,type,b_holds: $i > $o ). tff(predicate_b_holds,axiom, % b_holds(at) undefined in model % b_holds(t) undefined in model ). tff(declare_fresh_to_b,type,fresh_to_b: $i > $o ). tff(predicate_fresh_to_b,axiom, fresh_to_b(at) & fresh_to_b(t) ). tff(declare_b_stored,type,b_stored: $i > $o ). tff(predicate_b_stored,axiom, % b_stored(at) undefined in model % b_stored(t) undefined in model ). tff(declare_a_key,type,a_key: $i > $o ). tff(predicate_a_key,axiom, ~a_key(at) & a_key(t) ). tff(declare_t_holds,type,t_holds: $i > $o ). tff(predicate_t_holds,axiom, t_holds(at) & t_holds(t) ). tff(declare_a_nonce,type,a_nonce: $i > $o ). tff(predicate_a_nonce,axiom, a_nonce(at) & ~a_nonce(t) ). tff(declare_intruder_message,type,intruder_message: $i > $o ). tff(predicate_intruder_message,axiom, intruder_message(at) & ~intruder_message(t) ). tff(declare_intruder_holds,type,intruder_holds: $i > $o ). tff(predicate_intruder_holds,axiom, intruder_holds(at) & ~intruder_holds(t) ). tff(declare_fresh_intruder_nonce,type,fresh_intruder_nonce: $i > $o ). tff(predicate_fresh_intruder_nonce,axiom, fresh_intruder_nonce(at) & ~fresh_intruder_nonce(t) ). % SZS output end FiniteModel for SWV017+1
% SZS status Unsatisfiable for BOO001-1 % SZS output start Proof for BOO001-1 fof(f132,plain,( $false), inference(subsumption_resolution,[],[f130,f8])). fof(f8,plain,( sP0(a)), inference(inequality_splitting,[],[f6,f7])). fof(f7,plain,( ~sP0(inverse(inverse(a)))), introduced(inequality_splitting_name_introduction,[new_symbols(naming,[sP0])])). fof(f6,axiom,( a != inverse(inverse(a))), file('/tmp/SystemOnTPTP23888/BOO001-1.tptp',prove_inverse_is_self_cancelling)). fof(f130,plain,( ~sP0(a)), inference(backward_demodulation,[],[f7,f119])). fof(f119,plain,( ( ! [X18 : $i] : (inverse(inverse(X18)) = X18) )), inference(superposition,[],[f105,f5])). fof(f5,axiom,( ( ! [X2 : $i,X3 : $i] : (multiply(X2,X3,inverse(X3)) = X2) )), file('/tmp/SystemOnTPTP23888/BOO001-1.tptp',right_inverse)). fof(f105,plain,( ( ! [X28 : $i,X27 : $i] : (multiply(X28,inverse(X28),X27) = X27) )), inference(superposition,[],[f34,f5])). fof(f34,plain,( ( ! [X4 : $i,X5 : $i,X3 : $i] : (multiply(X5,X3,X4) = multiply(X3,X4,multiply(X5,X3,X4))) )), inference(superposition,[],[f9,f2])). fof(f2,axiom,( ( ! [X2 : $i,X3 : $i] : (multiply(X3,X2,X2) = X2) )), file('/tmp/SystemOnTPTP23888/BOO001-1.tptp',ternary_multiply_1)). fof(f9,plain,( ( ! [X2 : $i,X0 : $i,X3 : $i,X1 : $i] : (multiply(X0,X1,multiply(X1,X2,X3)) = multiply(X1,X2,multiply(X0,X1,X3))) )), inference(superposition,[],[f1,f2])). fof(f1,axiom,( ( ! [X4 : $i,X2 : $i,X0 : $i,X3 : $i,X1 : $i] : (multiply(multiply(X0,X1,X2),X3,multiply(X0,X1,X4)) = multiply(X0,X1,multiply(X2,X3,X4))) )), file('/tmp/SystemOnTPTP23888/BOO001-1.tptp',associativity)). % SZS output end Proof for BOO001-1
