Entrants' Sample Solutions


CSE 1.4

Feng Cao
Southwest Jiaotong University, China

Sample solution for SEU140+2

% Proof found
% SZS status Theorem for SEU140+2
% SZS output start Proof
%ClaNum:116(EqnAxiom:34)
%VarNum:417(SingletonVarNum:163)
%MaxLitNum:4
%MaxfuncDepth:2
%SharedTerms:12
%goalClause: 37 38 55
%singleGoalClaCount:3
[35]P1(a1)
[36]P1(a2)
[37]P3(a3,a5)
[38]P2(a5,a6)
[54]~P1(a13)
[55]~P2(a3,a6)
[40]P3(a1,x401)
[43]P3(x431,x431)
[56]~P4(x561,x561)
[39]E(f12(a1,x391),a1)
[41]E(f16(x411,a1),x411)
[42]E(f12(x421,a1),x421)
[44]E(f16(x441,x441),x441)
[46]E(f12(x461,f12(x461,a1)),a1)
[49]E(f12(x491,f12(x491,x491)),x491)
[45]E(f16(x451,x452),f16(x452,x451))
[47]P3(x471,f16(x471,x472))
[48]P3(f12(x481,x482),x481)
[50]E(f16(x501,f12(x502,x501)),f16(x501,x502))
[51]E(f12(f16(x511,x512),x512),f12(x511,x512))
[52]E(f12(x521,f12(x521,x522)),f12(x522,f12(x522,x521)))
[57]~P1(x571)+E(x571,a1)
[61]~P3(x611,a1)+E(x611,a1)
[62]P5(f7(x621),x621)+E(x621,a1)
[60]~E(x601,x602)+P3(x601,x602)
[63]~P5(x632,x631)+~E(x631,a1)
[64]~P4(x641,x642)+~E(x641,x642)
[65]~P1(x651)+~P5(x652,x651)
[70]~P4(x701,x702)+P3(x701,x702)
[71]~P2(x712,x711)+P2(x711,x712)
[74]~P5(x742,x741)+~P5(x741,x742)
[75]~P4(x752,x751)+~P4(x751,x752)
[76]~P3(x762,x761)+~P4(x761,x762)
[67]~P3(x671,x672)+E(f12(x671,x672),a1)
[69]P3(x691,x692)+~E(f12(x691,x692),a1)
[72]~P3(x721,x722)+E(f16(x721,x722),x722)
[78]P1(x781)+~P1(f16(x782,x781))
[79]P1(x791)+~P1(f16(x791,x792))
[80]P3(x801,x802)+P5(f8(x801,x802),x801)
[81]P2(x811,x812)+P5(f14(x811,x812),x812)
[82]P2(x821,x822)+P5(f14(x821,x822),x821)
[96]P3(x961,x962)+~P5(f8(x961,x962),x962)
[88]~P2(x881,x882)+E(f12(x881,f12(x881,x882)),a1)
[89]~P3(x891,x892)+E(f16(x891,f12(x892,x891)),x892)
[90]~P3(x901,x902)+E(f12(x901,f12(x901,x902)),x901)
[95]P2(x951,x952)+~E(f12(x951,f12(x951,x952)),a1)
[104]P2(x1041,x1042)+P5(f4(x1041,x1042),f12(x1041,f12(x1041,x1042)))
[99]~P3(x991,x993)+P3(f12(x991,x992),f12(x993,x992))
[106]~P2(x1061,x1062)+~P5(x1063,f12(x1061,f12(x1061,x1062)))
[107]~P3(x1071,x1073)+P3(f12(x1071,f12(x1071,x1072)),f12(x1073,f12(x1073,x1072)))
[58]~P1(x582)+~P1(x581)+E(x581,x582)
[73]P4(x731,x732)+~P3(x731,x732)+E(x731,x732)
[77]~P3(x772,x771)+~P3(x771,x772)+E(x771,x772)
[97]E(x971,x972)+P5(f15(x971,x972),x972)+P5(f15(x971,x972),x971)
[103]E(x1031,x1032)+~P5(f15(x1031,x1032),x1032)+~P5(f15(x1031,x1032),x1031)
[83]~P3(x833,x832)+P5(x831,x832)+~P5(x831,x833)
[84]~P3(x841,x843)+P3(x841,x842)+~P3(x843,x842)
[91]~P2(x913,x912)+~P5(x911,x912)+~P5(x911,x913)
[98]~P3(x982,x983)+~P3(x981,x983)+P3(f16(x981,x982),x983)
[108]P5(f10(x1082,x1083,x1081),x1081)+P5(f10(x1082,x1083,x1081),x1082)+E(x1081,f12(x1082,x1083))
[111]P5(f10(x1112,x1113,x1111),x1111)+~P5(f10(x1112,x1113,x1111),x1113)+E(x1111,f12(x1112,x1113))
[113]~P5(f9(x1132,x1133,x1131),x1131)+~P5(f9(x1132,x1133,x1131),x1133)+E(x1131,f16(x1132,x1133))
[114]~P5(f9(x1142,x1143,x1141),x1141)+~P5(f9(x1142,x1143,x1141),x1142)+E(x1141,f16(x1142,x1143))
[105]~P3(x1051,x1053)+~P3(x1051,x1052)+P3(x1051,f12(x1052,f12(x1052,x1053)))
[109]P5(f11(x1092,x1093,x1091),x1091)+P5(f11(x1092,x1093,x1091),x1093)+E(x1091,f12(x1092,f12(x1092,x1093)))
[110]P5(f11(x1102,x1103,x1101),x1101)+P5(f11(x1102,x1103,x1101),x1102)+E(x1101,f12(x1102,f12(x1102,x1103)))
[85]~P5(x851,x854)+P5(x851,x852)+~E(x852,f16(x853,x854))
[86]~P5(x861,x863)+P5(x861,x862)+~E(x862,f16(x863,x864))
[87]~P5(x871,x873)+P5(x871,x872)+~E(x873,f12(x872,x874))
[92]~P5(x924,x923)+~P5(x924,x921)+~E(x921,f12(x922,x923))
[100]~P5(x1001,x1003)+P5(x1001,x1002)+~E(x1003,f12(x1004,f12(x1004,x1002)))
[112]P5(f9(x1122,x1123,x1121),x1121)+P5(f9(x1122,x1123,x1121),x1123)+P5(f9(x1122,x1123,x1121),x1122)+E(x1121,f16(x1122,x1123))
[115]P5(f10(x1152,x1153,x1151),x1153)+~P5(f10(x1152,x1153,x1151),x1151)+~P5(f10(x1152,x1153,x1151),x1152)+E(x1151,f12(x1152,x1153))
[116]~P5(f11(x1162,x1163,x1161),x1161)+~P5(f11(x1162,x1163,x1161),x1163)+~P5(f11(x1162,x1163,x1161),x1162)+E(x1161,f12(x1162,f12(x1162,x1163)))
[93]~P5(x931,x934)+P5(x931,x932)+P5(x931,x933)+~E(x932,f12(x934,x933))
[94]~P5(x941,x944)+P5(x941,x942)+P5(x941,x943)+~E(x944,f16(x943,x942))
[102]~P5(x1021,x1024)+~P5(x1021,x1023)+P5(x1021,x1022)+~E(x1022,f12(x1023,f12(x1023,x1024)))
%EqnAxiom
[1]E(x11,x11)
[2]E(x22,x21)+~E(x21,x22)
[3]E(x31,x33)+~E(x31,x32)+~E(x32,x33)
[4]~E(x41,x42)+E(f12(x41,x43),f12(x42,x43))
[5]~E(x51,x52)+E(f12(x53,x51),f12(x53,x52))
[6]~E(x61,x62)+E(f16(x61,x63),f16(x62,x63))
[7]~E(x71,x72)+E(f16(x73,x71),f16(x73,x72))
[8]~E(x81,x82)+E(f11(x81,x83,x84),f11(x82,x83,x84))
[9]~E(x91,x92)+E(f11(x93,x91,x94),f11(x93,x92,x94))
[10]~E(x101,x102)+E(f11(x103,x104,x101),f11(x103,x104,x102))
[11]~E(x111,x112)+E(f15(x111,x113),f15(x112,x113))
[12]~E(x121,x122)+E(f15(x123,x121),f15(x123,x122))
[13]~E(x131,x132)+E(f8(x131,x133),f8(x132,x133))
[14]~E(x141,x142)+E(f8(x143,x141),f8(x143,x142))
[15]~E(x151,x152)+E(f10(x151,x153,x154),f10(x152,x153,x154))
[16]~E(x161,x162)+E(f10(x163,x161,x164),f10(x163,x162,x164))
[17]~E(x171,x172)+E(f10(x173,x174,x171),f10(x173,x174,x172))
[18]~E(x181,x182)+E(f9(x181,x183,x184),f9(x182,x183,x184))
[19]~E(x191,x192)+E(f9(x193,x191,x194),f9(x193,x192,x194))
[20]~E(x201,x202)+E(f9(x203,x204,x201),f9(x203,x204,x202))
[21]~E(x211,x212)+E(f14(x211,x213),f14(x212,x213))
[22]~E(x221,x222)+E(f14(x223,x221),f14(x223,x222))
[23]~E(x231,x232)+E(f4(x231,x233),f4(x232,x233))
[24]~E(x241,x242)+E(f4(x243,x241),f4(x243,x242))
[25]~E(x251,x252)+E(f7(x251),f7(x252))
[26]~P1(x261)+P1(x262)+~E(x261,x262)
[27]P5(x272,x273)+~E(x271,x272)+~P5(x271,x273)
[28]P5(x283,x282)+~E(x281,x282)+~P5(x283,x281)
[29]P3(x292,x293)+~E(x291,x292)+~P3(x291,x293)
[30]P3(x303,x302)+~E(x301,x302)+~P3(x303,x301)
[31]P2(x312,x313)+~E(x311,x312)+~P2(x311,x313)
[32]P2(x323,x322)+~E(x321,x322)+~P2(x323,x321)
[33]P4(x332,x333)+~E(x331,x332)+~P4(x331,x333)
[34]P4(x343,x342)+~E(x341,x342)+~P4(x343,x341)

%-------------------------------------------
cnf(118,plain,
   (~P5(x1181,a1)),
   inference(equality_inference,[],[63])).
cnf(120,plain,
   (~P5(x1201,x1202)+P5(x1201,f16(x1203,x1202))),
   inference(equality_inference,[],[85])).
cnf(121,plain,
   (~P5(x1211,x1212)+P5(x1211,f16(x1212,x1213))),
   inference(equality_inference,[],[86])).
cnf(122,plain,
   (~P5(x1221,f12(x1222,x1223))+P5(x1221,x1222)),
   inference(equality_inference,[],[87])).
cnf(123,plain,
   (~P5(x1231,x1232)+~P5(x1231,f12(x1233,x1232))),
   inference(equality_inference,[],[92])).
cnf(124,plain,
   (~P5(x1241,x1242)+P5(x1241,f12(x1242,x1243))+P5(x1241,x1243)),
   inference(equality_inference,[],[93])).
cnf(125,plain,
   (~P5(x1251,f16(x1252,x1253))+P5(x1251,x1253)+P5(x1251,x1252)),
   inference(equality_inference,[],[94])).
cnf(126,plain,
   (~P5(x1261,f12(x1262,f12(x1262,x1263)))+P5(x1261,x1263)),
   inference(equality_inference,[],[100])).
cnf(127,plain,
   (~P5(x1271,x1272)+~P5(x1271,x1273)+P5(x1271,f12(x1273,f12(x1273,x1272)))),
   inference(equality_inference,[],[102])).
cnf(128,plain,
   (E(x1281,f16(x1281,x1281))),
   inference(scs_inference,[],[44,2])).
cnf(131,plain,
   (~P5(x1311,f12(a1,x1312))),
   inference(scs_inference,[],[118,44,2,126,122])).
cnf(133,plain,
   (P2(x1331,a1)),
   inference(scs_inference,[],[118,44,2,126,122,104])).
cnf(138,plain,
   (~P2(a6,a3)),
   inference(scs_inference,[],[118,55,44,39,2,126,122,104,95,71])).
cnf(142,plain,
   (~P5(x1421,a2)),
   inference(scs_inference,[],[118,55,36,44,39,46,2,126,122,104,95,71,69,65])).
cnf(147,plain,
   (E(f16(x1471,x1471),x1471)),
   inference(rename_variables,[],[44])).
cnf(149,plain,
   (~E(a1,a6)),
   inference(scs_inference,[],[118,55,36,44,39,46,2,126,122,104,95,71,69,65,64,63,32])).
cnf(150,plain,
   (~E(a5,a3)),
   inference(scs_inference,[],[118,38,55,36,44,39,46,2,126,122,104,95,71,69,65,64,63,32,31])).
cnf(155,plain,
   (E(f16(x1551,x1551),x1551)),
   inference(rename_variables,[],[44])).
cnf(156,plain,
   (~E(a1,f16(a6,a6))),  inference(scs_inference,[],[43,40,118,38,55,36,54,44,147,155,39,46,2,126,122,104,95,71,69,65,64,63,32,31,30,29,26,3])).
cnf(157,plain,
   (E(f16(x1571,x1571),x1571)),
   inference(rename_variables,[],[44])).
cnf(165,plain,
   (~P3(a6,a1)),   inference(scs_inference,[],[37,43,40,118,38,55,36,54,44,147,155,47,39,46,2,126,122,104,95,71,69,65,64,63,32,31,30,29,26,3,125,97,84,77])).
cnf(166,plain,
   (P3(a1,x1661)),
   inference(rename_variables,[],[40])).
cnf(174,plain,
   (E(f16(x1741,x1741),x1741)),
   inference(rename_variables,[],[44])).
cnf(175,plain,
   (~P5(x1751,a1)),
   inference(rename_variables,[],[118])).
cnf(178,plain,
   (E(f16(x1781,x1781),x1781)),
   inference(rename_variables,[],[44])).
cnf(180,plain,
   (P5(f9(a6,a6,a1),a6)),   inference(scs_inference,[],[37,43,40,166,118,175,38,55,35,36,54,44,147,155,157,174,47,39,46,2,126,122,104,95,71,69,65,64,63,32,31,30,29,26,3,125,97,84,77,73,58,100,87,112])).
cnf(181,plain,
   (~P5(x1811,a1)),
   inference(rename_variables,[],[118])).
cnf(184,plain,
   (E(f16(x1841,x1841),x1841)),
   inference(rename_variables,[],[44])).
cnf(186,plain,
   (~P5(x1861,f16(f16(a1,a1),f16(a1,a1)))),   inference(scs_inference,[],[37,43,40,166,118,175,181,38,55,35,36,54,44,147,155,157,174,178,184,47,39,46,2,126,122,104,95,71,69,65,64,63,32,31,30,29,26,3,125,97,84,77,73,58,100,87,112,102,94])).
cnf(187,plain,
   (E(f16(x1871,x1871),x1871)),
   inference(rename_variables,[],[44])).
cnf(190,plain,
   (E(f16(x1901,x1901),x1901)),
   inference(rename_variables,[],[44])).
cnf(191,plain,
   (~P5(x1911,a1)),
   inference(rename_variables,[],[118])).
cnf(225,plain,
   (E(f12(a5,f12(a5,a6)),a1)),   inference(scs_inference,[],[37,43,40,166,118,175,181,38,55,35,36,54,44,147,155,157,174,178,184,187,190,47,39,46,2,126,122,104,95,71,69,65,64,63,32,31,30,29,26,3,125,97,84,77,73,58,100,87,112,102,94,93,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,107,106,99,90,89,88])).
cnf(237,plain,
   (~P4(a5,a3)),   inference(scs_inference,[],[37,43,40,166,118,175,181,38,55,35,36,54,44,147,155,157,174,178,184,187,190,47,39,46,2,126,122,104,95,71,69,65,64,63,32,31,30,29,26,3,125,97,84,77,73,58,100,87,112,102,94,93,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,107,106,99,90,89,88,82,81,80,79,78,76])).
cnf(245,plain,
   (E(f12(a3,a5),a1)),   inference(scs_inference,[],[37,43,40,166,118,175,181,38,55,35,36,54,44,147,155,157,174,178,184,187,190,47,39,46,2,126,122,104,95,71,69,65,64,63,32,31,30,29,26,3,125,97,84,77,73,58,100,87,112,102,94,93,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,107,106,99,90,89,88,82,81,80,79,78,76,75,74,72,67])).
cnf(254,plain,
   (E(f16(x2541,x2541),x2541)),
   inference(rename_variables,[],[44])).
cnf(255,plain,
   (~P5(f15(a2,f16(a1,a1)),f16(a2,a2))),   inference(scs_inference,[],[37,43,56,40,166,118,175,181,38,55,35,36,54,44,147,155,157,174,178,184,187,190,254,45,47,39,46,2,126,122,104,95,71,69,65,64,63,32,31,30,29,26,3,125,97,84,77,73,58,100,87,112,102,94,93,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,107,106,99,90,89,88,82,81,80,79,78,76,75,74,72,67,57,60,34,33,28])).
cnf(256,plain,
   (E(f16(x2561,x2561),x2561)),
   inference(rename_variables,[],[44])).
cnf(259,plain,
   (P5(f9(a6,a6,a1),f12(a6,f12(a6,a6)))),   inference(scs_inference,[],[37,43,56,40,166,118,175,181,38,55,35,36,54,44,147,155,157,174,178,184,187,190,254,256,45,47,39,46,2,126,122,104,95,71,69,65,64,63,32,31,30,29,26,3,125,97,84,77,73,58,100,87,112,102,94,93,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,107,106,99,90,89,88,82,81,80,79,78,76,75,74,72,67,57,60,34,33,28,27,127])).
cnf(261,plain,
   (P5(f9(a6,a6,a1),f12(a6,a1))),   inference(scs_inference,[],[37,43,56,40,166,118,175,181,191,38,55,35,36,54,44,147,155,157,174,178,184,187,190,254,256,45,47,39,46,2,126,122,104,95,71,69,65,64,63,32,31,30,29,26,3,125,97,84,77,73,58,100,87,112,102,94,93,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,107,106,99,90,89,88,82,81,80,79,78,76,75,74,72,67,57,60,34,33,28,27,127,124])).
cnf(262,plain,
   (~P5(x2621,a1)),
   inference(rename_variables,[],[118])).
cnf(265,plain,
   (~P5(x2651,a1)),
   inference(rename_variables,[],[118])).
cnf(269,plain,
   (~P5(x2691,a1)),
   inference(rename_variables,[],[118])).
cnf(273,plain,
   (~P5(x2731,a1)),
   inference(rename_variables,[],[118])).
cnf(275,plain,
   (E(a1,f12(a1,x2751))),   inference(scs_inference,[],[37,43,56,40,166,118,175,181,191,262,265,269,273,38,55,35,36,54,44,147,155,157,174,178,184,187,190,254,256,45,47,39,46,2,126,122,104,95,71,69,65,64,63,32,31,30,29,26,3,125,97,84,77,73,58,100,87,112,102,94,93,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,107,106,99,90,89,88,82,81,80,79,78,76,75,74,72,67,57,60,34,33,28,27,127,124,111,110,109,108])).
cnf(283,plain,
   (~P5(f9(a6,a6,a1),a5)),   inference(scs_inference,[],[37,43,56,40,166,118,175,181,191,262,265,269,273,38,55,35,36,54,44,147,155,157,174,178,184,187,190,254,256,45,47,39,46,2,126,122,104,95,71,69,65,64,63,32,31,30,29,26,3,125,97,84,77,73,58,100,87,112,102,94,93,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,107,106,99,90,89,88,82,81,80,79,78,76,75,74,72,67,57,60,34,33,28,27,127,124,111,110,109,108,105,98,91])).
cnf(313,plain,
   (P2(a2,x3131)),
   inference(scs_inference,[],[55,142,261,186,259,62,121,120,123,106,104,95,82])).
cnf(314,plain,
   (~P5(x3141,a2)),
   inference(rename_variables,[],[142])).
cnf(317,plain,
   (~P5(x3171,a2)),
   inference(rename_variables,[],[142])).
cnf(320,plain,
   (~P5(x3201,a2)),
   inference(rename_variables,[],[142])).
cnf(322,plain,
   (~P5(f12(a6,a1),f9(a6,a6,a1))),
   inference(scs_inference,[],[55,142,314,317,261,186,259,62,121,120,123,106,104,95,82,81,80,74])).
cnf(333,plain,
   (~P5(x3331,a2)),
   inference(rename_variables,[],[142])).
cnf(334,plain,
   (~P5(x3341,a1)),
   inference(rename_variables,[],[118])).
cnf(337,plain,
   (~P5(x3371,a2)),
   inference(rename_variables,[],[142])).
cnf(338,plain,
   (~P5(x3381,a1)),
   inference(rename_variables,[],[118])).
cnf(342,plain,
   (~P5(x3421,a1)),
   inference(rename_variables,[],[118])).
cnf(350,plain,
   (~P5(x3501,a1)),
   inference(rename_variables,[],[118])).
cnf(357,plain,
   (~P5(x3571,a1)),
   inference(rename_variables,[],[118])).
cnf(359,plain,
   (~P3(a5,a3)),   inference(scs_inference,[],[37,48,118,334,338,342,350,38,55,142,314,317,320,333,337,149,150,237,261,186,259,62,121,120,123,106,104,95,82,81,80,74,71,67,63,57,110,109,108,105,98,97,92,91,83,73])).
cnf(362,plain,
   (~P5(x3621,f12(a1,x3622))),
   inference(rename_variables,[],[131])).
cnf(364,plain,
   (~P5(x3641,a1)),
   inference(rename_variables,[],[118])).
cnf(367,plain,
   (~P5(x3671,a1)),
   inference(rename_variables,[],[118])).
cnf(371,plain,
   (~P5(x3711,a1)),
   inference(rename_variables,[],[118])).
cnf(373,plain,
   (~E(f12(f12(a6,a1),a1),a1)),   inference(scs_inference,[],[37,48,118,334,338,342,350,357,364,367,38,55,142,314,317,320,333,337,149,150,237,261,131,186,259,62,121,120,123,106,104,95,82,81,80,74,71,67,63,57,110,109,108,105,98,97,92,91,83,73,112,102,93,69])).
cnf(377,plain,
   (~E(a6,a1)),   inference(scs_inference,[],[37,48,118,334,338,342,350,357,364,367,38,55,142,314,317,320,333,337,149,150,165,237,261,131,186,259,62,121,120,123,106,104,95,82,81,80,74,71,67,63,57,110,109,108,105,98,97,92,91,83,73,112,102,93,69,65,60])).
cnf(386,plain,
   (~E(f12(a6,a1),f12(x3861,f12(x3861,a1)))),   inference(scs_inference,[],[37,48,40,118,334,338,342,350,357,364,367,371,38,55,142,314,317,320,333,337,149,150,165,237,261,131,255,156,186,259,62,121,120,123,106,104,95,82,81,80,74,71,67,63,57,110,109,108,105,98,97,92,91,83,73,112,102,93,69,65,60,125,84,77,100])).
cnf(387,plain,
   (~P5(x3871,a1)),
   inference(rename_variables,[],[118])).
cnf(389,plain,
   (~E(f12(a6,a1),f12(a1,x3891))),   inference(scs_inference,[],[37,48,40,118,334,338,342,350,357,364,367,371,387,38,55,142,314,317,320,333,337,149,150,165,237,261,131,255,156,186,259,62,121,120,123,106,104,95,82,81,80,74,71,67,63,57,110,109,108,105,98,97,92,91,83,73,112,102,93,69,65,60,125,84,77,100,87])).
cnf(390,plain,
   (~P5(x3901,a1)),
   inference(rename_variables,[],[118])).
cnf(392,plain,
   (~E(f12(a6,a1),f16(a1,a1))),   inference(scs_inference,[],[37,48,40,118,334,338,342,350,357,364,367,371,387,390,38,55,142,314,317,320,333,337,149,150,165,237,261,131,255,156,186,259,62,121,120,123,106,104,95,82,81,80,74,71,67,63,57,110,109,108,105,98,97,92,91,83,73,112,102,93,69,65,60,125,84,77,100,87,94])).
cnf(398,plain,
   (~P4(x3981,f16(x3981,a1))),   inference(scs_inference,[],[37,48,41,56,40,118,334,338,342,350,357,364,367,371,387,390,38,55,142,314,317,320,333,337,149,150,165,237,261,131,255,156,186,259,62,121,120,123,106,104,95,82,81,80,74,71,67,63,57,110,109,108,105,98,97,92,91,83,73,112,102,93,69,65,60,125,84,77,100,87,94,5,2,34])).
cnf(399,plain,
   (E(f16(x3991,a1),x3991)),
   inference(rename_variables,[],[41])).
cnf(400,plain,
   (~P2(a3,f16(a6,a1))),   inference(scs_inference,[],[37,48,41,399,56,40,118,334,338,342,350,357,364,367,371,387,390,38,55,142,314,317,320,333,337,149,150,165,237,261,131,255,156,186,259,62,121,120,123,106,104,95,82,81,80,74,71,67,63,57,110,109,108,105,98,97,92,91,83,73,112,102,93,69,65,60,125,84,77,100,87,94,5,2,34,32])).
cnf(401,plain,
   (E(f16(x4011,a1),x4011)),
   inference(rename_variables,[],[41])).
cnf(403,plain,
   (E(f16(x4031,a1),x4031)),
   inference(rename_variables,[],[41])).
cnf(405,plain,
   (E(f16(x4051,a1),x4051)),
   inference(rename_variables,[],[41])).
cnf(408,plain,
   (E(x4081,f16(x4081,x4081))),
   inference(rename_variables,[],[128])).
cnf(410,plain,
   (E(f16(x4101,a1),x4101)),
   inference(rename_variables,[],[41])).
cnf(413,plain,
   (~P5(x4131,f12(f16(a1,x4132),x4132))),   inference(scs_inference,[],[37,48,41,399,401,403,405,410,51,56,35,40,118,334,338,342,350,357,364,367,371,387,390,54,38,55,142,314,317,320,333,337,149,150,165,237,128,261,131,362,255,156,186,259,62,121,120,123,106,104,95,82,81,80,74,71,67,63,57,110,109,108,105,98,97,92,91,83,73,112,102,93,69,65,60,125,84,77,100,87,94,5,2,34,32,31,30,26,3,33,29,28])).
cnf(415,plain,
   (P5(f16(f9(a6,a6,a1),f9(a6,a6,a1)),f12(a6,a1))),   inference(scs_inference,[],[37,48,41,399,401,403,405,410,51,56,35,40,118,334,338,342,350,357,364,367,371,387,390,54,38,55,142,314,317,320,333,337,149,150,165,237,128,408,261,131,362,255,156,186,259,62,121,120,123,106,104,95,82,81,80,74,71,67,63,57,110,109,108,105,98,97,92,91,83,73,112,102,93,69,65,60,125,84,77,100,87,94,5,2,34,32,31,30,26,3,33,29,28,27])).
cnf(421,plain,
   (P5(f4(a3,a6),a6)),   inference(scs_inference,[],[37,48,41,399,401,403,405,410,51,56,35,40,118,334,338,342,350,357,364,367,371,387,390,54,38,55,142,314,317,320,333,337,149,150,165,237,128,408,261,131,362,255,156,186,259,62,121,120,123,106,104,95,82,81,80,74,71,67,63,57,110,109,108,105,98,97,92,91,83,73,112,102,93,69,65,60,125,84,77,100,87,94,5,2,34,32,31,30,26,3,33,29,28,27,70,61,126])).
cnf(423,plain,
   (P5(f4(a3,a6),a3)),   inference(scs_inference,[],[37,48,41,399,401,403,405,410,51,56,35,40,118,334,338,342,350,357,364,367,371,387,390,54,38,55,142,314,317,320,333,337,149,150,165,237,128,408,261,131,362,255,156,186,259,62,121,120,123,106,104,95,82,81,80,74,71,67,63,57,110,109,108,105,98,97,92,91,83,73,112,102,93,69,65,60,125,84,77,100,87,94,5,2,34,32,31,30,26,3,33,29,28,27,70,61,126,122])).
cnf(456,plain,
   (E(f12(x4561,a1),x4561)),
   inference(rename_variables,[],[42])).
cnf(475,plain,
   (~E(f12(a6,a1),f12(a1,x4751))),
   inference(rename_variables,[],[389])).
cnf(476,plain,
   (~P5(x4761,a1)),
   inference(rename_variables,[],[118])).
cnf(479,plain,
   (~P5(x4791,a1)),
   inference(rename_variables,[],[118])).
cnf(482,plain,
   (~P5(x4821,a1)),
   inference(rename_variables,[],[118])).
cnf(491,plain,
   (~P5(x4911,a1)),
   inference(rename_variables,[],[118])).
cnf(495,plain,
   (~P5(x4951,a1)),
   inference(rename_variables,[],[118])).
cnf(498,plain,
   (E(f12(x4981,a1),x4981)),
   inference(rename_variables,[],[42])).
cnf(503,plain,
   (E(f12(x5031,a1),x5031)),
   inference(rename_variables,[],[42])).
cnf(512,plain,
   (E(f12(x5121,a1),x5121)),
   inference(rename_variables,[],[42])).
cnf(518,plain,
   (~P5(x5181,a1)),
   inference(rename_variables,[],[118])).
cnf(521,plain,
   (~P5(x5211,a1)),
   inference(rename_variables,[],[118])).
cnf(526,plain,
   (E(x5261,f16(x5261,x5261))),
   inference(rename_variables,[],[128])).
cnf(528,plain,
   (P3(x5281,x5281)),
   inference(rename_variables,[],[43])).
cnf(530,plain,
   (E(f12(x5301,a1),x5301)),
   inference(rename_variables,[],[42])).
cnf(532,plain,
   (E(f12(x5321,a1),x5321)),
   inference(rename_variables,[],[42])).
cnf(544,plain,
   ($false),   inference(scs_inference,[],[37,42,456,498,503,512,530,532,49,52,50,43,528,47,48,118,476,479,482,491,495,518,521,54,38,377,133,313,359,138,180,392,415,322,398,389,475,283,423,245,275,421,400,413,386,225,373,128,526,62,123,106,74,71,67,63,92,83,93,82,81,80,65,60,127,110,109,108,73,126,97,112,94,69,100,77,122,87,124,86,85,5,32,31,30,26,3,2,29,28,27,104,57,91]),
   ['proof']).
% SZS output end Proof

CSE_E 1.3

Peiyao Liu
Southwest Jiaotong University, China

Sample solution for SEU140+2

% Version  : CSE_E---1.3
% Problem  : SEU140+2.p
% Proof found
% SZS status Theorem for SEU140+2.p
% SZS output start Proof
fof(t6_boole, axiom, ![X1]:(empty(X1)=>X1=empty_set), file('/home/swjtu/Desktop/dist/problems/SEU140+2.p', t6_boole)).
fof(rc1_xboole_0, axiom, ?[X1]:empty(X1), file('/home/swjtu/Desktop/dist/problems/SEU140+2.p', rc1_xboole_0)).
fof(d3_xboole_0, axiom, ![X1, X2, X3]:(X3=set_intersection2(X1,X2)<=>![X4]:(in(X4,X3)<=>(in(X4,X1)&in(X4,X2)))), file('/home/swjtu/Desktop/dist/problems/SEU140+2.p', d3_xboole_0)).
fof(t48_xboole_1, lemma, ![X1, X2]:set_difference(X1,set_difference(X1,X2))=set_intersection2(X1,X2), file('/home/swjtu/Desktop/dist/problems/SEU140+2.p', t48_xboole_1)).
fof(l32_xboole_1, lemma, ![X1, X2]:(set_difference(X1,X2)=empty_set<=>subset(X1,X2)), file('/home/swjtu/Desktop/dist/problems/SEU140+2.p', l32_xboole_1)).
fof(t63_xboole_1, conjecture, ![X1, X2, X3]:((subset(X1,X2)&disjoint(X2,X3))=>disjoint(X1,X3)), file('/home/swjtu/Desktop/dist/problems/SEU140+2.p', t63_xboole_1)).
fof(t3_boole, axiom, ![X1]:set_difference(X1,empty_set)=X1, file('/home/swjtu/Desktop/dist/problems/SEU140+2.p', t3_boole)).
fof(t3_xboole_0, lemma, ![X1, X2]:(~((~(disjoint(X1,X2))&![X3]:~((in(X3,X1)&in(X3,X2)))))&~((?[X3]:(in(X3,X1)&in(X3,X2))&disjoint(X1,X2)))), file('/home/swjtu/Desktop/dist/problems/SEU140+2.p', t3_xboole_0)).
fof(c_0_8, plain, ![X126]:(~empty(X126)|X126=empty_set), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[t6_boole])])).
fof(c_0_9, plain, empty(esk6_0), inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[rc1_xboole_0])])).
fof(c_0_10, plain, ![X34, X35, X36, X37, X38, X39, X40, X41]:((((in(X37,X34)|~in(X37,X36)|X36!=set_intersection2(X34,X35))&(in(X37,X35)|~in(X37,X36)|X36!=set_intersection2(X34,X35)))&(~in(X38,X34)|~in(X38,X35)|in(X38,X36)|X36!=set_intersection2(X34,X35)))&((~in(esk4_3(X39,X40,X41),X41)|(~in(esk4_3(X39,X40,X41),X39)|~in(esk4_3(X39,X40,X41),X40))|X41=set_intersection2(X39,X40))&((in(esk4_3(X39,X40,X41),X39)|in(esk4_3(X39,X40,X41),X41)|X41=set_intersection2(X39,X40))&(in(esk4_3(X39,X40,X41),X40)|in(esk4_3(X39,X40,X41),X41)|X41=set_intersection2(X39,X40))))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[d3_xboole_0])])])])])])).
fof(c_0_11, lemma, ![X112, X113]:set_difference(X112,set_difference(X112,X113))=set_intersection2(X112,X113), inference(variable_rename,[status(thm)],[t48_xboole_1])).
fof(c_0_12, lemma, ![X63, X64]:((set_difference(X63,X64)!=empty_set|subset(X63,X64))&(~subset(X63,X64)|set_difference(X63,X64)=empty_set)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[l32_xboole_1])])).
cnf(c_0_13, plain, (X1=empty_set|~empty(X1)), inference(split_conjunct,[status(thm)],[c_0_8])).
cnf(c_0_14, plain, (empty(esk6_0)), inference(split_conjunct,[status(thm)],[c_0_9])).
fof(c_0_15, negated_conjecture, ~(![X1, X2, X3]:((subset(X1,X2)&disjoint(X2,X3))=>disjoint(X1,X3))), inference(assume_negation,[status(cth)],[t63_xboole_1])).
cnf(c_0_16, plain, (in(X1,X2)|~in(X1,X3)|X3!=set_intersection2(X4,X2)), inference(split_conjunct,[status(thm)],[c_0_10])).
cnf(c_0_17, lemma, (set_difference(X1,set_difference(X1,X2))=set_intersection2(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_11])).
cnf(c_0_18, lemma, (set_difference(X1,X2)=empty_set|~subset(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_12])).
cnf(c_0_19, plain, (empty_set=esk6_0), inference(spm,[status(thm)],[c_0_13, c_0_14])).
fof(c_0_20, negated_conjecture, ((subset(esk11_0,esk12_0)&disjoint(esk12_0,esk13_0))&~disjoint(esk11_0,esk13_0)), inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_15])])])).
fof(c_0_21, plain, ![X100]:set_difference(X100,empty_set)=X100, inference(variable_rename,[status(thm)],[t3_boole])).
fof(c_0_22, lemma, ![X101, X102, X104, X105, X106]:(((in(esk9_2(X101,X102),X101)|disjoint(X101,X102))&(in(esk9_2(X101,X102),X102)|disjoint(X101,X102)))&(~in(X106,X104)|~in(X106,X105)|~disjoint(X104,X105))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[t3_xboole_0])])])])])])])).
cnf(c_0_23, plain, (in(X1,X2)|X3!=set_difference(X4,set_difference(X4,X2))|~in(X1,X3)), inference(rw,[status(thm)],[c_0_16, c_0_17])).
cnf(c_0_24, lemma, (set_difference(X1,X2)=esk6_0|~subset(X1,X2)), inference(rw,[status(thm)],[c_0_18, c_0_19])).
cnf(c_0_25, negated_conjecture, (subset(esk11_0,esk12_0)), inference(split_conjunct,[status(thm)],[c_0_20])).
cnf(c_0_26, plain, (set_difference(X1,empty_set)=X1), inference(split_conjunct,[status(thm)],[c_0_21])).
cnf(c_0_27, lemma, (~in(X1,X2)|~in(X1,X3)|~disjoint(X2,X3)), inference(split_conjunct,[status(thm)],[c_0_22])).
cnf(c_0_28, negated_conjecture, (disjoint(esk12_0,esk13_0)), inference(split_conjunct,[status(thm)],[c_0_20])).
cnf(c_0_29, negated_conjecture, (~disjoint(esk11_0,esk13_0)), inference(split_conjunct,[status(thm)],[c_0_20])).
cnf(c_0_30, lemma, (in(esk9_2(X1,X2),X2)|disjoint(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_22])).
cnf(c_0_31, plain, (in(X1,X2)|~in(X1,set_difference(X3,set_difference(X3,X2)))), inference(er,[status(thm)],[c_0_23])).
cnf(c_0_32, negated_conjecture, (set_difference(esk11_0,esk12_0)=esk6_0), inference(spm,[status(thm)],[c_0_24, c_0_25])).
cnf(c_0_33, plain, (set_difference(X1,esk6_0)=X1), inference(rw,[status(thm)],[c_0_26, c_0_19])).
cnf(c_0_34, lemma, (in(esk9_2(X1,X2),X1)|disjoint(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_22])).
cnf(c_0_35, negated_conjecture, (~in(X1,esk13_0)|~in(X1,esk12_0)), inference(spm,[status(thm)],[c_0_27, c_0_28])).
cnf(c_0_36, negated_conjecture, (in(esk9_2(esk11_0,esk13_0),esk13_0)), inference(spm,[status(thm)],[c_0_29, c_0_30])).
cnf(c_0_37, negated_conjecture, (in(X1,esk12_0)|~in(X1,esk11_0)), inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_31, c_0_32]), c_0_33])).
cnf(c_0_38, negated_conjecture, (in(esk9_2(esk11_0,esk13_0),esk11_0)), inference(spm,[status(thm)],[c_0_29, c_0_34])).
cnf(c_0_39, negated_conjecture, (~in(esk9_2(esk11_0,esk13_0),esk12_0)), inference(spm,[status(thm)],[c_0_35, c_0_36])).
cnf(c_0_40, negated_conjecture, ($false), inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_37, c_0_38]), c_0_39]), ['proof']).
% SZS output end Proof
% Total time : 0.017105 s

CSE-F 1.0

Peiyao Liu
Southwest Jiaotong University, China

Sample solution for SEU140+2

% Version  : CSE-F---1.0
% Problem  : SEU140+2.p
% Proof found
% SZS status Theorem for SEU140+2.p
% SZS output start Proof
[40]P1(a1)
[48]P1(a2)
[49]~P1(a13)
[80]~P2(a3,a6)
[81]P2(a5,a6)
[82]P3(a3,a5)
[45]~P4(x451,x451)
[50]P3(x501,x501)
[62]P3(a1,x621)
[43]E(f16(x431,x431),x431)
[55]E(f16(x551,a1),x551)
[68]E(f12(x681,a1),x681)
[76]E(f12(a1,x761),a1)
[44]E(f12(x441,f12(x441,x441)),x441)
[59]E(f12(x591,f12(x591,a1)),a1)
[3]E(f16(x31,x32),f16(x32,x31))
[64]P3(f12(x641,x642),x641)
[85]P3(x851,f16(x851,x852))
[4]E(f12(x41,f12(x41,x42)),f12(x42,f12(x42,x41)))
[67]E(f16(x671,f12(x672,x671)),f16(x671,x672))
[73]E(f12(f16(x731,x732),x732),f12(x731,x732))
[72]~P3(x721,a1)+E(x721,a1)
[83]~P1(x831)+E(x831,a1)
[8]P5(f7(x81),x81)+E(x81,a1)
[1]~P5(x12,x11)+~P5(x11,x12)
[2]~P4(x22,x21)+~P4(x21,x22)
[7]~E(x71,x72)+P3(x71,x72)
[9]~P5(x92,x91)+~E(x91,a1)
[34]~P4(x341,x342)+~E(x341,x342)
[35]~P4(x351,x352)+P3(x351,x352)
[51]~P2(x512,x511)+P2(x511,x512)
[79]~P3(x792,x791)+~P4(x791,x792)
[84]~P1(x841)+~P5(x842,x841)
[16]P3(x161,x162)+~P5(f8(x161,x162),x162)
[17]P3(x171,x172)+P5(f8(x171,x172),x171)
[41]P1(x411)+~P1(f16(x411,x412))
[42]P1(x421)+~P1(f16(x422,x421))
[52]~P3(x521,x522)+E(f16(x521,x522),x522)
[65]~P3(x651,x652)+E(f12(x651,x652),a1)
[66]P3(x661,x662)+~E(f12(x661,x662),a1)
[70]P2(x701,x702)+P5(f14(x701,x702),x702)
[71]P2(x711,x712)+P5(f14(x711,x712),x711)
[31]P2(x311,x312)+~E(f12(x311,f12(x311,x312)),a1)
[32]~P2(x321,x322)+E(f12(x321,f12(x321,x322)),a1)
[58]~P3(x581,x582)+E(f12(x581,f12(x581,x582)),x581)
[74]~P3(x741,x742)+E(f16(x741,f12(x742,x741)),x742)
[78]P2(x781,x782)+P5(f4(x781,x782),f12(x781,f12(x781,x782)))
[63]~P3(x631,x633)+P3(f12(x631,x632),f12(x633,x632))
[57]~P3(x571,x573)+P3(f12(x571,f12(x571,x572)),f12(x573,f12(x573,x572)))
[77]~P2(x771,x772)+~P5(x773,f12(x771,f12(x771,x772)))
[5]~P3(x52,x51)+~P3(x51,x52)+E(x51,x52)
[33]P4(x331,x332)+~P3(x331,x332)+E(x331,x332)
[86]~P1(x862)+~P1(x861)+E(x861,x862)
[60]E(x601,x602)+P5(f15(x601,x602),x602)+P5(f15(x601,x602),x601)
[61]E(x611,x612)+~P5(f15(x611,x612),x612)+~P5(f15(x611,x612),x611)
[18]~P3(x183,x182)+P5(x181,x182)+~P5(x181,x183)
[56]~P3(x561,x563)+P3(x561,x562)+~P3(x563,x562)
[69]~P2(x693,x692)+~P5(x691,x692)+~P5(x691,x693)
[11]~P5(f9(x112,x113,x111),x111)+~P5(f9(x112,x113,x111),x113)+E(x111,f16(x112,x113))
[12]~P5(f9(x122,x123,x121),x121)+~P5(f9(x122,x123,x121),x122)+E(x121,f16(x122,x123))
[25]P5(f10(x252,x253,x251),x251)+~P5(f10(x252,x253,x251),x253)+E(x251,f12(x252,x253))
[26]P5(f10(x262,x263,x261),x261)+P5(f10(x262,x263,x261),x262)+E(x261,f12(x262,x263))
[87]~P3(x872,x873)+~P3(x871,x873)+P3(f16(x871,x872),x873)
[19]P5(f11(x192,x193,x191),x191)+P5(f11(x192,x193,x191),x193)+E(x191,f12(x192,f12(x192,x193)))
[20]P5(f11(x202,x203,x201),x201)+P5(f11(x202,x203,x201),x202)+E(x201,f12(x202,f12(x202,x203)))
[54]~P3(x541,x543)+~P3(x541,x542)+P3(x541,f12(x542,f12(x542,x543)))
[13]~P5(x131,x134)+P5(x131,x132)+~E(x132,f16(x133,x134))
[14]~P5(x141,x143)+P5(x141,x142)+~E(x142,f16(x143,x144))
[29]~P5(x294,x293)+~P5(x294,x291)+~E(x291,f12(x292,x293))
[30]~P5(x301,x303)+P5(x301,x302)+~E(x303,f12(x302,x304))
[23]~P5(x231,x233)+P5(x231,x232)+~E(x233,f12(x234,f12(x234,x232)))
[10]P5(f9(x102,x103,x101),x101)+P5(f9(x102,x103,x101),x103)+P5(f9(x102,x103,x101),x102)+E(x101,f16(x102,x103))
[27]P5(f10(x272,x273,x271),x273)+~P5(f10(x272,x273,x271),x271)+~P5(f10(x272,x273,x271),x272)+E(x271,f12(x272,x273))
[21]~P5(f11(x212,x213,x211),x211)+~P5(f11(x212,x213,x211),x213)+~P5(f11(x212,x213,x211),x212)+E(x211,f12(x212,f12(x212,x213)))
[15]~P5(x151,x154)+P5(x151,x152)+P5(x151,x153)+~E(x154,f16(x153,x152))
[28]~P5(x281,x284)+P5(x281,x282)+P5(x281,x283)+~E(x282,f12(x284,x283))
[22]~P5(x221,x224)+~P5(x221,x223)+P5(x221,x222)+~E(x222,f12(x223,f12(x223,x224)))
[88]E(x881,x881)
[89]E(x892,x891)+~E(x891,x892)
[90]E(x901,x903)+~E(x901,x902)+~E(x902,x903)
[91]~E(x911,x912)+E(f12(x911,x913),f12(x912,x913))
[92]~E(x921,x922)+E(f12(x923,x921),f12(x923,x922))
[93]~E(x931,x932)+E(f16(x931,x933),f16(x932,x933))
[94]~E(x941,x942)+E(f16(x943,x941),f16(x943,x942))
[95]~E(x951,x952)+E(f11(x951,x953,x954),f11(x952,x953,x954))
[96]~E(x961,x962)+E(f11(x963,x961,x964),f11(x963,x962,x964))
[97]~E(x971,x972)+E(f11(x973,x974,x971),f11(x973,x974,x972))
[98]~E(x981,x982)+E(f15(x981,x983),f15(x982,x983))
[99]~E(x991,x992)+E(f15(x993,x991),f15(x993,x992))
[100]~E(x1001,x1002)+E(f8(x1001,x1003),f8(x1002,x1003))
[101]~E(x1011,x1012)+E(f8(x1013,x1011),f8(x1013,x1012))
[102]~E(x1021,x1022)+E(f10(x1021,x1023,x1024),f10(x1022,x1023,x1024))
[103]~E(x1031,x1032)+E(f10(x1033,x1031,x1034),f10(x1033,x1032,x1034))
[104]~E(x1041,x1042)+E(f10(x1043,x1044,x1041),f10(x1043,x1044,x1042))
[105]~E(x1051,x1052)+E(f9(x1051,x1053,x1054),f9(x1052,x1053,x1054))
[106]~E(x1061,x1062)+E(f9(x1063,x1061,x1064),f9(x1063,x1062,x1064))
[107]~E(x1071,x1072)+E(f9(x1073,x1074,x1071),f9(x1073,x1074,x1072))
[108]~E(x1081,x1082)+E(f14(x1081,x1083),f14(x1082,x1083))
[109]~E(x1091,x1092)+E(f14(x1093,x1091),f14(x1093,x1092))
[110]~E(x1101,x1102)+E(f4(x1101,x1103),f4(x1102,x1103))
[111]~E(x1111,x1112)+E(f4(x1113,x1111),f4(x1113,x1112))
[112]~E(x1121,x1122)+E(f7(x1121),f7(x1122))
[113]~P1(x1131)+P1(x1132)+~E(x1131,x1132)
[114]P5(x1142,x1143)+~E(x1141,x1142)+~P5(x1141,x1143)
[115]P5(x1153,x1152)+~E(x1151,x1152)+~P5(x1153,x1151)
[116]P3(x1162,x1163)+~E(x1161,x1162)+~P3(x1161,x1163)
[117]P3(x1173,x1172)+~E(x1171,x1172)+~P3(x1173,x1171)
[118]P2(x1182,x1183)+~E(x1181,x1182)+~P2(x1181,x1183)
[119]P2(x1193,x1192)+~E(x1191,x1192)+~P2(x1193,x1191)
[120]P4(x1202,x1203)+~E(x1201,x1202)+~P4(x1201,x1203)
[121]P4(x1213,x1212)+~E(x1211,x1212)+~P4(x1213,x1211)
cnf(123,plain,
   (~P5(x1231,a1)),
   inference(equality_inference,[],[9])).
cnf(124,plain,
   (~P5(x1241,x1242)+P5(x1241,f16(x1243,x1242))),
   inference(equality_inference,[],[13])).
cnf(125,plain,
   (~P5(x1251,x1252)+P5(x1251,f16(x1252,x1253))),
   inference(equality_inference,[],[14])).
cnf(126,plain,
   (~P5(x1261,f16(x1262,x1263))+P5(x1261,x1263)+P5(x1261,x1262)),
   inference(equality_inference,[],[15])).
cnf(128,plain,
   (~P5(x1281,f12(x1282,f12(x1282,x1283)))+P5(x1281,x1283)),
   inference(equality_inference,[],[23])).
cnf(130,plain,
   (~P5(x1301,x1302)+~P5(x1301,f12(x1303,x1302))),
   inference(equality_inference,[],[29])).
cnf(131,plain,
   (~P5(x1311,f12(x1312,x1313))+P5(x1311,x1312)),
   inference(equality_inference,[],[30])).
cnf(139,plain,
   (~P5(x1391,a1)),
   inference(rename_variables,[],[123])).
cnf(142,plain,
   (E(f16(x1421,x1421),x1421)),
   inference(rename_variables,[],[43])).
cnf(168,plain,
   (E(f16(x1681,a1),x1681)),
   inference(rename_variables,[],[55])).
cnf(174,plain,
   (~P5(x1741,a1)),
   inference(rename_variables,[],[123])).
cnf(181,plain,
   (E(f16(x1811,x1811),x1811)),
   inference(rename_variables,[],[43])).
cnf(183,plain,
   (E(f16(x1831,x1831),x1831)),
   inference(rename_variables,[],[43])).
cnf(185,plain,
   (E(f16(x1851,x1851),x1851)),
   inference(rename_variables,[],[43])).
cnf(243,plain,
   (P5(f14(a3,a6),a5)),
inference(scs_inference,[],[80,81,82,123,139,174,43,142,181,183,185,55,168,76,59,40,48,49,64,85,51,31,70,9,34,66,84,128,131,89,17,5,56,116,117,118,119,23,30,60,86,126,90,113,15,32,52,57,58,63,65,71,74,77,78,79,7,8,83,130,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,41,42,18])).
cnf(245,plain,
   (~P3(a5,a3)),
inference(scs_inference,[],[80,81,82,123,139,174,43,142,181,183,185,55,168,76,59,40,48,49,64,85,51,31,70,9,34,66,84,128,131,89,17,5,56,116,117,118,119,23,30,60,86,126,90,113,15,32,52,57,58,63,65,71,74,77,78,79,7,8,83,130,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,41,42,18,33])).
cnf(249,plain,
   (~P5(f14(a3,a6),a6)),
inference(scs_inference,[],[80,81,82,123,139,174,43,142,181,183,185,55,168,76,59,40,48,49,64,85,51,31,70,9,34,66,84,128,131,89,17,5,56,116,117,118,119,23,30,60,86,126,90,113,15,32,52,57,58,63,65,71,74,77,78,79,7,8,83,130,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,41,42,18,33,54,69])).
cnf(295,plain,
   ($false),
   inference(scs_inference,[],[80,81,245,249,243,16,124,125,51,1,31,65,70]),
   ['proof']).
% SZS output end Proof
% Total time : 0.029673 s

cvc5 1.0

Andrew Reynolds
University of Iowa, USA

Sample solution for SET014^4

% SZS status Theorem for SET014^4
% SZS output start Proof for SET014^4
(proof
(let ((_let_1 (not (forall ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (A (-> $$unsorted Bool))) (=> (and ((subset X) A) ((subset Y) A)) ((subset ((union X) Y)) A)))))) (let ((_let_2 (= misses (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool))) (not (exists ((U $$unsorted)) (and (X U) (Y U)))))))) (let ((_let_3 (= meets (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool))) (exists ((U $$unsorted)) (and (X U) (Y U))))))) (let ((_let_4 (= subset (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool))) (forall ((U $$unsorted)) (=> (X U) (Y U))))))) (let ((_let_5 (= disjoint (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool))) (= ((intersection X) Y) emptyset))))) (let ((_let_6 (= complement (lambda ((X (-> $$unsorted Bool)) (U $$unsorted)) (not (X U)))))) (let ((_let_7 (= setminus (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (U $$unsorted)) (and (X U) (not (Y U))))))) (let ((_let_8 (= intersection (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (U $$unsorted)) (and (X U) (Y U)))))) (let ((_let_9 (= excl_union (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (U $$unsorted)) (let ((_let_1 (Y U))) (let ((_let_2 (X U))) (or (and _let_2 (not _let_1)) (and (not _let_2) _let_1)))))))) (let ((_let_10 (= union (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (U $$unsorted)) (or (X U) (Y U)))))) (let ((_let_11 (= singleton (lambda ((X $$unsorted) (U $$unsorted)) (= U X))))) (let ((_let_12 (= unord_pair (lambda ((X $$unsorted) (Y $$unsorted) (U $$unsorted)) (or (= U X) (= U Y)))))) (let ((_let_13 (= emptyset (lambda ((X $$unsorted)) false)))) (let ((_let_14 (= is_a (lambda ((X $$unsorted) (M (-> $$unsorted Bool))) (M X))))) (let ((_let_15 (= in (lambda ((X $$unsorted) (M (-> $$unsorted Bool))) (M X))))) (let ((_let_16 (forall ((BOUND_VARIABLE_596 $$unsorted)) (or (not (ho_1 skv_3 BOUND_VARIABLE_596)) (ho_1 skv_4 BOUND_VARIABLE_596))))) (let ((_let_17 (ho_1 skv_4 skv_5))) (let ((_let_18 (ho_1 skv_3 skv_5))) (let ((_let_19 (not _let_18))) (let ((_let_20 (or _let_19 _let_17))) (let ((_let_21 (ho_1 skv_2 skv_5))) (let ((_let_22 (not _let_21))) (let ((_let_23 (and _let_22 _let_19))) (let ((_let_24 (not _let_16))) (let ((_let_25 (forall ((BOUND_VARIABLE_577 $$unsorted)) (or (not (ho_1 skv_2 BOUND_VARIABLE_577)) (ho_1 skv_4 BOUND_VARIABLE_577))))) (let ((_let_26 (not _let_25))) (let ((_let_27 (or _let_26 _let_24 _let_23 _let_17))) (let ((_let_28 (forall ((BOUND_VARIABLE_711 |u_(-> $$unsorted Bool)|) (BOUND_VARIABLE_708 |u_(-> $$unsorted Bool)|) (BOUND_VARIABLE_704 |u_(-> $$unsorted Bool)|) (BOUND_VARIABLE_658 $$unsorted)) (or (not (forall ((BOUND_VARIABLE_577 $$unsorted)) (or (not (ho_1 BOUND_VARIABLE_711 BOUND_VARIABLE_577)) (ho_1 BOUND_VARIABLE_704 BOUND_VARIABLE_577)))) (not (forall ((BOUND_VARIABLE_596 $$unsorted)) (or (not (ho_1 BOUND_VARIABLE_708 BOUND_VARIABLE_596)) (ho_1 BOUND_VARIABLE_704 BOUND_VARIABLE_596)))) (and (not (ho_1 BOUND_VARIABLE_711 BOUND_VARIABLE_658)) (not (ho_1 BOUND_VARIABLE_708 BOUND_VARIABLE_658))) (ho_1 BOUND_VARIABLE_704 BOUND_VARIABLE_658))))) (let ((_let_29 (not _let_27))) (let ((_let_30 (not _let_28))) (let ((_let_31 (ASSUME |:args| (_let_15)))) (let ((_let_32 (ASSUME |:args| (_let_14)))) (let ((_let_33 (EQ_RESOLVE (ASSUME |:args| (_let_13)) (MACRO_SR_EQ_INTRO |:args| (_let_13 7 12))))) (let ((_let_34 (EQ_RESOLVE (ASSUME |:args| (_let_12)) (MACRO_SR_EQ_INTRO |:args| (_let_12 7 12))))) (let ((_let_35 (EQ_RESOLVE (ASSUME |:args| (_let_11)) (MACRO_SR_EQ_INTRO |:args| (_let_11 7 12))))) (let ((_let_36 (ASSUME |:args| (_let_10)))) (let ((_let_37 (ASSUME |:args| (_let_9)))) (let ((_let_38 (ASSUME |:args| (_let_8)))) (let ((_let_39 (ASSUME |:args| (_let_7)))) (let ((_let_40 (ASSUME |:args| (_let_6)))) (let ((_let_41 (EQ_RESOLVE (ASSUME |:args| (_let_1)) (TRANS (MACRO_SR_EQ_INTRO |:args| (_let_1 7 12)) (MACRO_SR_EQ_INTRO (EQ_RESOLVE (ASSUME |:args| (_let_2)) (MACRO_SR_EQ_INTRO |:args| (_let_2 7 12))) (EQ_RESOLVE (ASSUME |:args| (_let_3)) (MACRO_SR_EQ_INTRO |:args| (_let_3 7 12))) (EQ_RESOLVE (ASSUME |:args| (_let_4)) (MACRO_SR_EQ_INTRO |:args| (_let_4 7 12))) (EQ_RESOLVE (EQ_RESOLVE (ASSUME |:args| (_let_5)) (MACRO_SR_EQ_INTRO |:args| (_let_5 7 12))) (MACRO_SR_EQ_INTRO _let_40 _let_39 _let_38 _let_37 _let_36 _let_35 _let_34 _let_33 _let_32 _let_31 |:args| ((= disjoint (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool))) (= emptyset ((intersection X) Y)))) 7 12))) _let_40 _let_39 _let_38 _let_37 _let_36 _let_35 _let_34 _let_33 _let_32 _let_31 |:args| ((not (forall ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (A (-> $$unsorted Bool))) (or (not ((subset X) A)) (not ((subset Y) A)) ((subset ((union X) Y)) A)))) 7 12)) (PREPROCESS |:args| ((= (not (forall ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (A (-> $$unsorted Bool)) (BOUND_VARIABLE_658 $$unsorted)) (or (not (forall ((BOUND_VARIABLE_577 $$unsorted)) (or (not (X BOUND_VARIABLE_577)) (A BOUND_VARIABLE_577)))) (not (forall ((BOUND_VARIABLE_596 $$unsorted)) (or (not (Y BOUND_VARIABLE_596)) (A BOUND_VARIABLE_596)))) (and (not (X BOUND_VARIABLE_658)) (not (Y BOUND_VARIABLE_658))) (A BOUND_VARIABLE_658)))) _let_30))))))) (let ((_let_42 (20))) (let ((_let_43 (MACRO_RESOLUTION_TRUST (EQ_RESOLVE (IMPLIES_ELIM (SCOPE (SKOLEMIZE _let_41) |:args| (_let_30))) (CONG (MACRO_SR_PRED_INTRO |:args| ((= (not _let_30) _let_28))) (REFL |:args| (_let_29)) |:args| _let_42)) _let_41 |:args| (_let_29 true _let_28)))) (let ((_let_44 (REFL |:args| (_let_27)))) (let ((_let_45 (not _let_20))) (let ((_let_46 (MACRO_RESOLUTION_TRUST (CNF_OR_NEG |:args| (_let_27 3)) _let_43 |:args| ((not _let_17) true _let_27)))) (let ((_let_47 (or _let_22 _let_17))) (let ((_let_48 (_let_25))) (let ((_let_49 (skv_5))) (let ((_let_50 (_let_23))) (let ((_let_51 (_let_16))) (SCOPE (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE (ASSUME |:args| _let_51) |:args| _let_49) |:args| _let_51)) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS |:args| (_let_20)) |:args| ((or _let_19 _let_17 _let_45))) (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (CNF_AND_NEG |:args| _let_50) (CONG (REFL |:args| _let_50) (MACRO_SR_PRED_INTRO |:args| ((= (not _let_22) _let_21))) (MACRO_SR_PRED_INTRO |:args| ((= (not _let_19) _let_18))) |:args| _let_42)) |:args| ((or _let_21 _let_18 _let_23))) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS |:args| (_let_47)) |:args| ((or _let_22 _let_17 (not _let_47)))) _let_46 (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE (ASSUME |:args| _let_48) |:args| _let_49) |:args| _let_48)) (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (CNF_OR_NEG |:args| (_let_27 0)) (CONG _let_44 (MACRO_SR_PRED_INTRO |:args| ((= (not _let_26) _let_25))) |:args| _let_42)) |:args| ((or _let_25 _let_27))) _let_43 |:args| (_let_25 true _let_27)) |:args| (_let_47 false _let_25)) |:args| (_let_22 true _let_17 false _let_47)) (MACRO_RESOLUTION_TRUST (CNF_OR_NEG |:args| (_let_27 2)) _let_43 |:args| ((not _let_23) true _let_27)) |:args| (_let_18 true _let_21 true _let_23)) _let_46 |:args| (_let_45 false _let_18 true _let_17)) (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (CNF_OR_NEG |:args| (_let_27 1)) (CONG _let_44 (MACRO_SR_PRED_INTRO |:args| ((= (not _let_24) _let_16))) |:args| _let_42)) |:args| ((or _let_16 _let_27))) _let_43 |:args| (_let_16 true _let_27)) |:args| (false true _let_20 false _let_16)) |:args| (_let_15 _let_14 _let_13 _let_12 _let_11 _let_10 _let_9 _let_8 _let_7 _let_6 _let_5 _let_4 _let_3 _let_2 _let_1 (not false))))))))))))))))))))))))))))))))))))))))))))))))))))))
)
% SZS output end Proof for SET014^4

Sample solution for SEU140+2

--full-saturate-quant at 10...
% SZS status Theorem for SEU140+2
% SZS output start Proof for SEU140+2
(proof
(let ((_let_1 (forall ((A $$unsorted) (B $$unsorted)) (= (subset A B) (forall ((C $$unsorted)) (=> (in C A) (in C B))))))) (let ((_let_2 (forall ((A $$unsorted) (B $$unsorted)) (=> (disjoint A B) (disjoint B A))))) (let ((_let_3 (forall ((A $$unsorted) (B $$unsorted)) (let ((_let_1 (disjoint A B))) (and (not (and (not _let_1) (forall ((C $$unsorted)) (not (and (in C A) (in C B)))))) (not (and (exists ((C $$unsorted)) (and (in C A) (in C B))) _let_1))))))) (let ((_let_4 (not (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (and (subset A B) (disjoint B C)) (disjoint A C)))))) (let ((_let_5 (in skv_6 skv_3))) (let ((_let_6 (in skv_6 skv_4))) (let ((_let_7 (not _let_5))) (let ((_let_8 (or _let_7 _let_6))) (let ((_let_9 (in skv_6 skv_5))) (let ((_let_10 (not _let_9))) (let ((_let_11 (or _let_7 _let_10))) (let ((_let_12 (forall ((C $$unsorted)) (or (not (in C skv_3)) (not (in C skv_5)))))) (let ((_let_13 (not _let_11))) (let ((_let_14 (not _let_12))) (let ((_let_15 (disjoint skv_3 skv_5))) (let ((_let_16 (or _let_15 _let_14))) (let ((_let_17 (forall ((BOUND_VARIABLE_902 $$unsorted) (BOUND_VARIABLE_904 $$unsorted)) (or (disjoint BOUND_VARIABLE_902 BOUND_VARIABLE_904) (not (forall ((C $$unsorted)) (or (not (in C BOUND_VARIABLE_902)) (not (in C BOUND_VARIABLE_904))))))))) (let ((_let_18 (EQ_RESOLVE (ASSUME |:args| (_let_3)) (MACRO_SR_EQ_INTRO |:args| (_let_3 7 12))))) (let ((_let_19 (_let_17))) (let ((_let_20 (disjoint skv_4 skv_5))) (let ((_let_21 (not _let_20))) (let ((_let_22 (subset skv_3 skv_4))) (let ((_let_23 (not _let_22))) (let ((_let_24 (or _let_23 _let_21 _let_15))) (let ((_let_25 (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (or (not (subset A B)) (not (disjoint B C)) (disjoint A C))))) (let ((_let_26 (not _let_24))) (let ((_let_27 (EQ_RESOLVE (ASSUME |:args| (_let_4)) (MACRO_SR_EQ_INTRO |:args| (_let_4 7 12))))) (let ((_let_28 (20))) (let ((_let_29 (not _let_25))) (let ((_let_30 (MACRO_RESOLUTION_TRUST (EQ_RESOLVE (IMPLIES_ELIM (SCOPE (SKOLEMIZE _let_27) |:args| (_let_29))) (CONG (MACRO_SR_PRED_INTRO |:args| ((= (not _let_29) _let_25))) (REFL |:args| (_let_26)) |:args| _let_28)) _let_27 |:args| (_let_26 true _let_25)))) (let ((_let_31 (_let_14))) (let ((_let_32 (MACRO_RESOLUTION_TRUST (EQ_RESOLVE (IMPLIES_ELIM (SCOPE (SKOLEMIZE (ASSUME |:args| _let_31)) |:args| _let_31)) (CONG (MACRO_SR_PRED_INTRO |:args| ((= (not _let_14) _let_12))) (REFL |:args| (_let_13)) |:args| _let_28)) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS |:args| (_let_16)) |:args| ((or _let_15 _let_14 (not _let_16)))) (MACRO_RESOLUTION_TRUST (CNF_OR_NEG |:args| (_let_24 2)) _let_30 |:args| ((not _let_15) true _let_24)) (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE (ASSUME |:args| _let_19) |:args| (skv_3 skv_5)) |:args| _let_19)) (AND_ELIM _let_18 |:args| (0)) |:args| (_let_16 false _let_17)) |:args| (_let_14 true _let_15 false _let_16)) |:args| (_let_13 true _let_12)))) (let ((_let_33 (REFL |:args| (_let_11)))) (let ((_let_34 (forall ((C $$unsorted)) (or (not (in C skv_3)) (in C skv_4))))) (let ((_let_35 (= _let_22 _let_34))) (let ((_let_36 (forall ((A $$unsorted) (B $$unsorted)) (= (subset A B) (forall ((C $$unsorted)) (or (not (in C A)) (in C B))))))) (let ((_let_37 (EQ_RESOLVE (ASSUME |:args| (_let_1)) (MACRO_SR_EQ_INTRO |:args| (_let_1 7 12))))) (let ((_let_38 (REFL |:args| (_let_24)))) (let ((_let_39 (_let_34))) (let ((_let_40 (not _let_6))) (let ((_let_41 (disjoint skv_5 skv_4))) (let ((_let_42 (not _let_41))) (let ((_let_43 (or _let_42 _let_10 _let_40))) (let ((_let_44 (forall ((BOUND_VARIABLE_917 $$unsorted) (BOUND_VARIABLE_919 $$unsorted) (BOUND_VARIABLE_933 $$unsorted)) (or (not (disjoint BOUND_VARIABLE_917 BOUND_VARIABLE_919)) (not (in BOUND_VARIABLE_933 BOUND_VARIABLE_917)) (not (in BOUND_VARIABLE_933 BOUND_VARIABLE_919)))))) (let ((_let_45 (_let_44))) (let ((_let_46 (or _let_21 _let_41))) (let ((_let_47 (forall ((A $$unsorted) (B $$unsorted)) (or (not (disjoint A B)) (disjoint B A))))) (let ((_let_48 (EQ_RESOLVE (ASSUME |:args| (_let_2)) (MACRO_SR_EQ_INTRO |:args| (_let_2 7 12))))) (SCOPE (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS |:args| (_let_8)) |:args| ((or _let_7 _let_6 (not _let_8)))) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS |:args| (_let_43)) |:args| ((or _let_42 _let_10 _let_40 (not _let_43)))) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_OR_POS |:args| (_let_46)) |:args| ((or _let_21 _let_41 (not _let_46)))) (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (CNF_OR_NEG |:args| (_let_24 1)) (CONG _let_38 (MACRO_SR_PRED_INTRO |:args| ((= (not _let_21) _let_20))) |:args| _let_28)) |:args| ((or _let_20 _let_24))) _let_30 |:args| (_let_20 true _let_24)) (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE _let_48 |:args| (skv_4 skv_5)) |:args| (_let_47))) _let_48 |:args| (_let_46 false _let_47)) |:args| (_let_41 false _let_20 false _let_46)) (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (CNF_OR_NEG |:args| (_let_11 1)) (CONG _let_33 (MACRO_SR_PRED_INTRO |:args| ((= (not _let_10) _let_9))) |:args| _let_28)) |:args| ((or _let_9 _let_11))) _let_32 |:args| (_let_9 true _let_11)) (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE (ASSUME |:args| _let_45) |:args| (skv_5 skv_4 skv_6)) |:args| _let_45)) (AND_ELIM _let_18 |:args| (1)) |:args| (_let_43 false _let_44)) |:args| (_let_40 false _let_41 false _let_9 false _let_43)) (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE (ASSUME |:args| _let_39) |:args| (skv_6)) |:args| _let_39)) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_EQUIV_POS1 |:args| (_let_35)) |:args| ((or _let_23 _let_34 (not _let_35)))) (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (CNF_OR_NEG |:args| (_let_24 0)) (CONG _let_38 (MACRO_SR_PRED_INTRO |:args| ((= (not _let_23) _let_22))) |:args| _let_28)) |:args| ((or _let_22 _let_24))) _let_30 |:args| (_let_22 true _let_24)) (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE _let_37 |:args| (skv_3 skv_4)) |:args| (_let_36))) _let_37 |:args| (_let_35 false _let_36)) |:args| (_let_34 false _let_22 false _let_35)) |:args| (_let_8 false _let_34)) (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (CNF_OR_NEG |:args| (_let_11 0)) (CONG _let_33 (MACRO_SR_PRED_INTRO |:args| ((= (not _let_7) _let_5))) |:args| _let_28)) |:args| ((or _let_5 _let_11))) _let_32 |:args| (_let_5 true _let_11)) |:args| (false true _let_6 false _let_8 false _let_5)) |:args| ((forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (and (subset A B) (subset C B)) (subset (set_union2 A C) B))) (forall ((A $$unsorted) (B $$unsorted)) (not (and (empty A) (not (= A B)) (empty B)))) _let_4 (forall ((A $$unsorted) (B $$unsorted)) (not (and (in A B) (empty B)))) (forall ((A $$unsorted) (B $$unsorted)) (= (set_difference A (set_difference A B)) (set_intersection2 A B))) (forall ((A $$unsorted)) (=> (empty A) (= A empty_set))) (forall ((A $$unsorted) (B $$unsorted)) (=> (subset A B) (= B (set_union2 A (set_difference B A))))) (forall ((A $$unsorted) (B $$unsorted)) (not (and (subset A B) (proper_subset B A)))) (forall ((A $$unsorted)) (=> (subset A empty_set) (= A empty_set))) _let_3 (forall ((A $$unsorted)) (= (set_difference A empty_set) A)) (forall ((A $$unsorted) (B $$unsorted)) (= (= (set_difference A B) empty_set) (subset A B))) (not false) (forall ((A $$unsorted) (B $$unsorted)) (= (set_difference (set_union2 A B) B) (set_difference A B))) (forall ((A $$unsorted) (B $$unsorted)) (subset (set_difference A B) A)) (forall ((A $$unsorted) (B $$unsorted)) (=> (forall ((C $$unsorted)) (= (in C A) (in C B))) (= A B))) (forall ((A $$unsorted)) (= (set_intersection2 A empty_set) empty_set)) (forall ((A $$unsorted)) (= (set_difference empty_set A) empty_set)) (forall ((A $$unsorted) (B $$unsorted)) (=> (subset A B) (= (set_intersection2 A B) A))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (subset A B) (subset (set_intersection2 A C) (set_intersection2 B C)))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (and (subset A B) (subset B C)) (subset A C))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (and (subset A B) (subset A C)) (subset A (set_intersection2 B C)))) (forall ((A $$unsorted) (B $$unsorted)) (subset (set_intersection2 A B) A)) (forall ((A $$unsorted) (B $$unsorted)) (=> (subset A B) (= (set_union2 A B) B))) (forall ((A $$unsorted) (B $$unsorted)) (subset A (set_union2 A B))) _let_2 (forall ((A $$unsorted) (B $$unsorted)) (= (set_union2 A (set_difference B A)) (set_union2 A B))) (forall ((A $$unsorted) (B $$unsorted)) (subset A A)) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (=> (subset A B) (subset (set_difference A C) (set_difference B C)))) (forall ((A $$unsorted)) (= (set_union2 A empty_set) A)) (forall ((A $$unsorted) (B $$unsorted)) (not (proper_subset A A))) (forall ((A $$unsorted) (B $$unsorted)) (= (set_intersection2 A A) A)) (forall ((A $$unsorted) (B $$unsorted)) (= (set_union2 A A) A)) (forall ((A $$unsorted) (B $$unsorted)) (=> (not (empty A)) (not (empty (set_union2 B A))))) (forall ((A $$unsorted) (B $$unsorted)) (=> (not (empty A)) (not (empty (set_union2 A B))))) (empty empty_set) (forall ((A $$unsorted) (B $$unsorted)) (= (proper_subset A B) (and (subset A B) (not (= A B))))) (forall ((A $$unsorted) (B $$unsorted)) (= (= (set_difference A B) empty_set) (subset A B))) (forall ((A $$unsorted) (B $$unsorted)) (= (disjoint A B) (= (set_intersection2 A B) empty_set))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (= (= C (set_difference A B)) (forall ((D $$unsorted)) (= (in D C) (and (in D A) (not (in D B))))))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (= (= C (set_intersection2 A B)) (forall ((D $$unsorted)) (= (in D C) (and (in D A) (in D B)))))) _let_1 (exists ((A $$unsorted)) (empty A)) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (= (= C (set_union2 A B)) (forall ((D $$unsorted)) (= (in D C) (or (in D A) (in D B)))))) (forall ((A $$unsorted)) (= (= A empty_set) (forall ((B $$unsorted)) (not (in B A))))) (forall ((A $$unsorted) (B $$unsorted)) (= (= A B) (and (subset A B) (subset B A)))) true (forall ((A $$unsorted) (B $$unsorted)) (= (set_intersection2 A B) (set_intersection2 B A))) (forall ((A $$unsorted) (B $$unsorted)) (= (set_union2 A B) (set_union2 B A))) (exists ((A $$unsorted)) (not (empty A))) (forall ((A $$unsorted) (B $$unsorted)) (=> (proper_subset A B) (not (proper_subset B A)))) (forall ((A $$unsorted) (B $$unsorted)) (let ((_let_1 (disjoint A B))) (and (not (and (not _let_1) (forall ((C $$unsorted)) (not (in C (set_intersection2 A B)))))) (not (and (exists ((C $$unsorted)) (in C (set_intersection2 A B))) _let_1))))) (forall ((A $$unsorted)) (subset empty_set A)) (forall ((A $$unsorted) (B $$unsorted)) (=> (in A B) (not (in B A))))))))))))))))))))))))))))))))))))))))))))))))))))))
)
% SZS output end Proof for SEU140+2

