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Abstract. This paper describes a generalization of the LowerUnits al-
gorithm [9] for the compression of propositional resolution proofs. The
generalized algorithm, called LowerUnivalents, is able to lower not only
units but also subproofs of non-unit clauses, provided that they satisfy
some additional conditions. This new algorithm is particularly suited
to be combined with the RecyclePivotsWithIntersection algorithm
[9]. A formal proof that LowerUnivalents always compresses more than
LowerUnits is shown, and both algorithms are empirically compared on
thousands of proofs produced by the SMT-Solver veriT.

1 Introduction

Propositional resolution is among the most successful proof calculi for automated
deduction in propositional logic available today. It provides the foundation for
DPLL- and CDCL-based Sat/SMT-solvers [5], which perform surprisingly well
in practice [11], despite the NP-completeness of propositional satisfiability [6]
and the theoretical difficulty associated with NP-complete problems.

Resolution refutations can also be output by Sat/SMT-solvers with an ac-
ceptable efficiency overhead and are detailed enough to allow easy implemen-
tation of efficient proof checkers. They can, therefore, be used as certificates of
correctness for the answers provided by these tools in case of unsatisfiability.

However, as the refutations found by Sat/SMT-solvers are often redundant,
techniques for compressing and improving resolution proofs in a post-processing
stage have flourished. Algebraic properties of the resolution operation that might
be useful for compression were investigated in [8]. Compression algorithms based
on rearranging and sharing chains of resolution inferences have been developed
in [1] and [13]. Cotton [7] proposed an algorithm that compresses a refutation by
repeteadly splitting it into a proof of a heuristically chosen literal ` and a proof of
`, and then resolving them to form a new refutation. The Reduce&Reconstruct

algorithm [12] searches for locally redundant subproofs that can be rewritten
into subproofs of stronger clauses and with fewer resolution steps. In [2] two
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linear time compression algorithms are introduced. One of them is a partial reg-
ularization algorithm called RecyclePivots. An enhanced version of this latter
algorithm, called RecyclePivotsWithIntersection (RPI), is proposed in [9],
along with a new linear time algorithm called LowerUnits. These two last al-
gorithms are complementary and better compression can easily be achieved by
sequentially composing them (i.e. executing one after the other).

In this paper, the new algorithm LowerUnivalents, generalizing LowerUnits,
is described. Its achieved goals are to compress more than LowerUnits and to al-
low fast non-sequential combination with RPI. While in a sequential combination
one algorithm is simply executed after the other, in a non-sequential combina-
tion, both algorithms are executed simultaneously when the proof is traversed.
Therefore, fewer traversals are needed.

The next section introduces the propositional resolution calculus using nota-
tions that are more convenient for describing proof transformation operations.
It also describes the new concepts of active literals and valent literals and proves
basic but essential results about them. Section 3 briefly describes the LowerUnits
algorithm. In Sect. 4 the new algorithm LowerUnivalents is introduced and it is
proved that it always compresses more than LowerUnits. Section 5 describes the
non-sequential combination of LowerUnivalents and RPI. Lastly, experimental
results are discussed in Sect. 6.

2 Propositional Resolution Calculus

A literal is a propositional variable or the negation of a propositional variable.
The complement of a literal ` is denoted ` (i.e. for any propositional variable p,
p = ¬p and ¬p = p). The set of all literals is denoted L. A clause is a set of
literals. ⊥ denotes the empty clause.

Definition 1 (Proof). A directed acyclic graph 〈V,E, Γ 〉, where V is a set of

nodes and E is a set of edges labeled by literals (i.e. E ⊂ V ×L×V and v1
`−→ v2

denotes an edge from node v1 to node v2 labeled by `), is a proof of a clause Γ
iff it is inductively constructible according to the following cases:

1. If Γ is a clause, Γ̂ denotes some proof 〈{v},∅, Γ 〉, where v is a new node.
2. If ψL is a proof 〈VL, EL, ΓL〉 and ψR is a proof 〈VR, ER, ΓR〉 and ` is a literal

such that ` ∈ ΓL and ` ∈ ΓR, then ψL �` ψR denotes a proof 〈V,E, Γ 〉 s.t.