% SZS output start Refutation tff(subset, axiom, subset() = ^[X:(($i > $o)),Y:(($i > $o))]: (![U]: (X(U) => Y(U)))). tff('0', plain, subset = (^[X:(($i > $o)),Y:(($i > $o))]: (![U]: (X(U) => Y(U)))), inference('simplify_rw_rule', [status(thm)], [subset])). tff('1', plain, subset = (^[V_1:(($i > $o)),V_2:(($i > $o))]: (![X4]: (V_1(X4) => V_2(X4)))), define([status(thm)])). tff(union, axiom, union() = ^[X:(($i > $o)),Y:(($i > $o)),U]: (X(U) | Y(U))). tff('2', plain, union = (^[X:(($i > $o)),Y:(($i > $o)),U]: (X(U) | Y(U))), inference('simplify_rw_rule', [status(thm)], [union])). tff('3', plain, union = (^[V_1:(($i > $o)),V_2:(($i > $o)),V_3]: (V_1(V_3) | V_2(V_3))), define([status(thm)])). tff(thm, conjecture, (![X:(($i > $o)),Y:(($i > $o)),A:(($i > $o))]: ((subset(X,A) & subset(Y,A)) => subset(union(X,Y),A)))). tff(zf_stmt_0, conjecture, (![X4:(($i > $o)),X6:(($i > $o)),X8:(($i > $o))]: (((![X12]: (X6(X12) => X8(X12))) & (![X10]: (X4(X10) => X8(X10)))) => (![X14]: ((X6(X14) | X4(X14)) => X8(X14)))))). tff(zf_stmt_1, negated_conjecture, (~ (![X4:(($i > $o)),X6:(($i > $o)),X8:(($i > $o))]: (((![X12]: (X6(X12) => X8(X12))) & (![X10]: (X4(X10) => X8(X10)))) => (![X14]: ((X6(X14) | X4(X14)) => X8(X14))))))). tff('4', plain, ~ (!!((^[Y0 : $i > $o]: (!!((^[Y1 : $i > $o]: (!!((^[Y2 : $i > $o]: (((!!((^[Y3 : $i]: (Y1(Y3) => Y2(Y3))))) & (!!((^[Y3 : $i]: (Y0(Y3) => Y2(Y3)))))) => (!!((^[Y3 : $i]: ((Y1(Y3) | Y0(Y3)) => Y2(Y3))))))))))))))), inference('cnf', [status(esa)], [zf_stmt_1])). tff('5', plain, ~ (!!((^[Y0 : $i > $o]: (!!((^[Y1 : $i > $o]: (((!!((^[Y2 : $i]: (Y0(Y2) => Y1(Y2))))) & (!!((^[Y2 : $i]: ('#sk1'(Y2) => Y1(Y2)))))) => (!!((^[Y2 : $i]: ((Y0(Y2) | '#sk1'(Y2)) => Y1(Y2)))))))))))), inference('lazy_cnf_exists', [status(thm)], ['4'])). tff('6', plain, ~ (!!((^[Y0 : $i > $o]: (((!!((^[Y1 : $i]: ('#sk2'(Y1) => Y0(Y1))))) & (!!((^[Y1 : $i]: ('#sk1'(Y1) => Y0(Y1)))))) => (!!((^[Y1 : $i]: (('#sk2'(Y1) | '#sk1'(Y1)) => Y0(Y1))))))))), inference('lazy_cnf_exists', [status(thm)], ['5'])). tff('7', plain, ~ (((!!((^[Y0 : $i]: ('#sk2'(Y0) => '#sk3'(Y0))))) & (!!((^[Y0 : $i]: ('#sk1'(Y0) => '#sk3'(Y0)))))) => (!!((^[Y0 : $i]: (('#sk2'(Y0) | '#sk1'(Y0)) => '#sk3'(Y0)))))), inference('lazy_cnf_exists', [status(thm)], ['6'])). tff('8', plain, ~ (!!