Sample solution for NLP042+1

% SZS status CounterSatisfiable for NLP042+1
% SZS output start FiniteModel for NLP042+1
(
; cardinality of $$unsorted is 4
; rep: (as @uc_$$unsorted_0 $$unsorted)
; rep: (as @uc_$$unsorted_1 $$unsorted)
; rep: (as @uc_$$unsorted_2 $$unsorted)
; rep: (as @uc_$$unsorted_3 $$unsorted)
(define-fun woman ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool (and (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8019) (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8020)))
(define-fun female ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool (and (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8019) (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8020)))
(define-fun human_person ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool (and (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8019) (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8020)))
(define-fun animate ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool (and (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8019) (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8020)))
(define-fun human ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool (and (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8019) (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8020)))
(define-fun organism ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool (and (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8019) (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8020)))
(define-fun living ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool (and (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8019) (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8020)))
(define-fun impartial ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool true)
(define-fun entity (($x1 $$unsorted) ($x2 $$unsorted)) Bool (or (and (= (as @uc_$$unsorted_3 $$unsorted) $x1) (= (as @uc_$$unsorted_1 $$unsorted) $x2)) (and (= (as @uc_$$unsorted_3 $$unsorted) $x1) (= (as @uc_$$unsorted_3 $$unsorted) $x2))))
(define-fun mia_forename ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool (and (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8019) (= (as @uc_$$unsorted_2 $$unsorted) BOUND_VARIABLE_8020)))
(define-fun forename ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool (and (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8019) (= (as @uc_$$unsorted_2 $$unsorted) BOUND_VARIABLE_8020)))
(define-fun abstraction ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool (and (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8019) (= (as @uc_$$unsorted_2 $$unsorted) BOUND_VARIABLE_8020)))
(define-fun unisex (($x1 $$unsorted) ($x2 $$unsorted)) Bool (or (and (= (as @uc_$$unsorted_3 $$unsorted) $x1) (= (as @uc_$$unsorted_0 $$unsorted) $x2)) (and (= (as @uc_$$unsorted_3 $$unsorted) $x1) (= (as @uc_$$unsorted_2 $$unsorted) $x2)) (and (= (as @uc_$$unsorted_3 $$unsorted) $x1) (= (as @uc_$$unsorted_1 $$unsorted) $x2))))
(define-fun general ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool (and (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8019) (= (as @uc_$$unsorted_2 $$unsorted) BOUND_VARIABLE_8020)))
(define-fun nonhuman ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool (and (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8019) (= (as @uc_$$unsorted_2 $$unsorted) BOUND_VARIABLE_8020)))
(define-fun thing ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool true)
(define-fun relation ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool (and (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8019) (= (as @uc_$$unsorted_2 $$unsorted) BOUND_VARIABLE_8020)))
(define-fun relname ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool (and (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8019) (= (as @uc_$$unsorted_2 $$unsorted) BOUND_VARIABLE_8020)))
(define-fun object ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool (and (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8019) (= (as @uc_$$unsorted_1 $$unsorted) BOUND_VARIABLE_8020)))
(define-fun nonliving ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool (and (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8019) (= (as @uc_$$unsorted_1 $$unsorted) BOUND_VARIABLE_8020)))
(define-fun existent (($x1 $$unsorted) ($x2 $$unsorted)) Bool (or (and (= (as @uc_$$unsorted_3 $$unsorted) $x1) (= (as @uc_$$unsorted_1 $$unsorted) $x2)) (and (= (as @uc_$$unsorted_3 $$unsorted) $x1) (= (as @uc_$$unsorted_3 $$unsorted) $x2))))
(define-fun specific (($x1 $$unsorted) ($x2 $$unsorted)) Bool (or (and (= (as @uc_$$unsorted_3 $$unsorted) $x1) (= (as @uc_$$unsorted_1 $$unsorted) $x2)) (and (= (as @uc_$$unsorted_3 $$unsorted) $x1) (= (as @uc_$$unsorted_0 $$unsorted) $x2)) (and (= (as @uc_$$unsorted_3 $$unsorted) $x1) (= (as @uc_$$unsorted_3 $$unsorted) $x2))))
(define-fun substance_matter ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool (and (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8019) (= (as @uc_$$unsorted_1 $$unsorted) BOUND_VARIABLE_8020)))
(define-fun food ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool (and (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8019) (= (as @uc_$$unsorted_1 $$unsorted) BOUND_VARIABLE_8020)))
(define-fun beverage ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool (and (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8019) (= (as @uc_$$unsorted_1 $$unsorted) BOUND_VARIABLE_8020)))
(define-fun shake_beverage ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool (and (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8019) (= (as @uc_$$unsorted_1 $$unsorted) BOUND_VARIABLE_8020)))
(define-fun order ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool (and (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8019) (= (as @uc_$$unsorted_0 $$unsorted) BOUND_VARIABLE_8020)))
(define-fun event ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool (and (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8019) (= (as @uc_$$unsorted_0 $$unsorted) BOUND_VARIABLE_8020)))
(define-fun eventuality ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool (and (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8019) (= (as @uc_$$unsorted_0 $$unsorted) BOUND_VARIABLE_8020)))
(define-fun nonexistent ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool (and (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8019) (= (as @uc_$$unsorted_0 $$unsorted) BOUND_VARIABLE_8020)))
(define-fun singleton ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool true)
(define-fun act ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool (and (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8019) (= (as @uc_$$unsorted_0 $$unsorted) BOUND_VARIABLE_8020)))
(define-fun of ((BOUND_VARIABLE_8156 $$unsorted) (BOUND_VARIABLE_8157 $$unsorted) (BOUND_VARIABLE_8158 $$unsorted)) Bool true)
(define-fun nonreflexive ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool (and (= (as @uc_$$unsorted_3 $$unsorted) BOUND_VARIABLE_8019) (= (as @uc_$$unsorted_0 $$unsorted) BOUND_VARIABLE_8020)))
(define-fun agent (($x1 $$unsorted) ($x2 $$unsorted) ($x3 $$unsorted)) Bool (and (not (and (= (as @uc_$$unsorted_3 $$unsorted) $x1) (= (as @uc_$$unsorted_0 $$unsorted) $x2) (= (as @uc_$$unsorted_1 $$unsorted) $x3))) (not (and (= (as @uc_$$unsorted_3 $$unsorted) $x1) (= (as @uc_$$unsorted_0 $$unsorted) $x2) (= (as @uc_$$unsorted_0 $$unsorted) $x3))) (not (and (= (as @uc_$$unsorted_3 $$unsorted) $x1) (= (as @uc_$$unsorted_0 $$unsorted) $x2) (= (as @uc_$$unsorted_2 $$unsorted) $x3)))))
(define-fun patient (($x1 $$unsorted) ($x2 $$unsorted) ($x3 $$unsorted)) Bool (not (and (= (as @uc_$$unsorted_3 $$unsorted) $x1) (= (as @uc_$$unsorted_0 $$unsorted) $x2) (= (as @uc_$$unsorted_3 $$unsorted) $x3))))
(define-fun actual_world ((BOUND_VARIABLE_8170 $$unsorted)) Bool true)
(define-fun past ((BOUND_VARIABLE_8019 $$unsorted) (BOUND_VARIABLE_8020 $$unsorted)) Bool true)
)
% SZS output end FiniteModel for NLP042+1

Sample solution for SWV017+1

% SZS status Satisfiable for SWV017+1
% SZS output start FiniteModel for SWV017+1
(
; cardinality of $$unsorted is 2
; rep: (as @uc_$$unsorted_0 $$unsorted)
; rep: (as @uc_$$unsorted_1 $$unsorted)
(define-fun at () $$unsorted (as @uc_$$unsorted_0 $$unsorted))
(define-fun t () $$unsorted (as @uc_$$unsorted_0 $$unsorted))
(define-fun key ((BOUND_VARIABLE_1701 $$unsorted) (BOUND_VARIABLE_1702 $$unsorted)) $$unsorted (as @uc_$$unsorted_0 $$unsorted))
(define-fun a_holds ((BOUND_VARIABLE_1709 $$unsorted)) Bool true)
(define-fun a () $$unsorted (as @uc_$$unsorted_0 $$unsorted))
(define-fun party_of_protocol ((BOUND_VARIABLE_1709 $$unsorted)) Bool true)
(define-fun b () $$unsorted (as @uc_$$unsorted_0 $$unsorted))
(define-fun an_a_nonce () $$unsorted (as @uc_$$unsorted_0 $$unsorted))
(define-fun pair ((BOUND_VARIABLE_1701 $$unsorted) (BOUND_VARIABLE_1702 $$unsorted)) $$unsorted (as @uc_$$unsorted_0 $$unsorted))
(define-fun sent ((BOUND_VARIABLE_1720 $$unsorted) (BOUND_VARIABLE_1721 $$unsorted) (BOUND_VARIABLE_1722 $$unsorted)) $$unsorted (as @uc_$$unsorted_0 $$unsorted))
(define-fun message ((BOUND_VARIABLE_1709 $$unsorted)) Bool true)
(define-fun a_stored ((BOUND_VARIABLE_1709 $$unsorted)) Bool true)
(define-fun quadruple ((BOUND_VARIABLE_1737 $$unsorted) (BOUND_VARIABLE_1738 $$unsorted) (BOUND_VARIABLE_1739 $$unsorted) (BOUND_VARIABLE_1740 $$unsorted)) $$unsorted (as @uc_$$unsorted_0 $$unsorted))
(define-fun encrypt ((BOUND_VARIABLE_1701 $$unsorted) (BOUND_VARIABLE_1702 $$unsorted)) $$unsorted (as @uc_$$unsorted_0 $$unsorted))
(define-fun triple ((BOUND_VARIABLE_1720 $$unsorted) (BOUND_VARIABLE_1721 $$unsorted) (BOUND_VARIABLE_1722 $$unsorted)) $$unsorted (as @uc_$$unsorted_0 $$unsorted))
(define-fun bt () $$unsorted (as @uc_$$unsorted_0 $$unsorted))
(define-fun b_holds ((BOUND_VARIABLE_1709 $$unsorted)) Bool true)
(define-fun fresh_to_b ((BOUND_VARIABLE_1709 $$unsorted)) Bool true)
(define-fun generate_b_nonce ((BOUND_VARIABLE_1755 $$unsorted)) $$unsorted (as @uc_$$unsorted_0 $$unsorted))
(define-fun generate_expiration_time ((BOUND_VARIABLE_1755 $$unsorted)) $$unsorted (as @uc_$$unsorted_0 $$unsorted))
(define-fun b_stored ((BOUND_VARIABLE_1709 $$unsorted)) Bool true)
(define-fun a_key ((BOUND_VARIABLE_1709 $$unsorted)) Bool (= (as @uc_$$unsorted_1 $$unsorted) BOUND_VARIABLE_1709))
(define-fun t_holds ((BOUND_VARIABLE_1709 $$unsorted)) Bool true)
(define-fun a_nonce ((BOUND_VARIABLE_1709 $$unsorted)) Bool (= (as @uc_$$unsorted_0 $$unsorted) BOUND_VARIABLE_1709))
(define-fun generate_key ((BOUND_VARIABLE_1755 $$unsorted)) $$unsorted (as @uc_$$unsorted_1 $$unsorted))
(define-fun intruder_message ((BOUND_VARIABLE_1709 $$unsorted)) Bool true)
(define-fun intruder_holds ((BOUND_VARIABLE_1709 $$unsorted)) Bool true)
(define-fun an_intruder_nonce () $$unsorted (as @uc_$$unsorted_0 $$unsorted))
(define-fun fresh_intruder_nonce ((BOUND_VARIABLE_1709 $$unsorted)) Bool true)
(define-fun generate_intruder_nonce ((BOUND_VARIABLE_1755 $$unsorted)) $$unsorted (as @uc_$$unsorted_0 $$unsorted))
)
% SZS output end FiniteModel for SWV017+1

Drodi 3.1.5

Oscar Contreras
Amateur programmer, Spain

Sample solution for SEU140+2

% SZS output start CNFRefutation for SEU140+2
fof(f4,axiom,(
  ((! [A,B] : set_intersection2(A,B) = set_intersection2(B,A) ))),
  file('/run/media/oscar/Elements/temp/TPTP-v7.3.0.b/Problems/SEU140+2')).
fof(f11,axiom,(
  ((! [A,B] :( disjoint(A,B)<=> set_intersection2(A,B) = empty_set ) ))),
  file('/run/media/oscar/Elements/temp/TPTP-v7.3.0.b/Problems/SEU140+2')).
fof(f23,axiom,(
  ((! [A,B] :( set_difference(A,B) = empty_set<=> subset(A,B) ) ))),
  file('/run/media/oscar/Elements/temp/TPTP-v7.3.0.b/Problems/SEU140+2')).
fof(f33,axiom,(
  ((! [A,B,C] :( subset(A,B)=> subset(set_intersection2(A,C),set_intersection2(B,C)) ) ))),
  file('/run/media/oscar/Elements/temp/TPTP-v7.3.0.b/Problems/SEU140+2')).
fof(f42,axiom,(
  ((! [A] : set_difference(A,empty_set) = A ))),
  file('/run/media/oscar/Elements/temp/TPTP-v7.3.0.b/Problems/SEU140+2')).
fof(f51,conjecture,(
  ((! [A,B,C] :( ( subset(A,B)& disjoint(B,C) )=> disjoint(A,C) ) ))),
  file('/run/media/oscar/Elements/temp/TPTP-v7.3.0.b/Problems/SEU140+2')).
fof(f52,negated_conjecture,(
  ~(((! [A,B,C] :( ( subset(A,B)& disjoint(B,C) )=> disjoint(A,C) ) )))),
  inference(negated_conjecture,[status(cth)],[f51])).
fof(f63,plain,(
  ![X0,X1]: (set_intersection2(X0,X1)=set_intersection2(X1,X0))),
  inference(cnf_transformation,[status(esa)],[f4])).
fof(f108,plain,(
  ![A,B]: (![A,B]: ((~disjoint(A,B)|set_intersection2(A,B)=empty_set)&(disjoint(A,B)|~set_intersection2(A,B)=empty_set)))),
  inference(NNF_transformation,[status(esa)],[f11])).
fof(f109,plain,(
  ![A,B]: ((![A,B]: (~disjoint(A,B)|set_intersection2(A,B)=empty_set))&(![A,B]: (disjoint(A,B)|~set_intersection2(A,B)=empty_set)))),
  inference(miniscoping,[status(esa)],[f108])).
fof(f110,plain,(
  ![X0,X1]: (~disjoint(X0,X1)|set_intersection2(X0,X1)=empty_set)),
  inference(cnf_transformation,[status(esa)],[f109])).
fof(f111,plain,(
  ![X0,X1]: (disjoint(X0,X1)|~set_intersection2(X0,X1)=empty_set)),
  inference(cnf_transformation,[status(esa)],[f109])).
fof(f130,plain,(
  ![A,B]: (![A,B]: ((~set_difference(A,B)=empty_set|subset(A,B))&(set_difference(A,B)=empty_set|~subset(A,B))))),
  inference(NNF_transformation,[status(esa)],[f23])).
fof(f131,plain,(
  ![A,B]: ((![A,B]: (~set_difference(A,B)=empty_set|subset(A,B)))&(![A,B]: (set_difference(A,B)=empty_set|~subset(A,B))))),
  inference(miniscoping,[status(esa)],[f130])).
fof(f133,plain,(
  ![X0,X1]: (set_difference(X0,X1)=empty_set|~subset(X0,X1))),
  inference(cnf_transformation,[status(esa)],[f131])).
fof(f151,plain,(
  ![A,B,C]: (![A,B,C]: (~subset(A,B)|subset(set_intersection2(A,C),set_intersection2(B,C))))),
  inference(pre_NNF_transformation,[status(esa)],[f33])).
fof(f152,plain,(
  ![A,B,C]: (![A,B]: (~subset(A,B)|(![C]: subset(set_intersection2(A,C),set_intersection2(B,C)))))),
  inference(miniscoping,[status(esa)],[f151])).
fof(f153,plain,(
  ![X0,X1,X2]: (~subset(X0,X1)|subset(set_intersection2(X0,X2),set_intersection2(X1,X2)))),
  inference(cnf_transformation,[status(esa)],[f152])).
fof(f172,plain,(
  ![X0]: (set_difference(X0,empty_set)=X0)),
  inference(cnf_transformation,[status(esa)],[f42])).
fof(f193,plain,(
  ![A,B,C]: ((?[A,B,C]: ((subset(A,B)&disjoint(B,C))&~disjoint(A,C))))),
  inference(pre_NNF_transformation,[status(esa)],[f52])).
fof(f194,plain,(
  ![A,C,B]: (?[A,C]: ((?[B]: (subset(A,B)&disjoint(B,C)))&~disjoint(A,C)))),
  inference(miniscoping,[status(esa)],[f193])).
fof(f195,plain,(
  ((subset(sk0_10,sk0_12)&disjoint(sk0_12,sk0_11))&~disjoint(sk0_10,sk0_11))),
  inference(skolemization,[status(esa)],[f194])).
fof(f196,plain,(
  subset(sk0_10,sk0_12)),
  inference(cnf_transformation,[status(esa)],[f195])).
fof(f197,plain,(
  disjoint(sk0_12,sk0_11)),
  inference(cnf_transformation,[status(esa)],[f195])).
fof(f198,plain,(
  ~disjoint(sk0_10,sk0_11)),
  inference(cnf_transformation,[status(esa)],[f195])).
fof(f328,plain,(
  set_intersection2(sk0_12,sk0_11)=empty_set),
  inference(resolution,[status(thm)],[f110,f197])).
fof(f329,plain,(
  set_intersection2(sk0_11,sk0_12)=empty_set),
  inference(forward_demodulation,[status(thm)],[f63,f328])).
fof(f403,plain,(
  ![X0]: (subset(set_intersection2(sk0_10,X0),set_intersection2(sk0_12,X0)))),
  inference(resolution,[status(thm)],[f153,f196])).
fof(f7292,plain,(
  ![X0]: (subset(set_intersection2(sk0_10,X0),set_intersection2(X0,sk0_12)))),
  inference(paramodulation,[status(thm)],[f63,f403])).
fof(f19999,plain,(
  subset(set_intersection2(sk0_10,sk0_11),empty_set)),
  inference(paramodulation,[status(thm)],[f329,f7292])).
fof(f20866,plain,(
  set_difference(set_intersection2(sk0_10,sk0_11),empty_set)=empty_set),
  inference(resolution,[status(thm)],[f19999,f133])).
fof(f20867,plain,(
  set_intersection2(sk0_10,sk0_11)=empty_set),
  inference(forward_demodulation,[status(thm)],[f172,f20866])).
fof(f20935,plain,(
  disjoint(sk0_10,sk0_11)),
  inference(resolution,[status(thm)],[f20867,f111])).
fof(f20936,plain,(
  $false),
  inference(forward_subsumption_resolution,[status(thm)],[f20935,f198])).
% SZS output end CNFRefutation for SEU140+2

Sample solution for BOO001-1

fof(f1,axiom,(
  (![V,W,X,Y,Z]: (( multiply(multiply(V,W,X),Y,multiply(V,W,Z)) = multiply(V,W,multiply(X,Y,Z)) )))),
  file('/run/media/oscar/Elements/temp/TPTP-v7.3.0.b/Problems/BOO001-1')).
fof(f2,axiom,(
  (![Y,X]: (( multiply(Y,X,X) = X )))),
  file('/run/media/oscar/Elements/temp/TPTP-v7.3.0.b/Problems/BOO001-1')).
fof(f3,axiom,(
  (![X,Y]: (( multiply(X,X,Y) = X )))),
  file('/run/media/oscar/Elements/temp/TPTP-v7.3.0.b/Problems/BOO001-1')).
fof(f5,axiom,(
  (![X,Y]: (( multiply(X,Y,inverse(Y)) = X )))),
  file('/run/media/oscar/Elements/temp/TPTP-v7.3.0.b/Problems/BOO001-1')).
fof(f6,axiom,(
  (  inverse(inverse(a)) != a )),
  file('/run/media/oscar/Elements/temp/TPTP-v7.3.0.b/Problems/BOO001-1')).
fof(f7,plain,(
  ![X0,X1,X2,X3,X4]: (multiply(multiply(X0,X1,X2),X3,multiply(X0,X1,X4))=multiply(X0,X1,multiply(X2,X3,X4)))),
  inference(cnf_transformation,[status(esa)],[f1])).
fof(f8,plain,(
  ![X0,X1]: (multiply(X0,X1,X1)=X1)),
  inference(cnf_transformation,[status(esa)],[f2])).
fof(f9,plain,(
  ![X0,X1]: (multiply(X0,X0,X1)=X0)),
  inference(cnf_transformation,[status(esa)],[f3])).
fof(f11,plain,(
  ![X0,X1]: (multiply(X0,X1,inverse(X1))=X0)),
  inference(cnf_transformation,[status(esa)],[f5])).
fof(f12,plain,(
  ~inverse(inverse(a))=a),
  inference(cnf_transformation,[status(esa)],[f6])).
fof(f14,plain,(
  ![X0,X1,X2,X3]: (multiply(X0,X1,X2)=multiply(X0,X1,multiply(X2,multiply(X0,X1,X2),X3)))),
  inference(paramodulation,[status(thm)],[f9,f7])).
fof(f15,plain,(
  ![X0,X1,X2,X3]: (multiply(X0,X1,multiply(X2,X0,X3))=multiply(X2,X0,multiply(X0,X1,X3)))),
  inference(paramodulation,[status(thm)],[f8,f7])).
fof(f133,plain,(
  ![X0,X1,X2]: (multiply(X0,X1,inverse(X1))=multiply(X0,X1,multiply(inverse(X1),X0,X2)))),
  inference(paramodulation,[status(thm)],[f11,f14])).
fof(f134,plain,(
  ![X0,X1,X2]: (X0=multiply(X0,X1,multiply(inverse(X1),X0,X2)))),
  inference(forward_demodulation,[status(thm)],[f11,f133])).
fof(f254,plain,(
  ![X0,X1,X2]: (X0=multiply(inverse(X1),X0,multiply(X0,X1,X2)))),
  inference(paramodulation,[status(thm)],[f15,f134])).
fof(f293,plain,(
  ![X0,X1]: (X0=multiply(inverse(X1),X0,X1))),
  inference(paramodulation,[status(thm)],[f8,f254])).
fof(f330,plain,(
  ![X0]: (X0=inverse(inverse(X0)))),
  inference(paramodulation,[status(thm)],[f11,f293])).
fof(f351,plain,(
  ~a=a),
  inference(backward_demodulation,[status(thm)],[f330,f12])).
fof(f352,plain,(
  $false),
  inference(trivial_equality_resolution,[status(esa)],[f351])).
% SZS output end CNFRefutation for BOO001-1

E 2.5

Stephan Schulz
DHBW Stuttgart, Germany

Sample solution for SEU140+2

# SZS output start CNFRefutation
fof(t4_xboole_0, lemma, ![X1, X2]:(~((~(disjoint(X1,X2))&![X3]:~(in(X3,set_intersection2(X1,X2)))))&~((?[X3]:in(X3,set_intersection2(X1,X2))&disjoint(X1,X2)))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', t4_xboole_0)).
fof(t48_xboole_1, lemma, ![X1, X2]:set_difference(X1,set_difference(X1,X2))=set_intersection2(X1,X2), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', t48_xboole_1)).
fof(t63_xboole_1, conjecture, ![X1, X2, X3]:((subset(X1,X2)&disjoint(X2,X3))=>disjoint(X1,X3)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', t63_xboole_1)).
fof(d1_xboole_0, axiom, ![X1]:(X1=empty_set<=>![X2]:~(in(X2,X1))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', d1_xboole_0)).
fof(d3_xboole_0, axiom, ![X1, X2, X3]:(X3=set_intersection2(X1,X2)<=>![X4]:(in(X4,X3)<=>(in(X4,X1)&in(X4,X2)))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', d3_xboole_0)).
fof(d4_xboole_0, axiom, ![X1, X2, X3]:(X3=set_difference(X1,X2)<=>![X4]:(in(X4,X3)<=>(in(X4,X1)&~(in(X4,X2))))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', d4_xboole_0)).
fof(t3_xboole_0, lemma, ![X1, X2]:(~((~(disjoint(X1,X2))&![X3]:~((in(X3,X1)&in(X3,X2)))))&~((?[X3]:(in(X3,X1)&in(X3,X2))&disjoint(X1,X2)))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', t3_xboole_0)).
fof(l32_xboole_1, lemma, ![X1, X2]:(set_difference(X1,X2)=empty_set<=>subset(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', l32_xboole_1)).
fof(d10_xboole_0, axiom, ![X1, X2]:(X1=X2<=>(subset(X1,X2)&subset(X2,X1))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', d10_xboole_0)).
fof(t36_xboole_1, lemma, ![X1, X2]:subset(set_difference(X1,X2),X1), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', t36_xboole_1)).
fof(t3_boole, axiom, ![X1]:set_difference(X1,empty_set)=X1, file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', t3_boole)).
fof(c_0_11, lemma, ![X115, X116, X118, X119, X120]:((disjoint(X115,X116)|in(esk10_2(X115,X116),set_intersection2(X115,X116)))&(~in(X120,set_intersection2(X118,X119))|~disjoint(X118,X119))), inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[t4_xboole_0])])])])])])).
fof(c_0_12, lemma, ![X112, X113]:set_difference(X112,set_difference(X112,X113))=set_intersection2(X112,X113), inference(variable_rename,[status(thm)],[t48_xboole_1])).
fof(c_0_13, negated_conjecture, ~(![X1, X2, X3]:((subset(X1,X2)&disjoint(X2,X3))=>disjoint(X1,X3))), inference(assume_negation,[status(cth)],[t63_xboole_1])).
cnf(c_0_14, lemma, (~in(X1,set_intersection2(X2,X3))|~disjoint(X2,X3)), inference(split_conjunct,[status(thm)],[c_0_11])).
cnf(c_0_15, lemma, (set_difference(X1,set_difference(X1,X2))=set_intersection2(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_12])).
fof(c_0_16, negated_conjecture, ((subset(esk11_0,esk12_0)&disjoint(esk12_0,esk13_0))&~disjoint(esk11_0,esk13_0)), inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_13])])])).
cnf(c_0_17, lemma, (~disjoint(X2,X3)|~in(X1,set_difference(X2,set_difference(X2,X3)))), inference(rw,[status(thm)],[c_0_14, c_0_15])).
cnf(c_0_18, negated_conjecture, (disjoint(esk12_0,esk13_0)), inference(split_conjunct,[status(thm)],[c_0_16])).
fof(c_0_19, plain, ![X15, X16, X17]:((X15!=empty_set|~in(X16,X15))&(in(esk1_1(X17),X17)|X17=empty_set)), inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[d1_xboole_0])])])])])])).
fof(c_0_20, plain, ![X34, X35, X36, X37, X38, X39, X40, X41]:((((in(X37,X34)|~in(X37,X36)|X36!=set_intersection2(X34,X35))&(in(X37,X35)|~in(X37,X36)|X36!=set_intersection2(X34,X35)))&(~in(X38,X34)|~in(X38,X35)|in(X38,X36)|X36!=set_intersection2(X34,X35)))&((~in(esk4_3(X39,X40,X41),X41)|(~in(esk4_3(X39,X40,X41),X39)|~in(esk4_3(X39,X40,X41),X40))|X41=set_intersection2(X39,X40))&((in(esk4_3(X39,X40,X41),X39)|in(esk4_3(X39,X40,X41),X41)|X41=set_intersection2(X39,X40))&(in(esk4_3(X39,X40,X41),X40)|in(esk4_3(X39,X40,X41),X41)|X41=set_intersection2(X39,X40))))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[d3_xboole_0])])])])])])).
fof(c_0_21, plain, ![X43, X44, X45, X46, X47, X48, X49, X50]:((((in(X46,X43)|~in(X46,X45)|X45!=set_difference(X43,X44))&(~in(X46,X44)|~in(X46,X45)|X45!=set_difference(X43,X44)))&(~in(X47,X43)|in(X47,X44)|in(X47,X45)|X45!=set_difference(X43,X44)))&((~in(esk5_3(X48,X49,X50),X50)|(~in(esk5_3(X48,X49,X50),X48)|in(esk5_3(X48,X49,X50),X49))|X50=set_difference(X48,X49))&((in(esk5_3(X48,X49,X50),X48)|in(esk5_3(X48,X49,X50),X50)|X50=set_difference(X48,X49))&(~in(esk5_3(X48,X49,X50),X49)|in(esk5_3(X48,X49,X50),X50)|X50=set_difference(X48,X49))))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[d4_xboole_0])])])])])])])).
fof(c_0_22, lemma, ![X101, X102, X104, X105, X106]:(((in(esk9_2(X101,X102),X101)|disjoint(X101,X102))&(in(esk9_2(X101,X102),X102)|disjoint(X101,X102)))&(~in(X106,X104)|~in(X106,X105)|~disjoint(X104,X105))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[t3_xboole_0])])])])])])])).
fof(c_0_23, lemma, ![X63, X64]:((set_difference(X63,X64)!=empty_set|subset(X63,X64))&(~subset(X63,X64)|set_difference(X63,X64)=empty_set)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[l32_xboole_1])])).
cnf(c_0_24, negated_conjecture, (~in(X1,set_difference(esk12_0,set_difference(esk12_0,esk13_0)))), inference(spm,[status(thm)],[c_0_17, c_0_18])).
cnf(c_0_25, plain, (in(esk1_1(X1),X1)|X1=empty_set), inference(split_conjunct,[status(thm)],[c_0_19])).
cnf(c_0_26, plain, (in(X1,X2)|~in(X1,X3)|X3!=set_intersection2(X4,X2)), inference(split_conjunct,[status(thm)],[c_0_20])).
cnf(c_0_27, plain, (~in(X1,X2)|~in(X1,X3)|X3!=set_difference(X4,X2)), inference(split_conjunct,[status(thm)],[c_0_21])).
cnf(c_0_28, negated_conjecture, (~disjoint(esk11_0,esk13_0)), inference(split_conjunct,[status(thm)],[c_0_16])).
cnf(c_0_29, lemma, (in(esk9_2(X1,X2),X2)|disjoint(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_22])).
fof(c_0_30, plain, ![X13, X14]:(((subset(X13,X14)|X13!=X14)&(subset(X14,X13)|X13!=X14))&(~subset(X13,X14)|~subset(X14,X13)|X13=X14)), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[d10_xboole_0])])])).
cnf(c_0_31, lemma, (subset(X1,X2)|set_difference(X1,X2)!=empty_set), inference(split_conjunct,[status(thm)],[c_0_23])).
cnf(c_0_32, negated_conjecture, (set_difference(esk12_0,set_difference(esk12_0,esk13_0))=empty_set), inference(spm,[status(thm)],[c_0_24, c_0_25])).
fof(c_0_33, lemma, ![X94, X95]:subset(set_difference(X94,X95),X94), inference(variable_rename,[status(thm)],[t36_xboole_1])).
cnf(c_0_34, plain, (in(X1,X2)|X3!=set_difference(X4,set_difference(X4,X2))|~in(X1,X3)), inference(rw,[status(thm)],[c_0_26, c_0_15])).
cnf(c_0_35, lemma, (set_difference(X1,X2)=empty_set|~subset(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_23])).
cnf(c_0_36, negated_conjecture, (subset(esk11_0,esk12_0)), inference(split_conjunct,[status(thm)],[c_0_16])).
fof(c_0_37, plain, ![X100]:set_difference(X100,empty_set)=X100, inference(variable_rename,[status(thm)],[t3_boole])).
cnf(c_0_38, plain, (~in(X1,set_difference(X2,X3))|~in(X1,X3)), inference(er,[status(thm)],[c_0_27])).
cnf(c_0_39, negated_conjecture, (in(esk9_2(esk11_0,esk13_0),esk13_0)), inference(spm,[status(thm)],[c_0_28, c_0_29])).
cnf(c_0_40, plain, (X1=X2|~subset(X1,X2)|~subset(X2,X1)), inference(split_conjunct,[status(thm)],[c_0_30])).
cnf(c_0_41, lemma, (subset(esk12_0,set_difference(esk12_0,esk13_0))), inference(spm,[status(thm)],[c_0_31, c_0_32])).
cnf(c_0_42, lemma, (subset(set_difference(X1,X2),X1)), inference(split_conjunct,[status(thm)],[c_0_33])).
cnf(c_0_43, plain, (in(X1,X2)|~in(X1,set_difference(X3,set_difference(X3,X2)))), inference(er,[status(thm)],[c_0_34])).
cnf(c_0_44, negated_conjecture, (set_difference(esk11_0,esk12_0)=empty_set), inference(spm,[status(thm)],[c_0_35, c_0_36])).
cnf(c_0_45, plain, (set_difference(X1,empty_set)=X1), inference(split_conjunct,[status(thm)],[c_0_37])).
cnf(c_0_46, lemma, (in(esk9_2(X1,X2),X1)|disjoint(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_22])).
cnf(c_0_47, negated_conjecture, (~in(esk9_2(esk11_0,esk13_0),set_difference(X1,esk13_0))), inference(spm,[status(thm)],[c_0_38, c_0_39])).
cnf(c_0_48, lemma, (set_difference(esk12_0,esk13_0)=esk12_0), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_40, c_0_41]), c_0_42])])).
cnf(c_0_49, negated_conjecture, (in(X1,esk12_0)|~in(X1,esk11_0)), inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_43, c_0_44]), c_0_45])).
cnf(c_0_50, negated_conjecture, (in(esk9_2(esk11_0,esk13_0),esk11_0)), inference(spm,[status(thm)],[c_0_28, c_0_46])).
cnf(c_0_51, lemma, (~in(esk9_2(esk11_0,esk13_0),esk12_0)), inference(spm,[status(thm)],[c_0_47, c_0_48])).
cnf(c_0_52, negated_conjecture, ($false), inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_49, c_0_50]), c_0_51]), ['proof']).
# SZS output end CNFRefutation

Sample solution for NLP042+1

# SZS output start Saturation
fof(ax26, axiom, ![X1, X2]:(beverage(X1,X2)=>food(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax26)).
fof(ax27, axiom, ![X1, X2]:(shake_beverage(X1,X2)=>beverage(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax27)).
fof(ax15, axiom, ![X1, X2]:(relname(X1,X2)=>relation(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax15)).
fof(ax16, axiom, ![X1, X2]:(forename(X1,X2)=>relname(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax16)).
fof(ax25, axiom, ![X1, X2]:(food(X1,X2)=>substance_matter(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax25)).
fof(co1, conjecture, ~(?[X1]:(actual_world(X1)&?[X2, X3, X4, X5]:((((((((((of(X1,X3,X2)&woman(X1,X2))&mia_forename(X1,X3))&forename(X1,X3))&shake_beverage(X1,X4))&event(X1,X5))&agent(X1,X5,X2))&patient(X1,X5,X4))&past(X1,X5))&nonreflexive(X1,X5))&order(X1,X5)))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', co1)).
fof(ax41, axiom, ![X1, X2]:(specific(X1,X2)=>~(general(X1,X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax41)).
fof(ax21, axiom, ![X1, X2]:(entity(X1,X2)=>specific(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax21)).
fof(ax39, axiom, ![X1, X2]:(nonhuman(X1,X2)=>~(human(X1,X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax39)).
fof(ax12, axiom, ![X1, X2]:(abstraction(X1,X2)=>nonhuman(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax12)).
fof(ax14, axiom, ![X1, X2]:(relation(X1,X2)=>abstraction(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax14)).
fof(ax42, axiom, ![X1, X2]:(unisex(X1,X2)=>~(female(X1,X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax42)).
fof(ax10, axiom, ![X1, X2]:(abstraction(X1,X2)=>unisex(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax10)).
fof(ax24, axiom, ![X1, X2]:(substance_matter(X1,X2)=>object(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax24)).
fof(ax31, axiom, ![X1, X2]:(eventuality(X1,X2)=>specific(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax31)).
fof(ax34, axiom, ![X1, X2]:(event(X1,X2)=>eventuality(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax34)).
fof(ax6, axiom, ![X1, X2]:(organism(X1,X2)=>entity(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax6)).
fof(ax7, axiom, ![X1, X2]:(human_person(X1,X2)=>organism(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax7)).
fof(ax8, axiom, ![X1, X2]:(woman(X1,X2)=>human_person(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax8)).
fof(ax11, axiom, ![X1, X2]:(abstraction(X1,X2)=>general(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax11)).
fof(ax40, axiom, ![X1, X2]:(nonliving(X1,X2)=>~(living(X1,X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax40)).
fof(ax19, axiom, ![X1, X2]:(object(X1,X2)=>nonliving(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax19)).
fof(ax37, axiom, ![X1, X2]:(animate(X1,X2)=>~(nonliving(X1,X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax37)).
fof(ax17, axiom, ![X1, X2]:(object(X1,X2)=>unisex(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax17)).
fof(ax38, axiom, ![X1, X2]:(existent(X1,X2)=>~(nonexistent(X1,X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax38)).
fof(ax30, axiom, ![X1, X2]:(eventuality(X1,X2)=>nonexistent(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax30)).
fof(ax29, axiom, ![X1, X2]:(eventuality(X1,X2)=>unisex(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax29)).
fof(ax44, axiom, ![X1, X2, X3, X4]:(((nonreflexive(X1,X2)&agent(X1,X2,X3))&patient(X1,X2,X4))=>X3!=X4), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax44)).
fof(ax43, axiom, ![X1, X2, X3]:(((entity(X1,X2)&forename(X1,X3))&of(X1,X3,X2))=>~(?[X4]:((forename(X1,X4)&X4!=X3)&of(X1,X4,X2)))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax43)).
fof(ax3, axiom, ![X1, X2]:(human_person(X1,X2)=>human(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax3)).
fof(ax1, axiom, ![X1, X2]:(woman(X1,X2)=>female(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax1)).
fof(ax4, axiom, ![X1, X2]:(organism(X1,X2)=>living(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax4)).
fof(ax2, axiom, ![X1, X2]:(human_person(X1,X2)=>animate(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax2)).
fof(ax20, axiom, ![X1, X2]:(entity(X1,X2)=>existent(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax20)).
fof(ax23, axiom, ![X1, X2]:(object(X1,X2)=>entity(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax23)).
fof(ax35, axiom, ![X1, X2]:(act(X1,X2)=>event(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax35)).
fof(ax28, axiom, ![X1, X2]:(order(X1,X2)=>event(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax28)).
fof(ax36, axiom, ![X1, X2]:(order(X1,X2)=>act(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax36)).
fof(ax32, axiom, ![X1, X2]:(thing(X1,X2)=>singleton(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax32)).
fof(ax9, axiom, ![X1, X2]:(mia_forename(X1,X2)=>forename(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax9)).
fof(ax33, axiom, ![X1, X2]:(eventuality(X1,X2)=>thing(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax33)).
fof(ax13, axiom, ![X1, X2]:(abstraction(X1,X2)=>thing(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax13)).
fof(ax22, axiom, ![X1, X2]:(entity(X1,X2)=>thing(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax22)).
fof(ax18, axiom, ![X1, X2]:(object(X1,X2)=>impartial(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax18)).
fof(ax5, axiom, ![X1, X2]:(organism(X1,X2)=>impartial(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax5)).
fof(c_0_45, plain, ![X56, X57]:(~beverage(X56,X57)|food(X56,X57)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax26])])).
fof(c_0_46, plain, ![X58, X59]:(~shake_beverage(X58,X59)|beverage(X58,X59)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax27])])).
fof(c_0_47, plain, ![X34, X35]:(~relname(X34,X35)|relation(X34,X35)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax15])])).
fof(c_0_48, plain, ![X36, X37]:(~forename(X36,X37)|relname(X36,X37)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax16])])).
fof(c_0_49, plain, ![X54, X55]:(~food(X54,X55)|substance_matter(X54,X55)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax25])])).
cnf(c_0_50, plain, (food(X1,X2)|~beverage(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_45]), ['final']).
cnf(c_0_51, plain, (beverage(X1,X2)|~shake_beverage(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_46]), ['final']).
fof(c_0_52, negated_conjecture, ~(~(?[X1]:(actual_world(X1)&?[X2, X3, X4, X5]:((((((((((of(X1,X3,X2)&woman(X1,X2))&mia_forename(X1,X3))&forename(X1,X3))&shake_beverage(X1,X4))&event(X1,X5))&agent(X1,X5,X2))&patient(X1,X5,X4))&past(X1,X5))&nonreflexive(X1,X5))&order(X1,X5))))), inference(assume_negation,[status(cth)],[co1])).
fof(c_0_53, plain, ![X86, X87]:(~specific(X86,X87)|~general(X86,X87)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[ax41])])])).
fof(c_0_54, plain, ![X46, X47]:(~entity(X46,X47)|specific(X46,X47)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax21])])).
fof(c_0_55, plain, ![X82, X83]:(~nonhuman(X82,X83)|~human(X82,X83)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[ax39])])])).
fof(c_0_56, plain, ![X28, X29]:(~abstraction(X28,X29)|nonhuman(X28,X29)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax12])])).
fof(c_0_57, plain, ![X32, X33]:(~relation(X32,X33)|abstraction(X32,X33)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax14])])).
cnf(c_0_58, plain, (relation(X1,X2)|~relname(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_47]), ['final']).
cnf(c_0_59, plain, (relname(X1,X2)|~forename(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_48]), ['final']).
fof(c_0_60, plain, ![X88, X89]:(~unisex(X88,X89)|~female(X88,X89)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[ax42])])])).
fof(c_0_61, plain, ![X24, X25]:(~abstraction(X24,X25)|unisex(X24,X25)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax10])])).
fof(c_0_62, plain, ![X52, X53]:(~substance_matter(X52,X53)|object(X52,X53)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax24])])).
cnf(c_0_63, plain, (substance_matter(X1,X2)|~food(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_49]), ['final']).
cnf(c_0_64, plain, (food(X1,X2)|~shake_beverage(X1,X2)), inference(spm,[status(thm)],[c_0_50, c_0_51]), ['final']).
fof(c_0_65, plain, ![X66, X67]:(~eventuality(X66,X67)|specific(X66,X67)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax31])])).
fof(c_0_66, plain, ![X72, X73]:(~event(X72,X73)|eventuality(X72,X73)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax34])])).
fof(c_0_67, negated_conjecture, (actual_world(esk1_0)&((((((((((of(esk1_0,esk3_0,esk2_0)&woman(esk1_0,esk2_0))&mia_forename(esk1_0,esk3_0))&forename(esk1_0,esk3_0))&shake_beverage(esk1_0,esk4_0))&event(esk1_0,esk5_0))&agent(esk1_0,esk5_0,esk2_0))&patient(esk1_0,esk5_0,esk4_0))&past(esk1_0,esk5_0))&nonreflexive(esk1_0,esk5_0))&order(esk1_0,esk5_0))), inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_52])])])).
fof(c_0_68, plain, ![X16, X17]:(~organism(X16,X17)|entity(X16,X17)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax6])])).
fof(c_0_69, plain, ![X18, X19]:(~human_person(X18,X19)|organism(X18,X19)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax7])])).
fof(c_0_70, plain, ![X20, X21]:(~woman(X20,X21)|human_person(X20,X21)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax8])])).
cnf(c_0_71, plain, (~specific(X1,X2)|~general(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_53]), ['final']).
cnf(c_0_72, plain, (specific(X1,X2)|~entity(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_54]), ['final']).
fof(c_0_73, plain, ![X26, X27]:(~abstraction(X26,X27)|general(X26,X27)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax11])])).
cnf(c_0_74, plain, (~nonhuman(X1,X2)|~human(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_55]), ['final']).
cnf(c_0_75, plain, (nonhuman(X1,X2)|~abstraction(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_56]), ['final']).
cnf(c_0_76, plain, (abstraction(X1,X2)|~relation(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_57]), ['final']).
cnf(c_0_77, plain, (relation(X1,X2)|~forename(X1,X2)), inference(spm,[status(thm)],[c_0_58, c_0_59]), ['final']).
cnf(c_0_78, plain, (~unisex(X1,X2)|~female(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_60]), ['final']).
cnf(c_0_79, plain, (unisex(X1,X2)|~abstraction(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_61]), ['final']).
fof(c_0_80, plain, ![X84, X85]:(~nonliving(X84,X85)|~living(X84,X85)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[ax40])])])).
fof(c_0_81, plain, ![X42, X43]:(~object(X42,X43)|nonliving(X42,X43)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax19])])).
cnf(c_0_82, plain, (object(X1,X2)|~substance_matter(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_62]), ['final']).
cnf(c_0_83, plain, (substance_matter(X1,X2)|~shake_beverage(X1,X2)), inference(spm,[status(thm)],[c_0_63, c_0_64]), ['final']).
fof(c_0_84, plain, ![X78, X79]:(~animate(X78,X79)|~nonliving(X78,X79)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[ax37])])])).
fof(c_0_85, plain, ![X38, X39]:(~object(X38,X39)|unisex(X38,X39)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax17])])).
fof(c_0_86, plain, ![X80, X81]:(~existent(X80,X81)|~nonexistent(X80,X81)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[ax38])])])).
fof(c_0_87, plain, ![X64, X65]:(~eventuality(X64,X65)|nonexistent(X64,X65)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax30])])).
cnf(c_0_88, plain, (specific(X1,X2)|~eventuality(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_65]), ['final']).
cnf(c_0_89, plain, (eventuality(X1,X2)|~event(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_66]), ['final']).
cnf(c_0_90, negated_conjecture, (event(esk1_0,esk5_0)), inference(split_conjunct,[status(thm)],[c_0_67]), ['final']).
fof(c_0_91, plain, ![X62, X63]:(~eventuality(X62,X63)|unisex(X62,X63)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax29])])).
cnf(c_0_92, plain, (entity(X1,X2)|~organism(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_68]), ['final']).
cnf(c_0_93, plain, (organism(X1,X2)|~human_person(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_69]), ['final']).
cnf(c_0_94, plain, (human_person(X1,X2)|~woman(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_70]), ['final']).
cnf(c_0_95, negated_conjecture, (woman(esk1_0,esk2_0)), inference(split_conjunct,[status(thm)],[c_0_67]), ['final']).
fof(c_0_96, plain, ![X94, X95, X96, X97]:(~nonreflexive(X94,X95)|~agent(X94,X95,X96)|~patient(X94,X95,X97)|X96!=X97), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax44])])).
cnf(c_0_97, plain, (~general(X1,X2)|~entity(X1,X2)), inference(spm,[status(thm)],[c_0_71, c_0_72]), ['final']).
cnf(c_0_98, plain, (general(X1,X2)|~abstraction(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_73]), ['final']).
cnf(c_0_99, plain, (~abstraction(X1,X2)|~human(X1,X2)), inference(spm,[status(thm)],[c_0_74, c_0_75]), ['final']).
cnf(c_0_100, plain, (abstraction(X1,X2)|~forename(X1,X2)), inference(spm,[status(thm)],[c_0_76, c_0_77]), ['final']).
cnf(c_0_101, plain, (~abstraction(X1,X2)|~female(X1,X2)), inference(spm,[status(thm)],[c_0_78, c_0_79]), ['final']).
cnf(c_0_102, plain, (~nonliving(X1,X2)|~living(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_80]), ['final']).
cnf(c_0_103, plain, (nonliving(X1,X2)|~object(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_81]), ['final']).
cnf(c_0_104, plain, (object(X1,X2)|~shake_beverage(X1,X2)), inference(spm,[status(thm)],[c_0_82, c_0_83]), ['final']).
cnf(c_0_105, negated_conjecture, (shake_beverage(esk1_0,esk4_0)), inference(split_conjunct,[status(thm)],[c_0_67]), ['final']).
cnf(c_0_106, plain, (~animate(X1,X2)|~nonliving(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_84]), ['final']).
cnf(c_0_107, plain, (unisex(X1,X2)|~object(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_85]), ['final']).
cnf(c_0_108, plain, (~existent(X1,X2)|~nonexistent(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_86]), ['final']).
cnf(c_0_109, plain, (nonexistent(X1,X2)|~eventuality(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_87]), ['final']).
cnf(c_0_110, plain, (~eventuality(X1,X2)|~general(X1,X2)), inference(spm,[status(thm)],[c_0_71, c_0_88]), ['final']).
cnf(c_0_111, negated_conjecture, (eventuality(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_89, c_0_90]), ['final']).
cnf(c_0_112, plain, (unisex(X1,X2)|~eventuality(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_91]), ['final']).
fof(c_0_113, plain, ![X90, X91, X92, X93]:(~entity(X90,X91)|~forename(X90,X92)|~of(X90,X92,X91)|(~forename(X90,X93)|X93=X92|~of(X90,X93,X91))), inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax43])])])).
cnf(c_0_114, plain, (entity(X1,X2)|~human_person(X1,X2)), inference(spm,[status(thm)],[c_0_92, c_0_93]), ['final']).
cnf(c_0_115, negated_conjecture, (human_person(esk1_0,esk2_0)), inference(spm,[status(thm)],[c_0_94, c_0_95]), ['final']).
cnf(c_0_116, plain, (~nonreflexive(X1,X2)|~agent(X1,X2,X3)|~patient(X1,X2,X4)|X3!=X4), inference(split_conjunct,[status(thm)],[c_0_96])).
cnf(c_0_117, plain, (~abstraction(X1,X2)|~entity(X1,X2)), inference(spm,[status(thm)],[c_0_97, c_0_98]), ['final']).
cnf(c_0_118, plain, (~forename(X1,X2)|~human(X1,X2)), inference(spm,[status(thm)],[c_0_99, c_0_100]), ['final']).
cnf(c_0_119, negated_conjecture, (forename(esk1_0,esk3_0)), inference(split_conjunct,[status(thm)],[c_0_67]), ['final']).
fof(c_0_120, plain, ![X10, X11]:(~human_person(X10,X11)|human(X10,X11)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax3])])).
cnf(c_0_121, plain, (~forename(X1,X2)|~female(X1,X2)), inference(spm,[status(thm)],[c_0_101, c_0_100]), ['final']).
fof(c_0_122, plain, ![X6, X7]:(~woman(X6,X7)|female(X6,X7)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax1])])).
cnf(c_0_123, plain, (~object(X1,X2)|~living(X1,X2)), inference(spm,[status(thm)],[c_0_102, c_0_103]), ['final']).
cnf(c_0_124, negated_conjecture, (object(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_104, c_0_105]), ['final']).
fof(c_0_125, plain, ![X12, X13]:(~organism(X12,X13)|living(X12,X13)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax4])])).
cnf(c_0_126, plain, (~object(X1,X2)|~animate(X1,X2)), inference(spm,[status(thm)],[c_0_106, c_0_103]), ['final']).
fof(c_0_127, plain, ![X8, X9]:(~human_person(X8,X9)|animate(X8,X9)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax2])])).
cnf(c_0_128, plain, (~object(X1,X2)|~female(X1,X2)), inference(spm,[status(thm)],[c_0_78, c_0_107]), ['final']).
cnf(c_0_129, plain, (~eventuality(X1,X2)|~existent(X1,X2)), inference(spm,[status(thm)],[c_0_108, c_0_109]), ['final']).
fof(c_0_130, plain, ![X44, X45]:(~entity(X44,X45)|existent(X44,X45)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax20])])).
cnf(c_0_131, negated_conjecture, (~general(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_110, c_0_111]), ['final']).
cnf(c_0_132, plain, (~eventuality(X1,X2)|~female(X1,X2)), inference(spm,[status(thm)],[c_0_78, c_0_112]), ['final']).
fof(c_0_133, plain, ![X50, X51]:(~object(X50,X51)|entity(X50,X51)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax23])])).
cnf(c_0_134, plain, (X4=X3|~entity(X1,X2)|~forename(X1,X3)|~of(X1,X3,X2)|~forename(X1,X4)|~of(X1,X4,X2)), inference(split_conjunct,[status(thm)],[c_0_113]), ['final']).
cnf(c_0_135, negated_conjecture, (of(esk1_0,esk3_0,esk2_0)), inference(split_conjunct,[status(thm)],[c_0_67]), ['final']).
cnf(c_0_136, negated_conjecture, (entity(esk1_0,esk2_0)), inference(spm,[status(thm)],[c_0_114, c_0_115]), ['final']).
fof(c_0_137, plain, ![X74, X75]:(~act(X74,X75)|event(X74,X75)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax35])])).
fof(c_0_138, plain, ![X60, X61]:(~order(X60,X61)|event(X60,X61)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax28])])).
fof(c_0_139, plain, ![X76, X77]:(~order(X76,X77)|act(X76,X77)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax36])])).
fof(c_0_140, plain, ![X68, X69]:(~thing(X68,X69)|singleton(X68,X69)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax32])])).
fof(c_0_141, plain, ![X22, X23]:(~mia_forename(X22,X23)|forename(X22,X23)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax9])])).
fof(c_0_142, plain, ![X70, X71]:(~eventuality(X70,X71)|thing(X70,X71)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax33])])).
fof(c_0_143, plain, ![X30, X31]:(~abstraction(X30,X31)|thing(X30,X31)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax13])])).
fof(c_0_144, plain, ![X48, X49]:(~entity(X48,X49)|thing(X48,X49)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax22])])).
fof(c_0_145, plain, ![X40, X41]:(~object(X40,X41)|impartial(X40,X41)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax18])])).
fof(c_0_146, plain, ![X14, X15]:(~organism(X14,X15)|impartial(X14,X15)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax5])])).
cnf(c_0_147, plain, (~patient(X1,X2,X3)|~agent(X1,X2,X3)|~nonreflexive(X1,X2)), inference(er,[status(thm)],[c_0_116]), ['final']).
cnf(c_0_148, negated_conjecture, (patient(esk1_0,esk5_0,esk4_0)), inference(split_conjunct,[status(thm)],[c_0_67]), ['final']).
cnf(c_0_149, negated_conjecture, (nonreflexive(esk1_0,esk5_0)), inference(split_conjunct,[status(thm)],[c_0_67]), ['final']).
cnf(c_0_150, plain, (~forename(X1,X2)|~entity(X1,X2)), inference(spm,[status(thm)],[c_0_117, c_0_100]), ['final']).
cnf(c_0_151, negated_conjecture, (~human(esk1_0,esk3_0)), inference(spm,[status(thm)],[c_0_118, c_0_119]), ['final']).
cnf(c_0_152, plain, (human(X1,X2)|~human_person(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_120]), ['final']).
cnf(c_0_153, negated_conjecture, (~female(esk1_0,esk3_0)), inference(spm,[status(thm)],[c_0_121, c_0_119]), ['final']).
cnf(c_0_154, plain, (female(X1,X2)|~woman(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_122]), ['final']).
cnf(c_0_155, negated_conjecture, (~living(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_123, c_0_124]), ['final']).
cnf(c_0_156, plain, (living(X1,X2)|~organism(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_125]), ['final']).
cnf(c_0_157, negated_conjecture, (~animate(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_126, c_0_124]), ['final']).
cnf(c_0_158, plain, (animate(X1,X2)|~human_person(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_127]), ['final']).
cnf(c_0_159, negated_conjecture, (~female(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_128, c_0_124]), ['final']).
cnf(c_0_160, negated_conjecture, (~existent(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_129, c_0_111]), ['final']).
cnf(c_0_161, plain, (existent(X1,X2)|~entity(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_130]), ['final']).
cnf(c_0_162, negated_conjecture, (~abstraction(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_131, c_0_98]), ['final']).
cnf(c_0_163, negated_conjecture, (~female(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_132, c_0_111]), ['final']).
cnf(c_0_164, plain, (entity(X1,X2)|~object(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_133]), ['final']).
cnf(c_0_165, negated_conjecture, (X1=esk3_0|~of(esk1_0,X1,esk2_0)|~forename(esk1_0,X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_134, c_0_135]), c_0_119])]), c_0_136])]), ['final']).
cnf(c_0_166, plain, (event(X1,X2)|~act(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_137]), ['final']).
cnf(c_0_167, plain, (event(X1,X2)|~order(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_138]), ['final']).
cnf(c_0_168, plain, (act(X1,X2)|~order(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_139]), ['final']).
cnf(c_0_169, plain, (singleton(X1,X2)|~thing(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_140]), ['final']).
cnf(c_0_170, plain, (forename(X1,X2)|~mia_forename(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_141]), ['final']).
cnf(c_0_171, plain, (thing(X1,X2)|~eventuality(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_142]), ['final']).
cnf(c_0_172, plain, (thing(X1,X2)|~abstraction(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_143]), ['final']).
cnf(c_0_173, plain, (thing(X1,X2)|~entity(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_144]), ['final']).
cnf(c_0_174, plain, (impartial(X1,X2)|~object(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_145]), ['final']).
cnf(c_0_175, plain, (impartial(X1,X2)|~organism(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_146]), ['final']).
cnf(c_0_176, negated_conjecture, (~agent(esk1_0,esk5_0,esk4_0)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_147, c_0_148]), c_0_149])]), ['final']).
cnf(c_0_177, negated_conjecture, (~entity(esk1_0,esk3_0)), inference(spm,[status(thm)],[c_0_150, c_0_119]), ['final']).
cnf(c_0_178, negated_conjecture, (~human_person(esk1_0,esk3_0)), inference(spm,[status(thm)],[c_0_151, c_0_152]), ['final']).
cnf(c_0_179, negated_conjecture, (~woman(esk1_0,esk3_0)), inference(spm,[status(thm)],[c_0_153, c_0_154]), ['final']).
cnf(c_0_180, negated_conjecture, (~organism(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_155, c_0_156]), ['final']).
cnf(c_0_181, negated_conjecture, (~human_person(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_157, c_0_158]), ['final']).
cnf(c_0_182, negated_conjecture, (~woman(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_159, c_0_154]), ['final']).
cnf(c_0_183, negated_conjecture, (~entity(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_160, c_0_161]), ['final']).
cnf(c_0_184, negated_conjecture, (~forename(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_162, c_0_100]), ['final']).
cnf(c_0_185, negated_conjecture, (~woman(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_163, c_0_154]), ['final']).
cnf(c_0_186, negated_conjecture, (entity(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_164, c_0_124]), ['final']).
cnf(c_0_187, negated_conjecture, (agent(esk1_0,esk5_0,esk2_0)), inference(split_conjunct,[status(thm)],[c_0_67]), ['final']).
cnf(c_0_188, negated_conjecture, (past(esk1_0,esk5_0)), inference(split_conjunct,[status(thm)],[c_0_67]), ['final']).
cnf(c_0_189, negated_conjecture, (order(esk1_0,esk5_0)), inference(split_conjunct,[status(thm)],[c_0_67]), ['final']).
cnf(c_0_190, negated_conjecture, (mia_forename(esk1_0,esk3_0)), inference(split_conjunct,[status(thm)],[c_0_67]), ['final']).
cnf(c_0_191, negated_conjecture, (actual_world(esk1_0)), inference(split_conjunct,[status(thm)],[c_0_67]), ['final']).
# SZS output end Saturation