V = VL ∪ VR ∪ {v}

E = EL ∪ ER ∪
{
v

`−→ ρ(ψL), v
`−→ ρ(ψR)

}
Γ =

(
ΓL \

{
`
})
∪ (ΓR \ {`})

where v is a new node and ρ(ϕ) denotes the root node of ϕ. ut

If ψ = ϕL �` ϕR, then ϕL and ϕR are direct subproofs of ψ and ψ is a child
of both ϕL and ϕR. The transitive closure of the direct subproof relation is



Input: a proof ϕ
Input: D a set of subproofs
Output: a proof ϕ′ obtained by deleting the subproofs in D from ϕ

1 if ϕ ∈ D or ρ(ϕ) has no premises then
2 return ϕ ;

3 else
4 let ϕL, ϕR and ` be such that ϕ = ϕL �` ϕR ;
5 let ϕ′

L = delete(ϕL,D) ;
6 let ϕ′

R = delete(ϕR,D) ;

7 if ϕ′
L ∈ D then

8 return ϕ′
R ;

9 else if ϕ′
R ∈ D then

10 return ϕ′
L ;

11 else if ` /∈ Γϕ′
L
then

12 return ϕ′
L ;

13 else if ` /∈ Γϕ′
R

then

14 return ϕ′
R ;

15 else
16 return ϕ′

L �` ϕ′
R ;

Algorithm 1: delete

the subproof relation. A subproof which has no direct subproof is an axiom of
the proof. Contrary to the usual proof theoretic conventions but following the
actual implementation of the data structures used by LowerUnivalents, edges
are directed from children (resolvents) to their parents (premises). Vψ, Eψ and
Γψ denote, respectively, the nodes, edges and proved clause (conclusion) of ψ.

Definition 2 (Active literals). Given a proof ψ, the set of active literals
Aψ(ϕ) of a subproof ϕ are the labels of edges coming into ϕ’s root:

Aψ(ϕ) = {` | ∃ς ∈ Vψ. ς
`−→ ρ(ϕ)}

Two operations on proofs are used in this paper: the resolution operation �`
introduced above and the deletion of a set of subproofs from a proof, denoted
ψ \ (ϕ1 . . . ϕn) where ψ is the whole proof and ϕi are the deleted subproofs.
Algorithm 1 describes the deletion operation, with ψ \ (ϕ1 . . . ϕn) being the
result of delete(ψ,{ϕ1, . . . , ϕn}). Both the resolution and deletion operations
are considered to be left associative.

The deletion algorithm is a minor variant of the Reconstruct-Proof al-
gorithm presented in [3]. The basic idea is to traverse the proof in a top-down
manner, replacing each subproof having one of its premises marked for deletion
(i.e. in D) by its other direct subproof. The special case when both ϕ′L and ϕ′R
belong to D is treated rather implicitly and deserves an explanation: in such a
case, one might intuitively expect the result ϕ′ to be undefined and arbitrary.



Furthermore, to any child of ϕ, ϕ′ ought to be seen as if it were in D, as if
the deletion of ϕ′L and ϕ′R propagated to ϕ′ as well. Instead of assigning some
arbitrary proof to ϕ′ and adding it to D, the algorithm arbitrarily returns (in
line 8) ϕ′R (which is already in D) as the result ϕ′. In this way, the propagation
of deletion is done automatically and implicitly. For instance, the following hold:

ϕ1 �` ϕ2 \ (ϕ1, ϕ2) = ϕ2 (1)

ϕ1 �` ϕ2 �`′ ϕ3 \ (ϕ1, ϕ2) = ϕ3 \ (ϕ1, ϕ2) (2)

A side-effect of this clever implicit propagation of deletion is that the actual
result of deletion is only meaningful if it is not in D. In the example (1), as
ϕ1 �` ϕ2 \ (ϕ1, ϕ2) ∈ {ϕ1, ϕ2}, the actual resulting proof is meaningless. Only
the information that it is a deleted subproof is relevant, as it suffices to obtain
meaningful results as shown in (2).

