0.06/0.13 % Problem : theBenchmark.p : TPTP v0.0.0. Released v0.0.0. 0.06/0.13 % Command : tptp2X_and_run_prover9 %d %s 0.13/0.34 % Computer : n015.cluster.edu 0.13/0.34 % Model : x86_64 x86_64 0.13/0.34 % CPU : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz 0.13/0.34 % Memory : 8042.1875MB 0.13/0.34 % OS : Linux 3.10.0-693.el7.x86_64 0.13/0.34 % CPULimit : 180 0.13/0.34 % DateTime : Thu Aug 29 11:47:37 EDT 2019 0.13/0.34 % CPUTime : 0.43/1.02 ============================== Prover9 =============================== 0.43/1.02 Prover9 (32) version 2009-11A, November 2009. 0.43/1.02 Process 4500 was started by sandbox2 on n015.cluster.edu, 0.43/1.02 Thu Aug 29 11:47:38 2019 0.43/1.02 The command was "/export/starexec/sandbox2/solver/bin/prover9 -t 180 -f /tmp/Prover9_4342_n015.cluster.edu". 0.43/1.02 ============================== end of head =========================== 0.43/1.02 0.43/1.02 ============================== INPUT ================================= 0.43/1.02 0.43/1.02 % Reading from file /tmp/Prover9_4342_n015.cluster.edu 0.43/1.02 0.43/1.02 set(prolog_style_variables). 0.43/1.02 set(auto2). 0.43/1.02 % set(auto2) -> set(auto). 0.43/1.02 % set(auto) -> set(auto_inference). 0.43/1.02 % set(auto) -> set(auto_setup). 0.43/1.02 % set(auto_setup) -> set(predicate_elim). 0.43/1.02 % set(auto_setup) -> assign(eq_defs, unfold). 0.43/1.02 % set(auto) -> set(auto_limits). 0.43/1.02 % set(auto_limits) -> assign(max_weight, "100.000"). 0.43/1.02 % set(auto_limits) -> assign(sos_limit, 20000). 0.43/1.02 % set(auto) -> set(auto_denials). 0.43/1.02 % set(auto) -> set(auto_process). 0.43/1.02 % set(auto2) -> assign(new_constants, 1). 0.43/1.02 % set(auto2) -> assign(fold_denial_max, 3). 0.43/1.02 % set(auto2) -> assign(max_weight, "200.000"). 0.43/1.02 % set(auto2) -> assign(max_hours, 1). 0.43/1.02 % assign(max_hours, 1) -> assign(max_seconds, 3600). 0.43/1.02 % set(auto2) -> assign(max_seconds, 0). 0.43/1.02 % set(auto2) -> assign(max_minutes, 5). 0.43/1.02 % assign(max_minutes, 5) -> assign(max_seconds, 300). 0.43/1.02 % set(auto2) -> set(sort_initial_sos). 0.43/1.02 % set(auto2) -> assign(sos_limit, -1). 0.43/1.02 % set(auto2) -> assign(lrs_ticks, 3000). 0.43/1.02 % set(auto2) -> assign(max_megs, 400). 0.43/1.02 % set(auto2) -> assign(stats, some). 0.43/1.02 % set(auto2) -> clear(echo_input). 0.43/1.02 % set(auto2) -> set(quiet). 0.43/1.02 % set(auto2) -> clear(print_initial_clauses). 0.43/1.02 % set(auto2) -> clear(print_given). 0.43/1.02 assign(lrs_ticks,-1). 0.43/1.02 assign(sos_limit,10000). 0.43/1.02 assign(order,kbo). 0.43/1.02 set(lex_order_vars). 0.43/1.02 clear(print_given). 0.43/1.02 0.43/1.02 % formulas(sos). % not echoed (10 formulas) 0.43/1.02 0.43/1.02 ============================== end of input ========================== 0.43/1.02 0.43/1.02 % From the command line: assign(max_seconds, 180). 