Sample solution for SWV017+1

# SZS output start Saturation
fof(server_t_generates_key, axiom, ![X1, X2, X3, X4, X5, X6, X7]:((((message(sent(X1,t,triple(X1,X2,encrypt(triple(X3,X4,X5),X6))))&t_holds(key(X6,X1)))&t_holds(key(X7,X3)))&a_nonce(X4))=>message(sent(t,X3,triple(encrypt(quadruple(X1,X4,generate_key(X4),X5),X7),encrypt(triple(X3,generate_key(X4),X5),X6),X2)))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', server_t_generates_key)).
fof(b_creates_freash_nonces_in_time, axiom, ![X1, X2]:((message(sent(X1,b,pair(X1,X2)))&fresh_to_b(X2))=>(message(sent(b,t,triple(b,generate_b_nonce(X2),encrypt(triple(X1,X2,generate_expiration_time(X2)),bt))))&b_stored(pair(X1,X2)))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', b_creates_freash_nonces_in_time)).
fof(t_holds_key_at_for_a, axiom, t_holds(key(at,a)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', t_holds_key_at_for_a)).
fof(intruder_can_record, axiom, ![X1, X2, X3]:(message(sent(X1,X2,X3))=>intruder_message(X3)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_can_record)).
fof(a_sent_message_i_to_b, axiom, message(sent(a,b,pair(a,an_a_nonce))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', a_sent_message_i_to_b)).
fof(nonce_a_is_fresh_to_b, axiom, fresh_to_b(an_a_nonce), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', nonce_a_is_fresh_to_b)).
fof(a_forwards_secure, axiom, ![X1, X2, X3, X4, X5, X6]:((message(sent(t,a,triple(encrypt(quadruple(X5,X6,X3,X2),at),X4,X1)))&a_stored(pair(X5,X6)))=>(message(sent(a,X5,pair(X4,encrypt(X1,X3))))&a_holds(key(X3,X5)))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', a_forwards_secure)).
fof(t_holds_key_bt_for_b, axiom, t_holds(key(bt,b)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', t_holds_key_bt_for_b)).
fof(intruder_message_sent, axiom, ![X1, X2, X3]:(((intruder_message(X1)&party_of_protocol(X2))&party_of_protocol(X3))=>message(sent(X2,X3,X1))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_message_sent)).
fof(intruder_decomposes_triples, axiom, ![X1, X2, X3]:(intruder_message(triple(X1,X2,X3))=>((intruder_message(X1)&intruder_message(X2))&intruder_message(X3))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_decomposes_triples)).
fof(a_stored_message_i, axiom, a_stored(pair(b,an_a_nonce)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', a_stored_message_i)).
fof(an_a_nonce_is_a_nonce, axiom, a_nonce(an_a_nonce), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', an_a_nonce_is_a_nonce)).
fof(b_is_party_of_protocol, axiom, party_of_protocol(b), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', b_is_party_of_protocol)).
fof(intruder_composes_pairs, axiom, ![X1, X2]:((intruder_message(X1)&intruder_message(X2))=>intruder_message(pair(X1,X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_composes_pairs)).
fof(t_is_party_of_protocol, axiom, party_of_protocol(t), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', t_is_party_of_protocol)).
fof(intruder_composes_triples, axiom, ![X1, X2, X3]:(((intruder_message(X1)&intruder_message(X2))&intruder_message(X3))=>intruder_message(triple(X1,X2,X3))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_composes_triples)).
fof(a_is_party_of_protocol, axiom, party_of_protocol(a), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', a_is_party_of_protocol)).
fof(b_accepts_secure_session_key, axiom, ![X2, X4, X5]:(((message(sent(X4,b,pair(encrypt(triple(X4,X2,generate_expiration_time(X5)),bt),encrypt(generate_b_nonce(X5),X2))))&a_key(X2))&b_stored(pair(X4,X5)))=>b_holds(key(X2,X4))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', b_accepts_secure_session_key)).
fof(intruder_decomposes_pairs, axiom, ![X1, X2]:(intruder_message(pair(X1,X2))=>(intruder_message(X1)&intruder_message(X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_decomposes_pairs)).
fof(intruder_key_encrypts, axiom, ![X1, X2, X3]:(((intruder_message(X1)&intruder_holds(key(X2,X3)))&party_of_protocol(X3))=>intruder_message(encrypt(X1,X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_key_encrypts)).
fof(intruder_holds_key, axiom, ![X2, X3]:((intruder_message(X2)&party_of_protocol(X3))=>intruder_holds(key(X2,X3))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_holds_key)).
fof(generated_keys_are_keys, axiom, ![X1]:a_key(generate_key(X1)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', generated_keys_are_keys)).
fof(fresh_intruder_nonces_are_fresh_to_b, axiom, ![X1]:(fresh_intruder_nonce(X1)=>(fresh_to_b(X1)&intruder_message(X1))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', fresh_intruder_nonces_are_fresh_to_b)).
fof(can_generate_more_fresh_intruder_nonces, axiom, ![X1]:(fresh_intruder_nonce(X1)=>fresh_intruder_nonce(generate_intruder_nonce(X1))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', can_generate_more_fresh_intruder_nonces)).
fof(intruder_composes_quadruples, axiom, ![X1, X2, X3, X4]:((((intruder_message(X1)&intruder_message(X2))&intruder_message(X3))&intruder_message(X4))=>intruder_message(quadruple(X1,X2,X3,X4))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_composes_quadruples)).
fof(intruder_interception, axiom, ![X1, X2, X3]:(((intruder_message(encrypt(X1,X2))&intruder_holds(key(X2,X3)))&party_of_protocol(X3))=>intruder_message(X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_interception)).
fof(intruder_decomposes_quadruples, axiom, ![X1, X2, X3, X4]:(intruder_message(quadruple(X1,X2,X3,X4))=>(((intruder_message(X1)&intruder_message(X2))&intruder_message(X3))&intruder_message(X4))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_decomposes_quadruples)).
fof(nothing_is_a_nonce_and_a_key, axiom, ![X1]:~((a_key(X1)&a_nonce(X1))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', nothing_is_a_nonce_and_a_key)).
fof(generated_keys_are_not_nonces, axiom, ![X1]:~(a_nonce(generate_key(X1))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', generated_keys_are_not_nonces)).
fof(an_intruder_nonce_is_a_fresh_intruder_nonce, axiom, fresh_intruder_nonce(an_intruder_nonce), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', an_intruder_nonce_is_a_fresh_intruder_nonce)).
fof(generated_times_and_nonces_are_nonces, axiom, ![X1]:(a_nonce(generate_expiration_time(X1))&a_nonce(generate_b_nonce(X1))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', generated_times_and_nonces_are_nonces)).
fof(b_hold_key_bt_for_t, axiom, b_holds(key(bt,t)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', b_hold_key_bt_for_t)).
fof(a_holds_key_at_for_t, axiom, a_holds(key(at,t)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', a_holds_key_at_for_t)).
fof(c_0_33, plain, ![X19, X20, X21, X22, X23, X24, X25]:(~message(sent(X19,t,triple(X19,X20,encrypt(triple(X21,X22,X23),X24))))|~t_holds(key(X24,X19))|~t_holds(key(X25,X21))|~a_nonce(X22)|message(sent(t,X21,triple(encrypt(quadruple(X19,X22,generate_key(X22),X23),X25),encrypt(triple(X21,generate_key(X22),X23),X24),X20)))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[server_t_generates_key])])).
fof(c_0_34, plain, ![X14, X15]:((message(sent(b,t,triple(b,generate_b_nonce(X15),encrypt(triple(X14,X15,generate_expiration_time(X15)),bt))))|(~message(sent(X14,b,pair(X14,X15)))|~fresh_to_b(X15)))&(b_stored(pair(X14,X15))|(~message(sent(X14,b,pair(X14,X15)))|~fresh_to_b(X15)))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[b_creates_freash_nonces_in_time])])])).
cnf(c_0_35, plain, (message(sent(t,X3,triple(encrypt(quadruple(X1,X4,generate_key(X4),X5),X7),encrypt(triple(X3,generate_key(X4),X5),X6),X2)))|~message(sent(X1,t,triple(X1,X2,encrypt(triple(X3,X4,X5),X6))))|~t_holds(key(X6,X1))|~t_holds(key(X7,X3))|~a_nonce(X4)), inference(split_conjunct,[status(thm)],[c_0_33]), ['final']).
cnf(c_0_36, plain, (t_holds(key(at,a))), inference(split_conjunct,[status(thm)],[t_holds_key_at_for_a]), ['final']).
fof(c_0_37, plain, ![X26, X27, X28]:(~message(sent(X26,X27,X28))|intruder_message(X28)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_can_record])])).
cnf(c_0_38, plain, (message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X2,X1,generate_expiration_time(X1)),bt))))|~message(sent(X2,b,pair(X2,X1)))|~fresh_to_b(X1)), inference(split_conjunct,[status(thm)],[c_0_34]), ['final']).
cnf(c_0_39, plain, (message(sent(a,b,pair(a,an_a_nonce)))), inference(split_conjunct,[status(thm)],[a_sent_message_i_to_b]), ['final']).
cnf(c_0_40, plain, (fresh_to_b(an_a_nonce)), inference(split_conjunct,[status(thm)],[nonce_a_is_fresh_to_b]), ['final']).
fof(c_0_41, plain, ![X8, X9, X10, X11, X12, X13]:((message(sent(a,X12,pair(X11,encrypt(X8,X10))))|(~message(sent(t,a,triple(encrypt(quadruple(X12,X13,X10,X9),at),X11,X8)))|~a_stored(pair(X12,X13))))&(a_holds(key(X10,X12))|(~message(sent(t,a,triple(encrypt(quadruple(X12,X13,X10,X9),at),X11,X8)))|~a_stored(pair(X12,X13))))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[a_forwards_secure])])])).
cnf(c_0_42, plain, (message(sent(t,a,triple(encrypt(quadruple(X1,X2,generate_key(X2),X3),at),encrypt(triple(a,generate_key(X2),X3),X4),X5)))|~a_nonce(X2)|~t_holds(key(X4,X1))|~message(sent(X1,t,triple(X1,X5,encrypt(triple(a,X2,X3),X4))))), inference(spm,[status(thm)],[c_0_35, c_0_36]), ['final']).
cnf(c_0_43, plain, (t_holds(key(bt,b))), inference(split_conjunct,[status(thm)],[t_holds_key_bt_for_b]), ['final']).
fof(c_0_44, plain, ![X50, X51, X52]:(~intruder_message(X50)|~party_of_protocol(X51)|~party_of_protocol(X52)|message(sent(X51,X52,X50))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_message_sent])])).
fof(c_0_45, plain, ![X31, X32, X33]:(((intruder_message(X31)|~intruder_message(triple(X31,X32,X33)))&(intruder_message(X32)|~intruder_message(triple(X31,X32,X33))))&(intruder_message(X33)|~intruder_message(triple(X31,X32,X33)))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_decomposes_triples])])])).
cnf(c_0_46, plain, (intruder_message(X3)|~message(sent(X1,X2,X3))), inference(split_conjunct,[status(thm)],[c_0_37]), ['final']).
cnf(c_0_47, plain, (message(sent(b,t,triple(b,generate_b_nonce(an_a_nonce),encrypt(triple(a,an_a_nonce,generate_expiration_time(an_a_nonce)),bt))))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_38, c_0_39]), c_0_40])]), ['final']).
cnf(c_0_48, plain, (message(sent(a,X1,pair(X2,encrypt(X3,X4))))|~message(sent(t,a,triple(encrypt(quadruple(X1,X5,X4,X6),at),X2,X3)))|~a_stored(pair(X1,X5))), inference(split_conjunct,[status(thm)],[c_0_41]), ['final']).
cnf(c_0_49, plain, (a_stored(pair(b,an_a_nonce))), inference(split_conjunct,[status(thm)],[a_stored_message_i]), ['final']).
cnf(c_0_50, plain, (message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),bt),X3)))|~a_nonce(X1)|~message(sent(b,t,triple(b,X3,encrypt(triple(a,X1,X2),bt))))), inference(spm,[status(thm)],[c_0_42, c_0_43]), ['final']).
cnf(c_0_51, plain, (a_nonce(an_a_nonce)), inference(split_conjunct,[status(thm)],[an_a_nonce_is_a_nonce]), ['final']).
cnf(c_0_52, plain, (b_stored(pair(X1,X2))|~message(sent(X1,b,pair(X1,X2)))|~fresh_to_b(X2)), inference(split_conjunct,[status(thm)],[c_0_34]), ['final']).
cnf(c_0_53, plain, (message(sent(X2,X3,X1))|~intruder_message(X1)|~party_of_protocol(X2)|~party_of_protocol(X3)), inference(split_conjunct,[status(thm)],[c_0_44]), ['final']).
cnf(c_0_54, plain, (party_of_protocol(b)), inference(split_conjunct,[status(thm)],[b_is_party_of_protocol]), ['final']).
fof(c_0_55, plain, ![X38, X39]:(~intruder_message(X38)|~intruder_message(X39)|intruder_message(pair(X38,X39))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_composes_pairs])])).
cnf(c_0_56, plain, (party_of_protocol(t)), inference(split_conjunct,[status(thm)],[t_is_party_of_protocol]), ['final']).
fof(c_0_57, plain, ![X40, X41, X42]:(~intruder_message(X40)|~intruder_message(X41)|~intruder_message(X42)|intruder_message(triple(X40,X41,X42))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_composes_triples])])).
cnf(c_0_58, plain, (intruder_message(X1)|~intruder_message(triple(X1,X2,X3))), inference(split_conjunct,[status(thm)],[c_0_45]), ['final']).
cnf(c_0_59, plain, (intruder_message(triple(b,generate_b_nonce(an_a_nonce),encrypt(triple(a,an_a_nonce,generate_expiration_time(an_a_nonce)),bt)))), inference(spm,[status(thm)],[c_0_46, c_0_47]), ['final']).
cnf(c_0_60, plain, (message(sent(a,b,pair(X1,encrypt(X2,X3))))|~message(sent(t,a,triple(encrypt(quadruple(b,an_a_nonce,X3,X4),at),X1,X2)))), inference(spm,[status(thm)],[c_0_48, c_0_49]), ['final']).
cnf(c_0_61, plain, (party_of_protocol(a)), inference(split_conjunct,[status(thm)],[a_is_party_of_protocol]), ['final']).
cnf(c_0_62, plain, (message(sent(t,a,triple(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at),encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),generate_b_nonce(an_a_nonce))))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_50, c_0_47]), c_0_51])]), ['final']).
fof(c_0_63, plain, ![X16, X17, X18]:(~message(sent(X17,b,pair(encrypt(triple(X17,X16,generate_expiration_time(X18)),bt),encrypt(generate_b_nonce(X18),X16))))|~a_key(X16)|~b_stored(pair(X17,X18))|b_holds(key(X16,X17))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[b_accepts_secure_session_key])])).
cnf(c_0_64, plain, (b_stored(pair(X1,X2))|~intruder_message(pair(X1,X2))|~fresh_to_b(X2)|~party_of_protocol(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_52, c_0_53]), c_0_54])]), ['final']).
cnf(c_0_65, plain, (intruder_message(pair(X1,X2))|~intruder_message(X1)|~intruder_message(X2)), inference(split_conjunct,[status(thm)],[c_0_55]), ['final']).
fof(c_0_66, plain, ![X29, X30]:((intruder_message(X29)|~intruder_message(pair(X29,X30)))&(intruder_message(X30)|~intruder_message(pair(X29,X30)))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_decomposes_pairs])])])).
cnf(c_0_67, plain, (message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),bt),X3)))|~intruder_message(triple(b,X3,encrypt(triple(a,X1,X2),bt)))|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_50, c_0_53]), c_0_56]), c_0_54])]), ['final']).
cnf(c_0_68, plain, (intruder_message(triple(X1,X2,X3))|~intruder_message(X1)|~intruder_message(X2)|~intruder_message(X3)), inference(split_conjunct,[status(thm)],[c_0_57]), ['final']).
cnf(c_0_69, plain, (intruder_message(b)), inference(spm,[status(thm)],[c_0_58, c_0_59]), ['final']).
cnf(c_0_70, plain, (intruder_message(X1)|~intruder_message(triple(X2,X3,X1))), inference(split_conjunct,[status(thm)],[c_0_45]), ['final']).
cnf(c_0_71, plain, (message(sent(a,b,pair(X1,encrypt(X2,X3))))|~intruder_message(triple(encrypt(quadruple(b,an_a_nonce,X3,X4),at),X1,X2))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_60, c_0_53]), c_0_61]), c_0_56])]), ['final']).
cnf(c_0_72, plain, (intruder_message(triple(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at),encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),generate_b_nonce(an_a_nonce)))), inference(spm,[status(thm)],[c_0_46, c_0_62]), ['final']).
cnf(c_0_73, plain, (message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X2,X1,generate_expiration_time(X1)),bt))))|~intruder_message(pair(X2,X1))|~fresh_to_b(X1)|~party_of_protocol(X2)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_38, c_0_53]), c_0_54])]), ['final']).
cnf(c_0_74, plain, (b_holds(key(X2,X1))|~message(sent(X1,b,pair(encrypt(triple(X1,X2,generate_expiration_time(X3)),bt),encrypt(generate_b_nonce(X3),X2))))|~a_key(X2)|~b_stored(pair(X1,X3))), inference(split_conjunct,[status(thm)],[c_0_63]), ['final']).
cnf(c_0_75, plain, (b_stored(pair(X1,X2))|~intruder_message(X2)|~intruder_message(X1)|~fresh_to_b(X2)|~party_of_protocol(X1)), inference(spm,[status(thm)],[c_0_64, c_0_65]), ['final']).
fof(c_0_76, plain, ![X55, X56, X57]:(~intruder_message(X55)|~intruder_holds(key(X56,X57))|~party_of_protocol(X57)|intruder_message(encrypt(X55,X56))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_key_encrypts])])).
fof(c_0_77, plain, ![X53, X54]:(~intruder_message(X53)|~party_of_protocol(X54)|intruder_holds(key(X53,X54))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_holds_key])])).
cnf(c_0_78, plain, (intruder_message(X1)|~intruder_message(pair(X1,X2))), inference(split_conjunct,[status(thm)],[c_0_66]), ['final']).
cnf(c_0_79, plain, (intruder_message(pair(a,an_a_nonce))), inference(spm,[status(thm)],[c_0_46, c_0_39]), ['final']).
cnf(c_0_80, plain, (message(sent(t,b,triple(encrypt(quadruple(X1,X2,generate_key(X2),X3),bt),encrypt(triple(b,generate_key(X2),X3),X4),X5)))|~a_nonce(X2)|~t_holds(key(X4,X1))|~message(sent(X1,t,triple(X1,X5,encrypt(triple(b,X2,X3),X4))))), inference(spm,[status(thm)],[c_0_35, c_0_43]), ['final']).
cnf(c_0_81, plain, (b_stored(pair(a,an_a_nonce))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_52, c_0_39]), c_0_40])]), ['final']).
cnf(c_0_82, plain, (message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),bt),X3)))|~intruder_message(encrypt(triple(a,X1,X2),bt))|~intruder_message(X3)|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_67, c_0_68]), c_0_69])]), ['final']).
cnf(c_0_83, plain, (intruder_message(encrypt(triple(a,an_a_nonce,generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_70, c_0_59]), ['final']).
cnf(c_0_84, plain, (message(sent(a,b,pair(X1,encrypt(X2,X3))))|~intruder_message(encrypt(quadruple(b,an_a_nonce,X3,X4),at))|~intruder_message(X2)|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_71, c_0_68]), ['final']).
cnf(c_0_85, plain, (intruder_message(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at))), inference(spm,[status(thm)],[c_0_58, c_0_72]), ['final']).
cnf(c_0_86, plain, (message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X2,X1,generate_expiration_time(X1)),bt))))|~intruder_message(X1)|~intruder_message(X2)|~fresh_to_b(X1)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_73, c_0_65]), ['final']).
cnf(c_0_87, plain, (b_holds(key(X1,X2))|~intruder_message(X3)|~intruder_message(X2)|~a_key(X1)|~fresh_to_b(X3)|~message(sent(X2,b,pair(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt),encrypt(generate_b_nonce(X3),X1))))|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_74, c_0_75]), ['final']).
cnf(c_0_88, plain, (intruder_message(encrypt(X1,X2))|~intruder_message(X1)|~intruder_holds(key(X2,X3))|~party_of_protocol(X3)), inference(split_conjunct,[status(thm)],[c_0_76]), ['final']).
cnf(c_0_89, plain, (intruder_holds(key(X1,X2))|~intruder_message(X1)|~party_of_protocol(X2)), inference(split_conjunct,[status(thm)],[c_0_77]), ['final']).
cnf(c_0_90, plain, (intruder_message(a)), inference(spm,[status(thm)],[c_0_78, c_0_79]), ['final']).
cnf(c_0_91, plain, (message(sent(a,b,pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))))), inference(spm,[status(thm)],[c_0_60, c_0_62]), ['final']).
cnf(c_0_92, plain, (message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),bt),X3)))|~a_nonce(X1)|~message(sent(b,t,triple(b,X3,encrypt(triple(b,X1,X2),bt))))), inference(spm,[status(thm)],[c_0_80, c_0_43]), ['final']).
cnf(c_0_93, plain, (b_holds(key(X1,a))|~a_key(X1)|~message(sent(a,b,pair(encrypt(triple(a,X1,generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),X1))))), inference(spm,[status(thm)],[c_0_74, c_0_81]), ['final']).
cnf(c_0_94, plain, (a_holds(key(X1,X2))|~message(sent(t,a,triple(encrypt(quadruple(X2,X3,X1,X4),at),X5,X6)))|~a_stored(pair(X2,X3))), inference(split_conjunct,[status(thm)],[c_0_41]), ['final']).
cnf(c_0_95, plain, (message(sent(t,a,triple(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at),encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),X1)))|~intruder_message(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_82, c_0_83]), c_0_51])]), ['final']).
cnf(c_0_96, plain, (message(sent(a,b,pair(X1,encrypt(X2,generate_key(an_a_nonce)))))|~intruder_message(X2)|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_84, c_0_85]), ['final']).
cnf(c_0_97, plain, (message(sent(t,a,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),at),X3)))|~a_nonce(X1)|~message(sent(a,t,triple(a,X3,encrypt(triple(a,X1,X2),at))))), inference(spm,[status(thm)],[c_0_42, c_0_36]), ['final']).
cnf(c_0_98, plain, (intruder_message(triple(b,generate_b_nonce(X1),encrypt(triple(X2,X1,generate_expiration_time(X1)),bt)))|~intruder_message(X1)|~intruder_message(X2)|~fresh_to_b(X1)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_46, c_0_86]), ['final']).
cnf(c_0_99, plain, (b_holds(key(X1,X2))|~intruder_message(pair(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt),encrypt(generate_b_nonce(X3),X1)))|~intruder_message(X3)|~intruder_message(X2)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_87, c_0_53]), c_0_54])]), ['final']).
cnf(c_0_100, plain, (intruder_message(encrypt(X1,X2))|~intruder_message(X1)|~intruder_message(X2)|~party_of_protocol(X3)), inference(spm,[status(thm)],[c_0_88, c_0_89])).
cnf(c_0_101, plain, (intruder_message(X1)|~intruder_message(triple(X2,X1,X3))), inference(split_conjunct,[status(thm)],[c_0_45]), ['final']).
cnf(c_0_102, plain, (message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),at),encrypt(triple(a,generate_key(X1),generate_expiration_time(X1)),bt),generate_b_nonce(X1))))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_50, c_0_86]), c_0_90]), c_0_61])]), ['final']).
fof(c_0_103, plain, ![X61]:a_key(generate_key(X61)), inference(variable_rename,[status(thm)],[generated_keys_are_keys])).
cnf(c_0_104, plain, (intruder_message(X1)|~intruder_message(pair(X2,X1))), inference(split_conjunct,[status(thm)],[c_0_66]), ['final']).
cnf(c_0_105, plain, (intruder_message(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce))))), inference(spm,[status(thm)],[c_0_46, c_0_91]), ['final']).
cnf(c_0_106, plain, (message(sent(t,b,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),at),X3)))|~a_nonce(X1)|~message(sent(a,t,triple(a,X3,encrypt(triple(b,X1,X2),at))))), inference(spm,[status(thm)],[c_0_80, c_0_36]), ['final']).
cnf(c_0_107, plain, (message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),bt),X3)))|~intruder_message(triple(b,X3,encrypt(triple(b,X1,X2),bt)))|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_92, c_0_53]), c_0_56]), c_0_54])]), ['final']).
cnf(c_0_108, plain, (message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),bt),encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt),generate_b_nonce(X1))))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_92, c_0_86]), c_0_69]), c_0_54])]), ['final']).
cnf(c_0_109, plain, (b_holds(key(X1,a))|~intruder_message(pair(encrypt(triple(a,X1,generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),X1)))|~a_key(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_93, c_0_53]), c_0_54]), c_0_61])]), ['final']).
cnf(c_0_110, plain, (a_holds(key(X1,b))|~message(sent(t,a,triple(encrypt(quadruple(b,an_a_nonce,X1,X2),at),X3,X4)))), inference(spm,[status(thm)],[c_0_94, c_0_49]), ['final']).
fof(c_0_111, plain, ![X63]:((fresh_to_b(X63)|~fresh_intruder_nonce(X63))&(intruder_message(X63)|~fresh_intruder_nonce(X63))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[fresh_intruder_nonces_are_fresh_to_b])])])).
cnf(c_0_112, plain, (message(sent(a,b,pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(X1,generate_key(an_a_nonce)))))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_60, c_0_95]), ['final']).
cnf(c_0_113, plain, (intruder_message(pair(X1,encrypt(X2,generate_key(an_a_nonce))))|~intruder_message(X2)|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_46, c_0_96]), ['final']).
cnf(c_0_114, plain, (message(sent(t,a,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),at),X3)))|~intruder_message(triple(a,X3,encrypt(triple(a,X1,X2),at)))|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_97, c_0_53]), c_0_56]), c_0_61])]), ['final']).
cnf(c_0_115, plain, (intruder_message(encrypt(triple(X1,X2,generate_expiration_time(X2)),bt))|~intruder_message(X2)|~intruder_message(X1)|~fresh_to_b(X2)|~party_of_protocol(X1)), inference(spm,[status(thm)],[c_0_70, c_0_98]), ['final']).
cnf(c_0_116, plain, (b_holds(key(X1,X2))|~intruder_message(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt))|~intruder_message(encrypt(generate_b_nonce(X3),X1))|~intruder_message(X3)|~intruder_message(X2)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_99, c_0_65]), ['final']).
cnf(c_0_117, plain, (intruder_message(encrypt(X1,X2))|~intruder_message(X1)|~intruder_message(X2)), inference(spm,[status(thm)],[c_0_100, c_0_54]), ['final']).
cnf(c_0_118, plain, (intruder_message(generate_b_nonce(X1))|~intruder_message(X1)|~intruder_message(X2)|~fresh_to_b(X1)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_101, c_0_98]), ['final']).
cnf(c_0_119, plain, (intruder_message(triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),at),encrypt(triple(a,generate_key(X1),generate_expiration_time(X1)),bt),generate_b_nonce(X1)))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_46, c_0_102]), ['final']).
cnf(c_0_120, plain, (a_key(generate_key(X1))), inference(split_conjunct,[status(thm)],[c_0_103]), ['final']).
cnf(c_0_121, plain, (intruder_message(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))), inference(spm,[status(thm)],[c_0_104, c_0_105]), ['final']).
cnf(c_0_122, plain, (intruder_message(an_a_nonce)), inference(spm,[status(thm)],[c_0_104, c_0_79]), ['final']).
cnf(c_0_123, plain, (message(sent(t,b,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),at),X3)))|~intruder_message(triple(a,X3,encrypt(triple(b,X1,X2),at)))|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_106, c_0_53]), c_0_56]), c_0_61])]), ['final']).
cnf(c_0_124, plain, (message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),bt),X3)))|~intruder_message(encrypt(triple(b,X1,X2),bt))|~intruder_message(X3)|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_107, c_0_68]), c_0_69])]), ['final']).
cnf(c_0_125, plain, (intruder_message(triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),bt),encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt),generate_b_nonce(X1)))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_46, c_0_108]), ['final']).
cnf(c_0_126, plain, (b_holds(key(X1,a))|~intruder_message(encrypt(triple(a,X1,generate_expiration_time(an_a_nonce)),bt))|~intruder_message(encrypt(generate_b_nonce(an_a_nonce),X1))|~a_key(X1)), inference(spm,[status(thm)],[c_0_109, c_0_65]), ['final']).
cnf(c_0_127, plain, (intruder_message(generate_b_nonce(an_a_nonce))), inference(spm,[status(thm)],[c_0_101, c_0_59]), ['final']).
cnf(c_0_128, plain, (a_holds(key(X1,b))|~intruder_message(triple(encrypt(quadruple(b,an_a_nonce,X1,X2),at),X3,X4))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_110, c_0_53]), c_0_61]), c_0_56])]), ['final']).
fof(c_0_129, plain, ![X62]:(~fresh_intruder_nonce(X62)|fresh_intruder_nonce(generate_intruder_nonce(X62))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[can_generate_more_fresh_intruder_nonces])])).
cnf(c_0_130, plain, (message(sent(b,t,triple(b,generate_b_nonce(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce))),encrypt(triple(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)),generate_expiration_time(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))),bt))))|~fresh_to_b(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_73, c_0_105]), ['final']).
cnf(c_0_131, plain, (fresh_to_b(X1)|~fresh_intruder_nonce(X1)), inference(split_conjunct,[status(thm)],[c_0_111]), ['final']).
cnf(c_0_132, plain, (intruder_message(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(X1,generate_key(an_a_nonce))))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_46, c_0_112]), ['final']).
cnf(c_0_133, plain, (message(sent(b,t,triple(b,generate_b_nonce(encrypt(X1,generate_key(an_a_nonce))),encrypt(triple(X2,encrypt(X1,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X1,generate_key(an_a_nonce)))),bt))))|~intruder_message(X1)|~intruder_message(X2)|~fresh_to_b(encrypt(X1,generate_key(an_a_nonce)))|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_73, c_0_113]), ['final']).
cnf(c_0_134, plain, (message(sent(t,a,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),at),X3)))|~intruder_message(encrypt(triple(a,X1,X2),at))|~intruder_message(X3)|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_114, c_0_68]), c_0_90])]), ['final']).
cnf(c_0_135, plain, (message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),at),encrypt(triple(a,generate_key(X1),generate_expiration_time(X1)),bt),X2)))|~intruder_message(X2)|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_82, c_0_115]), c_0_90]), c_0_61])]), ['final']).
cnf(c_0_136, plain, (message(sent(b,t,triple(b,generate_b_nonce(encrypt(X1,generate_key(an_a_nonce))),encrypt(triple(a,encrypt(X1,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X1,generate_key(an_a_nonce)))),bt))))|~intruder_message(X1)|~fresh_to_b(encrypt(X1,generate_key(an_a_nonce)))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_38, c_0_96]), c_0_90])]), ['final']).
cnf(c_0_137, plain, (b_stored(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce))))|~fresh_to_b(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_64, c_0_105]), ['final']).
cnf(c_0_138, plain, (b_holds(key(X1,X2))|~intruder_message(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt))|~intruder_message(X3)|~intruder_message(X2)|~intruder_message(X1)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)), inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_116, c_0_117]), c_0_118]), ['final']).
cnf(c_0_139, plain, (intruder_message(encrypt(triple(a,generate_key(X1),generate_expiration_time(X1)),bt))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_101, c_0_119]), ['final']).
cnf(c_0_140, plain, (b_holds(key(generate_key(an_a_nonce),X1))|~intruder_message(encrypt(triple(X1,generate_key(an_a_nonce),generate_expiration_time(X2)),bt))|~intruder_message(X2)|~intruder_message(X1)|~fresh_to_b(X2)|~party_of_protocol(X1)), inference(csr,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_99, c_0_113]), c_0_120])]), c_0_118]), ['final']).
cnf(c_0_141, plain, (b_stored(pair(X1,encrypt(X2,generate_key(an_a_nonce))))|~intruder_message(X2)|~intruder_message(X1)|~fresh_to_b(encrypt(X2,generate_key(an_a_nonce)))|~party_of_protocol(X1)), inference(spm,[status(thm)],[c_0_64, c_0_113]), ['final']).
cnf(c_0_142, plain, (b_stored(pair(a,encrypt(X1,generate_key(an_a_nonce))))|~intruder_message(X1)|~fresh_to_b(encrypt(X1,generate_key(an_a_nonce)))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_52, c_0_96]), c_0_90])]), ['final']).
cnf(c_0_143, plain, (intruder_message(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)|~intruder_message(X2)), inference(spm,[status(thm)],[c_0_104, c_0_113])).
cnf(c_0_144, plain, (b_holds(key(generate_key(an_a_nonce),X1))|~intruder_message(encrypt(triple(X1,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))|~intruder_message(X1)|~party_of_protocol(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_116, c_0_121]), c_0_122]), c_0_120]), c_0_40])]), ['final']).
cnf(c_0_145, plain, (message(sent(t,b,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),at),X3)))|~intruder_message(encrypt(triple(b,X1,X2),at))|~intruder_message(X3)|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_123, c_0_68]), c_0_90])]), ['final']).
cnf(c_0_146, plain, (message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),bt),encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt),X2)))|~intruder_message(X2)|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_124, c_0_115]), c_0_69]), c_0_54])]), ['final']).
cnf(c_0_147, plain, (intruder_message(encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_101, c_0_125]), ['final']).
cnf(c_0_148, plain, (b_holds(key(X1,a))|~intruder_message(encrypt(triple(a,X1,generate_expiration_time(an_a_nonce)),bt))|~intruder_message(X1)|~a_key(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_126, c_0_117]), c_0_127])]), ['final']).
cnf(c_0_149, plain, (a_holds(key(X1,b))|~intruder_message(encrypt(quadruple(b,an_a_nonce,X1,X2),at))|~intruder_message(X3)|~intruder_message(X4)), inference(spm,[status(thm)],[c_0_128, c_0_68]), ['final']).
fof(c_0_150, plain, ![X43, X44, X45, X46]:(~intruder_message(X43)|~intruder_message(X44)|~intruder_message(X45)|~intruder_message(X46)|intruder_message(quadruple(X43,X44,X45,X46))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_composes_quadruples])])).
fof(c_0_151, plain, ![X47, X48, X49]:(~intruder_message(encrypt(X47,X48))|~intruder_holds(key(X48,X49))|~party_of_protocol(X49)|intruder_message(X48)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_interception])])).
fof(c_0_152, plain, ![X34, X35, X36, X37]:((((intruder_message(X34)|~intruder_message(quadruple(X34,X35,X36,X37)))&(intruder_message(X35)|~intruder_message(quadruple(X34,X35,X36,X37))))&(intruder_message(X36)|~intruder_message(quadruple(X34,X35,X36,X37))))&(intruder_message(X37)|~intruder_message(quadruple(X34,X35,X36,X37)))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_decomposes_quadruples])])])).
cnf(c_0_153, plain, (intruder_message(X1)|~fresh_intruder_nonce(X1)), inference(split_conjunct,[status(thm)],[c_0_111]), ['final']).
cnf(c_0_154, plain, (fresh_intruder_nonce(generate_intruder_nonce(X1))|~fresh_intruder_nonce(X1)), inference(split_conjunct,[status(thm)],[c_0_129]), ['final']).
fof(c_0_155, plain, ![X60]:(~a_key(X60)|~a_nonce(X60)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[nothing_is_a_nonce_and_a_key])])).
fof(c_0_156, plain, ![X58]:~a_nonce(generate_key(X58)), inference(variable_rename,[status(thm)],[inference(fof_simplification,[status(thm)],[generated_keys_are_not_nonces])])).
cnf(c_0_157, plain, (fresh_intruder_nonce(an_intruder_nonce)), inference(split_conjunct,[status(thm)],[an_intruder_nonce_is_a_fresh_intruder_nonce]), ['final']).
fof(c_0_158, plain, ![X59]:(a_nonce(generate_expiration_time(X59))&a_nonce(generate_b_nonce(X59))), inference(variable_rename,[status(thm)],[generated_times_and_nonces_are_nonces])).
cnf(c_0_159, plain, (message(sent(b,t,triple(b,generate_b_nonce(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce))),encrypt(triple(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)),generate_expiration_time(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))),bt))))|~fresh_intruder_nonce(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_130, c_0_131]), ['final']).
cnf(c_0_160, plain, (message(sent(b,t,triple(b,generate_b_nonce(encrypt(X1,generate_key(an_a_nonce))),encrypt(triple(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(X1,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X1,generate_key(an_a_nonce)))),bt))))|~intruder_message(X1)|~fresh_to_b(encrypt(X1,generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_73, c_0_132]), ['final']).
cnf(c_0_161, plain, (message(sent(b,t,triple(b,generate_b_nonce(encrypt(X1,generate_key(an_a_nonce))),encrypt(triple(X2,encrypt(X1,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X1,generate_key(an_a_nonce)))),bt))))|~fresh_intruder_nonce(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)|~intruder_message(X2)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_133, c_0_131]), ['final']).
cnf(c_0_162, plain, (message(sent(t,a,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),at),X3)))|~intruder_message(triple(a,X1,X2))|~intruder_message(at)|~intruder_message(X3)|~a_nonce(X1)), inference(spm,[status(thm)],[c_0_134, c_0_117]), ['final']).
cnf(c_0_163, plain, (message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),bt),X3)))|~intruder_message(triple(a,X1,X2))|~intruder_message(bt)|~intruder_message(X3)|~a_nonce(X1)), inference(spm,[status(thm)],[c_0_82, c_0_117]), ['final']).
cnf(c_0_164, plain, (intruder_message(triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),at),encrypt(triple(a,generate_key(X1),generate_expiration_time(X1)),bt),X2))|~intruder_message(X2)|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_46, c_0_135]), ['final']).
cnf(c_0_165, plain, (b_stored(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(X1,generate_key(an_a_nonce))))|~intruder_message(X1)|~fresh_to_b(encrypt(X1,generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_64, c_0_132]), ['final']).
cnf(c_0_166, plain, (intruder_message(triple(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at),encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),X1))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_46, c_0_95]), ['final']).
cnf(c_0_167, plain, (message(sent(b,t,triple(b,generate_b_nonce(encrypt(X1,generate_key(an_a_nonce))),encrypt(triple(a,encrypt(X1,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X1,generate_key(an_a_nonce)))),bt))))|~fresh_intruder_nonce(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_136, c_0_131]), ['final']).
cnf(c_0_168, plain, (b_stored(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce))))|~fresh_intruder_nonce(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_137, c_0_131]), ['final']).
cnf(c_0_169, plain, (intruder_message(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),at))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_58, c_0_119]), ['final']).
cnf(c_0_170, plain, (b_holds(key(generate_key(X1),a))|~intruder_message(generate_key(X1))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_138, c_0_139]), c_0_90]), c_0_120]), c_0_61])]), ['final']).
cnf(c_0_171, plain, (b_holds(key(generate_key(an_a_nonce),X1))|~intruder_message(triple(X1,generate_key(an_a_nonce),generate_expiration_time(X2)))|~intruder_message(bt)|~intruder_message(X2)|~fresh_to_b(X2)|~party_of_protocol(X1)), inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_140, c_0_117]), c_0_58]), ['final']).
cnf(c_0_172, plain, (b_holds(key(generate_key(an_a_nonce),X1))|~intruder_message(generate_key(an_a_nonce))|~intruder_message(X1)|~fresh_to_b(generate_key(an_a_nonce))|~party_of_protocol(X1)), inference(spm,[status(thm)],[c_0_140, c_0_115]), ['final']).
cnf(c_0_173, plain, (b_stored(pair(X1,encrypt(X2,generate_key(an_a_nonce))))|~fresh_intruder_nonce(encrypt(X2,generate_key(an_a_nonce)))|~intruder_message(X2)|~intruder_message(X1)|~party_of_protocol(X1)), inference(spm,[status(thm)],[c_0_141, c_0_131]), ['final']).
cnf(c_0_174, plain, (b_stored(pair(a,encrypt(X1,generate_key(an_a_nonce))))|~fresh_intruder_nonce(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_142, c_0_131]), ['final']).
cnf(c_0_175, plain, (intruder_message(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_143, c_0_72]), ['final']).
cnf(c_0_176, plain, (b_holds(key(generate_key(an_a_nonce),X1))|~intruder_message(triple(X1,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)))|~intruder_message(bt)|~party_of_protocol(X1)), inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_144, c_0_117]), c_0_58]), ['final']).
cnf(c_0_177, plain, (message(sent(t,b,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),at),X3)))|~intruder_message(triple(b,X1,X2))|~intruder_message(at)|~intruder_message(X3)|~a_nonce(X1)), inference(spm,[status(thm)],[c_0_145, c_0_117]), ['final']).
cnf(c_0_178, plain, (message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),bt),X3)))|~intruder_message(triple(b,X1,X2))|~intruder_message(bt)|~intruder_message(X3)|~a_nonce(X1)), inference(spm,[status(thm)],[c_0_124, c_0_117]), ['final']).
cnf(c_0_179, plain, (intruder_message(triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),bt),encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt),X2))|~intruder_message(X2)|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_46, c_0_146]), ['final']).
cnf(c_0_180, plain, (intruder_message(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),bt))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_58, c_0_125]), ['final']).
cnf(c_0_181, plain, (b_holds(key(generate_key(X1),b))|~intruder_message(generate_key(X1))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_138, c_0_147]), c_0_69]), c_0_120]), c_0_54])]), ['final']).
cnf(c_0_182, plain, (intruder_message(generate_b_nonce(X1))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_70, c_0_125]), ['final']).
cnf(c_0_183, plain, (b_holds(key(X1,X2))|~intruder_message(triple(X2,X1,generate_expiration_time(X3)))|~intruder_message(bt)|~intruder_message(X3)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)), inference(csr,[status(thm)],[inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_138, c_0_117]), c_0_101]), c_0_58]), ['final']).
cnf(c_0_184, plain, (b_holds(key(X1,X2))|~intruder_message(X1)|~intruder_message(X2)|~a_key(X1)|~fresh_to_b(X1)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_138, c_0_115]), ['final']).
cnf(c_0_185, plain, (message(sent(a,b,pair(X1,encrypt(X2,X3))))|~intruder_message(quadruple(b,an_a_nonce,X3,X4))|~intruder_message(at)|~intruder_message(X2)|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_84, c_0_117]), ['final']).
cnf(c_0_186, plain, (b_holds(key(X1,a))|~intruder_message(triple(a,X1,generate_expiration_time(an_a_nonce)))|~intruder_message(bt)|~a_key(X1)), inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_148, c_0_117]), c_0_101]), ['final']).
cnf(c_0_187, plain, (b_holds(key(an_a_nonce,a))|~a_key(an_a_nonce)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_148, c_0_83]), c_0_122])]), ['final']).
cnf(c_0_188, plain, (a_holds(key(X1,b))|~intruder_message(quadruple(b,an_a_nonce,X1,X2))|~intruder_message(at)|~intruder_message(X3)|~intruder_message(X4)), inference(spm,[status(thm)],[c_0_149, c_0_117]), ['final']).
cnf(c_0_189, plain, (intruder_message(quadruple(X1,X2,X3,X4))|~intruder_message(X1)|~intruder_message(X2)|~intruder_message(X3)|~intruder_message(X4)), inference(split_conjunct,[status(thm)],[c_0_150]), ['final']).
cnf(c_0_190, plain, (intruder_message(X2)|~intruder_message(encrypt(X1,X2))|~intruder_holds(key(X2,X3))|~party_of_protocol(X3)), inference(split_conjunct,[status(thm)],[c_0_151]), ['final']).
cnf(c_0_191, plain, (intruder_message(X1)|~intruder_message(quadruple(X1,X2,X3,X4))), inference(split_conjunct,[status(thm)],[c_0_152]), ['final']).
cnf(c_0_192, plain, (intruder_message(X1)|~intruder_message(quadruple(X2,X1,X3,X4))), inference(split_conjunct,[status(thm)],[c_0_152]), ['final']).
cnf(c_0_193, plain, (intruder_message(X1)|~intruder_message(quadruple(X2,X3,X1,X4))), inference(split_conjunct,[status(thm)],[c_0_152]), ['final']).
cnf(c_0_194, plain, (intruder_message(X1)|~intruder_message(quadruple(X2,X3,X4,X1))), inference(split_conjunct,[status(thm)],[c_0_152]), ['final']).
cnf(c_0_195, plain, (intruder_message(generate_intruder_nonce(X1))|~fresh_intruder_nonce(X1)), inference(spm,[status(thm)],[c_0_153, c_0_154]), ['final']).
cnf(c_0_196, plain, (~a_key(X1)|~a_nonce(X1)), inference(split_conjunct,[status(thm)],[c_0_155]), ['final']).
cnf(c_0_197, plain, (~a_nonce(generate_key(X1))), inference(split_conjunct,[status(thm)],[c_0_156]), ['final']).
cnf(c_0_198, plain, (b_holds(key(generate_key(an_a_nonce),b))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_144, c_0_147]), c_0_69]), c_0_54]), c_0_122]), c_0_51]), c_0_40])]), ['final']).
cnf(c_0_199, plain, (intruder_message(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_78, c_0_105]), ['final']).
cnf(c_0_200, plain, (b_holds(key(generate_key(an_a_nonce),a))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_87, c_0_91]), c_0_122]), c_0_90]), c_0_120]), c_0_40]), c_0_61])]), ['final']).
cnf(c_0_201, plain, (a_holds(key(generate_key(an_a_nonce),b))), inference(spm,[status(thm)],[c_0_110, c_0_62]), ['final']).
cnf(c_0_202, plain, (b_holds(key(bt,t))), inference(split_conjunct,[status(thm)],[b_hold_key_bt_for_t]), ['final']).
cnf(c_0_203, plain, (a_holds(key(at,t))), inference(split_conjunct,[status(thm)],[a_holds_key_at_for_t]), ['final']).
cnf(c_0_204, plain, (intruder_message(an_intruder_nonce)), inference(spm,[status(thm)],[c_0_153, c_0_157]), ['final']).
cnf(c_0_205, plain, (a_nonce(generate_expiration_time(X1))), inference(split_conjunct,[status(thm)],[c_0_158]), ['final']).
cnf(c_0_206, plain, (a_nonce(generate_b_nonce(X1))), inference(split_conjunct,[status(thm)],[c_0_158]), ['final']).
# SZS output end Saturation

Sample solution for BOO001-1

# SZS output start CNFRefutation
cnf(associativity, axiom, (multiply(multiply(X1,X2,X3),X4,multiply(X1,X2,X5))=multiply(X1,X2,multiply(X3,X4,X5))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/Axioms/BOO001-0.ax', associativity)).
cnf(ternary_multiply_1, axiom, (multiply(X1,X2,X2)=X2), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/Axioms/BOO001-0.ax', ternary_multiply_1)).
cnf(right_inverse, axiom, (multiply(X1,X2,inverse(X2))=X1), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/Axioms/BOO001-0.ax', right_inverse)).
cnf(ternary_multiply_2, axiom, (multiply(X1,X1,X2)=X1), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/Axioms/BOO001-0.ax', ternary_multiply_2)).
cnf(left_inverse, axiom, (multiply(inverse(X1),X1,X2)=X2), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/Axioms/BOO001-0.ax', left_inverse)).
cnf(prove_inverse_is_self_cancelling, negated_conjecture, (inverse(inverse(a))!=a), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/BOO001-1.p', prove_inverse_is_self_cancelling)).
cnf(c_0_6, axiom, (multiply(multiply(X1,X2,X3),X4,multiply(X1,X2,X5))=multiply(X1,X2,multiply(X3,X4,X5))), associativity).
cnf(c_0_7, axiom, (multiply(X1,X2,X2)=X2), ternary_multiply_1).
cnf(c_0_8, plain, (multiply(multiply(X1,X2,X3),X4,X2)=multiply(X1,X2,multiply(X3,X4,X2))), inference(spm,[status(thm)],[c_0_6, c_0_7])).
cnf(c_0_9, axiom, (multiply(X1,X2,inverse(X2))=X1), right_inverse).
cnf(c_0_10, plain, (multiply(X1,X2,X3)=multiply(X1,X3,multiply(inverse(X3),X2,X3))), inference(spm,[status(thm)],[c_0_8, c_0_9])).
cnf(c_0_11, axiom, (multiply(X1,X1,X2)=X1), ternary_multiply_2).
cnf(c_0_12, axiom, (multiply(inverse(X1),X1,X2)=X2), left_inverse).
cnf(c_0_13, plain, (multiply(X1,inverse(X2),X2)=X1), inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_10, c_0_11]), c_0_9])).
cnf(c_0_14, negated_conjecture, (inverse(inverse(a))!=a), prove_inverse_is_self_cancelling).
cnf(c_0_15, plain, (inverse(inverse(X1))=X1), inference(spm,[status(thm)],[c_0_12, c_0_13])).
cnf(c_0_16, negated_conjecture, ($false), inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_14, c_0_15])]), ['proof']).
# SZS output end CNFRefutation

Sample solution for HL400001_5

# SZS output start CNFRefutation
fof(conj_thm_2Ebool_2ETRUTH, conjecture, $true, file('/Users/schulz/Desktop/HL400001_5.p', conj_thm_2Ebool_2ETRUTH)).
fof(c_0_1, negated_conjecture, ~($true), inference(assume_negation,[status(cth)],[conj_thm_2Ebool_2ETRUTH])).
fof(c_0_2, negated_conjecture, ~$true, inference(fof_simplification,[status(thm)],[c_0_1])).
cnf(c_0_3, negated_conjecture, ($false), inference(split_conjunct,[status(thm)],[c_0_2])).
cnf(c_0_4, negated_conjecture, ($false), inference(cn,[status(thm)],[c_0_3]), ['proof']).
# SZS output end CNFRefutation

Sample solution for HL400001_4

# SZS output start CNFRefutation
tff(thm_2Ebool_2ETRUTH, conjecture, p(mono_2Ec_2Ebool_2ET_2E0), file('/Users/schulz/Desktop/HL400001_4.p', thm_2Ebool_2ETRUTH)).
tff(reserved_2Eho_2Etruth, axiom, p(mono_2Ec_2Ebool_2ET_2E0), file('/Users/schulz/Desktop/Axioms/HL4002_4.ax', reserved_2Eho_2Etruth)).
tff(c_0_2, negated_conjecture, ~(p(mono_2Ec_2Ebool_2ET_2E0)), inference(assume_negation,[status(cth)],[thm_2Ebool_2ETRUTH])).
tff(c_0_3, negated_conjecture, ~p(mono_2Ec_2Ebool_2ET_2E0), inference(fof_simplification,[status(thm)],[c_0_2])).
tcf(c_0_4, negated_conjecture, ~p(mono_2Ec_2Ebool_2ET_2E0), inference(split_conjunct,[status(thm)],[c_0_3])).
tcf(c_0_5, plain, p(mono_2Ec_2Ebool_2ET_2E0), inference(split_conjunct,[status(thm)],[reserved_2Eho_2Etruth])).
cnf(c_0_6, negated_conjecture, ($false), inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_4, c_0_5])]), ['proof']).
# SZS output end CNFRefutation

Sample solution for HL400001+5

# SZS output start CNFRefutation
fof(conj_thm_2Ebool_2ETRUTH, conjecture, $true, file('/Users/schulz/Desktop/HL400001+5.p', conj_thm_2Ebool_2ETRUTH)).
fof(c_0_1, negated_conjecture, ~($true), inference(assume_negation,[status(cth)],[conj_thm_2Ebool_2ETRUTH])).
fof(c_0_2, negated_conjecture, ~$true, inference(fof_simplification,[status(thm)],[c_0_1])).
cnf(c_0_3, negated_conjecture, ($false), inference(split_conjunct,[status(thm)],[c_0_2])).
cnf(c_0_4, negated_conjecture, ($false), inference(cn,[status(thm)],[c_0_3]), ['proof']).
# SZS output end CNFRefutation

Sample solution for HL400001+4

# SZS output start CNFRefutation
fof(thm_2Ebool_2ETRUTH, conjecture, p(s(tyop_2Emin_2Ebool,c_2Ebool_2ET_2E0)), file('/Users/schulz/Desktop/HL400001+4.p', thm_2Ebool_2ETRUTH)).
fof(reserved_2Eho_2Etruth, axiom, p(s(tyop_2Emin_2Ebool,c_2Ebool_2ET_2E0)), file('/Users/schulz/Desktop/Axioms/HL4002+4.ax', reserved_2Eho_2Etruth)).
fof(c_0_2, negated_conjecture, ~(p(s(tyop_2Emin_2Ebool,c_2Ebool_2ET_2E0))), inference(assume_negation,[status(cth)],[thm_2Ebool_2ETRUTH])).
fof(c_0_3, negated_conjecture, ~p(s(tyop_2Emin_2Ebool,c_2Ebool_2ET_2E0)), inference(fof_simplification,[status(thm)],[c_0_2])).
cnf(c_0_4, negated_conjecture, (~p(s(tyop_2Emin_2Ebool,c_2Ebool_2ET_2E0))), inference(split_conjunct,[status(thm)],[c_0_3])).
cnf(c_0_5, plain, (p(s(tyop_2Emin_2Ebool,c_2Ebool_2ET_2E0))), inference(split_conjunct,[status(thm)],[reserved_2Eho_2Etruth])).
cnf(c_0_6, negated_conjecture, ($false), inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_4, c_0_5])]), ['proof']).
# SZS output end CNFRefutation

E 2.6

Stephan Schulz
DHBW Stuttgart, Germany

Sample solution for SEU140+2

# SZS output start CNFRefutation
fof(t4_xboole_0, lemma, ![X1, X2]:(~((~(disjoint(X1,X2))&![X3]:~(in(X3,set_intersection2(X1,X2)))))&~((?[X3]:in(X3,set_intersection2(X1,X2))&disjoint(X1,X2)))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', t4_xboole_0)).
fof(t48_xboole_1, lemma, ![X1, X2]:set_difference(X1,set_difference(X1,X2))=set_intersection2(X1,X2), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', t48_xboole_1)).
fof(t63_xboole_1, conjecture, ![X1, X2, X3]:((subset(X1,X2)&disjoint(X2,X3))=>disjoint(X1,X3)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', t63_xboole_1)).
fof(d1_xboole_0, axiom, ![X1]:(X1=empty_set<=>![X2]:~(in(X2,X1))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', d1_xboole_0)).
fof(d3_xboole_0, axiom, ![X1, X2, X3]:(X3=set_intersection2(X1,X2)<=>![X4]:(in(X4,X3)<=>(in(X4,X1)&in(X4,X2)))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', d3_xboole_0)).
fof(d4_xboole_0, axiom, ![X1, X2, X3]:(X3=set_difference(X1,X2)<=>![X4]:(in(X4,X3)<=>(in(X4,X1)&~(in(X4,X2))))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', d4_xboole_0)).
fof(t3_xboole_0, lemma, ![X1, X2]:(~((~(disjoint(X1,X2))&![X3]:~((in(X3,X1)&in(X3,X2)))))&~((?[X3]:(in(X3,X1)&in(X3,X2))&disjoint(X1,X2)))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', t3_xboole_0)).
fof(l32_xboole_1, lemma, ![X1, X2]:(set_difference(X1,X2)=empty_set<=>subset(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', l32_xboole_1)).
fof(d10_xboole_0, axiom, ![X1, X2]:(X1=X2<=>(subset(X1,X2)&subset(X2,X1))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', d10_xboole_0)).
fof(t36_xboole_1, lemma, ![X1, X2]:subset(set_difference(X1,X2),X1), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', t36_xboole_1)).
fof(t3_boole, axiom, ![X1]:set_difference(X1,empty_set)=X1, file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SEU140+2.p', t3_boole)).
fof(c_0_11, lemma, ![X115, X116, X118, X119, X120]:((disjoint(X115,X116)|in(esk10_2(X115,X116),set_intersection2(X115,X116)))&(~in(X120,set_intersection2(X118,X119))|~disjoint(X118,X119))), inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[t4_xboole_0])])])])])])).
fof(c_0_12, lemma, ![X112, X113]:set_difference(X112,set_difference(X112,X113))=set_intersection2(X112,X113), inference(variable_rename,[status(thm)],[t48_xboole_1])).
fof(c_0_13, negated_conjecture, ~(![X1, X2, X3]:((subset(X1,X2)&disjoint(X2,X3))=>disjoint(X1,X3))), inference(assume_negation,[status(cth)],[t63_xboole_1])).
cnf(c_0_14, lemma, (~in(X1,set_intersection2(X2,X3))|~disjoint(X2,X3)), inference(split_conjunct,[status(thm)],[c_0_11])).
cnf(c_0_15, lemma, (set_difference(X1,set_difference(X1,X2))=set_intersection2(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_12])).
fof(c_0_16, negated_conjecture, ((subset(esk11_0,esk12_0)&disjoint(esk12_0,esk13_0))&~disjoint(esk11_0,esk13_0)), inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_13])])])).
cnf(c_0_17, lemma, (~disjoint(X2,X3)|~in(X1,set_difference(X2,set_difference(X2,X3)))), inference(rw,[status(thm)],[c_0_14, c_0_15])).
cnf(c_0_18, negated_conjecture, (disjoint(esk12_0,esk13_0)), inference(split_conjunct,[status(thm)],[c_0_16])).
fof(c_0_19, plain, ![X15, X16, X17]:((X15!=empty_set|~in(X16,X15))&(in(esk1_1(X17),X17)|X17=empty_set)), inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[d1_xboole_0])])])])])])).
fof(c_0_20, plain, ![X34, X35, X36, X37, X38, X39, X40, X41]:((((in(X37,X34)|~in(X37,X36)|X36!=set_intersection2(X34,X35))&(in(X37,X35)|~in(X37,X36)|X36!=set_intersection2(X34,X35)))&(~in(X38,X34)|~in(X38,X35)|in(X38,X36)|X36!=set_intersection2(X34,X35)))&((~in(esk4_3(X39,X40,X41),X41)|(~in(esk4_3(X39,X40,X41),X39)|~in(esk4_3(X39,X40,X41),X40))|X41=set_intersection2(X39,X40))&((in(esk4_3(X39,X40,X41),X39)|in(esk4_3(X39,X40,X41),X41)|X41=set_intersection2(X39,X40))&(in(esk4_3(X39,X40,X41),X40)|in(esk4_3(X39,X40,X41),X41)|X41=set_intersection2(X39,X40))))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[d3_xboole_0])])])])])])).
fof(c_0_21, plain, ![X43, X44, X45, X46, X47, X48, X49, X50]:((((in(X46,X43)|~in(X46,X45)|X45!=set_difference(X43,X44))&(~in(X46,X44)|~in(X46,X45)|X45!=set_difference(X43,X44)))&(~in(X47,X43)|in(X47,X44)|in(X47,X45)|X45!=set_difference(X43,X44)))&((~in(esk5_3(X48,X49,X50),X50)|(~in(esk5_3(X48,X49,X50),X48)|in(esk5_3(X48,X49,X50),X49))|X50=set_difference(X48,X49))&((in(esk5_3(X48,X49,X50),X48)|in(esk5_3(X48,X49,X50),X50)|X50=set_difference(X48,X49))&(~in(esk5_3(X48,X49,X50),X49)|in(esk5_3(X48,X49,X50),X50)|X50=set_difference(X48,X49))))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[d4_xboole_0])])])])])])])).
fof(c_0_22, lemma, ![X101, X102, X104, X105, X106]:(((in(esk9_2(X101,X102),X101)|disjoint(X101,X102))&(in(esk9_2(X101,X102),X102)|disjoint(X101,X102)))&(~in(X106,X104)|~in(X106,X105)|~disjoint(X104,X105))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[t3_xboole_0])])])])])])])).
fof(c_0_23, lemma, ![X63, X64]:((set_difference(X63,X64)!=empty_set|subset(X63,X64))&(~subset(X63,X64)|set_difference(X63,X64)=empty_set)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[l32_xboole_1])])).
cnf(c_0_24, negated_conjecture, (~in(X1,set_difference(esk12_0,set_difference(esk12_0,esk13_0)))), inference(spm,[status(thm)],[c_0_17, c_0_18])).
cnf(c_0_25, plain, (in(esk1_1(X1),X1)|X1=empty_set), inference(split_conjunct,[status(thm)],[c_0_19])).
cnf(c_0_26, plain, (in(X1,X2)|~in(X1,X3)|X3!=set_intersection2(X4,X2)), inference(split_conjunct,[status(thm)],[c_0_20])).
cnf(c_0_27, plain, (~in(X1,X2)|~in(X1,X3)|X3!=set_difference(X4,X2)), inference(split_conjunct,[status(thm)],[c_0_21])).
cnf(c_0_28, negated_conjecture, (~disjoint(esk11_0,esk13_0)), inference(split_conjunct,[status(thm)],[c_0_16])).
cnf(c_0_29, lemma, (in(esk9_2(X1,X2),X2)|disjoint(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_22])).
fof(c_0_30, plain, ![X13, X14]:(((subset(X13,X14)|X13!=X14)&(subset(X14,X13)|X13!=X14))&(~subset(X13,X14)|~subset(X14,X13)|X13=X14)), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[d10_xboole_0])])])).
cnf(c_0_31, lemma, (subset(X1,X2)|set_difference(X1,X2)!=empty_set), inference(split_conjunct,[status(thm)],[c_0_23])).
cnf(c_0_32, negated_conjecture, (set_difference(esk12_0,set_difference(esk12_0,esk13_0))=empty_set), inference(spm,[status(thm)],[c_0_24, c_0_25])).
fof(c_0_33, lemma, ![X94, X95]:subset(set_difference(X94,X95),X94), inference(variable_rename,[status(thm)],[t36_xboole_1])).
cnf(c_0_34, plain, (in(X1,X2)|X3!=set_difference(X4,set_difference(X4,X2))|~in(X1,X3)), inference(rw,[status(thm)],[c_0_26, c_0_15])).
cnf(c_0_35, lemma, (set_difference(X1,X2)=empty_set|~subset(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_23])).
cnf(c_0_36, negated_conjecture, (subset(esk11_0,esk12_0)), inference(split_conjunct,[status(thm)],[c_0_16])).
fof(c_0_37, plain, ![X100]:set_difference(X100,empty_set)=X100, inference(variable_rename,[status(thm)],[t3_boole])).
cnf(c_0_38, plain, (~in(X1,set_difference(X2,X3))|~in(X1,X3)), inference(er,[status(thm)],[c_0_27])).
cnf(c_0_39, negated_conjecture, (in(esk9_2(esk11_0,esk13_0),esk13_0)), inference(spm,[status(thm)],[c_0_28, c_0_29])).
cnf(c_0_40, plain, (X1=X2|~subset(X1,X2)|~subset(X2,X1)), inference(split_conjunct,[status(thm)],[c_0_30])).
cnf(c_0_41, lemma, (subset(esk12_0,set_difference(esk12_0,esk13_0))), inference(spm,[status(thm)],[c_0_31, c_0_32])).
cnf(c_0_42, lemma, (subset(set_difference(X1,X2),X1)), inference(split_conjunct,[status(thm)],[c_0_33])).
cnf(c_0_43, plain, (in(X1,X2)|~in(X1,set_difference(X3,set_difference(X3,X2)))), inference(er,[status(thm)],[c_0_34])).
cnf(c_0_44, negated_conjecture, (set_difference(esk11_0,esk12_0)=empty_set), inference(spm,[status(thm)],[c_0_35, c_0_36])).
cnf(c_0_45, plain, (set_difference(X1,empty_set)=X1), inference(split_conjunct,[status(thm)],[c_0_37])).
cnf(c_0_46, lemma, (in(esk9_2(X1,X2),X1)|disjoint(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_22])).
cnf(c_0_47, negated_conjecture, (~in(esk9_2(esk11_0,esk13_0),set_difference(X1,esk13_0))), inference(spm,[status(thm)],[c_0_38, c_0_39])).
cnf(c_0_48, lemma, (set_difference(esk12_0,esk13_0)=esk12_0), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_40, c_0_41]), c_0_42])])).
cnf(c_0_49, negated_conjecture, (in(X1,esk12_0)|~in(X1,esk11_0)), inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_43, c_0_44]), c_0_45])).
cnf(c_0_50, negated_conjecture, (in(esk9_2(esk11_0,esk13_0),esk11_0)), inference(spm,[status(thm)],[c_0_28, c_0_46])).
cnf(c_0_51, lemma, (~in(esk9_2(esk11_0,esk13_0),esk12_0)), inference(spm,[status(thm)],[c_0_47, c_0_48])).
cnf(c_0_52, negated_conjecture, ($false), inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_49, c_0_50]), c_0_51]), ['proof']).
# SZS output end CNFRefutation