Proposition 1. For any proof ψ and any sets A and B of ψ’s subproofs, either
ψ \ (A∪B) ∈ A∪B and ψ \ (A) \ (B) ∈ A∪B, or ψ \ (A∪B) = ψ \ (A) \ (B).

Definition 3 (Valent literal). In a proof ψ, a literal ` is valent for the sub-
proof ϕ iff ` belongs to the conclusion of ψ \ (ϕ) but not to the conclusion of
ψ.

Proposition 2. In a proof ψ, every valent literal of a subproof ϕ is an active
literal of ϕ.

Proof. Lines 2, 12, 14 and 16 from Algorithm 1 can not introduce a new literal
in the conclusion of the subproof being processed. Let ` be a valent literal of ϕ
in ψ. Because there is only one subproof to be deleted, ` can only be introduced

when processing a subproof ϕ′ such that ρ(ϕ′)
`−→ ρ(ϕ). ut

Proposition 3. Given a proof ψ and a set D = {ϕ1 . . . ϕn} of ψ’s subproofs,
∀` ∈ L s.t. ` is in the conclusion of ψ \ (D) but not in ψ’s conclusion, then ∃i
s.t. ` is a valent literal of ϕi in ψ.

3 LowerUnits

When a subproof ϕ has more than one child in a proof ψ, it may be possible to
factor all the corresponding resolutions: a new proof is constructed by removing
ϕ from ψ and reintroducing it later. The resulting proof is smaller because ϕ
participates in a single resolution inference in it (i.e. it has a single child), while in
the original proof it participates in as many resolution inferences as the number
of children it had. Such a factorization is called lowering of ϕ, because its delayed
reintroduction makes ϕ appear at the bottom of the resulting proof.

Formally, a subproof ϕ in a proof ψ can be lowered if there exists a proof ψ′

and a literal ` such that ψ′ = ψ \ (ϕ) �` ϕ and Γψ′ ⊆ Γψ. It has been noted in
[9] that ϕ can always be lowered if it is a unit : its conclusion clause has only
one literal. This led to the invention of the LowerUnits algorithm, which lowers



Input: a proof ψ
Output: a compressed proof ψ′

1 Units ← ∅ ;

2 for every subproof ϕ in a bottom-up traversal do
3 if ϕ is a unit and has more than one child then
4 Enqueue ϕ in Units;

5 ψ′ ← delete(ψ,Units) ;

6 for every unit ϕ in Units do
7 let {`} = Γϕ ;

8 if ` ∈ Γψ′ then ψ′ ← ψ′ �` ϕ ;

Algorithm 2: LowerUnits

every unit with more than one child, taking care to reintroduce units in an order
corresponding to the subproof relation: if a unit ϕ2 is a subproof of a unit ϕ1

then ϕ2 has to be reintroduced later than (i.e. below) ϕ1.
A possible presentation of LowerUnits is shown in Algorithm 2. Units are

collected during a first traversal. As this traversal is bottom-up, units are stored
in a queue. The traversal could have been top-down and units stored in a stack.
Units are effectively deleted during a second, top-down traversal. The last for-
loop performs the reintroduction of units.

4 LowerUnivalents

LowerUnits does not lower every lowerable subproof. In particular, it does not
take into account the already lowered subproofs. For instance, if a unit ϕ1 proving
{a} has already been lowered, a subproof ϕ2 with conclusion {¬a, b} may be
lowered as well and reintroduced above ϕ1. The posterior reintroduction of ϕ1

will resolve away ¬a and guarantee that it does not occur in the resulting proof’s
conclusion. But care must also be taken not to lower ϕ2 if ¬a is a valent literal
of ϕ2, otherwise a will undesirably occur in the resulting proof’s conclusion.

