0.07/0.12 % Problem : theBenchmark.p : TPTP v0.0.0. Released v0.0.0. 0.07/0.13 % Command : twee %s --tstp --casc --quiet --explain-encoding --conditional-encoding if --smaller --drop-non-horn 0.13/0.34 % Computer : n013.cluster.edu 0.13/0.34 % Model : x86_64 x86_64 0.13/0.34 % CPU : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz 0.13/0.34 % Memory : 8042.1875MB 0.13/0.34 % OS : Linux 3.10.0-693.el7.x86_64 0.13/0.34 % CPULimit : 180 0.13/0.34 % DateTime : Thu Aug 29 12:47:16 EDT 2019 0.13/0.34 % CPUTime : 0.47/0.68 % SZS status Unsatisfiable 0.47/0.68 0.47/0.68 % SZS output start Proof 0.47/0.68 Take the following subset of the input axioms: 0.63/0.80 fof(associativity, axiom, ![X, Y, Z]: multiply(multiply(X, Y), Z)=multiply(X, multiply(Y, Z))). 0.63/0.80 fof(associativity_of_glb, axiom, ![X, Y, Z]: greatest_lower_bound(X, greatest_lower_bound(Y, Z))=greatest_lower_bound(greatest_lower_bound(X, Y), Z)). 0.63/0.80 fof(glb_absorbtion, axiom, ![X, Y]: greatest_lower_bound(X, least_upper_bound(X, Y))=X). 0.63/0.80 fof(idempotence_of_gld, axiom, ![X]: X=greatest_lower_bound(X, X)). 0.63/0.80 fof(lat4_1, axiom, ![X]: positive_part(X)=least_upper_bound(X, identity)). 0.63/0.80 fof(lat4_2, axiom, ![X]: negative_part(X)=greatest_lower_bound(X, identity)). 0.63/0.80 fof(lat4_3, axiom, ![X, Y, Z]: least_upper_bound(X, greatest_lower_bound(Y, Z))=greatest_lower_bound(least_upper_bound(X, Y), least_upper_bound(X, Z))). 0.63/0.80 fof(lat4_4, axiom, ![X, Y, Z]: greatest_lower_bound(X, least_upper_bound(Y, Z))=least_upper_bound(greatest_lower_bound(X, Y), greatest_lower_bound(X, Z))). 0.63/0.80 fof(left_identity, axiom, ![X]: X=multiply(identity, X)). 0.63/0.80 fof(left_inverse, axiom, ![X]: multiply(inverse(X), X)=identity). 0.63/0.80 fof(monotony_glb1, axiom, ![X, Y, Z]: multiply(X, greatest_lower_bound(Y, Z))=greatest_lower_bound(multiply(X, Y), multiply(X, Z))). 0.63/0.80 fof(monotony_glb2, axiom, ![X, Y, Z]: greatest_lower_bound(multiply(Y, X), multiply(Z, X))=multiply(greatest_lower_bound(Y, Z), X)). 0.63/0.80 fof(monotony_lub2, axiom, ![X, Y, Z]: least_upper_bound(multiply(Y, X), multiply(Z, X))=multiply(least_upper_bound(Y, Z), X)). 0.63/0.80 fof(prove_lat4, negated_conjecture, multiply(positive_part(a), negative_part(a))!=a). 0.63/0.80 fof(symmetry_of_glb, axiom, ![X, Y]: greatest_lower_bound(Y, X)=greatest_lower_bound(X, Y)). 0.63/0.80 fof(symmetry_of_lub, axiom, ![X, Y]: least_upper_bound(X, Y)=least_upper_bound(Y, X)). 0.63/0.80 0.63/0.80 Now clausify the problem and encode Horn clauses using encoding 3 of 0.63/0.80 http://www.cse.chalmers.se/~nicsma/papers/horn.pdf. 0.63/0.80 We repeatedly replace C & s=t => u=v by the two clauses: 0.63/0.80 fresh(y, y, x1...xn) = u 0.63/0.80 C => fresh(s, t, x1...xn) = v 0.63/0.80 where fresh is a fresh function symbol and x1..xn are the free 0.63/0.80 variables of u and v. 0.63/0.80 A predicate p(X) is encoded as p(X)=true (this is sound, because the 0.63/0.80 input problem has no model of domain size 1). 