0.08/0.13 % Problem : theBenchmark.p : TPTP v0.0.0. Released v0.0.0. 0.08/0.14 % Command : twee %s --tstp --casc --quiet --explain-encoding --conditional-encoding if --smaller --drop-non-horn 0.13/0.35 % Computer : n015.cluster.edu 0.13/0.35 % Model : x86_64 x86_64 0.13/0.35 % CPU : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz 0.13/0.35 % Memory : 8042.1875MB 0.13/0.35 % OS : Linux 3.10.0-693.el7.x86_64 0.13/0.35 % CPULimit : 180 0.13/0.35 % DateTime : Thu Aug 29 10:03:52 EDT 2019 0.13/0.36 % CPUTime : 0.21/0.44 % SZS status Unsatisfiable 0.21/0.44 0.21/0.44 % SZS output start Proof 0.21/0.44 Take the following subset of the input axioms: 0.55/0.70 fof(associativity, axiom, ![X, Y, Z]: multiply(multiply(X, Y), Z)=multiply(X, multiply(Y, Z))). 0.55/0.70 fof(commutator, axiom, ![X, Y]: commutator(X, Y)=multiply(X, multiply(Y, multiply(inverse(X), inverse(Y))))). 0.55/0.70 fof(left_identity, axiom, ![X]: X=multiply(identity, X)). 0.55/0.70 fof(left_inverse, axiom, ![X]: multiply(inverse(X), X)=identity). 0.55/0.70 fof(prove_commutator, negated_conjecture, identity!=commutator(commutator(a, b), b)). 0.55/0.70 fof(right_identity, axiom, ![X]: multiply(X, identity)=X). 0.55/0.70 fof(right_inverse, axiom, ![X]: identity=multiply(X, inverse(X))). 0.55/0.70 fof(x_cubed_is_identity, hypothesis, ![X]: multiply(X, multiply(X, X))=identity). 0.55/0.70 0.55/0.70 Now clausify the problem and encode Horn clauses using encoding 3 of 0.55/0.70 http://www.cse.chalmers.se/~nicsma/papers/horn.pdf. 0.55/0.70 We repeatedly replace C & s=t => u=v by the two clauses: 0.55/0.70 fresh(y, y, x1...xn) = u 0.55/0.70 C => fresh(s, t, x1...xn) = v 0.55/0.70 where fresh is a fresh function symbol and x1..xn are the free 0.55/0.70 variables of u and v. 0.55/0.70 A predicate p(X) is encoded as p(X)=true (this is sound, because the 0.55/0.70 input problem has no model of domain size 1). 0.55/0.70 0.55/0.70 The encoding turns the above axioms into the following unit equations and goals: 0.55/0.70 0.55/0.71 Axiom 1 (left_inverse): multiply(inverse(X), X) = identity. 0.55/0.71 Axiom 2 (associativity): multiply(multiply(X, Y), Z) = multiply(X, multiply(Y, Z)). 0.55/0.71 Axiom 3 (left_identity): X = multiply(identity, X). 0.55/0.71 Axiom 4 (right_inverse): identity = multiply(X, inverse(X)). 0.55/0.71 Axiom 5 (x_cubed_is_identity): multiply(X, multiply(X, X)) = identity. 0.55/0.71 Axiom 6 (commutator): commutator(X, Y) = multiply(X, multiply(Y, multiply(inverse(X), inverse(Y)))). 0.55/0.71 Axiom 7 (right_identity): multiply(X, identity) = X. 0.55/0.71 0.55/0.71 Lemma 8: multiply(inverse(X), multiply(X, Y)) = Y. 0.55/0.71 Proof: 0.55/0.71 multiply(inverse(X), multiply(X, Y)) 0.55/0.71 = { by axiom 2 (associativity) } 0.55/0.71 multiply(multiply(inverse(X), X), Y) 0.55/0.71 = { by axiom 1 (left_inverse) } 0.55/0.71 multiply(identity, Y) 0.55/0.71 = { by axiom 3 (left_identity) } 0.55/0.71 Y 0.55/0.71 0.55/0.71 Lemma 9: multiply(X, multiply(Y, inverse(multiply(X, Y)))) = identity. 0.55/0.71 Proof: 0.55/0.71 multiply(X, multiply(Y, inverse(multiply(X, Y)))) 0.55/0.71 = { by axiom 2 (associativity) } 0.55/0.71 multiply(multiply(X, Y), inverse(multiply(X, Y))) 0.55/0.71 = { by axiom 4 (right_inverse) } 0.55/0.71 identity 0.55/0.71 0.55/0.71 Lemma 10: multiply(X, inverse(multiply(Y, X))) = inverse(Y). 