Sample solution for NLP042+1

# SZS output start Saturation
fof(ax26, axiom, ![X1, X2]:(beverage(X1,X2)=>food(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax26)).
fof(ax27, axiom, ![X1, X2]:(shake_beverage(X1,X2)=>beverage(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax27)).
fof(ax15, axiom, ![X1, X2]:(relname(X1,X2)=>relation(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax15)).
fof(ax16, axiom, ![X1, X2]:(forename(X1,X2)=>relname(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax16)).
fof(ax25, axiom, ![X1, X2]:(food(X1,X2)=>substance_matter(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax25)).
fof(co1, conjecture, ~(?[X1]:(actual_world(X1)&?[X2, X3, X4, X5]:((((((((((of(X1,X3,X2)&woman(X1,X2))&mia_forename(X1,X3))&forename(X1,X3))&shake_beverage(X1,X4))&event(X1,X5))&agent(X1,X5,X2))&patient(X1,X5,X4))&past(X1,X5))&nonreflexive(X1,X5))&order(X1,X5)))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', co1)).
fof(ax41, axiom, ![X1, X2]:(specific(X1,X2)=>~(general(X1,X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax41)).
fof(ax21, axiom, ![X1, X2]:(entity(X1,X2)=>specific(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax21)).
fof(ax39, axiom, ![X1, X2]:(nonhuman(X1,X2)=>~(human(X1,X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax39)).
fof(ax12, axiom, ![X1, X2]:(abstraction(X1,X2)=>nonhuman(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax12)).
fof(ax14, axiom, ![X1, X2]:(relation(X1,X2)=>abstraction(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax14)).
fof(ax42, axiom, ![X1, X2]:(unisex(X1,X2)=>~(female(X1,X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax42)).
fof(ax10, axiom, ![X1, X2]:(abstraction(X1,X2)=>unisex(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax10)).
fof(ax24, axiom, ![X1, X2]:(substance_matter(X1,X2)=>object(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax24)).
fof(ax31, axiom, ![X1, X2]:(eventuality(X1,X2)=>specific(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax31)).
fof(ax34, axiom, ![X1, X2]:(event(X1,X2)=>eventuality(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax34)).
fof(ax6, axiom, ![X1, X2]:(organism(X1,X2)=>entity(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax6)).
fof(ax7, axiom, ![X1, X2]:(human_person(X1,X2)=>organism(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax7)).
fof(ax8, axiom, ![X1, X2]:(woman(X1,X2)=>human_person(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax8)).
fof(ax11, axiom, ![X1, X2]:(abstraction(X1,X2)=>general(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax11)).
fof(ax40, axiom, ![X1, X2]:(nonliving(X1,X2)=>~(living(X1,X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax40)).
fof(ax19, axiom, ![X1, X2]:(object(X1,X2)=>nonliving(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax19)).
fof(ax37, axiom, ![X1, X2]:(animate(X1,X2)=>~(nonliving(X1,X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax37)).
fof(ax17, axiom, ![X1, X2]:(object(X1,X2)=>unisex(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax17)).
fof(ax38, axiom, ![X1, X2]:(existent(X1,X2)=>~(nonexistent(X1,X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax38)).
fof(ax30, axiom, ![X1, X2]:(eventuality(X1,X2)=>nonexistent(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax30)).
fof(ax29, axiom, ![X1, X2]:(eventuality(X1,X2)=>unisex(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax29)).
fof(ax44, axiom, ![X1, X2, X3, X4]:(((nonreflexive(X1,X2)&agent(X1,X2,X3))&patient(X1,X2,X4))=>X3!=X4), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax44)).
fof(ax43, axiom, ![X1, X2, X3]:(((entity(X1,X2)&forename(X1,X3))&of(X1,X3,X2))=>~(?[X4]:((forename(X1,X4)&X4!=X3)&of(X1,X4,X2)))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax43)).
fof(ax3, axiom, ![X1, X2]:(human_person(X1,X2)=>human(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax3)).
fof(ax1, axiom, ![X1, X2]:(woman(X1,X2)=>female(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax1)).
fof(ax4, axiom, ![X1, X2]:(organism(X1,X2)=>living(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax4)).
fof(ax2, axiom, ![X1, X2]:(human_person(X1,X2)=>animate(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax2)).
fof(ax20, axiom, ![X1, X2]:(entity(X1,X2)=>existent(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax20)).
fof(ax23, axiom, ![X1, X2]:(object(X1,X2)=>entity(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax23)).
fof(ax35, axiom, ![X1, X2]:(act(X1,X2)=>event(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax35)).
fof(ax28, axiom, ![X1, X2]:(order(X1,X2)=>event(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax28)).
fof(ax36, axiom, ![X1, X2]:(order(X1,X2)=>act(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax36)).
fof(ax32, axiom, ![X1, X2]:(thing(X1,X2)=>singleton(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax32)).
fof(ax9, axiom, ![X1, X2]:(mia_forename(X1,X2)=>forename(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax9)).
fof(ax33, axiom, ![X1, X2]:(eventuality(X1,X2)=>thing(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax33)).
fof(ax13, axiom, ![X1, X2]:(abstraction(X1,X2)=>thing(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax13)).
fof(ax22, axiom, ![X1, X2]:(entity(X1,X2)=>thing(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax22)).
fof(ax18, axiom, ![X1, X2]:(object(X1,X2)=>impartial(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax18)).
fof(ax5, axiom, ![X1, X2]:(organism(X1,X2)=>impartial(X1,X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/NLP042+1.p', ax5)).
fof(c_0_45, plain, ![X56, X57]:(~beverage(X56,X57)|food(X56,X57)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax26])])).
fof(c_0_46, plain, ![X58, X59]:(~shake_beverage(X58,X59)|beverage(X58,X59)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax27])])).
fof(c_0_47, plain, ![X34, X35]:(~relname(X34,X35)|relation(X34,X35)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax15])])).
fof(c_0_48, plain, ![X36, X37]:(~forename(X36,X37)|relname(X36,X37)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax16])])).
fof(c_0_49, plain, ![X54, X55]:(~food(X54,X55)|substance_matter(X54,X55)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax25])])).
cnf(c_0_50, plain, (food(X1,X2)|~beverage(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_45]), ['final']).
cnf(c_0_51, plain, (beverage(X1,X2)|~shake_beverage(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_46]), ['final']).
fof(c_0_52, negated_conjecture, ~(~(?[X1]:(actual_world(X1)&?[X2, X3, X4, X5]:((((((((((of(X1,X3,X2)&woman(X1,X2))&mia_forename(X1,X3))&forename(X1,X3))&shake_beverage(X1,X4))&event(X1,X5))&agent(X1,X5,X2))&patient(X1,X5,X4))&past(X1,X5))&nonreflexive(X1,X5))&order(X1,X5))))), inference(assume_negation,[status(cth)],[co1])).
fof(c_0_53, plain, ![X86, X87]:(~specific(X86,X87)|~general(X86,X87)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[ax41])])])).
fof(c_0_54, plain, ![X46, X47]:(~entity(X46,X47)|specific(X46,X47)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax21])])).
fof(c_0_55, plain, ![X82, X83]:(~nonhuman(X82,X83)|~human(X82,X83)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[ax39])])])).
fof(c_0_56, plain, ![X28, X29]:(~abstraction(X28,X29)|nonhuman(X28,X29)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax12])])).
fof(c_0_57, plain, ![X32, X33]:(~relation(X32,X33)|abstraction(X32,X33)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax14])])).
cnf(c_0_58, plain, (relation(X1,X2)|~relname(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_47]), ['final']).
cnf(c_0_59, plain, (relname(X1,X2)|~forename(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_48]), ['final']).
fof(c_0_60, plain, ![X88, X89]:(~unisex(X88,X89)|~female(X88,X89)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[ax42])])])).
fof(c_0_61, plain, ![X24, X25]:(~abstraction(X24,X25)|unisex(X24,X25)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax10])])).
fof(c_0_62, plain, ![X52, X53]:(~substance_matter(X52,X53)|object(X52,X53)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax24])])).
cnf(c_0_63, plain, (substance_matter(X1,X2)|~food(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_49]), ['final']).
cnf(c_0_64, plain, (food(X1,X2)|~shake_beverage(X1,X2)), inference(spm,[status(thm)],[c_0_50, c_0_51]), ['final']).
fof(c_0_65, plain, ![X66, X67]:(~eventuality(X66,X67)|specific(X66,X67)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax31])])).
fof(c_0_66, plain, ![X72, X73]:(~event(X72,X73)|eventuality(X72,X73)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax34])])).
fof(c_0_67, negated_conjecture, (actual_world(esk1_0)&((((((((((of(esk1_0,esk3_0,esk2_0)&woman(esk1_0,esk2_0))&mia_forename(esk1_0,esk3_0))&forename(esk1_0,esk3_0))&shake_beverage(esk1_0,esk4_0))&event(esk1_0,esk5_0))&agent(esk1_0,esk5_0,esk2_0))&patient(esk1_0,esk5_0,esk4_0))&past(esk1_0,esk5_0))&nonreflexive(esk1_0,esk5_0))&order(esk1_0,esk5_0))), inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_52])])])).
fof(c_0_68, plain, ![X16, X17]:(~organism(X16,X17)|entity(X16,X17)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax6])])).
fof(c_0_69, plain, ![X18, X19]:(~human_person(X18,X19)|organism(X18,X19)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax7])])).
fof(c_0_70, plain, ![X20, X21]:(~woman(X20,X21)|human_person(X20,X21)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax8])])).
cnf(c_0_71, plain, (~specific(X1,X2)|~general(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_53]), ['final']).
cnf(c_0_72, plain, (specific(X1,X2)|~entity(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_54]), ['final']).
fof(c_0_73, plain, ![X26, X27]:(~abstraction(X26,X27)|general(X26,X27)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax11])])).
cnf(c_0_74, plain, (~nonhuman(X1,X2)|~human(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_55]), ['final']).
cnf(c_0_75, plain, (nonhuman(X1,X2)|~abstraction(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_56]), ['final']).
cnf(c_0_76, plain, (abstraction(X1,X2)|~relation(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_57]), ['final']).
cnf(c_0_77, plain, (relation(X1,X2)|~forename(X1,X2)), inference(spm,[status(thm)],[c_0_58, c_0_59]), ['final']).
cnf(c_0_78, plain, (~unisex(X1,X2)|~female(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_60]), ['final']).
cnf(c_0_79, plain, (unisex(X1,X2)|~abstraction(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_61]), ['final']).
fof(c_0_80, plain, ![X84, X85]:(~nonliving(X84,X85)|~living(X84,X85)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[ax40])])])).
fof(c_0_81, plain, ![X42, X43]:(~object(X42,X43)|nonliving(X42,X43)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax19])])).
cnf(c_0_82, plain, (object(X1,X2)|~substance_matter(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_62]), ['final']).
cnf(c_0_83, plain, (substance_matter(X1,X2)|~shake_beverage(X1,X2)), inference(spm,[status(thm)],[c_0_63, c_0_64]), ['final']).
fof(c_0_84, plain, ![X78, X79]:(~animate(X78,X79)|~nonliving(X78,X79)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[ax37])])])).
fof(c_0_85, plain, ![X38, X39]:(~object(X38,X39)|unisex(X38,X39)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax17])])).
fof(c_0_86, plain, ![X80, X81]:(~existent(X80,X81)|~nonexistent(X80,X81)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[ax38])])])).
fof(c_0_87, plain, ![X64, X65]:(~eventuality(X64,X65)|nonexistent(X64,X65)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax30])])).
cnf(c_0_88, plain, (specific(X1,X2)|~eventuality(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_65]), ['final']).
cnf(c_0_89, plain, (eventuality(X1,X2)|~event(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_66]), ['final']).
cnf(c_0_90, negated_conjecture, (event(esk1_0,esk5_0)), inference(split_conjunct,[status(thm)],[c_0_67]), ['final']).
fof(c_0_91, plain, ![X62, X63]:(~eventuality(X62,X63)|unisex(X62,X63)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax29])])).
cnf(c_0_92, plain, (entity(X1,X2)|~organism(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_68]), ['final']).
cnf(c_0_93, plain, (organism(X1,X2)|~human_person(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_69]), ['final']).
cnf(c_0_94, plain, (human_person(X1,X2)|~woman(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_70]), ['final']).
cnf(c_0_95, negated_conjecture, (woman(esk1_0,esk2_0)), inference(split_conjunct,[status(thm)],[c_0_67]), ['final']).
fof(c_0_96, plain, ![X94, X95, X96, X97]:(~nonreflexive(X94,X95)|~agent(X94,X95,X96)|~patient(X94,X95,X97)|X96!=X97), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax44])])).
cnf(c_0_97, plain, (~general(X1,X2)|~entity(X1,X2)), inference(spm,[status(thm)],[c_0_71, c_0_72]), ['final']).
cnf(c_0_98, plain, (general(X1,X2)|~abstraction(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_73]), ['final']).
cnf(c_0_99, plain, (~abstraction(X1,X2)|~human(X1,X2)), inference(spm,[status(thm)],[c_0_74, c_0_75]), ['final']).
cnf(c_0_100, plain, (abstraction(X1,X2)|~forename(X1,X2)), inference(spm,[status(thm)],[c_0_76, c_0_77]), ['final']).
cnf(c_0_101, plain, (~abstraction(X1,X2)|~female(X1,X2)), inference(spm,[status(thm)],[c_0_78, c_0_79]), ['final']).
cnf(c_0_102, plain, (~nonliving(X1,X2)|~living(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_80]), ['final']).
cnf(c_0_103, plain, (nonliving(X1,X2)|~object(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_81]), ['final']).
cnf(c_0_104, plain, (object(X1,X2)|~shake_beverage(X1,X2)), inference(spm,[status(thm)],[c_0_82, c_0_83]), ['final']).
cnf(c_0_105, negated_conjecture, (shake_beverage(esk1_0,esk4_0)), inference(split_conjunct,[status(thm)],[c_0_67]), ['final']).
cnf(c_0_106, plain, (~animate(X1,X2)|~nonliving(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_84]), ['final']).
cnf(c_0_107, plain, (unisex(X1,X2)|~object(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_85]), ['final']).
cnf(c_0_108, plain, (~existent(X1,X2)|~nonexistent(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_86]), ['final']).
cnf(c_0_109, plain, (nonexistent(X1,X2)|~eventuality(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_87]), ['final']).
cnf(c_0_110, plain, (~eventuality(X1,X2)|~general(X1,X2)), inference(spm,[status(thm)],[c_0_71, c_0_88]), ['final']).
cnf(c_0_111, negated_conjecture, (eventuality(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_89, c_0_90]), ['final']).
cnf(c_0_112, plain, (unisex(X1,X2)|~eventuality(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_91]), ['final']).
fof(c_0_113, plain, ![X90, X91, X92, X93]:(~entity(X90,X91)|~forename(X90,X92)|~of(X90,X92,X91)|(~forename(X90,X93)|X93=X92|~of(X90,X93,X91))), inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax43])])])).
cnf(c_0_114, plain, (entity(X1,X2)|~human_person(X1,X2)), inference(spm,[status(thm)],[c_0_92, c_0_93]), ['final']).
cnf(c_0_115, negated_conjecture, (human_person(esk1_0,esk2_0)), inference(spm,[status(thm)],[c_0_94, c_0_95]), ['final']).
cnf(c_0_116, plain, (~nonreflexive(X1,X2)|~agent(X1,X2,X3)|~patient(X1,X2,X4)|X3!=X4), inference(split_conjunct,[status(thm)],[c_0_96])).
cnf(c_0_117, plain, (~abstraction(X1,X2)|~entity(X1,X2)), inference(spm,[status(thm)],[c_0_97, c_0_98]), ['final']).
cnf(c_0_118, plain, (~forename(X1,X2)|~human(X1,X2)), inference(spm,[status(thm)],[c_0_99, c_0_100]), ['final']).
cnf(c_0_119, negated_conjecture, (forename(esk1_0,esk3_0)), inference(split_conjunct,[status(thm)],[c_0_67]), ['final']).
fof(c_0_120, plain, ![X10, X11]:(~human_person(X10,X11)|human(X10,X11)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax3])])).
cnf(c_0_121, plain, (~forename(X1,X2)|~female(X1,X2)), inference(spm,[status(thm)],[c_0_101, c_0_100]), ['final']).
fof(c_0_122, plain, ![X6, X7]:(~woman(X6,X7)|female(X6,X7)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax1])])).
cnf(c_0_123, plain, (~object(X1,X2)|~living(X1,X2)), inference(spm,[status(thm)],[c_0_102, c_0_103]), ['final']).
cnf(c_0_124, negated_conjecture, (object(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_104, c_0_105]), ['final']).
fof(c_0_125, plain, ![X12, X13]:(~organism(X12,X13)|living(X12,X13)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax4])])).
cnf(c_0_126, plain, (~object(X1,X2)|~animate(X1,X2)), inference(spm,[status(thm)],[c_0_106, c_0_103]), ['final']).
fof(c_0_127, plain, ![X8, X9]:(~human_person(X8,X9)|animate(X8,X9)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax2])])).
cnf(c_0_128, plain, (~object(X1,X2)|~female(X1,X2)), inference(spm,[status(thm)],[c_0_78, c_0_107]), ['final']).
cnf(c_0_129, plain, (~eventuality(X1,X2)|~existent(X1,X2)), inference(spm,[status(thm)],[c_0_108, c_0_109]), ['final']).
fof(c_0_130, plain, ![X44, X45]:(~entity(X44,X45)|existent(X44,X45)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax20])])).
cnf(c_0_131, negated_conjecture, (~general(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_110, c_0_111]), ['final']).
cnf(c_0_132, plain, (~eventuality(X1,X2)|~female(X1,X2)), inference(spm,[status(thm)],[c_0_78, c_0_112]), ['final']).
fof(c_0_133, plain, ![X50, X51]:(~object(X50,X51)|entity(X50,X51)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax23])])).
cnf(c_0_134, plain, (X4=X3|~entity(X1,X2)|~forename(X1,X3)|~of(X1,X3,X2)|~forename(X1,X4)|~of(X1,X4,X2)), inference(split_conjunct,[status(thm)],[c_0_113]), ['final']).
cnf(c_0_135, negated_conjecture, (of(esk1_0,esk3_0,esk2_0)), inference(split_conjunct,[status(thm)],[c_0_67]), ['final']).
cnf(c_0_136, negated_conjecture, (entity(esk1_0,esk2_0)), inference(spm,[status(thm)],[c_0_114, c_0_115]), ['final']).
fof(c_0_137, plain, ![X74, X75]:(~act(X74,X75)|event(X74,X75)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax35])])).
fof(c_0_138, plain, ![X60, X61]:(~order(X60,X61)|event(X60,X61)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax28])])).
fof(c_0_139, plain, ![X76, X77]:(~order(X76,X77)|act(X76,X77)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax36])])).
fof(c_0_140, plain, ![X68, X69]:(~thing(X68,X69)|singleton(X68,X69)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax32])])).
fof(c_0_141, plain, ![X22, X23]:(~mia_forename(X22,X23)|forename(X22,X23)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax9])])).
fof(c_0_142, plain, ![X70, X71]:(~eventuality(X70,X71)|thing(X70,X71)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax33])])).
fof(c_0_143, plain, ![X30, X31]:(~abstraction(X30,X31)|thing(X30,X31)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax13])])).
fof(c_0_144, plain, ![X48, X49]:(~entity(X48,X49)|thing(X48,X49)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax22])])).
fof(c_0_145, plain, ![X40, X41]:(~object(X40,X41)|impartial(X40,X41)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax18])])).
fof(c_0_146, plain, ![X14, X15]:(~organism(X14,X15)|impartial(X14,X15)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax5])])).
cnf(c_0_147, plain, (~patient(X1,X2,X3)|~agent(X1,X2,X3)|~nonreflexive(X1,X2)), inference(er,[status(thm)],[c_0_116]), ['final']).
cnf(c_0_148, negated_conjecture, (patient(esk1_0,esk5_0,esk4_0)), inference(split_conjunct,[status(thm)],[c_0_67]), ['final']).
cnf(c_0_149, negated_conjecture, (nonreflexive(esk1_0,esk5_0)), inference(split_conjunct,[status(thm)],[c_0_67]), ['final']).
cnf(c_0_150, plain, (~forename(X1,X2)|~entity(X1,X2)), inference(spm,[status(thm)],[c_0_117, c_0_100]), ['final']).
cnf(c_0_151, negated_conjecture, (~human(esk1_0,esk3_0)), inference(spm,[status(thm)],[c_0_118, c_0_119]), ['final']).
cnf(c_0_152, plain, (human(X1,X2)|~human_person(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_120]), ['final']).
cnf(c_0_153, negated_conjecture, (~female(esk1_0,esk3_0)), inference(spm,[status(thm)],[c_0_121, c_0_119]), ['final']).
cnf(c_0_154, plain, (female(X1,X2)|~woman(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_122]), ['final']).
cnf(c_0_155, negated_conjecture, (~living(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_123, c_0_124]), ['final']).
cnf(c_0_156, plain, (living(X1,X2)|~organism(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_125]), ['final']).
cnf(c_0_157, negated_conjecture, (~animate(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_126, c_0_124]), ['final']).
cnf(c_0_158, plain, (animate(X1,X2)|~human_person(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_127]), ['final']).
cnf(c_0_159, negated_conjecture, (~female(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_128, c_0_124]), ['final']).
cnf(c_0_160, negated_conjecture, (~existent(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_129, c_0_111]), ['final']).
cnf(c_0_161, plain, (existent(X1,X2)|~entity(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_130]), ['final']).
cnf(c_0_162, negated_conjecture, (~abstraction(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_131, c_0_98]), ['final']).
cnf(c_0_163, negated_conjecture, (~female(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_132, c_0_111]), ['final']).
cnf(c_0_164, plain, (entity(X1,X2)|~object(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_133]), ['final']).
cnf(c_0_165, negated_conjecture, (X1=esk3_0|~of(esk1_0,X1,esk2_0)|~forename(esk1_0,X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_134, c_0_135]), c_0_119])]), c_0_136])]), ['final']).
cnf(c_0_166, plain, (event(X1,X2)|~act(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_137]), ['final']).
cnf(c_0_167, plain, (event(X1,X2)|~order(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_138]), ['final']).
cnf(c_0_168, plain, (act(X1,X2)|~order(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_139]), ['final']).
cnf(c_0_169, plain, (singleton(X1,X2)|~thing(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_140]), ['final']).
cnf(c_0_170, plain, (forename(X1,X2)|~mia_forename(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_141]), ['final']).
cnf(c_0_171, plain, (thing(X1,X2)|~eventuality(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_142]), ['final']).
cnf(c_0_172, plain, (thing(X1,X2)|~abstraction(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_143]), ['final']).
cnf(c_0_173, plain, (thing(X1,X2)|~entity(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_144]), ['final']).
cnf(c_0_174, plain, (impartial(X1,X2)|~object(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_145]), ['final']).
cnf(c_0_175, plain, (impartial(X1,X2)|~organism(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_146]), ['final']).
cnf(c_0_176, negated_conjecture, (~agent(esk1_0,esk5_0,esk4_0)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_147, c_0_148]), c_0_149])]), ['final']).
cnf(c_0_177, negated_conjecture, (~entity(esk1_0,esk3_0)), inference(spm,[status(thm)],[c_0_150, c_0_119]), ['final']).
cnf(c_0_178, negated_conjecture, (~human_person(esk1_0,esk3_0)), inference(spm,[status(thm)],[c_0_151, c_0_152]), ['final']).
cnf(c_0_179, negated_conjecture, (~woman(esk1_0,esk3_0)), inference(spm,[status(thm)],[c_0_153, c_0_154]), ['final']).
cnf(c_0_180, negated_conjecture, (~organism(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_155, c_0_156]), ['final']).
cnf(c_0_181, negated_conjecture, (~human_person(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_157, c_0_158]), ['final']).
cnf(c_0_182, negated_conjecture, (~woman(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_159, c_0_154]), ['final']).
cnf(c_0_183, negated_conjecture, (~entity(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_160, c_0_161]), ['final']).
cnf(c_0_184, negated_conjecture, (~forename(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_162, c_0_100]), ['final']).
cnf(c_0_185, negated_conjecture, (~woman(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_163, c_0_154]), ['final']).
cnf(c_0_186, negated_conjecture, (entity(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_164, c_0_124]), ['final']).
cnf(c_0_187, negated_conjecture, (agent(esk1_0,esk5_0,esk2_0)), inference(split_conjunct,[status(thm)],[c_0_67]), ['final']).
cnf(c_0_188, negated_conjecture, (past(esk1_0,esk5_0)), inference(split_conjunct,[status(thm)],[c_0_67]), ['final']).
cnf(c_0_189, negated_conjecture, (order(esk1_0,esk5_0)), inference(split_conjunct,[status(thm)],[c_0_67]), ['final']).
cnf(c_0_190, negated_conjecture, (mia_forename(esk1_0,esk3_0)), inference(split_conjunct,[status(thm)],[c_0_67]), ['final']).
cnf(c_0_191, negated_conjecture, (actual_world(esk1_0)), inference(split_conjunct,[status(thm)],[c_0_67]), ['final']).
# SZS output end Saturation

Sample solution for SWV017+1

# SZS output start Saturation
fof(server_t_generates_key, axiom, ![X1, X2, X3, X4, X5, X6, X7]:((((message(sent(X1,t,triple(X1,X2,encrypt(triple(X3,X4,X5),X6))))&t_holds(key(X6,X1)))&t_holds(key(X7,X3)))&a_nonce(X4))=>message(sent(t,X3,triple(encrypt(quadruple(X1,X4,generate_key(X4),X5),X7),encrypt(triple(X3,generate_key(X4),X5),X6),X2)))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', server_t_generates_key)).
fof(b_creates_freash_nonces_in_time, axiom, ![X1, X2]:((message(sent(X1,b,pair(X1,X2)))&fresh_to_b(X2))=>(message(sent(b,t,triple(b,generate_b_nonce(X2),encrypt(triple(X1,X2,generate_expiration_time(X2)),bt))))&b_stored(pair(X1,X2)))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', b_creates_freash_nonces_in_time)).
fof(t_holds_key_at_for_a, axiom, t_holds(key(at,a)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', t_holds_key_at_for_a)).
fof(intruder_can_record, axiom, ![X1, X2, X3]:(message(sent(X1,X2,X3))=>intruder_message(X3)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_can_record)).
fof(a_sent_message_i_to_b, axiom, message(sent(a,b,pair(a,an_a_nonce))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', a_sent_message_i_to_b)).
fof(nonce_a_is_fresh_to_b, axiom, fresh_to_b(an_a_nonce), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', nonce_a_is_fresh_to_b)).
fof(a_forwards_secure, axiom, ![X1, X2, X3, X4, X5, X6]:((message(sent(t,a,triple(encrypt(quadruple(X5,X6,X3,X2),at),X4,X1)))&a_stored(pair(X5,X6)))=>(message(sent(a,X5,pair(X4,encrypt(X1,X3))))&a_holds(key(X3,X5)))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', a_forwards_secure)).
fof(t_holds_key_bt_for_b, axiom, t_holds(key(bt,b)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', t_holds_key_bt_for_b)).
fof(intruder_message_sent, axiom, ![X1, X2, X3]:(((intruder_message(X1)&party_of_protocol(X2))&party_of_protocol(X3))=>message(sent(X2,X3,X1))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_message_sent)).
fof(intruder_decomposes_triples, axiom, ![X1, X2, X3]:(intruder_message(triple(X1,X2,X3))=>((intruder_message(X1)&intruder_message(X2))&intruder_message(X3))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_decomposes_triples)).
fof(a_stored_message_i, axiom, a_stored(pair(b,an_a_nonce)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', a_stored_message_i)).
fof(an_a_nonce_is_a_nonce, axiom, a_nonce(an_a_nonce), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', an_a_nonce_is_a_nonce)).
fof(b_is_party_of_protocol, axiom, party_of_protocol(b), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', b_is_party_of_protocol)).
fof(intruder_composes_pairs, axiom, ![X1, X2]:((intruder_message(X1)&intruder_message(X2))=>intruder_message(pair(X1,X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_composes_pairs)).
fof(t_is_party_of_protocol, axiom, party_of_protocol(t), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', t_is_party_of_protocol)).
fof(intruder_composes_triples, axiom, ![X1, X2, X3]:(((intruder_message(X1)&intruder_message(X2))&intruder_message(X3))=>intruder_message(triple(X1,X2,X3))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_composes_triples)).
fof(a_is_party_of_protocol, axiom, party_of_protocol(a), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', a_is_party_of_protocol)).
fof(b_accepts_secure_session_key, axiom, ![X2, X4, X5]:(((message(sent(X4,b,pair(encrypt(triple(X4,X2,generate_expiration_time(X5)),bt),encrypt(generate_b_nonce(X5),X2))))&a_key(X2))&b_stored(pair(X4,X5)))=>b_holds(key(X2,X4))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', b_accepts_secure_session_key)).
fof(intruder_decomposes_pairs, axiom, ![X1, X2]:(intruder_message(pair(X1,X2))=>(intruder_message(X1)&intruder_message(X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_decomposes_pairs)).
fof(intruder_key_encrypts, axiom, ![X1, X2, X3]:(((intruder_message(X1)&intruder_holds(key(X2,X3)))&party_of_protocol(X3))=>intruder_message(encrypt(X1,X2))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_key_encrypts)).
fof(intruder_holds_key, axiom, ![X2, X3]:((intruder_message(X2)&party_of_protocol(X3))=>intruder_holds(key(X2,X3))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_holds_key)).
fof(generated_keys_are_keys, axiom, ![X1]:a_key(generate_key(X1)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', generated_keys_are_keys)).
fof(fresh_intruder_nonces_are_fresh_to_b, axiom, ![X1]:(fresh_intruder_nonce(X1)=>(fresh_to_b(X1)&intruder_message(X1))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', fresh_intruder_nonces_are_fresh_to_b)).
fof(can_generate_more_fresh_intruder_nonces, axiom, ![X1]:(fresh_intruder_nonce(X1)=>fresh_intruder_nonce(generate_intruder_nonce(X1))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', can_generate_more_fresh_intruder_nonces)).
fof(intruder_composes_quadruples, axiom, ![X1, X2, X3, X4]:((((intruder_message(X1)&intruder_message(X2))&intruder_message(X3))&intruder_message(X4))=>intruder_message(quadruple(X1,X2,X3,X4))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_composes_quadruples)).
fof(intruder_interception, axiom, ![X1, X2, X3]:(((intruder_message(encrypt(X1,X2))&intruder_holds(key(X2,X3)))&party_of_protocol(X3))=>intruder_message(X2)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_interception)).
fof(intruder_decomposes_quadruples, axiom, ![X1, X2, X3, X4]:(intruder_message(quadruple(X1,X2,X3,X4))=>(((intruder_message(X1)&intruder_message(X2))&intruder_message(X3))&intruder_message(X4))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', intruder_decomposes_quadruples)).
fof(nothing_is_a_nonce_and_a_key, axiom, ![X1]:~((a_key(X1)&a_nonce(X1))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', nothing_is_a_nonce_and_a_key)).
fof(generated_keys_are_not_nonces, axiom, ![X1]:~(a_nonce(generate_key(X1))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', generated_keys_are_not_nonces)).
fof(an_intruder_nonce_is_a_fresh_intruder_nonce, axiom, fresh_intruder_nonce(an_intruder_nonce), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', an_intruder_nonce_is_a_fresh_intruder_nonce)).
fof(generated_times_and_nonces_are_nonces, axiom, ![X1]:(a_nonce(generate_expiration_time(X1))&a_nonce(generate_b_nonce(X1))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', generated_times_and_nonces_are_nonces)).
fof(b_hold_key_bt_for_t, axiom, b_holds(key(bt,t)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', b_hold_key_bt_for_t)).
fof(a_holds_key_at_for_t, axiom, a_holds(key(at,t)), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/SWV017+1.p', a_holds_key_at_for_t)).
fof(c_0_33, plain, ![X19, X20, X21, X22, X23, X24, X25]:(~message(sent(X19,t,triple(X19,X20,encrypt(triple(X21,X22,X23),X24))))|~t_holds(key(X24,X19))|~t_holds(key(X25,X21))|~a_nonce(X22)|message(sent(t,X21,triple(encrypt(quadruple(X19,X22,generate_key(X22),X23),X25),encrypt(triple(X21,generate_key(X22),X23),X24),X20)))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[server_t_generates_key])])).
fof(c_0_34, plain, ![X14, X15]:((message(sent(b,t,triple(b,generate_b_nonce(X15),encrypt(triple(X14,X15,generate_expiration_time(X15)),bt))))|(~message(sent(X14,b,pair(X14,X15)))|~fresh_to_b(X15)))&(b_stored(pair(X14,X15))|(~message(sent(X14,b,pair(X14,X15)))|~fresh_to_b(X15)))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[b_creates_freash_nonces_in_time])])])).
cnf(c_0_35, plain, (message(sent(t,X3,triple(encrypt(quadruple(X1,X4,generate_key(X4),X5),X7),encrypt(triple(X3,generate_key(X4),X5),X6),X2)))|~message(sent(X1,t,triple(X1,X2,encrypt(triple(X3,X4,X5),X6))))|~t_holds(key(X6,X1))|~t_holds(key(X7,X3))|~a_nonce(X4)), inference(split_conjunct,[status(thm)],[c_0_33]), ['final']).
cnf(c_0_36, plain, (t_holds(key(at,a))), inference(split_conjunct,[status(thm)],[t_holds_key_at_for_a]), ['final']).
fof(c_0_37, plain, ![X26, X27, X28]:(~message(sent(X26,X27,X28))|intruder_message(X28)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_can_record])])).
cnf(c_0_38, plain, (message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X2,X1,generate_expiration_time(X1)),bt))))|~message(sent(X2,b,pair(X2,X1)))|~fresh_to_b(X1)), inference(split_conjunct,[status(thm)],[c_0_34]), ['final']).
cnf(c_0_39, plain, (message(sent(a,b,pair(a,an_a_nonce)))), inference(split_conjunct,[status(thm)],[a_sent_message_i_to_b]), ['final']).
cnf(c_0_40, plain, (fresh_to_b(an_a_nonce)), inference(split_conjunct,[status(thm)],[nonce_a_is_fresh_to_b]), ['final']).
fof(c_0_41, plain, ![X8, X9, X10, X11, X12, X13]:((message(sent(a,X12,pair(X11,encrypt(X8,X10))))|(~message(sent(t,a,triple(encrypt(quadruple(X12,X13,X10,X9),at),X11,X8)))|~a_stored(pair(X12,X13))))&(a_holds(key(X10,X12))|(~message(sent(t,a,triple(encrypt(quadruple(X12,X13,X10,X9),at),X11,X8)))|~a_stored(pair(X12,X13))))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[a_forwards_secure])])])).
cnf(c_0_42, plain, (message(sent(t,a,triple(encrypt(quadruple(X1,X2,generate_key(X2),X3),at),encrypt(triple(a,generate_key(X2),X3),X4),X5)))|~a_nonce(X2)|~t_holds(key(X4,X1))|~message(sent(X1,t,triple(X1,X5,encrypt(triple(a,X2,X3),X4))))), inference(spm,[status(thm)],[c_0_35, c_0_36]), ['final']).
cnf(c_0_43, plain, (t_holds(key(bt,b))), inference(split_conjunct,[status(thm)],[t_holds_key_bt_for_b]), ['final']).
fof(c_0_44, plain, ![X50, X51, X52]:(~intruder_message(X50)|~party_of_protocol(X51)|~party_of_protocol(X52)|message(sent(X51,X52,X50))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_message_sent])])).
fof(c_0_45, plain, ![X31, X32, X33]:(((intruder_message(X31)|~intruder_message(triple(X31,X32,X33)))&(intruder_message(X32)|~intruder_message(triple(X31,X32,X33))))&(intruder_message(X33)|~intruder_message(triple(X31,X32,X33)))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_decomposes_triples])])])).
cnf(c_0_46, plain, (intruder_message(X3)|~message(sent(X1,X2,X3))), inference(split_conjunct,[status(thm)],[c_0_37]), ['final']).
cnf(c_0_47, plain, (message(sent(b,t,triple(b,generate_b_nonce(an_a_nonce),encrypt(triple(a,an_a_nonce,generate_expiration_time(an_a_nonce)),bt))))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_38, c_0_39]), c_0_40])]), ['final']).
cnf(c_0_48, plain, (message(sent(a,X1,pair(X2,encrypt(X3,X4))))|~message(sent(t,a,triple(encrypt(quadruple(X1,X5,X4,X6),at),X2,X3)))|~a_stored(pair(X1,X5))), inference(split_conjunct,[status(thm)],[c_0_41]), ['final']).
cnf(c_0_49, plain, (a_stored(pair(b,an_a_nonce))), inference(split_conjunct,[status(thm)],[a_stored_message_i]), ['final']).
cnf(c_0_50, plain, (message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),bt),X3)))|~a_nonce(X1)|~message(sent(b,t,triple(b,X3,encrypt(triple(a,X1,X2),bt))))), inference(spm,[status(thm)],[c_0_42, c_0_43]), ['final']).
cnf(c_0_51, plain, (a_nonce(an_a_nonce)), inference(split_conjunct,[status(thm)],[an_a_nonce_is_a_nonce]), ['final']).
cnf(c_0_52, plain, (b_stored(pair(X1,X2))|~message(sent(X1,b,pair(X1,X2)))|~fresh_to_b(X2)), inference(split_conjunct,[status(thm)],[c_0_34]), ['final']).
cnf(c_0_53, plain, (message(sent(X2,X3,X1))|~intruder_message(X1)|~party_of_protocol(X2)|~party_of_protocol(X3)), inference(split_conjunct,[status(thm)],[c_0_44]), ['final']).
cnf(c_0_54, plain, (party_of_protocol(b)), inference(split_conjunct,[status(thm)],[b_is_party_of_protocol]), ['final']).
fof(c_0_55, plain, ![X38, X39]:(~intruder_message(X38)|~intruder_message(X39)|intruder_message(pair(X38,X39))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_composes_pairs])])).
cnf(c_0_56, plain, (party_of_protocol(t)), inference(split_conjunct,[status(thm)],[t_is_party_of_protocol]), ['final']).
fof(c_0_57, plain, ![X40, X41, X42]:(~intruder_message(X40)|~intruder_message(X41)|~intruder_message(X42)|intruder_message(triple(X40,X41,X42))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_composes_triples])])).
cnf(c_0_58, plain, (intruder_message(X1)|~intruder_message(triple(X1,X2,X3))), inference(split_conjunct,[status(thm)],[c_0_45]), ['final']).
cnf(c_0_59, plain, (intruder_message(triple(b,generate_b_nonce(an_a_nonce),encrypt(triple(a,an_a_nonce,generate_expiration_time(an_a_nonce)),bt)))), inference(spm,[status(thm)],[c_0_46, c_0_47]), ['final']).
cnf(c_0_60, plain, (message(sent(a,b,pair(X1,encrypt(X2,X3))))|~message(sent(t,a,triple(encrypt(quadruple(b,an_a_nonce,X3,X4),at),X1,X2)))), inference(spm,[status(thm)],[c_0_48, c_0_49]), ['final']).
cnf(c_0_61, plain, (party_of_protocol(a)), inference(split_conjunct,[status(thm)],[a_is_party_of_protocol]), ['final']).
cnf(c_0_62, plain, (message(sent(t,a,triple(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at),encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),generate_b_nonce(an_a_nonce))))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_50, c_0_47]), c_0_51])]), ['final']).
fof(c_0_63, plain, ![X16, X17, X18]:(~message(sent(X17,b,pair(encrypt(triple(X17,X16,generate_expiration_time(X18)),bt),encrypt(generate_b_nonce(X18),X16))))|~a_key(X16)|~b_stored(pair(X17,X18))|b_holds(key(X16,X17))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[b_accepts_secure_session_key])])).
cnf(c_0_64, plain, (b_stored(pair(X1,X2))|~intruder_message(pair(X1,X2))|~fresh_to_b(X2)|~party_of_protocol(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_52, c_0_53]), c_0_54])]), ['final']).
cnf(c_0_65, plain, (intruder_message(pair(X1,X2))|~intruder_message(X1)|~intruder_message(X2)), inference(split_conjunct,[status(thm)],[c_0_55]), ['final']).
fof(c_0_66, plain, ![X29, X30]:((intruder_message(X29)|~intruder_message(pair(X29,X30)))&(intruder_message(X30)|~intruder_message(pair(X29,X30)))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_decomposes_pairs])])])).
cnf(c_0_67, plain, (message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),bt),X3)))|~intruder_message(triple(b,X3,encrypt(triple(a,X1,X2),bt)))|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_50, c_0_53]), c_0_56]), c_0_54])]), ['final']).
cnf(c_0_68, plain, (intruder_message(triple(X1,X2,X3))|~intruder_message(X1)|~intruder_message(X2)|~intruder_message(X3)), inference(split_conjunct,[status(thm)],[c_0_57]), ['final']).
cnf(c_0_69, plain, (intruder_message(b)), inference(spm,[status(thm)],[c_0_58, c_0_59]), ['final']).
cnf(c_0_70, plain, (intruder_message(X1)|~intruder_message(triple(X2,X3,X1))), inference(split_conjunct,[status(thm)],[c_0_45]), ['final']).
cnf(c_0_71, plain, (message(sent(a,b,pair(X1,encrypt(X2,X3))))|~intruder_message(triple(encrypt(quadruple(b,an_a_nonce,X3,X4),at),X1,X2))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_60, c_0_53]), c_0_61]), c_0_56])]), ['final']).
cnf(c_0_72, plain, (intruder_message(triple(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at),encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),generate_b_nonce(an_a_nonce)))), inference(spm,[status(thm)],[c_0_46, c_0_62]), ['final']).
cnf(c_0_73, plain, (message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X2,X1,generate_expiration_time(X1)),bt))))|~intruder_message(pair(X2,X1))|~fresh_to_b(X1)|~party_of_protocol(X2)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_38, c_0_53]), c_0_54])]), ['final']).
cnf(c_0_74, plain, (b_holds(key(X2,X1))|~message(sent(X1,b,pair(encrypt(triple(X1,X2,generate_expiration_time(X3)),bt),encrypt(generate_b_nonce(X3),X2))))|~a_key(X2)|~b_stored(pair(X1,X3))), inference(split_conjunct,[status(thm)],[c_0_63]), ['final']).
cnf(c_0_75, plain, (b_stored(pair(X1,X2))|~intruder_message(X2)|~intruder_message(X1)|~fresh_to_b(X2)|~party_of_protocol(X1)), inference(spm,[status(thm)],[c_0_64, c_0_65]), ['final']).
fof(c_0_76, plain, ![X55, X56, X57]:(~intruder_message(X55)|~intruder_holds(key(X56,X57))|~party_of_protocol(X57)|intruder_message(encrypt(X55,X56))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_key_encrypts])])).
fof(c_0_77, plain, ![X53, X54]:(~intruder_message(X53)|~party_of_protocol(X54)|intruder_holds(key(X53,X54))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_holds_key])])).
cnf(c_0_78, plain, (intruder_message(X1)|~intruder_message(pair(X1,X2))), inference(split_conjunct,[status(thm)],[c_0_66]), ['final']).
cnf(c_0_79, plain, (intruder_message(pair(a,an_a_nonce))), inference(spm,[status(thm)],[c_0_46, c_0_39]), ['final']).
cnf(c_0_80, plain, (message(sent(t,b,triple(encrypt(quadruple(X1,X2,generate_key(X2),X3),bt),encrypt(triple(b,generate_key(X2),X3),X4),X5)))|~a_nonce(X2)|~t_holds(key(X4,X1))|~message(sent(X1,t,triple(X1,X5,encrypt(triple(b,X2,X3),X4))))), inference(spm,[status(thm)],[c_0_35, c_0_43]), ['final']).
cnf(c_0_81, plain, (b_stored(pair(a,an_a_nonce))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_52, c_0_39]), c_0_40])]), ['final']).
cnf(c_0_82, plain, (message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),bt),X3)))|~intruder_message(encrypt(triple(a,X1,X2),bt))|~intruder_message(X3)|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_67, c_0_68]), c_0_69])]), ['final']).
cnf(c_0_83, plain, (intruder_message(encrypt(triple(a,an_a_nonce,generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_70, c_0_59]), ['final']).
cnf(c_0_84, plain, (message(sent(a,b,pair(X1,encrypt(X2,X3))))|~intruder_message(encrypt(quadruple(b,an_a_nonce,X3,X4),at))|~intruder_message(X2)|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_71, c_0_68]), ['final']).
cnf(c_0_85, plain, (intruder_message(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at))), inference(spm,[status(thm)],[c_0_58, c_0_72]), ['final']).
cnf(c_0_86, plain, (message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X2,X1,generate_expiration_time(X1)),bt))))|~intruder_message(X1)|~intruder_message(X2)|~fresh_to_b(X1)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_73, c_0_65]), ['final']).
cnf(c_0_87, plain, (b_holds(key(X1,X2))|~intruder_message(X3)|~intruder_message(X2)|~a_key(X1)|~fresh_to_b(X3)|~message(sent(X2,b,pair(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt),encrypt(generate_b_nonce(X3),X1))))|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_74, c_0_75]), ['final']).
cnf(c_0_88, plain, (intruder_message(encrypt(X1,X2))|~intruder_message(X1)|~intruder_holds(key(X2,X3))|~party_of_protocol(X3)), inference(split_conjunct,[status(thm)],[c_0_76]), ['final']).
cnf(c_0_89, plain, (intruder_holds(key(X1,X2))|~intruder_message(X1)|~party_of_protocol(X2)), inference(split_conjunct,[status(thm)],[c_0_77]), ['final']).
cnf(c_0_90, plain, (intruder_message(a)), inference(spm,[status(thm)],[c_0_78, c_0_79]), ['final']).
cnf(c_0_91, plain, (message(sent(a,b,pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))))), inference(spm,[status(thm)],[c_0_60, c_0_62]), ['final']).
cnf(c_0_92, plain, (message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),bt),X3)))|~a_nonce(X1)|~message(sent(b,t,triple(b,X3,encrypt(triple(b,X1,X2),bt))))), inference(spm,[status(thm)],[c_0_80, c_0_43]), ['final']).
cnf(c_0_93, plain, (b_holds(key(X1,a))|~a_key(X1)|~message(sent(a,b,pair(encrypt(triple(a,X1,generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),X1))))), inference(spm,[status(thm)],[c_0_74, c_0_81]), ['final']).
cnf(c_0_94, plain, (a_holds(key(X1,X2))|~message(sent(t,a,triple(encrypt(quadruple(X2,X3,X1,X4),at),X5,X6)))|~a_stored(pair(X2,X3))), inference(split_conjunct,[status(thm)],[c_0_41]), ['final']).
cnf(c_0_95, plain, (message(sent(t,a,triple(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at),encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),X1)))|~intruder_message(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_82, c_0_83]), c_0_51])]), ['final']).
cnf(c_0_96, plain, (message(sent(a,b,pair(X1,encrypt(X2,generate_key(an_a_nonce)))))|~intruder_message(X2)|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_84, c_0_85]), ['final']).
cnf(c_0_97, plain, (message(sent(t,a,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),at),X3)))|~a_nonce(X1)|~message(sent(a,t,triple(a,X3,encrypt(triple(a,X1,X2),at))))), inference(spm,[status(thm)],[c_0_42, c_0_36]), ['final']).
cnf(c_0_98, plain, (intruder_message(triple(b,generate_b_nonce(X1),encrypt(triple(X2,X1,generate_expiration_time(X1)),bt)))|~intruder_message(X1)|~intruder_message(X2)|~fresh_to_b(X1)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_46, c_0_86]), ['final']).
cnf(c_0_99, plain, (b_holds(key(X1,X2))|~intruder_message(pair(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt),encrypt(generate_b_nonce(X3),X1)))|~intruder_message(X3)|~intruder_message(X2)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_87, c_0_53]), c_0_54])]), ['final']).
cnf(c_0_100, plain, (intruder_message(encrypt(X1,X2))|~intruder_message(X1)|~intruder_message(X2)|~party_of_protocol(X3)), inference(spm,[status(thm)],[c_0_88, c_0_89])).
cnf(c_0_101, plain, (intruder_message(X1)|~intruder_message(triple(X2,X1,X3))), inference(split_conjunct,[status(thm)],[c_0_45]), ['final']).
cnf(c_0_102, plain, (message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),at),encrypt(triple(a,generate_key(X1),generate_expiration_time(X1)),bt),generate_b_nonce(X1))))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_50, c_0_86]), c_0_90]), c_0_61])]), ['final']).
fof(c_0_103, plain, ![X61]:a_key(generate_key(X61)), inference(variable_rename,[status(thm)],[generated_keys_are_keys])).
cnf(c_0_104, plain, (intruder_message(X1)|~intruder_message(pair(X2,X1))), inference(split_conjunct,[status(thm)],[c_0_66]), ['final']).
cnf(c_0_105, plain, (intruder_message(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce))))), inference(spm,[status(thm)],[c_0_46, c_0_91]), ['final']).
cnf(c_0_106, plain, (message(sent(t,b,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),at),X3)))|~a_nonce(X1)|~message(sent(a,t,triple(a,X3,encrypt(triple(b,X1,X2),at))))), inference(spm,[status(thm)],[c_0_80, c_0_36]), ['final']).
cnf(c_0_107, plain, (message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),bt),X3)))|~intruder_message(triple(b,X3,encrypt(triple(b,X1,X2),bt)))|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_92, c_0_53]), c_0_56]), c_0_54])]), ['final']).
cnf(c_0_108, plain, (message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),bt),encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt),generate_b_nonce(X1))))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_92, c_0_86]), c_0_69]), c_0_54])]), ['final']).
cnf(c_0_109, plain, (b_holds(key(X1,a))|~intruder_message(pair(encrypt(triple(a,X1,generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),X1)))|~a_key(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_93, c_0_53]), c_0_54]), c_0_61])]), ['final']).
cnf(c_0_110, plain, (a_holds(key(X1,b))|~message(sent(t,a,triple(encrypt(quadruple(b,an_a_nonce,X1,X2),at),X3,X4)))), inference(spm,[status(thm)],[c_0_94, c_0_49]), ['final']).
fof(c_0_111, plain, ![X63]:((fresh_to_b(X63)|~fresh_intruder_nonce(X63))&(intruder_message(X63)|~fresh_intruder_nonce(X63))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[fresh_intruder_nonces_are_fresh_to_b])])])).
cnf(c_0_112, plain, (message(sent(a,b,pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(X1,generate_key(an_a_nonce)))))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_60, c_0_95]), ['final']).
cnf(c_0_113, plain, (intruder_message(pair(X1,encrypt(X2,generate_key(an_a_nonce))))|~intruder_message(X2)|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_46, c_0_96]), ['final']).
cnf(c_0_114, plain, (message(sent(t,a,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),at),X3)))|~intruder_message(triple(a,X3,encrypt(triple(a,X1,X2),at)))|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_97, c_0_53]), c_0_56]), c_0_61])]), ['final']).
cnf(c_0_115, plain, (intruder_message(encrypt(triple(X1,X2,generate_expiration_time(X2)),bt))|~intruder_message(X2)|~intruder_message(X1)|~fresh_to_b(X2)|~party_of_protocol(X1)), inference(spm,[status(thm)],[c_0_70, c_0_98]), ['final']).
cnf(c_0_116, plain, (b_holds(key(X1,X2))|~intruder_message(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt))|~intruder_message(encrypt(generate_b_nonce(X3),X1))|~intruder_message(X3)|~intruder_message(X2)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_99, c_0_65]), ['final']).
cnf(c_0_117, plain, (intruder_message(encrypt(X1,X2))|~intruder_message(X1)|~intruder_message(X2)), inference(spm,[status(thm)],[c_0_100, c_0_54]), ['final']).
cnf(c_0_118, plain, (intruder_message(generate_b_nonce(X1))|~intruder_message(X1)|~intruder_message(X2)|~fresh_to_b(X1)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_101, c_0_98]), ['final']).
cnf(c_0_119, plain, (intruder_message(triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),at),encrypt(triple(a,generate_key(X1),generate_expiration_time(X1)),bt),generate_b_nonce(X1)))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_46, c_0_102]), ['final']).
cnf(c_0_120, plain, (a_key(generate_key(X1))), inference(split_conjunct,[status(thm)],[c_0_103]), ['final']).
cnf(c_0_121, plain, (intruder_message(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))), inference(spm,[status(thm)],[c_0_104, c_0_105]), ['final']).
cnf(c_0_122, plain, (intruder_message(an_a_nonce)), inference(spm,[status(thm)],[c_0_104, c_0_79]), ['final']).
cnf(c_0_123, plain, (message(sent(t,b,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),at),X3)))|~intruder_message(triple(a,X3,encrypt(triple(b,X1,X2),at)))|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_106, c_0_53]), c_0_56]), c_0_61])]), ['final']).
cnf(c_0_124, plain, (message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),bt),X3)))|~intruder_message(encrypt(triple(b,X1,X2),bt))|~intruder_message(X3)|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_107, c_0_68]), c_0_69])]), ['final']).
cnf(c_0_125, plain, (intruder_message(triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),bt),encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt),generate_b_nonce(X1)))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_46, c_0_108]), ['final']).
cnf(c_0_126, plain, (b_holds(key(X1,a))|~intruder_message(encrypt(triple(a,X1,generate_expiration_time(an_a_nonce)),bt))|~intruder_message(encrypt(generate_b_nonce(an_a_nonce),X1))|~a_key(X1)), inference(spm,[status(thm)],[c_0_109, c_0_65]), ['final']).
cnf(c_0_127, plain, (intruder_message(generate_b_nonce(an_a_nonce))), inference(spm,[status(thm)],[c_0_101, c_0_59]), ['final']).
cnf(c_0_128, plain, (a_holds(key(X1,b))|~intruder_message(triple(encrypt(quadruple(b,an_a_nonce,X1,X2),at),X3,X4))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_110, c_0_53]), c_0_61]), c_0_56])]), ['final']).
fof(c_0_129, plain, ![X62]:(~fresh_intruder_nonce(X62)|fresh_intruder_nonce(generate_intruder_nonce(X62))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[can_generate_more_fresh_intruder_nonces])])).
cnf(c_0_130, plain, (message(sent(b,t,triple(b,generate_b_nonce(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce))),encrypt(triple(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)),generate_expiration_time(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))),bt))))|~fresh_to_b(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_73, c_0_105]), ['final']).
cnf(c_0_131, plain, (fresh_to_b(X1)|~fresh_intruder_nonce(X1)), inference(split_conjunct,[status(thm)],[c_0_111]), ['final']).
cnf(c_0_132, plain, (intruder_message(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(X1,generate_key(an_a_nonce))))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_46, c_0_112]), ['final']).
cnf(c_0_133, plain, (message(sent(b,t,triple(b,generate_b_nonce(encrypt(X1,generate_key(an_a_nonce))),encrypt(triple(X2,encrypt(X1,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X1,generate_key(an_a_nonce)))),bt))))|~intruder_message(X1)|~intruder_message(X2)|~fresh_to_b(encrypt(X1,generate_key(an_a_nonce)))|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_73, c_0_113]), ['final']).
cnf(c_0_134, plain, (message(sent(t,a,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),at),X3)))|~intruder_message(encrypt(triple(a,X1,X2),at))|~intruder_message(X3)|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_114, c_0_68]), c_0_90])]), ['final']).
cnf(c_0_135, plain, (message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),at),encrypt(triple(a,generate_key(X1),generate_expiration_time(X1)),bt),X2)))|~intruder_message(X2)|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_82, c_0_115]), c_0_90]), c_0_61])]), ['final']).
cnf(c_0_136, plain, (message(sent(b,t,triple(b,generate_b_nonce(encrypt(X1,generate_key(an_a_nonce))),encrypt(triple(a,encrypt(X1,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X1,generate_key(an_a_nonce)))),bt))))|~intruder_message(X1)|~fresh_to_b(encrypt(X1,generate_key(an_a_nonce)))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_38, c_0_96]), c_0_90])]), ['final']).
cnf(c_0_137, plain, (b_stored(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce))))|~fresh_to_b(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_64, c_0_105]), ['final']).
cnf(c_0_138, plain, (b_holds(key(X1,X2))|~intruder_message(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt))|~intruder_message(X3)|~intruder_message(X2)|~intruder_message(X1)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)), inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_116, c_0_117]), c_0_118]), ['final']).
cnf(c_0_139, plain, (intruder_message(encrypt(triple(a,generate_key(X1),generate_expiration_time(X1)),bt))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_101, c_0_119]), ['final']).
cnf(c_0_140, plain, (b_holds(key(generate_key(an_a_nonce),X1))|~intruder_message(encrypt(triple(X1,generate_key(an_a_nonce),generate_expiration_time(X2)),bt))|~intruder_message(X2)|~intruder_message(X1)|~fresh_to_b(X2)|~party_of_protocol(X1)), inference(csr,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_99, c_0_113]), c_0_120])]), c_0_118]), ['final']).
cnf(c_0_141, plain, (b_stored(pair(X1,encrypt(X2,generate_key(an_a_nonce))))|~intruder_message(X2)|~intruder_message(X1)|~fresh_to_b(encrypt(X2,generate_key(an_a_nonce)))|~party_of_protocol(X1)), inference(spm,[status(thm)],[c_0_64, c_0_113]), ['final']).
cnf(c_0_142, plain, (b_stored(pair(a,encrypt(X1,generate_key(an_a_nonce))))|~intruder_message(X1)|~fresh_to_b(encrypt(X1,generate_key(an_a_nonce)))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_52, c_0_96]), c_0_90])]), ['final']).
cnf(c_0_143, plain, (intruder_message(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)|~intruder_message(X2)), inference(spm,[status(thm)],[c_0_104, c_0_113])).
cnf(c_0_144, plain, (b_holds(key(generate_key(an_a_nonce),X1))|~intruder_message(encrypt(triple(X1,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))|~intruder_message(X1)|~party_of_protocol(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_116, c_0_121]), c_0_122]), c_0_120]), c_0_40])]), ['final']).
cnf(c_0_145, plain, (message(sent(t,b,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),at),X3)))|~intruder_message(encrypt(triple(b,X1,X2),at))|~intruder_message(X3)|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_123, c_0_68]), c_0_90])]), ['final']).
cnf(c_0_146, plain, (message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),bt),encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt),X2)))|~intruder_message(X2)|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_124, c_0_115]), c_0_69]), c_0_54])]), ['final']).
cnf(c_0_147, plain, (intruder_message(encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_101, c_0_125]), ['final']).
cnf(c_0_148, plain, (b_holds(key(X1,a))|~intruder_message(encrypt(triple(a,X1,generate_expiration_time(an_a_nonce)),bt))|~intruder_message(X1)|~a_key(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_126, c_0_117]), c_0_127])]), ['final']).
cnf(c_0_149, plain, (a_holds(key(X1,b))|~intruder_message(encrypt(quadruple(b,an_a_nonce,X1,X2),at))|~intruder_message(X3)|~intruder_message(X4)), inference(spm,[status(thm)],[c_0_128, c_0_68]), ['final']).
fof(c_0_150, plain, ![X43, X44, X45, X46]:(~intruder_message(X43)|~intruder_message(X44)|~intruder_message(X45)|~intruder_message(X46)|intruder_message(quadruple(X43,X44,X45,X46))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_composes_quadruples])])).
fof(c_0_151, plain, ![X47, X48, X49]:(~intruder_message(encrypt(X47,X48))|~intruder_holds(key(X48,X49))|~party_of_protocol(X49)|intruder_message(X48)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_interception])])).
fof(c_0_152, plain, ![X34, X35, X36, X37]:((((intruder_message(X34)|~intruder_message(quadruple(X34,X35,X36,X37)))&(intruder_message(X35)|~intruder_message(quadruple(X34,X35,X36,X37))))&(intruder_message(X36)|~intruder_message(quadruple(X34,X35,X36,X37))))&(intruder_message(X37)|~intruder_message(quadruple(X34,X35,X36,X37)))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_decomposes_quadruples])])])).
cnf(c_0_153, plain, (intruder_message(X1)|~fresh_intruder_nonce(X1)), inference(split_conjunct,[status(thm)],[c_0_111]), ['final']).
cnf(c_0_154, plain, (fresh_intruder_nonce(generate_intruder_nonce(X1))|~fresh_intruder_nonce(X1)), inference(split_conjunct,[status(thm)],[c_0_129]), ['final']).
fof(c_0_155, plain, ![X60]:(~a_key(X60)|~a_nonce(X60)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[nothing_is_a_nonce_and_a_key])])).
fof(c_0_156, plain, ![X58]:~a_nonce(generate_key(X58)), inference(variable_rename,[status(thm)],[inference(fof_simplification,[status(thm)],[generated_keys_are_not_nonces])])).
cnf(c_0_157, plain, (fresh_intruder_nonce(an_intruder_nonce)), inference(split_conjunct,[status(thm)],[an_intruder_nonce_is_a_fresh_intruder_nonce]), ['final']).
fof(c_0_158, plain, ![X59]:(a_nonce(generate_expiration_time(X59))&a_nonce(generate_b_nonce(X59))), inference(variable_rename,[status(thm)],[generated_times_and_nonces_are_nonces])).
cnf(c_0_159, plain, (message(sent(b,t,triple(b,generate_b_nonce(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce))),encrypt(triple(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)),generate_expiration_time(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))),bt))))|~fresh_intruder_nonce(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_130, c_0_131]), ['final']).
cnf(c_0_160, plain, (message(sent(b,t,triple(b,generate_b_nonce(encrypt(X1,generate_key(an_a_nonce))),encrypt(triple(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(X1,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X1,generate_key(an_a_nonce)))),bt))))|~intruder_message(X1)|~fresh_to_b(encrypt(X1,generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_73, c_0_132]), ['final']).
cnf(c_0_161, plain, (message(sent(b,t,triple(b,generate_b_nonce(encrypt(X1,generate_key(an_a_nonce))),encrypt(triple(X2,encrypt(X1,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X1,generate_key(an_a_nonce)))),bt))))|~fresh_intruder_nonce(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)|~intruder_message(X2)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_133, c_0_131]), ['final']).
cnf(c_0_162, plain, (message(sent(t,a,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),at),X3)))|~intruder_message(triple(a,X1,X2))|~intruder_message(at)|~intruder_message(X3)|~a_nonce(X1)), inference(spm,[status(thm)],[c_0_134, c_0_117]), ['final']).
cnf(c_0_163, plain, (message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),bt),X3)))|~intruder_message(triple(a,X1,X2))|~intruder_message(bt)|~intruder_message(X3)|~a_nonce(X1)), inference(spm,[status(thm)],[c_0_82, c_0_117]), ['final']).
cnf(c_0_164, plain, (intruder_message(triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),at),encrypt(triple(a,generate_key(X1),generate_expiration_time(X1)),bt),X2))|~intruder_message(X2)|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_46, c_0_135]), ['final']).
cnf(c_0_165, plain, (b_stored(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(X1,generate_key(an_a_nonce))))|~intruder_message(X1)|~fresh_to_b(encrypt(X1,generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_64, c_0_132]), ['final']).
cnf(c_0_166, plain, (intruder_message(triple(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at),encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),X1))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_46, c_0_95]), ['final']).
cnf(c_0_167, plain, (message(sent(b,t,triple(b,generate_b_nonce(encrypt(X1,generate_key(an_a_nonce))),encrypt(triple(a,encrypt(X1,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X1,generate_key(an_a_nonce)))),bt))))|~fresh_intruder_nonce(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_136, c_0_131]), ['final']).
cnf(c_0_168, plain, (b_stored(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce))))|~fresh_intruder_nonce(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_137, c_0_131]), ['final']).
cnf(c_0_169, plain, (intruder_message(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),at))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_58, c_0_119]), ['final']).
cnf(c_0_170, plain, (b_holds(key(generate_key(X1),a))|~intruder_message(generate_key(X1))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_138, c_0_139]), c_0_90]), c_0_120]), c_0_61])]), ['final']).
cnf(c_0_171, plain, (b_holds(key(generate_key(an_a_nonce),X1))|~intruder_message(triple(X1,generate_key(an_a_nonce),generate_expiration_time(X2)))|~intruder_message(bt)|~intruder_message(X2)|~fresh_to_b(X2)|~party_of_protocol(X1)), inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_140, c_0_117]), c_0_58]), ['final']).
cnf(c_0_172, plain, (b_holds(key(generate_key(an_a_nonce),X1))|~intruder_message(generate_key(an_a_nonce))|~intruder_message(X1)|~fresh_to_b(generate_key(an_a_nonce))|~party_of_protocol(X1)), inference(spm,[status(thm)],[c_0_140, c_0_115]), ['final']).
cnf(c_0_173, plain, (b_stored(pair(X1,encrypt(X2,generate_key(an_a_nonce))))|~fresh_intruder_nonce(encrypt(X2,generate_key(an_a_nonce)))|~intruder_message(X2)|~intruder_message(X1)|~party_of_protocol(X1)), inference(spm,[status(thm)],[c_0_141, c_0_131]), ['final']).
cnf(c_0_174, plain, (b_stored(pair(a,encrypt(X1,generate_key(an_a_nonce))))|~fresh_intruder_nonce(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_142, c_0_131]), ['final']).
cnf(c_0_175, plain, (intruder_message(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_143, c_0_72]), ['final']).
cnf(c_0_176, plain, (b_holds(key(generate_key(an_a_nonce),X1))|~intruder_message(triple(X1,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)))|~intruder_message(bt)|~party_of_protocol(X1)), inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_144, c_0_117]), c_0_58]), ['final']).
cnf(c_0_177, plain, (message(sent(t,b,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),at),X3)))|~intruder_message(triple(b,X1,X2))|~intruder_message(at)|~intruder_message(X3)|~a_nonce(X1)), inference(spm,[status(thm)],[c_0_145, c_0_117]), ['final']).
cnf(c_0_178, plain, (message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),bt),X3)))|~intruder_message(triple(b,X1,X2))|~intruder_message(bt)|~intruder_message(X3)|~a_nonce(X1)), inference(spm,[status(thm)],[c_0_124, c_0_117]), ['final']).
cnf(c_0_179, plain, (intruder_message(triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),bt),encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt),X2))|~intruder_message(X2)|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_46, c_0_146]), ['final']).
cnf(c_0_180, plain, (intruder_message(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),bt))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_58, c_0_125]), ['final']).
cnf(c_0_181, plain, (b_holds(key(generate_key(X1),b))|~intruder_message(generate_key(X1))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_138, c_0_147]), c_0_69]), c_0_120]), c_0_54])]), ['final']).
cnf(c_0_182, plain, (intruder_message(generate_b_nonce(X1))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_70, c_0_125]), ['final']).
cnf(c_0_183, plain, (b_holds(key(X1,X2))|~intruder_message(triple(X2,X1,generate_expiration_time(X3)))|~intruder_message(bt)|~intruder_message(X3)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)), inference(csr,[status(thm)],[inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_138, c_0_117]), c_0_101]), c_0_58]), ['final']).
cnf(c_0_184, plain, (b_holds(key(X1,X2))|~intruder_message(X1)|~intruder_message(X2)|~a_key(X1)|~fresh_to_b(X1)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_138, c_0_115]), ['final']).
cnf(c_0_185, plain, (message(sent(a,b,pair(X1,encrypt(X2,X3))))|~intruder_message(quadruple(b,an_a_nonce,X3,X4))|~intruder_message(at)|~intruder_message(X2)|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_84, c_0_117]), ['final']).
cnf(c_0_186, plain, (b_holds(key(X1,a))|~intruder_message(triple(a,X1,generate_expiration_time(an_a_nonce)))|~intruder_message(bt)|~a_key(X1)), inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_148, c_0_117]), c_0_101]), ['final']).
cnf(c_0_187, plain, (b_holds(key(an_a_nonce,a))|~a_key(an_a_nonce)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_148, c_0_83]), c_0_122])]), ['final']).
cnf(c_0_188, plain, (a_holds(key(X1,b))|~intruder_message(quadruple(b,an_a_nonce,X1,X2))|~intruder_message(at)|~intruder_message(X3)|~intruder_message(X4)), inference(spm,[status(thm)],[c_0_149, c_0_117]), ['final']).
cnf(c_0_189, plain, (intruder_message(quadruple(X1,X2,X3,X4))|~intruder_message(X1)|~intruder_message(X2)|~intruder_message(X3)|~intruder_message(X4)), inference(split_conjunct,[status(thm)],[c_0_150]), ['final']).
cnf(c_0_190, plain, (intruder_message(X2)|~intruder_message(encrypt(X1,X2))|~intruder_holds(key(X2,X3))|~party_of_protocol(X3)), inference(split_conjunct,[status(thm)],[c_0_151]), ['final']).
cnf(c_0_191, plain, (intruder_message(X1)|~intruder_message(quadruple(X1,X2,X3,X4))), inference(split_conjunct,[status(thm)],[c_0_152]), ['final']).
cnf(c_0_192, plain, (intruder_message(X1)|~intruder_message(quadruple(X2,X1,X3,X4))), inference(split_conjunct,[status(thm)],[c_0_152]), ['final']).
cnf(c_0_193, plain, (intruder_message(X1)|~intruder_message(quadruple(X2,X3,X1,X4))), inference(split_conjunct,[status(thm)],[c_0_152]), ['final']).
cnf(c_0_194, plain, (intruder_message(X1)|~intruder_message(quadruple(X2,X3,X4,X1))), inference(split_conjunct,[status(thm)],[c_0_152]), ['final']).
cnf(c_0_195, plain, (intruder_message(generate_intruder_nonce(X1))|~fresh_intruder_nonce(X1)), inference(spm,[status(thm)],[c_0_153, c_0_154]), ['final']).
cnf(c_0_196, plain, (~a_key(X1)|~a_nonce(X1)), inference(split_conjunct,[status(thm)],[c_0_155]), ['final']).
cnf(c_0_197, plain, (~a_nonce(generate_key(X1))), inference(split_conjunct,[status(thm)],[c_0_156]), ['final']).
cnf(c_0_198, plain, (b_holds(key(generate_key(an_a_nonce),b))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_144, c_0_147]), c_0_69]), c_0_54]), c_0_122]), c_0_51]), c_0_40])]), ['final']).
cnf(c_0_199, plain, (intruder_message(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_78, c_0_105]), ['final']).
cnf(c_0_200, plain, (b_holds(key(generate_key(an_a_nonce),a))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_87, c_0_91]), c_0_122]), c_0_90]), c_0_120]), c_0_40]), c_0_61])]), ['final']).
cnf(c_0_201, plain, (a_holds(key(generate_key(an_a_nonce),b))), inference(spm,[status(thm)],[c_0_110, c_0_62]), ['final']).
cnf(c_0_202, plain, (b_holds(key(bt,t))), inference(split_conjunct,[status(thm)],[b_hold_key_bt_for_t]), ['final']).
cnf(c_0_203, plain, (a_holds(key(at,t))), inference(split_conjunct,[status(thm)],[a_holds_key_at_for_t]), ['final']).
cnf(c_0_204, plain, (intruder_message(an_intruder_nonce)), inference(spm,[status(thm)],[c_0_153, c_0_157]), ['final']).
cnf(c_0_205, plain, (a_nonce(generate_expiration_time(X1))), inference(split_conjunct,[status(thm)],[c_0_158]), ['final']).
cnf(c_0_206, plain, (a_nonce(generate_b_nonce(X1))), inference(split_conjunct,[status(thm)],[c_0_158]), ['final']).
# SZS output end Saturation

Sample solution for BOO001-1

# SZS output start CNFRefutation
cnf(associativity, axiom, (multiply(multiply(X1,X2,X3),X4,multiply(X1,X2,X5))=multiply(X1,X2,multiply(X3,X4,X5))), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/Axioms/BOO001-0.ax', associativity)).
cnf(ternary_multiply_1, axiom, (multiply(X1,X2,X2)=X2), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/Axioms/BOO001-0.ax', ternary_multiply_1)).
cnf(right_inverse, axiom, (multiply(X1,X2,inverse(X2))=X1), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/Axioms/BOO001-0.ax', right_inverse)).
cnf(ternary_multiply_2, axiom, (multiply(X1,X1,X2)=X1), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/Axioms/BOO001-0.ax', ternary_multiply_2)).
cnf(left_inverse, axiom, (multiply(inverse(X1),X1,X2)=X2), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/Axioms/BOO001-0.ax', left_inverse)).
cnf(prove_inverse_is_self_cancelling, negated_conjecture, (inverse(inverse(a))!=a), file('/Users/schulz/EPROVER/TPTP_7.3.0_FLAT/BOO001-1.p', prove_inverse_is_self_cancelling)).
cnf(c_0_6, axiom, (multiply(multiply(X1,X2,X3),X4,multiply(X1,X2,X5))=multiply(X1,X2,multiply(X3,X4,X5))), associativity).
cnf(c_0_7, axiom, (multiply(X1,X2,X2)=X2), ternary_multiply_1).
cnf(c_0_8, plain, (multiply(multiply(X1,X2,X3),X4,X2)=multiply(X1,X2,multiply(X3,X4,X2))), inference(spm,[status(thm)],[c_0_6, c_0_7])).
cnf(c_0_9, axiom, (multiply(X1,X2,inverse(X2))=X1), right_inverse).
cnf(c_0_10, plain, (multiply(X1,X2,X3)=multiply(X1,X3,multiply(inverse(X3),X2,X3))), inference(spm,[status(thm)],[c_0_8, c_0_9])).
cnf(c_0_11, axiom, (multiply(X1,X1,X2)=X1), ternary_multiply_2).
cnf(c_0_12, axiom, (multiply(inverse(X1),X1,X2)=X2), left_inverse).
cnf(c_0_13, plain, (multiply(X1,inverse(X2),X2)=X1), inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_10, c_0_11]), c_0_9])).
cnf(c_0_14, negated_conjecture, (inverse(inverse(a))!=a), prove_inverse_is_self_cancelling).
cnf(c_0_15, plain, (inverse(inverse(X1))=X1), inference(spm,[status(thm)],[c_0_12, c_0_13])).
cnf(c_0_16, negated_conjecture, ($false), inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_14, c_0_15])]), ['proof']).
# SZS output end CNFRefutation

Ehoh 2.7

Petar Vukmirović
Vrije Universiteit Amsterdam, The Netherlands

Sample solution for SET014^4

# No SInE strategy applied
# Trying AutoSched0 for 149 seconds
# AutoSched0-Mode selected heuristic G_E___207_C18_F1_SE_CS_SP_PI_PS_S00A
# and selection function NoSelection.
#
# Presaturation interreduction done

# Proof found!
# SZS status Theorem
# SZS output start CNFRefutation
thf(thm, conjecture, ![X22:$i > $o, X23:$i > $o, X24:$i > $o]:((subset @ X22 @ X24&subset @ X23 @ X24)=>subset @ (union @ X22 @ X23) @ X24), file('/home/petar/Documents/tptp/Problems/SET/SET014^4.p', thm)).
thf(union, axiom, (union)=(^[X5:$i > $o, X6:$i > $o, X4:$i]:(X5 @ X4|X6 @ X4)), file('/home/petar/Documents/tptp/Problems/SET/Axioms/SET008^0.ax', union)).
thf(subset, axiom, (subset)=(^[X16:$i > $o, X17:$i > $o]:![X4:$i]:(X16 @ X4=>X17 @ X4)), file('/home/petar/Documents/tptp/Problems/SET/Axioms/SET008^0.ax', subset)).
thf(c_0_3, negated_conjecture, ~(![X22:$i > $o, X23:$i > $o, X24:$i > $o]:((![X29:$i]:(X22 @ X29=>X24 @ X29)&![X30:$i]:(X23 @ X30=>X24 @ X30))=>![X32:$i]:((X22 @ X32|X23 @ X32)=>X24 @ X32))), inference(apply_def,[status(thm)],[inference(apply_def,[status(thm)],[inference(assume_negation,[status(cth)],[thm]), union]), subset])).
thf(c_0_4, negated_conjecture, ![X37:$i, X38:$i]:(((~epred1_0 @ X37|epred3_0 @ X37)&(~epred2_0 @ X38|epred3_0 @ X38))&((epred1_0 @ esk1_0|epred2_0 @ esk1_0)&~epred3_0 @ esk1_0)), inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_3])])])])).
thf(c_0_5, negated_conjecture, ![X1:$i]:(epred3_0 @ X1|~epred2_0 @ X1), inference(split_conjunct,[status(thm)],[c_0_4])).
thf(c_0_6, negated_conjecture, (epred1_0 @ esk1_0|epred2_0 @ esk1_0), inference(split_conjunct,[status(thm)],[c_0_4])).
thf(c_0_7, negated_conjecture, ~epred3_0 @ esk1_0, inference(split_conjunct,[status(thm)],[c_0_4])).
thf(c_0_8, negated_conjecture, ![X1:$i]:(epred3_0 @ X1|~epred1_0 @ X1), inference(split_conjunct,[status(thm)],[c_0_4])).
thf(c_0_9, negated_conjecture, epred1_0 @ esk1_0, inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_5, c_0_6]), c_0_7])).
thf(c_0_10, negated_conjecture, ($false), inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_8, c_0_9]), c_0_7]), ['proof']).
# SZS output end CNFRefutation
# Training examples: 0 positive, 0 negative