((^[Y0 : $i]: (('#sk2'(Y0) | '#sk1'(Y0)) => '#sk3'(Y0))))), inference('lazy_cnf_imply', [status(thm)], ['7'])). tff('9', plain, ~ (('#sk2'('#sk4') | '#sk1'('#sk4')) => '#sk3'('#sk4')), inference('lazy_cnf_exists', [status(thm)], ['8'])). tff('10', plain, ~ '#sk3'('#sk4'), inference('lazy_cnf_imply', [status(thm)], ['9'])). tff('11', plain, ('#sk2'('#sk4') | '#sk1'('#sk4')), inference('lazy_cnf_imply', [status(thm)], ['9'])). tff('12', plain, ( '#sk2'('#sk4') | '#sk1'('#sk4')), inference('lazy_cnf_or', [status(thm)], ['11'])). tff('13', plain, ((!!((^[Y0 : $i]: ('#sk2'(Y0) => '#sk3'(Y0))))) & (!!((^[Y0 : $i]: ('#sk1'(Y0) => '#sk3'(Y0)))))), inference('lazy_cnf_imply', [status(thm)], ['7'])). tff('14', plain, (!!((^[Y0 : $i]: ('#sk2'(Y0) => '#sk3'(Y0))))), inference('lazy_cnf_and', [status(thm)], ['13'])). tff('15', plain, ![X1]: ('#sk2'(X1) => '#sk3'(X1)), inference('lazy_cnf_forall', [status(thm)], ['14'])). tff('16', plain, ![X1]: (~ '#sk2'(X1) | '#sk3'(X1)), inference('lazy_cnf_imply', [status(thm)], ['15'])). tff('17', plain, ( '#sk1'('#sk4') | '#sk3'('#sk4')), inference('sup-', [status(thm)], ['12', '16'])). tff('18', plain, (!!((^[Y0 : $i]: ('#sk1'(Y0) => '#sk3'(Y0))))), inference('lazy_cnf_and', [status(thm)], ['13'])). tff('19', plain, ![X1]: ('#sk1'(X1) => '#sk3'(X1)), inference('lazy_cnf_forall', [status(thm)], ['18'])). tff('20', plain, ![X1]: (~ '#sk1'(X1) | '#sk3'(X1)), inference('lazy_cnf_imply', [status(thm)], ['19'])). tff('21', plain, '#sk3'('#sk4'), inference('clc', [status(thm)], ['17', '20'])). tff('22', plain, $false, inference('demod', [status(thm)], ['10', '21'])). % SZS output end Refutation
% SZS output start Refutation tff(t63_xboole_1, conjecture, (![A,B,C]: ((subset(A,B) & disjoint(B,C)) => disjoint(A,C)))). tff(zf_stmt_0, negated_conjecture, (~(![A,B,C]: ((subset(A,B) & disjoint(B,C)) => disjoint(A,C))))). tff('0', plain, ~ disjoint(sk_A_2, sk_C_4), inference('cnf', [status(esa)], [zf_stmt_0])). tff('1', plain, disjoint(sk_B_1, sk_C_4), inference('cnf', [status(esa)], [zf_stmt_0])). tff(d7_xboole_0, axiom, (![A,B]: (disjoint(A,B) <=> (set_intersection2(A,B) = empty_set)))). tff('2', plain, ![X36, X37]: (set_intersection2(X36, X37) = empty_set | ~ disjoint(X36, X37)), inference('cnf', [status(esa)], [d7_xboole_0])). tff('3', plain, set_intersection2(sk_B_1, sk_C_4) = empty_set, inference('sup-', [status(thm)], ['1', '2'])). tff('4', plain, subset(sk_A_2, sk_B_1), inference('cnf', [status(esa)], [zf_stmt_0])). tff(t26_xboole_1, axiom, (![A,B,C]: (subset(A,B) => subset(set_intersection2(A,C),set_intersection2(B,C))))). tff('5', plain, ![X66, X67, X68]: (~ subset(X66, X67) | subset(set_intersection2(X66, X68), set_intersection2(X67, X68))), inference('cnf', [status(esa)], [t26_xboole_1])). tff('6', plain, ![X0]: subset(set_intersection2(sk_A_2, X0), set_intersection2(sk_B_1, X0)), inference('sup-', [status(thm)], ['4', '5'])). tff('7', plain, subset(set_intersection2(sk_A_2, sk_C_4), empty_set), inference('sup+', [status(thm)], ['3', '6'])). tff(t3_xboole_1, axiom, (![A]: (subset(A,empty_set) => (A = empty_set)))). tff('8', plain, ![X90]: (X90 = empty_set | ~ subset(X90, empty_set)), inference('cnf', [status(esa)], [t3_xboole_1])). tff('9', plain, set_intersection2(sk_A_2, sk_C_4) = empty_set, inference('sup-', [status(thm)], ['7', '8'])). tff('10', plain, ![X36, X38]: ( disjoint(X36, X38) | set_intersection2(X36, X38) != empty_set), inference('cnf', [status(esa)], [d7_xboole_0])). tff('11', plain, (empty_set != empty_set | disjoint(sk_A_2, sk_C_4)), inference('sup-', [status(thm)], ['9', '10'])). tff('12', plain, disjoint(sk_A_2, sk_C_4), inference('simplify', [status(thm)], ['11'])). tff('13', plain, $false, inference('demod', [status(thm)], ['0', '12'])). % SZS output end Refutation
% SZS output start Refutation tff(thm_2Ebool_2ETRUTH, conjecture, (c_2Ebool_2ET)). tff(zf_stmt_0, negated_conjecture, (~c_2Ebool_2ET)). tff('0', plain, ~ c_2Ebool_2ET, inference('cnf', [status(esa)], [zf_stmt_0])). tff(thm_2Ebool_2ET__DEF, axiom, (c_2Ebool_2ET <=> (![V1x:$o]: $true))). tff('1', plain, c_2Ebool_2ET, inference('cnf', [status(esa)], [thm_2Ebool_2ET__DEF])). tff('2', plain, $false, inference('demod', [status(thm)], ['0', '1'])). % SZS output end Refutation
% SZS output start Refutation tff(conj_thm_2Ebool_2ETRUTH, conjecture, ($true)). tff(zf_stmt_0, negated_conjecture, ($false)). tff('0', plain, $false, inference('cnf', [status(esa)], [zf_stmt_0])). % SZS output end Refutation
% SZS output start Refutation tff(thm_2Ebool_2ETRUTH, conjecture, (mono_2Ec_2Ebool_2ET)). tff(zf_stmt_0, negated_conjecture, (~mono_2Ec_2Ebool_2ET)). tff('0', plain, ~ mono_2Ec_2Ebool_2ET, inference('cnf', [status(esa)], [zf_stmt_0])). tff(thm_2Ebool_2ET__DEF, axiom, (mono_2Ec_2Ebool_2ET <=> (![V0x:$o]: $true))). tff('1', plain, mono_2Ec_2Ebool_2ET, inference('cnf', [status(esa)], [thm_2Ebool_2ET__DEF])). tff('2', plain, $false, inference('demod', [status(thm)], ['0', '1'])). % SZS output end Refutation
% SZS output start Refutation tff(thm_2Ebool_2ETRUTH, conjecture, (p(c_2Ebool_2ET_2E0))). tff(zf_stmt_0, negated_conjecture, (~p(c_2Ebool_2ET_2E0))). tff('0', plain, ~ p(c_2Ebool_2ET_2E0), inference('cnf', [status(esa)], [zf_stmt_0])). tff(thm_2Eextra_2Dho_2Etruth, axiom, (p(c_2Ebool_2ET_2E0))). tff('1', plain, p(c_2Ebool_2ET_2E0), inference('cnf', [status(esa)], [thm_2Eextra_2Dho_2Etruth])). tff('2', plain, $false, inference('demod', [status(thm)], ['0', '1'])). % SZS output end Refutation