Definition 4 (Univalent subproof). A subproof ϕ in a proof ψ is univalent
w.r.t. a set ∆ of literals iff ϕ has exactly one valent literal ` in ψ, ` /∈ ∆ and
Γϕ ⊆ ∆ ∪ {`}. ` is called the univalent literal of ϕ in ψ w.r.t. ∆.

The principle of LowerUnivalents is to lower all univalent subproofs. Hav-
ing only one valent literal makes them behave essentially like units w.r.t. the
technique of lowering. ∆ is initialized to the empty set. Then the complements
of the univalent literals are incrementally added to ∆. Proposition 4 ensures that
the conclusion of the resulting proof subsumes the conclusion of the original one.

Proposition 4. Given a proof ψ, if there is a sequence U = (ϕ1 . . . ϕn) of ψ’s
subproofs and a sequence (`1 . . . `n) of literals such that ∀i ∈ [1 . . . n], `i is the



Input: a proof ψ
Output: a compressed proof ψ′

1 Univalents ← ∅ ;
2 ∆← ∅ ;

3 for every subproof ϕ, in a top-down traversal do
4 ψ′ ← delete(ϕ,Univalents) ;
5 if ψ′ is univalent w.r.t. ∆ then
6 let ` be the univalent literal ;

7 push ` onto ∆ ;
8 push ψ′ onto Univalents ;

// At this point, ψ′ = ψ \ (Univalents)
9 while Univalents 6= ∅ do

10 ϕ← pop from Univalents;
11 `← pop from ∆ ;
12 if ` ∈ Γψ′ then ψ′ ← ϕ�` ψ′ ;

Algorithm 3: Simplified LowerUnivalents

univalent literal of ϕi w.r.t. ∆i−1 = {`1 . . . `i−1}, then the conclusion of

ψ′ = ψ \ (U)�`n ϕn . . .�`1 ϕ1

subsumes the conclusion of ψ.

Proof. The proposition is proven by induction on n, along with the fact that
ψ \ (U) /∈ U . For n = 0, U = ∅ and the properties trivially hold. Suppose a
subproof ϕn+1 of ψ is univalent w.r.t. ∆n, with univalent literal `n+1. Because
`n+1 /∈ ∆n, there exists a subproof of ψ\(U) with conclusion containing `n+1, and
therefore ψ \ (U)\ (ϕn+1) /∈ U ∪{ϕn+1}. Let Γ be the conclusion of ψ \ (U). The
conclusion of ψ′ = ψ \ (U ∪{ϕn+1}) = ψ \ (U)\ (ϕn+1) is included in Γ ∪{`n+1}.
The conclusion of ψ′ �`n+1 ϕn+1 is included in Γ ∪ ∆n. As Γ ⊆ Γψ ∪ ∆n, the
conclusion of ψ′ �`n+1

ϕn+1 . . .�`1 ϕ1 is included in Γψ. ut

For this principle to lead to proof compression, it is important to take
care of the mutual inclusion of univalent subproofs. Suppose, for instance, that
ϕi, ϕj , ϕk ∈ U , i < j < k, ϕj is a subproof of ϕi but not a subproof of ψ \ (ϕi),
and `j ∈ Γϕk

. In this case, ϕj will have one more child in

ψ \ (U)�`n ϕn . . .�`k ϕk . . .�`j ϕj . . .�`i ϕi . . .�`1 ϕ1

than in the original proof ψ. The additional child is created when ϕj is rein-
troduced. All the other children are reintroduced with the reintroduction of ϕi,
because ϕj was not deleted from ϕi.

To solve this issue, LowerUnivalents traverses the proof in a top-down man-
ner and simultaneously deletes already collected univalent subproofs, as sketched
in Algorithm 3.