Etableau 0.67

John Hester
University of Florida, USA

Sample solution for SEU140+2

# SZS status Theorem for /home/hesterj/Projects/Testing/FOL/SEU140+2.p
# SZS output start for /home/hesterj/Projects/Testing/FOL/SEU140+2.p
# Begin clausification derivation

# End clausification derivation
# Begin listing active clauses obtained from FOF to CNF conversion
cnf(i_0_82, negated_conjecture, (subset(esk11_0,esk12_0))).
cnf(i_0_81, negated_conjecture, (disjoint(esk12_0,esk13_0))).
cnf(i_0_40, plain, (empty(empty_set))).
cnf(i_0_48, plain, (empty(esk6_0))).
cnf(i_0_62, lemma, (subset(empty_set,X1))).
cnf(i_0_50, plain, (subset(X1,X1))).
cnf(i_0_76, plain, (set_difference(empty_set,X1)=empty_set)).
cnf(i_0_55, plain, (set_union2(X1,empty_set)=X1)).
cnf(i_0_68, plain, (set_difference(X1,empty_set)=X1)).
cnf(i_0_43, plain, (set_union2(X1,X1)=X1)).
cnf(i_0_85, lemma, (subset(X1,set_union2(X1,X2)))).
cnf(i_0_64, lemma, (subset(set_difference(X1,X2),X1))).
cnf(i_0_59, plain, (set_difference(X1,X1)=empty_set)).
cnf(i_0_67, lemma, (set_union2(X1,set_difference(X2,X1))=set_union2(X1,X2))).
cnf(i_0_73, lemma, (set_difference(set_union2(X1,X2),X2)=set_difference(X1,X2))).
cnf(i_0_3, plain, (set_union2(X1,X2)=set_union2(X2,X1))).
cnf(i_0_4, plain, (set_difference(X1,set_difference(X1,X2))=set_difference(X2,set_difference(X2,X1)))).
cnf(i_0_80, negated_conjecture, (~disjoint(esk11_0,esk13_0))).
cnf(i_0_49, plain, (~empty(esk7_0))).
cnf(i_0_45, plain, (~proper_subset(X1,X1))).
cnf(i_0_9, plain, (~in(X1,empty_set))).
cnf(i_0_84, plain, (~empty(X1)|~in(X2,X1))).
cnf(i_0_83, plain, (X1=empty_set|~empty(X1))).
cnf(i_0_72, lemma, (X1=empty_set|~subset(X1,empty_set))).
cnf(i_0_79, lemma, (~subset(X1,X2)|~proper_subset(X2,X1))).
cnf(i_0_1, plain, (~in(X1,X2)|~in(X2,X1))).
cnf(i_0_2, plain, (~proper_subset(X1,X2)|~proper_subset(X2,X1))).
cnf(i_0_35, plain, (subset(X1,X2)|~proper_subset(X1,X2))).
cnf(i_0_51, plain, (disjoint(X1,X2)|~disjoint(X2,X1))).
cnf(i_0_86, plain, (X1=X2|~empty(X2)|~empty(X1))).
cnf(i_0_69, lemma, (~disjoint(X1,X2)|~in(X3,X2)|~in(X3,X1))).
cnf(i_0_42, plain, (empty(X1)|~empty(set_union2(X2,X1)))).
cnf(i_0_41, plain, (empty(X1)|~empty(set_union2(X1,X2)))).
cnf(i_0_77, lemma, (~disjoint(X1,X2)|~in(X3,set_difference(X1,set_difference(X1,X2))))).
cnf(i_0_47, lemma, (subset(X1,X2)|set_difference(X1,X2)!=empty_set)).
cnf(i_0_46, lemma, (set_difference(X1,X2)=empty_set|~subset(X1,X2))).
cnf(i_0_8, plain, (X1=empty_set|in(esk1_1(X1),X1))).
cnf(i_0_52, lemma, (set_union2(X1,X2)=X2|~subset(X1,X2))).
cnf(i_0_18, plain, (in(X1,X2)|~subset(X3,X2)|~in(X1,X3))).
cnf(i_0_29, plain, (~in(X1,set_difference(X2,X3))|~in(X1,X3))).
cnf(i_0_5, plain, (X1=X2|~subset(X2,X1)|~subset(X1,X2))).
cnf(i_0_16, plain, (subset(X1,X2)|~in(esk3_2(X1,X2),X2))).
cnf(i_0_31, plain, (disjoint(X1,X2)|set_difference(X1,set_difference(X1,X2))!=empty_set)).
cnf(i_0_56, lemma, (subset(X1,X2)|~subset(X3,X2)|~subset(X1,X3))).
cnf(i_0_32, plain, (set_difference(X1,set_difference(X1,X2))=empty_set|~disjoint(X1,X2))).
cnf(i_0_33, plain, (X1=X2|proper_subset(X1,X2)|~subset(X1,X2))).
cnf(i_0_58, lemma, (set_difference(X1,set_difference(X1,X2))=X1|~subset(X1,X2))).
cnf(i_0_17, plain, (subset(X1,X2)|in(esk3_2(X1,X2),X1))).
cnf(i_0_70, lemma, (disjoint(X1,X2)|in(esk9_2(X1,X2),X2))).
cnf(i_0_71, lemma, (disjoint(X1,X2)|in(esk9_2(X1,X2),X1))).
cnf(i_0_87, lemma, (subset(set_union2(X1,X2),X3)|~subset(X2,X3)|~subset(X1,X3))).
cnf(i_0_13, plain, (in(X1,set_union2(X2,X3))|~in(X1,X3))).
cnf(i_0_30, plain, (in(X1,X2)|~in(X1,set_difference(X2,X3)))).
cnf(i_0_14, plain, (in(X1,set_union2(X2,X3))|~in(X1,X2))).
cnf(i_0_63, lemma, (subset(set_difference(X1,X2),set_difference(X3,X2))|~subset(X1,X3))).
cnf(i_0_23, plain, (in(X1,X2)|~in(X1,set_difference(X3,set_difference(X3,X2))))).
cnf(i_0_78, lemma, (disjoint(X1,X2)|in(esk10_2(X1,X2),set_difference(X1,set_difference(X1,X2))))).
cnf(i_0_61, plain, (X1=X2|~in(esk8_2(X1,X2),X2)|~in(esk8_2(X1,X2),X1))).
cnf(i_0_28, plain, (in(X1,set_difference(X2,X3))|in(X1,X3)|~in(X1,X2))).
cnf(i_0_54, lemma, (subset(X1,set_difference(X2,set_difference(X2,X3)))|~subset(X1,X3)|~subset(X1,X2))).
cnf(i_0_22, plain, (in(X1,set_difference(X2,set_difference(X2,X3)))|~in(X1,X3)|~in(X1,X2))).
cnf(i_0_15, plain, (in(X1,X2)|in(X1,X3)|~in(X1,set_union2(X3,X2)))).
cnf(i_0_60, plain, (X1=X2|in(esk8_2(X1,X2),X1)|in(esk8_2(X1,X2),X2))).
cnf(i_0_11, plain, (X1=set_union2(X2,X3)|~in(esk2_3(X2,X3,X1),X1)|~in(esk2_3(X2,X3,X1),X3))).
cnf(i_0_12, plain, (X1=set_union2(X2,X3)|~in(esk2_3(X2,X3,X1),X1)|~in(esk2_3(X2,X3,X1),X2))).
cnf(i_0_25, plain, (X1=set_difference(X2,X3)|in(esk5_3(X2,X3,X1),X1)|~in(esk5_3(X2,X3,X1),X3))).
cnf(i_0_57, lemma, (subset(set_difference(X1,set_difference(X1,X2)),set_difference(X3,set_difference(X3,X2)))|~subset(X1,X3))).
cnf(i_0_26, plain, (X1=set_difference(X2,X3)|in(esk5_3(X2,X3,X1),X2)|in(esk5_3(X2,X3,X1),X1))).
cnf(i_0_19, plain, (X1=set_difference(X2,set_difference(X2,X3))|in(esk4_3(X2,X3,X1),X3)|in(esk4_3(X2,X3,X1),X1))).
cnf(i_0_20, plain, (X1=set_difference(X2,set_difference(X2,X3))|in(esk4_3(X2,X3,X1),X2)|in(esk4_3(X2,X3,X1),X1))).
cnf(i_0_21, plain, (X1=set_difference(X2,set_difference(X2,X3))|~in(esk4_3(X2,X3,X1),X1)|~in(esk4_3(X2,X3,X1),X3)|~in(esk4_3(X2,X3,X1),X2))).
cnf(i_0_27, plain, (X1=set_difference(X2,X3)|in(esk5_3(X2,X3,X1),X3)|~in(esk5_3(X2,X3,X1),X1)|~in(esk5_3(X2,X3,X1),X2))).
cnf(i_0_10, plain, (X1=set_union2(X2,X3)|in(esk2_3(X2,X3,X1),X2)|in(esk2_3(X2,X3,X1),X3)|in(esk2_3(X2,X3,X1),X1))).
# End listing active clauses.  There is an equivalent clause to each of these in the clausification!
# Begin printing tableau
# Found 4 steps
cnf(i_0_80, negated_conjecture, (~disjoint(esk11_0,esk13_0)), inference(start_rule)).
cnf(i_0_101, plain, (~disjoint(esk11_0,esk13_0)), inference(extension_rule, [i_0_51])).
cnf(i_0_119, plain, (~disjoint(esk13_0,esk11_0)), inference(extension_rule, [i_0_31])).
cnf(i_0_165, plain, (set_difference(esk13_0,set_difference(esk13_0,esk11_0))!=empty_set), inference(etableau_closure_rule, [i_0_165, ...])).
# End printing tableau
# SZS output end

Sample solution for NLP042+1

# SZS status CounterSatisfiable for /home/hesterj/Projects/Testing/FOL/NLP042+1.p
# SZS output start for /home/hesterj/Projects/Testing/FOL/NLP042+1.p
# Begin clausification derivation

# End clausification derivation
# Begin listing active clauses obtained from FOF to CNF conversion
cnf(i_0_56, negated_conjecture, (actual_world(esk1_0))).
cnf(i_0_54, negated_conjecture, (woman(esk1_0,esk2_0))).
cnf(i_0_53, negated_conjecture, (mia_forename(esk1_0,esk3_0))).
cnf(i_0_52, negated_conjecture, (forename(esk1_0,esk3_0))).
cnf(i_0_51, negated_conjecture, (shake_beverage(esk1_0,esk4_0))).
cnf(i_0_45, negated_conjecture, (order(esk1_0,esk5_0))).
cnf(i_0_50, negated_conjecture, (event(esk1_0,esk5_0))).
cnf(i_0_46, negated_conjecture, (nonreflexive(esk1_0,esk5_0))).
cnf(i_0_47, negated_conjecture, (past(esk1_0,esk5_0))).
cnf(i_0_55, negated_conjecture, (of(esk1_0,esk3_0,esk2_0))).
cnf(i_0_49, negated_conjecture, (agent(esk1_0,esk5_0,esk2_0))).
cnf(i_0_48, negated_conjecture, (patient(esk1_0,esk5_0,esk4_0))).
cnf(i_0_42, plain, (~unisex(X1,X2)|~female(X1,X2))).
cnf(i_0_37, plain, (~nonliving(X1,X2)|~animate(X1,X2))).
cnf(i_0_39, plain, (~nonhuman(X1,X2)|~human(X1,X2))).
cnf(i_0_40, plain, (~nonliving(X1,X2)|~living(X1,X2))).
cnf(i_0_1, plain, (female(X1,X2)|~woman(X1,X2))).
cnf(i_0_9, plain, (forename(X1,X2)|~mia_forename(X1,X2))).
cnf(i_0_41, plain, (~specific(X1,X2)|~general(X1,X2))).
cnf(i_0_38, plain, (~nonexistent(X1,X2)|~existent(X1,X2))).
cnf(i_0_8, plain, (human_person(X1,X2)|~woman(X1,X2))).
cnf(i_0_6, plain, (entity(X1,X2)|~organism(X1,X2))).
cnf(i_0_28, plain, (event(X1,X2)|~order(X1,X2))).
cnf(i_0_35, plain, (event(X1,X2)|~act(X1,X2))).
cnf(i_0_34, plain, (eventuality(X1,X2)|~event(X1,X2))).
cnf(i_0_16, plain, (relname(X1,X2)|~forename(X1,X2))).
cnf(i_0_27, plain, (beverage(X1,X2)|~shake_beverage(X1,X2))).
cnf(i_0_2, plain, (animate(X1,X2)|~human_person(X1,X2))).
cnf(i_0_36, plain, (act(X1,X2)|~order(X1,X2))).
cnf(i_0_23, plain, (entity(X1,X2)|~object(X1,X2))).
cnf(i_0_14, plain, (abstraction(X1,X2)|~relation(X1,X2))).
cnf(i_0_15, plain, (relation(X1,X2)|~relname(X1,X2))).
cnf(i_0_24, plain, (object(X1,X2)|~substance_matter(X1,X2))).
cnf(i_0_3, plain, (human(X1,X2)|~human_person(X1,X2))).
cnf(i_0_25, plain, (substance_matter(X1,X2)|~food(X1,X2))).
cnf(i_0_26, plain, (food(X1,X2)|~beverage(X1,X2))).
cnf(i_0_7, plain, (organism(X1,X2)|~human_person(X1,X2))).
cnf(i_0_4, plain, (living(X1,X2)|~organism(X1,X2))).
cnf(i_0_5, plain, (impartial(X1,X2)|~organism(X1,X2))).
cnf(i_0_18, plain, (impartial(X1,X2)|~object(X1,X2))).
cnf(i_0_10, plain, (unisex(X1,X2)|~abstraction(X1,X2))).
cnf(i_0_17, plain, (unisex(X1,X2)|~object(X1,X2))).
cnf(i_0_29, plain, (unisex(X1,X2)|~eventuality(X1,X2))).
cnf(i_0_11, plain, (general(X1,X2)|~abstraction(X1,X2))).
cnf(i_0_12, plain, (nonhuman(X1,X2)|~abstraction(X1,X2))).
cnf(i_0_22, plain, (thing(X1,X2)|~entity(X1,X2))).
cnf(i_0_13, plain, (thing(X1,X2)|~abstraction(X1,X2))).
cnf(i_0_33, plain, (thing(X1,X2)|~eventuality(X1,X2))).
cnf(i_0_19, plain, (nonliving(X1,X2)|~object(X1,X2))).
cnf(i_0_20, plain, (existent(X1,X2)|~entity(X1,X2))).
cnf(i_0_21, plain, (specific(X1,X2)|~entity(X1,X2))).
cnf(i_0_31, plain, (specific(X1,X2)|~eventuality(X1,X2))).
cnf(i_0_30, plain, (nonexistent(X1,X2)|~eventuality(X1,X2))).
cnf(i_0_32, plain, (singleton(X1,X2)|~thing(X1,X2))).
cnf(i_0_44, plain, (~patient(X1,X2,X3)|~agent(X1,X2,X3)|~nonreflexive(X1,X2))).
cnf(i_0_43, plain, (X1=X2|~of(X3,X2,X4)|~of(X3,X1,X4)|~forename(X3,X2)|~forename(X3,X1)|~entity(X3,X4))).
# End listing active clauses.  There is an equivalent clause to each of these in the clausification!
# Begin printing tableau
# Found 3 steps
cnf(i_0_54, negated_conjecture, (woman(esk1_0,esk2_0)), inference(start_rule)).
cnf(i_0_68, plain, (woman(esk1_0,esk2_0)), inference(extension_rule, [i_0_1])).
cnf(i_0_816, plain, (female(esk1_0,esk2_0)), inference(extension_rule, [i_0_42])).
# End printing tableau
# SZS output end

Sample solution for SWV017+1

# SZS status Satisfiable for /home/hesterj/Projects/Testing/FOL/SWV017+1.p
# SZS output start for /home/hesterj/Projects/Testing/FOL/SWV017+1.p
# Begin clausification derivation

# End clausification derivation
# Begin listing active clauses obtained from FOF to CNF conversion
cnf(i_0_15, plain, (party_of_protocol(t))).
cnf(i_0_2, plain, (party_of_protocol(a))).
cnf(i_0_8, plain, (party_of_protocol(b))).
cnf(i_0_9, plain, (fresh_to_b(an_a_nonce))).
cnf(i_0_34, plain, (a_nonce(an_a_nonce))).
cnf(i_0_40, plain, (fresh_intruder_nonce(an_intruder_nonce))).
cnf(i_0_39, plain, (a_key(generate_key(X1)))).
cnf(i_0_36, plain, (a_nonce(generate_b_nonce(X1)))).
cnf(i_0_37, plain, (a_nonce(generate_expiration_time(X1)))).
cnf(i_0_1, plain, (a_holds(key(at,t)))).
cnf(i_0_4, plain, (a_stored(pair(b,an_a_nonce)))).
cnf(i_0_7, plain, (b_holds(key(bt,t)))).
cnf(i_0_13, plain, (t_holds(key(at,a)))).
cnf(i_0_14, plain, (t_holds(key(bt,b)))).
cnf(i_0_3, plain, (message(sent(a,b,pair(a,an_a_nonce))))).
cnf(i_0_35, plain, (~a_nonce(generate_key(X1)))).
cnf(i_0_38, plain, (~a_nonce(X1)|~a_key(X1))).
cnf(i_0_42, plain, (intruder_message(X1)|~fresh_intruder_nonce(X1))).
cnf(i_0_43, plain, (fresh_to_b(X1)|~fresh_intruder_nonce(X1))).
cnf(i_0_41, plain, (fresh_intruder_nonce(generate_intruder_nonce(X1))|~fresh_intruder_nonce(X1))).
cnf(i_0_18, plain, (intruder_message(X1)|~intruder_message(pair(X2,X1)))).
cnf(i_0_19, plain, (intruder_message(X1)|~intruder_message(pair(X1,X2)))).
cnf(i_0_17, plain, (intruder_message(X1)|~message(sent(X2,X3,X1)))).
cnf(i_0_20, plain, (intruder_message(X1)|~intruder_message(triple(X2,X3,X1)))).
cnf(i_0_21, plain, (intruder_message(X1)|~intruder_message(triple(X2,X1,X3)))).
cnf(i_0_22, plain, (intruder_message(X1)|~intruder_message(triple(X1,X2,X3)))).
cnf(i_0_23, plain, (intruder_message(X1)|~intruder_message(quadruple(X2,X3,X4,X1)))).
cnf(i_0_24, plain, (intruder_message(X1)|~intruder_message(quadruple(X2,X3,X1,X4)))).
cnf(i_0_27, plain, (intruder_message(pair(X1,X2))|~intruder_message(X2)|~intruder_message(X1))).
cnf(i_0_25, plain, (intruder_message(X1)|~intruder_message(quadruple(X2,X1,X3,X4)))).
cnf(i_0_26, plain, (intruder_message(X1)|~intruder_message(quadruple(X1,X2,X3,X4)))).
cnf(i_0_32, plain, (intruder_holds(key(X1,X2))|~intruder_message(X1)|~party_of_protocol(X2))).
cnf(i_0_30, plain, (intruder_message(X1)|~intruder_holds(key(X1,X2))|~intruder_message(encrypt(X3,X1))|~party_of_protocol(X2))).
cnf(i_0_31, plain, (message(sent(X1,X2,X3))|~intruder_message(X3)|~party_of_protocol(X2)|~party_of_protocol(X1))).
cnf(i_0_28, plain, (intruder_message(triple(X1,X2,X3))|~intruder_message(X3)|~intruder_message(X2)|~intruder_message(X1))).
cnf(i_0_33, plain, (intruder_message(encrypt(X1,X2))|~intruder_holds(key(X2,X3))|~intruder_message(X1)|~party_of_protocol(X3))).
cnf(i_0_10, plain, (b_stored(pair(X1,X2))|~fresh_to_b(X2)|~message(sent(X1,b,pair(X1,X2))))).
cnf(i_0_29, plain, (intruder_message(quadruple(X1,X2,X3,X4))|~intruder_message(X4)|~intruder_message(X3)|~intruder_message(X2)|~intruder_message(X1))).
cnf(i_0_11, plain, (message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X2,X1,generate_expiration_time(X1)),bt))))|~fresh_to_b(X1)|~message(sent(X2,b,pair(X2,X1))))).
cnf(i_0_5, plain, (a_holds(key(X1,X2))|~a_stored(pair(X2,X3))|~message(sent(t,a,triple(encrypt(quadruple(X2,X3,X1,X4),at),X5,X6))))).
cnf(i_0_12, plain, (b_holds(key(X1,X2))|~a_key(X1)|~b_stored(pair(X2,X3))|~message(sent(X2,b,pair(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt),encrypt(generate_b_nonce(X3),X1)))))).
cnf(i_0_6, plain, (message(sent(a,X1,pair(X2,encrypt(X3,X4))))|~a_stored(pair(X1,X5))|~message(sent(t,a,triple(encrypt(quadruple(X1,X5,X4,X6),at),X2,X3))))).
cnf(i_0_16, plain, (message(sent(t,X1,triple(encrypt(quadruple(X2,X3,generate_key(X3),X4),X5),encrypt(triple(X1,generate_key(X3),X4),X6),X7)))|~a_nonce(X3)|~t_holds(key(X5,X1))|~t_holds(key(X6,X2))|~message(sent(X2,t,triple(X2,X7,encrypt(triple(X1,X3,X4),X6)))))).
# End listing active clauses.  There is an equivalent clause to each of these in the clausification!
# Begin printing tableau
# Found 6 steps
cnf(i_0_15, plain, (party_of_protocol(t)), inference(start_rule)).
cnf(i_0_9052, plain, (~intruder_message(pair(t,an_a_nonce))), inference(closure_rule, [i_0_0])).
cnf(i_0_44, plain, (party_of_protocol(t)), inference(extension_rule, [i_0_31])).
cnf(i_0_9051, plain, (message(sent(t,b,pair(t,an_a_nonce)))), inference(extension_rule, [i_0_10])).
cnf(i_0_9053, plain, (~party_of_protocol(b)), inference(closure_rule, [i_0_8])).
cnf(i_0_10922, plain, (~fresh_to_b(an_a_nonce)), inference(closure_rule, [i_0_9])).
# End printing tableau
# SZS output end

Sample solution for BOO001-1

# SZS status Unsatisfiable for /home/hesterj/Projects/Testing/FOL/BOO001-1.p
# SZS output start for /home/hesterj/Projects/Testing/FOL/BOO001-1.p
# Begin clausification derivation

# End clausification derivation
# Begin listing active clauses obtained from FOF to CNF conversion
cnf(i_0_8, plain, (multiply(X1,X2,X2)=X2)).
cnf(i_0_9, plain, (multiply(X1,X1,X2)=X1)).
cnf(i_0_11, plain, (multiply(X1,X2,inverse(X2))=X1)).
cnf(i_0_10, plain, (multiply(inverse(X1),X1,X2)=X2)).
cnf(i_0_7, plain, (multiply(multiply(X1,X2,X3),X4,multiply(X1,X2,X5))=multiply(X1,X2,multiply(X3,X4,X5)))).
cnf(i_0_12, negated_conjecture, (inverse(inverse(a))!=a)).
cnf(i_0_14, plain, (X6=X6)).
# End listing active clauses.  There is an equivalent clause to each of these in the clausification!
# Begin printing tableau
# Found 7 steps
cnf(i_0_14, plain, (X5=X5), inference(start_rule)).
cnf(i_0_26, plain, (X5=X5), inference(extension_rule, [i_0_18])).
cnf(i_0_36, plain, (multiply(X5,X5,X5)!=X5), inference(closure_rule, [i_0_8])).
cnf(i_0_37, plain, (multiply(X5,X5,X5)!=X5), inference(closure_rule, [i_0_8])).
cnf(i_0_34, plain, (multiply(X5,multiply(X5,X5,X5),multiply(X5,X5,X5))=multiply(X5,X5,X5)), inference(extension_rule, [i_0_17])).
cnf(i_0_44, plain, (multiply(X5,X5,X5)!=X5), inference(closure_rule, [i_0_8])).
cnf(i_0_42, plain, (multiply(X5,multiply(X5,X5,X5),multiply(X5,X5,X5))=X5), inference(etableau_closure_rule, [i_0_42, ...])).
# End printing tableau
# SZS output end

GKC 0.7

Tanel Tammet
Tallinn University of Technology, Estonia

Sample solution for SEU140+2

% SZS status Theorem for /opt/TPTP/Problems/SEU/SEU140+2.p

% SZS output start CNFRefutation for /opt/TPTP/Problems/SEU/SEU140+2.p
fof('t3_xboole_0_$sk', plain, ((~disjoint(X2,X1) | (~in(X3,X1) | 
~in(X3,X2))) & ((in($sk5(X4,X5),X5) & in($sk5(X4,X5),X4)) | 
disjoint(X4,X5))),
   inference(negpush_and_skolemize,[],['t3_xboole_0'])).
fof('t3_xboole_0', lemma, (! [A,B] : (~(~disjoint(A,B) & (! [C] : 
~(in(C,A) & in(C,B)))) & ~((? [C] : (in(C,A) & in(C,B))) & disjoint(A,B)))),
   input).
fof('symmetry_r1_xboole_0_$sk', plain, (disjoint(X2,X1) | ~disjoint(X1,X2)),
   inference(negpush_and_skolemize,[],['symmetry_r1_xboole_0'])).
fof('symmetry_r1_xboole_0', axiom, (! [A,B] : (disjoint(A,B) => 
disjoint(B,A))),
   input).
fof('t63_xboole_1_$sk', plain, (~disjoint($sk3,$sk2) & 
(disjoint($sk1,$sk2) & subset($sk3,$sk1))),
   inference(negpush_and_skolemize,[],['t63_xboole_1'])).
fof('t63_xboole_1', conjecture, (! [A,B,C] : ((subset(A,B) & 
disjoint(B,C)) => disjoint(A,C))),
   input).
fof('d3_tarski_$sk', plain, ((~subset(X2,X1) | (in(X3,X1) | ~in(X3,X2))) 
& (subset(X5,X4) | (~in($sk14(X4,X5),X4) & in($sk14(X4,X5),X5)))),
   inference(negpush_and_skolemize,[],['d3_tarski'])).
fof('d3_tarski', axiom, (! [A,B] : (subset(A,B) <=> (! [C] : (in(C,A) => 
in(C,B))))),
   input).
cnf('1', plain, (~disjoint(X,Y) | ~in(Z,Y) | ~in(Z,X)),
   inference(cnf_transformation,[],['t3_xboole_0_$sk'])).
cnf('2', plain, (~disjoint(X,Y) | disjoint(Y,X)),
   inference(cnf_transformation,[],['symmetry_r1_xboole_0_$sk'])).
cnf('3', plain, (disjoint($sk1,$sk2)),
   inference(cnf_transformation,[],['t63_xboole_1_$sk'])).
cnf('4', plain, (disjoint($sk2,$sk1)),
   inference(resolution,[],['2','3'])).
cnf('5', plain, (~in(X,$sk1) | ~in(X,$sk2)),
   inference(resolution,[],['1','4'])).
cnf('6', plain, (~subset(X,Y) | ~in(Z,X) | in(Z,Y)),
   inference(cnf_transformation,[],['d3_tarski_$sk'])).
cnf('7', plain, (subset($sk3,$sk1)),
   inference(cnf_transformation,[],['t63_xboole_1_$sk'])).
cnf('8', plain, (~in(X,$sk3) | in(X,$sk1)),
   inference(resolution,[],['6','7'])).
cnf('9', plain, (in($sk5(X,Y),Y) | disjoint(X,Y)),
   inference(cnf_transformation,[],['t3_xboole_0_$sk'])).
cnf('10', plain, (in($sk5(X,$sk3),$sk1) | disjoint(X,$sk3)),
   inference(resolution,[],['8','9'])).
cnf('11', plain, (~in($sk5(X,$sk3),$sk2) | disjoint(X,$sk3)),
   inference(resolution,[],['5','10'])).
cnf('12', plain, (in($sk5(X,Y),X) | disjoint(X,Y)),
   inference(cnf_transformation,[],['t3_xboole_0_$sk'])).
cnf('13', plain, (disjoint($sk2,$sk3)),
   inference(resolution,[],['11','12'])).
cnf('14', plain, (~disjoint($sk3,$sk2)),
   inference(cnf_transformation,[],['t63_xboole_1_$sk'])).
cnf('15', plain, ($false),
   inference(resolution,[then_simplify],['13','2','14'])).

% SZS output end CNFRefutation for /opt/TPTP/Problems/SEU/SEU140+2.p

Sample solution for BOO001-1

% SZS status Unsatisfiable for /opt/TPTP/Problems/BOO/BOO001-1.p

% SZS output start CNFRefutation for /opt/TPTP/Problems/BOO/BOO001-1.p
cnf('1', plain, (multiply(X,Y,inverse(Y)) = X),
   inference(cnf_transformation,[],['$inc_right_inverse'])).
cnf('2', plain, (multiply(X,Y,Y) = Y),
   inference(cnf_transformation,[],['$inc_ternary_multiply_1'])).
cnf('3', plain, (multiply(multiply(X,Y,Z),U,multiply(X,Y,V)) = 
multiply(X,Y,multiply(Z,U,V))),
   inference(cnf_transformation,[],['$inc_associativity'])).
cnf('4', plain, (multiply(X,Y,multiply(Z,X,U)) = 
multiply(Z,X,multiply(X,Y,U))),
   inference(paramodulation,[],['2','3'])).
cnf('5', plain, (multiply(X,X,Y) = X),
   inference(cnf_transformation,[],['$inc_ternary_multiply_2'])).
cnf('6', plain, (multiply(X,Y,multiply(Z,multiply(X,Y,Z),U)) = 
multiply(X,Y,Z)),
   inference(paramodulation,[],['3','5'])).
cnf('7', plain, (multiply(X3,Y3,multiply(inverse(Y3),X3,Z3)) = 
multiply(X3,Y3,inverse(Y3))),
   inference(paramodulation,[],['1','6'])).
cnf('8', plain, (multiply(X,Y,multiply(inverse(Y),X,Z)) = X),
   inference(simplify,[],['7','1'])).
cnf('9', plain, (multiply(inverse(X),Y,multiply(Y,X,Z)) = Y),
   inference(paramodulation,[],['4','8'])).
cnf('10', plain, (multiply(inverse(X),Y,X) = Y),
   inference(paramodulation,[],['2','9'])).
cnf('11', plain, (inverse(inverse(a)) != a),
inference(cnf_transformation,[],['prove_inverse_is_self_cancelling'])).
cnf('12', plain, ($false),
   inference(paramodulation,[then_simplify],['1','10','11'])).

% SZS output end CNFRefutation for /opt/TPTP/Problems/BOO/BOO001-1.p

iProver 3.5

Konstantin Korovin
University of Manchester, United Kingdom

Sample solution for SEU140+2

% SZS status Theorem for SEU140+2.p

% SZS output start CNFRefutation for SEU140+2.p

fof(f8,axiom,(
  ! [X0,X1] : (subset(X0,X1) <=> ! [X2] : (in(X2,X0) => in(X2,X1)))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/SEU/SEU140+2.p',unknown)).

fof(f67,plain,(
  ! [X0,X1] : (subset(X0,X1) <=> ! [X2] : (in(X2,X1) | ~in(X2,X0)))),
  inference(ennf_transformation,[],[f8])).

fof(f105,plain,(
  ! [X0,X1] : ((subset(X0,X1) | ? [X2] : (~in(X2,X1) & in(X2,X0))) & (! [X2] : (in(X2,X1) | ~in(X2,X0)) | ~subset(X0,X1)))),
  inference(nnf_transformation,[],[f67])).

fof(f106,plain,(
  ! [X0,X1] : ((subset(X0,X1) | ? [X2] : (~in(X2,X1) & in(X2,X0))) & (! [X3] : (in(X3,X1) | ~in(X3,X0)) | ~subset(X0,X1)))),
  inference(rectify,[],[f105])).

fof(f107,plain,(
  ! [X1,X0] : (? [X2] : (~in(X2,X1) & in(X2,X0)) => (~in(sK2(X0,X1),X1) & in(sK2(X0,X1),X0)))),
  introduced(choice_axiom,[])).

fof(f108,plain,(
  ! [X0,X1] : ((subset(X0,X1) | (~in(sK2(X0,X1),X1) & in(sK2(X0,X1),X0))) & (! [X3] : (in(X3,X1) | ~in(X3,X0)) | ~subset(X0,X1)))),
  inference(skolemisation,[status(esa),new_symbols(skolem,[sK2])],[f106,f107])).

fof(f150,plain,(
  ( ! [X0,X3,X1] : (in(X3,X1) | ~in(X3,X0) | ~subset(X0,X1)) )),
  inference(cnf_transformation,[],[f108])).

fof(f43,axiom,(
  ! [X0,X1] : (~(disjoint(X0,X1) & ? [X2] : (in(X2,X1) & in(X2,X0))) & ~(! [X2] : ~(in(X2,X1) & in(X2,X0)) & ~disjoint(X0,X1)))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/SEU/SEU140+2.p',unknown)).

fof(f62,plain,(
  ! [X0,X1] : (~(disjoint(X0,X1) & ? [X2] : (in(X2,X1) & in(X2,X0))) & ~(! [X3] : ~(in(X3,X1) & in(X3,X0)) & ~disjoint(X0,X1)))),
  inference(rectify,[],[f43])).

fof(f82,plain,(
  ! [X0,X1] : ((~disjoint(X0,X1) | ! [X2] : (~in(X2,X1) | ~in(X2,X0))) & (? [X3] : (in(X3,X1) & in(X3,X0)) | disjoint(X0,X1)))),
  inference(ennf_transformation,[],[f62])).

fof(f129,plain,(
  ! [X1,X0] : (? [X3] : (in(X3,X1) & in(X3,X0)) => (in(sK8(X0,X1),X1) & in(sK8(X0,X1),X0)))),
  introduced(choice_axiom,[])).

fof(f130,plain,(
  ! [X0,X1] : ((~disjoint(X0,X1) | ! [X2] : (~in(X2,X1) | ~in(X2,X0))) & ((in(sK8(X0,X1),X1) & in(sK8(X0,X1),X0)) | disjoint(X0,X1)))),
  inference(skolemisation,[status(esa),new_symbols(skolem,[sK8])],[f82,f129])).

fof(f199,plain,(
  ( ! [X2,X0,X1] : (~disjoint(X0,X1) | ~in(X2,X1) | ~in(X2,X0)) )),
  inference(cnf_transformation,[],[f130])).

fof(f197,plain,(
  ( ! [X0,X1] : (in(sK8(X0,X1),X0) | disjoint(X0,X1)) )),
  inference(cnf_transformation,[],[f130])).

fof(f198,plain,(
  ( ! [X0,X1] : (in(sK8(X0,X1),X1) | disjoint(X0,X1)) )),
  inference(cnf_transformation,[],[f130])).

fof(f51,conjecture,(
  ! [X0,X1,X2] : ((disjoint(X1,X2) & subset(X0,X1)) => disjoint(X0,X2))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/SEU/SEU140+2.p',unknown)).

fof(f52,negated_conjecture,(
  ~! [X0,X1,X2] : ((disjoint(X1,X2) & subset(X0,X1)) => disjoint(X0,X2))),
  inference(negated_conjecture,[],[f51])).

fof(f87,plain,(
  ? [X0,X1,X2] : (~disjoint(X0,X2) & (disjoint(X1,X2) & subset(X0,X1)))),
  inference(ennf_transformation,[],[f52])).

fof(f88,plain,(
  ? [X0,X1,X2] : (~disjoint(X0,X2) & disjoint(X1,X2) & subset(X0,X1))),
  inference(flattening,[],[f87])).

fof(f133,plain,(
  ? [X0,X1,X2] : (~disjoint(X0,X2) & disjoint(X1,X2) & subset(X0,X1)) => (~disjoint(sK10,sK12) & disjoint(sK11,sK12) & subset(sK10,sK11))),
  introduced(choice_axiom,[])).

fof(f134,plain,(
  ~disjoint(sK10,sK12) & disjoint(sK11,sK12) & subset(sK10,sK11)),
  inference(skolemisation,[status(esa),new_symbols(skolem,[sK10,sK11,sK12])],[f88,f133])).

fof(f210,plain,(
  ~disjoint(sK10,sK12)),
  inference(cnf_transformation,[],[f134])).

fof(f209,plain,(
  disjoint(sK11,sK12)),
  inference(cnf_transformation,[],[f134])).

fof(f208,plain,(
  subset(sK10,sK11)),
  inference(cnf_transformation,[],[f134])).

cnf(c_17,plain,
    ( ~ in(X0,X1) | ~ subset(X1,X2) | in(X0,X2) ),
    inference(cnf_transformation,[],[f150]) ).

cnf(c_1637,plain,
    ( ~ in(sK8(sK10,sK12),sK10)
    | ~ subset(sK10,X0)
    | in(sK8(sK10,sK12),X0) ),
    inference(instantiation,[status(thm)],[c_17]) ).

cnf(c_3953,plain,
    ( ~ in(sK8(sK10,sK12),sK10)
    | ~ subset(sK10,sK11)
    | in(sK8(sK10,sK12),sK11) ),
    inference(instantiation,[status(thm)],[c_1637]) ).

cnf(c_62,plain,
    ( ~ in(X0,X1) | ~ in(X0,X2) | ~ disjoint(X2,X1) ),
    inference(cnf_transformation,[],[f199]) ).

cnf(c_1582,plain,
    ( ~ in(sK8(sK10,sK12),X0)
    | ~ in(sK8(sK10,sK12),sK12)
    | ~ disjoint(X0,sK12) ),
    inference(instantiation,[status(thm)],[c_62]) ).

cnf(c_3796,plain,
    ( ~ in(sK8(sK10,sK12),sK12)
    | ~ in(sK8(sK10,sK12),sK11)
    | ~ disjoint(sK11,sK12) ),
    inference(instantiation,[status(thm)],[c_1582]) ).

cnf(c_64,plain,
    ( in(sK8(X0,X1),X0) | disjoint(X0,X1) ),
    inference(cnf_transformation,[],[f197]) ).

cnf(c_1542,plain,
    ( in(sK8(sK10,sK12),sK10) | disjoint(sK10,sK12) ),
    inference(instantiation,[status(thm)],[c_64]) ).

cnf(c_63,plain,
    ( in(sK8(X0,X1),X1) | disjoint(X0,X1) ),
    inference(cnf_transformation,[],[f198]) ).

cnf(c_1541,plain,
    ( in(sK8(sK10,sK12),sK12) | disjoint(sK10,sK12) ),
    inference(instantiation,[status(thm)],[c_63]) ).

cnf(c_72,negated_conjecture,
    ( ~ disjoint(sK10,sK12) ),
    inference(cnf_transformation,[],[f210]) ).

cnf(c_73,negated_conjecture,
    ( disjoint(sK11,sK12) ),
    inference(cnf_transformation,[],[f209]) ).

cnf(c_74,negated_conjecture,
    ( subset(sK10,sK11) ),
    inference(cnf_transformation,[],[f208]) ).

cnf(contradiction,plain,
    ( $false ),
    inference(minisat,
              [status(thm)],
              [c_3953,c_3796,c_1542,c_1541,c_72,c_73,c_74]) ).


% SZS output end CNFRefutation for SEU140+2.p

Sample solution for NLP042+1

% SZS status CounterSatisfiable for NLP042+1.p

% SZS output start Saturation for NLP042+1.p

fof(f45,conjecture,(
  ~? [X0] : (? [X1,X2,X3,X4] : (order(X0,X4) & nonreflexive(X0,X4) & past(X0,X4) & patient(X0,X4,X3) & agent(X0,X4,X1) & event(X0,X4) & shake_beverage(X0,X3) & forename(X0,X2) & mia_forename(X0,X2) & woman(X0,X1) & of(X0,X2,X1)) & actual_world(X0))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f46,negated_conjecture,(
  ~~? [X0] : (? [X1,X2,X3,X4] : (order(X0,X4) & nonreflexive(X0,X4) & past(X0,X4) & patient(X0,X4,X3) & agent(X0,X4,X1) & event(X0,X4) & shake_beverage(X0,X3) & forename(X0,X2) & mia_forename(X0,X2) & woman(X0,X1) & of(X0,X2,X1)) & actual_world(X0))),
  inference(negated_conjecture,[],[f45])).

fof(f47,plain,(
  ? [X0] : (? [X1,X2,X3,X4] : (order(X0,X4) & nonreflexive(X0,X4) & past(X0,X4) & patient(X0,X4,X3) & agent(X0,X4,X1) & event(X0,X4) & shake_beverage(X0,X3) & forename(X0,X2) & mia_forename(X0,X2) & woman(X0,X1) & of(X0,X2,X1)) & actual_world(X0))),
  inference(flattening,[],[f46])).

fof(f48,plain,(
  ? [X0] : (? [X1,X2,X3,X4] : (order(X0,X4) & nonreflexive(X0,X4) & patient(X0,X4,X3) & agent(X0,X4,X1) & event(X0,X4) & shake_beverage(X0,X3) & forename(X0,X2) & mia_forename(X0,X2) & woman(X0,X1) & of(X0,X2,X1)) & actual_world(X0))),
  inference(pure_predicate_removal,[],[f47])).

fof(f49,plain,(
  ? [X0,X1,X2,X3,X4] : (order(X0,X4) & nonreflexive(X0,X4) & patient(X0,X4,X3) & agent(X0,X4,X1) & event(X0,X4) & shake_beverage(X0,X3) & forename(X0,X2) & mia_forename(X0,X2) & woman(X0,X1) & of(X0,X2,X1))),
  inference(pure_predicate_removal,[],[f48])).

fof(f96,plain,(
  ? [X0,X1,X2,X3,X4] : (order(X0,X4) & nonreflexive(X0,X4) & patient(X0,X4,X3) & agent(X0,X4,X1) & event(X0,X4) & shake_beverage(X0,X3) & forename(X0,X2) & mia_forename(X0,X2) & woman(X0,X1) & of(X0,X2,X1)) => (order(sK0,sK4) & nonreflexive(sK0,sK4) & patient(sK0,sK4,sK3) & agent(sK0,sK4,sK1) & event(sK0,sK4) & shake_beverage(sK0,sK3) & forename(sK0,sK2) & mia_forename(sK0,sK2) & woman(sK0,sK1) & of(sK0,sK2,sK1))),
  introduced(choice_axiom,[])).

fof(f97,plain,(
  order(sK0,sK4) & nonreflexive(sK0,sK4) & patient(sK0,sK4,sK3) & agent(sK0,sK4,sK1) & event(sK0,sK4) & shake_beverage(sK0,sK3) & forename(sK0,sK2) & mia_forename(sK0,sK2) & woman(sK0,sK1) & of(sK0,sK2,sK1)),
  inference(skolemisation,[status(esa),new_symbols(skolem,[sK0,sK1,sK2,sK3,sK4])],[f49,f96])).

fof(f136,plain,(
  of(sK0,sK2,sK1)),
  inference(cnf_transformation,[],[f97])).

fof(f43,axiom,(
  ! [X0,X1,X2] : ((of(X0,X2,X1) & forename(X0,X2) & entity(X0,X1)) => ~? [X3] : (of(X0,X3,X1) & X2 != X3 & forename(X0,X3)))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f92,plain,(
  ! [X0,X1,X2] : (! [X3] : (~of(X0,X3,X1) | X2 = X3 | ~forename(X0,X3)) | (~of(X0,X2,X1) | ~forename(X0,X2) | ~entity(X0,X1)))),
  inference(ennf_transformation,[],[f43])).

fof(f93,plain,(
  ! [X0,X1,X2] : (! [X3] : (~of(X0,X3,X1) | X2 = X3 | ~forename(X0,X3)) | ~of(X0,X2,X1) | ~forename(X0,X2) | ~entity(X0,X1))),
  inference(flattening,[],[f92])).

fof(f134,plain,(
  ( ! [X2,X0,X3,X1] : (~of(X0,X3,X1) | X2 = X3 | ~forename(X0,X3) | ~of(X0,X2,X1) | ~forename(X0,X2) | ~entity(X0,X1)) )),
  inference(cnf_transformation,[],[f93])).

fof(f6,axiom,(
  ! [X0,X1] : (organism(X0,X1) => entity(X0,X1))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f60,plain,(
  ! [X0,X1] : (entity(X0,X1) | ~organism(X0,X1))),
  inference(ennf_transformation,[],[f6])).

fof(f102,plain,(
  ( ! [X0,X1] : (entity(X0,X1) | ~organism(X0,X1)) )),
  inference(cnf_transformation,[],[f60])).

fof(f7,axiom,(
  ! [X0,X1] : (human_person(X0,X1) => organism(X0,X1))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f61,plain,(
  ! [X0,X1] : (organism(X0,X1) | ~human_person(X0,X1))),
  inference(ennf_transformation,[],[f7])).

fof(f103,plain,(
  ( ! [X0,X1] : (organism(X0,X1) | ~human_person(X0,X1)) )),
  inference(cnf_transformation,[],[f61])).

fof(f8,axiom,(
  ! [X0,X1] : (woman(X0,X1) => human_person(X0,X1))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f62,plain,(
  ! [X0,X1] : (human_person(X0,X1) | ~woman(X0,X1))),
  inference(ennf_transformation,[],[f8])).

fof(f104,plain,(
  ( ! [X0,X1] : (human_person(X0,X1) | ~woman(X0,X1)) )),
  inference(cnf_transformation,[],[f62])).

fof(f137,plain,(
  woman(sK0,sK1)),
  inference(cnf_transformation,[],[f97])).

fof(f139,plain,(
  forename(sK0,sK2)),
  inference(cnf_transformation,[],[f97])).

fof(f24,axiom,(
  ! [X0,X1] : (substance_matter(X0,X1) => object(X0,X1))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f75,plain,(
  ! [X0,X1] : (object(X0,X1) | ~substance_matter(X0,X1))),
  inference(ennf_transformation,[],[f24])).

fof(f117,plain,(
  ( ! [X0,X1] : (object(X0,X1) | ~substance_matter(X0,X1)) )),
  inference(cnf_transformation,[],[f75])).

fof(f25,axiom,(
  ! [X0,X1] : (food(X0,X1) => substance_matter(X0,X1))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f76,plain,(
  ! [X0,X1] : (substance_matter(X0,X1) | ~food(X0,X1))),
  inference(ennf_transformation,[],[f25])).

fof(f118,plain,(
  ( ! [X0,X1] : (substance_matter(X0,X1) | ~food(X0,X1)) )),
  inference(cnf_transformation,[],[f76])).

fof(f26,axiom,(
  ! [X0,X1] : (beverage(X0,X1) => food(X0,X1))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f77,plain,(
  ! [X0,X1] : (food(X0,X1) | ~beverage(X0,X1))),
  inference(ennf_transformation,[],[f26])).

fof(f119,plain,(
  ( ! [X0,X1] : (food(X0,X1) | ~beverage(X0,X1)) )),
  inference(cnf_transformation,[],[f77])).

fof(f27,axiom,(
  ! [X0,X1] : (shake_beverage(X0,X1) => beverage(X0,X1))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f78,plain,(
  ! [X0,X1] : (beverage(X0,X1) | ~shake_beverage(X0,X1))),
  inference(ennf_transformation,[],[f27])).

fof(f120,plain,(
  ( ! [X0,X1] : (beverage(X0,X1) | ~shake_beverage(X0,X1)) )),
  inference(cnf_transformation,[],[f78])).

fof(f140,plain,(
  shake_beverage(sK0,sK3)),
  inference(cnf_transformation,[],[f97])).

fof(f19,axiom,(
  ! [X0,X1] : (object(X0,X1) => nonliving(X0,X1))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f71,plain,(
  ! [X0,X1] : (nonliving(X0,X1) | ~object(X0,X1))),
  inference(ennf_transformation,[],[f19])).

fof(f113,plain,(
  ( ! [X0,X1] : (nonliving(X0,X1) | ~object(X0,X1)) )),
  inference(cnf_transformation,[],[f71])).

fof(f2,axiom,(
  ! [X0,X1] : (human_person(X0,X1) => animate(X0,X1))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f57,plain,(
  ! [X0,X1] : (animate(X0,X1) | ~human_person(X0,X1))),
  inference(ennf_transformation,[],[f2])).

fof(f99,plain,(
  ( ! [X0,X1] : (animate(X0,X1) | ~human_person(X0,X1)) )),
  inference(cnf_transformation,[],[f57])).

fof(f37,axiom,(
  ! [X0,X1] : (animate(X0,X1) => ~nonliving(X0,X1))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f86,plain,(
  ! [X0,X1] : (~nonliving(X0,X1) | ~animate(X0,X1))),
  inference(ennf_transformation,[],[f37])).

fof(f128,plain,(
  ( ! [X0,X1] : (~nonliving(X0,X1) | ~animate(X0,X1)) )),
  inference(cnf_transformation,[],[f86])).

fof(f34,axiom,(
  ! [X0,X1] : (event(X0,X1) => eventuality(X0,X1))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f83,plain,(
  ! [X0,X1] : (eventuality(X0,X1) | ~event(X0,X1))),
  inference(ennf_transformation,[],[f34])).

fof(f125,plain,(
  ( ! [X0,X1] : (eventuality(X0,X1) | ~event(X0,X1)) )),
  inference(cnf_transformation,[],[f83])).

fof(f141,plain,(
  event(sK0,sK4)),
  inference(cnf_transformation,[],[f97])).

fof(f29,axiom,(
  ! [X0,X1] : (eventuality(X0,X1) => unisex(X0,X1))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f80,plain,(
  ! [X0,X1] : (unisex(X0,X1) | ~eventuality(X0,X1))),
  inference(ennf_transformation,[],[f29])).

fof(f122,plain,(
  ( ! [X0,X1] : (unisex(X0,X1) | ~eventuality(X0,X1)) )),
  inference(cnf_transformation,[],[f80])).

fof(f1,axiom,(
  ! [X0,X1] : (woman(X0,X1) => female(X0,X1))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f56,plain,(
  ! [X0,X1] : (female(X0,X1) | ~woman(X0,X1))),
  inference(ennf_transformation,[],[f1])).

fof(f98,plain,(
  ( ! [X0,X1] : (female(X0,X1) | ~woman(X0,X1)) )),
  inference(cnf_transformation,[],[f56])).

fof(f42,axiom,(
  ! [X0,X1] : (unisex(X0,X1) => ~female(X0,X1))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f91,plain,(
  ! [X0,X1] : (~female(X0,X1) | ~unisex(X0,X1))),
  inference(ennf_transformation,[],[f42])).

fof(f133,plain,(
  ( ! [X0,X1] : (~female(X0,X1) | ~unisex(X0,X1)) )),
  inference(cnf_transformation,[],[f91])).

fof(f23,axiom,(
  ! [X0,X1] : (object(X0,X1) => entity(X0,X1))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f74,plain,(
  ! [X0,X1] : (entity(X0,X1) | ~object(X0,X1))),
  inference(ennf_transformation,[],[f23])).

fof(f116,plain,(
  ( ! [X0,X1] : (entity(X0,X1) | ~object(X0,X1)) )),
  inference(cnf_transformation,[],[f74])).

fof(f30,axiom,(
  ! [X0,X1] : (eventuality(X0,X1) => nonexistent(X0,X1))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f81,plain,(
  ! [X0,X1] : (nonexistent(X0,X1) | ~eventuality(X0,X1))),
  inference(ennf_transformation,[],[f30])).

fof(f123,plain,(
  ( ! [X0,X1] : (nonexistent(X0,X1) | ~eventuality(X0,X1)) )),
  inference(cnf_transformation,[],[f81])).

fof(f20,axiom,(
  ! [X0,X1] : (entity(X0,X1) => existent(X0,X1))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f72,plain,(
  ! [X0,X1] : (existent(X0,X1) | ~entity(X0,X1))),
  inference(ennf_transformation,[],[f20])).

fof(f114,plain,(
  ( ! [X0,X1] : (existent(X0,X1) | ~entity(X0,X1)) )),
  inference(cnf_transformation,[],[f72])).

fof(f38,axiom,(
  ! [X0,X1] : (existent(X0,X1) => ~nonexistent(X0,X1))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f87,plain,(
  ! [X0,X1] : (~nonexistent(X0,X1) | ~existent(X0,X1))),
  inference(ennf_transformation,[],[f38])).

fof(f129,plain,(
  ( ! [X0,X1] : (~nonexistent(X0,X1) | ~existent(X0,X1)) )),
  inference(cnf_transformation,[],[f87])).

fof(f21,axiom,(
  ! [X0,X1] : (entity(X0,X1) => specific(X0,X1))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f73,plain,(
  ! [X0,X1] : (specific(X0,X1) | ~entity(X0,X1))),
  inference(ennf_transformation,[],[f21])).

fof(f115,plain,(
  ( ! [X0,X1] : (specific(X0,X1) | ~entity(X0,X1)) )),
  inference(cnf_transformation,[],[f73])).

fof(f16,axiom,(
  ! [X0,X1] : (forename(X0,X1) => relname(X0,X1))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f69,plain,(
  ! [X0,X1] : (relname(X0,X1) | ~forename(X0,X1))),
  inference(ennf_transformation,[],[f16])).

fof(f111,plain,(
  ( ! [X0,X1] : (relname(X0,X1) | ~forename(X0,X1)) )),
  inference(cnf_transformation,[],[f69])).

fof(f15,axiom,(
  ! [X0,X1] : (relname(X0,X1) => relation(X0,X1))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f68,plain,(
  ! [X0,X1] : (relation(X0,X1) | ~relname(X0,X1))),
  inference(ennf_transformation,[],[f15])).

fof(f110,plain,(
  ( ! [X0,X1] : (relation(X0,X1) | ~relname(X0,X1)) )),
  inference(cnf_transformation,[],[f68])).

fof(f14,axiom,(
  ! [X0,X1] : (relation(X0,X1) => abstraction(X0,X1))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f67,plain,(
  ! [X0,X1] : (abstraction(X0,X1) | ~relation(X0,X1))),
  inference(ennf_transformation,[],[f14])).

fof(f109,plain,(
  ( ! [X0,X1] : (abstraction(X0,X1) | ~relation(X0,X1)) )),
  inference(cnf_transformation,[],[f67])).

fof(f11,axiom,(
  ! [X0,X1] : (abstraction(X0,X1) => general(X0,X1))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f65,plain,(
  ! [X0,X1] : (general(X0,X1) | ~abstraction(X0,X1))),
  inference(ennf_transformation,[],[f11])).

fof(f107,plain,(
  ( ! [X0,X1] : (general(X0,X1) | ~abstraction(X0,X1)) )),
  inference(cnf_transformation,[],[f65])).

fof(f41,axiom,(
  ! [X0,X1] : (specific(X0,X1) => ~general(X0,X1))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f90,plain,(
  ! [X0,X1] : (~general(X0,X1) | ~specific(X0,X1))),
  inference(ennf_transformation,[],[f41])).

fof(f132,plain,(
  ( ! [X0,X1] : (~general(X0,X1) | ~specific(X0,X1)) )),
  inference(cnf_transformation,[],[f90])).

fof(f31,axiom,(
  ! [X0,X1] : (eventuality(X0,X1) => specific(X0,X1))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f82,plain,(
  ! [X0,X1] : (specific(X0,X1) | ~eventuality(X0,X1))),
  inference(ennf_transformation,[],[f31])).

fof(f124,plain,(
  ( ! [X0,X1] : (specific(X0,X1) | ~eventuality(X0,X1)) )),
  inference(cnf_transformation,[],[f82])).

fof(f12,axiom,(
  ! [X0,X1] : (abstraction(X0,X1) => nonhuman(X0,X1))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f66,plain,(
  ! [X0,X1] : (nonhuman(X0,X1) | ~abstraction(X0,X1))),
  inference(ennf_transformation,[],[f12])).

fof(f108,plain,(
  ( ! [X0,X1] : (nonhuman(X0,X1) | ~abstraction(X0,X1)) )),
  inference(cnf_transformation,[],[f66])).

fof(f3,axiom,(
  ! [X0,X1] : (human_person(X0,X1) => human(X0,X1))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f58,plain,(
  ! [X0,X1] : (human(X0,X1) | ~human_person(X0,X1))),
  inference(ennf_transformation,[],[f3])).

fof(f100,plain,(
  ( ! [X0,X1] : (human(X0,X1) | ~human_person(X0,X1)) )),
  inference(cnf_transformation,[],[f58])).

fof(f39,axiom,(
  ! [X0,X1] : (nonhuman(X0,X1) => ~human(X0,X1))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/NLP/NLP042+1.p',unknown)).

fof(f88,plain,(
  ! [X0,X1] : (~human(X0,X1) | ~nonhuman(X0,X1))),
  inference(ennf_transformation,[],[f39])).

fof(f130,plain,(
  ( ! [X0,X1] : (~human(X0,X1) | ~nonhuman(X0,X1)) )),
  inference(cnf_transformation,[],[f88])).

cnf(c_258,plain,
    ( X0 != X1 | X2 != X3 | ~ nonreflexive(X1,X3) | nonreflexive(X0,X2) ),
    theory(equality) ).

cnf(c_636,plain,
    ( X0 != X1 | X2 != X3 | X4 != X5 | ~ agent(X1,X3,X5) | agent(X0,X2,X4) ),
    theory(equality) ).

cnf(c_256,plain,
    ( X0 != X1
    | X2 != X3
    | X4 != X5
    | ~ patient(X1,X3,X5)
    | patient(X0,X2,X4) ),
    theory(equality) ).

cnf(c_254,plain,
    ( X0 != X1 | X2 != X3 | ~ order(X1,X3) | order(X0,X2) ),
    theory(equality) ).

cnf(c_253,plain,
    ( X0 != X1 | X2 != X3 | ~ event(X1,X3) | event(X0,X2) ),
    theory(equality) ).

cnf(c_252,plain,
    ( X0 != X1 | X2 != X3 | ~ shake_beverage(X1,X3) | shake_beverage(X0,X2) ),
    theory(equality) ).

cnf(c_251,plain,
    ( X0 != X1 | X2 != X3 | ~ mia_forename(X1,X3) | mia_forename(X0,X2) ),
    theory(equality) ).

cnf(c_249,plain,
    ( X0 != X1 | X2 != X3 | ~ woman(X1,X3) | woman(X0,X2) ),
    theory(equality) ).

cnf(c_658,plain,( X0_2 = X0_2 ),theory(equality) ).

cnf(c_47,negated_conjecture,
    ( of(sK0,sK2,sK1) ),
    inference(cnf_transformation,[],[f136]) ).

cnf(c_36,plain,
    ( ~ of(X0,X1,X2)
    | ~ of(X0,X3,X2)
    | ~ entity(X0,X2)
    | ~ forename(X0,X1)
    | ~ forename(X0,X3)
    | X1 = X3 ),
    inference(cnf_transformation,[],[f134]) ).

cnf(c_4,plain,
    ( ~ organism(X0,X1) | entity(X0,X1) ),
    inference(cnf_transformation,[],[f102]) ).

cnf(c_5,plain,
    ( ~ human_person(X0,X1) | organism(X0,X1) ),
    inference(cnf_transformation,[],[f103]) ).

cnf(c_6,plain,
    ( ~ woman(X0,X1) | human_person(X0,X1) ),
    inference(cnf_transformation,[],[f104]) ).

cnf(c_46,negated_conjecture,
    ( woman(sK0,sK1) ),
    inference(cnf_transformation,[],[f137]) ).

cnf(c_300,plain,
    ( X0 != sK0 | X1 != sK1 | human_person(X0,X1) ),
    inference(resolution_lifted,[status(thm)],[c_6,c_46]) ).

cnf(c_301,plain,
    ( human_person(sK0,sK1) ),
    inference(unflattening,[status(thm)],[c_300]) ).

cnf(c_444,plain,
    ( X0 != sK0 | X1 != sK1 | organism(X0,X1) ),
    inference(resolution_lifted,[status(thm)],[c_5,c_301]) ).

cnf(c_445,plain,
    ( organism(sK0,sK1) ),
    inference(unflattening,[status(thm)],[c_444]) ).

cnf(c_454,plain,
    ( X0 != sK0 | X1 != sK1 | entity(X0,X1) ),
    inference(resolution_lifted,[status(thm)],[c_4,c_445]) ).

cnf(c_455,plain,
    ( entity(sK0,sK1) ),
    inference(unflattening,[status(thm)],[c_454]) ).

cnf(c_556,plain,
    ( X0 != sK0
    | X1 != sK1
    | ~ of(X0,X2,X1)
    | ~ of(X0,X3,X1)
    | ~ forename(X0,X2)
    | ~ forename(X0,X3)
    | X2 = X3 ),
    inference(resolution_lifted,[status(thm)],[c_36,c_455]) ).

cnf(c_557,plain,
    ( ~ of(sK0,X0,sK1)
    | ~ of(sK0,X1,sK1)
    | ~ forename(sK0,X0)
    | ~ forename(sK0,X1)
    | X0 = X1 ),
    inference(unflattening,[status(thm)],[c_556]) ).

cnf(c_681,plain,
    ( ~ of(sK0,X0,sK1)
    | ~ forename(sK0,X0)
    | ~ forename(sK0,sK2)
    | X0 = sK2 ),
    inference(superposition,[status(thm)],[c_47,c_557]) ).

cnf(c_44,negated_conjecture,
    ( forename(sK0,sK2) ),
    inference(cnf_transformation,[],[f139]) ).

cnf(c_682,plain,
    ( ~ of(sK0,X0,sK1) | ~ forename(sK0,X0) | X0 = sK2 ),
    inference(forward_subsumption_resolution,[status(thm)],[c_681,c_44]) ).

cnf(c_19,plain,
    ( ~ substance_matter(X0,X1) | object(X0,X1) ),
    inference(cnf_transformation,[],[f117]) ).

cnf(c_20,plain,
    ( ~ food(X0,X1) | substance_matter(X0,X1) ),
    inference(cnf_transformation,[],[f118]) ).

cnf(c_21,plain,
    ( ~ beverage(X0,X1) | food(X0,X1) ),
    inference(cnf_transformation,[],[f119]) ).

cnf(c_22,plain,
    ( ~ shake_beverage(X0,X1) | beverage(X0,X1) ),
    inference(cnf_transformation,[],[f120]) ).

cnf(c_43,negated_conjecture,
    ( shake_beverage(sK0,sK3) ),
    inference(cnf_transformation,[],[f140]) ).

cnf(c_261,plain,
    ( X0 != sK0 | X1 != sK3 | beverage(X0,X1) ),
    inference(resolution_lifted,[status(thm)],[c_22,c_43]) ).

cnf(c_262,plain,
    ( beverage(sK0,sK3) ),
    inference(unflattening,[status(thm)],[c_261]) ).

cnf(c_267,plain,
    ( X0 != sK0 | X1 != sK3 | food(X0,X1) ),
    inference(resolution_lifted,[status(thm)],[c_21,c_262]) ).

cnf(c_268,plain,
    ( food(sK0,sK3) ),
    inference(unflattening,[status(thm)],[c_267]) ).

cnf(c_273,plain,
    ( X0 != sK0 | X1 != sK3 | substance_matter(X0,X1) ),
    inference(resolution_lifted,[status(thm)],[c_20,c_268]) ).

cnf(c_274,plain,
    ( substance_matter(sK0,sK3) ),
    inference(unflattening,[status(thm)],[c_273]) ).

cnf(c_279,plain,
    ( X0 != sK0 | X1 != sK3 | object(X0,X1) ),
    inference(resolution_lifted,[status(thm)],[c_19,c_274]) ).

cnf(c_280,plain,
    ( object(sK0,sK3) ),
    inference(unflattening,[status(thm)],[c_279]) ).

cnf(c_15,plain,
    ( ~ object(X0,X1) | nonliving(X0,X1) ),
    inference(cnf_transformation,[],[f113]) ).

cnf(c_1,plain,
    ( ~ human_person(X0,X1) | animate(X0,X1) ),
    inference(cnf_transformation,[],[f99]) ).

cnf(c_30,plain,
    ( ~ animate(X0,X1) | ~ nonliving(X0,X1) ),
    inference(cnf_transformation,[],[f128]) ).

cnf(c_307,plain,
    ( ~ human_person(X0,X1) | ~ nonliving(X0,X1) ),
    inference(resolution,[status(thm)],[c_1,c_30]) ).

cnf(c_439,plain,
    ( X0 != sK0 | X1 != sK1 | ~ nonliving(X0,X1) ),
    inference(resolution_lifted,[status(thm)],[c_307,c_301]) ).

cnf(c_440,plain,
    ( ~ nonliving(sK0,sK1) ),
    inference(unflattening,[status(thm)],[c_439]) ).

cnf(c_460,plain,
    ( X0 != sK0 | X1 != sK1 | ~ object(X0,X1) ),
    inference(resolution_lifted,[status(thm)],[c_15,c_440]) ).

cnf(c_461,plain,
    ( ~ object(sK0,sK1) ),
    inference(unflattening,[status(thm)],[c_460]) ).

cnf(c_476,plain,
    ( sK0 != sK0 | sK3 != sK1 ),
    inference(resolution_lifted,[status(thm)],[c_280,c_461]) ).

cnf(c_615,plain,
    ( sK3 != sK1 ),
    inference(equality_resolution_simp,[status(thm)],[c_476]) ).

cnf(c_27,plain,
    ( ~ event(X0,X1) | eventuality(X0,X1) ),
    inference(cnf_transformation,[],[f125]) ).

cnf(c_42,negated_conjecture,
    ( event(sK0,sK4) ),
    inference(cnf_transformation,[],[f141]) ).

cnf(c_397,plain,
    ( X0 != sK0 | X1 != sK4 | eventuality(X0,X1) ),
    inference(resolution_lifted,[status(thm)],[c_27,c_42]) ).

cnf(c_398,plain,
    ( eventuality(sK0,sK4) ),
    inference(unflattening,[status(thm)],[c_397]) ).

cnf(c_24,plain,
    ( ~ eventuality(X0,X1) | unisex(X0,X1) ),
    inference(cnf_transformation,[],[f122]) ).

cnf(c_0,plain,
    ( ~ woman(X0,X1) | female(X0,X1) ),
    inference(cnf_transformation,[],[f98]) ).

cnf(c_35,plain,
    ( ~ female(X0,X1) | ~ unisex(X0,X1) ),
    inference(cnf_transformation,[],[f133]) ).

cnf(c_285,plain,
    ( ~ woman(X0,X1) | ~ unisex(X0,X1) ),
    inference(resolution,[status(thm)],[c_0,c_35]) ).

cnf(c_295,plain,
    ( X0 != sK0 | X1 != sK1 | ~ unisex(X0,X1) ),
    inference(resolution_lifted,[status(thm)],[c_285,c_46]) ).

cnf(c_296,plain,
    ( ~ unisex(sK0,sK1) ),
    inference(unflattening,[status(thm)],[c_295]) ).

cnf(c_487,plain,
    ( X0 != sK0 | X1 != sK1 | ~ eventuality(X0,X1) ),
    inference(resolution_lifted,[status(thm)],[c_24,c_296]) ).

cnf(c_488,plain,
    ( ~ eventuality(sK0,sK1) ),
    inference(unflattening,[status(thm)],[c_487]) ).

cnf(c_506,plain,
    ( sK0 != sK0 | sK4 != sK1 ),
    inference(resolution_lifted,[status(thm)],[c_398,c_488]) ).

cnf(c_614,plain,
    ( sK4 != sK1 ),
    inference(equality_resolution_simp,[status(thm)],[c_506]) ).

cnf(c_18,plain,
    ( ~ object(X0,X1) | entity(X0,X1) ),
    inference(cnf_transformation,[],[f116]) ).

cnf(c_466,plain,
    ( X0 != sK0 | X1 != sK3 | entity(X0,X1) ),
    inference(resolution_lifted,[status(thm)],[c_18,c_280]) ).

cnf(c_467,plain,
    ( entity(sK0,sK3) ),
    inference(unflattening,[status(thm)],[c_466]) ).

cnf(c_25,plain,
    ( ~ eventuality(X0,X1) | nonexistent(X0,X1) ),
    inference(cnf_transformation,[],[f123]) ).

cnf(c_16,plain,
    ( ~ entity(X0,X1) | existent(X0,X1) ),
    inference(cnf_transformation,[],[f114]) ).

cnf(c_31,plain,
    ( ~ existent(X0,X1) | ~ nonexistent(X0,X1) ),
    inference(cnf_transformation,[],[f129]) ).

cnf(c_377,plain,
    ( ~ entity(X0,X1) | ~ nonexistent(X0,X1) ),
    inference(resolution,[status(thm)],[c_16,c_31]) ).

cnf(c_403,plain,
    ( ~ entity(X0,X1) | ~ eventuality(X0,X1) ),
    inference(resolution,[status(thm)],[c_25,c_377]) ).

cnf(c_496,plain,
    ( X0 != sK0 | X1 != sK4 | ~ entity(X0,X1) ),
    inference(resolution_lifted,[status(thm)],[c_403,c_398]) ).

cnf(c_497,plain,
    ( ~ entity(sK0,sK4) ),
    inference(unflattening,[status(thm)],[c_496]) ).

cnf(c_593,plain,
    ( sK0 != sK0 | sK4 != sK3 ),
    inference(resolution_lifted,[status(thm)],[c_467,c_497]) ).

cnf(c_613,plain,
    ( sK4 != sK3 ),
    inference(equality_resolution_simp,[status(thm)],[c_593]) ).

cnf(c_574,plain,
    ( X0 != sK0
    | X1 != sK3
    | ~ of(X0,X2,X1)
    | ~ of(X0,X3,X1)
    | ~ forename(X0,X2)
    | ~ forename(X0,X3)
    | X2 = X3 ),
    inference(resolution_lifted,[status(thm)],[c_36,c_467]) ).

cnf(c_575,plain,
    ( ~ of(sK0,X0,sK3)
    | ~ of(sK0,X1,sK3)
    | ~ forename(sK0,X0)
    | ~ forename(sK0,X1)
    | X0 = X1 ),
    inference(unflattening,[status(thm)],[c_574]) ).

cnf(c_17,plain,
    ( ~ entity(X0,X1) | specific(X0,X1) ),
    inference(cnf_transformation,[],[f115]) ).

cnf(c_13,plain,
    ( ~ forename(X0,X1) | relname(X0,X1) ),
    inference(cnf_transformation,[],[f111]) ).

cnf(c_12,plain,
    ( ~ relname(X0,X1) | relation(X0,X1) ),
    inference(cnf_transformation,[],[f110]) ).

cnf(c_11,plain,
    ( ~ relation(X0,X1) | abstraction(X0,X1) ),
    inference(cnf_transformation,[],[f109]) ).

cnf(c_357,plain,
    ( ~ relname(X0,X1) | abstraction(X0,X1) ),
    inference(resolution,[status(thm)],[c_12,c_11]) ).

cnf(c_367,plain,
    ( ~ forename(X0,X1) | abstraction(X0,X1) ),
    inference(resolution,[status(thm)],[c_13,c_357]) ).

cnf(c_9,plain,
    ( ~ abstraction(X0,X1) | general(X0,X1) ),
    inference(cnf_transformation,[],[f107]) ).

cnf(c_34,plain,
    ( ~ general(X0,X1) | ~ specific(X0,X1) ),
    inference(cnf_transformation,[],[f132]) ).

cnf(c_337,plain,
    ( ~ abstraction(X0,X1) | ~ specific(X0,X1) ),
    inference(resolution,[status(thm)],[c_9,c_34]) ).

cnf(c_517,plain,
    ( ~ forename(X0,X1) | ~ specific(X0,X1) ),
    inference(resolution,[status(thm)],[c_367,c_337]) ).

cnf(c_533,plain,
    ( ~ entity(X0,X1) | ~ forename(X0,X1) ),
    inference(resolution,[status(thm)],[c_17,c_517]) ).

cnf(c_551,plain,
    ( X0 != sK0 | X1 != sK3 | ~ forename(X0,X1) ),
    inference(resolution_lifted,[status(thm)],[c_533,c_467]) ).

cnf(c_552,plain,
    ( ~ forename(sK0,sK3) ),
    inference(unflattening,[status(thm)],[c_551]) ).

cnf(c_26,plain,
    ( ~ eventuality(X0,X1) | specific(X0,X1) ),
    inference(cnf_transformation,[],[f124]) ).

cnf(c_501,plain,
    ( X0 != sK0 | X1 != sK4 | specific(X0,X1) ),
    inference(resolution_lifted,[status(thm)],[c_26,c_398]) ).

cnf(c_502,plain,
    ( specific(sK0,sK4) ),
    inference(unflattening,[status(thm)],[c_501]) ).

cnf(c_541,plain,
    ( X0 != sK0 | X1 != sK4 | ~ forename(X0,X1) ),
    inference(resolution_lifted,[status(thm)],[c_517,c_502]) ).

cnf(c_542,plain,
    ( ~ forename(sK0,sK4) ),
    inference(unflattening,[status(thm)],[c_541]) ).

cnf(c_10,plain,
    ( ~ abstraction(X0,X1) | nonhuman(X0,X1) ),
    inference(cnf_transformation,[],[f108]) ).

cnf(c_2,plain,
    ( ~ human_person(X0,X1) | human(X0,X1) ),
    inference(cnf_transformation,[],[f100]) ).

cnf(c_32,plain,
    ( ~ human(X0,X1) | ~ nonhuman(X0,X1) ),
    inference(cnf_transformation,[],[f130]) ).

cnf(c_317,plain,
    ( ~ human_person(X0,X1) | ~ nonhuman(X0,X1) ),
    inference(resolution,[status(thm)],[c_2,c_32]) ).

cnf(c_347,plain,
    ( ~ human_person(X0,X1) | ~ abstraction(X0,X1) ),
    inference(resolution,[status(thm)],[c_10,c_317]) ).

cnf(c_434,plain,
    ( X0 != sK0 | X1 != sK1 | ~ abstraction(X0,X1) ),
    inference(resolution_lifted,[status(thm)],[c_347,c_301]) ).

cnf(c_435,plain,
    ( ~ abstraction(sK0,sK1) ),
    inference(unflattening,[status(thm)],[c_434]) ).

cnf(c_525,plain,
    ( X0 != sK0 | X1 != sK1 | ~ forename(X0,X1) ),
    inference(resolution_lifted,[status(thm)],[c_367,c_435]) ).

cnf(c_526,plain,
    ( ~ forename(sK0,sK1) ),
    inference(unflattening,[status(thm)],[c_525]) ).