0.63/0.80 0.63/0.80 The encoding turns the above axioms into the following unit equations and goals: 0.63/0.80 0.63/0.80 Axiom 1 (left_inverse): multiply(inverse(X), X) = identity. 0.63/0.80 Axiom 2 (associativity): multiply(multiply(X, Y), Z) = multiply(X, multiply(Y, Z)). 0.63/0.80 Axiom 3 (left_identity): X = multiply(identity, X). 0.63/0.80 Axiom 4 (symmetry_of_lub): least_upper_bound(X, Y) = least_upper_bound(Y, X). 0.63/0.80 Axiom 5 (glb_absorbtion): greatest_lower_bound(X, least_upper_bound(X, Y)) = X. 0.63/0.80 Axiom 6 (idempotence_of_gld): X = greatest_lower_bound(X, X). 0.63/0.80 Axiom 7 (monotony_glb1): multiply(X, greatest_lower_bound(Y, Z)) = greatest_lower_bound(multiply(X, Y), multiply(X, Z)). 0.63/0.80 Axiom 8 (symmetry_of_glb): greatest_lower_bound(X, Y) = greatest_lower_bound(Y, X). 0.63/0.80 Axiom 9 (monotony_lub2): least_upper_bound(multiply(X, Y), multiply(Z, Y)) = multiply(least_upper_bound(X, Z), Y). 0.63/0.80 Axiom 10 (monotony_glb2): greatest_lower_bound(multiply(X, Y), multiply(Z, Y)) = multiply(greatest_lower_bound(X, Z), Y). 0.63/0.80 Axiom 11 (associativity_of_glb): greatest_lower_bound(X, greatest_lower_bound(Y, Z)) = greatest_lower_bound(greatest_lower_bound(X, Y), Z). 0.63/0.80 Axiom 12 (lat4_2): negative_part(X) = greatest_lower_bound(X, identity). 0.63/0.80 Axiom 13 (lat4_4): greatest_lower_bound(X, least_upper_bound(Y, Z)) = least_upper_bound(greatest_lower_bound(X, Y), greatest_lower_bound(X, Z)). 0.63/0.80 Axiom 14 (lat4_1): positive_part(X) = least_upper_bound(X, identity). 0.63/0.80 Axiom 15 (lat4_3): least_upper_bound(X, greatest_lower_bound(Y, Z)) = greatest_lower_bound(least_upper_bound(X, Y), least_upper_bound(X, Z)). 0.63/0.80 0.63/0.80 Lemma 16: multiply(inverse(X), multiply(X, Y)) = Y. 0.63/0.80 Proof: 0.63/0.80 multiply(inverse(X), multiply(X, Y)) 0.63/0.80 = { by axiom 2 (associativity) } 0.63/0.80 multiply(multiply(inverse(X), X), Y) 0.63/0.80 = { by axiom 1 (left_inverse) } 0.63/0.80 multiply(identity, Y) 0.63/0.80 = { by axiom 3 (left_identity) } 0.63/0.80 Y 0.63/0.80 0.63/0.80 Lemma 17: multiply(inverse(inverse(X)), Y) = multiply(X, Y). 0.63/0.80 Proof: 0.63/0.80 multiply(inverse(inverse(X)), Y) 0.63/0.80 = { by lemma 16 } 0.63/0.80 multiply(inverse(inverse(X)), multiply(inverse(X), multiply(X, Y))) 0.63/0.80 = { by lemma 16 } 0.63/0.80 multiply(X, Y) 0.63/0.80 0.63/0.80 Lemma 18: multiply(inverse(inverse(X)), identity) = X. 0.63/0.80 Proof: 0.63/0.80 multiply(inverse(inverse(X)), identity) 0.63/0.80 = { by axiom 1 (left_inverse) } 0.63/0.80 multiply(inverse(inverse(X)), multiply(inverse(X), X)) 0.63/0.80 = { by lemma 16 } 0.63/0.80 X 0.63/0.80 0.63/0.80 Lemma 19: multiply(X, identity) = X. 0.63/0.80 Proof: 0.63/0.80 multiply(X, identity) 0.63/0.80 = { by lemma 17 } 0.63/0.80 multiply(inverse(inverse(X)), identity) 0.63/0.80 = { by lemma 18 } 0.63/0.80 X 0.63/0.80 0.63/0.80 Lemma 20: least_upper_bound(identity, X) = positive_part(X). 