
1 Local Redundancy

We first consider an example first posed by Postan:

L2: P (A) η2: ¬P (x), ¬Q(x,B)

¬Q(x,B) η1: ¬P (z), Q(z, y)

¬P (z) L1: P (x)

⊥
Which is locally redundant; see the compressed version in his document.

2 “Example 2”

We consider example 2, from the LU/RPI paper, modified for first order predicates
in a trivial way:

η1: ¬P (A) η3: P (A), Q(B)

η4: Q(B) η2: P (A), R(C),¬Q(B)

η5: P (A), R(C) η1: ¬P (A)

η6: R(C)

η4: Q(B) η7: P (A),¬Q(B),¬R(C)

η8: P (A),¬R(C) η1: ¬P (A)

η9: ¬R(C)

⊥

2.1 Lower Units

Proceeds exactly the same as in the paper.
TODO: show exact steps?

2.2 RecyclePivots

Again, proceeds like in the paper.

3 Lower Units

3.1 Research Notes

First, I consider the proofs 1-5 that were provided by Bruno on the Skeptik dev
mailing list. In order to be explicit, I outline the case of compression from proof 1
to proof 2:

1

• Lower P (X) so that the terms using it were resolved against each other instead
of with P (X)

• Contract (trivially?); the unifier resulted in the duplicated terms

• Resolve the contracted formula against the lowered unit, P (X)

The result is a trade of a resolution for a contraction, which is more compact
(when we consider compactness as a count of the number of resolution rules).

In order to generalize, I think the best place to start was see under what conditions
we can in fact make this contraction. It should not be required that contraction
results in duplicated formulas; indeed, as long as a contraction is possible this seems
to work. So in particular, I conjecture that we should lower a unit formula if and
only if for all formulas which would be resolved against the unit clause of interest
are pair-wise unifiable (disregarding the remainder of their premises), and unifiable
with the unit. Further, the unit must be the most general form of the formula, as
the following shows:

` P (y, x) P (A, x) ` Q(A), R(B)

` Q(y), R(B) Q(y) ` Q(x)

` R(B), Q(x)

Q(A), P (y,A) ` ` P (y, x)

Q(x) `
` R(B) R(B) `

⊥

but if we delay the resolution with P (y, x) we get

P (A, x) ` Q(A), R(B) Q(y) ` Q(x)

P (y, x) ` Q(x), R(B) Q(A), P (y,A) `
P (y, x), P (x, y) ` R(B) R(B) `

P (y, x), P (y,A) ` ` P (y, x)

P (y, x) ` P (y, x)

⊥

and now we actually the same number of resolution rules. No, we can still use a
contraction, and reduce the proof.

The requirement for being pairwise unifiable is also seen in proof 1 and 2, but
further, this is lacking the case of proof 3: P (a) and P (b) is not unifiable, and thus
proof 5 is not actually compressed. But if P (b) had been P (B), then we would have
been fine. It also fails in the following example:

2

` P (X) P (a) ` Q(Y), R(Z)

` Q(Y), R(Z) R(X), P (b) ` S(Y)

P (b) ` S(Y), Q(Y) S(Y), Q(Y) `
P (b) ` ` P (X)

⊥

which is the ’potentially’ globally reduction example from the original lower units
paper.

3

3.2 Results

Let bxc denote a clause consisting of the formula x.

Theorem 3.1. Let S be the set of premises being resolved against a unit clause u.
For every distinct η1, η2 ∈ S, let bu′1c and bu′2c be the pivot literal with opposite
polarity of buc in η1 and η2, respectively. Then u can be lowered if every pair bu′1c
and bu′2c are unifiable.

Proof. We proceed by induction. Base case: |S| = 1. In this case, the unit buc is
only involved in exactly one resolution; let bηc be the premise resolved against buc
so that we have P = φ[φ1[η �σ u]]. Note that bηc contains bu′c, a negated version
of buc, which would be resolved out in the conclusion of φ, and note σu is a unifier
of bu′c and buc. Consider instead P ′ = φ[φ1[η]], the proof obtained by replacing
φ1[η �σ u] with just φ1[η]. Note that all nodes of P ′ contain bu′c. In particular, the
final node in the proof P ′ is bu′c instead of b⊥c. But then we can resolve against u
using σ to complete the proof.

Assume the result holds for all |S| ≤ n, and consider |S| = n + 1. Assume that
S is defined as above, and is pairwise unifiable. Order the elements from the top of
the proof to the bottom (and break ties left-right), so that bη1c is the top-left-most
premise resolved against buc. In particular, bη1c contains bu′1c, and we have that
P = φ[φ1[η1�σ1 u]]. Consider instead P ′ = φ[φ1[η1]], the proof obtained by replacing
φ1[η1�σ1u] with just φ1[η1]. Note that all nodes of P ′ contain bu′1c still. In particular,
the final node in the proof is bu′1c instead of b⊥c.