% SZS output end Saturation for NLP042+1.p

Sample solution for SWV017+1

% SZS status Satisfiable for SWV017+1.p

% SZS output start Saturation for SWV017+1.p

fof(f33,axiom,(
  ! [X0] : (fresh_intruder_nonce(X0) => (intruder_message(X0) & fresh_to_b(X0)))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f67,plain,(
  ! [X0] : ((intruder_message(X0) & fresh_to_b(X0)) | ~fresh_intruder_nonce(X0))),
  inference(ennf_transformation,[],[f33])).

fof(f104,plain,(
  ( ! [X0] : (fresh_to_b(X0) | ~fresh_intruder_nonce(X0)) )),
  inference(cnf_transformation,[],[f67])).

fof(f105,plain,(
  ( ! [X0] : (intruder_message(X0) | ~fresh_intruder_nonce(X0)) )),
  inference(cnf_transformation,[],[f67])).

fof(f32,axiom,(
  ! [X0] : (fresh_intruder_nonce(X0) => fresh_intruder_nonce(generate_intruder_nonce(X0)))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f66,plain,(
  ! [X0] : (fresh_intruder_nonce(generate_intruder_nonce(X0)) | ~fresh_intruder_nonce(X0))),
  inference(ennf_transformation,[],[f32])).

fof(f103,plain,(
  ( ! [X0] : (fresh_intruder_nonce(generate_intruder_nonce(X0)) | ~fresh_intruder_nonce(X0)) )),
  inference(cnf_transformation,[],[f66])).

fof(f31,axiom,(
  fresh_intruder_nonce(an_intruder_nonce)),
  file('/Users/korovin/TPTP-v7.3.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f102,plain,(
  fresh_intruder_nonce(an_intruder_nonce)),
  inference(cnf_transformation,[],[f31])).

fof(f27,axiom,(
  ! [X0] : ~a_nonce(generate_key(X0))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f97,plain,(
  ( ! [X0] : (~a_nonce(generate_key(X0))) )),
  inference(cnf_transformation,[],[f27])).

fof(f25,axiom,(
  ! [X0,X1,X2] : ((party_of_protocol(X2) & intruder_holds(key(X1,X2)) & intruder_message(X0)) => intruder_message(encrypt(X0,X1)))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f63,plain,(
  ! [X0,X1,X2] : (intruder_message(encrypt(X0,X1)) | (~party_of_protocol(X2) | ~intruder_holds(key(X1,X2)) | ~intruder_message(X0)))),
  inference(ennf_transformation,[],[f25])).

fof(f64,plain,(
  ! [X0,X1,X2] : (intruder_message(encrypt(X0,X1)) | ~party_of_protocol(X2) | ~intruder_holds(key(X1,X2)) | ~intruder_message(X0))),
  inference(flattening,[],[f63])).

fof(f95,plain,(
  ( ! [X2,X0,X1] : (intruder_message(encrypt(X0,X1)) | ~party_of_protocol(X2) | ~intruder_holds(key(X1,X2)) | ~intruder_message(X0)) )),
  inference(cnf_transformation,[],[f64])).

fof(f24,axiom,(
  ! [X1,X2] : ((party_of_protocol(X2) & intruder_message(X1)) => intruder_holds(key(X1,X2)))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f35,plain,(
  ! [X0,X1] : ((party_of_protocol(X1) & intruder_message(X0)) => intruder_holds(key(X0,X1)))),
  inference(rectify,[],[f24])).

fof(f61,plain,(
  ! [X0,X1] : (intruder_holds(key(X0,X1)) | (~party_of_protocol(X1) | ~intruder_message(X0)))),
  inference(ennf_transformation,[],[f35])).

fof(f62,plain,(
  ! [X0,X1] : (intruder_holds(key(X0,X1)) | ~party_of_protocol(X1) | ~intruder_message(X0))),
  inference(flattening,[],[f61])).

fof(f94,plain,(
  ( ! [X0,X1] : (intruder_holds(key(X0,X1)) | ~party_of_protocol(X1) | ~intruder_message(X0)) )),
  inference(cnf_transformation,[],[f62])).

fof(f23,axiom,(
  ! [X0,X1,X2] : ((party_of_protocol(X2) & party_of_protocol(X1) & intruder_message(X0)) => message(sent(X1,X2,X0)))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f59,plain,(
  ! [X0,X1,X2] : (message(sent(X1,X2,X0)) | (~party_of_protocol(X2) | ~party_of_protocol(X1) | ~intruder_message(X0)))),
  inference(ennf_transformation,[],[f23])).

fof(f60,plain,(
  ! [X0,X1,X2] : (message(sent(X1,X2,X0)) | ~party_of_protocol(X2) | ~party_of_protocol(X1) | ~intruder_message(X0))),
  inference(flattening,[],[f59])).

fof(f93,plain,(
  ( ! [X2,X0,X1] : (message(sent(X1,X2,X0)) | ~party_of_protocol(X2) | ~party_of_protocol(X1) | ~intruder_message(X0)) )),
  inference(cnf_transformation,[],[f60])).

fof(f22,axiom,(
  ! [X0,X1,X2] : ((party_of_protocol(X2) & intruder_holds(key(X1,X2)) & intruder_message(encrypt(X0,X1))) => intruder_message(X1))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f57,plain,(
  ! [X0,X1,X2] : (intruder_message(X1) | (~party_of_protocol(X2) | ~intruder_holds(key(X1,X2)) | ~intruder_message(encrypt(X0,X1))))),
  inference(ennf_transformation,[],[f22])).

fof(f58,plain,(
  ! [X0,X1,X2] : (intruder_message(X1) | ~party_of_protocol(X2) | ~intruder_holds(key(X1,X2)) | ~intruder_message(encrypt(X0,X1)))),
  inference(flattening,[],[f57])).

fof(f92,plain,(
  ( ! [X2,X0,X1] : (intruder_message(X1) | ~party_of_protocol(X2) | ~intruder_holds(key(X1,X2)) | ~intruder_message(encrypt(X0,X1))) )),
  inference(cnf_transformation,[],[f58])).

fof(f21,axiom,(
  ! [X0,X1,X2,X3] : ((intruder_message(X3) & intruder_message(X2) & intruder_message(X1) & intruder_message(X0)) => intruder_message(quadruple(X0,X1,X2,X3)))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f55,plain,(
  ! [X0,X1,X2,X3] : (intruder_message(quadruple(X0,X1,X2,X3)) | (~intruder_message(X3) | ~intruder_message(X2) | ~intruder_message(X1) | ~intruder_message(X0)))),
  inference(ennf_transformation,[],[f21])).

fof(f56,plain,(
  ! [X0,X1,X2,X3] : (intruder_message(quadruple(X0,X1,X2,X3)) | ~intruder_message(X3) | ~intruder_message(X2) | ~intruder_message(X1) | ~intruder_message(X0))),
  inference(flattening,[],[f55])).

fof(f91,plain,(
  ( ! [X2,X0,X3,X1] : (intruder_message(quadruple(X0,X1,X2,X3)) | ~intruder_message(X3) | ~intruder_message(X2) | ~intruder_message(X1) | ~intruder_message(X0)) )),
  inference(cnf_transformation,[],[f56])).

fof(f20,axiom,(
  ! [X0,X1,X2] : ((intruder_message(X2) & intruder_message(X1) & intruder_message(X0)) => intruder_message(triple(X0,X1,X2)))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f53,plain,(
  ! [X0,X1,X2] : (intruder_message(triple(X0,X1,X2)) | (~intruder_message(X2) | ~intruder_message(X1) | ~intruder_message(X0)))),
  inference(ennf_transformation,[],[f20])).

fof(f54,plain,(
  ! [X0,X1,X2] : (intruder_message(triple(X0,X1,X2)) | ~intruder_message(X2) | ~intruder_message(X1) | ~intruder_message(X0))),
  inference(flattening,[],[f53])).

fof(f90,plain,(
  ( ! [X2,X0,X1] : (intruder_message(triple(X0,X1,X2)) | ~intruder_message(X2) | ~intruder_message(X1) | ~intruder_message(X0)) )),
  inference(cnf_transformation,[],[f54])).

fof(f19,axiom,(
  ! [X0,X1] : ((intruder_message(X1) & intruder_message(X0)) => intruder_message(pair(X0,X1)))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f51,plain,(
  ! [X0,X1] : (intruder_message(pair(X0,X1)) | (~intruder_message(X1) | ~intruder_message(X0)))),
  inference(ennf_transformation,[],[f19])).

fof(f52,plain,(
  ! [X0,X1] : (intruder_message(pair(X0,X1)) | ~intruder_message(X1) | ~intruder_message(X0))),
  inference(flattening,[],[f51])).

fof(f89,plain,(
  ( ! [X0,X1] : (intruder_message(pair(X0,X1)) | ~intruder_message(X1) | ~intruder_message(X0)) )),
  inference(cnf_transformation,[],[f52])).

fof(f18,axiom,(
  ! [X0,X1,X2,X3] : (intruder_message(quadruple(X0,X1,X2,X3)) => (intruder_message(X3) & intruder_message(X2) & intruder_message(X1) & intruder_message(X0)))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f50,plain,(
  ! [X0,X1,X2,X3] : ((intruder_message(X3) & intruder_message(X2) & intruder_message(X1) & intruder_message(X0)) | ~intruder_message(quadruple(X0,X1,X2,X3)))),
  inference(ennf_transformation,[],[f18])).

fof(f85,plain,(
  ( ! [X2,X0,X3,X1] : (intruder_message(X0) | ~intruder_message(quadruple(X0,X1,X2,X3))) )),
  inference(cnf_transformation,[],[f50])).

fof(f86,plain,(
  ( ! [X2,X0,X3,X1] : (intruder_message(X1) | ~intruder_message(quadruple(X0,X1,X2,X3))) )),
  inference(cnf_transformation,[],[f50])).

fof(f87,plain,(
  ( ! [X2,X0,X3,X1] : (intruder_message(X2) | ~intruder_message(quadruple(X0,X1,X2,X3))) )),
  inference(cnf_transformation,[],[f50])).

fof(f88,plain,(
  ( ! [X2,X0,X3,X1] : (intruder_message(X3) | ~intruder_message(quadruple(X0,X1,X2,X3))) )),
  inference(cnf_transformation,[],[f50])).

fof(f17,axiom,(
  ! [X0,X1,X2] : (intruder_message(triple(X0,X1,X2)) => (intruder_message(X2) & intruder_message(X1) & intruder_message(X0)))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f49,plain,(
  ! [X0,X1,X2] : ((intruder_message(X2) & intruder_message(X1) & intruder_message(X0)) | ~intruder_message(triple(X0,X1,X2)))),
  inference(ennf_transformation,[],[f17])).

fof(f82,plain,(
  ( ! [X2,X0,X1] : (intruder_message(X0) | ~intruder_message(triple(X0,X1,X2))) )),
  inference(cnf_transformation,[],[f49])).

fof(f83,plain,(
  ( ! [X2,X0,X1] : (intruder_message(X1) | ~intruder_message(triple(X0,X1,X2))) )),
  inference(cnf_transformation,[],[f49])).

fof(f84,plain,(
  ( ! [X2,X0,X1] : (intruder_message(X2) | ~intruder_message(triple(X0,X1,X2))) )),
  inference(cnf_transformation,[],[f49])).

fof(f16,axiom,(
  ! [X0,X1] : (intruder_message(pair(X0,X1)) => (intruder_message(X1) & intruder_message(X0)))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f48,plain,(
  ! [X0,X1] : ((intruder_message(X1) & intruder_message(X0)) | ~intruder_message(pair(X0,X1)))),
  inference(ennf_transformation,[],[f16])).

fof(f80,plain,(
  ( ! [X0,X1] : (intruder_message(X0) | ~intruder_message(pair(X0,X1))) )),
  inference(cnf_transformation,[],[f48])).

fof(f81,plain,(
  ( ! [X0,X1] : (intruder_message(X1) | ~intruder_message(pair(X0,X1))) )),
  inference(cnf_transformation,[],[f48])).

fof(f15,axiom,(
  ! [X0,X1,X2] : (message(sent(X0,X1,X2)) => intruder_message(X2))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f47,plain,(
  ! [X0,X1,X2] : (intruder_message(X2) | ~message(sent(X0,X1,X2)))),
  inference(ennf_transformation,[],[f15])).

fof(f79,plain,(
  ( ! [X2,X0,X1] : (intruder_message(X2) | ~message(sent(X0,X1,X2))) )),
  inference(cnf_transformation,[],[f47])).

fof(f14,axiom,(
  ! [X0,X1,X2,X3,X4,X5,X6] : ((a_nonce(X3) & t_holds(key(X6,X2)) & t_holds(key(X5,X0)) & message(sent(X0,t,triple(X0,X1,encrypt(triple(X2,X3,X4),X5))))) => message(sent(t,X2,triple(encrypt(quadruple(X0,X3,generate_key(X3),X4),X6),encrypt(triple(X2,generate_key(X3),X4),X5),X1))))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f45,plain,(
  ! [X0,X1,X2,X3,X4,X5,X6] : (message(sent(t,X2,triple(encrypt(quadruple(X0,X3,generate_key(X3),X4),X6),encrypt(triple(X2,generate_key(X3),X4),X5),X1))) | (~a_nonce(X3) | ~t_holds(key(X6,X2)) | ~t_holds(key(X5,X0)) | ~message(sent(X0,t,triple(X0,X1,encrypt(triple(X2,X3,X4),X5))))))),
  inference(ennf_transformation,[],[f14])).

fof(f46,plain,(
  ! [X0,X1,X2,X3,X4,X5,X6] : (message(sent(t,X2,triple(encrypt(quadruple(X0,X3,generate_key(X3),X4),X6),encrypt(triple(X2,generate_key(X3),X4),X5),X1))) | ~a_nonce(X3) | ~t_holds(key(X6,X2)) | ~t_holds(key(X5,X0)) | ~message(sent(X0,t,triple(X0,X1,encrypt(triple(X2,X3,X4),X5)))))),
  inference(flattening,[],[f45])).

fof(f78,plain,(
  ( ! [X6,X4,X2,X0,X5,X3,X1] : (message(sent(t,X2,triple(encrypt(quadruple(X0,X3,generate_key(X3),X4),X6),encrypt(triple(X2,generate_key(X3),X4),X5),X1))) | ~a_nonce(X3) | ~t_holds(key(X6,X2)) | ~t_holds(key(X5,X0)) | ~message(sent(X0,t,triple(X0,X1,encrypt(triple(X2,X3,X4),X5))))) )),
  inference(cnf_transformation,[],[f46])).

fof(f13,axiom,(
  party_of_protocol(t)),
  file('/Users/korovin/TPTP-v7.3.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f77,plain,(
  party_of_protocol(t)),
  inference(cnf_transformation,[],[f13])).

fof(f12,axiom,(
  t_holds(key(bt,b))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f76,plain,(
  t_holds(key(bt,b))),
  inference(cnf_transformation,[],[f12])).

fof(f11,axiom,(
  t_holds(key(at,a))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f75,plain,(
  t_holds(key(at,a))),
  inference(cnf_transformation,[],[f11])).

fof(f9,axiom,(
  ! [X0,X1] : ((fresh_to_b(X1) & message(sent(X0,b,pair(X0,X1)))) => (b_stored(pair(X0,X1)) & message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X0,X1,generate_expiration_time(X1)),bt))))))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f38,plain,(
  ! [X0,X1] : ((fresh_to_b(X1) & message(sent(X0,b,pair(X0,X1)))) => message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X0,X1,generate_expiration_time(X1)),bt)))))),
  inference(pure_predicate_removal,[],[f9])).

fof(f43,plain,(
  ! [X0,X1] : (message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X0,X1,generate_expiration_time(X1)),bt)))) | (~fresh_to_b(X1) | ~message(sent(X0,b,pair(X0,X1)))))),
  inference(ennf_transformation,[],[f38])).

fof(f44,plain,(
  ! [X0,X1] : (message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X0,X1,generate_expiration_time(X1)),bt)))) | ~fresh_to_b(X1) | ~message(sent(X0,b,pair(X0,X1))))),
  inference(flattening,[],[f43])).

fof(f74,plain,(
  ( ! [X0,X1] : (message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X0,X1,generate_expiration_time(X1)),bt)))) | ~fresh_to_b(X1) | ~message(sent(X0,b,pair(X0,X1)))) )),
  inference(cnf_transformation,[],[f44])).

fof(f8,axiom,(
  fresh_to_b(an_a_nonce)),
  file('/Users/korovin/TPTP-v7.3.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f73,plain,(
  fresh_to_b(an_a_nonce)),
  inference(cnf_transformation,[],[f8])).

fof(f7,axiom,(
  party_of_protocol(b)),
  file('/Users/korovin/TPTP-v7.3.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f72,plain,(
  party_of_protocol(b)),
  inference(cnf_transformation,[],[f7])).

fof(f5,axiom,(
  ! [X0,X1,X2,X3,X4,X5] : ((a_stored(pair(X4,X5)) & message(sent(t,a,triple(encrypt(quadruple(X4,X5,X2,X1),at),X3,X0)))) => (a_holds(key(X2,X4)) & message(sent(a,X4,pair(X3,encrypt(X0,X2))))))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f39,plain,(
  ! [X0,X1,X2,X3,X4,X5] : ((a_stored(pair(X4,X5)) & message(sent(t,a,triple(encrypt(quadruple(X4,X5,X2,X1),at),X3,X0)))) => message(sent(a,X4,pair(X3,encrypt(X0,X2)))))),
  inference(pure_predicate_removal,[],[f5])).

fof(f41,plain,(
  ! [X0,X1,X2,X3,X4,X5] : (message(sent(a,X4,pair(X3,encrypt(X0,X2)))) | (~a_stored(pair(X4,X5)) | ~message(sent(t,a,triple(encrypt(quadruple(X4,X5,X2,X1),at),X3,X0)))))),
  inference(ennf_transformation,[],[f39])).

fof(f42,plain,(
  ! [X0,X1,X2,X3,X4,X5] : (message(sent(a,X4,pair(X3,encrypt(X0,X2)))) | ~a_stored(pair(X4,X5)) | ~message(sent(t,a,triple(encrypt(quadruple(X4,X5,X2,X1),at),X3,X0))))),
  inference(flattening,[],[f41])).

fof(f71,plain,(
  ( ! [X4,X2,X0,X5,X3,X1] : (message(sent(a,X4,pair(X3,encrypt(X0,X2)))) | ~a_stored(pair(X4,X5)) | ~message(sent(t,a,triple(encrypt(quadruple(X4,X5,X2,X1),at),X3,X0)))) )),
  inference(cnf_transformation,[],[f42])).

fof(f4,axiom,(
  a_stored(pair(b,an_a_nonce))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f70,plain,(
  a_stored(pair(b,an_a_nonce))),
  inference(cnf_transformation,[],[f4])).

fof(f3,axiom,(
  message(sent(a,b,pair(a,an_a_nonce)))),
  file('/Users/korovin/TPTP-v7.3.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f69,plain,(
  message(sent(a,b,pair(a,an_a_nonce)))),
  inference(cnf_transformation,[],[f3])).

fof(f2,axiom,(
  party_of_protocol(a)),
  file('/Users/korovin/TPTP-v7.3.0/Problems/SWV/SWV017+1.p',unknown)).

fof(f68,plain,(
  party_of_protocol(a)),
  inference(cnf_transformation,[],[f2])).

cnf(c_37,plain,
    ( ~ fresh_intruder_nonce(X0) | fresh_to_b(X0) ),
    inference(cnf_transformation,[],[f104]) ).

cnf(c_36,plain,
    ( ~ fresh_intruder_nonce(X0) | intruder_message(X0) ),
    inference(cnf_transformation,[],[f105]) ).

cnf(c_35,plain,
    ( ~ fresh_intruder_nonce(X0)
    | fresh_intruder_nonce(generate_intruder_nonce(X0)) ),
    inference(cnf_transformation,[],[f103]) ).

cnf(c_34,plain,
    ( fresh_intruder_nonce(an_intruder_nonce) ),
    inference(cnf_transformation,[],[f102]) ).

cnf(c_29,plain,
    ( ~ a_nonce(generate_key(X0)) ),
    inference(cnf_transformation,[],[f97]) ).

cnf(c_27,plain,
    ( ~ intruder_holds(key(X0,X1))
    | ~ party_of_protocol(X1)
    | ~ intruder_message(X2)
    | intruder_message(encrypt(X2,X0)) ),
    inference(cnf_transformation,[],[f95]) ).

cnf(c_26,plain,
    ( ~ party_of_protocol(X0)
    | ~ intruder_message(X1)
    | intruder_holds(key(X1,X0)) ),
    inference(cnf_transformation,[],[f94]) ).

cnf(c_25,plain,
    ( ~ party_of_protocol(X0)
    | ~ party_of_protocol(X1)
    | ~ intruder_message(X2)
    | message(sent(X1,X0,X2)) ),
    inference(cnf_transformation,[],[f93]) ).

cnf(c_24,plain,
    ( ~ intruder_message(encrypt(X0,X1))
    | ~ intruder_holds(key(X1,X2))
    | ~ party_of_protocol(X2)
    | intruder_message(X1) ),
    inference(cnf_transformation,[],[f92]) ).

cnf(c_23,plain,
    ( ~ intruder_message(X0)
    | ~ intruder_message(X1)
    | ~ intruder_message(X2)
    | ~ intruder_message(X3)
    | intruder_message(quadruple(X1,X3,X2,X0)) ),
    inference(cnf_transformation,[],[f91]) ).

cnf(c_22,plain,
    ( ~ intruder_message(X0)
    | ~ intruder_message(X1)
    | ~ intruder_message(X2)
    | intruder_message(triple(X0,X2,X1)) ),
    inference(cnf_transformation,[],[f90]) ).

cnf(c_21,plain,
    ( ~ intruder_message(X0)
    | ~ intruder_message(X1)
    | intruder_message(pair(X0,X1)) ),
    inference(cnf_transformation,[],[f89]) ).

cnf(c_20,plain,
    ( ~ intruder_message(quadruple(X0,X1,X2,X3)) | intruder_message(X0) ),
    inference(cnf_transformation,[],[f85]) ).

cnf(c_19,plain,
    ( ~ intruder_message(quadruple(X0,X1,X2,X3)) | intruder_message(X1) ),
    inference(cnf_transformation,[],[f86]) ).

cnf(c_18,plain,
    ( ~ intruder_message(quadruple(X0,X1,X2,X3)) | intruder_message(X2) ),
    inference(cnf_transformation,[],[f87]) ).

cnf(c_17,plain,
    ( ~ intruder_message(quadruple(X0,X1,X2,X3)) | intruder_message(X3) ),
    inference(cnf_transformation,[],[f88]) ).

cnf(c_16,plain,
    ( ~ intruder_message(triple(X0,X1,X2)) | intruder_message(X0) ),
    inference(cnf_transformation,[],[f82]) ).

cnf(c_15,plain,
    ( ~ intruder_message(triple(X0,X1,X2)) | intruder_message(X1) ),
    inference(cnf_transformation,[],[f83]) ).

cnf(c_14,plain,
    ( ~ intruder_message(triple(X0,X1,X2)) | intruder_message(X2) ),
    inference(cnf_transformation,[],[f84]) ).

cnf(c_13,plain,
    ( ~ intruder_message(pair(X0,X1)) | intruder_message(X0) ),
    inference(cnf_transformation,[],[f80]) ).

cnf(c_12,plain,
    ( ~ intruder_message(pair(X0,X1)) | intruder_message(X1) ),
    inference(cnf_transformation,[],[f81]) ).

cnf(c_11,plain,
    ( ~ message(sent(X0,X1,X2)) | intruder_message(X2) ),
    inference(cnf_transformation,[],[f79]) ).

cnf(c_10,plain,
    ( ~ message(sent(X0,t,triple(X0,X1,encrypt(triple(X2,X3,X4),X5))))
    | ~ t_holds(key(X5,X0))
    | ~ t_holds(key(X6,X2))
    | ~ a_nonce(X3)
    | message(sent(t,X2,triple(encrypt(quadruple(X0,X3,generate_key(X3),X4),X6),encrypt(triple(X2,generate_key(X3),X4),X5),X1))) ),
    inference(cnf_transformation,[],[f78]) ).

cnf(c_9,plain,
    ( party_of_protocol(t) ),
    inference(cnf_transformation,[],[f77]) ).

cnf(c_8,plain,
    ( t_holds(key(bt,b)) ),
    inference(cnf_transformation,[],[f76]) ).

cnf(c_7,plain,
    ( t_holds(key(at,a)) ),
    inference(cnf_transformation,[],[f75]) ).

cnf(c_6,plain,
    ( ~ message(sent(X0,b,pair(X0,X1)))
    | ~ fresh_to_b(X1)
    | message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X0,X1,generate_expiration_time(X1)),bt)))) ),
    inference(cnf_transformation,[],[f74]) ).

cnf(c_5,plain,
    ( fresh_to_b(an_a_nonce) ),
    inference(cnf_transformation,[],[f73]) ).

cnf(c_4,plain,
    ( party_of_protocol(b) ),
    inference(cnf_transformation,[],[f72]) ).

cnf(c_3,plain,
    ( ~ message(sent(t,a,triple(encrypt(quadruple(X0,X1,X2,X3),at),X4,X5)))
    | ~ a_stored(pair(X0,X1))
    | message(sent(a,X0,pair(X4,encrypt(X5,X2)))) ),
    inference(cnf_transformation,[],[f71]) ).

cnf(c_2,plain,
    ( a_stored(pair(b,an_a_nonce)) ),
    inference(cnf_transformation,[],[f70]) ).

cnf(c_1,plain,
    ( message(sent(a,b,pair(a,an_a_nonce))) ),
    inference(cnf_transformation,[],[f69]) ).

cnf(c_0,plain,
    ( party_of_protocol(a) ),
    inference(cnf_transformation,[],[f68]) ).


% SZS output end Saturation for SWV017+1.p

Sample solution for BOO001-1

% SZS status Unsatisfiable for BOO001-1.p

% SZS output start CNFRefutation for BOO001-1.p

cnf(c_0,negated_conjecture,
    ( inverse(inverse(a)) != a ),
    file('/Users/korovin/TPTP-v7.3.0/Problems/BOO/BOO001-1.p', prove_inverse_is_self_cancelling) ).

cnf(c_4,plain,
    ( multiply(inverse(X0),X0,X1) = X1 ),
    file('/Users/korovin/TPTP-v7.3.0/Axioms/BOO001-0.ax', left_inverse) ).

cnf(c_3,plain,
    ( multiply(X0,X0,X1) = X0 ),
    file('/Users/korovin/TPTP-v7.3.0/Axioms/BOO001-0.ax', ternary_multiply_2) ).

cnf(c_5,plain,
    ( multiply(X0,X1,inverse(X1)) = X0 ),
    file('/Users/korovin/TPTP-v7.3.0/Axioms/BOO001-0.ax', right_inverse) ).

cnf(c_1,plain,
    ( multiply(multiply(X0,X1,X2),X3,multiply(X0,X1,X4)) = multiply(X0,X1,multiply(X2,X3,X4)) ),
    file('/Users/korovin/TPTP-v7.3.0/Axioms/BOO001-0.ax', associativity) ).

cnf(c_45,plain,
    ( multiply(X0,X1,multiply(inverse(X1),X2,X3)) = multiply(X0,X2,multiply(X0,X1,X3)) ),
    inference(superposition,[status(thm)],[c_5,c_1]) ).

cnf(c_154,plain,
    ( multiply(X0,inverse(X1),multiply(X0,X1,X2)) = multiply(X0,X1,inverse(X1)) ),
    inference(superposition,[status(thm)],[c_3,c_45]) ).

cnf(c_48,plain,
    ( multiply(multiply(X0,X0,X1),X2,X0) = multiply(X0,X0,multiply(X1,X2,X3)) ),
    inference(superposition,[status(thm)],[c_3,c_1]) ).

cnf(c_55,plain,
    ( multiply(X0,X1,X0) = X0 ),
    inference(demodulation,[status(thm)],[c_48,c_3]) ).

cnf(c_62,plain,
    ( multiply(X0,X1,multiply(X0,X2,X3)) = multiply(X0,X2,multiply(X0,X1,X3)) ),
    inference(superposition,[status(thm)],[c_55,c_1]) ).

cnf(c_203,plain,
    ( multiply(X0,X1,multiply(X0,inverse(X1),X2)) = X0 ),
    inference(demodulation,[status(thm)],[c_154,c_5,c_62]) ).

cnf(c_765,plain,
    ( multiply(inverse(inverse(X0)),X0,X1) = inverse(inverse(X0)) ),
    inference(superposition,[status(thm)],[c_4,c_203]) ).

cnf(c_2,plain,
    ( multiply(X0,X1,X1) = X1 ),
    file('/Users/korovin/TPTP-v7.3.0/Axioms/BOO001-0.ax', ternary_multiply_1) ).

cnf(c_842,plain,
    ( inverse(inverse(X0)) = X0 ),
    inference(superposition,[status(thm)],[c_765,c_2]) ).

cnf(c_853,plain,
    ( a != a ),
    inference(demodulation,[status(thm)],[c_0,c_842]) ).

cnf(c_855,plain,
    ( $false ),
    inference(equality_resolution_simp,[status(thm)],[c_853]) ).


% SZS output end CNFRefutation for BOO001-1.p

JavaRes 1.3.0

Adam Pease
Articulate Software, USA

Sample solution for SEU140+2

# SZS status Theorem for /home/apease/ontology/TPTP-v7.3.0/Problems/PUZ/PUZ001+1.p

% SZS output start CNFRefutation for /home/apease/ontology/TPTP-v7.3.0/Problems/PUZ/PUZ001+1.p
fof(pel55_11,axiom,~agatha=butler,input).
fof(f64,axiom,~agatha=butler,inference(fof_simplification, status(thm), [pel55_11])).
cnf(cnf13,axiom,~agatha=butler,inference(split_conjunct, status(thm), [f64])).
fof(pel55_7,axiom,(![X]:(~X=butler=>hates(agatha,X))),input).
fof(f40,axiom,(![X]:(~X=butler=>hates(agatha,X))),inference(fof_simplification, status(thm), [pel55_7])).
fof(f41,axiom,(![X]:(X=butler|hates(agatha,X))),inference(fof_nnf, status(thm), [f40])).
fof(f42,axiom,(![VAR8]:(VAR8=butler|hates(agatha,VAR8))),inference(variable_rename, status(thm), [f41])).
fof(f43,axiom,(VAR8=butler|hates(agatha,VAR8)),inference(shift_quantors, status(thm), [f42])).
cnf(cnf9,axiom,X12=butler|hates(agatha,X12),inference(split_conjunct, status(thm), [f43])).
cnf(c7,plain,hates(agatha,agatha),inference(resolution, status(thm), [cnf9, cnf13])).
fof(pel55_6,axiom,(![X]:(hates(agatha,X)=>(~hates(charles,X)))),input).
fof(f34,axiom,(![X]:(hates(agatha,X)=>~hates(charles,X))),inference(fof_simplification, status(thm), [pel55_6])).
fof(f35,axiom,(![X]:(~hates(agatha,X)|~hates(charles,X))),inference(fof_nnf, status(thm), [f34])).
fof(f36,axiom,(![VAR7]:(~hates(agatha,VAR7)|~hates(charles,VAR7))),inference(variable_rename, status(thm), [f35])).
fof(f37,axiom,(~hates(agatha,VAR7)|~hates(charles,VAR7)),inference(shift_quantors, status(thm), [f36])).
cnf(cnf8,axiom,~hates(agatha,X11)|~hates(charles,X11),inference(split_conjunct, status(thm), [f37])).
cnf(reflexivity,axiom,X1=X1,inference(eq_axioms, , [])).
fof(pel55_1,axiom,(?[X]:(lives(X)&killed(X,agatha))),input).
fof(f2,axiom,(?[X]:(lives(X)&killed(X,agatha))),inference(fof_simplification, status(thm), [pel55_1])).
fof(f3,axiom,(?[VAR0]:(lives(VAR0)&killed(VAR0,agatha))),inference(variable_rename, status(thm), [f2])).
fof(f4,axiom,(lives(skf1)&killed(skf1,agatha)),inference(skolemize, status(esa), [f3])).
cnf(cnf1,axiom,killed(skf1,agatha),inference(split_conjunct, status(thm), [f4])).
fof(pel55_4,axiom,(![X]:(![Y]:(killed(X,Y)=>hates(X,Y)))),input).
fof(f22,axiom,(![X]:(![Y]:(killed(X,Y)=>hates(X,Y)))),inference(fof_simplification, status(thm), [pel55_4])).
fof(f23,axiom,(![X]:(![Y]:(~killed(X,Y)|hates(X,Y)))),inference(fof_nnf, status(thm), [f22])).
fof(f24,axiom,(![VAR4]:(![VAR3]:(~killed(VAR4,VAR3)|hates(VAR4,VAR3)))),inference(variable_rename, status(thm), [f23])).
fof(f25,axiom,(~killed(VAR4,VAR3)|hates(VAR4,VAR3)),inference(shift_quantors, status(thm), [f24])).
cnf(cnf6,axiom,~killed(X3,X4)|hates(X3,X4),inference(split_conjunct, status(thm), [f25])).
cnf(c0,plain,hates(skf1,agatha),inference(resolution, status(thm), [cnf6, cnf1])).
cnf(predcompat3,plain,~X35=X36|~X37=X38|~hates(X35,X37)|hates(X36,X38),eq_axiom).
cnf(c65,plain,~skf1=X117|~agatha=X118|hates(X117,X118),inference(resolution, status(thm), [predcompat3, c0])).
cnf(c675,plain,~skf1=X119|hates(X119,agatha),inference(resolution, status(thm), [c65, reflexivity])).
fof(pel55_5,axiom,(![X]:(![Y]:(killed(X,Y)=>(~richer(X,Y))))),input).
fof(f28,axiom,(![X]:(![Y]:(killed(X,Y)=>~richer(X,Y)))),inference(fof_simplification, status(thm), [pel55_5])).
fof(f29,axiom,(![X]:(![Y]:(~killed(X,Y)|~richer(X,Y)))),inference(fof_nnf, status(thm), [f28])).
fof(f30,axiom,(![VAR6]:(![VAR5]:(~killed(VAR6,VAR5)|~richer(VAR6,VAR5)))),inference(variable_rename, status(thm), [f29])).
fof(f31,axiom,(~killed(VAR6,VAR5)|~richer(VAR6,VAR5)),inference(shift_quantors, status(thm), [f30])).
cnf(cnf7,axiom,~killed(X6,X7)|~richer(X6,X7),inference(split_conjunct, status(thm), [f31])).
cnf(reflexivity,axiom,X1=X1,inference(eq_axioms, , [])).
fof(pel55_10,axiom,(![X]:(?[Y]:(~hates(X,Y)))),input).
fof(f58,axiom,(![X]:(?[Y]:~hates(X,Y))),inference(fof_simplification, status(thm), [pel55_10])).
fof(f59,axiom,(![VAR12]:(?[VAR11]:~hates(VAR12,VAR11))),inference(variable_rename, status(thm), [f58])).
fof(f60,axiom,(![VAR12]:~hates(VAR12,skf13(VAR12))),inference(skolemize, status(esa), [f59])).
fof(f61,axiom,~hates(VAR12,skf13(VAR12)),inference(shift_quantors, status(thm), [f60])).
cnf(cnf12,axiom,~hates(X2,skf13(X2)),inference(split_conjunct, status(thm), [f61])).
fof(pel55_7,axiom,(![X]:(~X=butler=>hates(agatha,X))),input).
fof(f40,axiom,(![X]:(~X=butler=>hates(agatha,X))),inference(fof_simplification, status(thm), [pel55_7])).
fof(f41,axiom,(![X]:(X=butler|hates(agatha,X))),inference(fof_nnf, status(thm), [f40])).
fof(f42,axiom,(![VAR8]:(VAR8=butler|hates(agatha,VAR8))),inference(variable_rename, status(thm), [f41])).
fof(f43,axiom,(VAR8=butler|hates(agatha,VAR8)),inference(shift_quantors, status(thm), [f42])).
cnf(cnf9,axiom,X12=butler|hates(agatha,X12),inference(split_conjunct, status(thm), [f43])).
fof(pel55_9,axiom,(![X]:(hates(agatha,X)=>hates(butler,X))),input).
fof(f52,axiom,(![X]:(hates(agatha,X)=>hates(butler,X))),inference(fof_simplification, status(thm), [pel55_9])).
fof(f53,axiom,(![X]:(~hates(agatha,X)|hates(butler,X))),inference(fof_nnf, status(thm), [f52])).
fof(f54,axiom,(![VAR10]:(~hates(agatha,VAR10)|hates(butler,VAR10))),inference(variable_rename, status(thm), [f53])).
fof(f55,axiom,(~hates(agatha,VAR10)|hates(butler,VAR10)),inference(shift_quantors, status(thm), [f54])).
cnf(cnf11,axiom,~hates(agatha,X14)|hates(butler,X14),inference(split_conjunct, status(thm), [f55])).
cnf(c14,plain,hates(butler,X29)|X29=butler,inference(resolution, status(thm), [cnf11, cnf9])).
cnf(c36,plain,skf13(butler)=butler,inference(resolution, status(thm), [c14, cnf12])).
fof(pel55_10,axiom,(![X]:(?[Y]:(~hates(X,Y)))),input).
fof(f58,axiom,(![X]:(?[Y]:~hates(X,Y))),inference(fof_simplification, status(thm), [pel55_10])).
fof(f59,axiom,(![VAR12]:(?[VAR11]:~hates(VAR12,VAR11))),inference(variable_rename, status(thm), [f58])).
fof(f60,axiom,(![VAR12]:~hates(VAR12,skf13(VAR12))),inference(skolemize, status(esa), [f59])).
fof(f61,axiom,~hates(VAR12,skf13(VAR12)),inference(shift_quantors, status(thm), [f60])).
cnf(cnf12,axiom,~hates(X2,skf13(X2)),inference(split_conjunct, status(thm), [f61])).
fof(pel55_8,axiom,(![X]:((~richer(X,agatha))=>hates(butler,X))),input).
fof(f46,axiom,(![X]:(~richer(X,agatha)=>hates(butler,X))),inference(fof_simplification, status(thm), [pel55_8])).
fof(f47,axiom,(![X]:(richer(X,agatha)|hates(butler,X))),inference(fof_nnf, status(thm), [f46])).
fof(f48,axiom,(![VAR9]:(richer(VAR9,agatha)|hates(butler,VAR9))),inference(variable_rename, status(thm), [f47])).
fof(f49,axiom,(richer(VAR9,agatha)|hates(butler,VAR9)),inference(shift_quantors, status(thm), [f48])).
cnf(cnf10,axiom,richer(X13,agatha)|hates(butler,X13),inference(split_conjunct, status(thm), [f49])).
cnf(c10,plain,richer(skf13(butler),agatha),inference(resolution, status(thm), [cnf10, cnf12])).
cnf(predcompat4,plain,~X41=X42|~X43=X44|~richer(X41,X43)|richer(X42,X44),eq_axiom).
cnf(c68,plain,~skf13(butler)=X124|~agatha=X125|richer(X124,X125),inference(resolution, status(thm), [predcompat4, c10])).
cnf(c735,plain,~agatha=X131|richer(butler,X131),inference(resolution, status(thm), [c68, c36])).
cnf(c759,plain,richer(butler,agatha),inference(resolution, status(thm), [c735, reflexivity])).
cnf(c761,plain,~killed(butler,agatha),inference(resolution, status(thm), [c759, cnf7])).
cnf(reflexivity,axiom,X1=X1,inference(eq_axioms, , [])).
fof(pel55_1,axiom,(?[X]:(lives(X)&killed(X,agatha))),input).
fof(f2,axiom,(?[X]:(lives(X)&killed(X,agatha))),inference(fof_simplification, status(thm), [pel55_1])).
fof(f3,axiom,(?[VAR0]:(lives(VAR0)&killed(VAR0,agatha))),inference(variable_rename, status(thm), [f2])).
fof(f4,axiom,(lives(skf1)&killed(skf1,agatha)),inference(skolemize, status(esa), [f3])).
cnf(cnf1,axiom,killed(skf1,agatha),inference(split_conjunct, status(thm), [f4])).
cnf(predcompat2,plain,~X30=X31|~X32=X33|~killed(X30,X32)|killed(X31,X33),eq_axiom).
cnf(c50,plain,~skf1=X74|~agatha=X75|killed(X74,X75),inference(resolution, status(thm), [predcompat2, cnf1])).
cnf(c276,plain,~skf1=X76|killed(X76,agatha),inference(resolution, status(thm), [c50, reflexivity])).
fof(pel55,conjecture,killed(agatha,agatha),input).
fof(f66,negated_conjecture,(~killed(agatha,agatha)),inference(assume_negation, status(cth), [pel55])).
fof(f69,negated_conjecture,~killed(agatha,agatha),inference(fof_simplification, status(thm), [f66])).
cnf(cnf14,negated_conjecture,~killed(agatha,agatha),inference(split_conjunct, status(thm), [f69])).
fof(pel55_1,axiom,(?[X]:(lives(X)&killed(X,agatha))),input).
fof(f2,axiom,(?[X]:(lives(X)&killed(X,agatha))),inference(fof_simplification, status(thm), [pel55_1])).
fof(f3,axiom,(?[VAR0]:(lives(VAR0)&killed(VAR0,agatha))),inference(variable_rename, status(thm), [f2])).
fof(f4,axiom,(lives(skf1)&killed(skf1,agatha)),inference(skolemize, status(esa), [f3])).
cnf(cnf0,axiom,lives(skf1),inference(split_conjunct, status(thm), [f4])).
fof(pel55_3,axiom,(![X]:(lives(X)=>((X=agatha|X=butler)|X=charles))),input).
fof(f16,axiom,(![X]:(lives(X)=>((X=agatha|X=butler)|X=charles))),inference(fof_simplification, status(thm), [pel55_3])).
fof(f17,axiom,(![X]:(~lives(X)|((X=agatha|X=butler)|X=charles))),inference(fof_nnf, status(thm), [f16])).
fof(f18,axiom,(![VAR2]:(~lives(VAR2)|((VAR2=agatha|VAR2=butler)|VAR2=charles))),inference(variable_rename, status(thm), [f17])).
fof(f19,axiom,(~lives(VAR2)|((VAR2=agatha|VAR2=butler)|VAR2=charles)),inference(shift_quantors, status(thm), [f18])).
cnf(cnf5,axiom,~lives(X5)|X5=agatha|X5=butler|X5=charles,inference(split_conjunct, status(thm), [f19])).
cnf(c1,plain,skf1=agatha|skf1=butler|skf1=charles,inference(resolution, status(thm), [cnf5, cnf0])).
cnf(reflexivity,axiom,X1=X1,inference(eq_axioms, , [])).
fof(pel55_1,axiom,(?[X]:(lives(X)&killed(X,agatha))),input).
fof(f2,axiom,(?[X]:(lives(X)&killed(X,agatha))),inference(fof_simplification, status(thm), [pel55_1])).
fof(f3,axiom,(?[VAR0]:(lives(VAR0)&killed(VAR0,agatha))),inference(variable_rename, status(thm), [f2])).
fof(f4,axiom,(lives(skf1)&killed(skf1,agatha)),inference(skolemize, status(esa), [f3])).
cnf(cnf1,axiom,killed(skf1,agatha),inference(split_conjunct, status(thm), [f4])).
cnf(predcompat2,plain,~X30=X31|~X32=X33|~killed(X30,X32)|killed(X31,X33),eq_axiom).
cnf(c50,plain,~skf1=X74|~agatha=X75|killed(X74,X75),inference(resolution, status(thm), [predcompat2, cnf1])).
cnf(c276,plain,~skf1=X76|killed(X76,agatha),inference(resolution, status(thm), [c50, reflexivity])).
cnf(c282,plain,killed(agatha,agatha)|skf1=butler|skf1=charles,inference(resolution, status(thm), [c276, c1])).
cnf(c4388,plain,skf1=butler|skf1=charles,inference(resolution, status(thm), [c282, cnf14])).
cnf(c4464,plain,skf1=charles|killed(butler,agatha),inference(resolution, status(thm), [c4388, c276])).
cnf(c4537,plain,skf1=charles,inference(resolution, status(thm), [c4464, c761])).
cnf(c4548,plain,hates(charles,agatha),inference(resolution, status(thm), [c4537, c675])).
cnf(c4564,plain,~hates(agatha,agatha),inference(resolution, status(thm), [c4548, cnf8])).
cnf(c4598,plain,$false,inference(resolution, status(thm), [c4564, c7])).
% SZS output end CNFRefutation for /home/apease/ontology/TPTP-v7.3.0/Problems/PUZ/PUZ001+1.p

LEO-II 1.7.0

Alexander Steen
University of Luxembourg, Luxembourg

Sample solution for SET014^4

% SZS output start CNFRefutation
 thf(tp_complement,type,(complement: (($i>$o)>($i>$o)))).
 thf(tp_disjoint,type,(disjoint: (($i>$o)>(($i>$o)>$o)))).
 thf(tp_emptyset,type,(emptyset: ($i>$o))).
 thf(tp_excl_union,type,(excl_union: (($i>$o)>(($i>$o)>($i>$o))))).
 thf(tp_in,type,(in: ($i>(($i>$o)>$o)))).
 thf(tp_intersection,type,(intersection: (($i>$o)>(($i>$o)>($i>$o))))).
 thf(tp_is_a,type,(is_a: ($i>(($i>$o)>$o)))).
 thf(tp_meets,type,(meets: (($i>$o)>(($i>$o)>$o)))).
 thf(tp_misses,type,(misses: (($i>$o)>(($i>$o)>$o)))).
 thf(tp_sK1_X,type,(sK1_X: ($i>$o))).
 thf(tp_sK2_SY0,type,(sK2_SY0: ($i>$o))).
 thf(tp_sK3_SY2,type,(sK3_SY2: ($i>$o))).
 thf(tp_sK4_SX0,type,(sK4_SX0: $i)).
 thf(tp_setminus,type,(setminus: (($i>$o)>(($i>$o)>($i>$o))))).
 thf(tp_singleton,type,(singleton: ($i>($i>$o)))).
 thf(tp_subset,type,(subset: (($i>$o)>(($i>$o)>$o)))).
 thf(tp_union,type,(union: (($i>$o)>(($i>$o)>($i>$o))))).
 thf(tp_unord_pair,type,(unord_pair: ($i>($i>($i>$o))))).
 thf(complement,definition,(complement = (^[X:($i>$o),U:$i]: (~ (X@U)))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',complement)).
 thf(disjoint,definition,(disjoint = (^[X:($i>$o),Y:($i>$o)]: (((intersection@X)@Y) = emptyset))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',disjoint)).
 thf(emptyset,definition,(emptyset = (^[X:$i]: $false)),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',emptyset)).
 thf(excl_union,definition,(excl_union = (^[X:($i>$o),Y:($i>$o),U:$i]: (((X@U) & (~ (Y@U))) | ((~ (X@U)) & (Y@U))))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',excl_union)).
 thf(in,definition,(in = (^[X:$i,M:($i>$o)]: (M@X))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',in)).
 thf(intersection,definition,(intersection = (^[X:($i>$o),Y:($i>$o),U:$i]: ((X@U) & (Y@U)))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',intersection)).
 thf(is_a,definition,(is_a = (^[X:$i,M:($i>$o)]: (M@X))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',is_a)).
 thf(meets,definition,(meets = (^[X:($i>$o),Y:($i>$o)]: (?[U:$i]: ((X@U) & (Y@U))))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',meets)).
 thf(misses,definition,(misses = (^[X:($i>$o),Y:($i>$o)]: (~ (?[U:$i]: ((X@U) & (Y@U)))))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',misses)).
 thf(setminus,definition,(setminus = (^[X:($i>$o),Y:($i>$o),U:$i]: ((X@U) & (~ (Y@U))))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',setminus)).
 thf(singleton,definition,(singleton = (^[X:$i,U:$i]: (U = X))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',singleton)).
 thf(subset,definition,(subset = (^[X:($i>$o),Y:($i>$o)]: (![U:$i]: ((X@U) => (Y@U))))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',subset)).
 thf(union,definition,(union = (^[X:($i>$o),Y:($i>$o),U:$i]: ((X@U) | (Y@U)))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',union)).
 thf(unord_pair,definition,(unord_pair = (^[X:$i,Y:$i,U:$i]: ((U = X) | (U = Y)))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',unord_pair)).
 thf(1,conjecture,(![X:($i>$o),Y:($i>$o),A:($i>$o)]: ((((subset@X)@A) & ((subset@Y)@A)) => ((subset@((union@X)@Y))@A))),file('/home/mwisnie/Downloads/TPTP-v6.3.0/Problems/SET/SET014^4.p',thm)).
 thf(2,negated_conjecture,(((![X:($i>$o),Y:($i>$o),A:($i>$o)]: ((((subset@X)@A) & ((subset@Y)@A)) => ((subset@((union@X)@Y))@A)))=$false)),inference(negate_conjecture,[status(cth)],[1])).
 thf(3,plain,(((![SY0:($i>$o),SY1:($i>$o)]: ((((subset@sK1_X)@SY1) & ((subset@SY0)@SY1)) => ((subset@((union@sK1_X)@SY0))@SY1)))=$false)),inference(extcnf_forall_neg,[status(esa)],[2])).
 thf(4,plain,(((![SY2:($i>$o)]: ((((subset@sK1_X)@SY2) & ((subset@sK2_SY0)@SY2)) => ((subset@((union@sK1_X)@sK2_SY0))@SY2)))=$false)),inference(extcnf_forall_neg,[status(esa)],[3])).
 thf(5,plain,((((((subset@sK1_X)@sK3_SY2) & ((subset@sK2_SY0)@sK3_SY2)) => ((subset@((union@sK1_X)@sK2_SY0))@sK3_SY2))=$false)),inference(extcnf_forall_neg,[status(esa)],[4])).
 thf(6,plain,((((subset@sK1_X)@sK3_SY2)=$true)),inference(standard_cnf,[status(thm)],[5])).
 thf(7,plain,((((subset@sK2_SY0)@sK3_SY2)=$true)),inference(standard_cnf,[status(thm)],[5])).
 thf(8,plain,((((subset@((union@sK1_X)@sK2_SY0))@sK3_SY2)=$false)),inference(standard_cnf,[status(thm)],[5])).
 thf(9,plain,(((~ ((subset@((union@sK1_X)@sK2_SY0))@sK3_SY2))=$true)),inference(polarity_switch,[status(thm)],[8])).
 thf(10,plain,((((subset@sK2_SY0)@sK3_SY2)=$true)),inference(copy,[status(thm)],[7])).
 thf(11,plain,((((subset@sK1_X)@sK3_SY2)=$true)),inference(copy,[status(thm)],[6])).
 thf(12,plain,(((~ ((subset@((union@sK1_X)@sK2_SY0))@sK3_SY2))=$true)),inference(copy,[status(thm)],[9])).
 thf(13,plain,(((~ (![SX0:$i]: ((~ ((sK1_X@SX0) | (sK2_SY0@SX0))) | (sK3_SY2@SX0))))=$true)),inference(unfold_def,[status(thm)],[12,complement,disjoint,emptyset,excl_union,in,intersection,is_a,meets,misses,setminus,singleton,subset,union,unord_pair])).
 thf(14,plain,(((![SX0:$i]: ((~ (sK1_X@SX0)) | (sK3_SY2@SX0)))=$true)),inference(unfold_def,[status(thm)],[11,complement,disjoint,emptyset,excl_union,in,intersection,is_a,meets,misses,setminus,singleton,subset,union,unord_pair])).
 thf(15,plain,(((![SX0:$i]: ((~ (sK2_SY0@SX0)) | (sK3_SY2@SX0)))=$true)),inference(unfold_def,[status(thm)],[10,complement,disjoint,emptyset,excl_union,in,intersection,is_a,meets,misses,setminus,singleton,subset,union,unord_pair])).
 thf(16,plain,(((![SX0:$i]: ((~ ((sK1_X@SX0) | (sK2_SY0@SX0))) | (sK3_SY2@SX0)))=$false)),inference(extcnf_not_pos,[status(thm)],[13])).
 thf(17,plain,(![SV1:$i]: ((((~ (sK1_X@SV1)) | (sK3_SY2@SV1))=$true))),inference(extcnf_forall_pos,[status(thm)],[14])).
 thf(18,plain,(![SV2:$i]: ((((~ (sK2_SY0@SV2)) | (sK3_SY2@SV2))=$true))),inference(extcnf_forall_pos,[status(thm)],[15])).
 thf(19,plain,((((~ ((sK1_X@sK4_SX0) | (sK2_SY0@sK4_SX0))) | (sK3_SY2@sK4_SX0))=$false)),inference(extcnf_forall_neg,[status(esa)],[16])).
 thf(20,plain,(![SV1:$i]: (((~ (sK1_X@SV1))=$true) | ((sK3_SY2@SV1)=$true))),inference(extcnf_or_pos,[status(thm)],[17])).
 thf(21,plain,(![SV2:$i]: (((~ (sK2_SY0@SV2))=$true) | ((sK3_SY2@SV2)=$true))),inference(extcnf_or_pos,[status(thm)],[18])).
 thf(22,plain,(((~ ((sK1_X@sK4_SX0) | (sK2_SY0@sK4_SX0)))=$false)),inference(extcnf_or_neg,[status(thm)],[19])).
 thf(23,plain,(((sK3_SY2@sK4_SX0)=$false)),inference(extcnf_or_neg,[status(thm)],[19])).
 thf(24,plain,(![SV1:$i]: (((sK1_X@SV1)=$false) | ((sK3_SY2@SV1)=$true))),inference(extcnf_not_pos,[status(thm)],[20])).
 thf(25,plain,(![SV2:$i]: (((sK2_SY0@SV2)=$false) | ((sK3_SY2@SV2)=$true))),inference(extcnf_not_pos,[status(thm)],[21])).
 thf(26,plain,((((sK1_X@sK4_SX0) | (sK2_SY0@sK4_SX0))=$true)),inference(extcnf_not_neg,[status(thm)],[22])).
 thf(27,plain,(((sK1_X@sK4_SX0)=$true) | ((sK2_SY0@sK4_SX0)=$true)),inference(extcnf_or_pos,[status(thm)],[26])).
 thf(28,plain,((($false)=$true)),inference(fo_atp_e,[status(thm)],[23,27,25,24])).
 thf(29,plain,($false),inference(solved_all_splits,[solved_all_splits(join,[])],[28])).
% SZS output end CNFRefutation

Leo-III 1.6

Alexander Steen
University of Luxembourg, Luxembourg

Sample solution for SET014^4

% Time passed: 887ms (effective reasoning time: 492ms)
% Solved by strategy
% Axioms used in derivation (0): 
% No. of inferences in proof: 16
% SZS status Theorem for SET014^4.p : 887 ms resp. 492 ms w/o parsing
% SZS output start Refutation for SET014^4.p
thf(union_type, type, union: (($i > $o) > (($i > $o) > ($i > $o)))).
thf(union_def, definition, (union = (^ [A:($i > $o),B:($i > $o),C:$i]: ((A @ C) | (B @ C))))).
thf(subset_type, type, subset: (($i > $o) > (($i > $o) > $o))).
thf(subset_def, definition, (subset = (^ [A:($i > $o),B:($i > $o)]: ! [C:$i]: ((A @ C) => (B @ C))))).
thf(sk1_type, type, sk1: ($i > $o)).
thf(sk2_type, type, sk2: ($i > $o)).
thf(sk3_type, type, sk3: ($i > $o)).
thf(sk4_type, type, sk4: $i).
thf(1,conjecture,((! [A:($i > $o),B:($i > $o),C:($i > $o)]: (((subset @ A @ C) & (subset @ B @ C)) => (subset @ (union @ A @ B) @ C)))),file('SET014^4.p',thm)).
thf(2,negated_conjecture,((~ (! [A:($i > $o),B:($i > $o),C:($i > $o)]: (((subset @ A @ C) & (subset @ B @ C)) => (subset @ (union @ A @ B) @ C))))),inference(neg_conjecture,[status(cth)],[1])).
thf(3,plain,((~ (! [A:($i > $o),B:($i > $o),C:($i > $o)]: ((! [D:$i]: ((A @ D) => (C @ D)) & ! [D:$i]: ((B @ D) => (C @ D))) => (! [D:$i]: (((A @ D) | (B @ D)) => (C @ D))))))),inference(defexp_and_simp_and_etaexpand,[status(thm)],[2])).
thf(5,plain,((sk1 @ sk4) | (sk2 @ sk4)),inference(cnf,[status(esa)],[3])).
thf(7,plain,(! [A:$i] : ((~ (sk1 @ A)) | (sk3 @ A))),inference(cnf,[status(esa)],[3])).
thf(4,plain,((~ (sk3 @ sk4))),inference(cnf,[status(esa)],[3])).
thf(9,plain,(! [A:$i] : ((~ (sk1 @ A)) | ((sk3 @ A) != (sk3 @ sk4)))),inference(paramod_ordered,[status(thm)],[7,4])).
thf(10,plain,((~ (sk1 @ sk4))),inference(pattern_uni,[status(thm)],[9:[bind(A, $thf(sk4))]])).
thf(11,plain,($false | (sk2 @ sk4)),inference(rewrite,[status(thm)],[5,10])).
thf(12,plain,((sk2 @ sk4)),inference(simp,[status(thm)],[11])).
thf(6,plain,(! [A:$i] : ((~ (sk2 @ A)) | (sk3 @ A))),inference(cnf,[status(esa)],[3])).
thf(8,plain,(! [A:$i] : ((~ (sk2 @ A)) | (sk3 @ A))),inference(simp,[status(thm)],[6])).
thf(13,plain,(! [A:$i] : ((~ (sk2 @ A)) | ((sk3 @ A) != (sk3 @ sk4)))),inference(paramod_ordered,[status(thm)],[8,4])).
thf(14,plain,((~ (sk2 @ sk4))),inference(pattern_uni,[status(thm)],[13:[bind(A, $thf(sk4))]])).
thf(15,plain,($false),inference(rewrite,[status(thm)],[12,14])).
thf(16,plain,($false),inference(simp,[status(thm)],[15])).
% SZS output end Refutation for SET014^4.p

Prover9 1109a

William McCune, Bob Veroff
University of New Mexico, USA

Sample solution for SEU140+2

8 (all A all B (subset(A,B) <-> (all C (in(C,A) -> in(C,B))))) # label(d3_tarski) # label(axiom) # label(non_clause).  [assumption].
26 (all A all B (disjoint(A,B) -> disjoint(B,A))) # label(symmetry_r1_xboole_0) # label(axiom) # label(non_clause).  [assumption].
42 (all A all B (-(-disjoint(A,B) & (all C -(in(C,A) & in(C,B)))) & -((exists C (in(C,A) & in(C,B))) & disjoint(A,B)))) # label(t3_xboole_0) # label(lemma) # label(non_clause).  [assumption].
55 -(all A all B all C (subset(A,B) & disjoint(B,C) -> disjoint(A,C))) # label(t63_xboole_1) # label(negated_conjecture) # label(non_clause).  [assumption].
60 subset(c3,c4) # label(t63_xboole_1) # label(negated_conjecture).  [clausify(55)].
61 disjoint(c4,c5) # label(t63_xboole_1) # label(negated_conjecture).  [clausify(55)].
75 disjoint(A,B) | in(f7(A,B),A) # label(t3_xboole_0) # label(lemma).  [clausify(42)].
76 disjoint(A,B) | in(f7(A,B),B) # label(t3_xboole_0) # label(lemma).  [clausify(42)].
92 -disjoint(c3,c5) # label(t63_xboole_1) # label(negated_conjecture).  [clausify(55)].
101 -in(A,B) | -in(A,C) | -disjoint(B,C) # label(t3_xboole_0) # label(lemma).  [clausify(42)].
109 -disjoint(A,B) | disjoint(B,A) # label(symmetry_r1_xboole_0) # label(axiom).  [clausify(26)].
123 -subset(A,B) | -in(C,A) | in(C,B) # label(d3_tarski) # label(axiom).  [clausify(8)].
273 -disjoint(c5,c3).  [ur(109,b,92,a)].
300 -in(A,c3) | in(A,c4).  [resolve(123,a,60,a)].
959 in(f7(c5,c3),c3).  [resolve(273,a,76,a)].
960 in(f7(c5,c3),c5).  [resolve(273,a,75,a)].
1084 -in(f7(c5,c3),c4).  [ur(101,b,960,a,c,61,a)].
1292 $F.  [resolve(300,a,959,a),unit_del(a,1084)].

SATCoP 0.1

Michael Rawson
University of Manchester, United Kingdom

Sample solution for SEU140+2

% SZS status Theorem for SEU140+2
% SZS output begin ListOfCNF for SEU140+2
cnf(g0, plain, subset(sK10,sK11), inference(ground_cnf, [], [file('Problems/SEU/SEU140+2.p', t63_xboole_1)])).
cnf(g1, plain, disjoint(sK11,sK12), inference(ground_cnf, [], [file('Problems/SEU/SEU140+2.p', t63_xboole_1)])).
cnf(g2, plain, ~disjoint(sK10,sK12), inference(ground_cnf, [], [file('Problems/SEU/SEU140+2.p', t63_xboole_1)])).
cnf(g3, plain, ~disjoint(sK11,sK12) | disjoint(sK12,sK11), inference(ground_cnf, [], [file('Problems/SEU/SEU140+2.p', symmetry_r1_xboole_0)])).
cnf(g4, plain, in(sK8(sK10,sK12),sK12) | disjoint(sK10,sK12), inference(ground_cnf, [], [file('Problems/SEU/SEU140+2.p', t3_xboole_0)])).
cnf(g5, plain, in(sK8(sK10,sK12),sK10) | disjoint(sK10,sK12), inference(ground_cnf, [], [file('Problems/SEU/SEU140+2.p', t3_xboole_0)])).
cnf(g6, plain, ~in(sK8(sK10,sK12),sK10) | ~subset(sK10,sK11) | in(sK8(sK10,sK12),sK11), inference(ground_cnf, [], [file('Problems/SEU/SEU140+2.p', d3_tarski)])).
cnf(g7, plain, ~in(sK8(sK10,sK12),sK12) | ~in(sK8(sK10,sK12),sK11) | ~disjoint(sK12,sK11), inference(ground_cnf, [], [file('Problems/SEU/SEU140+2.p', t3_xboole_0)])).
% SZS output end ListOfCNF for SEU140+2

Twee 2.4

Nick Smallbone
Chalmers University of Technology, Sweden

Sample solution for SEU140+2

% SZS status Theorem

% SZS output start Proof
Take the following subset of the input axioms:
  fof(commutativity_k3_xboole_0, axiom, ![A, B]: set_intersection2(A, B)=set_intersection2(B, A)).
  fof(d7_xboole_0, axiom, ![A, B]: (disjoint(A, B) <=> set_intersection2(A, B)=empty_set)).
  fof(l32_xboole_1, lemma, ![A, B]: (set_difference(A, B)=empty_set <=> subset(A, B))).
  fof(rc1_xboole_0, axiom, ?[A]: empty(A)).
  fof(symmetry_r1_xboole_0, axiom, ![A, B]: (disjoint(A, B) => disjoint(B, A))).
  fof(t26_xboole_1, lemma, ![A, B, C]: (subset(A, B) => subset(set_intersection2(A, C), set_intersection2(B, C)))).
  fof(t3_boole, axiom, ![A]: set_difference(A, empty_set)=A).
  fof(t63_xboole_1, conjecture, ![A, B, C]: ((subset(A, B) & disjoint(B, C)) => disjoint(A, C))).
  fof(t6_boole, axiom, ![A]: (empty(A) => A=empty_set)).

