% SZS status Theorem for DAT013=1 % SZS output start Proof for DAT013=1 (skolem (let ((_let_0 (* (- 1) X))) (let ((_let_1 (* (- 1) BOUND_VARIABLE_358))) (forall ((U array) (V Int) (W Int) (BOUND_VARIABLE_358 Int)) (or (not (forall ((X Int)) (or (>= (+ V _let_0) 1) (not (>= (+ W _let_0) 0)) (>= (read U X) 1)) )) (>= (+ V _let_1) (- 2)) (not (>= (+ W _let_1) 0)) (>= (read U BOUND_VARIABLE_358) 1)) ))) ( skv_1 skv_2 skv_3 skv_4 ) ) (instantiation (forall ((X Int)) (or (not (>= (+ X (* (- 1) skv_2)) 0)) (>= (+ X (* (- 1) skv_3)) 1) (>= (read skv_1 X) 1)) ) ( skv_4 ) ) % SZS output end Proof for DAT013=1
% SZS status Theorem for SEU140+2 % SZS output start Proof for SEU140+2 (skolem (forall ((A $$unsorted)) (not (empty A)) ) ( skv_1 ) ) (skolem (forall ((A $$unsorted)) (empty A) ) ( skv_2 ) ) (skolem (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (or (not (subset A B)) (not (disjoint B C)) (disjoint A C)) ) ( skv_3 skv_4 skv_5 ) ) (skolem (forall ((C $$unsorted)) (or (not (in C skv_3)) (not (in C skv_5))) ) ( skv_6 ) ) (skolem (forall ((C $$unsorted)) (not (in C (set_intersection2 skv_3 skv_5))) ) ( skv_7 ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted)) (= (= A B) (and (subset A B) (subset B A))) ) ( skv_3, skv_4 ) ( skv_4, skv_3 ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (= (= C (set_union2 A B)) (forall ((D $$unsorted)) (= (in D C) (or (in D A) (in D B))) )) ) ( skv_3, skv_4, (set_union2 skv_3 skv_4) ) ( skv_3, (set_difference skv_4 skv_3), (set_union2 skv_3 (set_difference skv_4 skv_3)) ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (= (= C (set_intersection2 A B)) (forall ((D $$unsorted)) (= (in D C) (and (in D A) (in D B))) )) ) ( skv_3, skv_4, (set_intersection2 skv_3 skv_4) ) ( skv_3, skv_5, (set_intersection2 skv_3 skv_5) ) ( skv_4, skv_5, (set_intersection2 skv_4 skv_5) ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (= (= C (set_difference A B)) (forall ((D $$unsorted)) (= (in D C) (and (in D A) (not (in D B)))) )) ) ( skv_3, skv_4, (set_difference skv_3 skv_4) ) ( skv_4, skv_3, (set_difference skv_4 skv_3) ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted)) (= (proper_subset A B) (and (subset A B) (not (= A B)))) ) ( skv_3, skv_4 ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted)) (subset (set_intersection2 A B) A) ) ( skv_3, skv_4 ) ( skv_3, skv_5 ) ( skv_4, skv_5 ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted)) (subset (set_difference A B) A) ) ( skv_3, skv_4 ) ( skv_4, skv_3 ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted)) (or (not (in A B)) (not (in B A))) ) ( skv_3, skv_6 ) ( skv_5, skv_6 ) ( (set_intersection2 skv_3 skv_5), skv_7 ) ( skv_6, skv_3 ) ( skv_6, skv_5 ) ( skv_7, (set_intersection2 skv_3 skv_5) ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted)) (= (set_union2 B A) (set_union2 A B)) ) ( skv_3, skv_4 ) ( skv_3, (set_difference skv_4 skv_3) ) ( skv_4, skv_3 ) ( (set_difference skv_4 skv_3), skv_3 ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted)) (= (set_intersection2 B A) (set_intersection2 A B)) ) ( skv_3, skv_4 ) ( skv_3, skv_5 ) ( skv_4, skv_3 ) ( skv_4, skv_5 ) ( skv_5, skv_3 ) ( skv_5, skv_4 ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted)) (= (subset A B) (forall ((C $$unsorted)) (or (not (in C A)) (in C B)) )) ) ( skv_3, skv_4 ) ( skv_4, skv_3 ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted)) (= (disjoint A B) (= empty_set (set_intersection2 A B))) ) ( skv_3, skv_4 ) ( skv_3, skv_5 ) ( skv_4, skv_5 ) ( skv_5, skv_3 ) ( skv_5, skv_4 ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted)) (or (empty A) (not (empty (set_union2 A B)))) ) ( skv_3, skv_4 ) ( skv_3, (set_difference skv_4 skv_3) ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted)) (or (empty A) (not (empty (set_union2 B A)))) ) ( skv_4, skv_3 ) ( (set_difference skv_4 skv_3), skv_3 ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted)) (= (= empty_set (set_difference A B)) (subset A B)) ) ( skv_3, skv_4 ) ( skv_4, skv_3 ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted)) (or (not (disjoint A B)) (disjoint B A)) ) ( skv_4, skv_5 ) ( skv_5, skv_3 ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted)) (or (not (subset A B)) (= B (set_union2 A B))) ) ( skv_3, skv_4 ) ( skv_3, (set_difference skv_4 skv_3) ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted)) (or (not (subset A B)) (= A (set_intersection2 A B))) ) ( skv_3, skv_4 ) ( skv_3, skv_5 ) ( skv_4, skv_5 ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted)) (or (not (forall ((C $$unsorted)) (= (in C A) (in C B)) )) (= A B)) ) ( empty_set, (set_intersection2 skv_3 skv_5) ) ( empty_set, (set_difference skv_4 skv_3) ) ( skv_3, skv_4 ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted)) (= (set_union2 A B) (set_union2 A (set_difference B A))) ) ( skv_3, (set_difference skv_4 skv_3) ) ( skv_4, skv_3 ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted)) (or (disjoint A B) (not (forall ((C $$unsorted)) (or (not (in C A)) (not (in C B))) ))) ) ( skv_3, skv_5 ) ( skv_5, skv_3 ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted) (BOUND_VARIABLE_802 $$unsorted)) (or (not (disjoint A B)) (not (in BOUND_VARIABLE_802 A)) (not (in BOUND_VARIABLE_802 B))) ) ( skv_5, skv_4, skv_6 ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted)) (= (set_difference A B) (set_difference (set_union2 A B) B)) ) ( skv_3, skv_4 ) ( skv_3, (set_difference skv_4 skv_3) ) ( skv_4, skv_3 ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted)) (or (not (subset A B)) (= B (set_union2 A (set_difference B A)))) ) ( skv_3, skv_4 ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted)) (= (set_intersection2 A B) (set_difference A (set_difference A B))) ) ( skv_3, skv_4 ) ( skv_3, skv_5 ) ( skv_4, skv_3 ) ( skv_4, skv_5 ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted)) (or (disjoint A B) (not (forall ((C $$unsorted)) (not (in C (set_intersection2 A B))) ))) ) ( skv_3, skv_5 ) ( skv_5, skv_3 ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted) (BOUND_VARIABLE_844 $$unsorted)) (or (not (in BOUND_VARIABLE_844 (set_intersection2 A B))) (not (disjoint A B))) ) ( skv_3, skv_4, skv_6 ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted)) (or (not (subset A B)) (not (proper_subset B A))) ) ( skv_3, skv_4 ) ) (instantiation (forall ((A $$unsorted)) (or (not (empty A)) (= empty_set A)) ) ( skv_1 ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted)) (or (not (in A B)) (not (empty B))) ) ( skv_6, skv_3 ) ( skv_6, skv_5 ) ( skv_7, (set_intersection2 skv_3 skv_5) ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted)) (or (not (empty A)) (= A B) (not (empty B))) ) ( empty_set, skv_1 ) ( skv_1, empty_set ) ) (instantiation (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (or (not (subset A B)) (not (subset C B)) (subset (set_union2 A C) B)) ) ( skv_3, skv_3, (set_difference skv_4 skv_3) ) ) (instantiation (forall ((C $$unsorted)) (or (not (in C skv_3)) (in C skv_4)) ) ( skv_6 ) ) % SZS output end Proof for SEU140+2
% SZS status CounterSatisfiable for NLP042+1 % SZS output start FiniteModel for NLP042+1 (define-fun actual_world ((_ufmt_1 $$unsorted)) Bool true) ; cardinality of $$unsorted is 1 (declare-sort $$unsorted 0) ; rep: @uc___unsorted_0 ; cardinality of it_2_$$unsorted is 4 (declare-sort it_2_$$unsorted 0) ; rep: @uc_it_2___unsorted_0 ; rep: @uc_it_2___unsorted_1 ; rep: @uc_it_2___unsorted_2 ; rep: @uc_it_2___unsorted_3 (define-fun io_woman_1 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_0 $x2))) (define-fun io_female_2 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_0 $x2))) (define-fun io_human_person_3 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_0 $x2))) (define-fun io_animate_4 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_0 $x2))) (define-fun io_human_5 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_0 $x2))) (define-fun io_organism_6 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_0 $x2))) (define-fun io_living_7 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_0 $x2))) (define-fun io_impartial_8 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool true) (define-fun io_entity_9 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (ite (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_0 $x2)) true (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_2 $x2)))) (define-fun io_mia_forename_10 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_1 $x2))) (define-fun io_forename_11 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_1 $x2))) (define-fun io_abstraction_12 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_1 $x2))) (define-fun io_unisex_13 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (ite (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_3 $x2)) true (ite (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_1 $x2)) true (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_2 $x2))))) (define-fun io_general_14 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_1 $x2))) (define-fun io_nonhuman_15 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_1 $x2))) (define-fun io_thing_16 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool true) (define-fun io_relation_17 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_1 $x2))) (define-fun io_relname_18 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_1 $x2))) (define-fun io_object_19 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_2 $x2))) (define-fun io_nonliving_20 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_2 $x2))) (define-fun io_existent_21 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (ite (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_0 $x2)) true (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_2 $x2)))) (define-fun io_specific_22 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (ite (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_3 $x2)) true (ite (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_0 $x2)) true (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_2 $x2))))) (define-fun io_substance_matter_23 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_2 $x2))) (define-fun io_food_24 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_2 $x2))) (define-fun io_beverage_25 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_2 $x2))) (define-fun io_shake_beverage_26 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_2 $x2))) (define-fun io_order_27 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_3 $x2))) (define-fun io_event_28 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_3 $x2))) (define-fun io_eventuality_29 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_3 $x2))) (define-fun io_nonexistent_30 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_3 $x2))) (define-fun io_singleton_31 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool true) (define-fun io_act_32 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_3 $x2))) (define-fun io_of_33 (($x1 $$unsorted) ($x2 it_2_$$unsorted) ($x3 it_2_$$unsorted)) Bool true) (define-fun io_nonreflexive_34 (($x1 $$unsorted) ($x2 it_2_$$unsorted)) Bool (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_3 $x2))) (define-fun io_agent_35 (($x1 $$unsorted) ($x2 it_2_$$unsorted) ($x3 it_2_$$unsorted)) Bool (ite (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_3 $x2) (= @uc_it_2___unsorted_2 $x3)) false (ite (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_3 $x2) (= @uc_it_2___unsorted_1 $x3)) false (not (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_3 $x2) (= @uc_it_2___unsorted_3 $x3)))))) (define-fun io_patient_36 (($x1 $$unsorted) ($x2 it_2_$$unsorted) ($x3 it_2_$$unsorted)) Bool (not (and (= @uc___unsorted_0 $x1) (= @uc_it_2___unsorted_3 $x2) (= @uc_it_2___unsorted_0 $x3)))) (define-fun io_past_37 ((_ufmt_1 $$unsorted) (_ufmt_2 it_2_$$unsorted)) Bool true) % SZS output end FiniteModel for NLP042+1
% SZS status Satisfiable for SWV017+1 % SZS output start FiniteModel for SWV017+1 (define-fun at () $$unsorted @uc___unsorted_0) (define-fun t () $$unsorted @uc___unsorted_0) (define-fun a_holds (($x1 $$unsorted)) Bool true) (define-fun a () $$unsorted @uc___unsorted_0) (define-fun b () $$unsorted @uc___unsorted_0) (define-fun an_a_nonce () $$unsorted @uc___unsorted_0) (define-fun bt () $$unsorted @uc___unsorted_0) (define-fun b_holds (($x1 $$unsorted)) Bool true) (define-fun t_holds (($x1 $$unsorted)) Bool true) (define-fun intruder_holds (($x1 $$unsorted)) Bool true) (define-fun an_intruder_nonce () $$unsorted @uc___unsorted_0) ; cardinality of $$unsorted is 1 (declare-sort $$unsorted 0) ; rep: @uc___unsorted_0 ; cardinality of it_4_$$unsorted is 2 (declare-sort it_4_$$unsorted 0) ; rep: @uc_it_4___unsorted_0 ; rep: @uc_it_4___unsorted_1 (define-fun io_key_3 (($x1 it_4_$$unsorted) ($x2 it_4_$$unsorted)) $$unsorted @uc___unsorted_0) (define-fun io_party_of_protocol_5 (($x1 it_4_$$unsorted)) Bool true) ; cardinality of it_19_$$unsorted is 1 (declare-sort it_19_$$unsorted 0) ; rep: @uc_it_19___unsorted_0 (define-fun io_pair_8 (($x1 it_4_$$unsorted) ($x2 it_4_$$unsorted)) it_4_$$unsorted @uc_it_4___unsorted_0) (define-fun io_sent_9 (($x1 it_4_$$unsorted) ($x2 it_4_$$unsorted) ($x3 it_4_$$unsorted)) it_19_$$unsorted @uc_it_19___unsorted_0) (define-fun io_message_10 (($x1 it_19_$$unsorted)) Bool true) (define-fun io_a_stored_11 (($x1 it_4_$$unsorted)) Bool true) (define-fun io_quadruple_12 (($x1 it_4_$$unsorted) ($x2 it_4_$$unsorted) ($x3 it_4_$$unsorted) ($x4 it_4_$$unsorted)) it_4_$$unsorted @uc_it_4___unsorted_0) (define-fun io_encrypt_13 (($x1 it_4_$$unsorted) ($x2 it_4_$$unsorted)) it_4_$$unsorted @uc_it_4___unsorted_0) (define-fun io_triple_14 (($x1 it_4_$$unsorted) ($x2 it_4_$$unsorted) ($x3 it_4_$$unsorted)) it_4_$$unsorted @uc_it_4___unsorted_0) (define-fun io_fresh_to_b_16 (($x1 it_4_$$unsorted)) Bool true) (define-fun io_generate_b_nonce_17 (($x1 it_4_$$unsorted)) it_4_$$unsorted @uc_it_4___unsorted_0) (define-fun io_generate_expiration_time_18 (($x1 it_4_$$unsorted)) it_4_$$unsorted @uc_it_4___unsorted_0) (define-fun io_b_stored_19 (($x1 it_4_$$unsorted)) Bool true) (define-fun io_a_key_20 (($x1 it_4_$$unsorted)) Bool (= @uc_it_4___unsorted_1 $x1)) (define-fun io_a_nonce_21 (($x1 it_4_$$unsorted)) Bool (= @uc_it_4___unsorted_0 $x1)) (define-fun io_generate_key_22 (($x1 it_4_$$unsorted)) it_4_$$unsorted @uc_it_4___unsorted_1) (define-fun io_intruder_message_23 (($x1 it_4_$$unsorted)) Bool true) (define-fun io_fresh_intruder_nonce_25 (($x1 it_4_$$unsorted)) Bool true) (define-fun io_generate_intruder_nonce_26 (($x1 it_4_$$unsorted)) it_4_$$unsorted @uc_it_4___unsorted_0) % SZS output end FiniteModel for SWV017+1
# SZS status Theorem # SZS output start CNFRefutation fof(t63_xboole_1, conjecture, (![X1]:![X2]:![X3]:((subset(X1,X2)&disjoint(X2,X3))=>disjoint(X1,X3))), file('/tmp/SystemOnTPTP10036/SEU140+2.tptp', t63_xboole_1)). fof(symmetry_r1_xboole_0, axiom, (![X1]:![X2]:(disjoint(X1,X2)=>disjoint(X2,X1))), file('/tmp/SystemOnTPTP10036/SEU140+2.tptp', symmetry_r1_xboole_0)). fof(t1_xboole_1, lemma, (![X1]:![X2]:![X3]:((subset(X1,X2)&subset(X2,X3))=>subset(X1,X3))), file('/tmp/SystemOnTPTP10036/SEU140+2.tptp', t1_xboole_1)). fof(t40_xboole_1, lemma, (![X1]:![X2]:set_difference(set_union2(X1,X2),X2)=set_difference(X1,X2)), file('/tmp/SystemOnTPTP10036/SEU140+2.tptp', t40_xboole_1)). fof(commutativity_k2_xboole_0, axiom, (![X1]:![X2]:set_union2(X1,X2)=set_union2(X2,X1)), file('/tmp/SystemOnTPTP10036/SEU140+2.tptp', commutativity_k2_xboole_0)). fof(t2_boole, axiom, (![X1]:set_intersection2(X1,empty_set)=empty_set), file('/tmp/SystemOnTPTP10036/SEU140+2.tptp', t2_boole)). fof(t48_xboole_1, lemma, (![X1]:![X2]:set_difference(X1,set_difference(X1,X2))=set_intersection2(X1,X2)), file('/tmp/SystemOnTPTP10036/SEU140+2.tptp', t48_xboole_1)). fof(t3_xboole_0, lemma, (![X1]:![X2]:(~((~(disjoint(X1,X2))&![X3]:~((in(X3,X1)&in(X3,X2)))))&~((?[X3]:(in(X3,X1)&in(X3,X2))&disjoint(X1,X2))))), file('/tmp/SystemOnTPTP10036/SEU140+2.tptp', t3_xboole_0)). fof(d4_xboole_0, axiom, (![X1]:![X2]:![X3]:(X3=set_difference(X1,X2)<=>![X4]:(in(X4,X3)<=>(in(X4,X1)&~(in(X4,X2)))))), file('/tmp/SystemOnTPTP10036/SEU140+2.tptp', d4_xboole_0)). fof(l32_xboole_1, lemma, (![X1]:![X2]:(set_difference(X1,X2)=empty_set<=>subset(X1,X2))), file('/tmp/SystemOnTPTP10036/SEU140+2.tptp', l32_xboole_1)). fof(d7_xboole_0, axiom, (![X1]:![X2]:(disjoint(X1,X2)<=>set_intersection2(X1,X2)=empty_set)), file('/tmp/SystemOnTPTP10036/SEU140+2.tptp', d7_xboole_0)). fof(t39_xboole_1, lemma, (![X1]:![X2]:set_union2(X1,set_difference(X2,X1))=set_union2(X1,X2)), file('/tmp/SystemOnTPTP10036/SEU140+2.tptp', t39_xboole_1)). fof(t3_boole, axiom, (![X1]:set_difference(X1,empty_set)=X1), file('/tmp/SystemOnTPTP10036/SEU140+2.tptp', t3_boole)). fof(commutativity_k3_xboole_0, axiom, (![X1]:![X2]:set_intersection2(X1,X2)=set_intersection2(X2,X1)), file('/tmp/SystemOnTPTP10036/SEU140+2.tptp', commutativity_k3_xboole_0)). fof(t36_xboole_1, lemma, (![X1]:![X2]:subset(set_difference(X1,X2),X1)), file('/tmp/SystemOnTPTP10036/SEU140+2.tptp', t36_xboole_1)). fof(t12_xboole_1, lemma, (![X1]:![X2]:(subset(X1,X2)=>set_union2(X1,X2)=X2)), file('/tmp/SystemOnTPTP10036/SEU140+2.tptp', t12_xboole_1)). fof(t1_boole, axiom, (![X1]:set_union2(X1,empty_set)=X1), file('/tmp/SystemOnTPTP10036/SEU140+2.tptp', t1_boole)). fof(c_0_17, negated_conjecture, (~(![X1]:![X2]:![X3]:((subset(X1,X2)&disjoint(X2,X3))=>disjoint(X1,X3)))), inference(assume_negation,[status(cth)],[t63_xboole_1])). fof(c_0_18, plain, (![X3]:![X4]:(~disjoint(X3,X4)|disjoint(X4,X3))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[symmetry_r1_xboole_0])])). fof(c_0_19, negated_conjecture, (((subset(esk11_0,esk12_0)&disjoint(esk12_0,esk13_0))&~disjoint(esk11_0,esk13_0))), inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_17])])])). fof(c_0_20, lemma, (![X4]:![X5]:![X6]:((~subset(X4,X5)|~subset(X5,X6))|subset(X4,X6))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[t1_xboole_1])])). fof(c_0_21, lemma, (![X3]:![X4]:set_difference(set_union2(X3,X4),X4)=set_difference(X3,X4)), inference(variable_rename,[status(thm)],[t40_xboole_1])). fof(c_0_22, plain, (![X3]:![X4]:set_union2(X3,X4)=set_union2(X4,X3)), inference(variable_rename,[status(thm)],[commutativity_k2_xboole_0])). fof(c_0_23, plain, (![X2]:set_intersection2(X2,empty_set)=empty_set), inference(variable_rename,[status(thm)],[t2_boole])). fof(c_0_24, lemma, (![X3]:![X4]:set_difference(X3,set_difference(X3,X4))=set_intersection2(X3,X4)), inference(variable_rename,[status(thm)],[t48_xboole_1])). fof(c_0_25, lemma, (![X4]:![X5]:![X4]:![X5]:![X7]:(((in(esk9_2(X4,X5),X4)|disjoint(X4,X5))&(in(esk9_2(X4,X5),X5)|disjoint(X4,X5)))&((~in(X7,X4)|~in(X7,X5))|~disjoint(X4,X5)))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[t3_xboole_0])])])])])])])])). cnf(c_0_26,plain,(disjoint(X1,X2)|~disjoint(X2,X1)), inference(split_conjunct,[status(thm)],[c_0_18])). cnf(c_0_27,negated_conjecture,(disjoint(esk12_0,esk13_0)), inference(split_conjunct,[status(thm)],[c_0_19])). fof(c_0_28, plain, (![X5]:![X6]:![X7]:![X8]:![X8]:![X5]:![X6]:![X7]:(((((in(X8,X5)|~in(X8,X7))|X7!=set_difference(X5,X6))&((~in(X8,X6)|~in(X8,X7))|X7!=set_difference(X5,X6)))&(((~in(X8,X5)|in(X8,X6))|in(X8,X7))|X7!=set_difference(X5,X6)))&(((~in(esk5_3(X5,X6,X7),X7)|(~in(esk5_3(X5,X6,X7),X5)|in(esk5_3(X5,X6,X7),X6)))|X7=set_difference(X5,X6))&(((in(esk5_3(X5,X6,X7),X5)|in(esk5_3(X5,X6,X7),X7))|X7=set_difference(X5,X6))&((~in(esk5_3(X5,X6,X7),X6)|in(esk5_3(X5,X6,X7),X7))|X7=set_difference(X5,X6)))))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[d4_xboole_0])])])])])])])])). fof(c_0_29, lemma, (![X3]:![X4]:![X3]:![X4]:((set_difference(X3,X4)!=empty_set|subset(X3,X4))&(~subset(X3,X4)|set_difference(X3,X4)=empty_set))), inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[l32_xboole_1])])])])). cnf(c_0_30,lemma,(subset(X1,X2)|~subset(X3,X2)|~subset(X1,X3)), inference(split_conjunct,[status(thm)],[c_0_20])). cnf(c_0_31,negated_conjecture,(subset(esk11_0,esk12_0)), inference(split_conjunct,[status(thm)],[c_0_19])). fof(c_0_32, plain, (![X3]:![X4]:![X3]:![X4]:((~disjoint(X3,X4)|set_intersection2(X3,X4)=empty_set)&(set_intersection2(X3,X4)!=empty_set|disjoint(X3,X4)))), inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[d7_xboole_0])])])])). cnf(c_0_33,lemma,(set_difference(set_union2(X1,X2),X2)=set_difference(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_21])). cnf(c_0_34,plain,(set_union2(X1,X2)=set_union2(X2,X1)), inference(split_conjunct,[status(thm)],[c_0_22])). fof(c_0_35, lemma, (![X3]:![X4]:set_union2(X3,set_difference(X4,X3))=set_union2(X3,X4)), inference(variable_rename,[status(thm)],[t39_xboole_1])). cnf(c_0_36,plain,(set_intersection2(X1,empty_set)=empty_set), inference(split_conjunct,[status(thm)],[c_0_23])). cnf(c_0_37,lemma,(set_difference(X1,set_difference(X1,X2))=set_intersection2(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_24])). fof(c_0_38, plain, (![X2]:set_difference(X2,empty_set)=X2), inference(variable_rename,[status(thm)],[t3_boole])). cnf(c_0_39,lemma,(~disjoint(X1,X2)|~in(X3,X2)|~in(X3,X1)), inference(split_conjunct,[status(thm)],[c_0_25])). cnf(c_0_40,negated_conjecture,(disjoint(esk13_0,esk12_0)), inference(spm,[status(thm)],[c_0_26, c_0_27])). cnf(c_0_41,plain,(in(X4,X2)|X1!=set_difference(X2,X3)|~in(X4,X1)), inference(split_conjunct,[status(thm)],[c_0_28])). fof(c_0_42, plain, (![X3]:![X4]:set_intersection2(X3,X4)=set_intersection2(X4,X3)), inference(variable_rename,[status(thm)],[commutativity_k3_xboole_0])). cnf(c_0_43,lemma,(set_difference(X1,X2)=empty_set|~subset(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_29])). cnf(c_0_44,negated_conjecture,(subset(X1,esk12_0)|~subset(X1,esk11_0)), inference(spm,[status(thm)],[c_0_30, c_0_31])). fof(c_0_45, lemma, (![X3]:![X4]:subset(set_difference(X3,X4),X3)), inference(variable_rename,[status(thm)],[t36_xboole_1])). fof(c_0_46, lemma, (![X3]:![X4]:(~subset(X3,X4)|set_union2(X3,X4)=X4)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[t12_xboole_1])])). cnf(c_0_47,plain,(disjoint(X1,X2)|set_intersection2(X1,X2)!=empty_set), inference(split_conjunct,[status(thm)],[c_0_32])). cnf(c_0_48,lemma,(set_difference(set_union2(X1,X2),X1)=set_difference(X2,X1)), inference(spm,[status(thm)],[c_0_33, c_0_34])). cnf(c_0_49,lemma,(set_union2(X1,set_difference(X2,X1))=set_union2(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_35])). cnf(c_0_50,plain,(set_difference(X1,set_difference(X1,empty_set))=empty_set), inference(rw,[status(thm)],[c_0_36, c_0_37])). cnf(c_0_51,plain,(set_difference(X1,empty_set)=X1), inference(split_conjunct,[status(thm)],[c_0_38])). cnf(c_0_52,negated_conjecture,(~in(X1,esk12_0)|~in(X1,esk13_0)), inference(spm,[status(thm)],[c_0_39, c_0_40])). cnf(c_0_53,lemma,(disjoint(X1,X2)|in(esk9_2(X1,X2),X2)), inference(split_conjunct,[status(thm)],[c_0_25])). cnf(c_0_54,plain,(in(X1,X2)|~in(X1,set_difference(X2,X3))), inference(er,[status(thm)],[c_0_41])). cnf(c_0_55,lemma,(disjoint(X1,X2)|in(esk9_2(X1,X2),X1)), inference(split_conjunct,[status(thm)],[c_0_25])). cnf(c_0_56,plain,(set_intersection2(X1,X2)=set_intersection2(X2,X1)), inference(split_conjunct,[status(thm)],[c_0_42])). cnf(c_0_57,lemma,(set_difference(X1,esk12_0)=empty_set|~subset(X1,esk11_0)), inference(spm,[status(thm)],[c_0_43, c_0_44])). cnf(c_0_58,lemma,(subset(set_difference(X1,X2),X1)), inference(split_conjunct,[status(thm)],[c_0_45])). cnf(c_0_59,plain,(set_intersection2(X1,X2)=empty_set|~disjoint(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_32])). fof(c_0_60, plain, (![X2]:set_union2(X2,empty_set)=X2), inference(variable_rename,[status(thm)],[t1_boole])). cnf(c_0_61,lemma,(set_union2(X1,X2)=X2|~subset(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_46])). cnf(c_0_62,plain,(disjoint(X1,X2)|set_difference(X1,set_difference(X1,X2))!=empty_set), inference(rw,[status(thm)],[c_0_47, c_0_37])). cnf(c_0_63,lemma,(set_difference(set_difference(X1,X2),X2)=set_difference(X1,X2)), inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_48, c_0_49]), c_0_48])). cnf(c_0_64,plain,(set_difference(X1,X1)=empty_set), inference(rw,[status(thm)],[c_0_50, c_0_51])). cnf(c_0_65,lemma,(disjoint(X1,esk13_0)|~in(esk9_2(X1,esk13_0),esk12_0)), inference(spm,[status(thm)],[c_0_52, c_0_53])). cnf(c_0_66,lemma,(disjoint(set_difference(X1,X2),X3)|in(esk9_2(set_difference(X1,X2),X3),X1)), inference(spm,[status(thm)],[c_0_54, c_0_55])). cnf(c_0_67,plain,(set_difference(X1,set_difference(X1,X2))=set_difference(X2,set_difference(X2,X1))), inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_56, c_0_37]), c_0_37])). cnf(c_0_68,lemma,(set_difference(set_difference(esk11_0,X1),esk12_0)=empty_set), inference(spm,[status(thm)],[c_0_57, c_0_58])). cnf(c_0_69,plain,(set_difference(X1,set_difference(X1,X2))=empty_set|~disjoint(X1,X2)), inference(rw,[status(thm)],[c_0_59, c_0_37])). cnf(c_0_70,plain,(set_union2(X1,empty_set)=X1), inference(split_conjunct,[status(thm)],[c_0_60])). cnf(c_0_71,lemma,(set_union2(X1,set_difference(X1,X2))=X1), inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_61, c_0_58]), c_0_34])). cnf(c_0_72,lemma,(disjoint(set_difference(X1,X2),X2)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_62, c_0_63]), c_0_64])])). cnf(c_0_73,lemma,(disjoint(set_difference(esk12_0,X1),esk13_0)), inference(spm,[status(thm)],[c_0_65, c_0_66])). cnf(c_0_74,lemma,(set_difference(esk12_0,set_difference(esk12_0,set_difference(esk11_0,X1)))=set_difference(esk11_0,X1)), inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_67, c_0_68]), c_0_51])). cnf(c_0_75,lemma,(set_difference(X1,X2)=X1|~disjoint(X1,X2)), inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_49, c_0_69]), c_0_70]), c_0_34]), c_0_71])). cnf(c_0_76,lemma,(disjoint(X1,set_difference(X2,X1))), inference(spm,[status(thm)],[c_0_26, c_0_72])). cnf(c_0_77,lemma,(disjoint(set_difference(esk11_0,X1),esk13_0)), inference(spm,[status(thm)],[c_0_73, c_0_74])). cnf(c_0_78,lemma,(set_difference(X1,set_difference(X2,X1))=X1), inference(spm,[status(thm)],[c_0_75, c_0_76])). cnf(c_0_79,negated_conjecture,(~disjoint(esk11_0,esk13_0)), inference(split_conjunct,[status(thm)],[c_0_19])). cnf(c_0_80,lemma,($false), inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_77, c_0_78]), c_0_79]), ['proof']). # SZS output end CNFRefutation
# SZS status CounterSatisfiable # SZS output start Saturation fof(ax26, axiom, (![X1]:![X2]:(beverage(X1,X2)=>food(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax26)). fof(ax27, axiom, (![X1]:![X2]:(shake_beverage(X1,X2)=>beverage(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax27)). fof(co1, conjecture, (~(?