0.55/0.71 Proof: 0.55/0.71 multiply(X, inverse(multiply(Y, X))) 0.55/0.71 = { by lemma 8 } 0.55/0.71 multiply(inverse(Y), multiply(Y, multiply(X, inverse(multiply(Y, X))))) 0.55/0.71 = { by lemma 9 } 0.55/0.71 multiply(inverse(Y), identity) 0.55/0.71 = { by axiom 7 (right_identity) } 0.55/0.71 inverse(Y) 0.55/0.71 0.55/0.71 Lemma 11: multiply(inverse(Y), inverse(X)) = inverse(multiply(X, Y)). 0.55/0.71 Proof: 0.55/0.71 multiply(inverse(Y), inverse(X)) 0.55/0.71 = { by lemma 10 } 0.55/0.71 multiply(inverse(Y), multiply(Y, inverse(multiply(X, Y)))) 0.55/0.71 = { by lemma 8 } 0.55/0.71 inverse(multiply(X, Y)) 0.55/0.71 0.55/0.71 Lemma 12: multiply(X, multiply(inverse(X), Y)) = Y. 0.55/0.71 Proof: 0.55/0.71 multiply(X, multiply(inverse(X), Y)) 0.55/0.71 = { by axiom 2 (associativity) } 0.55/0.71 multiply(multiply(X, inverse(X)), Y) 0.55/0.71 = { by axiom 4 (right_inverse) } 0.55/0.71 multiply(identity, Y) 0.55/0.71 = { by axiom 3 (left_identity) } 0.55/0.71 Y 0.55/0.71 0.55/0.71 Lemma 13: inverse(inverse(X)) = X. 0.55/0.71 Proof: 0.55/0.71 inverse(inverse(X)) 0.55/0.71 = { by lemma 12 } 0.55/0.71 multiply(X, multiply(inverse(X), inverse(inverse(X)))) 0.55/0.71 = { by axiom 4 (right_inverse) } 0.55/0.71 multiply(X, identity) 0.55/0.71 = { by axiom 7 (right_identity) } 0.55/0.71 X 0.55/0.71 0.55/0.71 Lemma 14: multiply(X, X) = inverse(X). 0.55/0.71 Proof: 0.55/0.71 multiply(X, X) 0.55/0.71 = { by axiom 7 (right_identity) } 0.55/0.71 multiply(X, multiply(X, identity)) 0.55/0.71 = { by axiom 5 (x_cubed_is_identity) } 0.55/0.71 multiply(X, multiply(X, multiply(inverse(X), multiply(inverse(X), inverse(X))))) 0.55/0.71 = { by lemma 12 } 0.55/0.71 multiply(X, multiply(inverse(X), inverse(X))) 0.55/0.71 = { by lemma 12 } 0.55/0.71 inverse(X) 0.55/0.71 0.55/0.71 Lemma 15: commutator(X, multiply(Y, inverse(X))) = commutator(X, Y). 0.55/0.71 Proof: 0.55/0.71 commutator(X, multiply(Y, inverse(X))) 0.55/0.71 = { by axiom 6 (commutator) } 0.55/0.71 multiply(X, multiply(multiply(Y, inverse(X)), multiply(inverse(X), inverse(multiply(Y, inverse(X)))))) 0.55/0.71 = { by lemma 10 } 0.55/0.71 multiply(X, multiply(multiply(Y, inverse(X)), inverse(Y))) 0.55/0.71 = { by axiom 2 (associativity) } 0.55/0.71 multiply(X, multiply(Y, multiply(inverse(X), inverse(Y)))) 0.55/0.71 = { by axiom 6 (commutator) } 0.74/0.92 commutator(X, Y) 0.74/0.92 0.74/0.92 Goal 1 (prove_commutator): identity = commutator(commutator(a, b), b). 0.74/0.92 Proof: 0.74/0.92 identity 0.74/0.92 = { by lemma 9 } 0.74/0.92 multiply(commutator(a, b), multiply(b, inverse(multiply(commutator(a, b), b)))) 0.74/0.92 = { by lemma 12 } 0.74/0.92 multiply(commutator(a, b), multiply(b, inverse(multiply(commutator(a, multiply(inverse(a), multiply(inverse(inverse(a)), b))), b)))) 0.74/0.92 = { by axiom 6 (commutator) } 0.74/0.92 multiply(commutator(a, b), multiply(b, inverse(multiply(multiply(a, multiply(multiply(inverse(a), multiply(inverse(inverse(a)), b)), multiply(inverse(a), inverse(multiply(inverse(a), multiply(inverse(inverse(a)), b)))))), b)))) 0.74/0.92 = { by lemma 11 } 0.74/0.92 multiply(commutator(a, b), multiply(b, inverse(multiply(multiply(a, multiply(multiply(inverse(a), multiply(inverse(inverse(a)), b)), multiply(inverse(a), multiply(inverse(multiply(inverse(inverse(a)), b)), inverse(inverse(a)))))), b)))) 0.74/0.92 = { by lemma 8 } 0.74/0.92 