% SZS output start Refutation tff(conj_thm_2Ebool_2ETRUTH, conjecture, ($true)). tff(zf_stmt_0, negated_conjecture, ($false)). tff('0', plain, $false, inference('cnf', [status(esa)], [zf_stmt_0])). % SZS output end Refutation
% SZS output start Refutation tff(thm_2Ebool_2ETRUTH, conjecture, (p(mono_2Ec_2Ebool_2ET_2E0))). tff(zf_stmt_0, negated_conjecture, (~p(mono_2Ec_2Ebool_2ET_2E0))). tff('0', plain, ~ p(mono_2Ec_2Ebool_2ET_2E0), inference('cnf', [status(esa)], [zf_stmt_0])). tff(reserved_2Eho_2Etruth, axiom, (p(mono_2Ec_2Ebool_2ET_2E0))). tff('1', plain, p(mono_2Ec_2Ebool_2ET_2E0), inference('cnf', [status(esa)], [reserved_2Eho_2Etruth])). tff('2', plain, $false, inference('demod', [status(thm)], ['0', '1'])). % SZS output end Refutation
% SZS output start Refutation tff(conj_thm_2Ebool_2ETRUTH, conjecture, ($true)). tff(zf_stmt_0, negated_conjecture, ($false)). tff('0', plain, $false, inference('cnf', [status(esa)], [zf_stmt_0])). % SZS output end Refutation
% SZS output start Refutation tff(thm_2Ebool_2ETRUTH, conjecture, (p(s(tyop_2Emin_2Ebool,c_2Ebool_2ET_2E0)))). tff(zf_stmt_0, negated_conjecture, (~p(s(tyop_2Emin_2Ebool,c_2Ebool_2ET_2E0)))). tff('0', plain, ~ p(s(tyop_2Emin_2Ebool, c_2Ebool_2ET_2E0)), inference('cnf', [status(esa)], [zf_stmt_0])). tff(reserved_2Eho_2Etruth, axiom, (p(s(tyop_2Emin_2Ebool,c_2Ebool_2ET_2E0)))). tff('1', plain, p(s(tyop_2Emin_2Ebool, c_2Ebool_2ET_2E0)), inference('cnf', [status(esa)], [reserved_2Eho_2Etruth])). tff('2', plain, $false, inference('demod', [status(thm)], ['0', '1'])). % SZS output end Refutation
% SZS status Theorem for '/home/petar/Documents/tptp/Problems/SET/SET014^4.p' % SZS output start Refutation thf(sk__5_type, type, sk__5: $i > $o). thf(sk__3_type, type, sk__3: $i > $o). thf(union_type, type, union: ($i > $o) > ($i > $o) > $i > $o). thf(sk__6_type, type, sk__6: $i). thf(sk__4_type, type, sk__4: $i > $o). thf(subset_type, type, subset: ($i > $o) > ($i > $o) > $o). thf(subset, axiom,(( subset ) = (^[X:( $i > $o ),Y:( $i > $o )]: ( ![U:$i]: ( ( X @ U ) => ( Y @ U ) ) )))). thf('0', plain, (( subset ) = ( ^[X:( $i > $o ),Y:( $i > $o )]: ( ![U:$i]: ( ( X @ U ) => ( Y @ U ) ) ) )), inference('simplify_rw_rule', [status(thm)], [subset])). thf('1', plain, (( subset ) = ( ^[V_1:( $i > $o ),V_2:( $i > $o )]: ( ![X4:$i]: ( ( V_1 @ X4 ) => ( V_2 @ X4 ) ) ) )), define([status(thm)])). thf(union, axiom,(( union ) = (^[X:( $i > $o ),Y:( $i > $o ),U:$i]: ( ( X @ U ) | ( Y @ U ) )))). thf('2', plain, (( union ) = ( ^[X:( $i > $o ),Y:( $i > $o ),U:$i]: ( ( X @ U ) | ( Y @ U ) ) )), inference('simplify_rw_rule', [status(thm)], [union])). thf('3', plain, (( union ) = ( ^[V_1:( $i > $o ),V_2:( $i > $o ),V_3:$i]: ( ( V_1 @ V_3 ) | ( V_2 @ V_3 ) ) )), define([status(thm)])). thf(thm, conjecture, (![X:( $i > $o ),Y:( $i > $o ),A:( $i > $o )]: ( ( ( subset @ X @ A ) & ( subset @ Y @ A ) ) => ( subset @ ( union @ X @ Y ) @ A ) ))). thf(zf_stmt_0, conjecture, (![X4:( $i > $o ),X6:( $i > $o ),X8:( $i > $o )]: ( ( ( ![X10:$i]: ( ( X4 @ X10 ) => ( X8 @ X10 ) ) ) & ( ![X12:$i]: ( ( X6 @ X12 ) => ( X8 @ X12 ) ) ) ) => ( ![X14:$i]: ( ( ( X4 @ X14 ) | ( X6 @ X14 ) ) => ( X8 @ X14 ) ) ) ))). thf(zf_stmt_1, negated_conjecture, (~( ![X4:( $i > $o ),X6:( $i > $o ),X8:( $i > $o )]: ( ( ( ![X10:$i]: ( ( X4 @ X10 ) => ( X8 @ X10 ) ) ) & ( ![X12:$i]: ( ( X6 @ X12 ) => ( X8 @ X12 ) ) ) ) => ( ![X14:$i]: ( ( ( X4 @ X14 ) | ( X6 @ X14 ) ) => ( X8 @ X14 ) ) ) ) )), inference('cnf.neg', [status(esa)], [zf_stmt_0])). thf(zip_derived_cl2, plain, (~ (sk__5 @ sk__6)), inference('cnf', [status(esa)], [zf_stmt_1])). thf(zip_derived_cl3, plain, (( (sk__3 @ sk__6) | (sk__4 @ sk__6))), inference('cnf', [status(esa)], [zf_stmt_1])). thf(zip_derived_cl1, plain, (![X1 : $i]: ( (sk__5 @ X1) | ~ (sk__4 @ X1))), inference('cnf', [status(esa)], [zf_stmt_1])). thf(zip_derived_cl5, plain, (( (sk__3 @ sk__6) | (sk__5 @ sk__6))), inference('sup-', [status(thm)], [zip_derived_cl3, zip_derived_cl1])). thf(zip_derived_cl2, plain, (~ (sk__5 @ sk__6)), inference('cnf', [status(esa)], [zf_stmt_1])). thf(zip_derived_cl8, plain, ( (sk__3 @ sk__6)), inference('demod', [status(thm)], [zip_derived_cl5, zip_derived_cl2])). thf(zip_derived_cl0, plain, (![X0 : $i]: ( (sk__5 @ X0) | ~ (sk__3 @ X0))), inference('cnf', [status(esa)], [zf_stmt_1])). thf(zip_derived_cl12, plain, ( (sk__5 @ sk__6)), inference('sup-', [status(thm)], [zip_derived_cl8, zip_derived_cl0])). thf(zip_derived_cl16, plain, ($false), inference('demod', [status(thm)], [zip_derived_cl2, zip_derived_cl12])). % SZS output end Refutation
% SZS status Theorem for '/home/petar/Documents/tptp/Problems/SEU/SEU140+2.p' % SZS output start Refutation thf(sk__10_type, type, sk__10: $i). thf(disjoint_type, type, disjoint: $i > $i > $o). thf(sk__12_type, type, sk__12: $i). thf(set_intersection2_type, type, set_intersection2: $i > $i > $i). thf(in_type, type, in: $i > $i > $o). thf(subset_type, type, subset: $i > $i > $o). thf(sk__8_type, type, sk__8: $i > $i > $i). thf(empty_set_type, type, empty_set: $i). thf(sk__11_type, type, sk__11: $i). thf(sk__type, type, sk_: $i > $i). thf(d1_xboole_0, axiom, (![A:$i]: ( ( ( A ) = ( empty_set ) ) <=> ( ![B:$i]: ( ~( in @ B @ A ) ) ) ))). thf(zip_derived_cl8, plain, (![X0 : $i]: (((X0) = (empty_set)) | (in @ (sk_ @ X0) @ X0))), inference('cnf', [status(esa)], [d1_xboole_0])). thf(t63_xboole_1, conjecture, (![A:$i,B:$i,C:$i]: ( ( ( subset @ A @ B ) & ( disjoint @ B @ C ) ) => ( disjoint @ A @ C ) ))). thf(zf_stmt_0, negated_conjecture, (~( ![A:$i,B:$i,C:$i]: ( ( ( subset @ A @ B ) & ( disjoint @ B @ C ) ) => ( disjoint @ A @ C ) ) )), inference('cnf.neg', [status(esa)], [t63_xboole_1])). thf(zip_derived_cl81, plain, ( (subset @ sk__10 @ sk__11)), inference('cnf', [status(esa)], [zf_stmt_0])). thf(zip_derived_cl80, plain, ( (disjoint @ sk__11 @ sk__12)), inference('cnf', [status(esa)], [zf_stmt_0])). thf(d7_xboole_0, axiom, (![A:$i,B:$i]: ( ( disjoint @ A @ B ) <=> ( ( set_intersection2 @ A @ B ) = ( empty_set ) ) ))). thf(zip_derived_cl30, plain, (![X0 : $i, X1 : $i]: (((set_intersection2 @ X0 @ X1) = (empty_set)) | ~ (disjoint @ X0 @ X1))), inference('cnf', [status(esa)], [d7_xboole_0])). thf(zip_derived_cl571, plain, (((set_intersection2 @ sk__11 @ sk__12) = (empty_set))), inference('s_sup-', [status(thm)], [zip_derived_cl80, zip_derived_cl30])). thf(t26_xboole_1, axiom, (![A:$i,B:$i,C:$i]: ( ( subset @ A @ B ) => ( subset @ ( set_intersection2 @ A @ C ) @ ( set_intersection2 @ B @ C ) ) ))). thf(zip_derived_cl56, plain, (![X0 : $i, X1 : $i, X2 : $i]: (~ (subset @ X0 @ X1) | (subset @ (set_intersection2 @ X0 @ X2) @ (set_intersection2 @ X1 @ X2)))), inference('cnf', [status(esa)], [t26_xboole_1])). thf(zip_derived_cl765, plain, (![X0 : $i]: (~ (subset @ X0 @ sk__11) | (subset @ (set_intersection2 @ X0 @ sk__12) @ empty_set))), inference('s_sup+', [status(thm)], [zip_derived_cl571, zip_derived_cl56])). thf(t28_xboole_1, axiom, (![A:$i,B:$i]: ( ( subset @ A @ B ) => ( ( set_intersection2 @ A @ B ) = ( A ) ) ))). thf(zip_derived_cl57, plain, (![X0 : $i, X1 : $i]: (((set_intersection2 @ X0 @ X1) = (X0)) | ~ (subset @ X0 @ X1))), inference('cnf', [status(esa)], [t28_xboole_1])). thf(commutativity_k3_xboole_0, axiom, (![A:$i,B:$i]: ( ( set_intersection2 @ A @ B ) = ( set_intersection2 @ B @ A ) ))). thf(zip_derived_cl3, plain, (![X0 : $i, X1 : $i]: ((set_intersection2 @ X1 @ X0) = (set_intersection2 @ X0 @ X1))), inference('cnf', [status(esa)], [commutativity_k3_xboole_0])). thf(t4_xboole_0, axiom, (![A:$i,B:$i]: ( ( ~( ( ?