Figure 1 shows an example proof and the result of compressing it with
LowerUnivalents. The top-down traversal starts with the leaves (axioms) and
only visits a child when all its parents have already been visited. Assuming the
unit with conclusion {a} is the first visited leaf, it passes the univalent test in line
5, is marked for lowering (line 8) and the complement of its univalent literal is
pushed onto ∆ (line 7). When the subproof with conclusion {a, b} is considered,
∆ = {a}. As this subproof has only one valent literal b /∈ ∆ and {a, b} ⊆ ∆∪{b},
it is marked for lowering as well. At this point, ∆ = {a, b}, Univalents contains
the two subproofs marked for lowering and ψ′ is the subproof with conclusion
{a, b} shown in Subfig. (b) (i.e. the result of deleting the two marked subproofs
from the original proof in Subfig. (a)). No other subproof is univalent; no other
subproof is marked for lowering. The final compressed proof (Subfig. (b)) is ob-
tained by reintroducing the two univalent subproofs that had been marked (lines
9 – 12). It has one resolution less than the original. This is so because the sub-
proof with conclusion {a, b} had been used (resolved) twice in the original proof,
but lowering delays its use to a point where a single use is sufficient.

⊥

a a

a, c a, c

b, c a, b a, b, c

(a) Original proof

⊥

a a

a, b a, b

b, c a, b, c

(b) Compressed proof

Fig. 1: Example of proof crompression by LowerUnivalents

Although the call to delete inside the first loop (line 3 to 8) suggests
quadratic time complexity, this loop (line 3 to 8) can be (and has been) actually
implemented as a recursive function extending a recursive implementation of
delete. With such an implementation, LowerUnivalents has a time complex-
ity linear w.r.t. the size of the proof, assuming the univalent test (at line 5) is
performed in constant bounded time.

Determining whether a literal is valent is expensive. But thanks to Propo-
sition 2, subproofs with one active literal which is not in Γψ can be considered
instead of subproofs with one valent literal. If the active literal is not valent, the
corresponding subproof will simply not be reintroduced later (i.e. the condition
in line 28 of Algorithm 4 will fail).

While verifying if a subproof could be univalent, some edges might be deleted.
If a subproof ϕi has already been collected as univalent subproof with univalent
literal `i and the subproof ϕ′ being considered now has `i as active literal, the
corresponding incoming edges can be removed. Even if `i is valent for ϕ′, only
`i would be introduced, and it would be resolved away when reintroducing ϕi.
The delete operation can be easily modified to remove both nodes and edges.



Algorithm 4 sums up the previous remarks for an efficient implementation of
LowerUnivalents. As noticed above, sometimes this algorithm may consider a
subproof as univalent when it is actually not. But as care is taken when reintro-
ducing subproofs (at line 28), the resulting conclusion still subsumes the original.
The test that ` ∈ Γϕ at line 20 is mandatory since ` might have been deleted
from Γϕ by the deletion of previously collected subproofs.

Every node in a proof 〈V,E, Γ 〉 has exactly two outgoing edges unless it is the
root of an axiom. Hence the number of axioms is |V | − 1

2 |E| and because there
is at least one axiom, the average number of active literals per node is strictly
less than two. Therefore, if LowerUnivalents is implemented as an improved
recursive delete, its time complexity remains linear, assuming membership of
literals to the set ∆ is computed in constant time.

Proposition 5. Given a proof ψ, LowerUnits (ψ) has at least as many nodes
as LowerUnivalents (ψ) if there are no two units in ψ with the same conclusion.

Proof. A unit ϕ has exactly one active literal `. Therefore ϕ is collected by
LowerUnivalents unless ` ∈ ∆ or ` ∈ ∆. If ` ∈ ∆ all the incoming edges to ρ(ϕ)

are deleted. If ` ∈ ∆, every edge v
`−→ v′ where v is on a path from ρ(ψ) to ρ(ϕ)

is deleted. In particular, for every edge v
`−→ ρ(ϕ) the edge v

`−→ v′ is deleted.
Moreover, as ` is the only literal of ϕ’s conclusion, ϕ is propagated down the
proof until the univalent subproof with valent literal ` is reintroduced. ut

In the case where there are at least two units with the same conclusion in ψ,
the compressed proof depends on the order in which the units are collected. For
both algorithms, only one of these units appears in the compressed proof.