0.63/0.80 Proof: 0.63/0.80 least_upper_bound(identity, X) 0.63/0.80 = { by axiom 4 (symmetry_of_lub) } 0.63/0.80 least_upper_bound(X, identity) 0.63/0.80 = { by axiom 14 (lat4_1) } 0.63/0.80 positive_part(X) 0.63/0.80 0.63/0.80 Lemma 21: least_upper_bound(Y, multiply(X, Y)) = multiply(positive_part(X), Y). 0.63/0.80 Proof: 0.63/0.80 least_upper_bound(Y, multiply(X, Y)) 0.63/0.80 = { by axiom 3 (left_identity) } 0.63/0.80 least_upper_bound(multiply(identity, Y), multiply(X, Y)) 0.63/0.80 = { by axiom 9 (monotony_lub2) } 0.63/0.80 multiply(least_upper_bound(identity, X), Y) 0.63/0.80 = { by lemma 20 } 0.63/0.80 multiply(positive_part(X), Y) 0.63/0.80 0.63/0.80 Lemma 22: greatest_lower_bound(identity, X) = negative_part(X). 0.63/0.80 Proof: 0.63/0.80 greatest_lower_bound(identity, X) 0.63/0.80 = { by axiom 8 (symmetry_of_glb) } 0.63/0.80 greatest_lower_bound(X, identity) 0.63/0.80 = { by axiom 12 (lat4_2) } 0.63/0.80 negative_part(X) 0.63/0.80 0.63/0.80 Lemma 23: multiply(inverse(X), greatest_lower_bound(X, Y)) = negative_part(multiply(inverse(X), Y)). 0.63/0.80 Proof: 0.63/0.80 multiply(inverse(X), greatest_lower_bound(X, Y)) 0.63/0.80 = { by axiom 7 (monotony_glb1) } 0.63/0.80 greatest_lower_bound(multiply(inverse(X), X), multiply(inverse(X), Y)) 0.63/0.80 = { by axiom 1 (left_inverse) } 0.63/0.80 greatest_lower_bound(identity, multiply(inverse(X), Y)) 0.63/0.80 = { by lemma 22 } 0.63/0.80 negative_part(multiply(inverse(X), Y)) 0.63/0.80 0.63/0.80 Lemma 24: greatest_lower_bound(Y, multiply(X, Y)) = multiply(negative_part(X), Y). 0.63/0.80 Proof: 0.63/0.80 greatest_lower_bound(Y, multiply(X, Y)) 0.63/0.80 = { by axiom 3 (left_identity) } 0.63/0.80 greatest_lower_bound(multiply(identity, Y), multiply(X, Y)) 0.63/0.80 = { by axiom 10 (monotony_glb2) } 0.63/0.80 multiply(greatest_lower_bound(identity, X), Y) 0.63/0.80 = { by lemma 22 } 0.63/0.80 multiply(negative_part(X), Y) 0.63/0.80 0.63/0.80 Lemma 25: multiply(inverse(X), negative_part(X)) = negative_part(inverse(X)). 0.63/0.80 Proof: 0.63/0.80 multiply(inverse(X), negative_part(X)) 0.63/0.80 = { by axiom 12 (lat4_2) } 0.63/0.80 multiply(inverse(X), greatest_lower_bound(X, identity)) 0.63/0.80 = { by lemma 23 } 0.63/0.80 negative_part(multiply(inverse(X), identity)) 0.63/0.80 = { by lemma 22 } 0.63/0.80 greatest_lower_bound(identity, multiply(inverse(X), identity)) 0.63/0.80 = { by lemma 24 } 0.63/0.80 multiply(negative_part(inverse(X)), identity) 0.63/0.80 = { by lemma 19 } 0.63/0.80 negative_part(inverse(X)) 0.63/0.80 0.63/0.80 Lemma 26: least_upper_bound(negative_part(X), negative_part(Y)) = negative_part(least_upper_bound(X, Y)). 0.63/0.80 Proof: 0.63/0.80 least_upper_bound(negative_part(X), negative_part(Y)) 0.63/0.80 = { by lemma 22 } 0.63/0.80 least_upper_bound(greatest_lower_bound(identity, X), negative_part(Y)) 0.63/0.80 = { by lemma 22 } 0.63/0.80 least_upper_bound(greatest_lower_bound(identity, X), greatest_lower_bound(identity, Y)) 0.63/0.80 = { by axiom 13 (lat4_4) } 0.63/0.80 greatest_lower_bound(identity, least_upper_bound(X, Y)) 0.63/0.80 = { by lemma 22 } 0.71/0.90 negative_part(least_upper_bound(X, Y)) 0.71/0.90 0.71/0.90 Goal 1 (prove_lat4): multiply(positive_part(a), negative_part(a)) = a. 0.71/0.90 Proof: 0.71/0.90 multiply(positive_part(a), negative_part(a)) 0.71/0.90 = { by lemma 18 } 0.71/0.90 multiply(multiply(inverse(inverse(positive_part(a))), identity), negative_part(a)) 0.71/0.90 = { by lemma 19 } 0.71/0.90 multiply(multiply(inverse(multiply(inverse(positive_part(a)), identity)), identity), negative_part(a)) 0.71/0.90 = { by axiom 5 (glb_absorbtion) } 0.71/0.90 multiply(multiply(inverse(multiply(inverse(positive_part(a)), greatest_lower_bound(identity, least_upper_bound(identity, greatest_lower_bound(a, inverse(a)))))), identity), negative_part(a)) 0.71/0.90 = { by lemma 20 } 0.71/0.90 multiply(multiply(inverse(multiply(inverse(positive_part(a)), greatest_lower_bound(identity, positive_part(greatest_lower_bound(a, inverse(a)))))), identity), negative_part(a)) 0.71/0.90 = { by lemma 22 } 0.71/0.90 multiply(multiply(inverse(multiply(inverse(positive_part(a)), negative_part(positive_part(greatest_lower_bound(a, inverse(a)))))), identity), negative_part(a)) 0.71/0.90 = { by lemma 20 } 0.71/0.90 multiply(multiply(inverse(multiply(inverse(positive_part(a)), negative_part(least_upper_bound(identity, greatest_lower_bound(a, inverse(a)))))), identity), negative_part(a)) 0.71/0.90 = { by axiom 15 (lat4_3) } 0.71/0.90 multiply(multiply(inverse(multiply(inverse(positive_part(a)), negative_part(greatest_lower_bound(least_upper_bound(identity, a), least_upper_bound(identity, inverse(a)))))), identity), negative_part(a)) 0.71/0.90 = { by lemma 20 } 0.71/0.90 multiply(multiply(inverse(multiply(inverse(positive_part(a)), negative_part(greatest_lower_bound(positive_part(a), least_upper_bound(identity, inverse(a)))))), identity), negative_part(a)) 0.71/0.90 = { by lemma 20 } 0.71/0.90 multiply(multiply(inverse(multiply(inverse(positive_part(a)), negative_part(greatest_lower_bound(positive_part(a), positive_part(inverse(a)))))), identity), negative_part(a)) 0.71/0.90 = { by lemma 18 } 0.71/0.90 multiply(multiply(inverse(multiply(inverse(positive_part(a)), negative_part(greatest_lower_bound(positive_part(a), multiply(inverse(inverse(positive_part(inverse(a)))), identity))))), identity), negative_part(a)) 0.71/0.90 = { by lemma 19 } 0.71/0.90 multiply(multiply(inverse(multiply(inverse(positive_part(a)), negative_part(greatest_lower_bound(positive_part(a), inverse(inverse(positive_part(inverse(a)))))))), identity), negative_part(a)) 0.71/0.90 = { by axiom 8 (symmetry_of_glb) } 0.71/0.90 multiply(multiply(inverse(multiply(inverse(positive_part(a)), negative_part(greatest_lower_bound(inverse(inverse(positive_part(inverse(a)))), positive_part(a))))), identity), negative_part(a)) 0.71/0.90 = { by lemma 16 } 0.71/0.90 multiply(multiply(inverse(multiply(inverse(positive_part(a)), negative_part(multiply(inverse(inverse(inverse(inverse(positive_part(inverse(a)))))), multiply(inverse(inverse(inverse(positive_part(inverse(a))))), greatest_lower_bound(inverse(inverse(positive_part(inverse(a)))), positive_part(a))))))), identity), negative_part(a)) 