Consider S ′ = S \ bη1c: since |S| = n + 1 > 1, |S ′| = |S| − 1 = n. Apply
the induction hypothesis to the premises in S ′ to get a resolution φ2[η2 �σ2 u] in
P ′ (where bη2c contains bu′2c); we can construct φ2[η2]. Consider instead φ[φ2[η2]]:
the node of which contains bu′2c. As a result, the final proof node of P ′ final proof
node has bu′1c∪ bu′2c instead of bu′1c (which is present because of the lowering of η1).
By assumption, bu′1c and bu′2c are pair-wise unifiable by some unifier σ1,2. We can
therefore contract σ1,2(bu′1c ∪ bu′2c) and call the result bη1,2c. Now bη1,2c and buc
must be unifiable by assumption with some unifier σu, so we can replace the last
node in the proof with η1,2 �σu u to complete the proof.

4

4 Recycle Pivots

4.1 Research Notes

Example from the video, trivially made first-order (note that in some proofs there
should be a contraction at the “c: ”; I will assume terms are always contracted after
a resolution, if possible):

` A(X)C(Y)D(Z) D(Z) ` A(X)C(Y)

` A(X)C(Y) A(X) ` C(Y)

c: ` C(Y)

C(Y) ` D(Z) ` C(Y)

D(Z) ` A(X)C(Y) ` D(Z)

A(X)C(Y) `
A(X) ` ` A(X)

⊥

Which is, after the first (bottom-up) traversal:

` A(X)C(Y)D(Z) D(Z) ` A(X)C(Y)

` A(X)C(Y) A(X) ` C(Y)
A(X)

c: ` C(Y) {A(X) ` C(Y)}

C(Y) ` D(Z) ` C(Y)
C(Y)

D(Z) ` {A(X)C(Y)D(Z) ` } A(X)C(Y) ` D(Z)
D(Z)

A(X)C(Y) ` {A(X)C(Y) ` }
C(Y)

A(X) ` {A(X) ` } ` A(X)
A(X)

⊥ {}

Now we start the second (top-down) traversal. We replace D(Z) with C(Y) `
since C(Y) ` is in D(Z)’s safe formulas, and we replace with the left parent of D(Z)
since that is the one that contains the safe formula C(Y) ` .

` A(X)C(Y)D(Z) D(Z) ` A(X)C(Y)

` A(X)C(Y) A(X) ` C(Y)

c: ` C(Y) {A(X) ` C(Y)}
C(Y) ` A(X)C(Y) ` D(Z)

A(X)C(Y) ` {A(X)C(Y) ` }
A(X) ` {A(X) ` } ` A(X)

⊥ {}

Now we lower C(Y) ` again, because it is also in A(X)C(Y) ` ’s safe formu-
las, and we pick the left because the right parent might have unsafe formulas (e.g.
` D(Z)), but the left has only safe formulas.

` A(X)C(Y)D(Z) D(Z) ` A(X)C(Y)

` A(X)C(Y) A(X) ` C(Y)

c: ` C(Y) {A(X) ` C(Y)} C(Y) `
A(X) ` {A(X) ` } ` A(X)

⊥ {}

5

Now we need to deal with the last remaining broken proof section (what is left
in red). Since A(X) ` C(Y) is safe with respect to the line under it, we lower it:

A(X) ` C(Y) C(Y) `
A(X) ` ` A(X)

⊥
And we have the desired shorter proof.

4.2 Examples from Bruno’s post

Safe literals for η: { ` P (a,X), C}. Pivot for η → η∗: ` Z.
When Z = P (a,X):

η: ` P (a,X) P (a,X) ` C
η∗: ` C C ` P (a,X)

` P (a,X) P (Y, b) `
⊥

Regularizable: we can can take the right parent of the resolution that would
produce η∗. The right parent contains exactly the safe literals.

When Z = P (a, c):

η: ` P (a, c) P (a, c) ` C
η∗: ` C C ` P (a,X)

` P (a,X) P (Y, b) `
⊥

Not regularizable: we can can take the either parent of the resolution that would
produce η∗, but then the next resolvent is ` P (a, c), which we can’t resolve with
P (a, b). Neither parent contains the safe literal P (a,X)

When Z = P (W,X):

η: ` P (W,X) P (W,X) ` C
η∗: ` C C ` P (a,X)

` P (a,X) P (Y, b) `
⊥

Again, regularizable: we can can take the right parent of the resolution that
would produce η∗. The right parent contains a more general form of the safe literal
P (a,X)? (Will study this further)

6

4.3 Ideas

After studying the last case in greater detail, I provide the following two conjectures;
the first is the weaker version, while the second appears to capture more cases, so
is likely better. The first is included only for completeness, or in case I discover a
counter-example to the second one. Both are based off of the observation that regu-
larization can proceed if a safe literal is found above some η∗ which is somehow more
general. The two conjectures differ in what is allowed as ’somehow more generall.