5 Remarks about Combining LowerUnivalents with RPI

Definition 5 (Regular proof [14]). A proof ψ is regular iff on every path from
its root to any of its axioms, each literal labels at most one edge. Otherwise, ψ
is irregular.

Any irregular proof can be converted into a regular proof having the same
axioms and the same conclusion. But it has been proved [10] that such a total
regularization might result in a proof exponentially bigger than the original.

Nevertheless, partial regularization algorithms, such as RecyclePivots [2]
and RecyclePivotsWithIntersection (RPI) [9], carefully avoid the worst case
of total regularization and do efficiently compress proofs. For any subproof ϕ of

a proof ψ, RPI removes the edge ρ(ϕ)
`−→ v if ` is a safe literal for ϕ.

Definition 6 (Safe literal). A literal ` is safe for a subproof ϕ in a proof ψ
iff ` labels at least one edge on every path from ρ(ψ) to ρ(ϕ).

RPI performs two traversals. During the first one, safe literals are collected
and edges are marked for deletion. The second traversal is the effective deletion
similar to the delete algorithm.



Data: a proof ψ, compressed in place
Input: a set DV of subproofs to delete
Input: a set DE of edges to delete

1 Univalents ← ∅ ;
2 ∆← ∅ ;

3 for every subproof ϕ, in a top-down traversal of ψ do
// The deletion part.

4 if ϕ is not an axiom then
5 let ϕ = ϕL �` ϕR ;

6 if ϕL ∈ DV or ρ(ϕ)
`−→ ρ(ϕL) ∈ DE then

7 if ρ(ϕ)
`−→ ρ(ϕR) ∈ DE then

8 add ϕ to DV ;
9 else

10 replace ϕ by ϕR ;

11 else if ϕR ∈ DV or ρ(ϕ)
`−→ ρ(ϕR) ∈ DE then

12 if ρ(ϕ)
`−→ ρ(ϕL) ∈ DE then

13 add ϕ to DV ;
14 else
15 replace ϕ by ϕL ;

// Test whether ϕ is univalent.

16 ActiveLiterals ← ∅ ;

17 for each incoming edge e = v
`−→ ρ(ϕ), e /∈ DE do

18 if ` ∈ ∆ then
19 add e to DE ;
20 else if ` /∈ ∆, ` ∈ Γϕ and ` /∈ Γψ then
21 add ` to ActiveLiterals;

22 if ActiveLiterals = {`} and Γϕ ⊆ ∆ ∪ {`} then
23 push ` onto ∆ ;
24 push ϕ onto Univalents;

// Reintroduce lowered subproofs.

25 while Univalents 6= ∅ do
26 ϕ← pop from Univalents;
27 `← pop from ∆ ;
28 if ` ∈ Γψ then
29 replace ψ by ϕ�` ψ ;

Algorithm 4: Optimized LowerUnivalents as an enhanced delete



Both sequential compositions of LowerUnits with RPI have been shown
to achieve good compression ratio [9]. However, the best combination order
(LowerUnits after RPI (LU.RPI) or RPI after LowerUnits (RPI.LU)) depends
on the input proof. A reasonable solution is to perform both combinations and
then to choose the smallest compressed proof, but sequential composition is time
consuming. To speed up DAG traversal, it is useful to topologically sort the nodes
of the graph first. But in case of sequential composition this costly operation has
to be done twice. Moreover, some traversals, like deletion, are identical in both
algorithms and might be shared. Whereas implementing a non-sequential com-
bination of RPI after LowerUnits is not difficult, a non-sequential combination
of LowerUnits after RPI would be complicated. The difficulty is that RPI could
create some new units which would be visible only after the deletion phase. A
solution could be to test for units during deletion. But if units are effectively
lowered during this deletion, their deletion would cause some units to become
non-units. And postponing deletions of units until a second deletion traversal
would prevent the sharing of this traversal and would cause one more topologi-
cal sorting to be performed, because the deletion phase significantly transforms
the structure of the DAG.