0.71/0.90 = { by lemma 23 } 0.71/0.90 multiply(multiply(inverse(multiply(inverse(positive_part(a)), negative_part(multiply(inverse(inverse(inverse(inverse(positive_part(inverse(a)))))), negative_part(multiply(inverse(inverse(inverse(positive_part(inverse(a))))), positive_part(a))))))), identity), negative_part(a)) 0.71/0.90 = { by lemma 17 } 0.71/0.90 multiply(multiply(inverse(multiply(inverse(positive_part(a)), negative_part(multiply(inverse(inverse(positive_part(inverse(a)))), negative_part(multiply(inverse(inverse(inverse(positive_part(inverse(a))))), positive_part(a))))))), identity), negative_part(a)) 0.71/0.90 = { by lemma 17 } 0.71/0.90 multiply(multiply(inverse(multiply(inverse(positive_part(a)), negative_part(multiply(inverse(inverse(positive_part(inverse(a)))), negative_part(multiply(inverse(positive_part(inverse(a))), positive_part(a))))))), identity), negative_part(a)) 0.71/0.90 = { by axiom 14 (lat4_1) } 0.71/0.90 multiply(multiply(inverse(multiply(inverse(positive_part(a)), negative_part(multiply(inverse(inverse(positive_part(inverse(a)))), negative_part(multiply(inverse(positive_part(inverse(a))), least_upper_bound(a, identity))))))), identity), negative_part(a)) 0.71/0.90 = { by axiom 1 (left_inverse) } 0.71/0.90 multiply(multiply(inverse(multiply(inverse(positive_part(a)), negative_part(multiply(inverse(inverse(positive_part(inverse(a)))), negative_part(multiply(inverse(positive_part(inverse(a))), least_upper_bound(a, multiply(inverse(a), a)))))))), identity), negative_part(a)) 0.71/0.90 = { by lemma 21 } 0.71/0.90 multiply(multiply(inverse(multiply(inverse(positive_part(a)), negative_part(multiply(inverse(inverse(positive_part(inverse(a)))), negative_part(multiply(inverse(positive_part(inverse(a))), multiply(positive_part(inverse(a)), a))))))), identity), negative_part(a)) 0.71/0.90 = { by lemma 16 } 0.71/0.90 multiply(multiply(inverse(multiply(inverse(positive_part(a)), negative_part(multiply(inverse(inverse(positive_part(inverse(a)))), negative_part(a))))), identity), negative_part(a)) 0.71/0.90 = { by lemma 17 } 0.71/0.90 multiply(multiply(inverse(multiply(inverse(positive_part(a)), negative_part(multiply(positive_part(inverse(a)), negative_part(a))))), identity), negative_part(a)) 0.71/0.90 = { by lemma 21 } 0.71/0.90 multiply(multiply(inverse(multiply(inverse(positive_part(a)), negative_part(least_upper_bound(negative_part(a), multiply(inverse(a), negative_part(a)))))), identity), negative_part(a)) 0.71/0.90 = { by lemma 25 } 0.71/0.90 multiply(multiply(inverse(multiply(inverse(positive_part(a)), negative_part(least_upper_bound(negative_part(a), negative_part(inverse(a)))))), identity), negative_part(a)) 0.71/0.90 = { by lemma 26 } 0.71/0.90 multiply(multiply(inverse(multiply(inverse(positive_part(a)), negative_part(negative_part(least_upper_bound(a, inverse(a)))))), identity), negative_part(a)) 0.71/0.90 = { by axiom 12 (lat4_2) } 0.71/0.90 multiply(multiply(inverse(multiply(inverse(positive_part(a)), negative_part(greatest_lower_bound(least_upper_bound(a, inverse(a)), identity)))), identity), negative_part(a)) 