0.43/1.02 0.43/1.02 ============================== PROCESS NON-CLAUSAL FORMULAS ========== 0.43/1.02 0.43/1.02 % Formulas that are not ordinary clauses: 0.43/1.02 1 (all I all J (le(s(n0),I) & (le(s(I),J) <-> le(s(perm(J)),perm(I))) & le(J,n) & le(s(I),J) & le(I,n) -> q(I) != q(J) & minus(q(I),I) != minus(q(J),J) & plus(q(J),J) != plus(q(I),I))) -> queens_q # label(queens_q) # label(axiom) # label(non_clause). [assumption]. 0.43/1.02 2 (all J all I minus(I,J) = minus(perm(J),perm(I))) # label(permutation_another_one) # label(axiom) # label(non_clause). [assumption]. 0.43/1.02 3 (all I (le(s(n0),I) & le(I,n) -> minus(s(n),I) = perm(I))) # label(permutation) # label(axiom) # label(non_clause). [assumption]. 0.43/1.02 4 queens_p -> (all I all J (le(s(n0),I) & le(s(I),J) & le(J,n) & le(I,n) -> plus(p(I),I) != plus(p(J),J) & minus(p(J),J) != minus(p(I),I) & p(I) != p(J))) # label(queens_p) # label(axiom) # label(non_clause). [assumption]. 0.43/1.02 5 (all X le(X,s(X))) # label(succ_le) # label(axiom) # label(non_clause). [assumption]. 0.43/1.02 6 (all I all J all K all L (minus(I,K) = minus(J,L) <-> minus(K,L) = minus(I,J))) # label(minus1) # label(axiom) # label(non_clause). [assumption]. 0.43/1.02 7 (all I (le(s(n0),I) & le(I,n) -> le(perm(I),n) & le(s(n0),perm(I)))) # label(permutation_range) # label(axiom) # label(non_clause). [assumption]. 0.43/1.02 8 (all X all Y all Z (le(Y,Z) & le(X,Y) -> le(X,Z))) # label(le_trans) # label(axiom) # label(non_clause). [assumption]. 0.43/1.02 9 (all I all J all K all L (plus(K,L) = plus(I,J) <-> minus(L,J) = minus(I,K))) # label(plus1) # label(axiom) # label(non_clause). [assumption]. 0.43/1.02 10 -(queens_p & (all I p(perm(I)) = q(I)) -> queens_q) # label(queens_sym) # label(negated_conjecture) # label(non_clause). [assumption]. 0.43/1.02 0.43/1.02 ============================== end of process non-clausal formulas === 0.43/1.02 0.43/1.02 ============================== PROCESS INITIAL CLAUSES =============== 0.43/1.02 0.43/1.02 ============================== PREDICATE ELIMINATION ================= 0.43/1.02 0.43/1.02 ============================== end predicate elimination ============= 0.43/1.02 0.43/1.02 Auto_denials: (non-Horn, no changes). 0.43/1.02 0.43/1.02 Term ordering decisions: 0.43/1.02 Function symbol KB weights: n=1. n0=1. c1=1. c2=1. minus=1. plus=1. s=1. perm=1. q=1. p=1. 0.95/1.25 0.95/1.25 ============================== end of process initial clauses ======== 0.95/1.25 0.95/1.25 ============================== CLAUSES FOR SEARCH ==================== 0.95/1.25 0.95/1.25 ============================== end of clauses for search ============= 0.95/1.25 0.95/1.25 ============================== SEARCH ================================ 0.95/1.25 0.95/1.25 % Starting search at 0.01 seconds. 