Conjecture 1 (Weak Recycle Condition). If there is a parent in η (the resolution
resulting in η∗) contains an exact copy of a safe literal of η∗, or a parent containing
the most general form of a safe literal of η∗, then regularization is possible.

I define a most general form of a literal as that literal but containing only uni-
versally quantified variables.

This certainly captures what happens with the last of Bruno’s examples, but
misses some cases, e.g. when Z = P (W, b):

η: ` P (W, b) P (W, b) ` C
η∗: ` C C ` P (a,X)

` P (a,X) P (Y, b) `
⊥

In this case, regularization should be possible, and the final resolution in the
proof would be

` P (a, b) P (Y, b) `
⊥

which is fine. So I thought of the following conjecture:

Conjecture 2 (Strong Recycle Condition). If there is a parent in η (the resolution
resulting in η∗) contains an exact copy of a safe literal of η∗, or a parent containing
the most general form of a safe literal of η∗, or a consistent but still more general
form of the safe literal, then regularization is possible.

A consistent but still more general form of the safe literal is a bit harder to define.
We will say that a literal X is a consistent but more still general form (“CMGF”) of
the safe literal Y if for every resolution where Y is the pivot, X can be used in place
of Y , and X contains more universally quantified variables than Y . An example of a

7

literal that is not a consistent but still more general form of the safe literal P (a, b) is
Z = P (X, c); the resolution would not be possible with Z in place of the safe literal.

Since a literal is considered safe for nodes above the resolution that uses it as a
pivot, I also think that checking if a literal is a CMGF of the safe literal should be
fairly straightforward. When the bottom-up traversal happens, we can also identify
with each safe literal the substitutions made in the unification during the resolu-
tion. In fact, I think we would only need the substitutions that take a universally
quantified variable to a specific variable (lower case letter). Then, when checking if
regularization is possible, we apply that unifier to the safe literal, and then attempt
to unify the result with the suspected CMGF; if the second unification is possible,
the literal is in fact a CMGF; otherwise it is not.

To illustrate, I describe this on the last example. During the bottom up traversal,
when C would get the safe literal P (a,X), it instead gets the pair (P (a,X), {X →
b}). Now when checking if we can regularize C, we look at P (W, b) and P (a, b)
(which is P (a,X) with X → b applied to it), and see if they can be unified; they
can, so we can regularize C. Similarly, Z = P (W, c) would fail: it’s not unifiable
with P (a, b).

Proof of 2. Consider P = φ[η∗] where η∗ = l �σ r with pivot p. Without loss of
generality, say that l is the parent of η∗ that has the safe literals s1, . . . , sn of η∗; let
l = η. According to the hypothesis, η contains either the exact safe literals of η∗,
the most general form of the safe literal si, or a CMGF form of si. In the first case,
we can definitely perform the resolution where the safe literal si was added to the
list because the exact version is maintained. In the last two cases, we can unify the
most general form or CMGF of si (whichever we have) to the required literal, and
therefore we can still perform the resolution where si is the pivot.

Do I need to show anything else? when the regularization removes more than one
level, I would think (the line η∗ = l � r is too restricted.

8

4.4 Results

Let Σ(η) be the set of safe literals for a proof node η and let η →p η∗ denote that η
is a parent of node η∗ where η∗ was obtained by some resolution using pivot p and η
(p ∈ η).

Theorem 4.1 (First Order Recycle Condition). If η →p η∗ and there is a literal
p∗ ∈ Σ(η∗) such that pσ = p∗ for some substitution σ, then η∗ can be replaced by η.

Proof. Consider P = φ[η∗] where η∗ = η�ση′ with pivot p. Without loss of generality,
say that η is the parent of η∗ that has the safe literal p∗ ∈ Σ(η∗). According to the
hypothesis, η, there exists a substitution σ such that pσ = p∗. Note that all formulas
in η \ p are contained in η∗ (since resolution only removes the pivot formula); thus
we can replace η∗ by η, and the only difference will be the presence of p. But recall
that p∗ was a safe literal, and that it is eventually resolved out later in the proof
using some unifier σ′. Since pσ = p∗, when this resolution occurs, we can apply σ
to the term first (so that p has the required form of p∗), contract these two terms
(which will in fact be syntactically equal), and then apply the resolution (using σ′)
as before.

9