multiply(commutator(a, b), multiply(b, inverse(multiply(multiply(a, multiply(multiply(inverse(a), multiply(inverse(inverse(a)), b)), multiply(inverse(multiply(inverse(inverse(a)), b)), multiply(multiply(inverse(inverse(a)), b), multiply(inverse(a), multiply(inverse(multiply(inverse(inverse(a)), b)), inverse(inverse(a)))))))), b)))) 0.74/0.92 = { by axiom 6 (commutator) } 0.74/0.92 multiply(commutator(a, b), multiply(b, inverse(multiply(multiply(a, multiply(multiply(inverse(a), multiply(inverse(inverse(a)), b)), multiply(inverse(multiply(inverse(inverse(a)), b)), commutator(multiply(inverse(inverse(a)), b), inverse(a))))), b)))) 0.74/0.92 = { by axiom 2 (associativity) } 0.74/0.92 multiply(commutator(a, b), multiply(b, inverse(multiply(multiply(a, multiply(inverse(a), multiply(multiply(inverse(inverse(a)), b), multiply(inverse(multiply(inverse(inverse(a)), b)), commutator(multiply(inverse(inverse(a)), b), inverse(a)))))), b)))) 0.74/0.92 = { by lemma 12 } 0.74/0.92 multiply(commutator(a, b), multiply(b, inverse(multiply(multiply(multiply(inverse(inverse(a)), b), multiply(inverse(multiply(inverse(inverse(a)), b)), commutator(multiply(inverse(inverse(a)), b), inverse(a)))), b)))) 0.74/0.92 = { by lemma 12 } 0.74/0.92 multiply(commutator(a, b), multiply(b, inverse(multiply(commutator(multiply(inverse(inverse(a)), b), inverse(a)), b)))) 0.74/0.92 = { by lemma 13 } 0.74/0.92 multiply(commutator(a, b), multiply(b, inverse(multiply(commutator(multiply(a, b), inverse(a)), b)))) 0.74/0.92 = { by lemma 8 } 0.74/0.92 multiply(commutator(a, b), multiply(b, inverse(multiply(commutator(multiply(a, b), inverse(a)), multiply(inverse(a), multiply(a, b)))))) 0.74/0.92 = { by lemma 13 } 0.74/0.92 multiply(commutator(a, b), multiply(b, inverse(multiply(commutator(multiply(a, b), inverse(a)), inverse(inverse(multiply(inverse(a), multiply(a, b)))))))) 0.74/0.92 = { by lemma 11 } 0.74/0.92 multiply(commutator(a, b), multiply(b, inverse(multiply(commutator(multiply(a, b), inverse(a)), inverse(multiply(inverse(multiply(a, b)), inverse(inverse(a)))))))) 0.74/0.92 = { by lemma 8 } 0.74/0.92 multiply(commutator(a, b), multiply(b, inverse(multiply(commutator(multiply(a, b), inverse(a)), inverse(multiply(inverse(multiply(multiply(a, b), inverse(a))), multiply(multiply(multiply(a, b), inverse(a)), multiply(inverse(multiply(a, b)), inverse(inverse(a)))))))))) 0.74/0.92 = { by axiom 2 (associativity) } 0.74/0.92 multiply(commutator(a, b), multiply(b, inverse(multiply(commutator(multiply(a, b), inverse(a)), inverse(multiply(inverse(multiply(multiply(a, b), inverse(a))), multiply(multiply(a, b), multiply(inverse(a), multiply(inverse(multiply(a, b)), inverse(inverse(a))))))))))) 0.74/0.92 = { by axiom 6 (commutator) } 0.74/0.92 multiply(commutator(a, b), multiply(b, inverse(multiply(commutator(multiply(a, b), inverse(a)), inverse(multiply(inverse(multiply(multiply(a, b), inverse(a))), commutator(multiply(a, b), inverse(a)))))))) 0.74/0.92 = { by lemma 10 } 0.74/0.92 multiply(commutator(a, b), multiply(b, inverse(inverse(inverse(multiply(multiply(a, b), inverse(a))))))) 0.74/0.92 = { by lemma 13 } 0.74/0.92 multiply(commutator(a, b), multiply(b, inverse(multiply(multiply(a, b), inverse(a))))) 0.74/0.92 = { by axiom 2 (associativity) } 0.74/0.92 multiply(commutator(a, b), multiply(b, inverse(multiply(a, multiply(b, inverse(a)))))) 