Now clausify the problem and encode Horn clauses using encoding 3 of
http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
We repeatedly replace C & s=t => u=v by the two clauses:
  fresh(y, y, x1...xn) = u
  C => fresh(s, t, x1...xn) = v
where fresh is a fresh function symbol and x1..xn are the free
variables of u and v.
A predicate p(X) is encoded as p(X)=true (this is sound, because the
input problem has no model of domain size 1).

The encoding turns the above axioms into the following unit equations and goals:

Axiom 1 (rc1_xboole_0): empty(a3) = true2.
Axiom 2 (t63_xboole_1_1): disjoint(b, c) = true2.
Axiom 3 (commutativity_k3_xboole_0): set_intersection2(X, Y) = set_intersection2(Y, X).
Axiom 4 (t3_boole): set_difference(X, empty_set) = X.
Axiom 5 (t63_xboole_1): subset(a, b) = true2.
Axiom 6 (t6_boole): fresh15(X, X, Y) = empty_set.
Axiom 7 (d7_xboole_0): fresh32(X, X, Y, Z) = true2.
Axiom 8 (d7_xboole_0_1): fresh31(X, X, Y, Z) = empty_set.
Axiom 9 (l32_xboole_1_1): fresh26(X, X, Y, Z) = empty_set.
Axiom 10 (symmetry_r1_xboole_0): fresh25(X, X, Y, Z) = true2.
Axiom 11 (t6_boole): fresh15(empty(X), true2, X) = X.
Axiom 12 (t26_xboole_1): fresh20(X, X, Y, Z, W) = true2.
Axiom 13 (d7_xboole_0): fresh32(set_intersection2(X, Y), empty_set, X, Y) = disjoint(X, Y).
Axiom 14 (d7_xboole_0_1): fresh31(disjoint(X, Y), true2, X, Y) = set_intersection2(X, Y).
Axiom 15 (l32_xboole_1_1): fresh26(subset(X, Y), true2, X, Y) = set_difference(X, Y).
Axiom 16 (symmetry_r1_xboole_0): fresh25(disjoint(X, Y), true2, X, Y) = disjoint(Y, X).
Axiom 17 (t26_xboole_1): fresh20(subset(X, Y), true2, X, Y, Z) = subset(set_intersection2(X, Z), set_intersection2(Y, Z)).

Lemma 18: empty_set = a3.
Proof:
  empty_set
= { by axiom 6 (t6_boole) R->L }
  fresh15(true2, true2, a3)
= { by axiom 1 (rc1_xboole_0) R->L }
  fresh15(empty(a3), true2, a3)
= { by axiom 11 (t6_boole) }
  a3

Goal 1 (t63_xboole_1_2): disjoint(a, c) = true2.
Proof:
  disjoint(a, c)
= { by axiom 16 (symmetry_r1_xboole_0) R->L }
  fresh25(disjoint(c, a), true2, c, a)
= { by axiom 13 (d7_xboole_0) R->L }
  fresh25(fresh32(set_intersection2(c, a), empty_set, c, a), true2, c, a)
= { by axiom 4 (t3_boole) R->L }
  fresh25(fresh32(set_difference(set_intersection2(c, a), empty_set), empty_set, c, a), true2, c, a)
= { by lemma 18 }
  fresh25(fresh32(set_difference(set_intersection2(c, a), a3), empty_set, c, a), true2, c, a)
= { by axiom 15 (l32_xboole_1_1) R->L }
  fresh25(fresh32(fresh26(subset(set_intersection2(c, a), a3), true2, set_intersection2(c, a), a3), empty_set, c, a), true2, c, a)
= { by axiom 3 (commutativity_k3_xboole_0) R->L }
  fresh25(fresh32(fresh26(subset(set_intersection2(a, c), a3), true2, set_intersection2(c, a), a3), empty_set, c, a), true2, c, a)
= { by lemma 18 R->L }
  fresh25(fresh32(fresh26(subset(set_intersection2(a, c), empty_set), true2, set_intersection2(c, a), a3), empty_set, c, a), true2, c, a)
= { by axiom 8 (d7_xboole_0_1) R->L }
  fresh25(fresh32(fresh26(subset(set_intersection2(a, c), fresh31(true2, true2, b, c)), true2, set_intersection2(c, a), a3), empty_set, c, a), true2, c, a)
= { by axiom 2 (t63_xboole_1_1) R->L }
  fresh25(fresh32(fresh26(subset(set_intersection2(a, c), fresh31(disjoint(b, c), true2, b, c)), true2, set_intersection2(c, a), a3), empty_set, c, a), true2, c, a)
= { by axiom 14 (d7_xboole_0_1) }
  fresh25(fresh32(fresh26(subset(set_intersection2(a, c), set_intersection2(b, c)), true2, set_intersection2(c, a), a3), empty_set, c, a), true2, c, a)
= { by axiom 17 (t26_xboole_1) R->L }
  fresh25(fresh32(fresh26(fresh20(subset(a, b), true2, a, b, c), true2, set_intersection2(c, a), a3), empty_set, c, a), true2, c, a)
= { by axiom 5 (t63_xboole_1) }
  fresh25(fresh32(fresh26(fresh20(true2, true2, a, b, c), true2, set_intersection2(c, a), a3), empty_set, c, a), true2, c, a)
= { by axiom 12 (t26_xboole_1) }
  fresh25(fresh32(fresh26(true2, true2, set_intersection2(c, a), a3), empty_set, c, a), true2, c, a)
= { by axiom 9 (l32_xboole_1_1) }
  fresh25(fresh32(empty_set, empty_set, c, a), true2, c, a)
= { by lemma 18 }
  fresh25(fresh32(a3, empty_set, c, a), true2, c, a)
= { by lemma 18 }
  fresh25(fresh32(a3, a3, c, a), true2, c, a)
= { by axiom 7 (d7_xboole_0) }
  fresh25(true2, true2, c, a)
= { by axiom 10 (symmetry_r1_xboole_0) }
  true2
% SZS output end Proof

Sample solution for BOO001-1

% SZS status Unsatisfiable

% SZS output start Proof
Axiom 1 (ternary_multiply_1): multiply(X, Y, Y) = Y.
Axiom 2 (right_inverse): multiply(X, Y, inverse(Y)) = X.
Axiom 3 (associativity): multiply(multiply(X, Y, Z), W, multiply(X, Y, V)) = multiply(X, Y, multiply(Z, W, V)).

Goal 1 (prove_inverse_is_self_cancelling): inverse(inverse(a)) = a.
Proof:
  inverse(inverse(a))
= { by axiom 2 (right_inverse) R->L }
  multiply(inverse(inverse(a)), a, inverse(a))
= { by axiom 1 (ternary_multiply_1) R->L }
  multiply(inverse(inverse(a)), a, multiply(a, inverse(a), inverse(a)))
= { by axiom 3 (associativity) R->L }
  multiply(multiply(inverse(inverse(a)), a, a), inverse(a), multiply(inverse(inverse(a)), a, inverse(a)))
= { by axiom 1 (ternary_multiply_1) }
  multiply(a, inverse(a), multiply(inverse(inverse(a)), a, inverse(a)))
= { by axiom 2 (right_inverse) }
  multiply(a, inverse(a), inverse(inverse(a)))
= { by axiom 2 (right_inverse) }
  a
% SZS output end Proof

Vampire 4.5

Giles Reger
University of Manchester, United Kingdom

Sample solution for SET014^4

% SZS output start Proof for SET014^4
tff(func_def_3, type, ->: ('$tType' * '$tType') > '$tType').
tff(func_def_4, type, in: '$i' -> ('$i' -> '$o') -> '$o').
tff(func_def_5, type, vAPP: !>[X0: $ttype, X1: $ttype]:(X0 -> X1 * X0) > X1).
tff(func_def_6, type, is_a: '$i' -> ('$i' -> '$o') -> '$o').
tff(func_def_7, type, emptyset: '$i' -> '$o').
tff(func_def_8, type, unord_pair: '$i' -> '$i' -> '$i' -> '$o').
tff(func_def_9, type, singleton: '$i' -> '$i' -> '$o').
tff(func_def_10, type, union: ('$i' -> '$o') -> ('$i' -> '$o') -> '$i' -> '$o').
tff(func_def_11, type, excl_union: ('$i' -> '$o') -> ('$i' -> '$o') -> '$i' -> '$o').
tff(func_def_12, type, intersection: ('$i' -> '$o') -> ('$i' -> '$o') -> '$i' -> '$o').
tff(func_def_13, type, setminus: ('$i' -> '$o') -> ('$i' -> '$o') -> '$i' -> '$o').
tff(func_def_14, type, complement: ('$i' -> '$o') -> '$i' -> '$o').
tff(func_def_15, type, disjoint: ('$i' -> '$o') -> ('$i' -> '$o') -> '$o').
tff(func_def_16, type, subset: ('$i' -> '$o') -> ('$i' -> '$o') -> '$o').
tff(func_def_17, type, meets: ('$i' -> '$o') -> ('$i' -> '$o') -> '$o').
tff(func_def_18, type, misses: ('$i' -> '$o') -> ('$i' -> '$o') -> '$o').
tff(func_def_21, type, iCOMB: !>[X2: $ttype]:X2 -> X2).
tff(func_def_22, type, cCOMB: !>[X0: $ttype, X1: $ttype, X2: $ttype]:(X0 -> X1 -> X2) -> X1 -> X0 -> X2).
tff(func_def_23, type, vEQ: !>[X0: $ttype]:X0 -> X0 -> '$o').
tff(func_def_24, type, bCOMB: !>[X0: $ttype, X1: $ttype, X2: $ttype]:(X1 -> X2) -> (X0 -> X1) -> X0 -> X2).
tff(func_def_25, type, vNOT: '$o' -> '$o').
tff(func_def_26, type, vAND: '$o' -> '$o' -> '$o').
tff(func_def_27, type, vSIGMA: !>[X0: $ttype]:(X0 -> '$o') -> '$o').
tff(func_def_28, type, sCOMB: !>[X0: $ttype, X1: $ttype, X2: $ttype]:(X0 -> X1 -> X2) -> (X0 -> X1) -> X0 -> X2).
tff(func_def_29, type, vOR: '$o' -> '$o' -> '$o').
tff(func_def_30, type, kCOMB: !>[X1: $ttype, X2: $ttype]:X1 -> X2 -> X1).
tff(func_def_31, type, vIMP: '$o' -> '$o' -> '$o').
tff(func_def_32, type, vPI: !>[X0: $ttype]:(X0 -> '$o') -> '$o').
tff(func_def_33, type, sK0: '$i' -> '$o').
tff(func_def_34, type, sK1: '$i' -> '$o').
tff(func_def_35, type, sK2: '$i' -> '$o').
tff(f6,axiom,(
  union = (^[X0 : '$i' -> '$o', X2 : '$i' -> '$o', X3 : '$i'] : X2 @ X3 | X0 @ X3)),
  file('Problems/SET/SET014^4.p',unknown)).
tff(f12,axiom,(
  subset = (^[X0 : '$i' -> '$o', X2 : '$i' -> '$o'] : ! [X3] : (X0 @ X3 => X2 @ X3))),
  file('Problems/SET/SET014^4.p',unknown)).
tff(f15,conjecture,(
  ! [X0 : '$i' -> '$o',X2 : '$i' -> '$o',X4 : '$i' -> '$o'] : ((subset @ X2 @ X4 & subset @ X0 @ X4) => subset @ (union @ X0 @ X2) @ X4)),
  file('Problems/SET/SET014^4.p',unknown)).
tff(f16,negated_conjecture,(
  ~! [X0 : '$i' -> '$o',X2 : '$i' -> '$o',X4 : '$i' -> '$o'] : ((subset @ X2 @ X4 & subset @ X0 @ X4) => subset @ (union @ X0 @ X2) @ X4)),
  inference(negated_conjecture,[],[f15])).
tff(f17,plain,(
  ~! [X0 : '$i' -> '$o',X1 : '$i' -> '$o',X2 : '$i' -> '$o'] : ((subset @ X1 @ X2 & subset @ X0 @ X2) => subset @ (union @ X0 @ X1) @ X2)),
  inference(rectify,[],[f16])).
tff(f18,plain,(
  ~! [X0 : '$i' -> '$o',X1 : '$i' -> '$o',X2 : '$i' -> '$o'] : (((subset @ X1 @ X2 = $true) & (subset @ X0 @ X2 = $true)) => (subset @ (union @ X0 @ X1) @ X2 = $true))),
  inference(fool_elimination,[],[f17])).
tff(f40,plain,(
  union = (^[X0 : '$i' -> '$o', X1 : '$i' -> '$o', X2 : '$i'] : X1 @ X2 | X0 @ X2)),
  inference(rectify,[],[f6])).
tff(f41,plain,(
  bCOMB @ sCOMB @ (bCOMB @ vOR) = union),
  inference(fool_elimination,[],[f40])).
tff(f42,plain,(
  subset = (^[X0 : '$i' -> '$o', X1 : '$i' -> '$o'] : ! [X2] : (X0 @ X2 => X1 @ X2))),
  inference(rectify,[],[f12])).
tff(f43,plain,(
  bCOMB @ (bCOMB @ vPI('$i')) @ (bCOMB @ sCOMB @ (bCOMB @ vIMP)) = subset),
  inference(fool_elimination,[],[f42])).
tff(f44,plain,(
  ? [X0 : '$i' -> '$o',X1 : '$i' -> '$o',X2 : '$i' -> '$o'] : ((subset @ (union @ X0 @ X1) @ X2 != $true) & ((subset @ X1 @ X2 = $true) & (subset @ X0 @ X2 = $true)))),
  inference(ennf_transformation,[],[f18])).
tff(f45,plain,(
  ? [X0 : '$i' -> '$o',X1 : '$i' -> '$o',X2 : '$i' -> '$o'] : ((subset @ (union @ X0 @ X1) @ X2 != $true) & (subset @ X1 @ X2 = $true) & (subset @ X0 @ X2 = $true))),
  inference(flattening,[],[f44])).
tff(f46,plain,(
  ? [X0 : '$i' -> '$o',X1 : '$i' -> '$o',X2 : '$i' -> '$o'] : ((subset @ (union @ X0 @ X1) @ X2 != $true) & (subset @ X1 @ X2 = $true) & (subset @ X0 @ X2 = $true)) => ((subset @ (union @ sK0 @ sK1) @ sK2 != $true) & (subset @ sK1 @ sK2 = $true) & (subset @ sK0 @ sK2 = $true))),
  introduced(choice_axiom,[])).
tff(f47,plain,(
  (subset @ (union @ sK0 @ sK1) @ sK2 != $true) & (subset @ sK1 @ sK2 = $true) & (subset @ sK0 @ sK2 = $true)),
  inference(skolemisation,[status(esa),new_symbols(skolem,[sK0,sK1,sK2])],[f45,f46])).
tff(f48,plain,(
  (subset @ sK0 @ sK2 = $true)),
  inference(cnf_transformation,[],[f47])).
tff(f49,plain,(
  (subset @ sK1 @ sK2 = $true)),
  inference(cnf_transformation,[],[f47])).
tff(f50,plain,(
  (subset @ (union @ sK0 @ sK1) @ sK2 != $true)),
  inference(cnf_transformation,[],[f47])).
tff(f63,plain,(
  bCOMB @ sCOMB @ (bCOMB @ vOR) = union),
  inference(cnf_transformation,[],[f41])).
tff(f64,plain,(
  bCOMB @ (bCOMB @ vPI('$i')) @ (bCOMB @ sCOMB @ (bCOMB @ vIMP)) = subset),
  inference(cnf_transformation,[],[f43])).
tff(f66,plain,(
  (bCOMB @ (bCOMB @ vPI('$i')) @ (bCOMB @ sCOMB @ (bCOMB @ vIMP)) @ (bCOMB @ sCOMB @ (bCOMB @ vOR) @ sK0 @ sK1) @ sK2 != $true)),
  inference(definition_unfolding,[],[f50,f64,f63])).
tff(f67,plain,(
  (bCOMB @ (bCOMB @ vPI('$i')) @ (bCOMB @ sCOMB @ (bCOMB @ vIMP)) @ sK1 @ sK2 = $true)),
  inference(definition_unfolding,[],[f49,f64])).
tff(f68,plain,(
  (bCOMB @ (bCOMB @ vPI('$i')) @ (bCOMB @ sCOMB @ (bCOMB @ vIMP)) @ sK0 @ sK2 = $true)),
  inference(definition_unfolding,[],[f48,f64])).
tff(f69,plain,(
  (vPI('$i') @ (sCOMB @ (bCOMB @ vIMP @ sK0) @ sK2) = $true)),
  inference(combinator_demodulation,[],[f68])).
tff(f70,plain,(
  ( ! [X1] : ((sCOMB @ (bCOMB @ vIMP @ sK0) @ sK2 @ X1 = $true)) )),
  inference(pi_clausification,[],[f69])).
tff(f71,plain,(
  ( ! [X1] : ((vIMP @ (sK0 @ X1) @ (sK2 @ X1) = $true)) )),
  inference(combinator_demodulation,[],[f70])).
tff(f72,plain,(
  ( ! [X1] : ((sK2 @ X1 = $true) | (sK0 @ X1 = $false)) )),
  inference(binary_proxy_clausification,[],[f71])).
tff(f73,plain,(
  (vPI('$i') @ (sCOMB @ (bCOMB @ vIMP @ sK1) @ sK2) = $true)),
  inference(combinator_demodulation,[],[f67])).
tff(f74,plain,(
  ( ! [X1] : ((sCOMB @ (bCOMB @ vIMP @ sK1) @ sK2 @ X1 = $true)) )),
  inference(pi_clausification,[],[f73])).
tff(f75,plain,(
  ( ! [X1] : ((vIMP @ (sK1 @ X1) @ (sK2 @ X1) = $true)) )),
  inference(combinator_demodulation,[],[f74])).
tff(f76,plain,(
  ( ! [X1] : ((sK2 @ X1 = $true) | (sK1 @ X1 = $false)) )),
  inference(binary_proxy_clausification,[],[f75])).
tff(f77,plain,(
  (vPI('$i') @ (sCOMB @ (bCOMB @ vIMP @ (sCOMB @ (bCOMB @ vOR @ sK0) @ sK1)) @ sK2) != $true)),
  inference(combinator_demodulation,[],[f66])).
tff(f78,plain,(
  (sCOMB @ (bCOMB @ vIMP @ (sCOMB @ (bCOMB @ vOR @ sK0) @ sK1)) @ sK2 @ sK3 = $false)),
  inference(sigma_clausification,[],[f77])).
tff(f79,plain,(
  (vIMP @ (vOR @ (sK0 @ sK3) @ (sK1 @ sK3)) @ (sK2 @ sK3) = $false)),
  inference(combinator_demodulation,[],[f78])).
tff(f80,plain,(
  (vOR @ (sK0 @ sK3) @ (sK1 @ sK3) = $true)),
  inference(binary_proxy_clausification,[],[f79])).
tff(f81,plain,(
  (sK2 @ sK3 = $false)),
  inference(binary_proxy_clausification,[],[f79])).
tff(f82,plain,(
  (sK0 @ sK3 = $true) | (sK1 @ sK3 = $true)),
  inference(binary_proxy_clausification,[],[f80])).
tff(f83,plain,(
  ($false = $true) | (sK0 @ sK3 = $false)),
  inference(superposition,[],[f72,f81])).
tff(f86,plain,(
  (sK0 @ sK3 = $false)),
  inference(trivial_inequality_removal,[],[f83])).
tff(f87,plain,(
  ($false = $true) | (sK1 @ sK3 = $true)),
  inference(backward_demodulation,[],[f86,f82])).
tff(f88,plain,(
  (sK1 @ sK3 = $true)),
  inference(trivial_inequality_removal,[],[f87])).
tff(f89,plain,(
  ($false = $true) | (sK1 @ sK3 = $false)),
  inference(superposition,[],[f76,f81])).
tff(f92,plain,(
  (sK1 @ sK3 = $false)),
  inference(trivial_inequality_removal,[],[f89])).
tff(f93,plain,(
  ($false = $true)),
  inference(backward_demodulation,[],[f92,f88])).
tff(f94,plain,(
  $false),
  inference(trivial_inequality_removal,[],[f93])).
% SZS output end Proof for SET014^4

Sample solution for DAT013=1

% SZS output start Proof for DAT013=1
tff(type_def_5, type, array: $tType).
tff(func_def_0, type, read: (array * $int) > $int).
tff(func_def_1, type, write: (array * $int * $int) > array).
tff(func_def_7, type, sK0: array).
tff(func_def_8, type, sK1: $int).
tff(func_def_9, type, sK2: $int).
tff(func_def_10, type, sK3: $int).
tff(f2323,plain,(
  $false),
  inference(subsumption_resolution,[],[f2316,f143])).
tff(f143,plain,(
  $less(sK3,sK1)),
  inference(subsumption_resolution,[],[f140,f29])).
tff(f29,plain,(
  ~$less(sK2,sK3)),
  inference(cnf_transformation,[],[f24])).
tff(f24,plain,(
  (~$less(0,read(sK0,sK3)) & ~$less(sK2,sK3) & ~$less(sK3,$sum(sK1,3))) & ! [X4 : $int] : ($less(0,read(sK0,X4)) | $less(sK2,X4) | $less(X4,sK1))),
  inference(skolemisation,[status(esa),new_symbols(skolem,[sK0,sK1,sK2,sK3])],[f21,f23,f22])).
tff(f22,plain,(
  ? [X0 : array,X1 : $int,X2 : $int] : (? [X3 : $int] : (~$less(0,read(X0,X3)) & ~$less(X2,X3) & ~$less(X3,$sum(X1,3))) & ! [X4 : $int] : ($less(0,read(X0,X4)) | $less(X2,X4) | $less(X4,X1))) => (? [X3 : $int] : (~$less(0,read(sK0,X3)) & ~$less(sK2,X3) & ~$less(X3,$sum(sK1,3))) & ! [X4 : $int] : ($less(0,read(sK0,X4)) | $less(sK2,X4) | $less(X4,sK1)))),
  introduced(choice_axiom,[])).
tff(f23,plain,(
  ? [X3 : $int] : (~$less(0,read(sK0,X3)) & ~$less(sK2,X3) & ~$less(X3,$sum(sK1,3))) => (~$less(0,read(sK0,sK3)) & ~$less(sK2,sK3) & ~$less(sK3,$sum(sK1,3)))),
  introduced(choice_axiom,[])).
tff(f21,plain,(
  ? [X0 : array,X1 : $int,X2 : $int] : (? [X3 : $int] : (~$less(0,read(X0,X3)) & ~$less(X2,X3) & ~$less(X3,$sum(X1,3))) & ! [X4 : $int] : ($less(0,read(X0,X4)) | $less(X2,X4) | $less(X4,X1)))),
  inference(rectify,[],[f20])).
tff(f20,plain,(
  ? [X0 : array,X1 : $int,X2 : $int] : (? [X4 : $int] : (~$less(0,read(X0,X4)) & ~$less(X2,X4) & ~$less(X4,$sum(X1,3))) & ! [X3 : $int] : ($less(0,read(X0,X3)) | $less(X2,X3) | $less(X3,X1)))),
  inference(flattening,[],[f19])).
tff(f19,plain,(
  ? [X0 : array,X1 : $int,X2 : $int] : (? [X4 : $int] : (~$less(0,read(X0,X4)) & (~$less(X2,X4) & ~$less(X4,$sum(X1,3)))) & ! [X3 : $int] : ($less(0,read(X0,X3)) | ($less(X2,X3) | $less(X3,X1))))),
  inference(ennf_transformation,[],[f5])).
tff(f5,plain,(
  ~! [X0 : array,X1 : $int,X2 : $int] : (! [X3 : $int] : ((~$less(X2,X3) & ~$less(X3,X1)) => $less(0,read(X0,X3))) => ! [X4 : $int] : ((~$less(X2,X4) & ~$less(X4,$sum(X1,3))) => $less(0,read(X0,X4))))),
  inference(theory_normalization,[],[f4])).
tff(f4,negated_conjecture,(
  ~! [X0 : array,X1 : $int,X2 : $int] : (! [X3 : $int] : (($lesseq(X3,X2) & $lesseq(X1,X3)) => $greater(read(X0,X3),0)) => ! [X4 : $int] : (($lesseq(X4,X2) & $lesseq($sum(X1,3),X4)) => $greater(read(X0,X4),0)))),
  inference(negated_conjecture,[],[f3])).
tff(f3,conjecture,(
  ! [X0 : array,X1 : $int,X2 : $int] : (! [X3 : $int] : (($lesseq(X3,X2) & $lesseq(X1,X3)) => $greater(read(X0,X3),0)) => ! [X4 : $int] : (($lesseq(X4,X2) & $lesseq($sum(X1,3),X4)) => $greater(read(X0,X4),0)))),
  file('Problems/DAT/DAT013=1.p',unknown)).
tff(f140,plain,(
  $less(sK2,sK3) | $less(sK3,sK1)),
  inference(resolution,[],[f27,f30])).
tff(f30,plain,(
  ~$less(0,read(sK0,sK3))),
  inference(cnf_transformation,[],[f24])).
tff(f27,plain,(
  ( ! [X4:$int] : ($less(0,read(sK0,X4)) | $less(sK2,X4) | $less(X4,sK1)) )),
  inference(cnf_transformation,[],[f24])).
tff(f2316,plain,(
  ~$less(sK3,sK1)),
  inference(backward_demodulation,[],[f31,f2315])).
tff(f2315,plain,(
  sK1 = $sum(3,sK1)),
  inference(subsumption_resolution,[],[f2282,f1467])).
tff(f1467,plain,(
  ( ! [X3:$int] : (~$less($sum(3,X3),X3)) )),
  inference(resolution,[],[f1229,f125])).
tff(f125,plain,(
  ( ! [X6:$int,X4:$int,X5:$int] : ($less($sum(X6,X5),$sum(X5,X4)) | ~$less(X6,X4)) )),
  inference(superposition,[],[f14,f6])).
tff(f6,plain,(
  ( ! [X0:$int,X1:$int] : ($sum(X0,X1) = $sum(X1,X0)) )),
  introduced(theory_axiom,[])).
tff(f14,plain,(
  ( ! [X2:$int,X0:$int,X1:$int] : ($less($sum(X0,X2),$sum(X1,X2)) | ~$less(X0,X1)) )),
  introduced(theory_axiom,[])).
tff(f1229,plain,(
  ( ! [X8:$int] : (~$less($sum(X8,3),X8)) )),
  inference(evaluation,[],[f1219])).
tff(f1219,plain,(
  ( ! [X8:$int] : (~$less($sum($sum(X8,1),2),X8)) )),
  inference(resolution,[],[f1070,f73])).
tff(f73,plain,(
  ( ! [X4:$int,X3:$int] : ($less(X3,$sum(X4,1)) | ~$less(X3,X4)) )),
  inference(resolution,[],[f12,f43])).
tff(f43,plain,(
  ( ! [X0:$int] : ($less(X0,$sum(X0,1))) )),
  inference(resolution,[],[f15,f11])).
tff(f11,plain,(
  ( ! [X0:$int] : (~$less(X0,X0)) )),
  introduced(theory_axiom,[])).
tff(f15,plain,(
  ( ! [X0:$int,X1:$int] : ($less(X1,$sum(X0,1)) | $less(X0,X1)) )),
  introduced(theory_axiom,[])).
tff(f12,plain,(
  ( ! [X2:$int,X0:$int,X1:$int] : (~$less(X1,X2) | ~$less(X0,X1) | $less(X0,X2)) )),
  introduced(theory_axiom,[])).
tff(f1070,plain,(
  ( ! [X8:$int] : (~$less($sum(X8,2),X8)) )),
  inference(evaluation,[],[f1060])).
tff(f1060,plain,(
  ( ! [X8:$int] : (~$less($sum($sum(X8,1),1),X8)) )),
  inference(resolution,[],[f986,f73])).
tff(f986,plain,(
  ( ! [X6:$int] : (~$less($sum(X6,1),X6)) )),
  inference(resolution,[],[f73,f11])).
tff(f2282,plain,(
  $less($sum(3,sK1),sK1) | sK1 = $sum(3,sK1)),
  inference(resolution,[],[f742,f31])).
tff(f742,plain,(
  ( ! [X56:$int] : ($less(sK3,X56) | $less(X56,sK1) | sK1 = X56) )),
  inference(resolution,[],[f84,f143])).
tff(f84,plain,(
  ( ! [X4:$int,X5:$int,X3:$int] : (~$less(X5,X4) | X3 = X4 | $less(X3,X4) | $less(X5,X3)) )),
  inference(resolution,[],[f13,f12])).
tff(f13,plain,(
  ( ! [X0:$int,X1:$int] : ($less(X1,X0) | $less(X0,X1) | X0 = X1) )),
  introduced(theory_axiom,[])).
tff(f31,plain,(
  ~$less(sK3,$sum(3,sK1))),
  inference(forward_demodulation,[],[f28,f6])).
tff(f28,plain,(
  ~$less(sK3,$sum(sK1,3))),
  inference(cnf_transformation,[],[f24])).
% SZS output end Proof for DAT013=1

Sample solution for SEU140+2

% SZS output start Proof for SEU140+2
fof(f4471,plain,(
  $false),
  inference(subsumption_resolution,[],[f4465,f210])).
fof(f210,plain,(
  ~disjoint(sK10,sK12)),
  inference(cnf_transformation,[],[f134])).
fof(f134,plain,(
  ~disjoint(sK10,sK12) & disjoint(sK11,sK12) & subset(sK10,sK11)),
  inference(skolemisation,[status(esa),new_symbols(skolem,[sK10,sK11,sK12])],[f88,f133])).
fof(f133,plain,(
  ? [X0,X1,X2] : (~disjoint(X0,X2) & disjoint(X1,X2) & subset(X0,X1)) => (~disjoint(sK10,sK12) & disjoint(sK11,sK12) & subset(sK10,sK11))),
  introduced(choice_axiom,[])).
fof(f88,plain,(
  ? [X0,X1,X2] : (~disjoint(X0,X2) & disjoint(X1,X2) & subset(X0,X1))),
  inference(flattening,[],[f87])).
fof(f87,plain,(
  ? [X0,X1,X2] : (~disjoint(X0,X2) & (disjoint(X1,X2) & subset(X0,X1)))),
  inference(ennf_transformation,[],[f52])).
fof(f52,negated_conjecture,(
  ~! [X0,X1,X2] : ((disjoint(X1,X2) & subset(X0,X1)) => disjoint(X0,X2))),
  inference(negated_conjecture,[],[f51])).
fof(f51,conjecture,(
  ! [X0,X1,X2] : ((disjoint(X1,X2) & subset(X0,X1)) => disjoint(X0,X2))),
  file('Problems/SEU/SEU140+2.p',unknown)).
fof(f4465,plain,(
  disjoint(sK10,sK12)),
  inference(superposition,[],[f4351,f2135])).
fof(f2135,plain,(
  sK12 = set_difference(set_union2(sK11,sK12),sK11)),
  inference(superposition,[],[f741,f931])).
fof(f931,plain,(
  sK11 = set_difference(sK11,sK12)),
  inference(forward_demodulation,[],[f930,f338])).
fof(f338,plain,(
  ( ! [X6,X7] : (set_union2(set_difference(X6,X7),X6) = X6) )),
  inference(resolution,[],[f180,f192])).
fof(f192,plain,(
  ( ! [X0,X1] : (subset(set_difference(X0,X1),X0)) )),
  inference(cnf_transformation,[],[f39])).
fof(f39,axiom,(
  ! [X0,X1] : subset(set_difference(X0,X1),X0)),
  file('Problems/SEU/SEU140+2.p',unknown)).
fof(f180,plain,(
  ( ! [X0,X1] : (~subset(X0,X1) | set_union2(X0,X1) = X1) )),
  inference(cnf_transformation,[],[f73])).
fof(f73,plain,(
  ! [X0,X1] : (set_union2(X0,X1) = X1 | ~subset(X0,X1))),
  inference(ennf_transformation,[],[f28])).
fof(f28,axiom,(
  ! [X0,X1] : (subset(X0,X1) => set_union2(X0,X1) = X1)),
  file('Problems/SEU/SEU140+2.p',unknown)).
fof(f930,plain,(
  set_difference(sK11,sK12) = set_union2(set_difference(sK11,sK12),sK11)),
  inference(forward_demodulation,[],[f929,f281])).
fof(f281,plain,(
  ( ! [X1] : (set_union2(empty_set,X1) = X1) )),
  inference(superposition,[],[f137,f183])).
fof(f183,plain,(
  ( ! [X0] : (set_union2(X0,empty_set) = X0) )),
  inference(cnf_transformation,[],[f31])).
fof(f31,axiom,(
  ! [X0] : set_union2(X0,empty_set) = X0),
  file('Problems/SEU/SEU140+2.p',unknown)).
fof(f137,plain,(
  ( ! [X0,X1] : (set_union2(X0,X1) = set_union2(X1,X0)) )),
  inference(cnf_transformation,[],[f3])).
fof(f3,axiom,(
  ! [X0,X1] : set_union2(X0,X1) = set_union2(X1,X0)),
  file('Problems/SEU/SEU140+2.p',unknown)).
fof(f929,plain,(
  set_union2(set_difference(sK11,sK12),sK11) = set_union2(empty_set,set_difference(sK11,sK12))),
  inference(forward_demodulation,[],[f914,f137])).
fof(f914,plain,(
  set_union2(set_difference(sK11,sK12),sK11) = set_union2(set_difference(sK11,sK12),empty_set)),
  inference(superposition,[],[f195,f587])).
fof(f587,plain,(
  empty_set = set_difference(sK11,set_difference(sK11,sK12))),
  inference(resolution,[],[f224,f209])).
fof(f209,plain,(
  disjoint(sK11,sK12)),
  inference(cnf_transformation,[],[f134])).
fof(f224,plain,(
  ( ! [X0,X1] : (~disjoint(X0,X1) | empty_set = set_difference(X0,set_difference(X0,X1))) )),
  inference(definition_unfolding,[],[f165,f203])).
fof(f203,plain,(
  ( ! [X0,X1] : (set_intersection2(X0,X1) = set_difference(X0,set_difference(X0,X1))) )),
  inference(cnf_transformation,[],[f47])).
fof(f47,axiom,(
  ! [X0,X1] : set_intersection2(X0,X1) = set_difference(X0,set_difference(X0,X1))),
  file('Problems/SEU/SEU140+2.p',unknown)).
fof(f165,plain,(
  ( ! [X0,X1] : (set_intersection2(X0,X1) = empty_set | ~disjoint(X0,X1)) )),
  inference(cnf_transformation,[],[f119])).
fof(f119,plain,(
  ! [X0,X1] : ((disjoint(X0,X1) | set_intersection2(X0,X1) != empty_set) & (set_intersection2(X0,X1) = empty_set | ~disjoint(X0,X1)))),
  inference(nnf_transformation,[],[f11])).
fof(f11,axiom,(
  ! [X0,X1] : (disjoint(X0,X1) <=> set_intersection2(X0,X1) = empty_set)),
  file('Problems/SEU/SEU140+2.p',unknown)).
fof(f195,plain,(
  ( ! [X0,X1] : (set_union2(X0,X1) = set_union2(X0,set_difference(X1,X0))) )),
  inference(cnf_transformation,[],[f41])).
fof(f41,axiom,(
  ! [X0,X1] : set_union2(X0,X1) = set_union2(X0,set_difference(X1,X0))),
  file('Problems/SEU/SEU140+2.p',unknown)).
fof(f741,plain,(
  ( ! [X6,X7] : (set_difference(set_union2(X6,X7),set_difference(X6,X7)) = X7) )),
  inference(forward_demodulation,[],[f740,f196])).
fof(f196,plain,(
  ( ! [X0] : (set_difference(X0,empty_set) = X0) )),
  inference(cnf_transformation,[],[f42])).
fof(f42,axiom,(
  ! [X0] : set_difference(X0,empty_set) = X0),
  file('Problems/SEU/SEU140+2.p',unknown)).
fof(f740,plain,(
  ( ! [X6,X7] : (set_difference(set_union2(X6,X7),set_difference(X6,X7)) = set_difference(X7,empty_set)) )),
  inference(forward_demodulation,[],[f690,f324])).
fof(f324,plain,(
  ( ! [X4,X3] : (empty_set = set_difference(X3,set_union2(X4,X3))) )),
  inference(resolution,[],[f175,f286])).
fof(f286,plain,(
  ( ! [X6,X7] : (subset(X6,set_union2(X7,X6))) )),
  inference(superposition,[],[f213,f137])).
fof(f213,plain,(
  ( ! [X0,X1] : (subset(X0,set_union2(X0,X1))) )),
  inference(cnf_transformation,[],[f55])).
fof(f55,axiom,(
  ! [X0,X1] : subset(X0,set_union2(X0,X1))),
  file('Problems/SEU/SEU140+2.p',unknown)).
fof(f175,plain,(
  ( ! [X0,X1] : (~subset(X0,X1) | empty_set = set_difference(X0,X1)) )),
  inference(cnf_transformation,[],[f120])).
fof(f120,plain,(
  ! [X0,X1] : ((empty_set = set_difference(X0,X1) | ~subset(X0,X1)) & (subset(X0,X1) | empty_set != set_difference(X0,X1)))),
  inference(nnf_transformation,[],[f23])).
fof(f23,axiom,(
  ! [X0,X1] : (empty_set = set_difference(X0,X1) <=> subset(X0,X1))),
  file('Problems/SEU/SEU140+2.p',unknown)).
fof(f690,plain,(
  ( ! [X6,X7] : (set_difference(set_union2(X6,X7),set_difference(X6,X7)) = set_difference(X7,set_difference(X7,set_union2(X6,X7)))) )),
  inference(superposition,[],[f216,f201])).
fof(f201,plain,(
  ( ! [X0,X1] : (set_difference(X0,X1) = set_difference(set_union2(X0,X1),X1)) )),
  inference(cnf_transformation,[],[f45])).
fof(f45,axiom,(
  ! [X0,X1] : set_difference(X0,X1) = set_difference(set_union2(X0,X1),X1)),
  file('Problems/SEU/SEU140+2.p',unknown)).
fof(f216,plain,(
  ( ! [X0,X1] : (set_difference(X0,set_difference(X0,X1)) = set_difference(X1,set_difference(X1,X0))) )),
  inference(definition_unfolding,[],[f138,f203,f203])).
fof(f138,plain,(
  ( ! [X0,X1] : (set_intersection2(X0,X1) = set_intersection2(X1,X0)) )),
  inference(cnf_transformation,[],[f4])).
fof(f4,axiom,(
  ! [X0,X1] : set_intersection2(X0,X1) = set_intersection2(X1,X0)),
  file('Problems/SEU/SEU140+2.p',unknown)).
fof(f4351,plain,(
  ( ! [X41] : (disjoint(sK10,set_difference(X41,sK11))) )),
  inference(superposition,[],[f4323,f2122])).
fof(f2122,plain,(
  sK10 = set_difference(sK11,set_difference(sK11,sK10))),
  inference(superposition,[],[f741,f434])).
fof(f434,plain,(
  sK11 = set_union2(sK11,sK10)),
  inference(forward_demodulation,[],[f433,f281])).
fof(f433,plain,(
  set_union2(sK11,sK10) = set_union2(empty_set,sK11)),
  inference(forward_demodulation,[],[f421,f137])).
fof(f421,plain,(
  set_union2(sK11,sK10) = set_union2(sK11,empty_set)),
  inference(superposition,[],[f195,f328])).
fof(f328,plain,(
  empty_set = set_difference(sK10,sK11)),
  inference(resolution,[],[f175,f208])).
fof(f208,plain,(
  subset(sK10,sK11)),
  inference(cnf_transformation,[],[f134])).
fof(f4323,plain,(
  ( ! [X4,X2,X3] : (disjoint(set_difference(X2,X3),set_difference(X4,X2))) )),
  inference(duplicate_literal_removal,[],[f4288])).
fof(f4288,plain,(
  ( ! [X4,X2,X3] : (disjoint(set_difference(X2,X3),set_difference(X4,X2)) | disjoint(set_difference(X2,X3),set_difference(X4,X2))) )),
  inference(resolution,[],[f401,f395])).
fof(f395,plain,(
  ( ! [X10,X8,X9] : (~in(sK8(X8,set_difference(X9,X10)),X10) | disjoint(X8,set_difference(X9,X10))) )),
  inference(resolution,[],[f243,f198])).
fof(f198,plain,(
  ( ! [X0,X1] : (in(sK8(X0,X1),X1) | disjoint(X0,X1)) )),
  inference(cnf_transformation,[],[f130])).
fof(f130,plain,(
  ! [X0,X1] : ((~disjoint(X0,X1) | ! [X2] : (~in(X2,X1) | ~in(X2,X0))) & ((in(sK8(X0,X1),X1) & in(sK8(X0,X1),X0)) | disjoint(X0,X1)))),
  inference(skolemisation,[status(esa),new_symbols(skolem,[sK8])],[f82,f129])).
fof(f129,plain,(
  ! [X1,X0] : (? [X3] : (in(X3,X1) & in(X3,X0)) => (in(sK8(X0,X1),X1) & in(sK8(X0,X1),X0)))),
  introduced(choice_axiom,[])).
fof(f82,plain,(
  ! [X0,X1] : ((~disjoint(X0,X1) | ! [X2] : (~in(X2,X1) | ~in(X2,X0))) & (? [X3] : (in(X3,X1) & in(X3,X0)) | disjoint(X0,X1)))),
  inference(ennf_transformation,[],[f62])).
fof(f62,plain,(
  ! [X0,X1] : (~(disjoint(X0,X1) & ? [X2] : (in(X2,X1) & in(X2,X0))) & ~(! [X3] : ~(in(X3,X1) & in(X3,X0)) & ~disjoint(X0,X1)))),
  inference(rectify,[],[f43])).
fof(f43,axiom,(
  ! [X0,X1] : (~(disjoint(X0,X1) & ? [X2] : (in(X2,X1) & in(X2,X0))) & ~(! [X2] : ~(in(X2,X1) & in(X2,X0)) & ~disjoint(X0,X1)))),
  file('Problems/SEU/SEU140+2.p',unknown)).
fof(f243,plain,(
  ( ! [X4,X0,X1] : (~in(X4,set_difference(X0,X1)) | ~in(X4,X1)) )),
  inference(equality_resolution,[],[f160])).
fof(f160,plain,(
  ( ! [X4,X2,X0,X1] : (~in(X4,X1) | ~in(X4,X2) | set_difference(X0,X1) != X2) )),
  inference(cnf_transformation,[],[f118])).
fof(f118,plain,(
  ! [X0,X1,X2] : ((set_difference(X0,X1) = X2 | ((in(sK4(X0,X1,X2),X1) | ~in(sK4(X0,X1,X2),X0) | ~in(sK4(X0,X1,X2),X2)) & ((~in(sK4(X0,X1,X2),X1) & in(sK4(X0,X1,X2),X0)) | in(sK4(X0,X1,X2),X2)))) & (! [X4] : ((in(X4,X2) | in(X4,X1) | ~in(X4,X0)) & ((~in(X4,X1) & in(X4,X0)) | ~in(X4,X2))) | set_difference(X0,X1) != X2))),
  inference(skolemisation,[status(esa),new_symbols(skolem,[sK4])],[f116,f117])).
fof(f117,plain,(
  ! [X2,X1,X0] : (? [X3] : ((in(X3,X1) | ~in(X3,X0) | ~in(X3,X2)) & ((~in(X3,X1) & in(X3,X0)) | in(X3,X2))) => ((in(sK4(X0,X1,X2),X1) | ~in(sK4(X0,X1,X2),X0) | ~in(sK4(X0,X1,X2),X2)) & ((~in(sK4(X0,X1,X2),X1) & in(sK4(X0,X1,X2),X0)) | in(sK4(X0,X1,X2),X2))))),
  introduced(choice_axiom,[])).
fof(f116,plain,(
  ! [X0,X1,X2] : ((set_difference(X0,X1) = X2 | ? [X3] : ((in(X3,X1) | ~in(X3,X0) | ~in(X3,X2)) & ((~in(X3,X1) & in(X3,X0)) | in(X3,X2)))) & (! [X4] : ((in(X4,X2) | in(X4,X1) | ~in(X4,X0)) & ((~in(X4,X1) & in(X4,X0)) | ~in(X4,X2))) | set_difference(X0,X1) != X2))),
  inference(rectify,[],[f115])).
fof(f115,plain,(
  ! [X0,X1,X2] : ((set_difference(X0,X1) = X2 | ? [X3] : ((in(X3,X1) | ~in(X3,X0) | ~in(X3,X2)) & ((~in(X3,X1) & in(X3,X0)) | in(X3,X2)))) & (! [X3] : ((in(X3,X2) | in(X3,X1) | ~in(X3,X0)) & ((~in(X3,X1) & in(X3,X0)) | ~in(X3,X2))) | set_difference(X0,X1) != X2))),
  inference(flattening,[],[f114])).
fof(f114,plain,(
  ! [X0,X1,X2] : ((set_difference(X0,X1) = X2 | ? [X3] : (((in(X3,X1) | ~in(X3,X0)) | ~in(X3,X2)) & ((~in(X3,X1) & in(X3,X0)) | in(X3,X2)))) & (! [X3] : ((in(X3,X2) | (in(X3,X1) | ~in(X3,X0))) & ((~in(X3,X1) & in(X3,X0)) | ~in(X3,X2))) | set_difference(X0,X1) != X2))),
  inference(nnf_transformation,[],[f10])).
fof(f10,axiom,(
  ! [X0,X1,X2] : (set_difference(X0,X1) = X2 <=> ! [X3] : (in(X3,X2) <=> (~in(X3,X1) & in(X3,X0))))),
  file('Problems/SEU/SEU140+2.p',unknown)).
fof(f401,plain,(
  ( ! [X4,X2,X3] : (in(sK8(set_difference(X2,X3),X4),X2) | disjoint(set_difference(X2,X3),X4)) )),
  inference(resolution,[],[f244,f197])).
fof(f197,plain,(
  ( ! [X0,X1] : (in(sK8(X0,X1),X0) | disjoint(X0,X1)) )),
  inference(cnf_transformation,[],[f130])).
fof(f244,plain,(
  ( ! [X4,X0,X1] : (~in(X4,set_difference(X0,X1)) | in(X4,X0)) )),
  inference(equality_resolution,[],[f159])).
fof(f159,plain,(
  ( ! [X4,X2,X0,X1] : (in(X4,X0) | ~in(X4,X2) | set_difference(X0,X1) != X2) )),
  inference(cnf_transformation,[],[f118])).
% SZS output end Proof for SEU140+2

Sample solution for NLP042+1

% # SZS output start Saturation.
tff(u283,axiom,
    (![X1, X0] : ((~woman(X0,X1) | human_person(X0,X1))))).

tff(u282,axiom,
    (![X1, X0] : ((~woman(X0,X1) | female(X0,X1))))).

tff(u281,negated_conjecture,
    woman(sK0,sK1)).

tff(u280,negated_conjecture,
    ~female(sK0,sK4)).

tff(u279,negated_conjecture,
    ~female(sK0,sK2)).

tff(u278,negated_conjecture,
    ~female(sK0,sK3)).

tff(u277,negated_conjecture,
    female(sK0,sK1)).

tff(u276,axiom,
    (![X1, X0] : ((~human_person(X0,X1) | organism(X0,X1))))).

tff(u275,axiom,
    (![X1, X0] : ((~human_person(X0,X1) | human(X0,X1))))).

tff(u274,axiom,
    (![X1, X0] : ((~human_person(X0,X1) | animate(X0,X1))))).

tff(u273,negated_conjecture,
    human_person(sK0,sK1)).

tff(u272,negated_conjecture,
    ~animate(sK0,sK3)).

tff(u271,negated_conjecture,
    animate(sK0,sK1)).

tff(u270,negated_conjecture,
    ~human(sK0,sK2)).

tff(u269,negated_conjecture,
    human(sK0,sK1)).

tff(u268,axiom,
    (![X1, X0] : ((~organism(X0,X1) | entity(X0,X1))))).

tff(u267,axiom,
    (![X1, X0] : ((~organism(X0,X1) | living(X0,X1))))).

tff(u266,negated_conjecture,
    organism(sK0,sK1)).

tff(u265,negated_conjecture,
    ~living(sK0,sK3)).

tff(u264,negated_conjecture,
    living(sK0,sK1)).

tff(u263,axiom,
    (![X1, X0] : ((~entity(X0,X1) | specific(X0,X1))))).

tff(u262,axiom,
    (![X1, X0] : ((~entity(X0,X1) | existent(X0,X1))))).

tff(u261,negated_conjecture,
    entity(sK0,sK1)).

tff(u260,negated_conjecture,
    entity(sK0,sK3)).

tff(u259,axiom,
    (![X1, X0] : ((~mia_forename(X0,X1) | forename(X0,X1))))).

tff(u258,negated_conjecture,
    mia_forename(sK0,sK2)).

tff(u257,axiom,
    (![X1, X0] : ((~forename(X0,X1) | relname(X0,X1))))).

tff(u256,negated_conjecture,
    forename(sK0,sK2)).

tff(u255,axiom,
    (![X1, X0] : ((~abstraction(X0,X1) | nonhuman(X0,X1))))).

tff(u254,axiom,
    (![X1, X0] : ((~abstraction(X0,X1) | general(X0,X1))))).

tff(u253,axiom,
    (![X1, X0] : ((~abstraction(X0,X1) | unisex(X0,X1))))).

tff(u252,negated_conjecture,
    abstraction(sK0,sK2)).

tff(u251,axiom,
    (![X1, X0] : ((~unisex(X0,X1) | ~female(X0,X1))))).

tff(u250,negated_conjecture,
    unisex(sK0,sK2)).

tff(u249,negated_conjecture,
    unisex(sK0,sK4)).

tff(u248,negated_conjecture,
    unisex(sK0,sK3)).

tff(u247,negated_conjecture,
    ~general(sK0,sK4)).

tff(u246,negated_conjecture,
    ~general(sK0,sK1)).

tff(u245,negated_conjecture,
    ~general(sK0,sK3)).

tff(u244,negated_conjecture,
    general(sK0,sK2)).

tff(u243,axiom,
    (![X1, X0] : ((~nonhuman(X0,X1) | ~human(X0,X1))))).

tff(u242,negated_conjecture,
    nonhuman(sK0,sK2)).

tff(u241,axiom,
    (![X1, X0] : ((~relation(X0,X1) | abstraction(X0,X1))))).

tff(u240,negated_conjecture,
    relation(sK0,sK2)).

tff(u239,axiom,
    (![X1, X0] : ((~relname(X0,X1) | relation(X0,X1))))).

tff(u238,negated_conjecture,
    relname(sK0,sK2)).

tff(u237,axiom,
    (![X1, X0] : ((~object(X0,X1) | entity(X0,X1))))).

tff(u236,axiom,
    (![X1, X0] : ((~object(X0,X1) | nonliving(X0,X1))))).

tff(u235,axiom,
    (![X1, X0] : ((~object(X0,X1) | unisex(X0,X1))))).

tff(u234,negated_conjecture,
    object(sK0,sK3)).

tff(u233,axiom,
    (![X1, X0] : ((~nonliving(X0,X1) | ~living(X0,X1))))).

tff(u232,axiom,
    (![X1, X0] : ((~nonliving(X0,X1) | ~animate(X0,X1))))).

tff(u231,negated_conjecture,
    nonliving(sK0,sK3)).

tff(u230,negated_conjecture,
    ~existent(sK0,sK4)).

tff(u229,negated_conjecture,
    existent(sK0,sK1)).

tff(u228,negated_conjecture,
    existent(sK0,sK3)).

tff(u227,axiom,
    (![X1, X0] : ((~specific(X0,X1) | ~general(X0,X1))))).

tff(u226,negated_conjecture,
    specific(sK0,sK1)).

tff(u225,negated_conjecture,
    specific(sK0,sK4)).

tff(u224,negated_conjecture,
    specific(sK0,sK3)).

tff(u223,axiom,
    (![X1, X0] : ((~substance_matter(X0,X1) | object(X0,X1))))).

tff(u222,negated_conjecture,
    substance_matter(sK0,sK3)).

tff(u221,axiom,
    (![X1, X0] : ((~food(X0,X1) | substance_matter(X0,X1))))).

tff(u220,negated_conjecture,
    food(sK0,sK3)).

tff(u219,axiom,
    (![X1, X0] : ((~beverage(X0,X1) | food(X0,X1))))).

tff(u218,negated_conjecture,
    beverage(sK0,sK3)).

tff(u217,axiom,
    (![X1, X0] : ((~shake_beverage(X0,X1) | beverage(X0,X1))))).

tff(u216,negated_conjecture,
    shake_beverage(sK0,sK3)).

tff(u215,axiom,
    (![X1, X0] : ((~order(X0,X1) | act(X0,X1))))).

tff(u214,axiom,
    (![X1, X0] : ((~order(X0,X1) | event(X0,X1))))).

tff(u213,negated_conjecture,
    order(sK0,sK4)).

tff(u212,axiom,
    (![X1, X0] : ((~event(X0,X1) | eventuality(X0,X1))))).

tff(u211,negated_conjecture,
    event(sK0,sK4)).

tff(u210,axiom,
    (![X1, X0] : ((~eventuality(X0,X1) | specific(X0,X1))))).

tff(u209,axiom,
    (![X1, X0] : ((~eventuality(X0,X1) | nonexistent(X0,X1))))).

tff(u208,axiom,
    (![X1, X0] : ((~eventuality(X0,X1) | unisex(X0,X1))))).

tff(u207,negated_conjecture,
    eventuality(sK0,sK4)).

tff(u206,axiom,
    (![X1, X0] : ((~nonexistent(X0,X1) | ~existent(X0,X1))))).

tff(u205,negated_conjecture,
    nonexistent(sK0,sK4)).

tff(u204,axiom,
    (![X1, X0] : ((~act(X0,X1) | event(X0,X1))))).

tff(u203,negated_conjecture,
    act(sK0,sK4)).

tff(u202,axiom,
    (![X1, X3, X0, X2] : ((~of(X0,X3,X1) | (X2 = X3) | ~forename(X0,X3) | ~of(X0,X2,X1) | ~forename(X0,X2) | ~entity(X0,X1))))).

tff(u201,negated_conjecture,
    (![X0] : ((~of(sK0,X0,sK1) | (sK2 = X0) | ~forename(sK0,X0))))).

tff(u200,negated_conjecture,
    of(sK0,sK2,sK1)).

tff(u199,negated_conjecture,
    nonreflexive(sK0,sK4)).

tff(u198,negated_conjecture,
    ~agent(sK0,sK4,sK3)).

tff(u197,negated_conjecture,
    agent(sK0,sK4,sK1)).

tff(u196,axiom,
    (![X1, X3, X0] : ((~patient(X0,X1,X3) | ~agent(X0,X1,X3) | ~nonreflexive(X0,X1))))).

tff(u195,negated_conjecture,
    patient(sK0,sK4,sK3)).

% # SZS output end Saturation.

Sample solution for SWV017+1

% SZS output start FiniteModel for SWV017+1
tff(declare_$i,type,$i:$tType).
tff(declare_$i1,type,at:$i).
tff(declare_$i2,type,t:$i).
tff(finite_domain,axiom,
      ! [X:$i] : (
         X = at | X = t
      ) ).

tff(distinct_domain,axiom,
         at != t
).

tff(declare_a,type,a:$i).
tff(a_definition,axiom,a = at).
tff(declare_b,type,b:$i).
tff(b_definition,axiom,b = at).
tff(declare_an_a_nonce,type,an_a_nonce:$i).
tff(an_a_nonce_definition,axiom,an_a_nonce = t).
tff(declare_bt,type,bt:$i).
tff(bt_definition,axiom,bt = at).
tff(declare_an_intruder_nonce,type,an_intruder_nonce:$i).
tff(an_intruder_nonce_definition,axiom,an_intruder_nonce = at).
tff(declare_key,type,key: $i * $i > $i).
tff(function_key,axiom,
           key(at,at) = at
         & key(at,t) = t
         & key(t,at) = t
         & key(t,t) = t

).

tff(declare_pair,type,pair: $i * $i > $i).
tff(function_pair,axiom,
           pair(at,at) = at
         & pair(at,t) = t
         & pair(t,at) = at
         & pair(t,t) = at

).

tff(declare_sent,type,sent: $i * $i * $i > $i).
tff(function_sent,axiom,
           sent(at,at,at) = at
         & sent(at,at,t) = at
         & sent(at,t,at) = at
         & sent(at,t,t) = at
         & sent(t,at,at) = at
         & sent(t,at,t) = at
         & sent(t,t,at) = at
         & sent(t,t,t) = at

).

tff(declare_quadruple,type,quadruple: $i * $i * $i * $i > $i).
tff(function_quadruple,axiom,
           quadruple(at,at,at,at) = t
         & quadruple(at,at,at,t) = at
         & quadruple(at,at,t,at) = t
         & quadruple(at,at,t,t) = t
         & quadruple(at,t,at,at) = t
         & quadruple(at,t,at,t) = at
         & quadruple(at,t,t,at) = at
         & quadruple(at,t,t,t) = at
         & quadruple(t,at,at,at) = t
         & quadruple(t,at,at,t) = at
         & quadruple(t,at,t,at) = t
         & quadruple(t,at,t,t) = t
         & quadruple(t,t,at,at) = t
         & quadruple(t,t,at,t) = at
         & quadruple(t,t,t,at) = t
         & quadruple(t,t,t,t) = t

).

tff(declare_encrypt,type,encrypt: $i * $i > $i).
tff(function_encrypt,axiom,
           encrypt(at,at) = at
         & encrypt(at,t) = at
         & encrypt(t,at) = at
         & encrypt(t,t) = t

).

tff(declare_triple,type,triple: $i * $i * $i > $i).
tff(function_triple,axiom,
           triple(at,at,at) = t
         & triple(at,at,t) = at
         & triple(at,t,at) = at
         & triple(at,t,t) = at
         & triple(t,at,at) = t
         & triple(t,at,t) = t
         & triple(t,t,at) = at
         & triple(t,t,t) = at

).

tff(declare_generate_b_nonce,type,generate_b_nonce: $i > $i).
tff(function_generate_b_nonce,axiom,
           generate_b_nonce(at) = t
         & generate_b_nonce(t) = t

).

tff(declare_generate_expiration_time,type,generate_expiration_time: $i > $i).
tff(function_generate_expiration_time,axiom,
           generate_expiration_time(at) = t
         & generate_expiration_time(t) = t

).

tff(declare_generate_key,type,generate_key: $i > $i).
tff(function_generate_key,axiom,
           generate_key(at) = at
         & generate_key(t) = at

).

tff(declare_generate_intruder_nonce,type,generate_intruder_nonce: $i > $i).
tff(function_generate_intruder_nonce,axiom,
           generate_intruder_nonce(at) = at
         & generate_intruder_nonce(t) = t

).

tff(declare_a_holds,type,a_holds: $i > $o ).
tff(predicate_a_holds,axiom,
%         a_holds(at) undefined in model
%         a_holds(t) undefined in model

).

tff(declare_party_of_protocol,type,party_of_protocol: $i > $o ).
tff(predicate_party_of_protocol,axiom,
           party_of_protocol(at)
         & party_of_protocol(t)

).

tff(declare_message,type,message: $i > $o ).
tff(predicate_message,axiom,
           message(at)
         & ~message(t)

).

tff(declare_a_stored,type,a_stored: $i > $o ).
tff(predicate_a_stored,axiom,
           ~a_stored(at)
         & a_stored(t)

).

tff(declare_b_holds,type,b_holds: $i > $o ).
tff(predicate_b_holds,axiom,
%         b_holds(at) undefined in model
%         b_holds(t) undefined in model

).

tff(declare_fresh_to_b,type,fresh_to_b: $i > $o ).
tff(predicate_fresh_to_b,axiom,
           fresh_to_b(at)
         & fresh_to_b(t)

).

tff(declare_b_stored,type,b_stored: $i > $o ).
tff(predicate_b_stored,axiom,
%         b_stored(at) undefined in model
%         b_stored(t) undefined in model

).

tff(declare_a_key,type,a_key: $i > $o ).
tff(predicate_a_key,axiom,
           a_key(at)
         & ~a_key(t)

).

tff(declare_t_holds,type,t_holds: $i > $o ).
tff(predicate_t_holds,axiom,
           t_holds(at)
         & ~t_holds(t)

).

tff(declare_a_nonce,type,a_nonce: $i > $o ).
tff(predicate_a_nonce,axiom,
           ~a_nonce(at)
         & a_nonce(t)

).

tff(declare_intruder_message,type,intruder_message: $i > $o ).
tff(predicate_intruder_message,axiom,
           intruder_message(at)
         & intruder_message(t)

).

tff(declare_intruder_holds,type,intruder_holds: $i > $o ).
tff(predicate_intruder_holds,axiom,
           intruder_holds(at)
         & intruder_holds(t)

).

tff(declare_fresh_intruder_nonce,type,fresh_intruder_nonce: $i > $o ).
tff(predicate_fresh_intruder_nonce,axiom,
           fresh_intruder_nonce(at)
         & ~fresh_intruder_nonce(t)

).