0.95/1.25 0.95/1.25 NOTE: Back_subsumption disabled, ratio of kept to back_subsumed is 390 (0.00 of 0.15 sec). 0.95/1.25 0.95/1.25 ============================== PROOF ================================= 0.95/1.25 % SZS status Theorem 0.95/1.25 % SZS output start Refutation 0.95/1.25 0.95/1.25 % Proof 1 at 0.24 (+ 0.01) seconds. 0.95/1.25 % Length of proof is 65. 0.95/1.25 % Level of proof is 11. 0.95/1.25 % Maximum clause weight is 30.000. 0.95/1.25 % Given clauses 756. 0.95/1.25 0.95/1.25 1 (all I all J (le(s(n0),I) & (le(s(I),J) <-> le(s(perm(J)),perm(I))) & le(J,n) & le(s(I),J) & le(I,n) -> q(I) != q(J) & minus(q(I),I) != minus(q(J),J) & plus(q(J),J) != plus(q(I),I))) -> queens_q # label(queens_q) # label(axiom) # label(non_clause). [assumption]. 0.95/1.25 2 (all J all I minus(I,J) = minus(perm(J),perm(I))) # label(permutation_another_one) # label(axiom) # label(non_clause). [assumption]. 0.95/1.25 4 queens_p -> (all I all J (le(s(n0),I) & le(s(I),J) & le(J,n) & le(I,n) -> plus(p(I),I) != plus(p(J),J) & minus(p(J),J) != minus(p(I),I) & p(I) != p(J))) # label(queens_p) # label(axiom) # label(non_clause). [assumption]. 0.95/1.25 5 (all X le(X,s(X))) # label(succ_le) # label(axiom) # label(non_clause). [assumption]. 0.95/1.25 6 (all I all J all K all L (minus(I,K) = minus(J,L) <-> minus(K,L) = minus(I,J))) # label(minus1) # label(axiom) # label(non_clause). [assumption]. 0.95/1.25 7 (all I (le(s(n0),I) & le(I,n) -> le(perm(I),n) & le(s(n0),perm(I)))) # label(permutation_range) # label(axiom) # label(non_clause). [assumption]. 0.95/1.25 8 (all X all Y all Z (le(Y,Z) & le(X,Y) -> le(X,Z))) # label(le_trans) # label(axiom) # label(non_clause). [assumption]. 0.95/1.25 9 (all I all J all K all L (plus(K,L) = plus(I,J) <-> minus(L,J) = minus(I,K))) # label(plus1) # label(axiom) # label(non_clause). [assumption]. 0.95/1.25 10 -(queens_p & (all I p(perm(I)) = q(I)) -> queens_q) # label(queens_sym) # label(negated_conjecture) # label(non_clause). [assumption]. 0.95/1.25 11 queens_p # label(queens_sym) # label(negated_conjecture). [clausify(10)]. 0.95/1.25 12 le(c2,n) | queens_q # label(queens_q) # label(axiom). [clausify(1)]. 0.95/1.25 13 le(c1,n) | queens_q # label(queens_q) # label(axiom). [clausify(1)]. 0.95/1.25 14 le(A,s(A)) # label(succ_le) # label(axiom). [clausify(5)]. 0.95/1.25 15 le(s(n0),c1) | queens_q # label(queens_q) # label(axiom). [clausify(1)]. 0.95/1.25 16 le(s(c1),c2) | queens_q # label(queens_q) # label(axiom). [clausify(1)]. 0.95/1.25 17 p(perm(A)) = q(A) # label(queens_sym) # label(negated_conjecture). [clausify(10)]. 0.95/1.25 18 q(A) = p(perm(A)). [copy(17),flip(a)]. 0.95/1.25 19 minus(perm(A),perm(B)) = minus(B,A) # label(permutation_another_one) # label(axiom). [clausify(2)]. 0.95/1.25 20 q(c2) = q(c1) | minus(q(c2),c2) = minus(q(c1),c1) | plus(q(c2),c2) = plus(q(c1),c1) | queens_q # label(queens_q) # label(axiom). [clausify(1)]. 0.95/1.25 21 p(perm(c2)) = p(perm(c1)) | minus(p(perm(c2)),c2) = minus(p(perm(c1)),c1) | plus(p(perm(c2)),c2) = plus(p(perm(c1)),c1) | queens_q. [copy(20),rewrite([18(2),18(5),18(9),18(14),18(20),18(25)])]. 0.95/1.25 22 -queens_q # label(queens_sym) # label(negated_conjecture). [clausify(10)]. 0.95/1.25 23 -queens_p | -le(s(n0),A) | -le(s(A),B) | -le(B,n) | -le(A,n) | p(B) != p(A) # label(queens_p) # label(axiom). [clausify(4)]. 0.95/1.25 24 -le(s(n0),A) | -le(s(A),B) | -le(B,n) | -le(A,n) | p(B) != p(A). [copy(23),unit_del(a,11)]. 0.95/1.25 25 -queens_p | -le(s(n0),A) | -le(s(A),B) | -le(B,n) | -le(A,n) | plus(p(B),B) != plus(p(A),A) # label(queens_p) # label(axiom). [clausify(4)]. 0.95/1.25 26 -le(s(n0),A) | -le(s(A),B) | -le(B,n) | -le(A,n) | plus(p(B),B) != plus(p(A),A). [copy(25),unit_del(a,11)]. 0.95/1.25 27 -queens_p | -le(s(n0),A) | -le(s(A),B) | -le(B,n) | -le(A,n) | minus(p(B),B) != minus(p(A),A) # label(queens_p) # label(axiom). [clausify(4)]. 0.95/1.25 28 -le(s(n0),A) | -le(s(A),B) | -le(B,n) | -le(A,n) | minus(p(B),B) != minus(p(A),A). [copy(27),unit_del(a,11)]. 0.95/1.25 29 -le(A,B) | -le(C,A) | le(C,B) # label(le_trans) # label(axiom). [clausify(8)]. 0.95/1.25 30 -le(s(c1),c2) | le(s(perm(c2)),perm(c1)) | queens_q # label(queens_q) # label(axiom). [clausify(1)]. 0.95/1.25 31 -le(s(c1),c2) | le(s(perm(c2)),perm(c1)). [copy(30),unit_del(c,22)]. 0.95/1.25 32 -le(s(n0),A) | -le(A,n) | le(perm(A),n) # label(permutation_range) # label(axiom). [clausify(7)]. 0.95/1.25 33 -le(s(n0),A) | -le(A,n) | le(s(n0),perm(A)) # label(permutation_range) # label(axiom). [clausify(7)]. 0.95/1.25 35 minus(A,B) != minus(C,D) | minus(D,B) = minus(C,A) # label(minus1) # label(axiom). [clausify(6)]. 0.95/1.25 36 plus(A,B) != plus(C,D) | minus(B,D) = minus(C,A) # label(plus1) # label(axiom). [clausify(9)]. 0.95/1.25 37 plus(A,B) = plus(C,D) | minus(B,D) != minus(C,A) # label(plus1) # label(axiom). [clausify(9)]. 0.95/1.25 38 p(perm(c2)) = p(perm(c1)) | minus(p(perm(c2)),c2) = minus(p(perm(c1)),c1) | plus(p(perm(c2)),c2) = plus(p(perm(c1)),c1). [back_unit_del(21),unit_del(d,22)]. 0.95/1.25 39 le(s(c1),c2). [back_unit_del(16),unit_del(b,22)]. 0.95/1.25 40 le(s(n0),c1). [back_unit_del(15),unit_del(b,22)]. 0.95/1.25 41 le(c1,n). [back_unit_del(13),unit_del(b,22)]. 0.95/1.25 42 le(c2,n). [back_unit_del(12),unit_del(b,22)]. 0.95/1.25 48 le(s(perm(c2)),perm(c1)). [back_unit_del(31),unit_del(a,39)]. 0.95/1.25 57 -le(s(A),B) | le(A,B). [resolve(29,b,14,a)]. 0.95/1.25 61 minus(A,perm(B)) = minus(B,perm(A)). [resolve(35,a,19,a)]. 0.95/1.25 66 minus(A,perm(perm(B))) = minus(A,B). [back_rewrite(19),rewrite([61(3)])]. 0.95/1.25 68 plus(A,B) = plus(B,A). [xx_res(37,b)]. 0.95/1.25 72 p(perm(c2)) = p(perm(c1)) | minus(p(perm(c2)),c2) = minus(p(perm(c1)),c1) | plus(c2,p(perm(c2))) = plus(c1,p(perm(c1))). [back_rewrite(38),rewrite([68(23),68(28)])]. 