Apart from having an improved compression ratio, another advantage of
LowerUnivalents over LowerUnits is that LowerUnivalents can be imple-
mented as an enhanced delete operation. With such an implementation, a
simple non-sequential combination of LowerUnivalents after RPI can be im-
plemented just by replacing the second traversal of RPI by LowerUnivalents.
After the first traversal of RPI, as all edges labeled by a safe literal have been
marked for deletion, the remaining active literals are all valent, because for ev-

ery edge ρ(ϕ)
`−→ ρ(ϕ′), ` is either a safe literal of ϕ or a valent literal of ϕ′.

Therefore, in the second traversal of the non-sequential combination (deletion
enhanced by LowerUnivalents), all univalent subproofs are lowered.

6 Experiments

LowerUnivalents and LUnivRPI have been implemented in the functional pro-
gramming language Scala1 as part of the Skeptik library2. LowerUnivalents has
been implemented as a recursive delete improvement.

The algorithms have been applied to 5 059 proofs produced by the SMT-
solver veriT3 on unsatisfiable benchmarks from the SMT-Lib4. The details on
the number of proofs per SMT category are shown in Table 1. The proofs were
translated into pure resolution proofs by considering every non-resolution infer-
ence as an axiom.

The experiment compared the following algorithms:

1 http://www.scala-lang.org/
2 https://github.com/Paradoxika/Skeptik
3 http://www.verit-solver.org/
4 http://www.smtlib.org/



Table 1: Number of proofs per benchmark category

Benchmark Number
Category of Proofs

QF UF 3907
QF IDL 475
QF LIA 385
QF UFIDL 156
QF UFLIA 106
QF RDL 30

LU: the LowerUnits algorithm from [9];

LUniv: the LowerUnivalents algorithm;

RPILU: a non-sequential combination of RPI after LowerUnits;

RPILUniv: a non-sequential combination of RPI after LowerUnivalents;

LU.RPI: the sequential composition of LowerUnits after RPI;

LUnivRPI: the non-sequential combination of LowerUnivalents after RPI as
described in Sect. 5;

RPI: the RecyclePivotsWithIntersection from [9];

Split: Cotton’s Split algorithm ([7]);

RedRec: the Reduce&Reconstruct algorithm from [12];

Best RPILU/LU.RPI: which performs both RPILU and LU.RPI and chooses
the smallest resulting compressed proof;

Best RPILU/LUnivRPI: which performs RPILU and LUnivRPI and chooses
the smallest resulting compressed proof.

For each of these algorithms, the time needed to compress the proof along
with the number of nodes and the number of axioms (i.e. unsat core size) have
been measured. Raw data of the experiment can be downloaded from the web5.

The experiments were executed on the Vienna Scientific Cluster6 VSC-2.
Each algorithm was executed in a single core and had up to 16 GB of memory
available. This amount of memory has been useful to compress the biggest proofs
(with more than 106 nodes).

The overall results of the experiments are shown in Table 2. The compression
ratios in the second column are computed according to formula (3), in which ψ
ranges over all the proofs in the benchmark and ψ′ ranges over the corresponding
compressed proofs.