[X1]:(actual_world(X1)&?[X2]:?[X3]:?[X4]:?[X5]:((((((((((of(X1,X3,X2)&woman(X1,X2))&mia_forename(X1,X3))&forename(X1,X3))&shake_beverage(X1,X4))&event(X1,X5))&agent(X1,X5,X2))&patient(X1,X5,X4))&past(X1,X5))&nonreflexive(X1,X5))&order(X1,X5))))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', co1)). fof(ax41, axiom, (![X1]:![X2]:(specific(X1,X2)=>~(general(X1,X2)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax41)). fof(ax11, axiom, (![X1]:![X2]:(abstraction(X1,X2)=>general(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax11)). fof(ax15, axiom, (![X1]:![X2]:(relname(X1,X2)=>relation(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax15)). fof(ax16, axiom, (![X1]:![X2]:(forename(X1,X2)=>relname(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax16)). fof(ax42, axiom, (![X1]:![X2]:(unisex(X1,X2)=>~(female(X1,X2)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax42)). fof(ax1, axiom, (![X1]:![X2]:(woman(X1,X2)=>female(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax1)). fof(ax25, axiom, (![X1]:![X2]:(food(X1,X2)=>substance_matter(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax25)). fof(ax6, axiom, (![X1]:![X2]:(organism(X1,X2)=>entity(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax6)). fof(ax7, axiom, (![X1]:![X2]:(human_person(X1,X2)=>organism(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax7)). fof(ax8, axiom, (![X1]:![X2]:(woman(X1,X2)=>human_person(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax8)). fof(ax38, axiom, (![X1]:![X2]:(existent(X1,X2)=>~(nonexistent(X1,X2)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax38)). fof(ax30, axiom, (![X1]:![X2]:(eventuality(X1,X2)=>nonexistent(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax30)). fof(ax31, axiom, (![X1]:![X2]:(eventuality(X1,X2)=>specific(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax31)). fof(ax34, axiom, (![X1]:![X2]:(event(X1,X2)=>eventuality(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax34)). fof(ax21, axiom, (![X1]:![X2]:(entity(X1,X2)=>specific(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax21)). fof(ax14, axiom, (![X1]:![X2]:(relation(X1,X2)=>abstraction(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax14)). fof(ax24, axiom, (![X1]:![X2]:(substance_matter(X1,X2)=>object(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax24)). fof(ax40, axiom, (![X1]:![X2]:(nonliving(X1,X2)=>~(living(X1,X2)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax40)). fof(ax4, axiom, (![X1]:![X2]:(organism(X1,X2)=>living(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax4)). fof(ax37, axiom, (![X1]:![X2]:(animate(X1,X2)=>~(nonliving(X1,X2)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax37)). fof(ax2, axiom, (![X1]:![X2]:(human_person(X1,X2)=>animate(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax2)). fof(ax39, axiom, (![X1]:![X2]:(nonhuman(X1,X2)=>~(human(X1,X2)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax39)). fof(ax12, axiom, (![X1]:![X2]:(abstraction(X1,X2)=>nonhuman(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax12)). fof(ax44, axiom, (![X1]:![X2]:![X3]:![X4]:(((nonreflexive(X1,X2)&agent(X1,X2,X3))&patient(X1,X2,X4))=>X3!=X4)), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax44)). fof(ax20, axiom, (![X1]:![X2]:(entity(X1,X2)=>existent(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax20)). fof(ax10, axiom, (![X1]:![X2]:(abstraction(X1,X2)=>unisex(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax10)). fof(ax43, axiom, (![X1]:![X2]:![X3]:(((entity(X1,X2)&forename(X1,X3))&of(X1,X3,X2))=>~(?[X4]:((forename(X1,X4)&X4!=X3)&of(X1,X4,X2))))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax43)). fof(ax19, axiom, (![X1]:![X2]:(object(X1,X2)=>nonliving(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax19)). fof(ax3, axiom, (![X1]:![X2]:(human_person(X1,X2)=>human(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax3)). fof(ax29, axiom, (![X1]:![X2]:(eventuality(X1,X2)=>unisex(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax29)). fof(ax17, axiom, (![X1]:![X2]:(object(X1,X2)=>unisex(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax17)). fof(ax23, axiom, (![X1]:![X2]:(object(X1,X2)=>entity(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax23)). fof(ax32, axiom, (![X1]:![X2]:(thing(X1,X2)=>singleton(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax32)). fof(ax33, axiom, (![X1]:![X2]:(eventuality(X1,X2)=>thing(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax33)). fof(ax13, axiom, (![X1]:![X2]:(abstraction(X1,X2)=>thing(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax13)). fof(ax22, axiom, (![X1]:![X2]:(entity(X1,X2)=>thing(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax22)). fof(ax18, axiom, (![X1]:![X2]:(object(X1,X2)=>impartial(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax18)). fof(ax5, axiom, (![X1]:![X2]:(organism(X1,X2)=>impartial(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax5)). fof(ax36, axiom, (![X1]:![X2]:(order(X1,X2)=>act(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax36)). fof(ax35, axiom, (![X1]:![X2]:(act(X1,X2)=>event(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax35)). fof(ax28, axiom, (![X1]:![X2]:(order(X1,X2)=>event(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax28)). fof(ax9, axiom, (![X1]:![X2]:(mia_forename(X1,X2)=>forename(X1,X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/NLP042+1.p', ax9)). fof(c_0_45, plain, (![X3]:![X4]:(~beverage(X3,X4)|food(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax26])])). fof(c_0_46, plain, (![X3]:![X4]:(~shake_beverage(X3,X4)|beverage(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax27])])). fof(c_0_47, negated_conjecture, (~(~(?[X1]:(actual_world(X1)&?[X2]:?[X3]:?[X4]:?[X5]:((((((((((of(X1,X3,X2)&woman(X1,X2))&mia_forename(X1,X3))&forename(X1,X3))&shake_beverage(X1,X4))&event(X1,X5))&agent(X1,X5,X2))&patient(X1,X5,X4))&past(X1,X5))&nonreflexive(X1,X5))&order(X1,X5)))))), inference(assume_negation,[status(cth)],[co1])). fof(c_0_48, plain, (![X3]:![X4]:(~specific(X3,X4)|~general(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[ax41])])])). fof(c_0_49, plain, (![X3]:![X4]:(~abstraction(X3,X4)|general(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax11])])). fof(c_0_50, plain, (![X3]:![X4]:(~relname(X3,X4)|relation(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax15])])). fof(c_0_51, plain, (![X3]:![X4]:(~forename(X3,X4)|relname(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax16])])). fof(c_0_52, plain, (![X3]:![X4]:(~unisex(X3,X4)|~female(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[ax42])])])). fof(c_0_53, plain, (![X3]:![X4]:(~woman(X3,X4)|female(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax1])])). fof(c_0_54, plain, (![X3]:![X4]:(~food(X3,X4)|substance_matter(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax25])])). cnf(c_0_55,plain,(food(X1,X2)|~beverage(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_45]), ['final']). cnf(c_0_56,plain,(beverage(X1,X2)|~shake_beverage(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_46]), ['final']). fof(c_0_57, plain, (![X3]:![X4]:(~organism(X3,X4)|entity(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax6])])). fof(c_0_58, plain, (![X3]:![X4]:(~human_person(X3,X4)|organism(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax7])])). fof(c_0_59, plain, (![X3]:![X4]:(~woman(X3,X4)|human_person(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax8])])). fof(c_0_60, negated_conjecture, ((actual_world(esk1_0)&((((((((((of(esk1_0,esk3_0,esk2_0)&woman(esk1_0,esk2_0))&mia_forename(esk1_0,esk3_0))&forename(esk1_0,esk3_0))&shake_beverage(esk1_0,esk4_0))&event(esk1_0,esk5_0))&agent(esk1_0,esk5_0,esk2_0))&patient(esk1_0,esk5_0,esk4_0))&past(esk1_0,esk5_0))&nonreflexive(esk1_0,esk5_0))&order(esk1_0,esk5_0)))), inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_47])])])])])). fof(c_0_61, plain, (![X3]:![X4]:(~existent(X3,X4)|~nonexistent(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[ax38])])])). fof(c_0_62, plain, (![X3]:![X4]:(~eventuality(X3,X4)|nonexistent(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax30])])). cnf(c_0_63,plain,(~general(X1,X2)|~specific(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_48]), ['final']). cnf(c_0_64,plain,(general(X1,X2)|~abstraction(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_49]), ['final']). fof(c_0_65, plain, (![X3]:![X4]:(~eventuality(X3,X4)|specific(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax31])])). fof(c_0_66, plain, (![X3]:![X4]:(~event(X3,X4)|eventuality(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax34])])). fof(c_0_67, plain, (![X3]:![X4]:(~entity(X3,X4)|specific(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax21])])). fof(c_0_68, plain, (![X3]:![X4]:(~relation(X3,X4)|abstraction(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax14])])). cnf(c_0_69,plain,(relation(X1,X2)|~relname(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_50]), ['final']). cnf(c_0_70,plain,(relname(X1,X2)|~forename(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_51]), ['final']). cnf(c_0_71,plain,(~female(X1,X2)|~unisex(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_52]), ['final']). cnf(c_0_72,plain,(female(X1,X2)|~woman(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_53]), ['final']). fof(c_0_73, plain, (![X3]:![X4]:(~substance_matter(X3,X4)|object(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax24])])). cnf(c_0_74,plain,(substance_matter(X1,X2)|~food(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_54]), ['final']). cnf(c_0_75,plain,(food(X1,X2)|~shake_beverage(X1,X2)), inference(spm,[status(thm)],[c_0_55, c_0_56]), ['final']). cnf(c_0_76,plain,(entity(X1,X2)|~organism(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_57]), ['final']). cnf(c_0_77,plain,(organism(X1,X2)|~human_person(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_58]), ['final']). cnf(c_0_78,plain,(human_person(X1,X2)|~woman(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_59]), ['final']). cnf(c_0_79,negated_conjecture,(woman(esk1_0,esk2_0)), inference(split_conjunct,[status(thm)],[c_0_60]), ['final']). fof(c_0_80, plain, (![X3]:![X4]:(~nonliving(X3,X4)|~living(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[ax40])])])). fof(c_0_81, plain, (![X3]:![X4]:(~organism(X3,X4)|living(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax4])])). fof(c_0_82, plain, (![X3]:![X4]:(~animate(X3,X4)|~nonliving(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[ax37])])])). fof(c_0_83, plain, (![X3]:![X4]:(~human_person(X3,X4)|animate(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax2])])). fof(c_0_84, plain, (![X3]:![X4]:(~nonhuman(X3,X4)|~human(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[ax39])])])). fof(c_0_85, plain, (![X3]:![X4]:(~abstraction(X3,X4)|nonhuman(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax12])])). fof(c_0_86, plain, (![X5]:![X6]:![X7]:![X8]:(((~nonreflexive(X5,X6)|~agent(X5,X6,X7))|~patient(X5,X6,X8))|X7!=X8)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax44])])). cnf(c_0_87,plain,(~nonexistent(X1,X2)|~existent(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_61]), ['final']). cnf(c_0_88,plain,(nonexistent(X1,X2)|~eventuality(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_62]), ['final']). fof(c_0_89, plain, (![X3]:![X4]:(~entity(X3,X4)|existent(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax20])])). cnf(c_0_90,plain,(~specific(X1,X2)|~abstraction(X1,X2)), inference(spm,[status(thm)],[c_0_63, c_0_64]), ['final']). cnf(c_0_91,plain,(specific(X1,X2)|~eventuality(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_65]), ['final']). cnf(c_0_92,plain,(eventuality(X1,X2)|~event(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_66]), ['final']). cnf(c_0_93,negated_conjecture,(event(esk1_0,esk5_0)), inference(split_conjunct,[status(thm)],[c_0_60]), ['final']). cnf(c_0_94,plain,(specific(X1,X2)|~entity(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_67]), ['final']). cnf(c_0_95,plain,(abstraction(X1,X2)|~relation(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_68]), ['final']). cnf(c_0_96,plain,(relation(X1,X2)|~forename(X1,X2)), inference(spm,[status(thm)],[c_0_69, c_0_70]), ['final']). cnf(c_0_97,plain,(~unisex(X1,X2)|~woman(X1,X2)), inference(spm,[status(thm)],[c_0_71, c_0_72]), ['final']). fof(c_0_98, plain, (![X3]:![X4]:(~abstraction(X3,X4)|unisex(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax10])])). cnf(c_0_99,plain,(object(X1,X2)|~substance_matter(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_73]), ['final']). cnf(c_0_100,plain,(substance_matter(X1,X2)|~shake_beverage(X1,X2)), inference(spm,[status(thm)],[c_0_74, c_0_75]), ['final']). fof(c_0_101, plain, (![X5]:![X6]:![X7]:![X8]:(((~entity(X5,X6)|~forename(X5,X7))|~of(X5,X7,X6))|((~forename(X5,X8)|X8=X7)|~of(X5,X8,X6)))), inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax43])])])])])). cnf(c_0_102,plain,(entity(X1,X2)|~human_person(X1,X2)), inference(spm,[status(thm)],[c_0_76, c_0_77]), ['final']). cnf(c_0_103,negated_conjecture,(human_person(esk1_0,esk2_0)), inference(spm,[status(thm)],[c_0_78, c_0_79]), ['final']). cnf(c_0_104,plain,(~living(X1,X2)|~nonliving(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_80]), ['final']). cnf(c_0_105,plain,(living(X1,X2)|~organism(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_81]), ['final']). fof(c_0_106, plain, (![X3]:![X4]:(~object(X3,X4)|nonliving(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax19])])). cnf(c_0_107,plain,(~nonliving(X1,X2)|~animate(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_82]), ['final']). cnf(c_0_108,plain,(animate(X1,X2)|~human_person(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_83]), ['final']). cnf(c_0_109,plain,(~human(X1,X2)|~nonhuman(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_84]), ['final']). cnf(c_0_110,plain,(nonhuman(X1,X2)|~abstraction(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_85]), ['final']). fof(c_0_111, plain, (![X3]:![X4]:(~human_person(X3,X4)|human(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax3])])). cnf(c_0_112,plain,(X1!=X2|~patient(X3,X4,X2)|~agent(X3,X4,X1)|~nonreflexive(X3,X4)), inference(split_conjunct,[status(thm)],[c_0_86])). cnf(c_0_113,plain,(~eventuality(X1,X2)|~existent(X1,X2)), inference(spm,[status(thm)],[c_0_87, c_0_88]), ['final']). cnf(c_0_114,plain,(existent(X1,X2)|~entity(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_89]), ['final']). cnf(c_0_115,plain,(~eventuality(X1,X2)|~abstraction(X1,X2)), inference(spm,[status(thm)],[c_0_90, c_0_91]), ['final']). cnf(c_0_116,negated_conjecture,(eventuality(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_92, c_0_93]), ['final']). cnf(c_0_117,plain,(~abstraction(X1,X2)|~entity(X1,X2)), inference(spm,[status(thm)],[c_0_90, c_0_94]), ['final']). cnf(c_0_118,plain,(abstraction(X1,X2)|~forename(X1,X2)), inference(spm,[status(thm)],[c_0_95, c_0_96]), ['final']). fof(c_0_119, plain, (![X3]:![X4]:(~eventuality(X3,X4)|unisex(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax29])])). fof(c_0_120, plain, (![X3]:![X4]:(~object(X3,X4)|unisex(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax17])])). cnf(c_0_121,negated_conjecture,(~unisex(esk1_0,esk2_0)), inference(spm,[status(thm)],[c_0_97, c_0_79]), ['final']). cnf(c_0_122,plain,(unisex(X1,X2)|~abstraction(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_98]), ['final']). fof(c_0_123, plain, (![X3]:![X4]:(~object(X3,X4)|entity(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax23])])). cnf(c_0_124,plain,(object(X1,X2)|~shake_beverage(X1,X2)), inference(spm,[status(thm)],[c_0_99, c_0_100]), ['final']). cnf(c_0_125,negated_conjecture,(shake_beverage(esk1_0,esk4_0)), inference(split_conjunct,[status(thm)],[c_0_60]), ['final']). cnf(c_0_126,plain,(X2=X4|~of(X1,X2,X3)|~forename(X1,X2)|~of(X1,X4,X3)|~forename(X1,X4)|~entity(X1,X3)), inference(split_conjunct,[status(thm)],[c_0_101]), ['final']). cnf(c_0_127,negated_conjecture,(of(esk1_0,esk3_0,esk2_0)), inference(split_conjunct,[status(thm)],[c_0_60]), ['final']). cnf(c_0_128,negated_conjecture,(forename(esk1_0,esk3_0)), inference(split_conjunct,[status(thm)],[c_0_60]), ['final']). cnf(c_0_129,negated_conjecture,(entity(esk1_0,esk2_0)), inference(spm,[status(thm)],[c_0_102, c_0_103]), ['final']). fof(c_0_130, plain, (![X3]:![X4]:(~thing(X3,X4)|singleton(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax32])])). cnf(c_0_131,plain,(~nonliving(X1,X2)|~organism(X1,X2)), inference(spm,[status(thm)],[c_0_104, c_0_105]), ['final']). cnf(c_0_132,plain,(nonliving(X1,X2)|~object(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_106]), ['final']). cnf(c_0_133,plain,(~nonliving(X1,X2)|~human_person(X1,X2)), inference(spm,[status(thm)],[c_0_107, c_0_108]), ['final']). fof(c_0_134, plain, (![X3]:![X4]:(~eventuality(X3,X4)|thing(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax33])])). fof(c_0_135, plain, (![X3]:![X4]:(~abstraction(X3,X4)|thing(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax13])])). fof(c_0_136, plain, (![X3]:![X4]:(~entity(X3,X4)|thing(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax22])])). cnf(c_0_137,plain,(~abstraction(X1,X2)|~human(X1,X2)), inference(spm,[status(thm)],[c_0_109, c_0_110]), ['final']). cnf(c_0_138,plain,(human(X1,X2)|~human_person(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_111]), ['final']). fof(c_0_139, plain, (![X3]:![X4]:(~object(X3,X4)|impartial(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax18])])). fof(c_0_140, plain, (![X3]:![X4]:(~organism(X3,X4)|impartial(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax5])])). fof(c_0_141, plain, (![X3]:![X4]:(~order(X3,X4)|act(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax36])])). fof(c_0_142, plain, (![X3]:![X4]:(~act(X3,X4)|event(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax35])])). fof(c_0_143, plain, (![X3]:![X4]:(~order(X3,X4)|event(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax28])])). fof(c_0_144, plain, (![X3]:![X4]:(~mia_forename(X3,X4)|forename(X3,X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[ax9])])). cnf(c_0_145,plain,(~patient(X1,X2,X3)|~agent(X1,X2,X3)|~nonreflexive(X1,X2)), inference(er,[status(thm)],[c_0_112]), ['final']). cnf(c_0_146,negated_conjecture,(patient(esk1_0,esk5_0,esk4_0)), inference(split_conjunct,[status(thm)],[c_0_60]), ['final']). cnf(c_0_147,negated_conjecture,(nonreflexive(esk1_0,esk5_0)), inference(split_conjunct,[status(thm)],[c_0_60]), ['final']). cnf(c_0_148,plain,(~eventuality(X1,X2)|~entity(X1,X2)), inference(spm,[status(thm)],[c_0_113, c_0_114]), ['final']). cnf(c_0_149,negated_conjecture,(~abstraction(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_115, c_0_116]), ['final']). cnf(c_0_150,plain,(~forename(X1,X2)|~entity(X1,X2)), inference(spm,[status(thm)],[c_0_117, c_0_118]), ['final']). cnf(c_0_151,plain,(unisex(X1,X2)|~eventuality(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_119]), ['final']). cnf(c_0_152,plain,(unisex(X1,X2)|~object(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_120]), ['final']). cnf(c_0_153,negated_conjecture,(~abstraction(esk1_0,esk2_0)), inference(spm,[status(thm)],[c_0_121, c_0_122]), ['final']). cnf(c_0_154,plain,(entity(X1,X2)|~object(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_123]), ['final']). cnf(c_0_155,negated_conjecture,(object(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_124, c_0_125]), ['final']). cnf(c_0_156,negated_conjecture,(X1=esk3_0|~of(esk1_0,X1,esk2_0)|~forename(esk1_0,X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_126, c_0_127]), c_0_128]), c_0_129])]), ['final']). cnf(c_0_157,plain,(singleton(X1,X2)|~thing(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_130]), ['final']). cnf(c_0_158,plain,(~object(X1,X2)|~organism(X1,X2)), inference(spm,[status(thm)],[c_0_131, c_0_132]), ['final']). cnf(c_0_159,plain,(~object(X1,X2)|~human_person(X1,X2)), inference(spm,[status(thm)],[c_0_133, c_0_132]), ['final']). cnf(c_0_160,plain,(thing(X1,X2)|~eventuality(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_134]), ['final']). cnf(c_0_161,plain,(thing(X1,X2)|~abstraction(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_135]), ['final']). cnf(c_0_162,plain,(thing(X1,X2)|~entity(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_136]), ['final']). cnf(c_0_163,plain,(~abstraction(X1,X2)|~human_person(X1,X2)), inference(spm,[status(thm)],[c_0_137, c_0_138]), ['final']). cnf(c_0_164,plain,(impartial(X1,X2)|~object(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_139]), ['final']). cnf(c_0_165,plain,(impartial(X1,X2)|~organism(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_140]), ['final']). cnf(c_0_166,plain,(act(X1,X2)|~order(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_141]), ['final']). cnf(c_0_167,plain,(event(X1,X2)|~act(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_142]), ['final']). cnf(c_0_168,plain,(event(X1,X2)|~order(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_143]), ['final']). cnf(c_0_169,plain,(forename(X1,X2)|~mia_forename(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_144]), ['final']). cnf(c_0_170,negated_conjecture,(~agent(esk1_0,esk5_0,esk4_0)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_145, c_0_146]), c_0_147])]), ['final']). cnf(c_0_171,negated_conjecture,(~entity(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_148, c_0_116]), ['final']). cnf(c_0_172,negated_conjecture,(~forename(esk1_0,esk5_0)), inference(spm,[status(thm)],[c_0_149, c_0_118]), ['final']). cnf(c_0_173,negated_conjecture,(~entity(esk1_0,esk3_0)), inference(spm,[status(thm)],[c_0_150, c_0_128]), ['final']). cnf(c_0_174,negated_conjecture,(~eventuality(esk1_0,esk2_0)), inference(spm,[status(thm)],[c_0_121, c_0_151]), ['final']). cnf(c_0_175,negated_conjecture,(~object(esk1_0,esk2_0)), inference(spm,[status(thm)],[c_0_121, c_0_152]), ['final']). cnf(c_0_176,negated_conjecture,(~forename(esk1_0,esk2_0)), inference(spm,[status(thm)],[c_0_153, c_0_118]), ['final']). cnf(c_0_177,negated_conjecture,(entity(esk1_0,esk4_0)), inference(spm,[status(thm)],[c_0_154, c_0_155]), ['final']). cnf(c_0_178,negated_conjecture,(agent(esk1_0,esk5_0,esk2_0)), inference(split_conjunct,[status(thm)],[c_0_60]), ['final']). cnf(c_0_179,negated_conjecture,(past(esk1_0,esk5_0)), inference(split_conjunct,[status(thm)],[c_0_60]), ['final']). cnf(c_0_180,negated_conjecture,(order(esk1_0,esk5_0)), inference(split_conjunct,[status(thm)],[c_0_60]), ['final']). cnf(c_0_181,negated_conjecture,(mia_forename(esk1_0,esk3_0)), inference(split_conjunct,[status(thm)],[c_0_60]), ['final']). cnf(c_0_182,negated_conjecture,(actual_world(esk1_0)), inference(split_conjunct,[status(thm)],[c_0_60]), ['final']). # SZS output end Saturation
# SZS status Satisfiable # SZS output start Saturation