0.71/0.90 = { by axiom 12 (lat4_2) } 0.71/0.90 multiply(multiply(inverse(multiply(inverse(positive_part(a)), greatest_lower_bound(greatest_lower_bound(least_upper_bound(a, inverse(a)), identity), identity))), identity), negative_part(a)) 0.71/0.90 = { by axiom 11 (associativity_of_glb) } 0.71/0.90 multiply(multiply(inverse(multiply(inverse(positive_part(a)), greatest_lower_bound(least_upper_bound(a, inverse(a)), greatest_lower_bound(identity, identity)))), identity), negative_part(a)) 0.71/0.90 = { by axiom 6 (idempotence_of_gld) } 0.71/0.90 multiply(multiply(inverse(multiply(inverse(positive_part(a)), greatest_lower_bound(least_upper_bound(a, inverse(a)), identity))), identity), negative_part(a)) 0.71/0.90 = { by axiom 12 (lat4_2) } 0.71/0.90 multiply(multiply(inverse(multiply(inverse(positive_part(a)), negative_part(least_upper_bound(a, inverse(a))))), identity), negative_part(a)) 0.71/0.90 = { by axiom 4 (symmetry_of_lub) } 0.71/0.90 multiply(multiply(inverse(multiply(inverse(positive_part(a)), negative_part(least_upper_bound(inverse(a), a)))), identity), negative_part(a)) 0.71/0.90 = { by lemma 26 } 0.71/0.90 multiply(multiply(inverse(multiply(inverse(positive_part(a)), least_upper_bound(negative_part(inverse(a)), negative_part(a)))), identity), negative_part(a)) 0.71/0.90 = { by lemma 16 } 0.71/0.90 multiply(multiply(inverse(multiply(inverse(positive_part(a)), least_upper_bound(negative_part(inverse(a)), multiply(inverse(inverse(a)), multiply(inverse(a), negative_part(a)))))), identity), negative_part(a)) 0.71/0.90 = { by lemma 25 } 0.71/0.90 multiply(multiply(inverse(multiply(inverse(positive_part(a)), least_upper_bound(negative_part(inverse(a)), multiply(inverse(inverse(a)), negative_part(inverse(a)))))), identity), negative_part(a)) 0.71/0.90 = { by lemma 17 } 0.71/0.90 multiply(multiply(inverse(multiply(inverse(positive_part(a)), least_upper_bound(negative_part(inverse(a)), multiply(a, negative_part(inverse(a)))))), identity), negative_part(a)) 0.71/0.90 = { by lemma 21 } 0.71/0.90 multiply(multiply(inverse(multiply(inverse(positive_part(a)), multiply(positive_part(a), negative_part(inverse(a))))), identity), negative_part(a)) 0.71/0.90 = { by lemma 16 } 0.71/0.90 multiply(multiply(inverse(negative_part(inverse(a))), identity), negative_part(a)) 0.71/0.90 = { by lemma 19 } 0.71/0.90 multiply(inverse(negative_part(inverse(a))), negative_part(a)) 0.71/0.90 = { by axiom 12 (lat4_2) } 0.71/0.90 multiply(inverse(negative_part(inverse(a))), greatest_lower_bound(a, identity)) 0.71/0.90 = { by axiom 1 (left_inverse) } 0.71/0.90 multiply(inverse(negative_part(inverse(a))), greatest_lower_bound(a, multiply(inverse(a), a))) 0.71/0.90 = { by lemma 24 } 0.71/0.90 multiply(inverse(negative_part(inverse(a))), multiply(negative_part(inverse(a)), a)) 0.71/0.90 = { by lemma 16 } 0.71/0.90 a 0.71/0.90 % SZS output end Proof 0.71/0.90 0.71/0.90 RESULT: Unsatisfiable (the axioms are contradictory). 0.71/0.90 EOF