0.74/0.92 = { by lemma 13 } 0.74/0.92 multiply(commutator(a, b), multiply(b, inverse(multiply(a, inverse(inverse(multiply(b, inverse(a)))))))) 0.74/0.92 = { by lemma 14 } 0.74/0.92 multiply(commutator(a, b), multiply(b, inverse(multiply(a, inverse(multiply(multiply(b, inverse(a)), multiply(b, inverse(a)))))))) 0.74/0.92 = { by lemma 10 } 0.74/0.92 multiply(commutator(a, b), multiply(b, inverse(multiply(a, multiply(inverse(a), inverse(multiply(multiply(multiply(b, inverse(a)), multiply(b, inverse(a))), inverse(a)))))))) 0.74/0.92 = { by lemma 12 } 0.74/0.92 multiply(commutator(a, b), multiply(b, inverse(inverse(multiply(multiply(multiply(b, inverse(a)), multiply(b, inverse(a))), inverse(a)))))) 0.74/0.92 = { by axiom 2 (associativity) } 0.74/0.92 multiply(commutator(a, b), multiply(b, inverse(inverse(multiply(multiply(b, inverse(a)), multiply(multiply(b, inverse(a)), inverse(a))))))) 0.74/0.92 = { by lemma 8 } 0.74/0.92 multiply(commutator(a, b), multiply(b, inverse(inverse(multiply(multiply(b, inverse(a)), multiply(inverse(a), multiply(a, multiply(multiply(b, inverse(a)), inverse(a))))))))) 0.74/0.92 = { by axiom 2 (associativity) } 0.74/0.92 multiply(commutator(a, b), multiply(b, inverse(inverse(multiply(multiply(multiply(b, inverse(a)), inverse(a)), multiply(a, multiply(multiply(b, inverse(a)), inverse(a)))))))) 0.74/0.92 = { by axiom 2 (associativity) } 0.74/0.92 multiply(commutator(a, b), multiply(b, inverse(inverse(multiply(multiply(multiply(multiply(b, inverse(a)), inverse(a)), a), multiply(multiply(b, inverse(a)), inverse(a))))))) 0.74/0.92 = { by lemma 11 } 0.74/0.92 multiply(commutator(a, b), multiply(b, inverse(multiply(inverse(multiply(multiply(b, inverse(a)), inverse(a))), inverse(multiply(multiply(multiply(b, inverse(a)), inverse(a)), a)))))) 0.74/0.92 = { by axiom 3 (left_identity) } 0.74/0.92 multiply(commutator(a, b), multiply(b, inverse(multiply(identity, multiply(inverse(multiply(multiply(b, inverse(a)), inverse(a))), inverse(multiply(multiply(multiply(b, inverse(a)), inverse(a)), a))))))) 0.74/0.92 = { by axiom 5 (x_cubed_is_identity) } 0.74/0.92 multiply(commutator(a, b), multiply(b, inverse(multiply(multiply(multiply(multiply(b, inverse(a)), inverse(a)), multiply(multiply(multiply(b, inverse(a)), inverse(a)), multiply(multiply(b, inverse(a)), inverse(a)))), multiply(inverse(multiply(multiply(b, inverse(a)), inverse(a))), inverse(multiply(multiply(multiply(b, inverse(a)), inverse(a)), a))))))) 0.74/0.92 = { by axiom 2 (associativity) } 0.74/0.93 multiply(commutator(a, b), multiply(b, inverse(multiply(multiply(multiply(b, inverse(a)), inverse(a)), multiply(multiply(multiply(multiply(b, inverse(a)), inverse(a)), multiply(multiply(b, inverse(a)), inverse(a))), multiply(inverse(multiply(multiply(b, inverse(a)), inverse(a))), inverse(multiply(multiply(multiply(b, inverse(a)), inverse(a)), a)))))))) 0.74/0.93 = { by axiom 2 (associativity) } 0.74/0.93 multiply(commutator(a, b), multiply(b, inverse(multiply(multiply(multiply(b, inverse(a)), inverse(a)), multiply(multiply(multiply(b, inverse(a)), inverse(a)), multiply(multiply(multiply(b, inverse(a)), inverse(a)), multiply(inverse(multiply(multiply(b, inverse(a)), inverse(a))), inverse(multiply(multiply(multiply(b, inverse(a)), inverse(a)), a))))))))) 0.74/0.93 = { by lemma 12 } 0.74/0.93 