fof(server_t_generates_key, axiom, (![X1]:![X2]:![X3]:![X4]:![X5]:![X6]:![X7]:((((message(sent(X1,t,triple(X1,X2,encrypt(triple(X3,X4,X5),X6))))&t_holds(key(X6,X1)))&t_holds(key(X7,X3)))&a_nonce(X4))=>message(sent(t,X3,triple(encrypt(quadruple(X1,X4,generate_key(X4),X5),X7),encrypt(triple(X3,generate_key(X4),X5),X6),X2))))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', server_t_generates_key)). fof(b_creates_freash_nonces_in_time, axiom, (![X1]:![X2]:((message(sent(X1,b,pair(X1,X2)))&fresh_to_b(X2))=>(message(sent(b,t,triple(b,generate_b_nonce(X2),encrypt(triple(X1,X2,generate_expiration_time(X2)),bt))))&b_stored(pair(X1,X2))))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', b_creates_freash_nonces_in_time)). fof(intruder_message_sent, axiom, (![X1]:![X2]:![X3]:(((intruder_message(X1)&party_of_protocol(X2))&party_of_protocol(X3))=>message(sent(X2,X3,X1)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', intruder_message_sent)). fof(t_holds_key_bt_for_b, axiom, (t_holds(key(bt,b))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', t_holds_key_bt_for_b)). fof(intruder_can_record, axiom, (![X1]:![X2]:![X3]:(message(sent(X1,X2,X3))=>intruder_message(X3))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', intruder_can_record)). fof(a_sent_message_i_to_b, axiom, (message(sent(a,b,pair(a,an_a_nonce)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', a_sent_message_i_to_b)). fof(nonce_a_is_fresh_to_b, axiom, (fresh_to_b(an_a_nonce)), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', nonce_a_is_fresh_to_b)). fof(b_is_party_of_protocol, axiom, (party_of_protocol(b)), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', b_is_party_of_protocol)). fof(intruder_composes_pairs, axiom, (![X1]:![X2]:((intruder_message(X1)&intruder_message(X2))=>intruder_message(pair(X1,X2)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', intruder_composes_pairs)). fof(a_forwards_secure, axiom, (![X1]:![X2]:![X3]:![X4]:![X5]:![X6]:((message(sent(t,a,triple(encrypt(quadruple(X5,X6,X3,X2),at),X4,X1)))&a_stored(pair(X5,X6)))=>(message(sent(a,X5,pair(X4,encrypt(X1,X3))))&a_holds(key(X3,X5))))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', a_forwards_secure)). fof(t_holds_key_at_for_a, axiom, (t_holds(key(at,a))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', t_holds_key_at_for_a)). fof(intruder_decomposes_triples, axiom, (![X1]:![X2]:![X3]:(intruder_message(triple(X1,X2,X3))=>((intruder_message(X1)&intruder_message(X2))&intruder_message(X3)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', intruder_decomposes_triples)). fof(a_stored_message_i, axiom, (a_stored(pair(b,an_a_nonce))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', a_stored_message_i)). fof(an_a_nonce_is_a_nonce, axiom, (a_nonce(an_a_nonce)), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', an_a_nonce_is_a_nonce)). fof(t_is_party_of_protocol, axiom, (party_of_protocol(t)), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', t_is_party_of_protocol)). fof(intruder_composes_triples, axiom, (![X1]:![X2]:![X3]:(((intruder_message(X1)&intruder_message(X2))&intruder_message(X3))=>intruder_message(triple(X1,X2,X3)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', intruder_composes_triples)). fof(b_accepts_secure_session_key, axiom, (![X2]:![X4]:![X5]:(((message(sent(X4,b,pair(encrypt(triple(X4,X2,generate_expiration_time(X5)),bt),encrypt(generate_b_nonce(X5),X2))))&a_key(X2))&b_stored(pair(X4,X5)))=>b_holds(key(X2,X4)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', b_accepts_secure_session_key)). fof(a_is_party_of_protocol, axiom, (party_of_protocol(a)), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', a_is_party_of_protocol)). fof(intruder_key_encrypts, axiom, (![X1]:![X2]:![X3]:(((intruder_message(X1)&intruder_holds(key(X2,X3)))&party_of_protocol(X3))=>intruder_message(encrypt(X1,X2)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', intruder_key_encrypts)). fof(intruder_holds_key, axiom, (![X2]:![X3]:((intruder_message(X2)&party_of_protocol(X3))=>intruder_holds(key(X2,X3)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', intruder_holds_key)). fof(intruder_decomposes_pairs, axiom, (![X1]:![X2]:(intruder_message(pair(X1,X2))=>(intruder_message(X1)&intruder_message(X2)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', intruder_decomposes_pairs)). fof(generated_keys_are_keys, axiom, (![X1]:a_key(generate_key(X1))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', generated_keys_are_keys)). fof(fresh_intruder_nonces_are_fresh_to_b, axiom, (![X1]:(fresh_intruder_nonce(X1)=>(fresh_to_b(X1)&intruder_message(X1)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', fresh_intruder_nonces_are_fresh_to_b)). fof(can_generate_more_fresh_intruder_nonces, axiom, (![X1]:(fresh_intruder_nonce(X1)=>fresh_intruder_nonce(generate_intruder_nonce(X1)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', can_generate_more_fresh_intruder_nonces)). fof(intruder_composes_quadruples, axiom, (![X1]:![X2]:![X3]:![X4]:((((intruder_message(X1)&intruder_message(X2))&intruder_message(X3))&intruder_message(X4))=>intruder_message(quadruple(X1,X2,X3,X4)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', intruder_composes_quadruples)). fof(intruder_interception, axiom, (![X1]:![X2]:![X3]:(((intruder_message(encrypt(X1,X2))&intruder_holds(key(X2,X3)))&party_of_protocol(X3))=>intruder_message(X2))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', intruder_interception)). fof(intruder_decomposes_quadruples, axiom, (![X1]:![X2]:![X3]:![X4]:(intruder_message(quadruple(X1,X2,X3,X4))=>(((intruder_message(X1)&intruder_message(X2))&intruder_message(X3))&intruder_message(X4)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', intruder_decomposes_quadruples)). fof(nothing_is_a_nonce_and_a_key, axiom, (![X1]:~((a_key(X1)&a_nonce(X1)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', nothing_is_a_nonce_and_a_key)). fof(generated_keys_are_not_nonces, axiom, (![X1]:~(a_nonce(generate_key(X1)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', generated_keys_are_not_nonces)). fof(generated_times_and_nonces_are_nonces, axiom, (![X1]:(a_nonce(generate_expiration_time(X1))&a_nonce(generate_b_nonce(X1)))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', generated_times_and_nonces_are_nonces)). fof(an_intruder_nonce_is_a_fresh_intruder_nonce, axiom, (fresh_intruder_nonce(an_intruder_nonce)), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', an_intruder_nonce_is_a_fresh_intruder_nonce)). fof(b_hold_key_bt_for_t, axiom, (b_holds(key(bt,t))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', b_hold_key_bt_for_t)). fof(a_holds_key_at_for_t, axiom, (a_holds(key(at,t))), file('/Users/schulz/EPROVER/TPTP_6.4.0_FLAT/SWV017+1.p', a_holds_key_at_for_t)). fof(c_0_33, plain, (![X8]:![X9]:![X10]:![X11]:![X12]:![X13]:![X14]:((((~message(sent(X8,t,triple(X8,X9,encrypt(triple(X10,X11,X12),X13))))|~t_holds(key(X13,X8)))|~t_holds(key(X14,X10)))|~a_nonce(X11))|message(sent(t,X10,triple(encrypt(quadruple(X8,X11,generate_key(X11),X12),X14),encrypt(triple(X10,generate_key(X11),X12),X13),X9))))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[server_t_generates_key])])). fof(c_0_34, plain, (![X3]:![X4]:((message(sent(b,t,triple(b,generate_b_nonce(X4),encrypt(triple(X3,X4,generate_expiration_time(X4)),bt))))|(~message(sent(X3,b,pair(X3,X4)))|~fresh_to_b(X4)))&(b_stored(pair(X3,X4))|(~message(sent(X3,b,pair(X3,X4)))|~fresh_to_b(X4))))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[b_creates_freash_nonces_in_time])])])). fof(c_0_35, plain, (![X4]:![X5]:![X6]:(((~intruder_message(X4)|~party_of_protocol(X5))|~party_of_protocol(X6))|message(sent(X5,X6,X4)))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_message_sent])])). cnf(c_0_36,plain,(message(sent(t,X1,triple(encrypt(quadruple(X2,X3,generate_key(X3),X4),X5),encrypt(triple(X1,generate_key(X3),X4),X6),X7)))|~a_nonce(X3)|~t_holds(key(X5,X1))|~t_holds(key(X6,X2))|~message(sent(X2,t,triple(X2,X7,encrypt(triple(X1,X3,X4),X6))))), inference(split_conjunct,[status(thm)],[c_0_33]), ['final']). cnf(c_0_37,plain,(t_holds(key(bt,b))), inference(split_conjunct,[status(thm)],[t_holds_key_bt_for_b]), ['final']). fof(c_0_38, plain, (![X4]:![X5]:![X6]:(~message(sent(X4,X5,X6))|intruder_message(X6))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_can_record])])). cnf(c_0_39,plain,(message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X2,X1,generate_expiration_time(X1)),bt))))|~fresh_to_b(X1)|~message(sent(X2,b,pair(X2,X1)))), inference(split_conjunct,[status(thm)],[c_0_34]), ['final']). cnf(c_0_40,plain,(message(sent(a,b,pair(a,an_a_nonce)))), inference(split_conjunct,[status(thm)],[a_sent_message_i_to_b]), ['final']). cnf(c_0_41,plain,(fresh_to_b(an_a_nonce)), inference(split_conjunct,[status(thm)],[nonce_a_is_fresh_to_b]), ['final']). cnf(c_0_42,plain,(message(sent(X1,X2,X3))|~party_of_protocol(X2)|~party_of_protocol(X1)|~intruder_message(X3)), inference(split_conjunct,[status(thm)],[c_0_35]), ['final']). cnf(c_0_43,plain,(party_of_protocol(b)), inference(split_conjunct,[status(thm)],[b_is_party_of_protocol]), ['final']). fof(c_0_44, plain, (![X3]:![X4]:((~intruder_message(X3)|~intruder_message(X4))|intruder_message(pair(X3,X4)))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_composes_pairs])])). fof(c_0_45, plain, (![X7]:![X8]:![X9]:![X10]:![X11]:![X12]:((message(sent(a,X11,pair(X10,encrypt(X7,X9))))|(~message(sent(t,a,triple(encrypt(quadruple(X11,X12,X9,X8),at),X10,X7)))|~a_stored(pair(X11,X12))))&(a_holds(key(X9,X11))|(~message(sent(t,a,triple(encrypt(quadruple(X11,X12,X9,X8),at),X10,X7)))|~a_stored(pair(X11,X12)))))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[a_forwards_secure])])])])])). cnf(c_0_46,plain,(message(sent(t,X1,triple(encrypt(quadruple(b,X2,generate_key(X2),X3),X4),encrypt(triple(X1,generate_key(X2),X3),bt),X5)))|~a_nonce(X2)|~t_holds(key(X4,X1))|~message(sent(b,t,triple(b,X5,encrypt(triple(X1,X2,X3),bt))))), inference(spm,[status(thm)],[c_0_36, c_0_37]), ['final']). cnf(c_0_47,plain,(t_holds(key(at,a))), inference(split_conjunct,[status(thm)],[t_holds_key_at_for_a]), ['final']). fof(c_0_48, plain, (![X4]:![X5]:![X6]:(((intruder_message(X4)|~intruder_message(triple(X4,X5,X6)))&(intruder_message(X5)|~intruder_message(triple(X4,X5,X6))))&(intruder_message(X6)|~intruder_message(triple(X4,X5,X6))))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_decomposes_triples])])])). cnf(c_0_49,plain,(intruder_message(X1)|~message(sent(X2,X3,X1))), inference(split_conjunct,[status(thm)],[c_0_38]), ['final']). cnf(c_0_50,plain,(message(sent(b,t,triple(b,generate_b_nonce(an_a_nonce),encrypt(triple(a,an_a_nonce,generate_expiration_time(an_a_nonce)),bt))))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_39, c_0_40]), c_0_41])]), ['final']). cnf(c_0_51,plain,(b_stored(pair(X2,X1))|~fresh_to_b(X1)|~message(sent(X2,b,pair(X2,X1)))), inference(split_conjunct,[status(thm)],[c_0_34]), ['final']). cnf(c_0_52,plain,(message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X2,X1,generate_expiration_time(X1)),bt))))|~intruder_message(pair(X2,X1))|~fresh_to_b(X1)|~party_of_protocol(X2)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_39, c_0_42]), c_0_43])]), ['final']). cnf(c_0_53,plain,(intruder_message(pair(X1,X2))|~intruder_message(X2)|~intruder_message(X1)), inference(split_conjunct,[status(thm)],[c_0_44]), ['final']). cnf(c_0_54,plain,(message(sent(a,X1,pair(X5,encrypt(X6,X3))))|~a_stored(pair(X1,X2))|~message(sent(t,a,triple(encrypt(quadruple(X1,X2,X3,X4),at),X5,X6)))), inference(split_conjunct,[status(thm)],[c_0_45]), ['final']). cnf(c_0_55,plain,(a_stored(pair(b,an_a_nonce))), inference(split_conjunct,[status(thm)],[a_stored_message_i]), ['final']). cnf(c_0_56,plain,(message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),bt),X3)))|~a_nonce(X1)|~message(sent(b,t,triple(b,X3,encrypt(triple(a,X1,X2),bt))))), inference(spm,[status(thm)],[c_0_46, c_0_47]), ['final']). cnf(c_0_57,plain,(a_nonce(an_a_nonce)), inference(split_conjunct,[status(thm)],[an_a_nonce_is_a_nonce]), ['final']). cnf(c_0_58,plain,(party_of_protocol(t)), inference(split_conjunct,[status(thm)],[t_is_party_of_protocol]), ['final']). fof(c_0_59, plain, (![X4]:![X5]:![X6]:(((~intruder_message(X4)|~intruder_message(X5))|~intruder_message(X6))|intruder_message(triple(X4,X5,X6)))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_composes_triples])])). cnf(c_0_60,plain,(intruder_message(X1)|~intruder_message(triple(X1,X2,X3))), inference(split_conjunct,[status(thm)],[c_0_48]), ['final']). cnf(c_0_61,plain,(intruder_message(triple(b,generate_b_nonce(an_a_nonce),encrypt(triple(a,an_a_nonce,generate_expiration_time(an_a_nonce)),bt)))), inference(spm,[status(thm)],[c_0_49, c_0_50]), ['final']). fof(c_0_62, plain, (![X6]:![X7]:![X8]:(((~message(sent(X7,b,pair(encrypt(triple(X7,X6,generate_expiration_time(X8)),bt),encrypt(generate_b_nonce(X8),X6))))|~a_key(X6))|~b_stored(pair(X7,X8)))|b_holds(key(X6,X7)))), inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[b_accepts_secure_session_key])])])])). cnf(c_0_63,plain,(b_stored(pair(X1,X2))|~intruder_message(pair(X1,X2))|~fresh_to_b(X2)|~party_of_protocol(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_51, c_0_42]), c_0_43])]), ['final']). cnf(c_0_64,plain,(message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),bt),X3)))|~a_nonce(X1)|~message(sent(b,t,triple(b,X3,encrypt(triple(b,X1,X2),bt))))), inference(spm,[status(thm)],[c_0_46, c_0_37]), ['final']). cnf(c_0_65,plain,(message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X2,X1,generate_expiration_time(X1)),bt))))|~intruder_message(X1)|~intruder_message(X2)|~fresh_to_b(X1)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_52, c_0_53]), ['final']). cnf(c_0_66,plain,(message(sent(a,b,pair(X1,encrypt(X2,X3))))|~message(sent(t,a,triple(encrypt(quadruple(b,an_a_nonce,X3,X4),at),X1,X2)))), inference(spm,[status(thm)],[c_0_54, c_0_55]), ['final']). cnf(c_0_67,plain,(party_of_protocol(a)), inference(split_conjunct,[status(thm)],[a_is_party_of_protocol]), ['final']). cnf(c_0_68,plain,(message(sent(t,a,triple(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at),encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),generate_b_nonce(an_a_nonce))))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_56, c_0_50]), c_0_57])]), ['final']). cnf(c_0_69,plain,(message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),bt),X3)))|~intruder_message(triple(b,X3,encrypt(triple(a,X1,X2),bt)))|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_56, c_0_42]), c_0_58]), c_0_43])]), ['final']). cnf(c_0_70,plain,(intruder_message(triple(X1,X2,X3))|~intruder_message(X3)|~intruder_message(X2)|~intruder_message(X1)), inference(split_conjunct,[status(thm)],[c_0_59]), ['final']). cnf(c_0_71,plain,(intruder_message(b)), inference(spm,[status(thm)],[c_0_60, c_0_61]), ['final']). cnf(c_0_72,plain,(intruder_message(X3)|~intruder_message(triple(X1,X2,X3))), inference(split_conjunct,[status(thm)],[c_0_48]), ['final']). cnf(c_0_73,plain,(b_holds(key(X1,X2))|~b_stored(pair(X2,X3))|~a_key(X1)|~message(sent(X2,b,pair(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt),encrypt(generate_b_nonce(X3),X1))))), inference(split_conjunct,[status(thm)],[c_0_62]), ['final']). cnf(c_0_74,plain,(b_stored(pair(X1,X2))|~intruder_message(X2)|~intruder_message(X1)|~fresh_to_b(X2)|~party_of_protocol(X1)), inference(spm,[status(thm)],[c_0_63, c_0_53]), ['final']). fof(c_0_75, plain, (![X4]:![X5]:![X6]:(((~intruder_message(X4)|~intruder_holds(key(X5,X6)))|~party_of_protocol(X6))|intruder_message(encrypt(X4,X5)))), inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_key_encrypts])])])])). fof(c_0_76, plain, (![X4]:![X5]:((~intruder_message(X4)|~party_of_protocol(X5))|intruder_holds(key(X4,X5)))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_holds_key])])). fof(c_0_77, plain, (![X3]:![X4]:((intruder_message(X3)|~intruder_message(pair(X3,X4)))&(intruder_message(X4)|~intruder_message(pair(X3,X4))))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_decomposes_pairs])])])). cnf(c_0_78,plain,(message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),bt),X3)))|~intruder_message(triple(b,X3,encrypt(triple(b,X1,X2),bt)))|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_64, c_0_42]), c_0_58]), c_0_43])]), ['final']). cnf(c_0_79,plain,(intruder_message(triple(b,generate_b_nonce(X1),encrypt(triple(X2,X1,generate_expiration_time(X1)),bt)))|~intruder_message(X1)|~intruder_message(X2)|~fresh_to_b(X1)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_49, c_0_65]), ['final']). cnf(c_0_80,plain,(message(sent(a,b,pair(X1,encrypt(X2,X3))))|~intruder_message(triple(encrypt(quadruple(b,an_a_nonce,X3,X4),at),X1,X2))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_66, c_0_42]), c_0_67]), c_0_58])]), ['final']). cnf(c_0_81,plain,(intruder_message(triple(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at),encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),generate_b_nonce(an_a_nonce)))), inference(spm,[status(thm)],[c_0_49, c_0_68]), ['final']). cnf(c_0_82,plain,(b_stored(pair(a,an_a_nonce))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_51, c_0_40]), c_0_41])]), ['final']). cnf(c_0_83,plain,(message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),bt),X3)))|~intruder_message(encrypt(triple(a,X1,X2),bt))|~intruder_message(X3)|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_69, c_0_70]), c_0_71])]), ['final']). cnf(c_0_84,plain,(intruder_message(encrypt(triple(a,an_a_nonce,generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_72, c_0_61]), ['final']). cnf(c_0_85,plain,(b_holds(key(X1,X2))|~intruder_message(X3)|~intruder_message(X2)|~a_key(X1)|~fresh_to_b(X3)|~message(sent(X2,b,pair(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt),encrypt(generate_b_nonce(X3),X1))))|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_73, c_0_74]), ['final']). cnf(c_0_86,plain,(intruder_message(encrypt(X1,X2))|~party_of_protocol(X3)|~intruder_holds(key(X2,X3))|~intruder_message(X1)), inference(split_conjunct,[status(thm)],[c_0_75]), ['final']). cnf(c_0_87,plain,(intruder_holds(key(X1,X2))|~party_of_protocol(X2)|~intruder_message(X1)), inference(split_conjunct,[status(thm)],[c_0_76]), ['final']). cnf(c_0_88,plain,(intruder_message(X1)|~intruder_message(pair(X1,X2))), inference(split_conjunct,[status(thm)],[c_0_77]), ['final']). cnf(c_0_89,plain,(intruder_message(pair(a,an_a_nonce))), inference(spm,[status(thm)],[c_0_49, c_0_40]), ['final']). cnf(c_0_90,plain,(message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),bt),X3)))|~intruder_message(encrypt(triple(b,X1,X2),bt))|~intruder_message(X3)|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_78, c_0_70]), c_0_71])]), ['final']). cnf(c_0_91,plain,(intruder_message(encrypt(triple(X1,X2,generate_expiration_time(X2)),bt))|~intruder_message(X2)|~intruder_message(X1)|~fresh_to_b(X2)|~party_of_protocol(X1)), inference(spm,[status(thm)],[c_0_72, c_0_79]), ['final']). cnf(c_0_92,plain,(message(sent(a,b,pair(X1,encrypt(X2,X3))))|~intruder_message(encrypt(quadruple(b,an_a_nonce,X3,X4),at))|~intruder_message(X2)|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_80, c_0_70]), ['final']). cnf(c_0_93,plain,(intruder_message(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at))), inference(spm,[status(thm)],[c_0_60, c_0_81]), ['final']). cnf(c_0_94,plain,(b_holds(key(X1,a))|~a_key(X1)|~message(sent(a,b,pair(encrypt(triple(a,X1,generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),X1))))), inference(spm,[status(thm)],[c_0_73, c_0_82]), ['final']). cnf(c_0_95,plain,(message(sent(a,b,pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))))), inference(spm,[status(thm)],[c_0_66, c_0_68]), ['final']). cnf(c_0_96,plain,(message(sent(t,a,triple(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at),encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),X1)))|~intruder_message(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_83, c_0_84]), c_0_57])]), ['final']). cnf(c_0_97,plain,(b_holds(key(X1,X2))|~intruder_message(pair(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt),encrypt(generate_b_nonce(X3),X1)))|~intruder_message(X3)|~intruder_message(X2)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_85, c_0_42]), c_0_43])]), ['final']). cnf(c_0_98,plain,(intruder_message(encrypt(X1,X2))|~intruder_message(X1)|~intruder_message(X2)|~party_of_protocol(X3)), inference(spm,[status(thm)],[c_0_86, c_0_87])). cnf(c_0_99,plain,(message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),bt),encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt),generate_b_nonce(X1))))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_64, c_0_65]), c_0_71]), c_0_43])]), ['final']). cnf(c_0_100,plain,(intruder_message(a)), inference(spm,[status(thm)],[c_0_88, c_0_89]), ['final']). cnf(c_0_101,plain,(message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),bt),encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt),X2)))|~intruder_message(X2)|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_90, c_0_91]), c_0_71]), c_0_43])]), ['final']). cnf(c_0_102,plain,(message(sent(t,X1,triple(encrypt(quadruple(a,X2,generate_key(X2),X3),X4),encrypt(triple(X1,generate_key(X2),X3),at),X5)))|~a_nonce(X2)|~t_holds(key(X4,X1))|~message(sent(a,t,triple(a,X5,encrypt(triple(X1,X2,X3),at))))), inference(spm,[status(thm)],[c_0_36, c_0_47]), ['final']). cnf(c_0_103,plain,(message(sent(a,b,pair(X1,encrypt(X2,generate_key(an_a_nonce)))))|~intruder_message(X2)|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_92, c_0_93]), ['final']). fof(c_0_104, plain, (![X2]:a_key(generate_key(X2))), inference(variable_rename,[status(thm)],[generated_keys_are_keys])). cnf(c_0_105,plain,(intruder_message(X2)|~intruder_message(triple(X1,X2,X3))), inference(split_conjunct,[status(thm)],[c_0_48]), ['final']). cnf(c_0_106,plain,(b_holds(key(X1,a))|~intruder_message(pair(encrypt(triple(a,X1,generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),X1)))|~a_key(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_94, c_0_42]), c_0_43]), c_0_67])]), ['final']). cnf(c_0_107,plain,(a_holds(key(X3,X1))|~a_stored(pair(X1,X2))|~message(sent(t,a,triple(encrypt(quadruple(X1,X2,X3,X4),at),X5,X6)))), inference(split_conjunct,[status(thm)],[c_0_45]), ['final']). cnf(c_0_108,plain,(intruder_message(X2)|~intruder_message(pair(X1,X2))), inference(split_conjunct,[status(thm)],[c_0_77]), ['final']). cnf(c_0_109,plain,(intruder_message(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce))))), inference(spm,[status(thm)],[c_0_49, c_0_95]), ['final']). cnf(c_0_110,plain,(message(sent(a,b,pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(X1,generate_key(an_a_nonce)))))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_66, c_0_96]), ['final']). cnf(c_0_111,plain,(b_holds(key(X1,X2))|~intruder_message(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt))|~intruder_message(encrypt(generate_b_nonce(X3),X1))|~intruder_message(X3)|~intruder_message(X2)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_97, c_0_53]), ['final']). cnf(c_0_112,plain,(intruder_message(encrypt(X1,X2))|~intruder_message(X1)|~intruder_message(X2)), inference(spm,[status(thm)],[c_0_98, c_0_43]), ['final']). cnf(c_0_113,plain,(intruder_message(triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),bt),encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt),generate_b_nonce(X1)))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_49, c_0_99]), ['final']). cnf(c_0_114,plain,(message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),at),encrypt(triple(a,generate_key(X1),generate_expiration_time(X1)),bt),generate_b_nonce(X1))))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_56, c_0_65]), c_0_100]), c_0_67])]), ['final']). cnf(c_0_115,plain,(intruder_message(triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),bt),encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt),X2))|~intruder_message(X2)|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_49, c_0_101]), ['final']). cnf(c_0_116,plain,(message(sent(t,a,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),at),X3)))|~a_nonce(X1)|~message(sent(a,t,triple(a,X3,encrypt(triple(a,X1,X2),at))))), inference(spm,[status(thm)],[c_0_102, c_0_47]), ['final']). cnf(c_0_117,plain,(message(sent(t,b,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),at),X3)))|~a_nonce(X1)|~message(sent(a,t,triple(a,X3,encrypt(triple(b,X1,X2),at))))), inference(spm,[status(thm)],[c_0_102, c_0_37]), ['final']). cnf(c_0_118,plain,(intruder_message(pair(X1,encrypt(X2,generate_key(an_a_nonce))))|~intruder_message(X2)|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_49, c_0_103]), ['final']). cnf(c_0_119,plain,(a_key(generate_key(X1))), inference(split_conjunct,[status(thm)],[c_0_104]), ['final']). cnf(c_0_120,plain,(intruder_message(generate_b_nonce(X1))|~intruder_message(X1)|~intruder_message(X2)|~fresh_to_b(X1)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_105, c_0_79]), ['final']). cnf(c_0_121,plain,(b_holds(key(X1,a))|~intruder_message(encrypt(triple(a,X1,generate_expiration_time(an_a_nonce)),bt))|~intruder_message(encrypt(generate_b_nonce(an_a_nonce),X1))|~a_key(X1)), inference(spm,[status(thm)],[c_0_106, c_0_53]), ['final']). cnf(c_0_122,plain,(a_holds(key(X1,b))|~message(sent(t,a,triple(encrypt(quadruple(b,an_a_nonce,X1,X2),at),X3,X4)))), inference(spm,[status(thm)],[c_0_107, c_0_55]), ['final']). cnf(c_0_123,plain,(intruder_message(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))), inference(spm,[status(thm)],[c_0_108, c_0_109]), ['final']). cnf(c_0_124,plain,(intruder_message(an_a_nonce)), inference(spm,[status(thm)],[c_0_108, c_0_89]), ['final']). fof(c_0_125, plain, (![X2]:((fresh_to_b(X2)|~fresh_intruder_nonce(X2))&(intruder_message(X2)|~fresh_intruder_nonce(X2)))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[fresh_intruder_nonces_are_fresh_to_b])])])). cnf(c_0_126,plain,(intruder_message(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(X1,generate_key(an_a_nonce))))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_49, c_0_110]), ['final']). cnf(c_0_127,plain,(b_holds(key(X1,X2))|~intruder_message(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt))|~intruder_message(generate_b_nonce(X3))|~intruder_message(X3)|~intruder_message(X2)|~intruder_message(X1)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_111, c_0_112]), ['final']). cnf(c_0_128,plain,(intruder_message(generate_b_nonce(X1))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_72, c_0_113]), ['final']). cnf(c_0_129,plain,(intruder_message(triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),at),encrypt(triple(a,generate_key(X1),generate_expiration_time(X1)),bt),generate_b_nonce(X1)))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_49, c_0_114]), ['final']). cnf(c_0_130,plain,(intruder_message(encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt))|~intruder_message(X2)|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_105, c_0_115])). cnf(c_0_131,plain,(message(sent(t,a,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),at),X3)))|~intruder_message(triple(a,X3,encrypt(triple(a,X1,X2),at)))|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_116, c_0_42]), c_0_58]), c_0_67])]), ['final']). cnf(c_0_132,plain,(message(sent(t,b,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),at),X3)))|~intruder_message(triple(a,X3,encrypt(triple(b,X1,X2),at)))|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_117, c_0_42]), c_0_58]), c_0_67])]), ['final']). cnf(c_0_133,plain,(b_holds(key(generate_key(an_a_nonce),X1))|~intruder_message(encrypt(triple(X1,generate_key(an_a_nonce),generate_expiration_time(X2)),bt))|~intruder_message(X2)|~intruder_message(X1)|~fresh_to_b(X2)|~party_of_protocol(X1)), inference(csr,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_97, c_0_118]), c_0_119])]), c_0_120]), ['final']). cnf(c_0_134,plain,(intruder_message(generate_b_nonce(an_a_nonce))), inference(spm,[status(thm)],[c_0_105, c_0_61]), ['final']). cnf(c_0_135,plain,(b_holds(key(X1,a))|~intruder_message(encrypt(triple(a,X1,generate_expiration_time(an_a_nonce)),bt))|~intruder_message(generate_b_nonce(an_a_nonce))|~intruder_message(X1)|~a_key(X1)), inference(spm,[status(thm)],[c_0_121, c_0_112])). cnf(c_0_136,plain,(a_holds(key(X1,b))|~intruder_message(triple(encrypt(quadruple(b,an_a_nonce,X1,X2),at),X3,X4))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_122, c_0_42]), c_0_67]), c_0_58])]), ['final']). fof(c_0_137, plain, (![X2]:(~fresh_intruder_nonce(X2)|fresh_intruder_nonce(generate_intruder_nonce(X2)))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[can_generate_more_fresh_intruder_nonces])])). cnf(c_0_138,plain,(b_holds(key(generate_key(an_a_nonce),X1))|~intruder_message(encrypt(triple(X1,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))|~intruder_message(X1)|~party_of_protocol(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_111, c_0_123]), c_0_124]), c_0_119]), c_0_41])]), ['final']). cnf(c_0_139,plain,(message(sent(b,t,triple(b,generate_b_nonce(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce))),encrypt(triple(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)),generate_expiration_time(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))),bt))))|~fresh_to_b(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_52, c_0_109]), ['final']). cnf(c_0_140,plain,(fresh_to_b(X1)|~fresh_intruder_nonce(X1)), inference(split_conjunct,[status(thm)],[c_0_125]), ['final']). cnf(c_0_141,plain,(message(sent(b,t,triple(b,generate_b_nonce(encrypt(X1,generate_key(an_a_nonce))),encrypt(triple(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(X1,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X1,generate_key(an_a_nonce)))),bt))))|~intruder_message(X1)|~fresh_to_b(encrypt(X1,generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_52, c_0_126]), ['final']). cnf(c_0_142,plain,(message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),at),encrypt(triple(a,generate_key(X1),generate_expiration_time(X1)),bt),X2)))|~intruder_message(X2)|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_83, c_0_91]), c_0_100]), c_0_67])]), ['final']). cnf(c_0_143,plain,(b_holds(key(X1,X2))|~intruder_message(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt))|~intruder_message(X3)|~intruder_message(X2)|~intruder_message(X1)|~a_nonce(X3)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_127, c_0_128]), ['final']). cnf(c_0_144,plain,(intruder_message(encrypt(triple(a,generate_key(X1),generate_expiration_time(X1)),bt))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_105, c_0_129]), ['final']). cnf(c_0_145,plain,(intruder_message(encrypt(triple(b,generate_key(X1),generate_expiration_time(X1)),bt))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_130, c_0_81]), ['final']). cnf(c_0_146,plain,(intruder_message(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),bt))|~intruder_message(X2)|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_60, c_0_115])). cnf(c_0_147,plain,(message(sent(b,t,triple(b,generate_b_nonce(encrypt(X1,generate_key(an_a_nonce))),encrypt(triple(X2,encrypt(X1,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X1,generate_key(an_a_nonce)))),bt))))|~intruder_message(X1)|~intruder_message(X2)|~fresh_to_b(encrypt(X1,generate_key(an_a_nonce)))|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_52, c_0_118]), ['final']). cnf(c_0_148,plain,(b_stored(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(X1,generate_key(an_a_nonce))))|~intruder_message(X1)|~fresh_to_b(encrypt(X1,generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_63, c_0_126]), ['final']). cnf(c_0_149,plain,(message(sent(t,a,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),at),X3)))|~intruder_message(encrypt(triple(a,X1,X2),at))|~intruder_message(X3)|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_131, c_0_70]), c_0_100])]), ['final']). cnf(c_0_150,plain,(message(sent(t,b,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),at),X3)))|~intruder_message(encrypt(triple(b,X1,X2),at))|~intruder_message(X3)|~a_nonce(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_132, c_0_70]), c_0_100])]), ['final']). cnf(c_0_151,plain,(message(sent(b,t,triple(b,generate_b_nonce(encrypt(X1,generate_key(an_a_nonce))),encrypt(triple(a,encrypt(X1,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X1,generate_key(an_a_nonce)))),bt))))|~intruder_message(X1)|~fresh_to_b(encrypt(X1,generate_key(an_a_nonce)))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_39, c_0_103]), c_0_100])]), ['final']). cnf(c_0_152,plain,(b_stored(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce))))|~fresh_to_b(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_63, c_0_109]), ['final']). cnf(c_0_153,plain,(b_holds(key(generate_key(an_a_nonce),X1))|~intruder_message(generate_key(an_a_nonce))|~intruder_message(X1)|~fresh_to_b(generate_key(an_a_nonce))|~party_of_protocol(X1)), inference(spm,[status(thm)],[c_0_133, c_0_91]), ['final']). cnf(c_0_154,plain,(intruder_message(X1)|~fresh_intruder_nonce(X1)), inference(split_conjunct,[status(thm)],[c_0_125]), ['final']). cnf(c_0_155,plain,(b_stored(pair(X1,encrypt(X2,generate_key(an_a_nonce))))|~intruder_message(X2)|~intruder_message(X1)|~fresh_to_b(encrypt(X2,generate_key(an_a_nonce)))|~party_of_protocol(X1)), inference(spm,[status(thm)],[c_0_63, c_0_118]), ['final']). cnf(c_0_156,plain,(b_stored(pair(a,encrypt(X1,generate_key(an_a_nonce))))|~intruder_message(X1)|~fresh_to_b(encrypt(X1,generate_key(an_a_nonce)))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_51, c_0_103]), c_0_100])]), ['final']). cnf(c_0_157,plain,(intruder_message(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)|~intruder_message(X2)), inference(spm,[status(thm)],[c_0_108, c_0_118])). cnf(c_0_158,plain,(b_holds(key(X1,X2))|~intruder_message(encrypt(triple(X2,X1,generate_expiration_time(X3)),bt))|~intruder_message(X3)|~intruder_message(X2)|~intruder_message(X1)|~intruder_message(X4)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)|~party_of_protocol(X4)), inference(spm,[status(thm)],[c_0_127, c_0_120]), ['final']). cnf(c_0_159,plain,(b_holds(key(X1,X2))|~intruder_message(encrypt(triple(X2,X1,generate_expiration_time(an_a_nonce)),bt))|~intruder_message(X2)|~intruder_message(X1)|~a_key(X1)|~party_of_protocol(X2)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_127, c_0_134]), c_0_124]), c_0_41])]), ['final']). cnf(c_0_160,plain,(b_holds(key(X1,a))|~intruder_message(encrypt(triple(a,X1,generate_expiration_time(an_a_nonce)),bt))|~intruder_message(X1)|~a_key(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_135, c_0_134])]), ['final']). cnf(c_0_161,plain,(a_holds(key(X1,b))|~intruder_message(encrypt(quadruple(b,an_a_nonce,X1,X2),at))|~intruder_message(X3)|~intruder_message(X4)), inference(spm,[status(thm)],[c_0_136, c_0_70]), ['final']). fof(c_0_162, plain, (![X5]:![X6]:![X7]:![X8]:((((~intruder_message(X5)|~intruder_message(X6))|~intruder_message(X7))|~intruder_message(X8))|intruder_message(quadruple(X5,X6,X7,X8)))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_composes_quadruples])])). fof(c_0_163, plain, (![X4]:![X5]:![X6]:(((~intruder_message(encrypt(X4,X5))|~intruder_holds(key(X5,X6)))|~party_of_protocol(X6))|intruder_message(X5))), inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_interception])])])])). fof(c_0_164, plain, (![X5]:![X6]:![X7]:![X8]:((((intruder_message(X5)|~intruder_message(quadruple(X5,X6,X7,X8)))&(intruder_message(X6)|~intruder_message(quadruple(X5,X6,X7,X8))))&(intruder_message(X7)|~intruder_message(quadruple(X5,X6,X7,X8))))&(intruder_message(X8)|~intruder_message(quadruple(X5,X6,X7,X8))))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[intruder_decomposes_quadruples])])])). cnf(c_0_165,plain,(fresh_intruder_nonce(generate_intruder_nonce(X1))|~fresh_intruder_nonce(X1)), inference(split_conjunct,[status(thm)],[c_0_137]), ['final']). fof(c_0_166, plain, (![X2]:(~a_key(X2)|~a_nonce(X2))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[nothing_is_a_nonce_and_a_key])])). fof(c_0_167, plain, (![X2]:~a_nonce(generate_key(X2))), inference(variable_rename,[status(thm)],[inference(fof_simplification,[status(thm)],[generated_keys_are_not_nonces])])). cnf(c_0_168,plain,(b_holds(key(generate_key(an_a_nonce),b))|~intruder_message(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_138, c_0_130]), c_0_71]), c_0_43]), c_0_124]), c_0_57]), c_0_41])])). fof(c_0_169, plain, (![X2]:![X2]:(a_nonce(generate_expiration_time(X2))&a_nonce(generate_b_nonce(X2)))), inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[generated_times_and_nonces_are_nonces])])])). cnf(c_0_170,plain,(fresh_intruder_nonce(an_intruder_nonce)), inference(split_conjunct,[status(thm)],[an_intruder_nonce_is_a_fresh_intruder_nonce]), ['final']). cnf(c_0_171,plain,(message(sent(b,t,triple(b,generate_b_nonce(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce))),encrypt(triple(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)),generate_expiration_time(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))),bt))))|~fresh_intruder_nonce(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_139, c_0_140]), ['final']). cnf(c_0_172,plain,(message(sent(b,t,triple(b,generate_b_nonce(encrypt(X1,generate_key(an_a_nonce))),encrypt(triple(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(X1,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X1,generate_key(an_a_nonce)))),bt))))|~fresh_intruder_nonce(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_141, c_0_140]), ['final']). cnf(c_0_173,plain,(intruder_message(triple(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),at),encrypt(triple(a,generate_key(X1),generate_expiration_time(X1)),bt),X2))|~intruder_message(X2)|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_49, c_0_142]), ['final']). cnf(c_0_174,plain,(intruder_message(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),at))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_60, c_0_129]), ['final']). cnf(c_0_175,plain,(b_holds(key(generate_key(X1),a))|~intruder_message(generate_key(X1))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_143, c_0_144]), c_0_100]), c_0_119]), c_0_67])]), ['final']). cnf(c_0_176,plain,(b_holds(key(X1,X2))|~intruder_message(triple(X2,X1,generate_expiration_time(X3)))|~intruder_message(bt)|~intruder_message(X3)|~a_nonce(X3)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)), inference(csr,[status(thm)],[inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_143, c_0_112]), c_0_105]), c_0_60]), ['final']). cnf(c_0_177,plain,(b_holds(key(generate_key(X1),b))|~intruder_message(generate_key(X1))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_143, c_0_145]), c_0_71]), c_0_119]), c_0_43])]), ['final']). cnf(c_0_178,plain,(intruder_message(encrypt(quadruple(b,X1,generate_key(X1),generate_expiration_time(X1)),bt))|~intruder_message(X1)|~a_nonce(X1)|~fresh_to_b(X1)), inference(spm,[status(thm)],[c_0_146, c_0_81]), ['final']). cnf(c_0_179,plain,(message(sent(b,t,triple(b,generate_b_nonce(encrypt(X1,generate_key(an_a_nonce))),encrypt(triple(X2,encrypt(X1,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X1,generate_key(an_a_nonce)))),bt))))|~fresh_intruder_nonce(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)|~intruder_message(X2)|~party_of_protocol(X2)), inference(spm,[status(thm)],[c_0_147, c_0_140]), ['final']). cnf(c_0_180,plain,(b_stored(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(X1,generate_key(an_a_nonce))))|~fresh_intruder_nonce(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_148, c_0_140]), ['final']). cnf(c_0_181,plain,(intruder_message(triple(encrypt(quadruple(b,an_a_nonce,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),at),encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),X1))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_49, c_0_96]), ['final']). cnf(c_0_182,plain,(message(sent(t,a,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),at),X3)))|~intruder_message(triple(a,X1,X2))|~intruder_message(at)|~intruder_message(X3)|~a_nonce(X1)), inference(spm,[status(thm)],[c_0_149, c_0_112]), ['final']). cnf(c_0_183,plain,(message(sent(t,b,triple(encrypt(quadruple(a,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),at),X3)))|~intruder_message(triple(b,X1,X2))|~intruder_message(at)|~intruder_message(X3)|~a_nonce(X1)), inference(spm,[status(thm)],[c_0_150, c_0_112]), ['final']). cnf(c_0_184,plain,(message(sent(b,t,triple(b,generate_b_nonce(encrypt(X1,generate_key(an_a_nonce))),encrypt(triple(a,encrypt(X1,generate_key(an_a_nonce)),generate_expiration_time(encrypt(X1,generate_key(an_a_nonce)))),bt))))|~fresh_intruder_nonce(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_151, c_0_140]), ['final']). cnf(c_0_185,plain,(message(sent(t,a,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),at),encrypt(triple(a,generate_key(X1),X2),bt),X3)))|~intruder_message(triple(a,X1,X2))|~intruder_message(bt)|~intruder_message(X3)|~a_nonce(X1)), inference(spm,[status(thm)],[c_0_83, c_0_112]), ['final']). cnf(c_0_186,plain,(b_stored(pair(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt),encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce))))|~fresh_intruder_nonce(encrypt(generate_b_nonce(an_a_nonce),generate_key(an_a_nonce)))|~party_of_protocol(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_152, c_0_140]), ['final']). cnf(c_0_187,plain,(b_holds(key(generate_key(an_a_nonce),X1))|~intruder_message(triple(X1,generate_key(an_a_nonce),generate_expiration_time(X2)))|~intruder_message(bt)|~intruder_message(X2)|~fresh_to_b(X2)|~party_of_protocol(X1)), inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_133, c_0_112]), c_0_60]), ['final']). cnf(c_0_188,plain,(b_holds(key(generate_key(an_a_nonce),X1))|~fresh_intruder_nonce(generate_key(an_a_nonce))|~intruder_message(X1)|~party_of_protocol(X1)), inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_153, c_0_140]), c_0_154]), ['final']). cnf(c_0_189,plain,(b_stored(pair(X1,encrypt(X2,generate_key(an_a_nonce))))|~fresh_intruder_nonce(encrypt(X2,generate_key(an_a_nonce)))|~intruder_message(X2)|~intruder_message(X1)|~party_of_protocol(X1)), inference(spm,[status(thm)],[c_0_155, c_0_140]), ['final']). cnf(c_0_190,plain,(b_stored(pair(a,encrypt(X1,generate_key(an_a_nonce))))|~fresh_intruder_nonce(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_156, c_0_140]), ['final']). cnf(c_0_191,plain,(intruder_message(encrypt(X1,generate_key(an_a_nonce)))|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_157, c_0_81]), ['final']). cnf(c_0_192,plain,(b_holds(key(generate_key(an_a_nonce),X1))|~intruder_message(triple(X1,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)))|~intruder_message(bt)|~party_of_protocol(X1)), inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_138, c_0_112]), c_0_60]), ['final']). cnf(c_0_193,plain,(message(sent(t,b,triple(encrypt(quadruple(b,X1,generate_key(X1),X2),bt),encrypt(triple(b,generate_key(X1),X2),bt),X3)))|~intruder_message(triple(b,X1,X2))|~intruder_message(bt)|~intruder_message(X3)|~a_nonce(X1)), inference(spm,[status(thm)],[c_0_90, c_0_112]), ['final']). cnf(c_0_194,plain,(b_holds(key(X1,X2))|~intruder_message(triple(X2,X1,generate_expiration_time(X3)))|~intruder_message(bt)|~intruder_message(X3)|~intruder_message(X4)|~a_key(X1)|~fresh_to_b(X3)|~party_of_protocol(X2)|~party_of_protocol(X4)), inference(csr,[status(thm)],[inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_158, c_0_112]), c_0_105]), c_0_60]), ['final']). cnf(c_0_195,plain,(b_holds(key(X1,X2))|~intruder_message(X1)|~intruder_message(X2)|~intruder_message(X3)|~a_key(X1)|~fresh_to_b(X1)|~party_of_protocol(X2)|~party_of_protocol(X3)), inference(spm,[status(thm)],[c_0_158, c_0_91]), ['final']). cnf(c_0_196,plain,(b_holds(key(an_a_nonce,X1))|~intruder_message(X1)|~a_key(an_a_nonce)|~party_of_protocol(X1)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_159, c_0_91]), c_0_124]), c_0_41])]), ['final']). cnf(c_0_197,plain,(b_holds(key(X1,X2))|~intruder_message(triple(X2,X1,generate_expiration_time(an_a_nonce)))|~intruder_message(bt)|~a_key(X1)|~party_of_protocol(X2)), inference(csr,[status(thm)],[inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_159, c_0_112]), c_0_105]), c_0_60]), ['final']). cnf(c_0_198,plain,(b_holds(key(X1,a))|~intruder_message(triple(a,X1,generate_expiration_time(an_a_nonce)))|~intruder_message(bt)|~a_key(X1)), inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_160, c_0_112]), c_0_105]), ['final']). cnf(c_0_199,plain,(b_holds(key(an_a_nonce,a))|~a_key(an_a_nonce)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_160, c_0_84]), c_0_124])]), ['final']). cnf(c_0_200,plain,(message(sent(a,b,pair(X1,encrypt(X2,X3))))|~intruder_message(quadruple(b,an_a_nonce,X3,X4))|~intruder_message(at)|~intruder_message(X2)|~intruder_message(X1)), inference(spm,[status(thm)],[c_0_92, c_0_112]), ['final']). cnf(c_0_201,plain,(a_holds(key(X1,b))|~intruder_message(quadruple(b,an_a_nonce,X1,X2))|~intruder_message(at)|~intruder_message(X3)|~intruder_message(X4)), inference(spm,[status(thm)],[c_0_161, c_0_112]), ['final']). cnf(c_0_202,plain,(intruder_message(quadruple(X1,X2,X3,X4))|~intruder_message(X4)|~intruder_message(X3)|~intruder_message(X2)|~intruder_message(X1)), inference(split_conjunct,[status(thm)],[c_0_162]), ['final']). cnf(c_0_203,plain,(intruder_message(X1)|~party_of_protocol(X2)|~intruder_holds(key(X1,X2))|~intruder_message(encrypt(X3,X1))), inference(split_conjunct,[status(thm)],[c_0_163]), ['final']). cnf(c_0_204,plain,(intruder_message(X1)|~intruder_message(quadruple(X1,X2,X3,X4))), inference(split_conjunct,[status(thm)],[c_0_164]), ['final']). cnf(c_0_205,plain,(intruder_message(X2)|~intruder_message(quadruple(X1,X2,X3,X4))), inference(split_conjunct,[status(thm)],[c_0_164]), ['final']). cnf(c_0_206,plain,(intruder_message(X3)|~intruder_message(quadruple(X1,X2,X3,X4))), inference(split_conjunct,[status(thm)],[c_0_164]), ['final']). cnf(c_0_207,plain,(intruder_message(X4)|~intruder_message(quadruple(X1,X2,X3,X4))), inference(split_conjunct,[status(thm)],[c_0_164]), ['final']). cnf(c_0_208,plain,(intruder_message(generate_intruder_nonce(X1))|~fresh_intruder_nonce(X1)), inference(spm,[status(thm)],[c_0_154, c_0_165]), ['final']). cnf(c_0_209,plain,(~a_nonce(X1)|~a_key(X1)), inference(split_conjunct,[status(thm)],[c_0_166]), ['final']). cnf(c_0_210,plain,(~a_nonce(generate_key(X1))), inference(split_conjunct,[status(thm)],[c_0_167]), ['final']). cnf(c_0_211,plain,(b_holds(key(generate_key(an_a_nonce),b))), inference(spm,[status(thm)],[c_0_168, c_0_81]), ['final']). cnf(c_0_212,plain,(intruder_message(encrypt(triple(a,generate_key(an_a_nonce),generate_expiration_time(an_a_nonce)),bt))), inference(spm,[status(thm)],[c_0_88, c_0_109]), ['final']). cnf(c_0_213,plain,(b_holds(key(generate_key(an_a_nonce),a))), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_85, c_0_95]), c_0_124]), c_0_100]), c_0_119]), c_0_41]), c_0_67])]), ['final']). cnf(c_0_214,plain,(a_holds(key(generate_key(an_a_nonce),b))), inference(spm,[status(thm)],[c_0_122, c_0_68]), ['final']). cnf(c_0_215,plain,(b_holds(key(bt,t))), inference(split_conjunct,[status(thm)],[b_hold_key_bt_for_t]), ['final']). cnf(c_0_216,plain,(a_holds(key(at,t))), inference(split_conjunct,[status(thm)],[a_holds_key_at_for_t]), ['final']). cnf(c_0_217,plain,(a_nonce(generate_expiration_time(X1))), inference(split_conjunct,[status(thm)],[c_0_169]), ['final']). cnf(c_0_218,plain,(intruder_message(an_intruder_nonce)), inference(spm,[status(thm)],[c_0_154, c_0_170]), ['final']). cnf(c_0_219,plain,(a_nonce(generate_b_nonce(X1))), inference(split_conjunct,[status(thm)],[c_0_169]), ['final']). # SZS output end Saturation
% SZS status Theorem % SZS output start CNFRefutation fof(f8,axiom,( ! [X0,X1] : (subset(X0,X1) <=> ! [X2] : (in(X2,X0) => in(X2,X1)))), file('/Users/korovin/TPTP-v6.1.0/Problems/SEU/SEU140+2.p',unknown)). fof(f77,plain,( ! [X0,X1] : (subset(X0,X1) <=> ! [X2] : (~in(X2,X0) | in(X2,X1)))), inference(ennf_transformation,[],[f8])). fof(f113,plain,( ! [X0,X1] : ((~subset(X0,X1) | ! [X2] : (~in(X2,X0) | in(X2,X1))) & (? [X2] : (in(X2,X0) & ~in(X2,X1)) | subset(X0,X1)))), inference(nnf_transformation,[],[f77])). fof(f115,plain,( ! [X0,X1] : ((~subset(X0,X1) | ! [X3] : (~in(X3,X0) | in(X3,X1))) & ((in(sK2(X1,X0),X0) & ~in(sK2(X1,X0),X1)) | subset(X0,X1)))), inference(skolemisation,[status(esa)],[f114])). fof(f114,plain,( ! [X0,X1] : ((~subset(X0,X1) | ! [X3] : (~in(X3,X0) | in(X3,X1))) & (? [X2] : (in(X2,X0) & ~in(X2,X1)) | subset(X0,X1)))), inference(rectify,[],[f113])). fof(f149,plain,( ( ! [X0,X3,X1] : (in(X3,X1) | ~in(X3,X0) | ~subset(X0,X1)) )), inference(cnf_transformation,[],[f115])). fof(f43,axiom,( ! [X0,X1] : (~(~disjoint(X0,X1) & ! [X2] : ~(in(X2,X0) & in(X2,X1))) & ~(? [X2] : (in(X2,X0) & in(X2,X1)) & disjoint(X0,X1)))), file('/Users/korovin/TPTP-v6.1.0/Problems/SEU/SEU140+2.p',unknown)). fof(f70,plain,( ! [X0,X1] : (~(~disjoint(X0,X1) & ! [X3] : ~(in(X3,X0) & in(X3,X1))) & ~(? [X2] : (in(X2,X0) & in(X2,X1)) & disjoint(X0,X1)))), inference(rectify,[],[f43])). fof(f71,plain,( ! [X0,X1] : (~(~disjoint(X0,X1) & ! [X3] : ~(in(X3,X0) & in(X3,X1))) & ~(? [X2] : (in(X2,X0) & in(X2,X1)) & disjoint(X0,X1)))), inference(flattening,[],[f70])). fof(f131,plain,( ! [X0,X1] : ((disjoint(X0,X1) | (in(sK8(X1,X0),X0) & in(sK8(X1,X0),X1))) & (! [X2] : (~in(X2,X0) | ~in(X2,X1)) | ~disjoint(X0,X1)))), inference(skolemisation,[status(esa)],[f92])). fof(f92,plain,( ! [X0,X1] : ((disjoint(X0,X1) | ? [X3] : (in(X3,X0) & in(X3,X1))) & (! [X2] : (~in(X2,X0) | ~in(X2,X1)) | ~disjoint(X0,X1)))), inference(ennf_transformation,[],[f71])). fof(f198,plain,( ( ! [X2,X0,X1] : (~disjoint(X0,X1) | ~in(X2,X1) | ~in(X2,X0)) )), inference(cnf_transformation,[],[f131])). fof(f196,plain,( ( ! [X0,X1] : (in(sK8(X1,X0),X0) | disjoint(X0,X1)) )), inference(cnf_transformation,[],[f131])). fof(f197,plain,( ( ! [X0,X1] : (in(sK8(X1,X0),X1) | disjoint(X0,X1)) )), inference(cnf_transformation,[],[f131])). fof(f51,conjecture,( ! [X0,X1,X2] : ((subset(X0,X1) & disjoint(X1,X2)) => disjoint(X0,X2))), file('/Users/korovin/TPTP-v6.1.0/Problems/SEU/SEU140+2.p',unknown)). fof(f52,negated_conjecture,( ~! [X0,X1,X2] : ((subset(X0,X1) & disjoint(X1,X2)) => disjoint(X0,X2))), inference(negated_conjecture,[],[f51])). fof(f97,plain,( ? [X0,X1,X2] : ((subset(X0,X1) & disjoint(X1,X2)) & ~disjoint(X0,X2))), inference(ennf_transformation,[],[f52])). fof(f133,plain,( subset(sK10,sK11) & disjoint(sK11,sK12) & ~disjoint(sK10,sK12)), inference(skolemisation,[status(esa)],[f98])). fof(f98,plain,( ? [X0,X1,X2] : (subset(X0,X1) & disjoint(X1,X2) & ~disjoint(X0,X2))), inference(flattening,[],[f97])). fof(f209,plain,( ~disjoint(sK10,sK12)), inference(cnf_transformation,[],[f133])). fof(f208,plain,( disjoint(sK11,sK12)), inference(cnf_transformation,[],[f133])). fof(f207,plain,( subset(sK10,sK11)), inference(cnf_transformation,[],[f133])). cnf(c_17,plain, ( ~ in(X0_$i,X1_$i) | in(X0_$i,X2_$i) | ~ subset(X1_$i,X2_$i) ), inference(cnf_transformation,[],[f149]) ). cnf(c_262,plain, ( ~ in(sK8(sK12,sK10),sK10) | in(sK8(sK12,sK10),X0_$i) | ~ subset(sK10,X0_$i) ), inference(instantiation,[status(thm)],[c_17]) ). cnf(c_835,plain, ( ~ in(sK8(sK12,sK10),sK10) | in(sK8(sK12,sK10),sK11) | ~ subset(sK10,sK11) ), inference(instantiation,[status(thm)],[c_262]) ). cnf(c_62,plain, ( ~ in(X0_$i,X1_$i) | ~ in(X0_$i,X2_$i) | ~ disjoint(X2_$i,X1_$i) ), inference(cnf_transformation,[],[f198]) ). cnf(c_243,plain, ( ~ in(sK8(sK12,sK10),sK12) | ~ in(sK8(sK12,sK10),X0_$i) | ~ disjoint(X0_$i,sK12) ), inference(instantiation,[status(thm)],[c_62]) ). cnf(c_760,plain, ( ~ in(sK8(sK12,sK10),sK12) | ~ in(sK8(sK12,sK10),sK11) | ~ disjoint(sK11,sK12) ), inference(instantiation,[status(thm)],[c_243]) ). cnf(c_64,plain, ( in(sK8(X0_$i,X1_$i),X1_$i) | disjoint(X1_$i,X0_$i) ), inference(cnf_transformation,[],[f196]) ). cnf(c_210,plain, ( in(sK8(sK12,sK10),sK10) | disjoint(sK10,sK12) ), inference(instantiation,[status(thm)],[c_64]) ). cnf(c_63,plain, ( in(sK8(X0_$i,X1_$i),X0_$i) | disjoint(X1_$i,X0_$i) ), inference(cnf_transformation,[],[f197]) ). cnf(c_209,plain, ( in(sK8(sK12,sK10),sK12) | disjoint(sK10,sK12) ), inference(instantiation,[status(thm)],[c_63]) ). cnf(c_72,negated_conjecture, ( ~ disjoint(sK10,sK12) ), inference(cnf_transformation,[],[f209]) ). cnf(c_73,negated_conjecture, ( disjoint(sK11,sK12) ), inference(cnf_transformation,[],[f208]) ). cnf(c_74,negated_conjecture, ( subset(sK10,sK11) ), inference(cnf_transformation,[],[f207]) ). cnf(contradiction,plain, ( $false ), inference(minisat, [status(thm)], [c_835,c_760,c_210,c_209,c_72,c_73,c_74]) ). % SZS output end CNFRefutation