1−
∑
|Vψ′ |∑
|Vψ|

(3)

The unsat core compression ratios are computed in the same way, but using the
number of axioms instead of the number of nodes. The speeds on the fourth

5 http://www.matabio.net/skeptik/LUniv/experiments/
6 http://vsc.ac.at/



Table 2: Total compression ratios

Algorithm Compression
Unsat Core

Speed
Compression

LU 7.5 % 0.0 % 22.4 n/ms
LUniv 8.0 % 0.8 % 20.4 n/ms
RPILU 22.0 % 3.6 % 7.4 n/ms
RPILUniv 22.1 % 3.6 % 6.5 n/ms
LU.RPI 21.7 % 3.1 % 15.1 n/ms
LUnivRPI 22.0 % 3.6 % 17.8 n/ms
RPI 17.8 % 3.1 % 31.3 n/ms
Split 21.0 % 0.8 % 2.9 n/ms
RedRec 26.4 % 0.4 % 2.9 n/ms
Best RPILU/LU.RPI 22.0 % 3.7 % 5.0 n/ms
Best RPILU/LUnivRPI 22.2 % 3.7 % 5.2 n/ms

column are computed according to formula (4) in which dψ is the duration in
milliseconds of ψ’s compression by a given algorithm.∑

|Vψ|∑
dψ

(4)

For the Split and RedRec algorithms, which must be repeated, a timeout
has been fixed so that the speed is about 3 nodes per millisecond.

Figure 2 shows the comparison of LowerUnits with LowerUnivalents. Sub-
figures (a) and (b) are scatter plots where each dot represents a single bench-
mark proof. Subfigure (c) is a histogram showing, in the vertical axis, the pro-
portion of proofs having (normalized) compression ratio difference within the
intervals showed in the horizontal axis. This difference is computed using for-
mula (5) with vLU and vLUniv being the compression ratios obtained respectively
by LowerUnits and LowerUnivalents.

vLU − vLUniv
vLU+vLUniv

2

(5)

The number of proofs for which vLU = vLUniv is not displayed in the histogram.
The (normalized) duration differences in subfigure (d) are computed using the
same formula (5) but with vLU and vLUniv being the time taken to compress the
proof by LowerUnits and LowerUnivalents respectively.

As expected, LowerUnivalents always compresses more than LowerUnits

(subfigure (a)) at the expense of a longer computation (subfigure (d)). And even
if the compression gain is low on average (as noticeable in Table 2), subfigure
(a) shows that LowerUnivalents compresses some proofs significantly more than
LowerUnits.

It has to be noticed that veriT already does its best to produce compact
proofs. In particular, a forward subsumption algorithm is applied, which results
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in proofs not having two different subproofs with the same conclusion. This re-
sults in LowerUnits being unable to reduce unsat core. But as LowerUnivalents
lowers non-unit subproofs and performs some partial regularization, it achieves
some unsat core reduction, as noticeable in subfigure (b).

The comparison of the sequential LU.RPI with the non-sequential LUnivRPI
shown in Fig. 3 outlines the ability of LowerUnivalents to be efficiently com-
bined with other algorithms. Not only compression ratios are improved but
LUnivRPI is faster than the sequential composition for more than 80 % of the
proofs.

7 Conclusions and Future Work

LowerUnivalents, the algorithm presented here, has been shown in the previous
section to compress more than LowerUnits. This is so because, as demonstrated
in Proposition 5, the set of subproofs it lowers is always a superset of the set of
subproofs lowered by LowerUnits. It might be possible to lower even more sub-
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proofs by finding a characterization of (efficiently) lowerable subproofs broader
than that of univalent subproofs considered here. This direction for future work
promises to be challenging, though, as evidenced by the non-triviality of the
optimizations discussed in Section 4 for obtaining a linear-time implementation
of LowerUnivalents.

As discussed in Section 5, the proposed algorithm can be embedded in the
deletion traversal of other algorithms. As an example, it has been shown that the
combination of LowerUnivalents with RPI, compared to the sequential compo-
sition of LowerUnits after RPI, results in a better compression ratio with only
a small processing time overhead (Figure 3). Other compression algorithms that
also have a subproof deletion or reconstruction phase (e.g. Reduce&Reconstruct)
could probably benefit from being combined with LowerUnivalents as well.

Acknowledgments: The authors would like to thank Pascal Fontaine for providing
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compression, and for several interesting and useful discussions on this topic.
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