multiply(commutator(a, b), multiply(b, inverse(multiply(multiply(multiply(b, inverse(a)), inverse(a)), multiply(multiply(multiply(b, inverse(a)), inverse(a)), inverse(multiply(multiply(multiply(b, inverse(a)), inverse(a)), a))))))) 0.74/0.93 = { by lemma 11 } 0.74/0.93 multiply(commutator(a, b), multiply(b, inverse(multiply(multiply(multiply(b, inverse(a)), inverse(a)), multiply(multiply(multiply(b, inverse(a)), inverse(a)), multiply(inverse(a), inverse(multiply(multiply(b, inverse(a)), inverse(a))))))))) 0.74/0.93 = { by lemma 8 } 0.74/0.93 multiply(commutator(a, b), multiply(b, inverse(multiply(multiply(multiply(b, inverse(a)), inverse(a)), multiply(inverse(a), multiply(a, multiply(multiply(multiply(b, inverse(a)), inverse(a)), multiply(inverse(a), inverse(multiply(multiply(b, inverse(a)), inverse(a))))))))))) 0.74/0.93 = { by axiom 6 (commutator) } 0.74/0.93 multiply(commutator(a, b), multiply(b, inverse(multiply(multiply(multiply(b, inverse(a)), inverse(a)), multiply(inverse(a), commutator(a, multiply(multiply(b, inverse(a)), inverse(a)))))))) 0.74/0.93 = { by lemma 15 } 0.74/0.93 multiply(commutator(a, b), multiply(b, inverse(multiply(multiply(multiply(b, inverse(a)), inverse(a)), multiply(inverse(a), commutator(a, multiply(b, inverse(a)))))))) 0.74/0.93 = { by axiom 2 (associativity) } 0.74/0.93 multiply(commutator(a, b), multiply(b, inverse(multiply(multiply(b, inverse(a)), multiply(inverse(a), multiply(inverse(a), commutator(a, multiply(b, inverse(a))))))))) 0.74/0.93 = { by axiom 2 (associativity) } 0.74/0.93 multiply(commutator(a, b), multiply(b, inverse(multiply(multiply(b, inverse(a)), multiply(multiply(inverse(a), inverse(a)), commutator(a, multiply(b, inverse(a)))))))) 0.74/0.93 = { by lemma 11 } 0.74/0.93 multiply(commutator(a, b), multiply(b, inverse(multiply(multiply(b, inverse(a)), multiply(inverse(multiply(a, a)), commutator(a, multiply(b, inverse(a)))))))) 0.74/0.93 = { by lemma 14 } 0.74/0.93 multiply(commutator(a, b), multiply(b, inverse(multiply(multiply(b, inverse(a)), multiply(inverse(inverse(a)), commutator(a, multiply(b, inverse(a)))))))) 0.74/0.93 = { by lemma 13 } 0.74/0.93 multiply(commutator(a, b), multiply(b, inverse(multiply(multiply(b, inverse(a)), multiply(a, commutator(a, multiply(b, inverse(a)))))))) 0.74/0.93 = { by lemma 15 } 0.74/0.93 multiply(commutator(a, b), multiply(b, inverse(multiply(multiply(b, inverse(a)), multiply(a, commutator(a, b)))))) 0.74/0.93 = { by axiom 2 (associativity) } 0.74/0.93 multiply(commutator(a, b), multiply(b, inverse(multiply(b, multiply(inverse(a), multiply(a, commutator(a, b))))))) 0.74/0.93 = { by lemma 8 } 0.74/0.93 multiply(commutator(a, b), multiply(b, inverse(multiply(b, commutator(a, b))))) 0.74/0.93 = { by lemma 11 } 0.74/0.93 multiply(commutator(a, b), multiply(b, multiply(inverse(commutator(a, b)), inverse(b)))) 0.74/0.93 = { by lemma 8 } 0.74/0.93 multiply(commutator(a, b), multiply(inverse(commutator(a, b)), multiply(commutator(a, b), multiply(b, multiply(inverse(commutator(a, b)), inverse(b)))))) 0.74/0.93 = { by axiom 6 (commutator) } 0.74/0.93 multiply(commutator(a, b), multiply(inverse(commutator(a, b)), commutator(commutator(a, b), b))) 0.74/0.93 = { by lemma 12 } 0.74/0.93 commutator(commutator(a, b), b) 0.74/0.93 % SZS output end Proof 0.74/0.93 0.74/0.93 RESULT: Unsatisfiable (the axioms are contradictory). 0.74/0.93 EOF