% SZS status CounterSatisfiable % SZS output start Saturation fof(f43,axiom,( ! [X0,X1,X2] : ((entity(X0,X1) & forename(X0,X2) & of(X0,X2,X1)) => ~? [X3] : (forename(X0,X3) & X2 != X3 & of(X0,X3,X1)))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f98,plain,( ! [X0,X1,X2] : ((~entity(X0,X1) | ~forename(X0,X2) | ~of(X0,X2,X1)) | ! [X3] : (~forename(X0,X3) | X2 = X3 | ~of(X0,X3,X1)))), inference(ennf_transformation,[],[f43])). fof(f99,plain,( ! [X0,X1,X2] : (~entity(X0,X1) | ~forename(X0,X2) | ~of(X0,X2,X1) | ! [X3] : (~forename(X0,X3) | X2 = X3 | ~of(X0,X3,X1)))), inference(flattening,[],[f98])). fof(f139,plain,( ( ! [X2,X0,X3,X1] : (~of(X0,X3,X1) | X2 = X3 | ~forename(X0,X3) | ~of(X0,X2,X1) | ~forename(X0,X2) | ~entity(X0,X1)) )), inference(cnf_transformation,[],[f99])). fof(f45,conjecture,( ~? [X0] : (actual_world(X0) & ? [X1,X2,X3,X4] : (of(X0,X2,X1) & woman(X0,X1) & mia_forename(X0,X2) & forename(X0,X2) & shake_beverage(X0,X3) & event(X0,X4) & agent(X0,X4,X1) & patient(X0,X4,X3) & past(X0,X4) & nonreflexive(X0,X4) & order(X0,X4)))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f46,negated_conjecture,( ~~? [X0] : (actual_world(X0) & ? [X1,X2,X3,X4] : (of(X0,X2,X1) & woman(X0,X1) & mia_forename(X0,X2) & forename(X0,X2) & shake_beverage(X0,X3) & event(X0,X4) & agent(X0,X4,X1) & patient(X0,X4,X3) & past(X0,X4) & nonreflexive(X0,X4) & order(X0,X4)))), inference(negated_conjecture,[],[f45])). fof(f53,plain,( ? [X0] : (actual_world(X0) & ? [X1,X2,X3,X4] : (of(X0,X2,X1) & woman(X0,X1) & mia_forename(X0,X2) & forename(X0,X2) & shake_beverage(X0,X3) & event(X0,X4) & agent(X0,X4,X1) & patient(X0,X4,X3) & past(X0,X4) & nonreflexive(X0,X4) & order(X0,X4)))), inference(flattening,[],[f46])). fof(f54,plain,( ? [X0] : (actual_world(X0) & ? [X1,X2,X3,X4] : (of(X0,X2,X1) & woman(X0,X1) & mia_forename(X0,X2) & forename(X0,X2) & shake_beverage(X0,X3) & event(X0,X4) & agent(X0,X4,X1) & patient(X0,X4,X3) & nonreflexive(X0,X4) & order(X0,X4)))), inference(pure_predicate_removal,[],[f53])). fof(f102,plain,( of(sK0,sK2,sK1) & woman(sK0,sK1) & mia_forename(sK0,sK2) & forename(sK0,sK2) & shake_beverage(sK0,sK3) & event(sK0,sK4) & agent(sK0,sK4,sK1) & patient(sK0,sK4,sK3) & nonreflexive(sK0,sK4) & order(sK0,sK4)), inference(skolemisation,[status(esa)],[f55])). fof(f55,plain,( ? [X0,X1,X2,X3,X4] : (of(X0,X2,X1) & woman(X0,X1) & mia_forename(X0,X2) & forename(X0,X2) & shake_beverage(X0,X3) & event(X0,X4) & agent(X0,X4,X1) & patient(X0,X4,X3) & nonreflexive(X0,X4) & order(X0,X4))), inference(pure_predicate_removal,[],[f54])). fof(f141,plain,( of(sK0,sK2,sK1)), inference(cnf_transformation,[],[f102])). fof(f144,plain,( forename(sK0,sK2)), inference(cnf_transformation,[],[f102])). fof(f44,axiom,( ! [X0,X1,X2,X3] : ((nonreflexive(X0,X1) & agent(X0,X1,X2) & patient(X0,X1,X3)) => X2 != X3)), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f100,plain,( ! [X0,X1,X2,X3] : ((~nonreflexive(X0,X1) | ~agent(X0,X1,X2) | ~patient(X0,X1,X3)) | X2 != X3)), inference(ennf_transformation,[],[f44])). fof(f101,plain,( ! [X0,X1,X2,X3] : (~nonreflexive(X0,X1) | ~agent(X0,X1,X2) | ~patient(X0,X1,X3) | X2 != X3)), inference(flattening,[],[f100])). fof(f140,plain,( ( ! [X2,X0,X3,X1] : (X2 != X3 | ~patient(X0,X1,X3) | ~agent(X0,X1,X2) | ~nonreflexive(X0,X1)) )), inference(cnf_transformation,[],[f101])). fof(f151,plain,( ( ! [X0,X3,X1] : (~patient(X0,X1,X3) | ~agent(X0,X1,X3) | ~nonreflexive(X0,X1)) )), inference(equality_resolution,[],[f140])). fof(f147,plain,( agent(sK0,sK4,sK1)), inference(cnf_transformation,[],[f102])). fof(f149,plain,( nonreflexive(sK0,sK4)), inference(cnf_transformation,[],[f102])). fof(f27,axiom,( ! [X0,X1] : (shake_beverage(X0,X1) => beverage(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f84,plain,( ! [X0,X1] : (~shake_beverage(X0,X1) | beverage(X0,X1))), inference(ennf_transformation,[],[f27])). fof(f125,plain,( ( ! [X0,X1] : (beverage(X0,X1) | ~shake_beverage(X0,X1)) )), inference(cnf_transformation,[],[f84])). fof(f26,axiom,( ! [X0,X1] : (beverage(X0,X1) => food(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f83,plain,( ! [X0,X1] : (~beverage(X0,X1) | food(X0,X1))), inference(ennf_transformation,[],[f26])). fof(f124,plain,( ( ! [X0,X1] : (food(X0,X1) | ~beverage(X0,X1)) )), inference(cnf_transformation,[],[f83])). fof(f25,axiom,( ! [X0,X1] : (food(X0,X1) => substance_matter(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f82,plain,( ! [X0,X1] : (~food(X0,X1) | substance_matter(X0,X1))), inference(ennf_transformation,[],[f25])). fof(f123,plain,( ( ! [X0,X1] : (substance_matter(X0,X1) | ~food(X0,X1)) )), inference(cnf_transformation,[],[f82])). fof(f24,axiom,( ! [X0,X1] : (substance_matter(X0,X1) => object(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f81,plain,( ! [X0,X1] : (~substance_matter(X0,X1) | object(X0,X1))), inference(ennf_transformation,[],[f24])). fof(f122,plain,( ( ! [X0,X1] : (object(X0,X1) | ~substance_matter(X0,X1)) )), inference(cnf_transformation,[],[f81])). fof(f8,axiom,( ! [X0,X1] : (woman(X0,X1) => human_person(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f68,plain,( ! [X0,X1] : (~woman(X0,X1) | human_person(X0,X1))), inference(ennf_transformation,[],[f8])). fof(f109,plain,( ( ! [X0,X1] : (human_person(X0,X1) | ~woman(X0,X1)) )), inference(cnf_transformation,[],[f68])). fof(f19,axiom,( ! [X0,X1] : (object(X0,X1) => nonliving(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f77,plain,( ! [X0,X1] : (~object(X0,X1) | nonliving(X0,X1))), inference(ennf_transformation,[],[f19])). fof(f118,plain,( ( ! [X0,X1] : (nonliving(X0,X1) | ~object(X0,X1)) )), inference(cnf_transformation,[],[f77])). fof(f2,axiom,( ! [X0,X1] : (human_person(X0,X1) => animate(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f63,plain,( ! [X0,X1] : (~human_person(X0,X1) | animate(X0,X1))), inference(ennf_transformation,[],[f2])). fof(f104,plain,( ( ! [X0,X1] : (animate(X0,X1) | ~human_person(X0,X1)) )), inference(cnf_transformation,[],[f63])). fof(f37,axiom,( ! [X0,X1] : (animate(X0,X1) => ~nonliving(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f47,plain,( ! [X0,X1] : (animate(X0,X1) => ~nonliving(X0,X1))), inference(flattening,[],[f37])). fof(f92,plain,( ! [X0,X1] : (~animate(X0,X1) | ~nonliving(X0,X1))), inference(ennf_transformation,[],[f47])). fof(f133,plain,( ( ! [X0,X1] : (~nonliving(X0,X1) | ~animate(X0,X1)) )), inference(cnf_transformation,[],[f92])). fof(f145,plain,( shake_beverage(sK0,sK3)), inference(cnf_transformation,[],[f102])). fof(f16,axiom,( ! [X0,X1] : (forename(X0,X1) => relname(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f75,plain,( ! [X0,X1] : (~forename(X0,X1) | relname(X0,X1))), inference(ennf_transformation,[],[f16])). fof(f116,plain,( ( ! [X0,X1] : (relname(X0,X1) | ~forename(X0,X1)) )), inference(cnf_transformation,[],[f75])). fof(f15,axiom,( ! [X0,X1] : (relname(X0,X1) => relation(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f74,plain,( ! [X0,X1] : (~relname(X0,X1) | relation(X0,X1))), inference(ennf_transformation,[],[f15])). fof(f115,plain,( ( ! [X0,X1] : (relation(X0,X1) | ~relname(X0,X1)) )), inference(cnf_transformation,[],[f74])). fof(f14,axiom,( ! [X0,X1] : (relation(X0,X1) => abstraction(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f73,plain,( ! [X0,X1] : (~relation(X0,X1) | abstraction(X0,X1))), inference(ennf_transformation,[],[f14])). fof(f114,plain,( ( ! [X0,X1] : (abstraction(X0,X1) | ~relation(X0,X1)) )), inference(cnf_transformation,[],[f73])). fof(f21,axiom,( ! [X0,X1] : (entity(X0,X1) => specific(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f79,plain,( ! [X0,X1] : (~entity(X0,X1) | specific(X0,X1))), inference(ennf_transformation,[],[f21])). fof(f120,plain,( ( ! [X0,X1] : (specific(X0,X1) | ~entity(X0,X1)) )), inference(cnf_transformation,[],[f79])). fof(f11,axiom,( ! [X0,X1] : (abstraction(X0,X1) => general(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f71,plain,( ! [X0,X1] : (~abstraction(X0,X1) | general(X0,X1))), inference(ennf_transformation,[],[f11])). fof(f112,plain,( ( ! [X0,X1] : (general(X0,X1) | ~abstraction(X0,X1)) )), inference(cnf_transformation,[],[f71])). fof(f41,axiom,( ! [X0,X1] : (specific(X0,X1) => ~general(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f51,plain,( ! [X0,X1] : (specific(X0,X1) => ~general(X0,X1))), inference(flattening,[],[f41])). fof(f96,plain,( ! [X0,X1] : (~specific(X0,X1) | ~general(X0,X1))), inference(ennf_transformation,[],[f51])). fof(f137,plain,( ( ! [X0,X1] : (~general(X0,X1) | ~specific(X0,X1)) )), inference(cnf_transformation,[],[f96])). fof(f7,axiom,( ! [X0,X1] : (human_person(X0,X1) => organism(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f67,plain,( ! [X0,X1] : (~human_person(X0,X1) | organism(X0,X1))), inference(ennf_transformation,[],[f7])). fof(f108,plain,( ( ! [X0,X1] : (organism(X0,X1) | ~human_person(X0,X1)) )), inference(cnf_transformation,[],[f67])). fof(f6,axiom,( ! [X0,X1] : (organism(X0,X1) => entity(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f66,plain,( ! [X0,X1] : (~organism(X0,X1) | entity(X0,X1))), inference(ennf_transformation,[],[f6])). fof(f107,plain,( ( ! [X0,X1] : (entity(X0,X1) | ~organism(X0,X1)) )), inference(cnf_transformation,[],[f66])). fof(f34,axiom,( ! [X0,X1] : (event(X0,X1) => eventuality(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f89,plain,( ! [X0,X1] : (~event(X0,X1) | eventuality(X0,X1))), inference(ennf_transformation,[],[f34])). fof(f130,plain,( ( ! [X0,X1] : (eventuality(X0,X1) | ~event(X0,X1)) )), inference(cnf_transformation,[],[f89])). fof(f31,axiom,( ! [X0,X1] : (eventuality(X0,X1) => specific(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f88,plain,( ! [X0,X1] : (~eventuality(X0,X1) | specific(X0,X1))), inference(ennf_transformation,[],[f31])). fof(f129,plain,( ( ! [X0,X1] : (specific(X0,X1) | ~eventuality(X0,X1)) )), inference(cnf_transformation,[],[f88])). fof(f146,plain,( event(sK0,sK4)), inference(cnf_transformation,[],[f102])). fof(f30,axiom,( ! [X0,X1] : (eventuality(X0,X1) => nonexistent(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f87,plain,( ! [X0,X1] : (~eventuality(X0,X1) | nonexistent(X0,X1))), inference(ennf_transformation,[],[f30])). fof(f128,plain,( ( ! [X0,X1] : (nonexistent(X0,X1) | ~eventuality(X0,X1)) )), inference(cnf_transformation,[],[f87])). fof(f20,axiom,( ! [X0,X1] : (entity(X0,X1) => existent(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f78,plain,( ! [X0,X1] : (~entity(X0,X1) | existent(X0,X1))), inference(ennf_transformation,[],[f20])). fof(f119,plain,( ( ! [X0,X1] : (existent(X0,X1) | ~entity(X0,X1)) )), inference(cnf_transformation,[],[f78])). fof(f38,axiom,( ! [X0,X1] : (existent(X0,X1) => ~nonexistent(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f48,plain,( ! [X0,X1] : (existent(X0,X1) => ~nonexistent(X0,X1))), inference(flattening,[],[f38])). fof(f93,plain,( ! [X0,X1] : (~existent(X0,X1) | ~nonexistent(X0,X1))), inference(ennf_transformation,[],[f48])). fof(f134,plain,( ( ! [X0,X1] : (~nonexistent(X0,X1) | ~existent(X0,X1)) )), inference(cnf_transformation,[],[f93])). fof(f23,axiom,( ! [X0,X1] : (object(X0,X1) => entity(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f80,plain,( ! [X0,X1] : (~object(X0,X1) | entity(X0,X1))), inference(ennf_transformation,[],[f23])). fof(f121,plain,( ( ! [X0,X1] : (entity(X0,X1) | ~object(X0,X1)) )), inference(cnf_transformation,[],[f80])). fof(f9,axiom,( ! [X0,X1] : (mia_forename(X0,X1) => forename(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f69,plain,( ! [X0,X1] : (~mia_forename(X0,X1) | forename(X0,X1))), inference(ennf_transformation,[],[f9])). fof(f110,plain,( ( ! [X0,X1] : (forename(X0,X1) | ~mia_forename(X0,X1)) )), inference(cnf_transformation,[],[f69])). fof(f28,axiom,( ! [X0,X1] : (order(X0,X1) => event(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f85,plain,( ! [X0,X1] : (~order(X0,X1) | event(X0,X1))), inference(ennf_transformation,[],[f28])). fof(f126,plain,( ( ! [X0,X1] : (event(X0,X1) | ~order(X0,X1)) )), inference(cnf_transformation,[],[f85])). fof(f12,axiom,( ! [X0,X1] : (abstraction(X0,X1) => nonhuman(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f72,plain,( ! [X0,X1] : (~abstraction(X0,X1) | nonhuman(X0,X1))), inference(ennf_transformation,[],[f12])). fof(f113,plain,( ( ! [X0,X1] : (nonhuman(X0,X1) | ~abstraction(X0,X1)) )), inference(cnf_transformation,[],[f72])). fof(f3,axiom,( ! [X0,X1] : (human_person(X0,X1) => human(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f64,plain,( ! [X0,X1] : (~human_person(X0,X1) | human(X0,X1))), inference(ennf_transformation,[],[f3])). fof(f105,plain,( ( ! [X0,X1] : (human(X0,X1) | ~human_person(X0,X1)) )), inference(cnf_transformation,[],[f64])). fof(f39,axiom,( ! [X0,X1] : (nonhuman(X0,X1) => ~human(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f49,plain,( ! [X0,X1] : (nonhuman(X0,X1) => ~human(X0,X1))), inference(flattening,[],[f39])). fof(f94,plain,( ! [X0,X1] : (~nonhuman(X0,X1) | ~human(X0,X1))), inference(ennf_transformation,[],[f49])). fof(f135,plain,( ( ! [X0,X1] : (~human(X0,X1) | ~nonhuman(X0,X1)) )), inference(cnf_transformation,[],[f94])). fof(f29,axiom,( ! [X0,X1] : (eventuality(X0,X1) => unisex(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f86,plain,( ! [X0,X1] : (~eventuality(X0,X1) | unisex(X0,X1))), inference(ennf_transformation,[],[f29])). fof(f127,plain,( ( ! [X0,X1] : (unisex(X0,X1) | ~eventuality(X0,X1)) )), inference(cnf_transformation,[],[f86])). fof(f1,axiom,( ! [X0,X1] : (woman(X0,X1) => female(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f62,plain,( ! [X0,X1] : (~woman(X0,X1) | female(X0,X1))), inference(ennf_transformation,[],[f1])). fof(f103,plain,( ( ! [X0,X1] : (female(X0,X1) | ~woman(X0,X1)) )), inference(cnf_transformation,[],[f62])). fof(f42,axiom,( ! [X0,X1] : (unisex(X0,X1) => ~female(X0,X1))), file('/Users/korovin/TPTP-v6.1.0/Problems/NLP/NLP042+1.p',unknown)). fof(f52,plain,( ! [X0,X1] : (unisex(X0,X1) => ~female(X0,X1))), inference(flattening,[],[f42])). fof(f97,plain,( ! [X0,X1] : (~unisex(X0,X1) | ~female(X0,X1))), inference(ennf_transformation,[],[f52])). fof(f138,plain,( ( ! [X0,X1] : (~female(X0,X1) | ~unisex(X0,X1)) )), inference(cnf_transformation,[],[f97])). fof(f142,plain,( woman(sK0,sK1)), inference(cnf_transformation,[],[f102])). fof(f143,plain,( mia_forename(sK0,sK2)), inference(cnf_transformation,[],[f102])). fof(f148,plain,( patient(sK0,sK4,sK3)), inference(cnf_transformation,[],[f102])). fof(f150,plain,( order(sK0,sK4)), inference(cnf_transformation,[],[f102])). cnf(c_36,plain, ( ~ entity(X0_$i,X1_$i) | ~ forename(X0_$i,X2_$i) | ~ forename(X0_$i,X3_$i) | ~ of(X0_$i,X2_$i,X1_$i) | ~ of(X0_$i,X3_$i,X1_$i) | X3_$i = X2_$i ), inference(cnf_transformation,[],[f139]) ). cnf(c_495,plain, ( ~ entity(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) | ~ forename(X0_$$iProver_event_1_$i,X1_$$iProver_event_2_$i) | ~ forename(X0_$$iProver_event_1_$i,X2_$$iProver_event_2_$i) | ~ of(X0_$$iProver_event_1_$i,X1_$$iProver_event_2_$i,X0_$$iProver_event_2_$i) | ~ of(X0_$$iProver_event_1_$i,X2_$$iProver_event_2_$i,X0_$$iProver_event_2_$i) | X2_$$iProver_event_2_$i = X1_$$iProver_event_2_$i ), inference(subtyping,[status(esa)],[c_36]) ). cnf(c_47,negated_conjecture, ( of(sK0,sK2,sK1) ), inference(cnf_transformation,[],[f141]) ). cnf(c_484,negated_conjecture, ( of(sK0,sK2,sK1) ), inference(subtyping,[status(esa)],[c_47]) ). cnf(c_649,plain, ( ~ entity(sK0,sK1) | ~ forename(sK0,sK2) | ~ forename(sK0,X0_$$iProver_event_2_$i) | ~ of(sK0,X0_$$iProver_event_2_$i,sK1) | sK2 = X0_$$iProver_event_2_$i ), inference(resolution,[status(thm)],[c_495,c_484]) ). cnf(c_44,negated_conjecture, ( forename(sK0,sK2) ), inference(cnf_transformation,[],[f144]) ). cnf(c_650,plain, ( ~ entity(sK0,sK1) | ~ forename(sK0,X0_$$iProver_event_2_$i) | ~ of(sK0,X0_$$iProver_event_2_$i,sK1) | sK2 = X0_$$iProver_event_2_$i ), inference(global_propositional_subsumption,[status(thm)],[c_649,c_44]) ). cnf(c_663,plain, ( ~ entity(sK0,sK1) | ~ forename(sK0,sK2) | sK2 = sK2 ), inference(resolution,[status(thm)],[c_650,c_484]) ). cnf(c_664,plain, ( ~ entity(sK0,sK1) | sK2 = sK2 ), inference(global_propositional_subsumption,[status(thm)],[c_663,c_44]) ). cnf(c_498,plain, ( X0_$$iProver_event_2_$i = X0_$$iProver_event_2_$i ), theory(equality) ). cnf(c_667,plain, ( sK2 = sK2 ), inference(forward_subsumption_resolution,[status(thm)],[c_664,c_498]) ). cnf(c_508,plain, ( agent(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i,X1_$$iProver_event_2_$i) | ~ agent(X0_$$iProver_event_1_$i,X2_$$iProver_event_2_$i,X3_$$iProver_event_2_$i) | X0_$$iProver_event_2_$i != X2_$$iProver_event_2_$i | X1_$$iProver_event_2_$i != X3_$$iProver_event_2_$i ), theory(equality) ). cnf(c_684,plain, ( agent(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i,sK2) | ~ agent(X0_$$iProver_event_1_$i,X1_$$iProver_event_2_$i,sK2) | X0_$$iProver_event_2_$i != X1_$$iProver_event_2_$i ), inference(resolution,[status(thm)],[c_667,c_508]) ). cnf(c_507,plain, ( patient(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i,X1_$$iProver_event_2_$i) | ~ patient(X0_$$iProver_event_1_$i,X2_$$iProver_event_2_$i,X3_$$iProver_event_2_$i) | X0_$$iProver_event_2_$i != X2_$$iProver_event_2_$i | X1_$$iProver_event_2_$i != X3_$$iProver_event_2_$i ), theory(equality) ). cnf(c_683,plain, ( patient(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i,sK2) | ~ patient(X0_$$iProver_event_1_$i,X1_$$iProver_event_2_$i,sK2) | X0_$$iProver_event_2_$i != X1_$$iProver_event_2_$i ), inference(resolution,[status(thm)],[c_667,c_507]) ). cnf(c_506,plain, ( of(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i,X1_$$iProver_event_2_$i) | ~ of(X0_$$iProver_event_1_$i,X2_$$iProver_event_2_$i,X3_$$iProver_event_2_$i) | X0_$$iProver_event_2_$i != X2_$$iProver_event_2_$i | X1_$$iProver_event_2_$i != X3_$$iProver_event_2_$i ), theory(equality) ). cnf(c_682,plain, ( of(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i,sK2) | ~ of(X0_$$iProver_event_1_$i,X1_$$iProver_event_2_$i,sK2) | X0_$$iProver_event_2_$i != X1_$$iProver_event_2_$i ), inference(resolution,[status(thm)],[c_667,c_506]) ). cnf(c_499,plain, ( X0_$$iProver_event_2_$i != X1_$$iProver_event_2_$i | X2_$$iProver_event_2_$i != X1_$$iProver_event_2_$i | X2_$$iProver_event_2_$i = X0_$$iProver_event_2_$i ), theory(equality) ). cnf(c_671,plain, ( sK2 = X0_$$iProver_event_2_$i | X0_$$iProver_event_2_$i != sK2 ), inference(resolution,[status(thm)],[c_667,c_499]) ). cnf(c_638,plain, ( agent(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i,X1_$$iProver_event_2_$i) | ~ agent(X0_$$iProver_event_1_$i,X2_$$iProver_event_2_$i,X1_$$iProver_event_2_$i) | X0_$$iProver_event_2_$i != X2_$$iProver_event_2_$i ), inference(resolution,[status(thm)],[c_508,c_498]) ). cnf(c_629,plain, ( patient(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i,X1_$$iProver_event_2_$i) | ~ patient(X0_$$iProver_event_1_$i,X2_$$iProver_event_2_$i,X1_$$iProver_event_2_$i) | X0_$$iProver_event_2_$i != X2_$$iProver_event_2_$i ), inference(resolution,[status(thm)],[c_507,c_498]) ). cnf(c_620,plain, ( ~ of(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i,X1_$$iProver_event_2_$i) | of(X0_$$iProver_event_1_$i,X2_$$iProver_event_2_$i,X1_$$iProver_event_2_$i) | X2_$$iProver_event_2_$i != X0_$$iProver_event_2_$i ), inference(resolution,[status(thm)],[c_506,c_498]) ). cnf(c_612,plain, ( X0_$$iProver_event_2_$i != X1_$$iProver_event_2_$i | X1_$$iProver_event_2_$i = X0_$$iProver_event_2_$i ), inference(resolution,[status(thm)],[c_499,c_498]) ). cnf(c_37,plain, ( ~ patient(X0_$i,X1_$i,X2_$i) | ~ agent(X0_$i,X1_$i,X2_$i) | ~ nonreflexive(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f151]) ). cnf(c_494,plain, ( ~ patient(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i,X1_$$iProver_event_2_$i) | ~ agent(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i,X1_$$iProver_event_2_$i) | ~ nonreflexive(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) ), inference(subtyping,[status(esa)],[c_37]) ). cnf(c_41,negated_conjecture, ( agent(sK0,sK4,sK1) ), inference(cnf_transformation,[],[f147]) ). cnf(c_490,negated_conjecture, ( agent(sK0,sK4,sK1) ), inference(subtyping,[status(esa)],[c_41]) ). cnf(c_604,plain, ( ~ patient(sK0,sK4,sK1) | ~ nonreflexive(sK0,sK4) ), inference(resolution,[status(thm)],[c_494,c_490]) ). cnf(c_39,negated_conjecture, ( nonreflexive(sK0,sK4) ), inference(cnf_transformation,[],[f149]) ). cnf(c_605,plain, ( ~ patient(sK0,sK4,sK1) ), inference(global_propositional_subsumption,[status(thm)],[c_604,c_39]) ). cnf(c_22,plain, ( beverage(X0_$i,X1_$i) | ~ shake_beverage(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f125]) ). cnf(c_21,plain, ( food(X0_$i,X1_$i) | ~ beverage(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f124]) ). cnf(c_20,plain, ( substance_matter(X0_$i,X1_$i) | ~ food(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f123]) ). cnf(c_19,plain, ( object(X0_$i,X1_$i) | ~ substance_matter(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f122]) ). cnf(c_176,plain, ( object(X0_$i,X1_$i) | ~ food(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_20,c_19]) ). cnf(c_186,plain, ( object(X0_$i,X1_$i) | ~ beverage(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_21,c_176]) ). cnf(c_196,plain, ( object(X0_$i,X1_$i) | ~ shake_beverage(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_22,c_186]) ). cnf(c_6,plain, ( ~ woman(X0_$i,X1_$i) | human_person(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f109]) ). cnf(c_15,plain, ( ~ object(X0_$i,X1_$i) | nonliving(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f118]) ). cnf(c_1,plain, ( animate(X0_$i,X1_$i) | ~ human_person(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f104]) ). cnf(c_30,plain, ( ~ animate(X0_$i,X1_$i) | ~ nonliving(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f133]) ). cnf(c_96,plain, ( ~ human_person(X0_$i,X1_$i) | ~ nonliving(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_1,c_30]) ). cnf(c_228,plain, ( ~ human_person(X0_$i,X1_$i) | ~ object(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_15,c_96]) ). cnf(c_258,plain, ( ~ woman(X0_$i,X1_$i) | ~ object(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_6,c_228]) ). cnf(c_300,plain, ( ~ woman(X0_$i,X1_$i) | ~ shake_beverage(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_196,c_258]) ). cnf(c_482,plain, ( ~ woman(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) | ~ shake_beverage(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) ), inference(subtyping,[status(esa)],[c_300]) ). cnf(c_43,negated_conjecture, ( shake_beverage(sK0,sK3) ), inference(cnf_transformation,[],[f145]) ). cnf(c_488,negated_conjecture, ( shake_beverage(sK0,sK3) ), inference(subtyping,[status(esa)],[c_43]) ). cnf(c_575,plain, ( ~ woman(sK0,sK3) ), inference(resolution,[status(thm)],[c_482,c_488]) ). cnf(c_13,plain, ( ~ forename(X0_$i,X1_$i) | relname(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f116]) ). cnf(c_12,plain, ( relation(X0_$i,X1_$i) | ~ relname(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f115]) ). cnf(c_11,plain, ( abstraction(X0_$i,X1_$i) | ~ relation(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f114]) ). cnf(c_146,plain, ( abstraction(X0_$i,X1_$i) | ~ relname(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_12,c_11]) ). cnf(c_156,plain, ( ~ forename(X0_$i,X1_$i) | abstraction(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_13,c_146]) ). cnf(c_17,plain, ( ~ entity(X0_$i,X1_$i) | specific(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f120]) ). cnf(c_9,plain, ( ~ abstraction(X0_$i,X1_$i) | general(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f112]) ). cnf(c_34,plain, ( ~ general(X0_$i,X1_$i) | ~ specific(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f137]) ). cnf(c_126,plain, ( ~ abstraction(X0_$i,X1_$i) | ~ specific(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_9,c_34]) ). cnf(c_246,plain, ( ~ entity(X0_$i,X1_$i) | ~ abstraction(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_17,c_126]) ). cnf(c_328,plain, ( ~ entity(X0_$i,X1_$i) | ~ forename(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_156,c_246]) ). cnf(c_479,plain, ( ~ entity(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) | ~ forename(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) ), inference(subtyping,[status(esa)],[c_328]) ). cnf(c_487,negated_conjecture, ( forename(sK0,sK2) ), inference(subtyping,[status(esa)],[c_44]) ). cnf(c_566,plain, ( ~ entity(sK0,sK2) ), inference(resolution,[status(thm)],[c_479,c_487]) ). cnf(c_5,plain, ( ~ human_person(X0_$i,X1_$i) | organism(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f108]) ). cnf(c_4,plain, ( ~ organism(X0_$i,X1_$i) | entity(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f107]) ). cnf(c_218,plain, ( ~ human_person(X0_$i,X1_$i) | entity(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_5,c_4]) ). cnf(c_266,plain, ( ~ woman(X0_$i,X1_$i) | entity(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_6,c_218]) ). cnf(c_483,plain, ( ~ woman(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) | entity(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) ), inference(subtyping,[status(esa)],[c_266]) ). cnf(c_568,plain, ( ~ woman(sK0,sK2) ), inference(resolution,[status(thm)],[c_566,c_483]) ). cnf(c_27,plain, ( ~ event(X0_$i,X1_$i) | eventuality(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f130]) ). cnf(c_26,plain, ( specific(X0_$i,X1_$i) | ~ eventuality(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f129]) ). cnf(c_238,plain, ( ~ abstraction(X0_$i,X1_$i) | ~ eventuality(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_26,c_126]) ). cnf(c_336,plain, ( ~ forename(X0_$i,X1_$i) | ~ eventuality(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_156,c_238]) ). cnf(c_350,plain, ( ~ forename(X0_$i,X1_$i) | ~ event(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_27,c_336]) ). cnf(c_478,plain, ( ~ forename(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) | ~ event(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) ), inference(subtyping,[status(esa)],[c_350]) ). cnf(c_42,negated_conjecture, ( event(sK0,sK4) ), inference(cnf_transformation,[],[f146]) ). cnf(c_489,negated_conjecture, ( event(sK0,sK4) ), inference(subtyping,[status(esa)],[c_42]) ). cnf(c_562,plain, ( ~ forename(sK0,sK4) ), inference(resolution,[status(thm)],[c_478,c_489]) ). cnf(c_25,plain, ( ~ eventuality(X0_$i,X1_$i) | nonexistent(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f128]) ). cnf(c_16,plain, ( ~ entity(X0_$i,X1_$i) | existent(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f119]) ). cnf(c_31,plain, ( ~ existent(X0_$i,X1_$i) | ~ nonexistent(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f134]) ). cnf(c_166,plain, ( ~ entity(X0_$i,X1_$i) | ~ nonexistent(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_16,c_31]) ). cnf(c_206,plain, ( ~ entity(X0_$i,X1_$i) | ~ eventuality(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_25,c_166]) ). cnf(c_366,plain, ( ~ entity(X0_$i,X1_$i) | ~ event(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_27,c_206]) ). cnf(c_476,plain, ( ~ entity(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) | ~ event(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) ), inference(subtyping,[status(esa)],[c_366]) ). cnf(c_549,plain, ( ~ entity(sK0,sK4) ), inference(resolution,[status(thm)],[c_476,c_489]) ). cnf(c_551,plain, ( ~ woman(sK0,sK4) ), inference(resolution,[status(thm)],[c_549,c_483]) ). cnf(c_18,plain, ( entity(X0_$i,X1_$i) | ~ object(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f121]) ). cnf(c_308,plain, ( entity(X0_$i,X1_$i) | ~ shake_beverage(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_196,c_18]) ). cnf(c_481,plain, ( entity(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) | ~ shake_beverage(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) ), inference(subtyping,[status(esa)],[c_308]) ). cnf(c_537,plain, ( entity(sK0,sK3) ), inference(resolution,[status(thm)],[c_481,c_488]) ). cnf(c_509,plain, ( ~ nonreflexive(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) | nonreflexive(X0_$$iProver_event_1_$i,X1_$$iProver_event_2_$i) | X1_$$iProver_event_2_$i != X0_$$iProver_event_2_$i ), theory(equality) ). cnf(c_505,plain, ( ~ order(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) | order(X0_$$iProver_event_1_$i,X1_$$iProver_event_2_$i) | X1_$$iProver_event_2_$i != X0_$$iProver_event_2_$i ), theory(equality) ). cnf(c_504,plain, ( ~ event(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) | event(X0_$$iProver_event_1_$i,X1_$$iProver_event_2_$i) | X1_$$iProver_event_2_$i != X0_$$iProver_event_2_$i ), theory(equality) ). cnf(c_503,plain, ( ~ shake_beverage(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) | shake_beverage(X0_$$iProver_event_1_$i,X1_$$iProver_event_2_$i) | X1_$$iProver_event_2_$i != X0_$$iProver_event_2_$i ), theory(equality) ). cnf(c_502,plain, ( ~ mia_forename(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) | mia_forename(X0_$$iProver_event_1_$i,X1_$$iProver_event_2_$i) | X1_$$iProver_event_2_$i != X0_$$iProver_event_2_$i ), theory(equality) ). cnf(c_501,plain, ( ~ forename(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) | forename(X0_$$iProver_event_1_$i,X1_$$iProver_event_2_$i) | X1_$$iProver_event_2_$i != X0_$$iProver_event_2_$i ), theory(equality) ). cnf(c_500,plain, ( ~ woman(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) | woman(X0_$$iProver_event_1_$i,X1_$$iProver_event_2_$i) | X1_$$iProver_event_2_$i != X0_$$iProver_event_2_$i ), theory(equality) ). cnf(c_7,plain, ( forename(X0_$i,X1_$i) | ~ mia_forename(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f110]) ). cnf(c_497,plain, ( forename(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) | ~ mia_forename(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) ), inference(subtyping,[status(esa)],[c_7]) ). cnf(c_23,plain, ( event(X0_$i,X1_$i) | ~ order(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f126]) ). cnf(c_496,plain, ( event(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) | ~ order(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) ), inference(subtyping,[status(esa)],[c_23]) ). cnf(c_10,plain, ( ~ abstraction(X0_$i,X1_$i) | nonhuman(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f113]) ). cnf(c_2,plain, ( ~ human_person(X0_$i,X1_$i) | human(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f105]) ). cnf(c_32,plain, ( ~ human(X0_$i,X1_$i) | ~ nonhuman(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f135]) ). cnf(c_106,plain, ( ~ human_person(X0_$i,X1_$i) | ~ nonhuman(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_2,c_32]) ). cnf(c_136,plain, ( ~ human_person(X0_$i,X1_$i) | ~ abstraction(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_10,c_106]) ). cnf(c_274,plain, ( ~ woman(X0_$i,X1_$i) | ~ abstraction(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_6,c_136]) ). cnf(c_320,plain, ( ~ woman(X0_$i,X1_$i) | ~ forename(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_156,c_274]) ). cnf(c_480,plain, ( ~ woman(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) | ~ forename(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) ), inference(subtyping,[status(esa)],[c_320]) ). cnf(c_24,plain, ( unisex(X0_$i,X1_$i) | ~ eventuality(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f127]) ). cnf(c_0,plain, ( female(X0_$i,X1_$i) | ~ woman(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f103]) ). cnf(c_35,plain, ( ~ female(X0_$i,X1_$i) | ~ unisex(X0_$i,X1_$i) ), inference(cnf_transformation,[],[f138]) ). cnf(c_86,plain, ( ~ woman(X0_$i,X1_$i) | ~ unisex(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_0,c_35]) ). cnf(c_288,plain, ( ~ woman(X0_$i,X1_$i) | ~ eventuality(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_24,c_86]) ). cnf(c_358,plain, ( ~ woman(X0_$i,X1_$i) | ~ event(X0_$i,X1_$i) ), inference(resolution,[status(thm)],[c_27,c_288]) ). cnf(c_477,plain, ( ~ woman(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) | ~ event(X0_$$iProver_event_1_$i,X0_$$iProver_event_2_$i) ), inference(subtyping,[status(esa)],[c_358]) ). cnf(c_46,negated_conjecture, ( woman(sK0,sK1) ), inference(cnf_transformation,[],[f142]) ). cnf(c_485,negated_conjecture, ( woman(sK0,sK1) ), inference(subtyping,[status(esa)],[c_46]) ). cnf(c_45,negated_conjecture, ( mia_forename(sK0,sK2) ), inference(cnf_transformation,[],[f143]) ). cnf(c_486,negated_conjecture, ( mia_forename(sK0,sK2) ), inference(subtyping,[status(esa)],[c_45]) ). cnf(c_40,negated_conjecture, ( patient(sK0,sK4,sK3) ), inference(cnf_transformation,[],[f148]) ). cnf(c_491,negated_conjecture, ( patient(sK0,sK4,sK3) ), inference(subtyping,[status(esa)],[c_40]) ). cnf(c_492,negated_conjecture, ( nonreflexive(sK0,sK4) ), inference(subtyping,[status(esa)],[c_39]) ). cnf(c_38,negated_conjecture, ( order(sK0,sK4) ), inference(cnf_transformation,[],[f150]) ). cnf(c_493,negated_conjecture, ( order(sK0,sK4) ), inference(subtyping,[status(esa)],[c_38]) ). % SZS output end Saturation
% SZS status Satisfiable % SZS output start Saturation fof(f9,axiom,( ! [X0,X1] : ((message(sent(X0,b,pair(X0,X1))) & fresh_to_b(X1)) => (message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X0,X1,generate_expiration_time(X1)),bt)))) & b_stored(pair(X0,X1))))), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f39,plain,( ! [X0,X1] : ((message(sent(X0,b,pair(X0,X1))) & fresh_to_b(X1)) => message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X0,X1,generate_expiration_time(X1)),bt)))))), inference(pure_predicate_removal,[],[f9])). fof(f44,plain,( ! [X0,X1] : ((~message(sent(X0,b,pair(X0,X1))) | ~fresh_to_b(X1)) | message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X0,X1,generate_expiration_time(X1)),bt)))))), inference(ennf_transformation,[],[f39])). fof(f45,plain,( ! [X0,X1] : (~message(sent(X0,b,pair(X0,X1))) | ~fresh_to_b(X1) | message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X0,X1,generate_expiration_time(X1)),bt)))))), inference(flattening,[],[f44])). fof(f75,plain,( ( ! [X0,X1] : (message(sent(b,t,triple(b,generate_b_nonce(X1),encrypt(triple(X0,X1,generate_expiration_time(X1)),bt)))) | ~fresh_to_b(X1) | ~message(sent(X0,b,pair(X0,X1)))) )), inference(cnf_transformation,[],[f45])). fof(f14,axiom,( ! [X0,X1,X2,X3,X4,X5,X6] : ((message(sent(X0,t,triple(X0,X1,encrypt(triple(X2,X3,X4),X5)))) & t_holds(key(X5,X0)) & t_holds(key(X6,X2)) & a_nonce(X3)) => message(sent(t,X2,triple(encrypt(quadruple(X0,X3,generate_key(X3),X4),X6),encrypt(triple(X2,generate_key(X3),X4),X5),X1))))), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f46,plain,( ! [X0,X1,X2,X3,X4,X5,X6] : ((~message(sent(X0,t,triple(X0,X1,encrypt(triple(X2,X3,X4),X5)))) | ~t_holds(key(X5,X0)) | ~t_holds(key(X6,X2)) | ~a_nonce(X3)) | message(sent(t,X2,triple(encrypt(quadruple(X0,X3,generate_key(X3),X4),X6),encrypt(triple(X2,generate_key(X3),X4),X5),X1))))), inference(ennf_transformation,[],[f14])). fof(f47,plain,( ! [X0,X1,X2,X3,X4,X5,X6] : (~message(sent(X0,t,triple(X0,X1,encrypt(triple(X2,X3,X4),X5)))) | ~t_holds(key(X5,X0)) | ~t_holds(key(X6,X2)) | ~a_nonce(X3) | message(sent(t,X2,triple(encrypt(quadruple(X0,X3,generate_key(X3),X4),X6),encrypt(triple(X2,generate_key(X3),X4),X5),X1))))), inference(flattening,[],[f46])). fof(f79,plain,( ( ! [X6,X4,X2,X0,X5,X3,X1] : (message(sent(t,X2,triple(encrypt(quadruple(X0,X3,generate_key(X3),X4),X6),encrypt(triple(X2,generate_key(X3),X4),X5),X1))) | ~a_nonce(X3) | ~t_holds(key(X6,X2)) | ~t_holds(key(X5,X0)) | ~message(sent(X0,t,triple(X0,X1,encrypt(triple(X2,X3,X4),X5))))) )), inference(cnf_transformation,[],[f47])). fof(f15,axiom,( ! [X0,X1,X2] : (message(sent(X0,X1,X2)) => intruder_message(X2))), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f48,plain,( ! [X0,X1,X2] : (~message(sent(X0,X1,X2)) | intruder_message(X2))), inference(ennf_transformation,[],[f15])). fof(f80,plain,( ( ! [X2,X0,X1] : (intruder_message(X2) | ~message(sent(X0,X1,X2))) )), inference(cnf_transformation,[],[f48])). fof(f16,axiom,( ! [X0,X1] : (intruder_message(pair(X0,X1)) => (intruder_message(X0) & intruder_message(X1)))), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f49,plain,( ! [X0,X1] : (~intruder_message(pair(X0,X1)) | (intruder_message(X0) & intruder_message(X1)))), inference(ennf_transformation,[],[f16])). fof(f82,plain,( ( ! [X0,X1] : (intruder_message(X1) | ~intruder_message(pair(X0,X1))) )), inference(cnf_transformation,[],[f49])). fof(f81,plain,( ( ! [X0,X1] : (intruder_message(X0) | ~intruder_message(pair(X0,X1))) )), inference(cnf_transformation,[],[f49])). fof(f17,axiom,( ! [X0,X1,X2] : (intruder_message(triple(X0,X1,X2)) => (intruder_message(X0) & intruder_message(X1) & intruder_message(X2)))), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f50,plain,( ! [X0,X1,X2] : (~intruder_message(triple(X0,X1,X2)) | (intruder_message(X0) & intruder_message(X1) & intruder_message(X2)))), inference(ennf_transformation,[],[f17])). fof(f85,plain,( ( ! [X2,X0,X1] : (intruder_message(X2) | ~intruder_message(triple(X0,X1,X2))) )), inference(cnf_transformation,[],[f50])). fof(f84,plain,( ( ! [X2,X0,X1] : (intruder_message(X1) | ~intruder_message(triple(X0,X1,X2))) )), inference(cnf_transformation,[],[f50])). fof(f83,plain,( ( ! [X2,X0,X1] : (intruder_message(X0) | ~intruder_message(triple(X0,X1,X2))) )), inference(cnf_transformation,[],[f50])). fof(f18,axiom,( ! [X0,X1,X2,X3] : (intruder_message(quadruple(X0,X1,X2,X3)) => (intruder_message(X0) & intruder_message(X1) & intruder_message(X2) & intruder_message(X3)))), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f51,plain,( ! [X0,X1,X2,X3] : (~intruder_message(quadruple(X0,X1,X2,X3)) | (intruder_message(X0) & intruder_message(X1) & intruder_message(X2) & intruder_message(X3)))), inference(ennf_transformation,[],[f18])). fof(f89,plain,( ( ! [X2,X0,X3,X1] : (intruder_message(X3) | ~intruder_message(quadruple(X0,X1,X2,X3))) )), inference(cnf_transformation,[],[f51])). fof(f88,plain,( ( ! [X2,X0,X3,X1] : (intruder_message(X2) | ~intruder_message(quadruple(X0,X1,X2,X3))) )), inference(cnf_transformation,[],[f51])). fof(f87,plain,( ( ! [X2,X0,X3,X1] : (intruder_message(X1) | ~intruder_message(quadruple(X0,X1,X2,X3))) )), inference(cnf_transformation,[],[f51])). fof(f86,plain,( ( ! [X2,X0,X3,X1] : (intruder_message(X0) | ~intruder_message(quadruple(X0,X1,X2,X3))) )), inference(cnf_transformation,[],[f51])). fof(f19,axiom,( ! [X0,X1] : ((intruder_message(X0) & intruder_message(X1)) => intruder_message(pair(X0,X1)))), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f52,plain,( ! [X0,X1] : ((~intruder_message(X0) | ~intruder_message(X1)) | intruder_message(pair(X0,X1)))), inference(ennf_transformation,[],[f19])). fof(f53,plain,( ! [X0,X1] : (~intruder_message(X0) | ~intruder_message(X1) | intruder_message(pair(X0,X1)))), inference(flattening,[],[f52])). fof(f90,plain,( ( ! [X0,X1] : (intruder_message(pair(X0,X1)) | ~intruder_message(X1) | ~intruder_message(X0)) )), inference(cnf_transformation,[],[f53])). fof(f20,axiom,( ! [X0,X1,X2] : ((intruder_message(X0) & intruder_message(X1) & intruder_message(X2)) => intruder_message(triple(X0,X1,X2)))), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f54,plain,( ! [X0,X1,X2] : ((~intruder_message(X0) | ~intruder_message(X1) | ~intruder_message(X2)) | intruder_message(triple(X0,X1,X2)))), inference(ennf_transformation,[],[f20])). fof(f55,plain,( ! [X0,X1,X2] : (~intruder_message(X0) | ~intruder_message(X1) | ~intruder_message(X2) | intruder_message(triple(X0,X1,X2)))), inference(flattening,[],[f54])). fof(f91,plain,( ( ! [X2,X0,X1] : (intruder_message(triple(X0,X1,X2)) | ~intruder_message(X2) | ~intruder_message(X1) | ~intruder_message(X0)) )), inference(cnf_transformation,[],[f55])). fof(f21,axiom,( ! [X0,X1,X2,X3] : ((intruder_message(X0) & intruder_message(X1) & intruder_message(X2) & intruder_message(X3)) => intruder_message(quadruple(X0,X1,X2,X3)))), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f56,plain,( ! [X0,X1,X2,X3] : ((~intruder_message(X0) | ~intruder_message(X1) | ~intruder_message(X2) | ~intruder_message(X3)) | intruder_message(quadruple(X0,X1,X2,X3)))), inference(ennf_transformation,[],[f21])). fof(f57,plain,( ! [X0,X1,X2,X3] : (~intruder_message(X0) | ~intruder_message(X1) | ~intruder_message(X2) | ~intruder_message(X3) | intruder_message(quadruple(X0,X1,X2,X3)))), inference(flattening,[],[f56])). fof(f92,plain,( ( ! [X2,X0,X3,X1] : (intruder_message(quadruple(X0,X1,X2,X3)) | ~intruder_message(X3) | ~intruder_message(X2) | ~intruder_message(X1) | ~intruder_message(X0)) )), inference(cnf_transformation,[],[f57])). fof(f23,axiom,( ! [X0,X1,X2] : ((intruder_message(X0) & party_of_protocol(X1) & party_of_protocol(X2)) => message(sent(X1,X2,X0)))), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f60,plain,( ! [X0,X1,X2] : ((~intruder_message(X0) | ~party_of_protocol(X1) | ~party_of_protocol(X2)) | message(sent(X1,X2,X0)))), inference(ennf_transformation,[],[f23])). fof(f61,plain,( ! [X0,X1,X2] : (~intruder_message(X0) | ~party_of_protocol(X1) | ~party_of_protocol(X2) | message(sent(X1,X2,X0)))), inference(flattening,[],[f60])). fof(f94,plain,( ( ! [X2,X0,X1] : (message(sent(X1,X2,X0)) | ~party_of_protocol(X2) | ~party_of_protocol(X1) | ~intruder_message(X0)) )), inference(cnf_transformation,[],[f61])). fof(f27,axiom,( ! [X0] : ~a_nonce(generate_key(X0))), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f36,plain,( ! [X0] : ~a_nonce(generate_key(X0))), inference(flattening,[],[f27])). fof(f98,plain,( ( ! [X0] : (~a_nonce(generate_key(X0))) )), inference(cnf_transformation,[],[f36])). fof(f28,axiom,( ! [X0] : (a_nonce(generate_expiration_time(X0)) & a_nonce(generate_b_nonce(X0)))), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f100,plain,( ( ! [X0] : (a_nonce(generate_b_nonce(X0))) )), inference(cnf_transformation,[],[f28])). fof(f99,plain,( ( ! [X0] : (a_nonce(generate_expiration_time(X0))) )), inference(cnf_transformation,[],[f28])). fof(f32,axiom,( ! [X0] : (fresh_intruder_nonce(X0) => fresh_intruder_nonce(generate_intruder_nonce(X0)))), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f67,plain,( ! [X0] : (~fresh_intruder_nonce(X0) | fresh_intruder_nonce(generate_intruder_nonce(X0)))), inference(ennf_transformation,[],[f32])). fof(f104,plain,( ( ! [X0] : (fresh_intruder_nonce(generate_intruder_nonce(X0)) | ~fresh_intruder_nonce(X0)) )), inference(cnf_transformation,[],[f67])). fof(f33,axiom,( ! [X0] : (fresh_intruder_nonce(X0) => (fresh_to_b(X0) & intruder_message(X0)))), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f68,plain,( ! [X0] : (~fresh_intruder_nonce(X0) | (fresh_to_b(X0) & intruder_message(X0)))), inference(ennf_transformation,[],[f33])). fof(f106,plain,( ( ! [X0] : (intruder_message(X0) | ~fresh_intruder_nonce(X0)) )), inference(cnf_transformation,[],[f68])). fof(f105,plain,( ( ! [X0] : (fresh_to_b(X0) | ~fresh_intruder_nonce(X0)) )), inference(cnf_transformation,[],[f68])). fof(f4,axiom,( a_stored(pair(b,an_a_nonce))), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f71,plain,( a_stored(pair(b,an_a_nonce))), inference(cnf_transformation,[],[f4])). fof(f5,axiom,( ! [X0,X1,X2,X3,X4,X5] : ((message(sent(t,a,triple(encrypt(quadruple(X4,X5,X2,X1),at),X3,X0))) & a_stored(pair(X4,X5))) => (message(sent(a,X4,pair(X3,encrypt(X0,X2)))) & a_holds(key(X2,X4))))), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f40,plain,( ! [X0,X1,X2,X3,X4,X5] : ((message(sent(t,a,triple(encrypt(quadruple(X4,X5,X2,X1),at),X3,X0))) & a_stored(pair(X4,X5))) => message(sent(a,X4,pair(X3,encrypt(X0,X2)))))), inference(pure_predicate_removal,[],[f5])). fof(f42,plain,( ! [X0,X1,X2,X3,X4,X5] : ((~message(sent(t,a,triple(encrypt(quadruple(X4,X5,X2,X1),at),X3,X0))) | ~a_stored(pair(X4,X5))) | message(sent(a,X4,pair(X3,encrypt(X0,X2)))))), inference(ennf_transformation,[],[f40])). fof(f43,plain,( ! [X0,X1,X2,X3,X4,X5] : (~message(sent(t,a,triple(encrypt(quadruple(X4,X5,X2,X1),at),X3,X0))) | ~a_stored(pair(X4,X5)) | message(sent(a,X4,pair(X3,encrypt(X0,X2)))))), inference(flattening,[],[f42])). fof(f72,plain,( ( ! [X4,X2,X0,X5,X3,X1] : (message(sent(a,X4,pair(X3,encrypt(X0,X2)))) | ~a_stored(pair(X4,X5)) | ~message(sent(t,a,triple(encrypt(quadruple(X4,X5,X2,X1),at),X3,X0)))) )), inference(cnf_transformation,[],[f43])). fof(f25,axiom,( ! [X0,X1,X2] : ((intruder_message(X0) & intruder_holds(key(X1,X2)) & party_of_protocol(X2)) => intruder_message(encrypt(X0,X1)))), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f64,plain,( ! [X0,X1,X2] : ((~intruder_message(X0) | ~intruder_holds(key(X1,X2)) | ~party_of_protocol(X2)) | intruder_message(encrypt(X0,X1)))), inference(ennf_transformation,[],[f25])). fof(f65,plain,( ! [X0,X1,X2] : (~intruder_message(X0) | ~intruder_holds(key(X1,X2)) | ~party_of_protocol(X2) | intruder_message(encrypt(X0,X1)))), inference(flattening,[],[f64])). fof(f96,plain,( ( ! [X2,X0,X1] : (intruder_message(encrypt(X0,X1)) | ~party_of_protocol(X2) | ~intruder_holds(key(X1,X2)) | ~intruder_message(X0)) )), inference(cnf_transformation,[],[f65])). fof(f24,axiom,( ! [X1,X2] : ((intruder_message(X1) & party_of_protocol(X2)) => intruder_holds(key(X1,X2)))), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f35,plain,( ! [X0,X1] : ((intruder_message(X0) & party_of_protocol(X1)) => intruder_holds(key(X0,X1)))), inference(rectify,[],[f24])). fof(f62,plain,( ! [X0,X1] : ((~intruder_message(X0) | ~party_of_protocol(X1)) | intruder_holds(key(X0,X1)))), inference(ennf_transformation,[],[f35])). fof(f63,plain,( ! [X0,X1] : (~intruder_message(X0) | ~party_of_protocol(X1) | intruder_holds(key(X0,X1)))), inference(flattening,[],[f62])). fof(f95,plain,( ( ! [X0,X1] : (intruder_holds(key(X0,X1)) | ~party_of_protocol(X1) | ~intruder_message(X0)) )), inference(cnf_transformation,[],[f63])). fof(f31,axiom,( fresh_intruder_nonce(an_intruder_nonce)), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f103,plain,( fresh_intruder_nonce(an_intruder_nonce)), inference(cnf_transformation,[],[f31])). fof(f26,axiom,( a_nonce(an_a_nonce)), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f97,plain,( a_nonce(an_a_nonce)), inference(cnf_transformation,[],[f26])). fof(f13,axiom,( party_of_protocol(t)), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f78,plain,( party_of_protocol(t)), inference(cnf_transformation,[],[f13])). fof(f12,axiom,( t_holds(key(bt,b))), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f77,plain,( t_holds(key(bt,b))), inference(cnf_transformation,[],[f12])). fof(f11,axiom,( t_holds(key(at,a))), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f76,plain,( t_holds(key(at,a))), inference(cnf_transformation,[],[f11])). fof(f8,axiom,( fresh_to_b(an_a_nonce)), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f74,plain,( fresh_to_b(an_a_nonce)), inference(cnf_transformation,[],[f8])). fof(f7,axiom,( party_of_protocol(b)), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f73,plain,( party_of_protocol(b)), inference(cnf_transformation,[],[f7])). fof(f3,axiom,( message(sent(a,b,pair(a,an_a_nonce)))), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f70,plain,( message(sent(a,b,pair(a,an_a_nonce)))), inference(cnf_transformation,[],[f3])). fof(f2,axiom,( party_of_protocol(a)), file('/Users/korovin/TPTP-v6.1.0/Problems/SWV/SWV017+1.p',unknown)). fof(f69,plain,( party_of_protocol(a)), inference(cnf_transformation,[],[f2])). cnf(c_6,plain, ( message(sent(b,t,triple(b,generate_b_nonce(X0_$i),encrypt(triple(X1_$i,X0_$i,generate_expiration_time(X0_$i)),bt)))) | ~ message(sent(X1_$i,b,pair(X1_$i,X0_$i))) | ~ fresh_to_b(X0_$i) ), inference(cnf_transformation,[],[f75]) ). cnf(c_233,plain, ( message(sent(b,t,triple(b,generate_b_nonce(X0_$$iProver_fresh_intruder_nonce_1_$i),encrypt(triple(X1_$$iProver_fresh_intruder_nonce_1_$i,X0_$$iProver_fresh_intruder_nonce_1_$i,generate_expiration_time(X0_$$iProver_fresh_intruder_nonce_1_$i)),bt)))) | ~ message(sent(X1_$$iProver_fresh_intruder_nonce_1_$i,b,pair(X1_$$iProver_fresh_intruder_nonce_1_$i,X0_$$iProver_fresh_intruder_nonce_1_$i))) | ~ fresh_to_b(X0_$$iProver_fresh_intruder_nonce_1_$i) ), inference(subtyping,[status(esa)],[c_6]) ). cnf(c_10,plain, ( message(sent(t,X0_$i,triple(encrypt(quadruple(X1_$i,X2_$i,generate_key(X2_$i),X3_$i),X4_$i),encrypt(triple(X0_$i,generate_key(X2_$i),X3_$i),X5_$i),X6_$i))) | ~ message(sent(X1_$i,t,triple(X1_$i,X6_$i,encrypt(triple(X0_$i,X2_$i,X3_$i),X5_$i)))) | ~ t_holds(key(X4_$i,X0_$i)) | ~ t_holds(key(X5_$i,X1_$i)) | ~ a_nonce(X2_$i) ), inference(cnf_transformation,[],[f79]) ). cnf(c_229,plain, ( message(sent(t,X0_$$iProver_fresh_intruder_nonce_1_$i,triple(encrypt(quadruple(X1_$$iProver_fresh_intruder_nonce_1_$i,X2_$$iProver_fresh_intruder_nonce_1_$i,generate_key(X2_$$iProver_fresh_intruder_nonce_1_$i),X3_$$iProver_fresh_intruder_nonce_1_$i),X4_$$iProver_fresh_intruder_nonce_1_$i),encrypt(triple(X0_$$iProver_fresh_intruder_nonce_1_$i,generate_key(X2_$$iProver_fresh_intruder_nonce_1_$i),X3_$$iProver_fresh_intruder_nonce_1_$i),X5_$$iProver_fresh_intruder_nonce_1_$i),X6_$$iProver_fresh_intruder_nonce_1_$i))) | ~ message(sent(X1_$$iProver_fresh_intruder_nonce_1_$i,t,triple(X1_$$iProver_fresh_intruder_nonce_1_$i,X6_$$iProver_fresh_intruder_nonce_1_$i,encrypt(triple(X0_$$iProver_fresh_intruder_nonce_1_$i,X2_$$iProver_fresh_intruder_nonce_1_$i,X3_$$iProver_fresh_intruder_nonce_1_$i),X5_$$iProver_fresh_intruder_nonce_1_$i)))) | ~ t_holds(key(X4_$$iProver_fresh_intruder_nonce_1_$i,X0_$$iProver_fresh_intruder_nonce_1_$i)) | ~ t_holds(key(X5_$$iProver_fresh_intruder_nonce_1_$i,X1_$$iProver_fresh_intruder_nonce_1_$i)) | ~ a_nonce(X2_$$iProver_fresh_intruder_nonce_1_$i) ), inference(subtyping,[status(esa)],[c_10]) ). cnf(c_11,plain, ( ~ message(sent(X0_$i,X1_$i,X2_$i)) | intruder_message(X2_$i) ), inference(cnf_transformation,[],[f80]) ). cnf(c_228,plain, ( ~ message(sent(X0_$$iProver_fresh_intruder_nonce_1_$i,X1_$$iProver_fresh_intruder_nonce_1_$i,X2_$$iProver_fresh_intruder_nonce_1_$i)) | intruder_message(X2_$$iProver_fresh_intruder_nonce_1_$i) ), inference(subtyping,[status(esa)],[c_11]) ). cnf(c_12,plain, ( ~ intruder_message(pair(X0_$i,X1_$i)) | intruder_message(X1_$i) ), inference(cnf_transformation,[],[f82]) ). cnf(c_227,plain, ( ~ intruder_message(pair(X0_$$iProver_fresh_intruder_nonce_1_$i,X1_$$iProver_fresh_intruder_nonce_1_$i)) | intruder_message(X1_$$iProver_fresh_intruder_nonce_1_$i) ), inference(subtyping,[status(esa)],[c_12]) ). cnf(c_13,plain, ( ~ intruder_message(pair(X0_$i,X1_$i)) | intruder_message(X0_$i) ), inference(cnf_transformation,[],[f81]) ). cnf(c_226,plain, ( ~ intruder_message(pair(X0_$$iProver_fresh_intruder_nonce_1_$i,X1_$$iProver_fresh_intruder_nonce_1_$i)) | intruder_message(X0_$$iProver_fresh_intruder_nonce_1_$i) ), inference(subtyping,[status(esa)],[c_13]) ). cnf(c_14,plain, ( ~ intruder_message(triple(X0_$i,X1_$i,X2_$i)) | intruder_message(X2_$i) ), inference(cnf_transformation,[],[f85]) ). cnf(c_225,plain, ( ~ intruder_message(triple(X0_$$iProver_fresh_intruder_nonce_1_$i,X1_$$iProver_fresh_intruder_nonce_1_$i,X2_$$iProver_fresh_intruder_nonce_1_$i)) | intruder_message(X2_$$iProver_fresh_intruder_nonce_1_$i) ), inference(subtyping,[status(esa)],[c_14]) ). cnf(c_15,plain, ( ~ intruder_message(triple(X0_$i,X1_$i,X2_$i)) | intruder_message(X1_$i) ), inference(cnf_transformation,[],[f84]) ). cnf(c_224,plain, ( ~ intruder_message(triple(X0_$$iProver_fresh_intruder_nonce_1_$i,X1_$$iProver_fresh_intruder_nonce_1_$i,X2_$$iProver_fresh_intruder_nonce_1_$i)) | intruder_message(X1_$$iProver_fresh_intruder_nonce_1_$i) ), inference(subtyping,[status(esa)],[c_15]) ). cnf(c_16,plain, ( ~ intruder_message(triple(X0_$i,X1_$i,X2_$i)) | intruder_message(X0_$i) ), inference(cnf_transformation,[],[f83]) ). cnf(c_223,plain, ( ~ intruder_message(triple(X0_$$iProver_fresh_intruder_nonce_1_$i,X1_$$iProver_fresh_intruder_nonce_1_$i,X2_$$iProver_fresh_intruder_nonce_1_$i)) | intruder_message(X0_$$iProver_fresh_intruder_nonce_1_$i) ), inference(subtyping,[status(esa)],[c_16]) ). cnf(c_17,plain, ( ~ intruder_message(quadruple(X0_$i,X1_$i,X2_$i,X3_$i)) | intruder_message(X3_$i) ), inference(cnf_transformation,[],[f89]) ). cnf(c_222,plain, ( ~ intruder_message(quadruple(X0_$$iProver_fresh_intruder_nonce_1_$i,X1_$$iProver_fresh_intruder_nonce_1_$i,X2_$$iProver_fresh_intruder_nonce_1_$i,X3_$$iProver_fresh_intruder_nonce_1_$i)) | intruder_message(X3_$$iProver_fresh_intruder_nonce_1_$i) ), inference(subtyping,[status(esa)],[c_17]) ). cnf(c_18,plain, ( ~ intruder_message(quadruple(X0_$i,X1_$i,X2_$i,X3_$i)) | intruder_message(X2_$i) ), inference(cnf_transformation,[],[f88]) ). cnf(c_221,plain, ( ~ intruder_message(quadruple(X0_$$iProver_fresh_intruder_nonce_1_$i,X1_$$iProver_fresh_intruder_nonce_1_$i,X2_$$iProver_fresh_intruder_nonce_1_$i,X3_$$iProver_fresh_intruder_nonce_1_$i)) | intruder_message(X2_$$iProver_fresh_intruder_nonce_1_$i) ), inference(subtyping,[status(esa)],[c_18]) ). cnf(c_19,plain, ( ~ intruder_message(quadruple(X0_$i,X1_$i,X2_$i,X3_$i)) | intruder_message(X1_$i) ), inference(cnf_transformation,[],[f87]) ). cnf(c_220,plain, ( ~ intruder_message(quadruple(X0_$$iProver_fresh_intruder_nonce_1_$i,X1_$$iProver_fresh_intruder_nonce_1_$i,X2_$$iProver_fresh_intruder_nonce_1_$i,X3_$$iProver_fresh_intruder_nonce_1_$i)) | intruder_message(X1_$$iProver_fresh_intruder_nonce_1_$i) ), inference(subtyping,[status(esa)],[c_19]) ). cnf(c_20,plain, ( ~ intruder_message(quadruple(X0_$i,X1_$i,X2_$i,X3_$i)) | intruder_message(X0_$i) ), inference(cnf_transformation,[],[f86]) ). cnf(c_219,plain, ( ~ intruder_message(quadruple(X0_$$iProver_fresh_intruder_nonce_1_$i,X1_$$iProver_fresh_intruder_nonce_1_$i,X2_$$iProver_fresh_intruder_nonce_1_$i,X3_$$iProver_fresh_intruder_nonce_1_$i)) | intruder_message(X0_$$iProver_fresh_intruder_nonce_1_$i) ), inference(subtyping,[status(esa)],[c_20]) ). cnf(c_21,plain, ( intruder_message(pair(X0_$i,X1_$i)) | ~ intruder_message(X1_$i) | ~ intruder_message(X0_$i) ), inference(cnf_transformation,[],[f90]) ). cnf(c_218,plain, ( intruder_message(pair(X0_$$iProver_fresh_intruder_nonce_1_$i,X1_$$iProver_fresh_intruder_nonce_1_$i)) | ~ intruder_message(X1_$$iProver_fresh_intruder_nonce_1_$i) | ~ intruder_message(X0_$$iProver_fresh_intruder_nonce_1_$i) ), inference(subtyping,[status(esa)],[c_21]) ). cnf(c_22,plain, ( intruder_message(triple(X0_$i,X1_$i,X2_$i)) | ~ intruder_message(X1_$i) | ~ intruder_message(X0_$i) | ~ intruder_message(X2_$i) ), inference(cnf_transformation,[],[f91]) ). cnf(c_217,plain, ( intruder_message(triple(X0_$$iProver_fresh_intruder_nonce_1_$i,X1_$$iProver_fresh_intruder_nonce_1_$i,X2_$$iProver_fresh_intruder_nonce_1_$i)) | ~ intruder_message(X1_$$iProver_fresh_intruder_nonce_1_$i) | ~ intruder_message(X0_$$iProver_fresh_intruder_nonce_1_$i) | ~ intruder_message(X2_$$iProver_fresh_intruder_nonce_1_$i) ), inference(subtyping,[status(esa)],[c_22]) ). cnf(c_23,plain, ( intruder_message(quadruple(X0_$i,X1_$i,X2_$i,X3_$i)) | ~ intruder_message(X1_$i) | ~ intruder_message(X0_$i) | ~ intruder_message(X3_$i) | ~ intruder_message(X2_$i) ), inference(cnf_transformation,[],[f92]) ). cnf(c_216,plain, ( intruder_message(quadruple(X0_$$iProver_fresh_intruder_nonce_1_$i,X1_$$iProver_fresh_intruder_nonce_1_$i,X2_$$iProver_fresh_intruder_nonce_1_$i,X3_$$iProver_fresh_intruder_nonce_1_$i)) | ~ intruder_message(X1_$$iProver_fresh_intruder_nonce_1_$i) | ~ intruder_message(X0_$$iProver_fresh_intruder_nonce_1_$i) | ~ intruder_message(X2_$$iProver_fresh_intruder_nonce_1_$i) | ~ intruder_message(X3_$$iProver_fresh_intruder_nonce_1_$i) ), inference(subtyping,[status(esa)],[c_23]) ). cnf(c_25,plain, ( ~ party_of_protocol(X0_$i) | ~ party_of_protocol(X1_$i) | message(sent(X1_$i,X0_$i,X2_$i)) | ~ intruder_message(X2_$i) ), inference(cnf_transformation,[],[f94]) ). cnf(c_215,plain, ( ~ party_of_protocol(X0_$$iProver_fresh_intruder_nonce_1_$i) | ~ party_of_protocol(X1_$$iProver_fresh_intruder_nonce_1_$i) | message(sent(X1_$$iProver_fresh_intruder_nonce_1_$i,X0_$$iProver_fresh_intruder_nonce_1_$i,X2_$$iProver_fresh_intruder_nonce_1_$i)) | ~ intruder_message(X2_$$iProver_fresh_intruder_nonce_1_$i) ), inference(subtyping,[status(esa)],[c_25]) ). cnf(c_29,plain, ( ~ a_nonce(generate_key(X0_$i)) ), inference(cnf_transformation,[],[f98]) ). cnf(c_213,plain, ( ~ a_nonce(generate_key(X0_$$iProver_fresh_intruder_nonce_1_$i)) ), inference(subtyping,[status(esa)],[c_29]) ). cnf(c_30,plain, ( a_nonce(generate_b_nonce(X0_$i)) ), inference(cnf_transformation,[],[f100]) ). cnf(c_212,plain, ( a_nonce(generate_b_nonce(X0_$$iProver_fresh_intruder_nonce_1_$i)) ), inference(subtyping,[status(esa)],[c_30]) ). cnf(c_31,plain, ( a_nonce(generate_expiration_time(X0_$i)) ), inference(cnf_transformation,[],[f99]) ). cnf(c_211,plain, ( a_nonce(generate_expiration_time(X0_$$iProver_fresh_intruder_nonce_1_$i)) ), inference(subtyping,[status(esa)],[c_31]) ). cnf(c_35,plain, ( fresh_intruder_nonce(generate_intruder_nonce(X0_$i)) | ~ fresh_intruder_nonce(X0_$i) ), inference(cnf_transformation,[],[f104]) ). cnf(c_209,plain, ( fresh_intruder_nonce(generate_intruder_nonce(X0_$$iProver_fresh_intruder_nonce_1_$i)) | ~ fresh_intruder_nonce(X0_$$iProver_fresh_intruder_nonce_1_$i) ), inference(subtyping,[status(esa)],[c_35]) ). cnf(c_36,plain, ( intruder_message(X0_$i) | ~ fresh_intruder_nonce(X0_$i) ), inference(cnf_transformation,[],[f106]) ). cnf(c_208,plain, ( intruder_message(X0_$$iProver_fresh_intruder_nonce_1_$i) | ~ fresh_intruder_nonce(X0_$$iProver_fresh_intruder_nonce_1_$i) ), inference(subtyping,[status(esa)],[c_36]) ). cnf(c_37,plain, ( fresh_to_b(X0_$i) | ~ fresh_intruder_nonce(X0_$i) ), inference(cnf_transformation,[],[f105]) ). cnf(c_207,plain, ( fresh_to_b(X0_$$iProver_fresh_intruder_nonce_1_$i) | ~ fresh_intruder_nonce(X0_$$iProver_fresh_intruder_nonce_1_$i) ), inference(subtyping,[status(esa)],[c_37]) ). cnf(c_2,plain, ( a_stored(pair(b,an_a_nonce)) ), inference(cnf_transformation,[],[f71]) ). cnf(c_3,plain, ( message(sent(a,X0_$i,pair(X1_$i,encrypt(X2_$i,X3_$i)))) | ~ message(sent(t,a,triple(encrypt(quadruple(X0_$i,X4_$i,X3_$i,X5_$i),at),X1_$i,X2_$i))) | ~ a_stored(pair(X0_$i,X4_$i)) ), inference(cnf_transformation,[],[f72]) ). cnf(c_61,plain, ( message(sent(a,b,pair(X0_$i,encrypt(X1_$i,X2_$i)))) | ~ message(sent(t,a,triple(encrypt(quadruple(b,an_a_nonce,X2_$i,X3_$i),at),X0_$i,X1_$i))) ), inference(resolution,[status(thm)],[c_2,c_3]) ). cnf(c_206,plain, ( message(sent(a,b,pair(X0_$$iProver_fresh_intruder_nonce_1_$i,encrypt(X1_$$iProver_fresh_intruder_nonce_1_$i,X2_$$iProver_fresh_intruder_nonce_1_$i)))) | ~ message(sent(t,a,triple(encrypt(quadruple(b,an_a_nonce,X2_$$iProver_fresh_intruder_nonce_1_$i,X3_$$iProver_fresh_intruder_nonce_1_$i),at),X0_$$iProver_fresh_intruder_nonce_1_$i,X1_$$iProver_fresh_intruder_nonce_1_$i))) ), inference(subtyping,[status(esa)],[c_61]) ). cnf(c_27,plain, ( ~ party_of_protocol(X0_$i) | intruder_message(encrypt(X1_$i,X2_$i)) | ~ intruder_message(X1_$i) | ~ intruder_holds(key(X2_$i,X0_$i)) ), inference(cnf_transformation,[],[f96]) ). cnf(c_26,plain, ( ~ party_of_protocol(X0_$i) | ~ intruder_message(X1_$i) | intruder_holds(key(X1_$i,X0_$i)) ), inference(cnf_transformation,[],[f95]) ). cnf(c_95,plain, ( ~ party_of_protocol(X0_$i) | intruder_message(encrypt(X1_$i,X2_$i)) | ~ intruder_message(X2_$i) | ~ intruder_message(X1_$i) ), inference(resolution,[status(thm)],[c_27,c_26]) ). cnf(c_168,plain, ( ~ party_of_protocol(X0_$i) | ~ sP0_iProver_split ), inference(splitting, [splitting(split),new_symbols(definition,[~ sP0_iProver_split])], [c_95]) ). cnf(c_205,plain, ( ~ party_of_protocol(X0_$$iProver_fresh_intruder_nonce_1_$i) | ~ sP0_iProver_split ), inference(subtyping,[status(esa)],[c_168]) ). cnf(c_169,plain, ( intruder_message(encrypt(X0_$i,X1_$i)) | ~ intruder_message(X1_$i) | ~ intruder_message(X0_$i) | sP0_iProver_split ), inference(splitting,[splitting(split),new_symbols(definition,[])],[c_95]) ). cnf(c_204,plain, ( intruder_message(encrypt(X0_$$iProver_fresh_intruder_nonce_1_$i,X1_$$iProver_fresh_intruder_nonce_1_$i)) | ~ intruder_message(X1_$$iProver_fresh_intruder_nonce_1_$i) | ~ intruder_message(X0_$$iProver_fresh_intruder_nonce_1_$i) | sP0_iProver_split ), inference(subtyping,[status(esa)],[c_169]) ). cnf(c_34,plain, ( fresh_intruder_nonce(an_intruder_nonce) ), inference(cnf_transformation,[],[f103]) ). cnf(c_210,plain, ( fresh_intruder_nonce(an_intruder_nonce) ), inference(subtyping,[status(esa)],[c_34]) ). cnf(c_28,plain, ( a_nonce(an_a_nonce) ), inference(cnf_transformation,[],[f97]) ). cnf(c_214,plain, ( a_nonce(an_a_nonce) ), inference(subtyping,[status(esa)],[c_28]) ). cnf(c_9,plain, ( party_of_protocol(t) ), inference(cnf_transformation,[],[f78]) ). cnf(c_230,plain, ( party_of_protocol(t) ), inference(subtyping,[status(esa)],[c_9]) ). cnf(c_8,plain, ( t_holds(key(bt,b)) ), inference(cnf_transformation,[],[f77]) ). cnf(c_231,plain, ( t_holds(key(bt,b)) ), inference(subtyping,[status(esa)],[c_8]) ). cnf(c_7,plain, ( t_holds(key(at,a)) ), inference(cnf_transformation,[],[f76]) ). cnf(c_232,plain, ( t_holds(key(at,a)) ), inference(subtyping,[status(esa)],[c_7]) ). cnf(c_5,plain, ( fresh_to_b(an_a_nonce) ), inference(cnf_transformation,[],[f74]) ). cnf(c_234,plain, ( fresh_to_b(an_a_nonce) ), inference(subtyping,[status(esa)],[c_5]) ). cnf(c_4,plain, ( party_of_protocol(b) ), inference(cnf_transformation,[],[f73]) ). cnf(c_235,plain, ( party_of_protocol(b) ), inference(subtyping,[status(esa)],[c_4]) ). cnf(c_1,plain, ( message(sent(a,b,pair(a,an_a_nonce))) ), inference(cnf_transformation,[],[f70]) ). cnf(c_236,plain, ( message(sent(a,b,pair(a,an_a_nonce))) ), inference(subtyping,[status(esa)],[c_1]) ). cnf(c_0,plain, ( party_of_protocol(a) ), inference(cnf_transformation,[],[f69]) ). cnf(c_237,plain, ( party_of_protocol(a) ), inference(subtyping,[status(esa)],[c_0]) ). % SZS output end Saturation
% SZS output start CNFRefutation % Axioms transformation by autotheo % Orienting (remaining) axiom formulas using strategy Equiv(ClausalAll) % Orienting axioms whose shape is orientable fof(t6_boole,axiom,![A]:(empty(A)=>A=empty_set),input). fof(t6_boole_0,plain,![A]:(~empty(A) |A=empty_set),inference(orientation, [status(thm)], [t6_boole])). fof(t4_boole,axiom,![A]:set_difference(empty_set,A)=empty_set,input). fof(t4_boole_0,plain,![A]:(set_difference(empty_set,A)=empty_set |$false),inference(orientation, [status(thm)], [t4_boole])). fof(t3_boole,axiom,![A]:set_difference(A,empty_set)=A,input). fof(t3_boole_0,plain,![A]:(set_difference(A,empty_set)=A |$false),inference(orientation, [status(thm)], [t3_boole])). fof(t2_tarski,axiom,![A,B]:(![C]:(in(C,A)<=>in(C,B))=>A=B),input). fof(t2_tarski_0,plain,![A,B]:(A=B |~![C]:(in(C,A) <=>in(C,B))),inference(orientation, [status(thm)], [t2_tarski])). fof(t2_boole,axiom,![A]:set_intersection2(A,empty_set)=empty_set,input). fof(t2_boole_0,plain,![A]:(set_intersection2(A,empty_set)=empty_set |$false),inference(orientation, [status(thm)], [t2_boole])). fof(t1_boole,axiom,![A]:set_union2(A,empty_set)=A,input). fof(t1_boole_0,plain,![A]:(set_union2(A,empty_set)=A |$false),inference(orientation, [status(thm)], [t1_boole])). fof(symmetry_r1_xboole_0,axiom,![A,B]:(disjoint(A,B)=>disjoint(B,A)),input). fof(symmetry_r1_xboole_0_0,plain,![A,B]:(~disjoint(A,B) |disjoint(B,A)),inference(orientation, [status(thm)], [symmetry_r1_xboole_0])). fof(reflexivity_r1_tarski,axiom,![A,B]:subset(A,A),input). fof(reflexivity_r1_tarski_0,plain,![A]:(subset(A,A) |$false),inference(orientation, [status(thm)], [reflexivity_r1_tarski])). fof(irreflexivity_r2_xboole_0,axiom,![A,B]:~proper_subset(A,A),input). fof(irreflexivity_r2_xboole_0_0,plain,![A]:(~proper_subset(A,A) |$false),inference(orientation, [status(thm)], [irreflexivity_r2_xboole_0])). fof(idempotence_k3_xboole_0,axiom,![A,B]:set_intersection2(A,A)=A,input). fof(idempotence_k3_xboole_0_0,plain,![A]:(set_intersection2(A,A)=A |$false),inference(orientation, [status(thm)], [idempotence_k3_xboole_0])). fof(idempotence_k2_xboole_0,axiom,![A,B]:set_union2(A,A)=A,input). fof(idempotence_k2_xboole_0_0,plain,![A]:(set_union2(A,A)=A |$false),inference(orientation, [status(thm)], [idempotence_k2_xboole_0])). fof(fc3_xboole_0,axiom,![A,B]:(~empty(A)=>~empty(set_union2(B,A))),input). fof(fc3_xboole_0_0,plain,![A,B]:(empty(A) |~empty(set_union2(B,A))),inference(orientation, [status(thm)], [fc3_xboole_0])). fof(fc2_xboole_0,axiom,![A,B]:(~empty(A)=>~empty(set_union2(A,B))),input). fof(fc2_xboole_0_0,plain,![A,B]:(empty(A) |~empty(set_union2(A,B))),inference(orientation, [status(thm)], [fc2_xboole_0])). fof(fc1_xboole_0,axiom,empty(empty_set),input). fof(fc1_xboole_0_0,plain,(empty(empty_set) |$false),inference(orientation, [status(thm)], [fc1_xboole_0])). fof(dt_k4_xboole_0,axiom,$true,input). fof(dt_k4_xboole_0_0,plain,($true |$false),inference(orientation, [status(thm)], [dt_k4_xboole_0])). fof(dt_k3_xboole_0,axiom,$true,input). fof(dt_k3_xboole_0_0,plain,($true |$false),inference(orientation, [status(thm)], [dt_k3_xboole_0])). fof(dt_k2_xboole_0,axiom,$true,input). fof(dt_k2_xboole_0_0,plain,($true |$false),inference(orientation, [status(thm)], [dt_k2_xboole_0])). fof(dt_k1_xboole_0,axiom,$true,input). fof(dt_k1_xboole_0_0,plain,($true |$false),inference(orientation, [status(thm)], [dt_k1_xboole_0])). fof(d8_xboole_0,axiom,![A,B]:(proper_subset(A,B)<=>(subset(A,B)&A!=B)),input). fof(d8_xboole_0_0,plain,![A,B]:(proper_subset(A,B) |~(subset(A,B) &A!=B)),inference(orientation, [status(thm)], [d8_xboole_0])). fof(d8_xboole_0_1,plain,![A,B]:(~proper_subset(A,B) |(subset(A,B) &A!=B)),inference(orientation, [status(thm)], [d8_xboole_0])). fof(d7_xboole_0,axiom,![A,B]:(disjoint(A,B)<=>set_intersection2(A,B)=empty_set),input). fof(d7_xboole_0_0,plain,![A,B]:(disjoint(A,B) |~set_intersection2(A,B)=empty_set),inference(orientation, [status(thm)], [d7_xboole_0])). fof(d7_xboole_0_1,plain,![A,B]:(~disjoint(A,B) |set_intersection2(A,B)=empty_set),inference(orientation, [status(thm)], [d7_xboole_0])). fof(d4_xboole_0,axiom,![A,B,C]:(C=set_difference(A,B)<=>![D]:(in(D,C)<=>(in(D,A)&~in(D,B)))),input). fof(d4_xboole_0_0,plain,![A,B,C]:(C=set_difference(A,B) |~![D]:(in(D,C) <=>(in(D,A) &~in(D,B)))),inference(orientation, [status(thm)], [d4_xboole_0])). fof(d4_xboole_0_1,plain,![A,B,C]:(~C=set_difference(A,B) |![D]:(in(D,C) <=>(in(D,A) &~in(D,B)))),inference(orientation, [status(thm)], [d4_xboole_0])). fof(d3_xboole_0,axiom,![A,B,C]:(C=set_intersection2(A,B)<=>![D]:(in(D,C)<=>(in(D,A)&in(D,B)))),input). fof(d3_xboole_0_0,plain,![A,B,C]:(C=set_intersection2(A,B) |~![D]:(in(D,C) <=>(in(D,A) &in(D,B)))),inference(orientation, [status(thm)], [d3_xboole_0])). fof(d3_xboole_0_1,plain,![A,B,C]:(~C=set_intersection2(A,B) |![D]:(in(D,C) <=>(in(D,A) &in(D,B)))),inference(orientation, [status(thm)], [d3_xboole_0])). fof(d3_tarski,axiom,![A,B]:(subset(A,B)<=>![C]:(in(C,A)=>in(C,B))),input). fof(d3_tarski_0,plain,![A,B]:(subset(A,B) |~![C]:(in(C,A) =>in(C,B))),inference(orientation, [status(thm)], [d3_tarski])). fof(d3_tarski_1,plain,![A,B]:(~subset(A,B) |![C]:(in(C,A) =>in(C,B))),inference(orientation, [status(thm)], [d3_tarski])). fof(d2_xboole_0,axiom,![A,B,C]:(C=set_union2(A,B)<=>![D]:(in(D,C)<=>(in(D,A)|in(D,B)))),input). fof(d2_xboole_0_0,plain,![A,B,C]:(C=set_union2(A,B) |~![D]:(in(D,C) <=>(in(D,A) |in(D,B)))),inference(orientation, [status(thm)], [d2_xboole_0])). fof(d2_xboole_0_1,plain,![A,B,C]:(~C=set_union2(A,B) |![D]:(in(D,C) <=>(in(D,A) |in(D,B)))),inference(orientation, [status(thm)], [d2_xboole_0])). fof(d1_xboole_0,axiom,![A]:(A=empty_set<=>![B]:~in(B,A)),input). fof(d1_xboole_0_0,plain,![A]:(A=empty_set |~![B]:~in(B,A)),inference(orientation, [status(thm)], [d1_xboole_0])). fof(d1_xboole_0_1,plain,![A]:(~A=empty_set |![B]:~in(B,A)),inference(orientation, [status(thm)], [d1_xboole_0])). fof(d10_xboole_0,axiom,![A,B]:(A=B<=>(subset(A,B)&subset(B,A))),input). fof(d10_xboole_0_0,plain,![A,B]:(A=B |~(subset(A,B) &subset(B,A))),inference(orientation, [status(thm)], [d10_xboole_0])). fof(d10_xboole_0_1,plain,![A,B]:(~A=B |(subset(A,B) &subset(B,A))),inference(orientation, [status(thm)], [d10_xboole_0])). fof(commutativity_k3_xboole_0,axiom,![A,B]:set_intersection2(A,B)=set_intersection2(B,A),input). fof(commutativity_k3_xboole_0_0,plain,![A,B]:(set_intersection2(A,B)=set_intersection2(B,A) |$false),inference(orientation, [status(thm)], [commutativity_k3_xboole_0])). fof(commutativity_k2_xboole_0,axiom,![A,B]:set_union2(A,B)=set_union2(B,A),input). fof(commutativity_k2_xboole_0_0,plain,![A,B]:(set_union2(A,B)=set_union2(B,A) |$false),inference(orientation, [status(thm)], [commutativity_k2_xboole_0])). fof(antisymmetry_r2_xboole_0,axiom,![A,B]:(proper_subset(A,B)=>~proper_subset(B,A)),input). fof(antisymmetry_r2_xboole_0_0,plain,![A,B]:(~proper_subset(A,B) |~proper_subset(B,A)),inference(orientation, [status(thm)], [antisymmetry_r2_xboole_0])). fof(antisymmetry_r2_hidden,axiom,![A,B]:(in(A,B)=>~in(B,A)),input). fof(antisymmetry_r2_hidden_0,plain,![A,B]:(~in(A,B) |~in(B,A)),inference(orientation, [status(thm)], [antisymmetry_r2_hidden])). fof(def_lhs_atom1, axiom, ![B,A]: (lhs_atom1(B,A) <=> ~in(A,B)), inference(definition,[],[])). fof(to_be_clausified_0, plain, ![A,B]: (lhs_atom1(B,A) |~in(B,A)), inference(fold_definition,[status(thm)],[antisymmetry_r2_hidden_0, def_lhs_atom1])). fof(def_lhs_atom2, axiom, ![B,A]: (lhs_atom2(B,A) <=> ~proper_subset(A,B)), inference(definition,[],[])). fof(to_be_clausified_1, plain, ![A,B]: (lhs_atom2(B,A) |~proper_subset(B,A)), inference(fold_definition,[status(thm)],[antisymmetry_r2_xboole_0_0, def_lhs_atom2])). fof(def_lhs_atom3, axiom, ![B,A]: (lhs_atom3(B,A) <=> set_union2(A,B)=set_union2(B,A)), inference(definition,[],[])). fof(to_be_clausified_2, plain, ![A,B]: (lhs_atom3(B,A) |$false), inference(fold_definition,[status(thm)],[commutativity_k2_xboole_0_0, def_lhs_atom3])). fof(def_lhs_atom4, axiom, ![B,A]: (lhs_atom4(B,A) <=> set_intersection2(A,B)=set_intersection2(B,A)), inference(definition,[],[])). fof(to_be_clausified_3, plain, ![A,B]: (lhs_atom4(B,A) |$false), inference(fold_definition,[status(thm)],[commutativity_k3_xboole_0_0, def_lhs_atom4])). fof(def_lhs_atom5, axiom, ![B,A]: (lhs_atom5(B,A) <=> ~A=B), inference(definition,[],[])). fof(to_be_clausified_4, plain, ![A,B]: (lhs_atom5(B,A) |(subset(A,B) &subset(B,A))), inference(fold_definition,[status(thm)],[d10_xboole_0_1, def_lhs_atom5])). fof(def_lhs_atom6, axiom, ![B,A]: (lhs_atom6(B,A) <=> A=B), inference(definition,[],[])). fof(to_be_clausified_5, plain, ![A,B]: (lhs_atom6(B,A) |~(subset(A,B) &subset(B,A))), inference(fold_definition,[status(thm)],[d10_xboole_0_0, def_lhs_atom6])). fof(def_lhs_atom7, axiom, ![A]: (lhs_atom7(A) <=> ~A=empty_set), inference(definition,[],[])). fof(to_be_clausified_6, plain, ![A]: (lhs_atom7(A) |![B]:~in(B,A)), inference(fold_definition,[status(thm)],[d1_xboole_0_1, def_lhs_atom7])). fof(def_lhs_atom8, axiom, ![A]: (lhs_atom8(A) <=> A=empty_set), inference(definition,[],[])). fof(to_be_clausified_7, plain, ![A]: (lhs_atom8(A) |~![B]:~in(B,A)), inference(fold_definition,[status(thm)],[d1_xboole_0_0, def_lhs_atom8])). fof(def_lhs_atom9, axiom, ![C,B,A]: (lhs_atom9(C,B,A) <=> ~C=set_union2(A,B)), inference(definition,[],[])). fof(to_be_clausified_8, plain, ![A,B,C]: (lhs_atom9(C,B,A) |![D]:(in(D,C) <=>(in(D,A) |in(D,B)))), inference(fold_definition,[status(thm)],[d2_xboole_0_1, def_lhs_atom9])). fof(def_lhs_atom10, axiom, ![C,B,A]: (lhs_atom10(C,B,A) <=> C=set_union2(A,B)), inference(definition,[],[])). fof(to_be_clausified_9, plain, ![A,B,C]: (lhs_atom10(C,B,A) |~![D]:(in(D,C) <=>(in(D,A) |in(D,B)))), inference(fold_definition,[status(thm)],[d2_xboole_0_0, def_lhs_atom10])). fof(def_lhs_atom11, axiom, ![B,A]: (lhs_atom11(B,A) <=> ~subset(A,B)), inference(definition,[],[])). fof(to_be_clausified_10, plain, ![A,B]: (lhs_atom11(B,A) |![C]:(in(C,A) =>in(C,B))), inference(fold_definition,[status(thm)],[d3_tarski_1, def_lhs_atom11])). fof(def_lhs_atom12, axiom, ![B,A]: (lhs_atom12(B,A) <=> subset(A,B)), inference(definition,[],[])). fof(to_be_clausified_11, plain, ![A,B]: (lhs_atom12(B,A) |~![C]:(in(C,A) =>in(C,B))), inference(fold_definition,[status(thm)],[d3_tarski_0, def_lhs_atom12])). fof(def_lhs_atom13, axiom, ![C,B,A]: (lhs_atom13(C,B,A) <=> ~C=set_intersection2(A,B)), inference(definition,[],[])). fof(to_be_clausified_12, plain, ![A,B,C]: (lhs_atom13(C,B,A) |![D]:(in(D,C) <=>(in(D,A) &in(D,B)))), inference(fold_definition,[status(thm)],[d3_xboole_0_1, def_lhs_atom13])). fof(def_lhs_atom14, axiom, ![C,B,A]: (lhs_atom14(C,B,A) <=> C=set_intersection2(A,B)), inference(definition,[],[])). fof(to_be_clausified_13, plain, ![A,B,C]: (lhs_atom14(C,B,A) |~![D]:(in(D,C) <=>(in(D,A) &in(D,B)))), inference(fold_definition,[status(thm)],[d3_xboole_0_0, def_lhs_atom14])). fof(def_lhs_atom15, axiom, ![C,B,A]: (lhs_atom15(C,B,A) <=> ~C=set_difference(A,B)), inference(definition,[],[])). fof(to_be_clausified_14, plain, ![A,B,C]: (lhs_atom15(C,B,A) |![D]:(in(D,C) <=>(in(D,A) &~in(D,B)))), inference(fold_definition,[status(thm)],[d4_xboole_0_1, def_lhs_atom15])). fof(def_lhs_atom16, axiom, ![C,B,A]: (lhs_atom16(C,B,A) <=> C=set_difference(A,B)), inference(definition,[],[])). fof(to_be_clausified_15, plain, ![A,B,C]: (lhs_atom16(C,B,A) |~![D]:(in(D,C) <=>(in(D,A) &~in(D,B)))), inference(fold_definition,[status(thm)],[d4_xboole_0_0, def_lhs_atom16])). fof(def_lhs_atom17, axiom, ![B,A]: (lhs_atom17(B,A) <=> ~disjoint(A,B)), inference(definition,[],[])). fof(to_be_clausified_16, plain, ![A,B]: (lhs_atom17(B,A) |set_intersection2(A,B)=empty_set), inference(fold_definition,[status(thm)],[d7_xboole_0_1, def_lhs_atom17])). fof(def_lhs_atom18, axiom, ![B,A]: (lhs_atom18(B,A) <=> disjoint(A,B)), inference(definition,[],[])). fof(to_be_clausified_17, plain, ![A,B]: (lhs_atom18(B,A) |~set_intersection2(A,B)=empty_set), inference(fold_definition,[status(thm)],[d7_xboole_0_0, def_lhs_atom18])). fof(to_be_clausified_18, plain, ![A,B]: (lhs_atom2(B,A) |(subset(A,B) &A!=B)), inference(fold_definition,[status(thm)],[d8_xboole_0_1, def_lhs_atom2])). fof(def_lhs_atom19, axiom, ![B,A]: (lhs_atom19(B,A) <=> proper_subset(A,B)), inference(definition,[],[])). fof(to_be_clausified_19, plain, ![A,B]: (lhs_atom19(B,A) |~(subset(A,B) &A!=B)), inference(fold_definition,[status(thm)],[d8_xboole_0_0, def_lhs_atom19])). fof(def_lhs_atom20, axiom, (lhs_atom20 <=> $true), inference(definition,[],[])). fof(to_be_clausified_20, plain, (lhs_atom20 |$false), inference(fold_definition,[status(thm)],[dt_k1_xboole_0_0, def_lhs_atom20])). fof(to_be_clausified_21, plain, (lhs_atom20 |$false), inference(fold_definition,[status(thm)],[dt_k2_xboole_0_0, def_lhs_atom20])). fof(to_be_clausified_22, plain, (lhs_atom20 |$false), inference(fold_definition,[status(thm)],[dt_k3_xboole_0_0, def_lhs_atom20])). fof(to_be_clausified_23, plain, (lhs_atom20 |$false), inference(fold_definition,[status(thm)],[dt_k4_xboole_0_0, def_lhs_atom20])). fof(def_lhs_atom21, axiom, (lhs_atom21 <=> empty(empty_set)), inference(definition,[],[])). fof(to_be_clausified_24, plain, (lhs_atom21 |$false), inference(fold_definition,[status(thm)],[fc1_xboole_0_0, def_lhs_atom21])). fof(def_lhs_atom22, axiom, ![A]: (lhs_atom22(A) <=> empty(A)), inference(definition,[],[])). fof(to_be_clausified_25, plain, ![A,B]: (lhs_atom22(A) |~empty(set_union2(A,B))), inference(fold_definition,[status(thm)],[fc2_xboole_0_0, def_lhs_atom22])). fof(to_be_clausified_26, plain, ![A,B]: (lhs_atom22(A) |~empty(set_union2(B,A))), inference(fold_definition,[status(thm)],[fc3_xboole_0_0, def_lhs_atom22])). fof(def_lhs_atom23, axiom, ![A]: (lhs_atom23(A) <=> set_union2(A,A)=A), inference(definition,[],[])). fof(to_be_clausified_27, plain, ![A]: (lhs_atom23(A) |$false), inference(fold_definition,[status(thm)],[idempotence_k2_xboole_0_0, def_lhs_atom23])). fof(def_lhs_atom24, axiom, ![A]: (lhs_atom24(A) <=> set_intersection2(A,A)=A), inference(definition,[],[])). fof(to_be_clausified_28, plain, ![A]: (lhs_atom24(A) |$false), inference(fold_definition,[status(thm)],[idempotence_k3_xboole_0_0, def_lhs_atom24])). fof(def_lhs_atom25, axiom, ![A]: (lhs_atom25(A) <=> ~proper_subset(A,A)), inference(definition,[],[])). fof(to_be_clausified_29, plain, ![A]: (lhs_atom25(A) |$false), inference(fold_definition,[status(thm)],[irreflexivity_r2_xboole_0_0, def_lhs_atom25])). fof(def_lhs_atom26, axiom, ![A]: (lhs_atom26(A) <=> subset(A,A)), inference(definition,[],[])). fof(to_be_clausified_30, plain, ![A]: (lhs_atom26(A) |$false), inference(fold_definition,[status(thm)],[reflexivity_r1_tarski_0, def_lhs_atom26])). fof(to_be_clausified_31, plain, ![A,B]: (lhs_atom17(B,A) |disjoint(B,A)), inference(fold_definition,[status(thm)],[symmetry_r1_xboole_0_0, def_lhs_atom17])). fof(def_lhs_atom27, axiom, ![A]: (lhs_atom27(A) <=> set_union2(A,empty_set)=A), inference(definition,[],[])). fof(to_be_clausified_32, plain, ![A]: (lhs_atom27(A) |$false), inference(fold_definition,[status(thm)],[t1_boole_0, def_lhs_atom27])). fof(def_lhs_atom28, axiom, ![A]: (lhs_atom28(A) <=> set_intersection2(A,empty_set)=empty_set), inference(definition,[],[])). fof(to_be_clausified_33, plain, ![A]: (lhs_atom28(A) |$false), inference(fold_definition,[status(thm)],[t2_boole_0, def_lhs_atom28])). fof(to_be_clausified_34, plain, ![A,B]: (lhs_atom6(B,A) |~![C]:(in(C,A) <=>in(C,B))), inference(fold_definition,[status(thm)],[t2_tarski_0, def_lhs_atom6])). fof(def_lhs_atom29, axiom, ![A]: (lhs_atom29(A) <=> set_difference(A,empty_set)=A), inference(definition,[],[])). fof(to_be_clausified_35, plain, ![A]: (lhs_atom29(A) |$false), inference(fold_definition,[status(thm)],[t3_boole_0, def_lhs_atom29])). fof(def_lhs_atom30, axiom, ![A]: (lhs_atom30(A) <=> set_difference(empty_set,A)=empty_set), inference(definition,[],[])). fof(to_be_clausified_36, plain, ![A]: (lhs_atom30(A) |$false), inference(fold_definition,[status(thm)],[t4_boole_0, def_lhs_atom30])). fof(def_lhs_atom31, axiom, ![A]: (lhs_atom31(A) <=> ~empty(A)), inference(definition,[],[])). fof(to_be_clausified_37, plain, ![A]: (lhs_atom31(A) |A=empty_set), inference(fold_definition,[status(thm)],[t6_boole_0, def_lhs_atom31])). % Start CNF derivation fof(c_0_0, axiom, (![X3]:![X1]:![X2]:(lhs_atom14(X3,X1,X2)|~(![X4]:(in(X4,X3)<=>(in(X4,X2)&in(X4,X1)))))), file('', to_be_clausified_13)). fof(c_0_1, axiom, (![X3]:![X1]:![X2]:(lhs_atom16(X3,X1,X2)|~(![X4]:(in(X4,X3)<=>(in(X4,X2)&~(in(X4,X1))))))), file(' ', to_be_clausified_15)). fof(c_0_2, axiom, (![X3]:![X1]:![X2]:(lhs_atom10(X3,X1,X2)|~(![X4]:(in(X4,X3)<=>(in(X4,X2)|in(X4,X1)))))), file(' ', to_be_clausified_9)). fof(c_0_3, axiom, (![X1]:![X2]:(lhs_atom6(X1,X2)|~(![X3]:(in(X3,X2)<=>in(X3,X1))))), file(' ', to_be_clausified_34)). fof(c_0_4, axiom, (![X3]:![X1]:![X2]:(lhs_atom13(X3,X1,X2)|![X4]:(in(X4,X3)<=>(in(X4,X2)&in(X4,X1))))), file(' ', to_be_clausified_12)). fof(c_0_5, axiom, (![X3]:![X1]:![X2]:(lhs_atom15(X3,X1,X2)|![X4]:(in(X4,X3)<=>(in(X4,X2)&~(in(X4,X1)))))), file(' ', to_be_clausified_14)). fof(c_0_6, axiom, (![X3]:![X1]:![X2]:(lhs_atom9(X3,X1,X2)|![X4]:(in(X4,X3)<=>(in(X4,X2)|in(X4,X1))))), file(' ', to_be_clausified_8)). fof(c_0_7, axiom, (![X1]:![X2]:(lhs_atom12(X1,X2)|~(![X3]:(in(X3,X2)=>in(X3,X1))))), file(' ', to_be_clausified_11)). fof(c_0_8, axiom, (![X1]:![X2]:(lhs_atom6(X1,X2)|~((subset(X2,X1)&subset(X1,X2))))), file(' ', to_be_clausified_5)). fof(c_0_9, axiom, (![X1]:![X2]:(lhs_atom22(X2)|~(empty(set_union2(X1,X2))))), file(' ', to_be_clausified_26)). fof(c_0_10, axiom, (![X1]:![X2]:(lhs_atom22(X2)|~(empty(set_union2(X2,X1))))), file(' ', to_be_clausified_25)). fof(c_0_11, axiom, (![X1]:![X2]:(lhs_atom11(X1,X2)|![X3]:(in(X3,X2)=>in(X3,X1)))), file(' ', to_be_clausified_10)). fof(c_0_12, axiom, (![X1]:![X2]:(lhs_atom19(X1,X2)|~((subset(X2,X1)&X2!=X1)))), file(' ', to_be_clausified_19)). fof(c_0_13, axiom, (![X1]:![X2]:(lhs_atom18(X1,X2)|~(set_intersection2(X2,X1)=empty_set))), file(' ', to_be_clausified_17)). fof(c_0_14, axiom, (![X1]:![X2]:(lhs_atom2(X1,X2)|~(proper_subset(X1,X2)))), file(' ', to_be_clausified_1)). fof(c_0_15, axiom, (![X1]:![X2]:(lhs_atom1(X1,X2)|~(in(X1,X2)))), file(' ', to_be_clausified_0)). fof(c_0_16, axiom, (![X1]:![X2]:(lhs_atom17(X1,X2)|disjoint(X1,X2))), file(' ', to_be_clausified_31)). fof(c_0_17, axiom, (![X1]:![X2]:(lhs_atom2(X1,X2)|(subset(X2,X1)&X2!