0.95/1.25 73 -le(s(n0),A) | -le(s(A),B) | -le(B,n) | -le(A,n) | plus(B,p(B)) != plus(A,p(A)). [back_rewrite(26),rewrite([68(11),68(13)])]. 0.95/1.25 80 le(perm(c1),n). [resolve(40,a,32,a),unit_del(a,41)]. 0.95/1.25 92 -le(s(n0),perm(c2)) | -le(perm(c2),n) | minus(c2,perm(p(perm(c2)))) != minus(c1,perm(p(perm(c1)))). [resolve(48,a,28,b),rewrite([61(19),61(25)]),flip(d),unit_del(b,80)]. 0.95/1.25 93 -le(s(n0),perm(c2)) | -le(perm(c2),n) | p(perm(c2)) != p(perm(c1)). [resolve(48,a,24,b),flip(d),unit_del(b,80)]. 0.95/1.25 216 le(c1,c2). [resolve(57,a,39,a)]. 0.95/1.25 230 -le(A,c1) | le(A,c2). [resolve(216,a,29,a)]. 0.95/1.25 311 minus(A,perm(B)) != minus(C,D) | minus(A,perm(D)) = minus(C,B). [para(61(a,1),35(a,1)),rewrite([61(6)])]. 0.95/1.25 421 le(s(n0),c2). [resolve(230,a,40,a)]. 0.95/1.25 425 le(s(n0),perm(c2)). [resolve(421,a,33,a),unit_del(a,42)]. 0.95/1.25 426 le(perm(c2),n). [resolve(421,a,32,a),unit_del(a,42)]. 0.95/1.25 431 p(perm(c2)) != p(perm(c1)). [back_unit_del(93),unit_del(a,425),unit_del(b,426)]. 0.95/1.25 432 minus(c2,perm(p(perm(c2)))) != minus(c1,perm(p(perm(c1)))). [back_unit_del(92),unit_del(a,425),unit_del(b,426)]. 0.95/1.25 433 minus(p(perm(c2)),c2) = minus(p(perm(c1)),c1) | plus(c2,p(perm(c2))) = plus(c1,p(perm(c1))). [back_unit_del(72),unit_del(a,431)]. 0.95/1.25 566 plus(perm(c2),p(perm(c2))) != plus(perm(c1),p(perm(c1))). [resolve(73,b,48,a),flip(d),unit_del(a,425),unit_del(b,80),unit_del(c,426)]. 0.95/1.25 1720 minus(c2,p(perm(c1))) != minus(c1,p(perm(c2))). [ur(311,b,432,a),rewrite([66(7)])]. 0.95/1.25 1725 plus(c2,p(perm(c2))) != plus(c1,p(perm(c1))). [ur(36,b,1720,a),rewrite([68(5)])]. 0.95/1.25 1726 minus(p(perm(c2)),c2) = minus(p(perm(c1)),c1). [back_unit_del(433),unit_del(b,1725)]. 0.95/1.25 1773 minus(p(perm(c2)),p(perm(c1))) != minus(c2,c1). [ur(37,a,566,a),rewrite([61(12),66(12)])]. 0.95/1.25 1777 $F. [ur(35,b,1773,a(flip)),rewrite([1726(10)]),xx(a)]. 0.95/1.25 0.95/1.25 % SZS output end Refutation 0.95/1.25 ============================== end of proof ========================== 0.95/1.25 0.95/1.25 ============================== STATISTICS ============================ 0.95/1.25 0.95/1.25 Given=756. Generated=6253. Kept=1760. proofs=1. 0.95/1.25 Usable=751. Sos=979. Demods=20. Limbo=2, Disabled=50. Hints=0. 0.95/1.25 Megabytes=1.52. 0.95/1.25 User_CPU=0.24, System_CPU=0.01, Wall_clock=0. 0.95/1.25 0.95/1.25 ============================== end of statistics ===================== 0.95/1.25 0.95/1.25 ============================== end of search ========================= 0.95/1.25 0.95/1.25 THEOREM PROVED 0.95/1.25 % SZS status Theorem 0.95/1.25 0.95/1.25 Exiting with 1 proof. 0.95/1.25 0.95/1.25 Process 4500 exit (max_proofs) Thu Aug 29 11:47:38 2019 0.95/1.25 Prover9 interrupted 0.95/1.26 EOF