[C:$i]: ( in @ C @ ( set_intersection2 @ A @ B ) ) ) & ( disjoint @ A @ B ) ) ) & ( ~( ( ~( disjoint @ A @ B ) ) & ( ![C:$i]: ( ~( in @ C @ ( set_intersection2 @ A @ B ) ) ) ) ) ) ))). thf(zip_derived_cl77, plain, (![X0 : $i, X1 : $i, X2 : $i]: (~ (in @ X0 @ (set_intersection2 @ X1 @ X2)) | ~ (disjoint @ X1 @ X2))), inference('cnf', [status(esa)], [t4_xboole_0])). thf(zip_derived_cl417, plain, (![X0 : $i, X1 : $i, X2 : $i]: (~ (in @ X2 @ (set_intersection2 @ X1 @ X0)) | ~ (disjoint @ X0 @ X1))), inference('s_sup-', [status(thm)], [zip_derived_cl3, zip_derived_cl77])). thf(zip_derived_cl644, plain, (![X0 : $i, X1 : $i, X2 : $i]: (~ (subset @ X0 @ X1) | ~ (in @ X2 @ X0) | ~ (disjoint @ X1 @ X0))), inference('s_sup-', [status(thm)], [zip_derived_cl57, zip_derived_cl417])). thf(zip_derived_cl1458, plain, (![X0 : $i, X1 : $i]: (~ (subset @ X0 @ sk__11) | ~ (in @ X1 @ (set_intersection2 @ X0 @ sk__12)) | ~ (disjoint @ empty_set @ (set_intersection2 @ X0 @ sk__12)))), inference('s_sup-', [status(thm)], [zip_derived_cl765, zip_derived_cl644])). thf(t3_xboole_0, axiom, (![A:$i,B:$i]: ( ( ~( ( ?[C:$i]: ( ( in @ C @ B ) & ( in @ C @ A ) ) ) & ( disjoint @ A @ B ) ) ) & ( ~( ( ~( disjoint @ A @ B ) ) & ( ![C:$i]: ( ~( ( in @ C @ A ) & ( in @ C @ B ) ) ) ) ) ) ))). thf(zip_derived_cl68, plain, (![X0 : $i, X1 : $i]: ( (disjoint @ X0 @ X1) | (in @ (sk__8 @ X1 @ X0) @ X0))), inference('cnf', [status(esa)], [t3_xboole_0])). thf(zip_derived_cl7, plain, (![X0 : $i, X1 : $i]: (~ (in @ X0 @ X1) | ((X1) != (empty_set)))), inference('cnf', [status(esa)], [d1_xboole_0])). thf(zip_derived_cl373, plain, (![X0 : $i]: ~ (in @ X0 @ empty_set)), inference('eq_res', [status(thm)], [zip_derived_cl7])). thf(zip_derived_cl862, plain, (![X0 : $i]: (disjoint @ empty_set @ X0)), inference('s_sup-', [status(thm)], [zip_derived_cl68, zip_derived_cl373])). thf(zip_derived_cl1475, plain, (![X0 : $i, X1 : $i]: (~ (subset @ X0 @ sk__11) | ~ (in @ X1 @ (set_intersection2 @ X0 @ sk__12)))), inference('demod', [status(thm)], [zip_derived_cl1458, zip_derived_cl862])). thf(zip_derived_cl1484, plain, (![X0 : $i]: ~ (in @ X0 @ (set_intersection2 @ sk__10 @ sk__12))), inference('s_sup-', [status(thm)], [zip_derived_cl81, zip_derived_cl1475])). thf(zip_derived_cl1519, plain, (((set_intersection2 @ sk__10 @ sk__12) = (empty_set))), inference('s_sup-', [status(thm)], [zip_derived_cl8, zip_derived_cl1484])). thf(zip_derived_cl31, plain, (![X0 : $i, X1 : $i]: ( (disjoint @ X0 @ X1) | ((set_intersection2 @ X0 @ X1) != (empty_set)))), inference('cnf', [status(esa)], [d7_xboole_0])). thf(zip_derived_cl79, plain, (~ (disjoint @ sk__10 @ sk__12)), inference('cnf', [status(esa)], [zf_stmt_0])). thf(zip_derived_cl524, plain, (((set_intersection2 @ sk__10 @ sk__12) != (empty_set))), inference('s_sup-', [status(thm)], [zip_derived_cl31, zip_derived_cl79])). thf(zip_derived_cl1542, plain, ($false), inference('simplify_reflect-', [status(thm)], [zip_derived_cl1519, zip_derived_cl524])). % SZS output end Refutation