% SZS output end FiniteModel for SWV017+1

Sample solution for BOO001-1

% SZS output start Proof for BOO001-1
fof(f263,plain,(
  $false),
  inference(trivial_inequality_removal,[],[f258])).
fof(f258,plain,(
  a != a),
  inference(superposition,[],[f6,f186])).
fof(f186,plain,(
  ( ! [X24] : (inverse(inverse(X24)) = X24) )),
  inference(superposition,[],[f132,f5])).
fof(f5,axiom,(
  ( ! [X2,X3] : (multiply(X2,X3,inverse(X3)) = X2) )),
  file('Problems/BOO/BOO001-1.p',unknown)).
fof(f132,plain,(
  ( ! [X31,X32] : (multiply(X32,inverse(X32),X31) = X31) )),
  inference(superposition,[],[f32,f5])).
fof(f32,plain,(
  ( ! [X4,X5,X3] : (multiply(X5,X3,X4) = multiply(X3,X4,multiply(X5,X3,X4))) )),
  inference(superposition,[],[f7,f2])).
fof(f2,axiom,(
  ( ! [X2,X3] : (multiply(X3,X2,X2) = X2) )),
  file('Problems/BOO/BOO001-1.p',unknown)).
fof(f7,plain,(
  ( ! [X2,X0,X3,X1] : (multiply(X0,X1,multiply(X1,X2,X3)) = multiply(X1,X2,multiply(X0,X1,X3))) )),
  inference(superposition,[],[f1,f2])).
fof(f1,axiom,(
  ( ! [X4,X2,X0,X3,X1] : (multiply(multiply(X0,X1,X2),X3,multiply(X0,X1,X4)) = multiply(X0,X1,multiply(X2,X3,X4))) )),
  file('Problems/BOO/BOO001-1.p',unknown)).
fof(f6,axiom,(
  a != inverse(inverse(a))),
  file('Problems/BOO/BOO001-1.p',unknown)).
% SZS output end Proof for BOO001-1

Vampire 4.6

Giles Reger
University of Manchester, United Kingdom

Sample solution for SET014^4

% SZS status Theorem for SET014^4
% SZS output start Proof for SET014^4
thf(type_def_6, type, >: ($tType * $tType) > $tType).
thf(func_def_7, type, in: $i > ($i > $o) > $o).
thf(func_def_9, type, is_a: $i > ($i > $o) > $o).
thf(func_def_10, type, emptyset: $i > $o).
thf(func_def_11, type, unord_pair: $i > $i > $i > $o).
thf(func_def_12, type, singleton: $i > $i > $o).
thf(func_def_13, type, union: ($i > $o) > ($i > $o) > $i > $o).
thf(func_def_14, type, excl_union: ($i > $o) > ($i > $o) > $i > $o).
thf(func_def_15, type, intersection: ($i > $o) > ($i > $o) > $i > $o).
thf(func_def_16, type, setminus: ($i > $o) > ($i > $o) > $i > $o).
thf(func_def_17, type, complement: ($i > $o) > $i > $o).
thf(func_def_18, type, disjoint: ($i > $o) > ($i > $o) > $o).
thf(func_def_19, type, subset: ($i > $o) > ($i > $o) > $o).
thf(func_def_20, type, meets: ($i > $o) > ($i > $o) > $o).
thf(func_def_21, type, misses: ($i > $o) > ($i > $o) > $o).
thf(func_def_22, type, vEPSILON: !>[X0: $tType]:((X0 > $o) > X0)).
thf(func_def_25, type, vEQ: !>[X0: $tType]:(X0 > X0 > $o)).
thf(func_def_26, type, bCOMB: !>[X0: $tType, X1: $tType, X2: $tType]:((X1 > X2) > (X0 > X1) > X0 > X2)).
thf(func_def_27, type, vNOT: $o > $o).
thf(func_def_28, type, vAND: $o > $o > $o).
thf(func_def_29, type, vSIGMA: !>[X0: $tType]:((X0 > $o) > $o)).
thf(func_def_30, type, sCOMB: !>[X0: $tType, X1: $tType, X2: $tType]:((X0 > X1 > X2) > (X0 > X1) > X0 > X2)).
thf(func_def_31, type, iCOMB: !>[X0: $tType]:(X0 > X0)).
thf(func_def_32, type, cCOMB: !>[X0: $tType, X1: $tType, X2: $tType]:((X0 > X1 > X2) > X1 > X0 > X2)).
thf(func_def_33, type, vOR: $o > $o > $o).
thf(func_def_34, type, kCOMB: !>[X0: $tType, X1: $tType]:(X0 > X1 > X0)).
thf(func_def_35, type, vIMP: $o > $o > $o).
thf(func_def_36, type, vPI: !>[X0: $tType]:((X0 > $o) > $o)).
thf(func_def_37, type, sK0: $i > $o).
thf(func_def_38, type, sK1: $i > $o).
thf(func_def_39, type, sK2: $i > $o).
thf(f96,plain,(
  $false),
  inference(trivial_inequality_removal,[],[f95])).
thf(f95,plain,(
  ($true = $false)),
  inference(backward_demodulation,[],[f90,f94])).
thf(f94,plain,(
  ($false = (sK1 @ sK3))),
  inference(trivial_inequality_removal,[],[f91])).
thf(f91,plain,(
  ($true = $false) | ($false = (sK1 @ sK3))),
  inference(superposition,[],[f78,f82])).
thf(f82,plain,(
  ($false = (sK2 @ sK3))),
  inference(binary_proxy_clausification,[],[f81])).
thf(f81,plain,(
  ($false = ((vIMP @ ((vOR @ (sK0 @ sK3)) @ (sK1 @ sK3))) @ (sK2 @ sK3)))),
  inference(combinator_demodulation,[],[f80])).
thf(f80,plain,(
  ($false = (((sCOMB @ ((bCOMB @ vIMP) @ ((sCOMB @ ((bCOMB @ vOR) @ sK0)) @ sK1))) @ sK2) @ sK3))),
  inference(sigma_clausification,[],[f79])).
thf(f79,plain,(
  ($true != (vPI($i) @ ((sCOMB @ ((bCOMB @ vIMP) @ ((sCOMB @ ((bCOMB @ vOR) @ sK0)) @ sK1))) @ sK2)))),
  inference(combinator_demodulation,[],[f68])).
thf(f68,plain,(
  ($true != ((((bCOMB @ (bCOMB @ vPI($i))) @ ((bCOMB @ sCOMB) @ (bCOMB @ vIMP))) @ ((((bCOMB @ sCOMB) @ (bCOMB @ vOR)) @ sK0) @ sK1)) @ sK2))),
  inference(definition_unfolding,[],[f52,f66,f65])).
thf(f65,plain,(
  (union = ((bCOMB @ sCOMB) @ (bCOMB @ vOR)))),
  inference(cnf_transformation,[],[f42])).
thf(f42,plain,(
  (union = ((bCOMB @ sCOMB) @ (bCOMB @ vOR)))),
  inference(fool_elimination,[],[f41])).
thf(f41,plain,(
  (union = (^[X0 : $i > $o, X1 : $i > $o, X2 : $i] : ((X1 @ X2) | (X0 @ X2))))),
  inference(rectify,[],[f6])).
thf(f6,axiom,(
  (union = (^[X0 : $i > $o, X2 : $i > $o, X3 : $i] : ((X2 @ X3) | (X0 @ X3))))),
  file('/tmp/SystemOnTPTP14842/SET014^4.tptp',unknown)).
thf(f66,plain,(
  (subset = ((bCOMB @ (bCOMB @ vPI($i))) @ ((bCOMB @ sCOMB) @ (bCOMB @ vIMP))))),
  inference(cnf_transformation,[],[f44])).
thf(f44,plain,(
  (subset = ((bCOMB @ (bCOMB @ vPI($i))) @ ((bCOMB @ sCOMB) @ (bCOMB @ vIMP))))),
  inference(fool_elimination,[],[f43])).
thf(f43,plain,(
  (subset = (^[X0 : $i > $o, X1 : $i > $o] : (! [X2] : ((X0 @ X2) => (X1 @ X2)))))),
  inference(rectify,[],[f12])).
thf(f12,axiom,(
  (subset = (^[X0 : $i > $o, X2 : $i > $o] : (! [X3] : ((X0 @ X3) => (X2 @ X3)))))),
  file('/tmp/SystemOnTPTP14842/SET014^4.tptp',unknown)).
thf(f52,plain,(
  ($true != ((subset @ ((union @ sK0) @ sK1)) @ sK2))),
  inference(cnf_transformation,[],[f49])).
thf(f49,plain,(
  ($true != ((subset @ ((union @ sK0) @ sK1)) @ sK2)) & ($true = ((subset @ sK1) @ sK2)) & ($true = ((subset @ sK0) @ sK2))),
  inference(skolemisation,[status(esa),new_symbols(skolem,[sK0,sK1,sK2])],[f47,f48])).
thf(f48,plain,(
  ? [X0 : $i > $o,X1 : $i > $o,X2 : $i > $o] : (($true != ((subset @ ((union @ X0) @ X1)) @ X2)) & ($true = ((subset @ X1) @ X2)) & ($true = ((subset @ X0) @ X2))) => (($true != ((subset @ ((union @ sK0) @ sK1)) @ sK2)) & ($true = ((subset @ sK1) @ sK2)) & ($true = ((subset @ sK0) @ sK2)))),
  introduced(choice_axiom,[])).
thf(f47,plain,(
  ? [X0 : $i > $o,X1 : $i > $o,X2 : $i > $o] : (($true != ((subset @ ((union @ X0) @ X1)) @ X2)) & ($true = ((subset @ X1) @ X2)) & ($true = ((subset @ X0) @ X2)))),
  inference(flattening,[],[f46])).
thf(f46,plain,(
  ? [X0 : $i > $o,X1 : $i > $o,X2 : $i > $o] : (($true != ((subset @ ((union @ X0) @ X1)) @ X2)) & (($true = ((subset @ X1) @ X2)) & ($true = ((subset @ X0) @ X2))))),
  inference(ennf_transformation,[],[f45])).
thf(f45,plain,(
  ~! [X0 : $i > $o,X1 : $i > $o,X2 : $i > $o] : ((($true = ((subset @ X1) @ X2)) & ($true = ((subset @ X0) @ X2))) => ($true = ((subset @ ((union @ X0) @ X1)) @ X2)))),
  inference(flattening,[],[f19])).
thf(f19,plain,(
  ~! [X0 : $i > $o] : ! [X1 : $i > $o] : ! [X2 : $i > $o] : ((($true = ((subset @ X1) @ X2)) & ($true = ((subset @ X0) @ X2))) => ($true = ((subset @ ((union @ X0) @ X1)) @ X2)))),
  inference(fool_elimination,[],[f18])).
thf(f18,plain,(
  ~! [X0 : $i > $o] : ! [X1 : $i > $o] : ! [X2 : $i > $o] : ((((subset @ X1) @ X2) & ((subset @ X0) @ X2)) => ((subset @ ((union @ X0) @ X1)) @ X2))),
  inference(rectify,[],[f16])).
thf(f16,negated_conjecture,(
  ~! [X0 : $i > $o] : ! [X2 : $i > $o] : ! [X4 : $i > $o] : ((((subset @ X2) @ X4) & ((subset @ X0) @ X4)) => ((subset @ ((union @ X0) @ X2)) @ X4))),
  inference(negated_conjecture,[],[f15])).
thf(f15,conjecture,(
  ! [X0 : $i > $o] : ! [X2 : $i > $o] : ! [X4 : $i > $o] : ((((subset @ X2) @ X4) & ((subset @ X0) @ X4)) => ((subset @ ((union @ X0) @ X2)) @ X4))),
  file('/tmp/SystemOnTPTP14842/SET014^4.tptp',unknown)).
thf(f78,plain,(
  ( ! [X1 : $i] : (($true = (sK2 @ X1)) | ($false = (sK1 @ X1))) )),
  inference(binary_proxy_clausification,[],[f77])).
thf(f77,plain,(
  ( ! [X1 : $i] : (($true = ((vIMP @ (sK1 @ X1)) @ (sK2 @ X1)))) )),
  inference(combinator_demodulation,[],[f76])).
thf(f76,plain,(
  ( ! [X1 : $i] : (($true = (((sCOMB @ ((bCOMB @ vIMP) @ sK1)) @ sK2) @ X1))) )),
  inference(pi_clausification,[],[f75])).
thf(f75,plain,(
  ($true = (vPI($i) @ ((sCOMB @ ((bCOMB @ vIMP) @ sK1)) @ sK2)))),
  inference(combinator_demodulation,[],[f69])).
thf(f69,plain,(
  ($true = ((((bCOMB @ (bCOMB @ vPI($i))) @ ((bCOMB @ sCOMB) @ (bCOMB @ vIMP))) @ sK1) @ sK2))),
  inference(definition_unfolding,[],[f51,f66])).
thf(f51,plain,(
  ($true = ((subset @ sK1) @ sK2))),
  inference(cnf_transformation,[],[f49])).
thf(f90,plain,(
  ($true = (sK1 @ sK3))),
  inference(trivial_inequality_removal,[],[f89])).
thf(f89,plain,(
  ($true = $false) | ($true = (sK1 @ sK3))),
  inference(backward_demodulation,[],[f84,f88])).
thf(f88,plain,(
  ($false = (sK0 @ sK3))),
  inference(trivial_inequality_removal,[],[f85])).
thf(f85,plain,(
  ($true = $false) | ($false = (sK0 @ sK3))),
  inference(superposition,[],[f74,f82])).
thf(f74,plain,(
  ( ! [X1 : $i] : (($true = (sK2 @ X1)) | ($false = (sK0 @ X1))) )),
  inference(binary_proxy_clausification,[],[f73])).
thf(f73,plain,(
  ( ! [X1 : $i] : (($true = ((vIMP @ (sK0 @ X1)) @ (sK2 @ X1)))) )),
  inference(combinator_demodulation,[],[f72])).
thf(f72,plain,(
  ( ! [X1 : $i] : (($true = (((sCOMB @ ((bCOMB @ vIMP) @ sK0)) @ sK2) @ X1))) )),
  inference(pi_clausification,[],[f71])).
thf(f71,plain,(
  ($true = (vPI($i) @ ((sCOMB @ ((bCOMB @ vIMP) @ sK0)) @ sK2)))),
  inference(combinator_demodulation,[],[f70])).
thf(f70,plain,(
  ($true = ((((bCOMB @ (bCOMB @ vPI($i))) @ ((bCOMB @ sCOMB) @ (bCOMB @ vIMP))) @ sK0) @ sK2))),
  inference(definition_unfolding,[],[f50,f66])).
thf(f50,plain,(
  ($true = ((subset @ sK0) @ sK2))),
  inference(cnf_transformation,[],[f49])).
thf(f84,plain,(
  ($true = (sK1 @ sK3)) | ($true = (sK0 @ sK3))),
  inference(binary_proxy_clausification,[],[f83])).
thf(f83,plain,(
  ($true = ((vOR @ (sK0 @ sK3)) @ (sK1 @ sK3)))),
  inference(binary_proxy_clausification,[],[f81])).
% SZS output end Proof for SET014^4

Sample solution for SEU140+2

% SZS status Theorem for SEU140+2
% SZS output start Proof for SEU140+2
fof(f746,plain,(
  $false),
  inference(subsumption_resolution,[],[f697,f465])).
fof(f465,plain,(
  in(sK10(sK6,sK8),sK7)),
  inference(unit_resulting_resolution,[],[f176,f420,f249])).
fof(f249,plain,(
  ( ! [X0 : $i,X3 : $i,X1 : $i] : (in(X3,X1) | ~in(X3,X0) | ~subset(X0,X1)) )),
  inference(cnf_transformation,[],[f170])).
fof(f170,plain,(
  ! [X0,X1] : ((subset(X0,X1) | (~in(sK15(X0,X1),X1) & in(sK15(X0,X1),X0))) & (! [X3] : (in(X3,X1) | ~in(X3,X0)) | ~subset(X0,X1)))),
  inference(skolemisation,[status(esa),new_symbols(skolem,[sK15])],[f168,f169])).
fof(f169,plain,(
  ! [X0,X1] : (? [X2] : (~in(X2,X1) & in(X2,X0)) => (~in(sK15(X0,X1),X1) & in(sK15(X0,X1),X0)))),
  introduced(choice_axiom,[])).
fof(f168,plain,(
  ! [X0,X1] : ((subset(X0,X1) | ? [X2] : (~in(X2,X1) & in(X2,X0))) & (! [X3] : (in(X3,X1) | ~in(X3,X0)) | ~subset(X0,X1)))),
  inference(rectify,[],[f167])).
fof(f167,plain,(
  ! [X0,X1] : ((subset(X0,X1) | ? [X2] : (~in(X2,X1) & in(X2,X0))) & (! [X2] : (in(X2,X1) | ~in(X2,X0)) | ~subset(X0,X1)))),
  inference(nnf_transformation,[],[f115])).
fof(f115,plain,(
  ! [X0,X1] : (subset(X0,X1) <=> ! [X2] : (in(X2,X1) | ~in(X2,X0)))),
  inference(ennf_transformation,[],[f91])).
fof(f91,plain,(
  ! [X0,X1] : (subset(X0,X1) <=> ! [X2] : (in(X2,X0) => in(X2,X1)))),
  inference(flattening,[],[f8])).
fof(f8,axiom,(
  ! [X0] : ! [X1] : (subset(X0,X1) <=> ! [X2] : (in(X2,X0) => in(X2,X1)))),
  file('/tmp/SystemOnTPTP17979/SEU140+2.tptp',d3_tarski)).
fof(f420,plain,(
  in(sK10(sK6,sK8),sK6)),
  inference(unit_resulting_resolution,[],[f178,f189])).
fof(f189,plain,(
  ( ! [X0 : $i,X1 : $i] : (disjoint(X0,X1) | in(sK10(X0,X1),X0)) )),
  inference(cnf_transformation,[],[f133])).
fof(f133,plain,(
  ! [X0,X1] : ((~disjoint(X0,X1) | ! [X2] : (~in(X2,X1) | ~in(X2,X0))) & ((in(sK10(X0,X1),X1) & in(sK10(X0,X1),X0)) | disjoint(X0,X1)))),
  inference(skolemisation,[status(esa),new_symbols(skolem,[sK10])],[f101,f132])).
fof(f132,plain,(
  ! [X0,X1] : (? [X3] : (in(X3,X1) & in(X3,X0)) => (in(sK10(X0,X1),X1) & in(sK10(X0,X1),X0)))),
  introduced(choice_axiom,[])).
fof(f101,plain,(
  ! [X0,X1] : ((~disjoint(X0,X1) | ! [X2] : (~in(X2,X1) | ~in(X2,X0))) & (? [X3] : (in(X3,X1) & in(X3,X0)) | disjoint(X0,X1)))),
  inference(ennf_transformation,[],[f68])).
fof(f68,plain,(
  ! [X0,X1] : (~(disjoint(X0,X1) & ? [X2] : (in(X2,X1) & in(X2,X0))) & ~(! [X3] : ~(in(X3,X1) & in(X3,X0)) & ~disjoint(X0,X1)))),
  inference(flattening,[],[f67])).
fof(f67,plain,(
  ! [X0] : ! [X1] : (~(disjoint(X0,X1) & ? [X2] : (in(X2,X1) & in(X2,X0))) & ~(! [X3] : ~(in(X3,X1) & in(X3,X0)) & ~disjoint(X0,X1)))),
  inference(rectify,[],[f43])).
fof(f43,axiom,(
  ! [X0] : ! [X1] : (~(disjoint(X0,X1) & ? [X2] : (in(X2,X1) & in(X2,X0))) & ~(! [X2] : ~(in(X2,X1) & in(X2,X0)) & ~disjoint(X0,X1)))),
  file('/tmp/SystemOnTPTP17979/SEU140+2.tptp',t3_xboole_0)).
fof(f178,plain,(
  ~disjoint(sK6,sK8)),
  inference(cnf_transformation,[],[f129])).
fof(f129,plain,(
  ~disjoint(sK6,sK8) & disjoint(sK7,sK8) & subset(sK6,sK7)),
  inference(skolemisation,[status(esa),new_symbols(skolem,[sK6,sK7,sK8])],[f98,f128])).
fof(f128,plain,(
  ? [X0,X1,X2] : (~disjoint(X0,X2) & disjoint(X1,X2) & subset(X0,X1)) => (~disjoint(sK6,sK8) & disjoint(sK7,sK8) & subset(sK6,sK7))),
  introduced(choice_axiom,[])).
fof(f98,plain,(
  ? [X0,X1,X2] : (~disjoint(X0,X2) & disjoint(X1,X2) & subset(X0,X1))),
  inference(flattening,[],[f97])).
fof(f97,plain,(
  ? [X0,X1,X2] : (~disjoint(X0,X2) & (disjoint(X1,X2) & subset(X0,X1)))),
  inference(ennf_transformation,[],[f58])).
fof(f58,plain,(
  ~! [X0,X1,X2] : ((disjoint(X1,X2) & subset(X0,X1)) => disjoint(X0,X2))),
  inference(flattening,[],[f52])).
fof(f52,negated_conjecture,(
  ~! [X0] : ! [X1] : ! [X2] : ((disjoint(X1,X2) & subset(X0,X1)) => disjoint(X0,X2))),
  inference(negated_conjecture,[],[f51])).
fof(f51,conjecture,(
  ! [X0] : ! [X1] : ! [X2] : ((disjoint(X1,X2) & subset(X0,X1)) => disjoint(X0,X2))),
  file('/tmp/SystemOnTPTP17979/SEU140+2.tptp',t63_xboole_1)).
fof(f176,plain,(
  subset(sK6,sK7)),
  inference(cnf_transformation,[],[f129])).
fof(f697,plain,(
  ~in(sK10(sK6,sK8),sK7)),
  inference(unit_resulting_resolution,[],[f429,f287,f191])).
fof(f191,plain,(
  ( ! [X2 : $i,X0 : $i,X1 : $i] : (~disjoint(X0,X1) | ~in(X2,X1) | ~in(X2,X0)) )),
  inference(cnf_transformation,[],[f133])).
fof(f287,plain,(
  disjoint(sK8,sK7)),
  inference(unit_resulting_resolution,[],[f177,f207])).
fof(f207,plain,(
  ( ! [X0 : $i,X1 : $i] : (disjoint(X1,X0) | ~disjoint(X0,X1)) )),
  inference(cnf_transformation,[],[f114])).
fof(f114,plain,(
  ! [X0,X1] : (disjoint(X1,X0) | ~disjoint(X0,X1))),
  inference(ennf_transformation,[],[f81])).
fof(f81,plain,(
  ! [X0,X1] : (disjoint(X0,X1) => disjoint(X1,X0))),
  inference(flattening,[],[f27])).
fof(f27,axiom,(
  ! [X0] : ! [X1] : (disjoint(X0,X1) => disjoint(X1,X0))),
  file('/tmp/SystemOnTPTP17979/SEU140+2.tptp',symmetry_r1_xboole_0)).
fof(f177,plain,(
  disjoint(sK7,sK8)),
  inference(cnf_transformation,[],[f129])).
fof(f429,plain,(
  in(sK10(sK6,sK8),sK8)),
  inference(unit_resulting_resolution,[],[f178,f190])).
fof(f190,plain,(
  ( ! [X0 : $i,X1 : $i] : (disjoint(X0,X1) | in(sK10(X0,X1),X1)) )),
  inference(cnf_transformation,[],[f133])).
% SZS output end Proof for SEU140+2

Sample solution for NLP042+1

% SZS status CounterSatisfiable for NLP042+1
% # SZS output start Saturation.
tff(u703,negated_conjecture,
    ((~~woman(sK0,sK3)) | ~woman(sK0,sK3))).

tff(u702,negated_conjecture,
    ((~~woman(sK0,sK4)) | ~woman(sK0,sK4))).

tff(u701,negated_conjecture,
    ((~~woman(sK0,sK2)) | ~woman(sK0,sK2))).

tff(u700,axiom,
    ((~(![X1, X0] : ((~woman(X0,X1) | ~unisex(X0,X1))))) | (![X1, X0] : ((~woman(X0,X1) | ~unisex(X0,X1)))))).

tff(u699,negated_conjecture,
    ((~woman(sK0,sK1)) | woman(sK0,sK1))).

tff(u698,axiom,
    ((~(![X1, X0] : ((~female(X0,X1) | ~unisex(X0,X1))))) | (![X1, X0] : ((~female(X0,X1) | ~unisex(X0,X1)))))).

tff(u697,axiom,
    ((~(![X1, X0] : ((female(X0,X1) | ~woman(X0,X1))))) | (![X1, X0] : ((female(X0,X1) | ~woman(X0,X1)))))).

tff(u696,negated_conjecture,
    ((~~human_person(sK0,sK2)) | ~human_person(sK0,sK2))).

tff(u695,negated_conjecture,
    ((~~human_person(sK0,sK3)) | ~human_person(sK0,sK3))).

tff(u694,negated_conjecture,
    ((~~human_person(sK0,sK4)) | ~human_person(sK0,sK4))).

tff(u693,axiom,
    ((~(![X1, X0] : ((human_person(X0,X1) | ~woman(X0,X1))))) | (![X1, X0] : ((human_person(X0,X1) | ~woman(X0,X1)))))).

tff(u692,negated_conjecture,
    ((~~animate(sK0,sK3)) | ~animate(sK0,sK3))).

tff(u691,axiom,
    ((~(![X1, X0] : ((animate(X0,X1) | ~human_person(X0,X1))))) | (![X1, X0] : ((animate(X0,X1) | ~human_person(X0,X1)))))).

tff(u690,negated_conjecture,
    ((~~human(sK0,sK2)) | ~human(sK0,sK2))).

tff(u689,axiom,
    ((~(![X1, X0] : ((human(X0,X1) | ~human_person(X0,X1))))) | (![X1, X0] : ((human(X0,X1) | ~human_person(X0,X1)))))).

tff(u688,negated_conjecture,
    ((~~organism(sK0,sK3)) | ~organism(sK0,sK3))).

tff(u687,negated_conjecture,
    ((~~organism(sK0,sK4)) | ~organism(sK0,sK4))).

tff(u686,negated_conjecture,
    ((~~organism(sK0,sK2)) | ~organism(sK0,sK2))).

tff(u685,axiom,
    ((~(![X1, X0] : ((organism(X0,X1) | ~human_person(X0,X1))))) | (![X1, X0] : ((organism(X0,X1) | ~human_person(X0,X1)))))).

tff(u684,negated_conjecture,
    ((~~living(sK0,sK3)) | ~living(sK0,sK3))).

tff(u683,axiom,
    ((~(![X1, X0] : ((living(X0,X1) | ~organism(X0,X1))))) | (![X1, X0] : ((living(X0,X1) | ~organism(X0,X1)))))).

tff(u682,negated_conjecture,
    ((~~entity(sK0,sK4)) | ~entity(sK0,sK4))).

tff(u681,negated_conjecture,
    ((~~entity(sK0,sK2)) | ~entity(sK0,sK2))).

tff(u680,axiom,
    ((~(![X1, X0] : ((entity(X0,X1) | ~organism(X0,X1))))) | (![X1, X0] : ((entity(X0,X1) | ~organism(X0,X1)))))).

tff(u679,negated_conjecture,
    ((~entity(sK0,sK3)) | entity(sK0,sK3))).

tff(u678,axiom,
    ((~(![X1, X0] : ((~mia_forename(X0,X1) | abstraction(X0,X1))))) | (![X1, X0] : ((~mia_forename(X0,X1) | abstraction(X0,X1)))))).

tff(u677,negated_conjecture,
    ((~mia_forename(sK0,sK2)) | mia_forename(sK0,sK2))).

tff(u676,axiom,
    ((~(![X1, X0] : ((~forename(X0,X1) | abstraction(X0,X1))))) | (![X1, X0] : ((~forename(X0,X1) | abstraction(X0,X1)))))).

tff(u675,negated_conjecture,
    ((~forename(sK0,sK2)) | forename(sK0,sK2))).

tff(u674,axiom,
    ((~(![X1, X0] : ((forename(X0,X1) | ~mia_forename(X0,X1))))) | (![X1, X0] : ((forename(X0,X1) | ~mia_forename(X0,X1)))))).

tff(u673,axiom,
    ((~(![X1, X0] : ((~abstraction(X0,X1) | ~entity(X0,X1))))) | (![X1, X0] : ((~abstraction(X0,X1) | ~entity(X0,X1)))))).

tff(u672,axiom,
    ((~(![X1, X0] : ((~abstraction(X0,X1) | nonhuman(X0,X1))))) | (![X1, X0] : ((~abstraction(X0,X1) | nonhuman(X0,X1)))))).

tff(u671,negated_conjecture,
    ((~~abstraction(sK0,sK4)) | ~abstraction(sK0,sK4))).

tff(u670,negated_conjecture,
    ((~~abstraction(sK0,sK1)) | ~abstraction(sK0,sK1))).

tff(u669,negated_conjecture,
    ((~abstraction(sK0,sK2)) | abstraction(sK0,sK2))).

tff(u668,negated_conjecture,
    ((~~unisex(sK0,sK1)) | ~unisex(sK0,sK1))).

tff(u667,axiom,
    ((~(![X1, X0] : ((unisex(X0,X1) | ~abstraction(X0,X1))))) | (![X1, X0] : ((unisex(X0,X1) | ~abstraction(X0,X1)))))).

tff(u666,negated_conjecture,
    ((~unisex(sK0,sK3)) | unisex(sK0,sK3))).

tff(u665,negated_conjecture,
    ((~unisex(sK0,sK4)) | unisex(sK0,sK4))).

tff(u664,negated_conjecture,
    ((~~general(sK0,sK4)) | ~general(sK0,sK4))).

tff(u663,axiom,
    ((~(![X1, X0] : ((~general(X0,X1) | ~entity(X0,X1))))) | (![X1, X0] : ((~general(X0,X1) | ~entity(X0,X1)))))).

tff(u662,axiom,
    ((~(![X1, X0] : ((general(X0,X1) | ~abstraction(X0,X1))))) | (![X1, X0] : ((general(X0,X1) | ~abstraction(X0,X1)))))).

tff(u661,axiom,
    ((~(![X1, X0] : ((~nonhuman(X0,X1) | ~human(X0,X1))))) | (![X1, X0] : ((~nonhuman(X0,X1) | ~human(X0,X1)))))).

tff(u660,negated_conjecture,
    ((~nonhuman(sK0,sK2)) | nonhuman(sK0,sK2))).

tff(u659,axiom,
    ((~(![X1, X0] : ((~relation(X0,X1) | abstraction(X0,X1))))) | (![X1, X0] : ((~relation(X0,X1) | abstraction(X0,X1)))))).

tff(u658,axiom,
    ((~(![X1, X0] : ((relation(X0,X1) | ~forename(X0,X1))))) | (![X1, X0] : ((relation(X0,X1) | ~forename(X0,X1)))))).

tff(u657,axiom,
    ((~(![X1, X0] : ((~relname(X0,X1) | relation(X0,X1))))) | (![X1, X0] : ((~relname(X0,X1) | relation(X0,X1)))))).

tff(u656,axiom,
    ((~(![X1, X0] : ((relname(X0,X1) | ~forename(X0,X1))))) | (![X1, X0] : ((relname(X0,X1) | ~forename(X0,X1)))))).

tff(u655,axiom,
    ((~(![X1, X0] : ((~object(X0,X1) | unisex(X0,X1))))) | (![X1, X0] : ((~object(X0,X1) | unisex(X0,X1)))))).

tff(u654,axiom,
    ((~(![X1, X0] : ((~object(X0,X1) | entity(X0,X1))))) | (![X1, X0] : ((~object(X0,X1) | entity(X0,X1)))))).

tff(u653,axiom,
    ((~(![X1, X0] : ((~object(X0,X1) | nonliving(X0,X1))))) | (![X1, X0] : ((~object(X0,X1) | nonliving(X0,X1)))))).

tff(u652,negated_conjecture,
    ((~object(sK0,sK3)) | object(sK0,sK3))).

tff(u651,axiom,
    ((~(![X1, X0] : ((~nonliving(X0,X1) | ~living(X0,X1))))) | (![X1, X0] : ((~nonliving(X0,X1) | ~living(X0,X1)))))).

tff(u650,axiom,
    ((~(![X1, X0] : ((~nonliving(X0,X1) | ~animate(X0,X1))))) | (![X1, X0] : ((~nonliving(X0,X1) | ~animate(X0,X1)))))).

tff(u649,negated_conjecture,
    ((~nonliving(sK0,sK3)) | nonliving(sK0,sK3))).

tff(u648,negated_conjecture,
    ((~~existent(sK0,sK4)) | ~existent(sK0,sK4))).

tff(u647,axiom,
    ((~(![X1, X0] : ((existent(X0,X1) | ~entity(X0,X1))))) | (![X1, X0] : ((existent(X0,X1) | ~entity(X0,X1)))))).

tff(u646,axiom,
    ((~(![X1, X0] : ((~specific(X0,X1) | ~general(X0,X1))))) | (![X1, X0] : ((~specific(X0,X1) | ~general(X0,X1)))))).

tff(u645,axiom,
    ((~(![X1, X0] : ((specific(X0,X1) | ~entity(X0,X1))))) | (![X1, X0] : ((specific(X0,X1) | ~entity(X0,X1)))))).

tff(u644,negated_conjecture,
    ((~specific(sK0,sK4)) | specific(sK0,sK4))).

tff(u643,axiom,
    ((~(![X1, X0] : ((~substance_matter(X0,X1) | object(X0,X1))))) | (![X1, X0] : ((~substance_matter(X0,X1) | object(X0,X1)))))).

tff(u642,negated_conjecture,
    ((~substance_matter(sK0,sK3)) | substance_matter(sK0,sK3))).

tff(u641,axiom,
    ((~(![X1, X0] : ((~food(X0,X1) | substance_matter(X0,X1))))) | (![X1, X0] : ((~food(X0,X1) | substance_matter(X0,X1)))))).

tff(u640,negated_conjecture,
    ((~food(sK0,sK3)) | food(sK0,sK3))).

tff(u639,axiom,
    ((~(![X1, X0] : ((~beverage(X0,X1) | food(X0,X1))))) | (![X1, X0] : ((~beverage(X0,X1) | food(X0,X1)))))).

tff(u638,negated_conjecture,
    ((~beverage(sK0,sK3)) | beverage(sK0,sK3))).

tff(u637,axiom,
    ((~(![X1, X0] : ((~shake_beverage(X0,X1) | beverage(X0,X1))))) | (![X1, X0] : ((~shake_beverage(X0,X1) | beverage(X0,X1)))))).

tff(u636,negated_conjecture,
    ((~shake_beverage(sK0,sK3)) | shake_beverage(sK0,sK3))).

tff(u635,axiom,
    ((~(![X1, X0] : ((~order(X0,X1) | eventuality(X0,X1))))) | (![X1, X0] : ((~order(X0,X1) | eventuality(X0,X1)))))).

tff(u634,negated_conjecture,
    ((~order(sK0,sK4)) | order(sK0,sK4))).

tff(u633,axiom,
    ((~(![X1, X0] : ((~event(X0,X1) | eventuality(X0,X1))))) | (![X1, X0] : ((~event(X0,X1) | eventuality(X0,X1)))))).

tff(u632,negated_conjecture,
    ((~event(sK0,sK4)) | event(sK0,sK4))).

tff(u631,axiom,
    ((~(![X1, X0] : ((event(X0,X1) | ~order(X0,X1))))) | (![X1, X0] : ((event(X0,X1) | ~order(X0,X1)))))).

tff(u630,axiom,
    ((~(![X1, X0] : ((~eventuality(X0,X1) | unisex(X0,X1))))) | (![X1, X0] : ((~eventuality(X0,X1) | unisex(X0,X1)))))).

tff(u629,axiom,
    ((~(![X1, X0] : ((~eventuality(X0,X1) | specific(X0,X1))))) | (![X1, X0] : ((~eventuality(X0,X1) | specific(X0,X1)))))).

tff(u628,axiom,
    ((~(![X1, X0] : ((~eventuality(X0,X1) | nonexistent(X0,X1))))) | (![X1, X0] : ((~eventuality(X0,X1) | nonexistent(X0,X1)))))).

tff(u627,negated_conjecture,
    ((~eventuality(sK0,sK4)) | eventuality(sK0,sK4))).

tff(u626,axiom,
    ((~(![X1, X0] : ((~nonexistent(X0,X1) | ~existent(X0,X1))))) | (![X1, X0] : ((~nonexistent(X0,X1) | ~existent(X0,X1)))))).

tff(u625,negated_conjecture,
    ((~nonexistent(sK0,sK4)) | nonexistent(sK0,sK4))).

tff(u624,axiom,
    ((~(![X1, X0] : ((~act(X0,X1) | event(X0,X1))))) | (![X1, X0] : ((~act(X0,X1) | event(X0,X1)))))).

tff(u623,axiom,
    ((~(![X1, X0] : ((act(X0,X1) | ~order(X0,X1))))) | (![X1, X0] : ((act(X0,X1) | ~order(X0,X1)))))).

tff(u622,axiom,
    ((~(![X1, X3, X0, X2] : ((~of(X0,X3,X1) | ~forename(X0,X2) | ~of(X0,X2,X1) | ~forename(X0,X3) | (X2 = X3) | ~entity(X0,X1))))) | (![X1, X3, X0, X2] : ((~of(X0,X3,X1) | ~forename(X0,X2) | ~of(X0,X2,X1) | ~forename(X0,X3) | (X2 = X3) | ~entity(X0,X1)))))).

tff(u621,negated_conjecture,
    ((~(![X0] : ((~of(sK0,X0,sK1) | (sK2 = X0) | ~forename(sK0,X0))))) | (![X0] : ((~of(sK0,X0,sK1) | (sK2 = X0) | ~forename(sK0,X0)))))).

tff(u620,negated_conjecture,
    ((~of(sK0,sK2,sK1)) | of(sK0,sK2,sK1))).

tff(u619,axiom,
    ((~(![X1, X3, X0] : ((~nonreflexive(X0,X1) | ~agent(X0,X1,X3) | ~patient(X0,X1,X3))))) | (![X1, X3, X0] : ((~nonreflexive(X0,X1) | ~agent(X0,X1,X3) | ~patient(X0,X1,X3)))))).

tff(u618,negated_conjecture,
    ((~nonreflexive(sK0,sK4)) | nonreflexive(sK0,sK4))).

tff(u617,negated_conjecture,
    ((~~agent(sK0,sK4,sK3)) | ~agent(sK0,sK4,sK3))).

tff(u616,negated_conjecture,
    ((~agent(sK0,sK4,sK1)) | agent(sK0,sK4,sK1))).

tff(u615,negated_conjecture,
    ((~(![X0] : ((~patient(sK0,sK4,X0) | ~agent(sK0,sK4,X0))))) | (![X0] : ((~patient(sK0,sK4,X0) | ~agent(sK0,sK4,X0)))))).

tff(u614,negated_conjecture,
    ((~patient(sK0,sK4,sK3)) | patient(sK0,sK4,sK3))).

% # SZS output end Saturation.

Sample solution for SWV017+1

% SZS status Satisfiable for SWV017+1
% SZS output start FiniteModel for SWV017+1
tff(declare_$i,type,$i:$tType).
tff(declare_$i1,type,at:$i).
tff(declare_$i2,type,t:$i).
tff(finite_domain,axiom,
      ! [X:$i] : (
         X = at | X = t
      ) ).

tff(distinct_domain,axiom,
         at != t
).

tff(declare_bool,type,$o:$tType).
tff(declare_bool1,type,fmb_bool_1:$o).
tff(finite_domain,axiom,
      ! [X:$o] : (
         X = fmb_bool_1
      ) ).

tff(declare_a,type,a:$i).
tff(a_definition,axiom,a = at).
tff(declare_b,type,b:$i).
tff(b_definition,axiom,b = at).
tff(declare_an_a_nonce,type,an_a_nonce:$i).
tff(an_a_nonce_definition,axiom,an_a_nonce = at).
tff(declare_bt,type,bt:$i).
tff(bt_definition,axiom,bt = t).
tff(declare_an_intruder_nonce,type,an_intruder_nonce:$i).
tff(an_intruder_nonce_definition,axiom,an_intruder_nonce = at).
tff(declare_key,type,key: $i * $i > $i).
tff(function_key,axiom,
           key(at,at) = at
         & key(at,t) = at
         & key(t,at) = t
         & key(t,t) = t

).

tff(declare_pair,type,pair: $i * $i > $i).
tff(function_pair,axiom,
           pair(at,at) = at
         & pair(at,t) = t
         & pair(t,at) = t
         & pair(t,t) = t

).

tff(declare_sent,type,sent: $i * $i * $i > $i).
tff(function_sent,axiom,
           sent(at,at,at) = at
         & sent(at,at,t) = t
         & sent(at,t,at) = at
         & sent(at,t,t) = t
         & sent(t,at,at) = at
         & sent(t,at,t) = t
         & sent(t,t,at) = at
         & sent(t,t,t) = t

).

tff(declare_quadruple,type,quadruple: $i * $i * $i * $i > $i).
tff(function_quadruple,axiom,
           quadruple(at,at,at,at) = at
         & quadruple(at,at,at,t) = t
         & quadruple(at,at,t,at) = t
         & quadruple(at,at,t,t) = t
         & quadruple(at,t,at,at) = t
         & quadruple(at,t,at,t) = t
         & quadruple(at,t,t,at) = t
         & quadruple(at,t,t,t) = t
         & quadruple(t,at,at,at) = t
         & quadruple(t,at,at,t) = t
         & quadruple(t,at,t,at) = t
         & quadruple(t,at,t,t) = t
         & quadruple(t,t,at,at) = t
         & quadruple(t,t,at,t) = t
         & quadruple(t,t,t,at) = t
         & quadruple(t,t,t,t) = t

).

tff(declare_encrypt,type,encrypt: $i * $i > $i).
tff(function_encrypt,axiom,
           encrypt(at,at) = at
         & encrypt(at,t) = at
         & encrypt(t,at) = at
         & encrypt(t,t) = at

).

tff(declare_triple,type,triple: $i * $i * $i > $i).
tff(function_triple,axiom,
           triple(at,at,at) = at
         & triple(at,at,t) = t
         & triple(at,t,at) = t
         & triple(at,t,t) = t
         & triple(t,at,at) = t
         & triple(t,at,t) = t
         & triple(t,t,at) = t
         & triple(t,t,t) = t

).

tff(declare_generate_b_nonce,type,generate_b_nonce: $i > $i).
tff(function_generate_b_nonce,axiom,
           generate_b_nonce(at) = at
         & generate_b_nonce(t) = at

).

tff(declare_generate_expiration_time,type,generate_expiration_time: $i > $i).
tff(function_generate_expiration_time,axiom,
           generate_expiration_time(at) = at
         & generate_expiration_time(t) = at

).

tff(declare_generate_key,type,generate_key: $i > $i).
tff(function_generate_key,axiom,
           generate_key(at) = t
         & generate_key(t) = t

).

tff(declare_generate_intruder_nonce,type,generate_intruder_nonce: $i > $i).
tff(function_generate_intruder_nonce,axiom,
           generate_intruder_nonce(at) = at
         & generate_intruder_nonce(t) = t

).

tff(declare_a_holds,type,a_holds: $i > $o ).
tff(predicate_a_holds,axiom,
%         a_holds(at) undefined in model
%         a_holds(t) undefined in model

).

tff(declare_party_of_protocol,type,party_of_protocol: $i > $o ).
tff(predicate_party_of_protocol,axiom,
           party_of_protocol(at)
         & party_of_protocol(t)

).

tff(declare_message,type,message: $i > $o ).
tff(predicate_message,axiom,
           message(at)
         & ~message(t)

).

tff(declare_a_stored,type,a_stored: $i > $o ).
tff(predicate_a_stored,axiom,
           a_stored(at)
         & ~a_stored(t)

).

tff(declare_b_holds,type,b_holds: $i > $o ).
tff(predicate_b_holds,axiom,
%         b_holds(at) undefined in model
%         b_holds(t) undefined in model

).

tff(declare_fresh_to_b,type,fresh_to_b: $i > $o ).
tff(predicate_fresh_to_b,axiom,
           fresh_to_b(at)
         & fresh_to_b(t)

).

tff(declare_b_stored,type,b_stored: $i > $o ).
tff(predicate_b_stored,axiom,
%         b_stored(at) undefined in model
%         b_stored(t) undefined in model

).

tff(declare_a_key,type,a_key: $i > $o ).
tff(predicate_a_key,axiom,
           ~a_key(at)
         & a_key(t)

).

tff(declare_t_holds,type,t_holds: $i > $o ).
tff(predicate_t_holds,axiom,
           t_holds(at)
         & t_holds(t)

).

tff(declare_a_nonce,type,a_nonce: $i > $o ).
tff(predicate_a_nonce,axiom,
           a_nonce(at)
         & ~a_nonce(t)

).

tff(declare_intruder_message,type,intruder_message: $i > $o ).
tff(predicate_intruder_message,axiom,
           intruder_message(at)
         & ~intruder_message(t)

).

tff(declare_intruder_holds,type,intruder_holds: $i > $o ).
tff(predicate_intruder_holds,axiom,
           intruder_holds(at)
         & ~intruder_holds(t)

).

tff(declare_fresh_intruder_nonce,type,fresh_intruder_nonce: $i > $o ).
tff(predicate_fresh_intruder_nonce,axiom,
           fresh_intruder_nonce(at)
         & ~fresh_intruder_nonce(t)

).

% SZS output end FiniteModel for SWV017+1

Sample solution for BOO001-1

% SZS status Unsatisfiable for BOO001-1
% SZS output start Proof for BOO001-1
fof(f132,plain,(
  $false),
  inference(subsumption_resolution,[],[f130,f8])).
fof(f8,plain,(
  sP0(a)),
  inference(inequality_splitting,[],[f6,f7])).
fof(f7,plain,(
  ~sP0(inverse(inverse(a)))),
  introduced(inequality_splitting_name_introduction,[new_symbols(naming,[sP0])])).
fof(f6,axiom,(
  a != inverse(inverse(a))),
  file('/tmp/SystemOnTPTP23888/BOO001-1.tptp',prove_inverse_is_self_cancelling)).
fof(f130,plain,(
  ~sP0(a)),
  inference(backward_demodulation,[],[f7,f119])).
fof(f119,plain,(
  ( ! [X18 : $i] : (inverse(inverse(X18)) = X18) )),
  inference(superposition,[],[f105,f5])).
fof(f5,axiom,(
  ( ! [X2 : $i,X3 : $i] : (multiply(X2,X3,inverse(X3)) = X2) )),
  file('/tmp/SystemOnTPTP23888/BOO001-1.tptp',right_inverse)).
fof(f105,plain,(
  ( ! [X28 : $i,X27 : $i] : (multiply(X28,inverse(X28),X27) = X27) )),
  inference(superposition,[],[f34,f5])).
fof(f34,plain,(
  ( ! [X4 : $i,X5 : $i,X3 : $i] : (multiply(X5,X3,X4) = multiply(X3,X4,multiply(X5,X3,X4))) )),
  inference(superposition,[],[f9,f2])).
fof(f2,axiom,(
  ( ! [X2 : $i,X3 : $i] : (multiply(X3,X2,X2) = X2) )),
  file('/tmp/SystemOnTPTP23888/BOO001-1.tptp',ternary_multiply_1)).
fof(f9,plain,(
  ( ! [X2 : $i,X0 : $i,X3 : $i,X1 : $i] : (multiply(X0,X1,multiply(X1,X2,X3)) = multiply(X1,X2,multiply(X0,X1,X3))) )),
  inference(superposition,[],[f1,f2])).
fof(f1,axiom,(
  ( ! [X4 : $i,X2 : $i,X0 : $i,X3 : $i,X1 : $i] : (multiply(multiply(X0,X1,X2),X3,multiply(X0,X1,X4)) = multiply(X0,X1,multiply(X2,X3,X4))) )),
  file('/tmp/SystemOnTPTP23888/BOO001-1.tptp',associativity)).
% SZS output end Proof for BOO001-1

Zipperposition 2.0

Petar Vukmirović
Vrije Universiteit Amsterdam, The Netherlands

Sample solution for SET014^4

% SZS output start Refutation
tff(subset, axiom, subset() =
  ^[X:(($i > $o)),Y:(($i > $o))]: (![U]: (X(U) => Y(U)))).
tff('0', plain,
    subset = (^[X:(($i > $o)),Y:(($i > $o))]: (![U]: (X(U) => Y(U)))),
    inference('simplify_rw_rule', [status(thm)], [subset])).
tff('1', plain,
    subset =
    (^[V_1:(($i > $o)),V_2:(($i > $o))]: (![X4]: (V_1(X4) => V_2(X4)))),
    define([status(thm)])).
tff(union, axiom, union() = ^[X:(($i > $o)),Y:(($i > $o)),U]: (X(U) | Y(U))).
tff('2', plain, union = (^[X:(($i > $o)),Y:(($i > $o)),U]: (X(U) | Y(U))),
    inference('simplify_rw_rule', [status(thm)], [union])).
tff('3', plain,
    union = (^[V_1:(($i > $o)),V_2:(($i > $o)),V_3]: (V_1(V_3) | V_2(V_3))),
    define([status(thm)])).
tff(thm, conjecture,
  (![X:(($i > $o)),Y:(($i > $o)),A:(($i > $o))]:
     ((subset(X,A) & subset(Y,A)) => subset(union(X,Y),A)))).
tff(zf_stmt_0, conjecture,
  (![X4:(($i > $o)),X6:(($i > $o)),X8:(($i > $o))]:
     (((![X12]: (X6(X12) => X8(X12))) & (![X10]: (X4(X10) => X8(X10)))) =>
      (![X14]: ((X6(X14) | X4(X14)) => X8(X14)))))).
tff(zf_stmt_1, negated_conjecture,
  (~
    (![X4:(($i > $o)),X6:(($i > $o)),X8:(($i > $o))]:
       (((![X12]: (X6(X12) => X8(X12))) & (![X10]: (X4(X10) => X8(X10)))) =>
        (![X14]: ((X6(X14) | X4(X14)) => X8(X14))))))).
tff('4', plain,
    ~ (!!((^[Y0 : $i > $o]:
             (!!((^[Y1 : $i > $o]:
                    (!!((^[Y2 : $i > $o]:
                           (((!!((^[Y3 : $i]: (Y1(Y3) => Y2(Y3))))) &
                             (!!((^[Y3 : $i]: (Y0(Y3) => Y2(Y3)))))) =>
                            (!!((^[Y3 : $i]: ((Y1(Y3) | Y0(Y3)) => Y2(Y3))))))))))))))),
    inference('cnf', [status(esa)], [zf_stmt_1])).
tff('5', plain,
    ~ (!!((^[Y0 : $i > $o]:
             (!!((^[Y1 : $i > $o]:
                    (((!!((^[Y2 : $i]: (Y0(Y2) => Y1(Y2))))) &
                      (!!((^[Y2 : $i]: ('#sk1'(Y2) => Y1(Y2)))))) =>
                     (!!((^[Y2 : $i]: ((Y0(Y2) | '#sk1'(Y2)) => Y1(Y2)))))))))))),
    inference('lazy_cnf_exists', [status(thm)], ['4'])).
tff('6', plain,
    ~ (!!((^[Y0 : $i > $o]:
             (((!!((^[Y1 : $i]: ('#sk2'(Y1) => Y0(Y1))))) &
               (!!((^[Y1 : $i]: ('#sk1'(Y1) => Y0(Y1)))))) =>
              (!!((^[Y1 : $i]: (('#sk2'(Y1) | '#sk1'(Y1)) => Y0(Y1))))))))),
    inference('lazy_cnf_exists', [status(thm)], ['5'])).
tff('7', plain,
    ~ (((!!((^[Y0 : $i]: ('#sk2'(Y0) => '#sk3'(Y0))))) &
        (!!((^[Y0 : $i]: ('#sk1'(Y0) => '#sk3'(Y0)))))) =>
       (!!((^[Y0 : $i]: (('#sk2'(Y0) | '#sk1'(Y0)) => '#sk3'(Y0)))))),
    inference('lazy_cnf_exists', [status(thm)], ['6'])).
tff('8', plain,
    ~ (!!((^[Y0 : $i]: (('#sk2'(Y0) | '#sk1'(Y0)) => '#sk3'(Y0))))),
    inference('lazy_cnf_imply', [status(thm)], ['7'])).
tff('9', plain, ~ (('#sk2'('#sk4') | '#sk1'('#sk4')) => '#sk3'('#sk4')),
    inference('lazy_cnf_exists', [status(thm)], ['8'])).
tff('10', plain, ~ '#sk3'('#sk4'),
    inference('lazy_cnf_imply', [status(thm)], ['9'])).
tff('11', plain,  ('#sk2'('#sk4') | '#sk1'('#sk4')),
    inference('lazy_cnf_imply', [status(thm)], ['9'])).
tff('12', plain, ( '#sk2'('#sk4') |  '#sk1'('#sk4')),
    inference('lazy_cnf_or', [status(thm)], ['11'])).
tff('13', plain,
     ((!!((^[Y0 : $i]: ('#sk2'(Y0) => '#sk3'(Y0))))) &
      (!!((^[Y0 : $i]: ('#sk1'(Y0) => '#sk3'(Y0)))))),
    inference('lazy_cnf_imply', [status(thm)], ['7'])).
tff('14', plain,  (!!((^[Y0 : $i]: ('#sk2'(Y0) => '#sk3'(Y0))))),
    inference('lazy_cnf_and', [status(thm)], ['13'])).
tff('15', plain, ![X1]:  ('#sk2'(X1) => '#sk3'(X1)),
    inference('lazy_cnf_forall', [status(thm)], ['14'])).
tff('16', plain, ![X1]: (~ '#sk2'(X1) |  '#sk3'(X1)),
    inference('lazy_cnf_imply', [status(thm)], ['15'])).
tff('17', plain, ( '#sk1'('#sk4') |  '#sk3'('#sk4')),
    inference('sup-', [status(thm)], ['12', '16'])).
tff('18', plain,  (!!((^[Y0 : $i]: ('#sk1'(Y0) => '#sk3'(Y0))))),
    inference('lazy_cnf_and', [status(thm)], ['13'])).
tff('19', plain, ![X1]:  ('#sk1'(X1) => '#sk3'(X1)),
    inference('lazy_cnf_forall', [status(thm)], ['18'])).
tff('20', plain, ![X1]: (~ '#sk1'(X1) |  '#sk3'(X1)),
    inference('lazy_cnf_imply', [status(thm)], ['19'])).
tff('21', plain,  '#sk3'('#sk4'),
    inference('clc', [status(thm)], ['17', '20'])).
tff('22', plain, $false, inference('demod', [status(thm)], ['10', '21'])).

% SZS output end Refutation

Sample solution for SEU140+2

% SZS output start Refutation
tff(t63_xboole_1, conjecture,
  (![A,B,C]: ((subset(A,B) & disjoint(B,C)) => disjoint(A,C)))).
tff(zf_stmt_0, negated_conjecture,
  (~(![A,B,C]: ((subset(A,B) & disjoint(B,C)) => disjoint(A,C))))).
tff('0', plain, ~ disjoint(sk_A_2, sk_C_4),
    inference('cnf', [status(esa)], [zf_stmt_0])).
tff('1', plain,  disjoint(sk_B_1, sk_C_4),
    inference('cnf', [status(esa)], [zf_stmt_0])).
tff(d7_xboole_0, axiom,
  (![A,B]: (disjoint(A,B) <=> (set_intersection2(A,B) = empty_set)))).
tff('2', plain,
    ![X36, X37]:
      (set_intersection2(X36, X37) = empty_set | ~ disjoint(X36, X37)),
    inference('cnf', [status(esa)], [d7_xboole_0])).
tff('3', plain, set_intersection2(sk_B_1, sk_C_4) = empty_set,
    inference('sup-', [status(thm)], ['1', '2'])).
tff('4', plain,  subset(sk_A_2, sk_B_1),
    inference('cnf', [status(esa)], [zf_stmt_0])).
tff(t26_xboole_1, axiom,
  (![A,B,C]:
     (subset(A,B) => subset(set_intersection2(A,C),set_intersection2(B,C))))).
tff('5', plain,
    ![X66, X67, X68]:
      (~ subset(X66, X67)
       |  subset(set_intersection2(X66, X68), set_intersection2(X67, X68))),
    inference('cnf', [status(esa)], [t26_xboole_1])).
tff('6', plain,
    ![X0]:
       subset(set_intersection2(sk_A_2, X0), set_intersection2(sk_B_1, X0)),
    inference('sup-', [status(thm)], ['4', '5'])).
tff('7', plain,  subset(set_intersection2(sk_A_2, sk_C_4), empty_set),
    inference('sup+', [status(thm)], ['3', '6'])).
tff(t3_xboole_1, axiom, (![A]: (subset(A,empty_set) => (A = empty_set)))).
tff('8', plain, ![X90]: (X90 = empty_set | ~ subset(X90, empty_set)),
    inference('cnf', [status(esa)], [t3_xboole_1])).
tff('9', plain, set_intersection2(sk_A_2, sk_C_4) = empty_set,
    inference('sup-', [status(thm)], ['7', '8'])).
tff('10', plain,
    ![X36, X38]:
      ( disjoint(X36, X38) | set_intersection2(X36, X38) != empty_set),
    inference('cnf', [status(esa)], [d7_xboole_0])).
tff('11', plain, (empty_set != empty_set |  disjoint(sk_A_2, sk_C_4)),
    inference('sup-', [status(thm)], ['9', '10'])).
tff('12', plain,  disjoint(sk_A_2, sk_C_4),
    inference('simplify', [status(thm)], ['11'])).
tff('13', plain, $false, inference('demod', [status(thm)], ['0', '12'])).

% SZS output end Refutation

Sample solution for HL400001^7

% SZS output start Refutation
tff(thm_2Ebool_2ETRUTH, conjecture, (c_2Ebool_2ET)).
tff(zf_stmt_0, negated_conjecture, (~c_2Ebool_2ET)).
tff('0', plain, ~ c_2Ebool_2ET, inference('cnf', [status(esa)], [zf_stmt_0])).
tff(thm_2Ebool_2ET__DEF, axiom, (c_2Ebool_2ET <=> (![V1x:$o]: $true))).
tff('1', plain,  c_2Ebool_2ET,
    inference('cnf', [status(esa)], [thm_2Ebool_2ET__DEF])).
tff('2', plain, $false, inference('demod', [status(thm)], ['0', '1'])).

% SZS output end Refutation

Sample solution for HL400001^5

% SZS output start Refutation
tff(conj_thm_2Ebool_2ETRUTH, conjecture, ($true)).
tff(zf_stmt_0, negated_conjecture, ($false)).
tff('0', plain, $false, inference('cnf', [status(esa)], [zf_stmt_0])).

% SZS output end Refutation

Sample solution for HL400001^4

% SZS output start Refutation
tff(thm_2Ebool_2ETRUTH, conjecture, (mono_2Ec_2Ebool_2ET)).
tff(zf_stmt_0, negated_conjecture, (~mono_2Ec_2Ebool_2ET)).
tff('0', plain, ~ mono_2Ec_2Ebool_2ET,
    inference('cnf', [status(esa)], [zf_stmt_0])).
tff(thm_2Ebool_2ET__DEF, axiom, (mono_2Ec_2Ebool_2ET <=> (![V0x:$o]: $true))).
tff('1', plain,  mono_2Ec_2Ebool_2ET,
    inference('cnf', [status(esa)], [thm_2Ebool_2ET__DEF])).
tff('2', plain, $false, inference('demod', [status(thm)], ['0', '1'])).

% SZS output end Refutation

Sample solution for HL400001_7

% SZS output start Refutation
tff(thm_2Ebool_2ETRUTH, conjecture, (p(c_2Ebool_2ET_2E0))).
tff(zf_stmt_0, negated_conjecture, (~p(c_2Ebool_2ET_2E0))).
tff('0', plain, ~ p(c_2Ebool_2ET_2E0),
    inference('cnf', [status(esa)], [zf_stmt_0])).
tff(thm_2Eextra_2Dho_2Etruth, axiom, (p(c_2Ebool_2ET_2E0))).
tff('1', plain,  p(c_2Ebool_2ET_2E0),
    inference('cnf', [status(esa)], [thm_2Eextra_2Dho_2Etruth])).
tff('2', plain, $false, inference('demod', [status(thm)], ['0', '1'])).

% SZS output end Refutation

Sample solution for HL400001_5

% SZS output start Refutation
tff(conj_thm_2Ebool_2ETRUTH, conjecture, ($true)).
tff(zf_stmt_0, negated_conjecture, ($false)).
tff('0', plain, $false, inference('cnf', [status(esa)], [zf_stmt_0])).

% SZS output end Refutation

Sample solution for HL400001_4

% SZS output start Refutation
tff(thm_2Ebool_2ETRUTH, conjecture, (p(mono_2Ec_2Ebool_2ET_2E0))).
tff(zf_stmt_0, negated_conjecture, (~p(mono_2Ec_2Ebool_2ET_2E0))).
tff('0', plain, ~ p(mono_2Ec_2Ebool_2ET_2E0),
    inference('cnf', [status(esa)], [zf_stmt_0])).
tff(reserved_2Eho_2Etruth, axiom, (p(mono_2Ec_2Ebool_2ET_2E0))).
tff('1', plain,  p(mono_2Ec_2Ebool_2ET_2E0),
    inference('cnf', [status(esa)], [reserved_2Eho_2Etruth])).
tff('2', plain, $false, inference('demod', [status(thm)], ['0', '1'])).

% SZS output end Refutation

Sample solution for HL400001+5

% SZS output start Refutation
tff(conj_thm_2Ebool_2ETRUTH, conjecture, ($true)).
tff(zf_stmt_0, negated_conjecture, ($false)).
tff('0', plain, $false, inference('cnf', [status(esa)], [zf_stmt_0])).

% SZS output end Refutation

Sample solution for HL400001+4

% SZS output start Refutation
tff(thm_2Ebool_2ETRUTH, conjecture,
  (p(s(tyop_2Emin_2Ebool,c_2Ebool_2ET_2E0)))).
tff(zf_stmt_0, negated_conjecture,
  (~p(s(tyop_2Emin_2Ebool,c_2Ebool_2ET_2E0)))).
tff('0', plain, ~ p(s(tyop_2Emin_2Ebool, c_2Ebool_2ET_2E0)),
    inference('cnf', [status(esa)], [zf_stmt_0])).
tff(reserved_2Eho_2Etruth, axiom, (p(s(tyop_2Emin_2Ebool,c_2Ebool_2ET_2E0)))).
tff('1', plain,  p(s(tyop_2Emin_2Ebool, c_2Ebool_2ET_2E0)),
    inference('cnf', [status(esa)], [reserved_2Eho_2Etruth])).
tff('2', plain, $false, inference('demod', [status(thm)], ['0', '1'])).

% SZS output end Refutation

Zipperposition 2.1

Petar Vukmirović
Vrije Universiteit Amsterdam, The Netherlands

Sample solution for SET014^4

% SZS status Theorem for '/home/petar/Documents/tptp/Problems/SET/SET014^4.p'
% SZS output start Refutation
thf(sk__5_type, type, sk__5: $i > $o).
thf(sk__3_type, type, sk__3: $i > $o).
thf(union_type, type, union: ($i > $o) > ($i > $o) > $i > $o).
thf(sk__6_type, type, sk__6: $i).
thf(sk__4_type, type, sk__4: $i > $o).
thf(subset_type, type, subset: ($i > $o) > ($i > $o) > $o).
thf(subset, axiom,(( subset  ) =
  (^[X:( $i > $o ),Y:( $i > $o )]: ( ![U:$i]: ( ( X @ U ) => ( Y @ U ) ) )))).
thf('0', plain,
    (( subset ) =
     ( ^[X:( $i > $o ),Y:( $i > $o )]:
       ( ![U:$i]: ( ( X @ U ) => ( Y @ U ) ) ) )),
    inference('simplify_rw_rule', [status(thm)], [subset])).
thf('1', plain,
    (( subset ) =
     ( ^[V_1:( $i > $o ),V_2:( $i > $o )]:
       ( ![X4:$i]: ( ( V_1 @ X4 ) => ( V_2 @ X4 ) ) ) )),
    define([status(thm)])).
thf(union, axiom,(( union  ) =
  (^[X:( $i > $o ),Y:( $i > $o ),U:$i]: ( ( X @ U ) | ( Y @ U ) )))).
thf('2', plain,
    (( union ) =
     ( ^[X:( $i > $o ),Y:( $i > $o ),U:$i]: ( ( X @ U ) | ( Y @ U ) ) )),
    inference('simplify_rw_rule', [status(thm)], [union])).
thf('3', plain,
    (( union ) =
     ( ^[V_1:( $i > $o ),V_2:( $i > $o ),V_3:$i]:
       ( ( V_1 @ V_3 ) | ( V_2 @ V_3 ) ) )),
    define([status(thm)])).
thf(thm, conjecture,
  (![X:( $i > $o ),Y:( $i > $o ),A:( $i > $o )]:
   ( ( ( subset @ X @ A ) & ( subset @ Y @ A ) ) =>
     ( subset @ ( union @ X @ Y ) @ A ) ))).
thf(zf_stmt_0, conjecture,
  (![X4:( $i > $o ),X6:( $i > $o ),X8:( $i > $o )]:
   ( ( ( ![X10:$i]: ( ( X4 @ X10 ) => ( X8 @ X10 ) ) ) & 
       ( ![X12:$i]: ( ( X6 @ X12 ) => ( X8 @ X12 ) ) ) ) =>
     ( ![X14:$i]: ( ( ( X4 @ X14 ) | ( X6 @ X14 ) ) => ( X8 @ X14 ) ) ) ))).
thf(zf_stmt_1, negated_conjecture,
  (~( ![X4:( $i > $o ),X6:( $i > $o ),X8:( $i > $o )]:
      ( ( ( ![X10:$i]: ( ( X4 @ X10 ) => ( X8 @ X10 ) ) ) & 
          ( ![X12:$i]: ( ( X6 @ X12 ) => ( X8 @ X12 ) ) ) ) =>
        ( ![X14:$i]: ( ( ( X4 @ X14 ) | ( X6 @ X14 ) ) => ( X8 @ X14 ) ) ) ) )),
  inference('cnf.neg', [status(esa)], [zf_stmt_0])).
thf(zip_derived_cl2, plain, (~ (sk__5 @ sk__6)),
    inference('cnf', [status(esa)], [zf_stmt_1])).
thf(zip_derived_cl3, plain, (( (sk__3 @ sk__6) |  (sk__4 @ sk__6))),
    inference('cnf', [status(esa)], [zf_stmt_1])).
thf(zip_derived_cl1, plain, (![X1 : $i]: ( (sk__5 @ X1) | ~ (sk__4 @ X1))),
    inference('cnf', [status(esa)], [zf_stmt_1])).
thf(zip_derived_cl5, plain, (( (sk__3 @ sk__6) |  (sk__5 @ sk__6))),
    inference('sup-', [status(thm)], [zip_derived_cl3, zip_derived_cl1])).
thf(zip_derived_cl2, plain, (~ (sk__5 @ sk__6)),
    inference('cnf', [status(esa)], [zf_stmt_1])).
thf(zip_derived_cl8, plain, ( (sk__3 @ sk__6)),
    inference('demod', [status(thm)], [zip_derived_cl5, zip_derived_cl2])).
thf(zip_derived_cl0, plain, (![X0 : $i]: ( (sk__5 @ X0) | ~ (sk__3 @ X0))),
    inference('cnf', [status(esa)], [zf_stmt_1])).
thf(zip_derived_cl12, plain, ( (sk__5 @ sk__6)),
    inference('sup-', [status(thm)], [zip_derived_cl8, zip_derived_cl0])).
thf(zip_derived_cl16, plain, ($false),
    inference('demod', [status(thm)], [zip_derived_cl2, zip_derived_cl12])).

% SZS output end Refutation

Sample solution for SEU140+2

% SZS status Theorem for '/home/petar/Documents/tptp/Problems/SEU/SEU140+2.p'
% SZS output start Refutation
thf(sk__10_type, type, sk__10: $i).
thf(disjoint_type, type, disjoint: $i > $i > $o).
thf(sk__12_type, type, sk__12: $i).
thf(set_intersection2_type, type, set_intersection2: $i > $i > $i).
thf(in_type, type, in: $i > $i > $o).
thf(subset_type, type, subset: $i > $i > $o).
thf(sk__8_type, type, sk__8: $i > $i > $i).
thf(empty_set_type, type, empty_set: $i).
thf(sk__11_type, type, sk__11: $i).
thf(sk__type, type, sk_: $i > $i).
thf(d1_xboole_0, axiom,
  (![A:$i]:
   ( ( ( A ) = ( empty_set ) ) <=> ( ![B:$i]: ( ~( in @ B @ A ) ) ) ))).
thf(zip_derived_cl8, plain,
    (![X0 : $i]: (((X0) = (empty_set)) |  (in @ (sk_ @ X0) @ X0))),
    inference('cnf', [status(esa)], [d1_xboole_0])).
thf(t63_xboole_1, conjecture,
  (![A:$i,B:$i,C:$i]:
   ( ( ( subset @ A @ B ) & ( disjoint @ B @ C ) ) => ( disjoint @ A @ C ) ))).
thf(zf_stmt_0, negated_conjecture,
  (~( ![A:$i,B:$i,C:$i]:
      ( ( ( subset @ A @ B ) & ( disjoint @ B @ C ) ) => ( disjoint @ A @ C ) ) )),
  inference('cnf.neg', [status(esa)], [t63_xboole_1])).
thf(zip_derived_cl81, plain, ( (subset @ sk__10 @ sk__11)),
    inference('cnf', [status(esa)], [zf_stmt_0])).
thf(zip_derived_cl80, plain, ( (disjoint @ sk__11 @ sk__12)),
    inference('cnf', [status(esa)], [zf_stmt_0])).
thf(d7_xboole_0, axiom,
  (![A:$i,B:$i]:
   ( ( disjoint @ A @ B ) <=>
     ( ( set_intersection2 @ A @ B ) = ( empty_set ) ) ))).
thf(zip_derived_cl30, plain,
    (![X0 : $i, X1 : $i]:
       (((set_intersection2 @ X0 @ X1) = (empty_set))
        | ~ (disjoint @ X0 @ X1))),
    inference('cnf', [status(esa)], [d7_xboole_0])).
thf(zip_derived_cl571, plain,
    (((set_intersection2 @ sk__11 @ sk__12) = (empty_set))),
    inference('s_sup-', [status(thm)], [zip_derived_cl80, zip_derived_cl30])).
thf(t26_xboole_1, axiom,
  (![A:$i,B:$i,C:$i]:
   ( ( subset @ A @ B ) =>
     ( subset @ ( set_intersection2 @ A @ C ) @ ( set_intersection2 @ B @ C ) ) ))).
thf(zip_derived_cl56, plain,
    (![X0 : $i, X1 : $i, X2 : $i]:
       (~ (subset @ X0 @ X1)
        |  (subset @ (set_intersection2 @ X0 @ X2) @ 
            (set_intersection2 @ X1 @ X2)))),
    inference('cnf', [status(esa)], [t26_xboole_1])).
thf(zip_derived_cl765, plain,
    (![X0 : $i]:
       (~ (subset @ X0 @ sk__11)
        |  (subset @ (set_intersection2 @ X0 @ sk__12) @ empty_set))),
    inference('s_sup+', [status(thm)], [zip_derived_cl571, zip_derived_cl56])).
thf(t28_xboole_1, axiom,
  (![A:$i,B:$i]:
   ( ( subset @ A @ B ) => ( ( set_intersection2 @ A @ B ) = ( A ) ) ))).
thf(zip_derived_cl57, plain,
    (![X0 : $i, X1 : $i]:
       (((set_intersection2 @ X0 @ X1) = (X0)) | ~ (subset @ X0 @ X1))),
    inference('cnf', [status(esa)], [t28_xboole_1])).
thf(commutativity_k3_xboole_0, axiom,
  (![A:$i,B:$i]:
   ( ( set_intersection2 @ A @ B ) = ( set_intersection2 @ B @ A ) ))).
thf(zip_derived_cl3, plain,
    (![X0 : $i, X1 : $i]:
       ((set_intersection2 @ X1 @ X0) = (set_intersection2 @ X0 @ X1))),
    inference('cnf', [status(esa)], [commutativity_k3_xboole_0])).
thf(t4_xboole_0, axiom,
  (![A:$i,B:$i]:
   ( ( ~( ( ?[C:$i]: ( in @ C @ ( set_intersection2 @ A @ B ) ) ) & 
          ( disjoint @ A @ B ) ) ) & 
     ( ~( ( ~( disjoint @ A @ B ) ) & 
          ( ![C:$i]: ( ~( in @ C @ ( set_intersection2 @ A @ B ) ) ) ) ) ) ))).
thf(zip_derived_cl77, plain,
    (![X0 : $i, X1 : $i, X2 : $i]:
       (~ (in @ X0 @ (set_intersection2 @ X1 @ X2)) | ~ (disjoint @ X1 @ X2))),
    inference('cnf', [status(esa)], [t4_xboole_0])).
thf(zip_derived_cl417, plain,
    (![X0 : $i, X1 : $i, X2 : $i]:
       (~ (in @ X2 @ (set_intersection2 @ X1 @ X0)) | ~ (disjoint @ X0 @ X1))),
    inference('s_sup-', [status(thm)], [zip_derived_cl3, zip_derived_cl77])).
thf(zip_derived_cl644, plain,
    (![X0 : $i, X1 : $i, X2 : $i]:
       (~ (subset @ X0 @ X1) | ~ (in @ X2 @ X0) | ~ (disjoint @ X1 @ X0))),
    inference('s_sup-', [status(thm)], [zip_derived_cl57, zip_derived_cl417])).
thf(zip_derived_cl1458, plain,
    (![X0 : $i, X1 : $i]:
       (~ (subset @ X0 @ sk__11)
        | ~ (in @ X1 @ (set_intersection2 @ X0 @ sk__12))
        | ~ (disjoint @ empty_set @ (set_intersection2 @ X0 @ sk__12)))),
    inference('s_sup-', [status(thm)], [zip_derived_cl765, zip_derived_cl644])).
thf(t3_xboole_0, axiom,
  (![A:$i,B:$i]:
   ( ( ~( ( ?[C:$i]: ( ( in @ C @ B ) & ( in @ C @ A ) ) ) & 
          ( disjoint @ A @ B ) ) ) & 
     ( ~( ( ~( disjoint @ A @ B ) ) & 
          ( ![C:$i]: ( ~( ( in @ C @ A ) & ( in @ C @ B ) ) ) ) ) ) ))).
thf(zip_derived_cl68, plain,
    (![X0 : $i, X1 : $i]:
       ( (disjoint @ X0 @ X1) |  (in @ (sk__8 @ X1 @ X0) @ X0))),
    inference('cnf', [status(esa)], [t3_xboole_0])).
thf(zip_derived_cl7, plain,
    (![X0 : $i, X1 : $i]: (~ (in @ X0 @ X1) | ((X1) != (empty_set)))),
    inference('cnf', [status(esa)], [d1_xboole_0])).
thf(zip_derived_cl373, plain, (![X0 : $i]: ~ (in @ X0 @ empty_set)),
    inference('eq_res', [status(thm)], [zip_derived_cl7])).
thf(zip_derived_cl862, plain, (![X0 : $i]:  (disjoint @ empty_set @ X0)),
    inference('s_sup-', [status(thm)], [zip_derived_cl68, zip_derived_cl373])).
thf(zip_derived_cl1475, plain,
    (![X0 : $i, X1 : $i]:
       (~ (subset @ X0 @ sk__11)
        | ~ (in @ X1 @ (set_intersection2 @ X0 @ sk__12)))),
    inference('demod', [status(thm)], [zip_derived_cl1458, zip_derived_cl862])).
thf(zip_derived_cl1484, plain,
    (![X0 : $i]: ~ (in @ X0 @ (set_intersection2 @ sk__10 @ sk__12))),
    inference('s_sup-', [status(thm)], [zip_derived_cl81, zip_derived_cl1475])).
thf(zip_derived_cl1519, plain,
    (((set_intersection2 @ sk__10 @ sk__12) = (empty_set))),
    inference('s_sup-', [status(thm)], [zip_derived_cl8, zip_derived_cl1484])).
thf(zip_derived_cl31, plain,
    (![X0 : $i, X1 : $i]:
       ( (disjoint @ X0 @ X1)
        | ((set_intersection2 @ X0 @ X1) != (empty_set)))),
    inference('cnf', [status(esa)], [d7_xboole_0])).
thf(zip_derived_cl79, plain, (~ (disjoint @ sk__10 @ sk__12)),
    inference('cnf', [status(esa)], [zf_stmt_0])).
thf(zip_derived_cl524, plain,
    (((set_intersection2 @ sk__10 @ sk__12) != (empty_set))),
    inference('s_sup-', [status(thm)], [zip_derived_cl31, zip_derived_cl79])).
thf(zip_derived_cl1542, plain, ($false),
    inference('simplify_reflect-', [status(thm)],
              [zip_derived_cl1519, zip_derived_cl524])).

% SZS output end Refutation