=X1))), file(' ', to_be_clausified_18)). fof(c_0_18, axiom, (![X1]:![X2]:(lhs_atom17(X1,X2)|set_intersection2(X2,X1)=empty_set)), file(' ', to_be_clausified_16)). fof(c_0_19, axiom, (![X1]:![X2]:(lhs_atom5(X1,X2)|(subset(X2,X1)&subset(X1,X2)))), file(' ', to_be_clausified_4)). fof(c_0_20, axiom, (![X2]:(lhs_atom7(X2)|![X1]:~(in(X1,X2)))), file(' ', to_be_clausified_6)). fof(c_0_21, axiom, (![X2]:(lhs_atom8(X2)|~(![X1]:~(in(X1,X2))))), file(' ', to_be_clausified_7)). fof(c_0_22, axiom, (![X1]:![X2]:(lhs_atom4(X1,X2)|~$true)), file(' ', to_be_clausified_3)). fof(c_0_23, axiom, (![X1]:![X2]:(lhs_atom3(X1,X2)|~$true)), file(' ', to_be_clausified_2)). fof(c_0_24, axiom, (![X2]:(lhs_atom31(X2)|X2=empty_set)), file(' ', to_be_clausified_37)). fof(c_0_25, axiom, (![X2]:(lhs_atom30(X2)|~$true)), file(' ', to_be_clausified_36)). fof(c_0_26, axiom, (![X2]:(lhs_atom29(X2)|~$true)), file(' ', to_be_clausified_35)). fof(c_0_27, axiom, (![X2]:(lhs_atom28(X2)|~$true)), file(' ', to_be_clausified_33)). fof(c_0_28, axiom, (![X2]:(lhs_atom27(X2)|~$true)), file(' ', to_be_clausified_32)). fof(c_0_29, axiom, (![X2]:(lhs_atom26(X2)|~$true)), file(' ', to_be_clausified_30)). fof(c_0_30, axiom, (![X2]:(lhs_atom25(X2)|~$true)), file(' ', to_be_clausified_29)). fof(c_0_31, axiom, (![X2]:(lhs_atom24(X2)|~$true)), file(' ', to_be_clausified_28)). fof(c_0_32, axiom, (![X2]:(lhs_atom23(X2)|~$true)), file(' ', to_be_clausified_27)). fof(c_0_33, axiom, ((lhs_atom21|~$true)), file(' ', to_be_clausified_24)). fof(c_0_34, axiom, ((lhs_atom20|~$true)), file(' ', to_be_clausified_23)). fof(c_0_35, axiom, ((lhs_atom20|~$true)), file(' ', to_be_clausified_22)). fof(c_0_36, axiom, ((lhs_atom20|~$true)), file(' ', to_be_clausified_21)). fof(c_0_37, axiom, ((lhs_atom20|~$true)), file(' ', to_be_clausified_20)). fof(c_0_38, axiom, (![X3]:![X1]:![X2]:(lhs_atom14(X3,X1,X2)|~(![X4]:(in(X4,X3)<=>(in(X4,X2)&in(X4,X1)))))), c_0_0). fof(c_0_39, plain, (![X3]:![X1]:![X2]:(lhs_atom16(X3,X1,X2)|~(![X4]:(in(X4,X3)<=>(in(X4,X2)&~in(X4,X1)))))), inference(fof_simplification,[status(thm)],[c_0_1])). fof(c_0_40, axiom, (![X3]:![X1]:![X2]:(lhs_atom10(X3,X1,X2)|~(![X4]:(in(X4,X3)<=>(in(X4,X2)|in(X4,X1)))))), c_0_2). fof(c_0_41, axiom, (![X1]:![X2]:(lhs_atom6(X1,X2)|~(![X3]:(in(X3,X2)<=>in(X3,X1))))), c_0_3). fof(c_0_42, axiom, (![X3]:![X1]:![X2]:(lhs_atom13(X3,X1,X2)|![X4]:(in(X4,X3)<=>(in(X4,X2)&in(X4,X1))))), c_0_4). fof(c_0_43, plain, (![X3]:![X1]:![X2]:(lhs_atom15(X3,X1,X2)|![X4]:(in(X4,X3)<=>(in(X4,X2)&~in(X4,X1))))), inference(fof_simplification,[status(thm)],[c_0_5])). fof(c_0_44, axiom, (![X3]:![X1]:![X2]:(lhs_atom9(X3,X1,X2)|![X4]:(in(X4,X3)<=>(in(X4,X2)|in(X4,X1))))), c_0_6). fof(c_0_45, axiom, (![X1]:![X2]:(lhs_atom12(X1,X2)|~(![X3]:(in(X3,X2)=>in(X3,X1))))), c_0_7). fof(c_0_46, axiom, (![X1]:![X2]:(lhs_atom6(X1,X2)|~((subset(X2,X1)&subset(X1,X2))))), c_0_8). fof(c_0_47, plain, (![X1]:![X2]:(lhs_atom22(X2)|~empty(set_union2(X1,X2)))), inference(fof_simplification,[status(thm)],[c_0_9])). fof(c_0_48, plain, (![X1]:![X2]:(lhs_atom22(X2)|~empty(set_union2(X2,X1)))), inference(fof_simplification,[status(thm)],[c_0_10])). fof(c_0_49, axiom, (![X1]:![X2]:(lhs_atom11(X1,X2)|![X3]:(in(X3,X2)=>in(X3,X1)))), c_0_11). fof(c_0_50, axiom, (![X1]:![X2]:(lhs_atom19(X1,X2)|~((subset(X2,X1)&X2!=X1)))), c_0_12). fof(c_0_51, plain, (![X1]:![X2]:(lhs_atom18(X1,X2)|set_intersection2(X2,X1)!=empty_set)), inference(fof_simplification,[status(thm)],[c_0_13])). fof(c_0_52, plain, (![X1]:![X2]:(lhs_atom2(X1,X2)|~proper_subset(X1,X2))), inference(fof_simplification,[status(thm)],[c_0_14])). fof(c_0_53, plain, (![X1]:![X2]:(lhs_atom1(X1,X2)|~in(X1,X2))), inference(fof_simplification,[status(thm)],[c_0_15])). fof(c_0_54, axiom, (![X1]:![X2]:(lhs_atom17(X1,X2)|disjoint(X1,X2))), c_0_16). fof(c_0_55, axiom, (![X1]:![X2]:(lhs_atom2(X1,X2)|(subset(X2,X1)&X2!=X1))), c_0_17). fof(c_0_56, axiom, (![X1]:![X2]:(lhs_atom17(X1,X2)|set_intersection2(X2,X1)=empty_set)), c_0_18). fof(c_0_57, axiom, (![X1]:![X2]:(lhs_atom5(X1,X2)|(subset(X2,X1)&subset(X1,X2)))), c_0_19). fof(c_0_58, plain, (![X2]:(lhs_atom7(X2)|![X1]:~in(X1,X2))), inference(fof_simplification,[status(thm)],[c_0_20])). fof(c_0_59, plain, (![X2]:(lhs_atom8(X2)|~(![X1]:~in(X1,X2)))), inference(fof_simplification,[status(thm)],[c_0_21])). fof(c_0_60, plain, (![X1]:![X2]:lhs_atom4(X1,X2)), inference(fof_simplification,[status(thm)],[c_0_22])). fof(c_0_61, plain, (![X1]:![X2]:lhs_atom3(X1,X2)), inference(fof_simplification,[status(thm)],[c_0_23])). fof(c_0_62, axiom, (![X2]:(lhs_atom31(X2)|X2=empty_set)), c_0_24). fof(c_0_63, plain, (![X2]:lhs_atom30(X2)), inference(fof_simplification,[status(thm)],[c_0_25])). fof(c_0_64, plain, (![X2]:lhs_atom29(X2)), inference(fof_simplification,[status(thm)],[c_0_26])). fof(c_0_65, plain, (![X2]:lhs_atom28(X2)), inference(fof_simplification,[status(thm)],[c_0_27])). fof(c_0_66, plain, (![X2]:lhs_atom27(X2)), inference(fof_simplification,[status(thm)],[c_0_28])). fof(c_0_67, plain, (![X2]:lhs_atom26(X2)), inference(fof_simplification,[status(thm)],[c_0_29])). fof(c_0_68, plain, (![X2]:lhs_atom25(X2)), inference(fof_simplification,[status(thm)],[c_0_30])). fof(c_0_69, plain, (![X2]:lhs_atom24(X2)), inference(fof_simplification,[status(thm)],[c_0_31])). fof(c_0_70, plain, (![X2]:lhs_atom23(X2)), inference(fof_simplification,[status(thm)],[c_0_32])). fof(c_0_71, plain, (lhs_atom21), inference(fof_simplification,[status(thm)],[c_0_33])). fof(c_0_72, plain, (lhs_atom20), inference(fof_simplification,[status(thm)],[c_0_34])). fof(c_0_73, plain, (lhs_atom20), inference(fof_simplification,[status(thm)],[c_0_35])). fof(c_0_74, plain, (lhs_atom20), inference(fof_simplification,[status(thm)],[c_0_36])). fof(c_0_75, plain, (lhs_atom20), inference(fof_simplification,[status(thm)],[c_0_37])). fof(c_0_76, plain, (![X5]:![X6]:![X7]:(((~in(esk4_3(X5,X6,X7),X5)|(~in(esk4_3(X5,X6,X7),X7)|~in(esk4_3(X5,X6,X7),X6)))|lhs_atom14(X5,X6,X7))&(((in(esk4_3(X5,X6,X7),X7)|in(esk4_3(X5,X6,X7),X5))|lhs_atom14(X5,X6,X7))&((in(esk4_3(X5,X6,X7),X6)|in(esk4_3(X5,X6,X7),X5))|lhs_atom14(X5,X6,X7))))), inference(distribute,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_38])])])])). fof(c_0_77, plain, (![X5]:![X6]:![X7]:(((~in(esk5_3(X5,X6,X7),X5)|(~in(esk5_3(X5,X6,X7),X7)|in(esk5_3(X5,X6,X7),X6)))|lhs_atom16(X5,X6,X7))&(((in(esk5_3(X5,X6,X7),X7)|in(esk5_3(X5,X6,X7),X5))|lhs_atom16(X5,X6,X7))&((~in(esk5_3(X5,X6,X7),X6)|in(esk5_3(X5,X6,X7),X5))|lhs_atom16(X5,X6,X7))))), inference(distribute,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_39])])])])). fof(c_0_78, plain, (![X5]:![X6]:![X7]:((((~in(esk2_3(X5,X6,X7),X7)|~in(esk2_3(X5,X6,X7),X5))|lhs_atom10(X5,X6,X7))&((~in(esk2_3(X5,X6,X7),X6)|~in(esk2_3(X5,X6,X7),X5))|lhs_atom10(X5,X6,X7)))&((in(esk2_3(X5,X6,X7),X5)|(in(esk2_3(X5,X6,X7),X7)|in(esk2_3(X5,X6,X7),X6)))|lhs_atom10(X5,X6,X7)))), inference(distribute,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_40])])])])). fof(c_0_79, plain, (![X4]:![X5]:(((~in(esk6_2(X4,X5),X5)|~in(esk6_2(X4,X5),X4))|lhs_atom6(X4,X5))&((in(esk6_2(X4,X5),X5)|in(esk6_2(X4,X5),X4))|lhs_atom6(X4,X5)))), inference(distribute,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_41])])])])). fof(c_0_80, plain, (![X5]:![X6]:![X7]:![X8]:![X9]:((((in(X8,X7)|~in(X8,X5))|lhs_atom13(X5,X6,X7))&((in(X8,X6)|~in(X8,X5))|lhs_atom13(X5,X6,X7)))&(((~in(X9,X7)|~in(X9,X6))|in(X9,X5))|lhs_atom13(X5,X6,X7)))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_42])])])])])). fof(c_0_81, plain, (![X5]:![X6]:![X7]:![X8]:![X9]:((((in(X8,X7)|~in(X8,X5))|lhs_atom15(X5,X6,X7))&((~in(X8,X6)|~in(X8,X5))|lhs_atom15(X5,X6,X7)))&(((~in(X9,X7)|in(X9,X6))|in(X9,X5))|lhs_atom15(X5,X6,X7)))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_43])])])])])). fof(c_0_82, plain, (![X5]:![X6]:![X7]:![X8]:![X9]:(((~in(X8,X5)|(in(X8,X7)|in(X8,X6)))|lhs_atom9(X5,X6,X7))&(((~in(X9,X7)|in(X9,X5))|lhs_atom9(X5,X6,X7))&((~in(X9,X6)|in(X9,X5))|lhs_atom9(X5,X6,X7))))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_44])])])])])). fof(c_0_83, plain, (![X4]:![X5]:((in(esk3_2(X4,X5),X5)|lhs_atom12(X4,X5))&(~in(esk3_2(X4,X5),X4)|lhs_atom12(X4,X5)))), inference(distribute,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_45])])])])). fof(c_0_84, plain, (![X3]:![X4]:(lhs_atom6(X3,X4)|(~subset(X4,X3)|~subset(X3,X4)))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_46])])). fof(c_0_85, plain, (![X3]:![X4]:(lhs_atom22(X4)|~empty(set_union2(X3,X4)))), inference(variable_rename,[status(thm)],[c_0_47])). fof(c_0_86, plain, (![X3]:![X4]:(lhs_atom22(X4)|~empty(set_union2(X4,X3)))), inference(variable_rename,[status(thm)],[c_0_48])). fof(c_0_87, plain, (![X4]:![X5]:![X6]:(lhs_atom11(X4,X5)|(~in(X6,X5)|in(X6,X4)))), inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_49])])])). fof(c_0_88, plain, (![X3]:![X4]:(lhs_atom19(X3,X4)|(~subset(X4,X3)|X4=X3))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_50])])). fof(c_0_89, plain, (![X3]:![X4]:(lhs_atom18(X3,X4)|set_intersection2(X4,X3)!=empty_set)), inference(variable_rename,[status(thm)],[c_0_51])). fof(c_0_90, plain, (![X3]:![X4]:(lhs_atom2(X3,X4)|~proper_subset(X3,X4))), inference(variable_rename,[status(thm)],[c_0_52])). fof(c_0_91, plain, (![X3]:![X4]:(lhs_atom1(X3,X4)|~in(X3,X4))), inference(variable_rename,[status(thm)],[c_0_53])). fof(c_0_92, plain, (![X3]:![X4]:(lhs_atom17(X3,X4)|disjoint(X3,X4))), inference(variable_rename,[status(thm)],[c_0_54])). fof(c_0_93, plain, (![X3]:![X4]:((subset(X4,X3)|lhs_atom2(X3,X4))&(X4!=X3|lhs_atom2(X3,X4)))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[c_0_55])])). fof(c_0_94, plain, (![X3]:![X4]:(lhs_atom17(X3,X4)|set_intersection2(X4,X3)=empty_set)), inference(variable_rename,[status(thm)],[c_0_56])). fof(c_0_95, plain, (![X3]:![X4]:((subset(X4,X3)|lhs_atom5(X3,X4))&(subset(X3,X4)|lhs_atom5(X3,X4)))), inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[c_0_57])])). fof(c_0_96, plain, (![X3]:![X4]:(lhs_atom7(X3)|~in(X4,X3))), inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[c_0_58])])). fof(c_0_97, plain, (![X3]:(lhs_atom8(X3)|in(esk1_1(X3),X3))), inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_59])])])). fof(c_0_98, plain, (![X3]:![X4]:lhs_atom4(X3,X4)), inference(variable_rename,[status(thm)],[c_0_60])). fof(c_0_99, plain, (![X3]:![X4]:lhs_atom3(X3,X4)), inference(variable_rename,[status(thm)],[c_0_61])). fof(c_0_100, plain, (![X3]:(lhs_atom31(X3)|X3=empty_set)), inference(variable_rename,[status(thm)],[c_0_62])). fof(c_0_101, plain, (![X3]:lhs_atom30(X3)), inference(variable_rename,[status(thm)],[c_0_63])). fof(c_0_102, plain, (![X3]:lhs_atom29(X3)), inference(variable_rename,[status(thm)],[c_0_64])). fof(c_0_103, plain, (![X3]:lhs_atom28(X3)), inference(variable_rename,[status(thm)],[c_0_65])). fof(c_0_104, plain, (![X3]:lhs_atom27(X3)), inference(variable_rename,[status(thm)],[c_0_66])). fof(c_0_105, plain, (![X3]:lhs_atom26(X3)), inference(variable_rename,[status(thm)],[c_0_67])). fof(c_0_106, plain, (![X3]:lhs_atom25(X3)), inference(variable_rename,[status(thm)],[c_0_68])). fof(c_0_107, plain, (![X3]:lhs_atom24(X3)), inference(variable_rename,[status(thm)],[c_0_69])). fof(c_0_108, plain, (![X3]:lhs_atom23(X3)), inference(variable_rename,[status(thm)],[c_0_70])). fof(c_0_109, plain, (lhs_atom21), c_0_71). fof(c_0_110, plain, (lhs_atom20), c_0_72). fof(c_0_111, plain, (lhs_atom20), c_0_73). fof(c_0_112, plain, (lhs_atom20), c_0_74). fof(c_0_113, plain, (lhs_atom20), c_0_75). cnf(c_0_114,plain,(lhs_atom14(X1,X2,X3)|~in(esk4_3(X1,X2,X3),X2)|~in(esk4_3(X1,X2,X3),X3)|~in(esk4_3(X1,X2,X3),X1)), inference(split_conjunct,[status(thm)],[c_0_76])). cnf(c_0_115,plain,(lhs_atom16(X1,X2,X3)|in(esk5_3(X1,X2,X3),X2)|~in(esk5_3(X1,X2,X3),X3)|~in(esk5_3(X1,X2,X3),X1)), inference(split_conjunct,[status(thm)],[c_0_77])). cnf(c_0_116,plain,(lhs_atom10(X1,X2,X3)|~in(esk2_3(X1,X2,X3),X1)|~in(esk2_3(X1,X2,X3),X3)), inference(split_conjunct,[status(thm)],[c_0_78])). cnf(c_0_117,plain,(lhs_atom10(X1,X2,X3)|~in(esk2_3(X1,X2,X3),X1)|~in(esk2_3(X1,X2,X3),X2)), inference(split_conjunct,[status(thm)],[c_0_78])). cnf(c_0_118,plain,(lhs_atom10(X1,X2,X3)|in(esk2_3(X1,X2,X3),X2)|in(esk2_3(X1,X2,X3),X3)|in(esk2_3(X1,X2,X3),X1)), inference(split_conjunct,[status(thm)],[c_0_78])). cnf(c_0_119,plain,(lhs_atom16(X1,X2,X3)|in(esk5_3(X1,X2,X3),X1)|~in(esk5_3(X1,X2,X3),X2)), inference(split_conjunct,[status(thm)],[c_0_77])). cnf(c_0_120,plain,(lhs_atom16(X1,X2,X3)|in(esk5_3(X1,X2,X3),X1)|in(esk5_3(X1,X2,X3),X3)), inference(split_conjunct,[status(thm)],[c_0_77])). cnf(c_0_121,plain,(lhs_atom14(X1,X2,X3)|in(esk4_3(X1,X2,X3),X1)|in(esk4_3(X1,X2,X3),X3)), inference(split_conjunct,[status(thm)],[c_0_76])). cnf(c_0_122,plain,(lhs_atom14(X1,X2,X3)|in(esk4_3(X1,X2,X3),X1)|in(esk4_3(X1,X2,X3),X2)), inference(split_conjunct,[status(thm)],[c_0_76])). cnf(c_0_123,plain,(lhs_atom6(X1,X2)|~in(esk6_2(X1,X2),X1)|~in(esk6_2(X1,X2),X2)), inference(split_conjunct,[status(thm)],[c_0_79])). cnf(c_0_124,plain,(lhs_atom13(X1,X2,X3)|in(X4,X1)|~in(X4,X2)|~in(X4,X3)), inference(split_conjunct,[status(thm)],[c_0_80])). cnf(c_0_125,plain,(lhs_atom15(X1,X2,X3)|in(X4,X1)|in(X4,X2)|~in(X4,X3)), inference(split_conjunct,[status(thm)],[c_0_81])). cnf(c_0_126,plain,(lhs_atom9(X1,X2,X3)|in(X4,X2)|in(X4,X3)|~in(X4,X1)), inference(split_conjunct,[status(thm)],[c_0_82])). cnf(c_0_127,plain,(lhs_atom15(X1,X2,X3)|~in(X4,X1)|~in(X4,X2)), inference(split_conjunct,[status(thm)],[c_0_81])). cnf(c_0_128,plain,(lhs_atom6(X1,X2)|in(esk6_2(X1,X2),X1)|in(esk6_2(X1,X2),X2)), inference(split_conjunct,[status(thm)],[c_0_79])). cnf(c_0_129,plain,(lhs_atom15(X1,X2,X3)|in(X4,X3)|~in(X4,X1)), inference(split_conjunct,[status(thm)],[c_0_81])). cnf(c_0_130,plain,(lhs_atom13(X1,X2,X3)|in(X4,X3)|~in(X4,X1)), inference(split_conjunct,[status(thm)],[c_0_80])). cnf(c_0_131,plain,(lhs_atom13(X1,X2,X3)|in(X4,X2)|~in(X4,X1)), inference(split_conjunct,[status(thm)],[c_0_80])). cnf(c_0_132,plain,(lhs_atom9(X1,X2,X3)|in(X4,X1)|~in(X4,X3)), inference(split_conjunct,[status(thm)],[c_0_82])). cnf(c_0_133,plain,(lhs_atom9(X1,X2,X3)|in(X4,X1)|~in(X4,X2)), inference(split_conjunct,[status(thm)],[c_0_82])). cnf(c_0_134,plain,(lhs_atom12(X1,X2)|~in(esk3_2(X1,X2),X1)), inference(split_conjunct,[status(thm)],[c_0_83])). cnf(c_0_135,plain,(lhs_atom6(X1,X2)|~subset(X1,X2)|~subset(X2,X1)), inference(split_conjunct,[status(thm)],[c_0_84])). cnf(c_0_136,plain,(lhs_atom12(X1,X2)|in(esk3_2(X1,X2),X2)), inference(split_conjunct,[status(thm)],[c_0_83])). cnf(c_0_137,plain,(lhs_atom22(X2)|~empty(set_union2(X1,X2))), inference(split_conjunct,[status(thm)],[c_0_85])). cnf(c_0_138,plain,(lhs_atom22(X1)|~empty(set_union2(X1,X2))), inference(split_conjunct,[status(thm)],[c_0_86])). cnf(c_0_139,plain,(in(X1,X2)|lhs_atom11(X2,X3)|~in(X1,X3)), inference(split_conjunct,[status(thm)],[c_0_87])). cnf(c_0_140,plain,(X1=X2|lhs_atom19(X2,X1)|~subset(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_88])). cnf(c_0_141,plain,(lhs_atom18(X2,X1)|set_intersection2(X1,X2)!=empty_set), inference(split_conjunct,[status(thm)],[c_0_89])). cnf(c_0_142,plain,(lhs_atom2(X1,X2)|~proper_subset(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_90])). cnf(c_0_143,plain,(lhs_atom1(X1,X2)|~in(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_91])). cnf(c_0_144,plain,(disjoint(X1,X2)|lhs_atom17(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_92])). cnf(c_0_145,plain,(lhs_atom2(X1,X2)|subset(X2,X1)), inference(split_conjunct,[status(thm)],[c_0_93])). cnf(c_0_146,plain,(set_intersection2(X1,X2)=empty_set|lhs_atom17(X2,X1)), inference(split_conjunct,[status(thm)],[c_0_94])). cnf(c_0_147,plain,(lhs_atom5(X1,X2)|subset(X2,X1)), inference(split_conjunct,[status(thm)],[c_0_95])). cnf(c_0_148,plain,(lhs_atom5(X1,X2)|subset(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_95])). cnf(c_0_149,plain,(lhs_atom7(X2)|~in(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_96])). cnf(c_0_150,plain,(in(esk1_1(X1),X1)|lhs_atom8(X1)), inference(split_conjunct,[status(thm)],[c_0_97])). cnf(c_0_151,plain,(lhs_atom2(X1,X2)|X2!=X1), inference(split_conjunct,[status(thm)],[c_0_93])). cnf(c_0_152,plain,(lhs_atom4(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_98])). cnf(c_0_153,plain,(lhs_atom3(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_99])). cnf(c_0_154,plain,(X1=empty_set|lhs_atom31(X1)), inference(split_conjunct,[status(thm)],[c_0_100])). cnf(c_0_155,plain,(lhs_atom30(X1)), inference(split_conjunct,[status(thm)],[c_0_101])). cnf(c_0_156,plain,(lhs_atom29(X1)), inference(split_conjunct,[status(thm)],[c_0_102])). cnf(c_0_157,plain,(lhs_atom28(X1)), inference(split_conjunct,[status(thm)],[c_0_103])). cnf(c_0_158,plain,(lhs_atom27(X1)), inference(split_conjunct,[status(thm)],[c_0_104])). cnf(c_0_159,plain,(lhs_atom26(X1)), inference(split_conjunct,[status(thm)],[c_0_105])). cnf(c_0_160,plain,(lhs_atom25(X1)), inference(split_conjunct,[status(thm)],[c_0_106])). cnf(c_0_161,plain,(lhs_atom24(X1)), inference(split_conjunct,[status(thm)],[c_0_107])). cnf(c_0_162,plain,(lhs_atom23(X1)), inference(split_conjunct,[status(thm)],[c_0_108])). cnf(c_0_163,plain,(lhs_atom21), inference(split_conjunct,[status(thm)],[c_0_109])). cnf(c_0_164,plain,(lhs_atom20), inference(split_conjunct,[status(thm)],[c_0_110])). cnf(c_0_165,plain,(lhs_atom20), inference(split_conjunct,[status(thm)],[c_0_111])). cnf(c_0_166,plain,(lhs_atom20), inference(split_conjunct,[status(thm)],[c_0_112])). cnf(c_0_167,plain,(lhs_atom20), inference(split_conjunct,[status(thm)],[c_0_113])). cnf(c_0_168,plain,(lhs_atom14(X1,X2,X3)|~in(esk4_3(X1,X2,X3),X2)|~in(esk4_3(X1,X2,X3),X3)|~in(esk4_3(X1,X2,X3),X1)), c_0_114, ['final']). cnf(c_0_169,plain,(lhs_atom16(X1,X2,X3)|in(esk5_3(X1,X2,X3),X2)|~in(esk5_3(X1,X2,X3),X3)|~in(esk5_3(X1,X2,X3),X1)), c_0_115, ['final']). cnf(c_0_170,plain,(lhs_atom10(X1,X2,X3)|~in(esk2_3(X1,X2,X3),X1)|~in(esk2_3(X1,X2,X3),X3)), c_0_116, ['final']). cnf(c_0_171,plain,(lhs_atom10(X1,X2,X3)|~in(esk2_3(X1,X2,X3),X1)|~in(esk2_3(X1,X2,X3),X2)), c_0_117, ['final']). cnf(c_0_172,plain,(lhs_atom10(X1,X2,X3)|in(esk2_3(X1,X2,X3),X2)|in(esk2_3(X1,X2,X3),X3)|in(esk2_3(X1,X2,X3),X1)), c_0_118, ['final']). cnf(c_0_173,plain,(lhs_atom16(X1,X2,X3)|in(esk5_3(X1,X2,X3),X1)|~in(esk5_3(X1,X2,X3),X2)), c_0_119, ['final']). cnf(c_0_174,plain,(lhs_atom16(X1,X2,X3)|in(esk5_3(X1,X2,X3),X1)|in(esk5_3(X1,X2,X3),X3)), c_0_120, ['final']). cnf(c_0_175,plain,(lhs_atom14(X1,X2,X3)|in(esk4_3(X1,X2,X3),X1)|in(esk4_3(X1,X2,X3),X3)), c_0_121, ['final']). cnf(c_0_176,plain,(lhs_atom14(X1,X2,X3)|in(esk4_3(X1,X2,X3),X1)|in(esk4_3(X1,X2,X3),X2)), c_0_122, ['final']). cnf(c_0_177,plain,(lhs_atom6(X1,X2)|~in(esk6_2(X1,X2),X1)|~in(esk6_2(X1,X2),X2)), c_0_123, ['final']). cnf(c_0_178,plain,(lhs_atom13(X1,X2,X3)|in(X4,X1)|~in(X4,X2)|~in(X4,X3)), c_0_124, ['final']). cnf(c_0_179,plain,(lhs_atom15(X1,X2,X3)|in(X4,X1)|in(X4,X2)|~in(X4,X3)), c_0_125, ['final']). cnf(c_0_180,plain,(lhs_atom9(X1,X2,X3)|in(X4,X2)|in(X4,X3)|~in(X4,X1)), c_0_126, ['final']). cnf(c_0_181,plain,(lhs_atom15(X1,X2,X3)|~in(X4,X1)|~in(X4,X2)), c_0_127, ['final']). cnf(c_0_182,plain,(lhs_atom6(X1,X2)|in(esk6_2(X1,X2),X1)|in(esk6_2(X1,X2),X2)), c_0_128, ['final']). cnf(c_0_183,plain,(lhs_atom15(X1,X2,X3)|in(X4,X3)|~in(X4,X1)), c_0_129, ['final']). cnf(c_0_184,plain,(lhs_atom13(X1,X2,X3)|in(X4,X3)|~in(X4,X1)), c_0_130, ['final']). cnf(c_0_185,plain,(lhs_atom13(X1,X2,X3)|in(X4,X2)|~in(X4,X1)), c_0_131, ['final']). cnf(c_0_186,plain,(lhs_atom9(X1,X2,X3)|in(X4,X1)|~in(X4,X3)), c_0_132, ['final']). cnf(c_0_187,plain,(lhs_atom9(X1,X2,X3)|in(X4,X1)|~in(X4,X2)), c_0_133, ['final']). cnf(c_0_188,plain,(lhs_atom12(X1,X2)|~in(esk3_2(X1,X2),X1)), c_0_134, ['final']). cnf(c_0_189,plain,(lhs_atom6(X1,X2)|~subset(X1,X2)|~subset(X2,X1)), c_0_135, ['final']). cnf(c_0_190,plain,(lhs_atom12(X1,X2)|in(esk3_2(X1,X2),X2)), c_0_136, ['final']). cnf(c_0_191,plain,(lhs_atom22(X2)|~empty(set_union2(X1,X2))), c_0_137, ['final']). cnf(c_0_192,plain,(lhs_atom22(X1)|~empty(set_union2(X1,X2))), c_0_138, ['final']). cnf(c_0_193,plain,(in(X1,X2)|lhs_atom11(X2,X3)|~in(X1,X3)), c_0_139, ['final']). cnf(c_0_194,plain,(X1=X2|lhs_atom19(X2,X1)|~subset(X1,X2)), c_0_140, ['final']). cnf(c_0_195,plain,(lhs_atom18(X2,X1)|set_intersection2(X1,X2)!=empty_set), c_0_141, ['final']). cnf(c_0_196,plain,(lhs_atom2(X1,X2)|~proper_subset(X1,X2)), c_0_142, ['final']). cnf(c_0_197,plain,(lhs_atom1(X1,X2)|~in(X1,X2)), c_0_143, ['final']). cnf(c_0_198,plain,(disjoint(X1,X2)|lhs_atom17(X1,X2)), c_0_144, ['final']). cnf(c_0_199,plain,(lhs_atom2(X1,X2)|subset(X2,X1)), c_0_145, ['final']). cnf(c_0_200,plain,(set_intersection2(X1,X2)=empty_set|lhs_atom17(X2,X1)), c_0_146, ['final']). cnf(c_0_201,plain,(lhs_atom5(X1,X2)|subset(X2,X1)), c_0_147, ['final']). cnf(c_0_202,plain,(lhs_atom5(X1,X2)|subset(X1,X2)), c_0_148, ['final']). cnf(c_0_203,plain,(lhs_atom7(X2)|~in(X1,X2)), c_0_149, ['final']). cnf(c_0_204,plain,(in(esk1_1(X1),X1)|lhs_atom8(X1)), c_0_150, ['final']). cnf(c_0_205,plain,(lhs_atom2(X1,X2)|X2!=X1), c_0_151, ['final']). cnf(c_0_206,plain,(lhs_atom4(X1,X2)), c_0_152, ['final']). cnf(c_0_207,plain,(lhs_atom3(X1,X2)), c_0_153, ['final']). cnf(c_0_208,plain,(X1=empty_set|lhs_atom31(X1)), c_0_154, ['final']). cnf(c_0_209,plain,(lhs_atom30(X1)), c_0_155, ['final']). cnf(c_0_210,plain,(lhs_atom29(X1)), c_0_156, ['final']). cnf(c_0_211,plain,(lhs_atom28(X1)), c_0_157, ['final']). cnf(c_0_212,plain,(lhs_atom27(X1)), c_0_158, ['final']). cnf(c_0_213,plain,(lhs_atom26(X1)), c_0_159, ['final']). cnf(c_0_214,plain,(lhs_atom25(X1)), c_0_160, ['final']). cnf(c_0_215,plain,(lhs_atom24(X1)), c_0_161, ['final']). cnf(c_0_216,plain,(lhs_atom23(X1)), c_0_162, ['final']). cnf(c_0_217,plain,(lhs_atom21), c_0_163, ['final']). cnf(c_0_218,plain,(lhs_atom20), c_0_164, ['final']). cnf(c_0_219,plain,(lhs_atom20), c_0_165, ['final']). cnf(c_0_220,plain,(lhs_atom20), c_0_166, ['final']). cnf(c_0_221,plain,(lhs_atom20), c_0_167, ['final']). % End CNF derivation cnf(c_0_168_0,axiom,X1=set_intersection2(X3,X2)|~in(sk1_esk4_3(X1,X2,X3),X2)|~in(sk1_esk4_3(X1,X2,X3),X3)|~in(sk1_esk4_3(X1,X2,X3),X1),inference(unfold_definition, [status(thm)], [c_0_168, def_lhs_atom14])). cnf(c_0_169_0,axiom,X1=set_difference(X3,X2)|in(sk1_esk5_3(X1,X2,X3),X2)|~in(sk1_esk5_3(X1,X2,X3),X3)|~in(sk1_esk5_3(X1,X2,X3),X1),inference(unfold_definition, [status(thm)], [c_0_169, def_lhs_atom16])). cnf(c_0_170_0,axiom,X1=set_union2(X3,X2)|~in(sk1_esk2_3(X1,X2,X3),X1)|~in(sk1_esk2_3(X1,X2,X3),X3),inference(unfold_definition, [status(thm)], [c_0_170, def_lhs_atom10])). cnf(c_0_171_0,axiom,X1=set_union2(X3,X2)|~in(sk1_esk2_3(X1,X2,X3),X1)|~in(sk1_esk2_3(X1,X2,X3),X2),inference(unfold_definition, [status(thm)], [c_0_171, def_lhs_atom10])). cnf(c_0_172_0,axiom,X1=set_union2(X3,X2)|in(sk1_esk2_3(X1,X2,X3),X2)|in(sk1_esk2_3(X1,X2,X3),X3)|in(sk1_esk2_3(X1,X2,X3),X1),inference(unfold_definition, [status(thm)], [c_0_172, def_lhs_atom10])). cnf(c_0_173_0,axiom,X1=set_difference(X3,X2)|in(sk1_esk5_3(X1,X2,X3),X1)|~in(sk1_esk5_3(X1,X2,X3),X2),inference(unfold_definition, [status(thm)], [c_0_173, def_lhs_atom16])). cnf(c_0_174_0,axiom,X1=set_difference(X3,X2)|in(sk1_esk5_3(X1,X2,X3),X1)|in(sk1_esk5_3(X1,X2,X3),X3),inference(unfold_definition, [status(thm)], [c_0_174, def_lhs_atom16])). cnf(c_0_175_0,axiom,X1=set_intersection2(X3,X2)|in(sk1_esk4_3(X1,X2,X3),X1)|in(sk1_esk4_3(X1,X2,X3),X3),inference(unfold_definition, [status(thm)], [c_0_175, def_lhs_atom14])). cnf(c_0_176_0,axiom,X1=set_intersection2(X3,X2)|in(sk1_esk4_3(X1,X2,X3),X1)|in(sk1_esk4_3(X1,X2,X3),X2),inference(unfold_definition, [status(thm)], [c_0_176, def_lhs_atom14])). cnf(c_0_177_0,axiom,X2=X1|~in(sk1_esk6_2(X1,X2),X1)|~in(sk1_esk6_2(X1,X2),X2),inference(unfold_definition, [status(thm)], [c_0_177, def_lhs_atom6])). cnf(c_0_178_0,axiom,~X1=set_intersection2(X3,X2)|in(X4,X1)|~in(X4,X2)|~in(X4,X3),inference(unfold_definition, [status(thm)], [c_0_178, def_lhs_atom13])). cnf(c_0_179_0,axiom,~X1=set_difference(X3,X2)|in(X4,X1)|in(X4,X2)|~in(X4,X3),inference(unfold_definition, [status(thm)], [c_0_179, def_lhs_atom15])). cnf(c_0_180_0,axiom,~X1=set_union2(X3,X2)|in(X4,X2)|in(X4,X3)|~in(X4,X1),inference(unfold_definition, [status(thm)], [c_0_180, def_lhs_atom9])). cnf(c_0_181_0,axiom,~X1=set_difference(X3,X2)|~in(X4,X1)|~in(X4,X2),inference(unfold_definition, [status(thm)], [c_0_181, def_lhs_atom15])). cnf(c_0_182_0,axiom,X2=X1|in(sk1_esk6_2(X1,X2),X1)|in(sk1_esk6_2(X1,X2),X2),inference(unfold_definition, [status(thm)], [c_0_182, def_lhs_atom6])). cnf(c_0_183_0,axiom,~X1=set_difference(X3,X2)|in(X4,X3)|~in(X4,X1),inference(unfold_definition, [status(thm)], [c_0_183, def_lhs_atom15])). cnf(c_0_184_0,axiom,~X1=set_intersection2(X3,X2)|in(X4,X3)|~in(X4,X1),inference(unfold_definition, [status(thm)], [c_0_184, def_lhs_atom13])). cnf(c_0_185_0,axiom,~X1=set_intersection2(X3,X2)|in(X4,X2)|~in(X4,X1),inference(unfold_definition, [status(thm)], [c_0_185, def_lhs_atom13])). cnf(c_0_186_0,axiom,~X1=set_union2(X3,X2)|in(X4,X1)|~in(X4,X3),inference(unfold_definition, [status(thm)], [c_0_186, def_lhs_atom9])). cnf(c_0_187_0,axiom,~X1=set_union2(X3,X2)|in(X4,X1)|~in(X4,X2),inference(unfold_definition, [status(thm)], [c_0_187, def_lhs_atom9])). cnf(c_0_188_0,axiom,subset(X2,X1)|~in(sk1_esk3_2(X1,X2),X1),inference(unfold_definition, [status(thm)], [c_0_188, def_lhs_atom12])). cnf(c_0_189_0,axiom,X2=X1|~subset(X1,X2)|~subset(X2,X1),inference(unfold_definition, [status(thm)], [c_0_189, def_lhs_atom6])). cnf(c_0_190_0,axiom,subset(X2,X1)|in(sk1_esk3_2(X1,X2),X2),inference(unfold_definition, [status(thm)], [c_0_190, def_lhs_atom12])). cnf(c_0_191_0,axiom,empty(X2)|~empty(set_union2(X1,X2)),inference(unfold_definition, [status(thm)], [c_0_191, def_lhs_atom22])). cnf(c_0_192_0,axiom,empty(X1)|~empty(set_union2(X1,X2)),inference(unfold_definition, [status(thm)], [c_0_192, def_lhs_atom22])). cnf(c_0_193_0,axiom,~subset(X3,X2)|in(X1,X2)|~in(X1,X3),inference(unfold_definition, [status(thm)], [c_0_193, def_lhs_atom11])). cnf(c_0_194_0,axiom,proper_subset(X1,X2)|X1=X2|~subset(X1,X2),inference(unfold_definition, [status(thm)], [c_0_194, def_lhs_atom19])). cnf(c_0_195_0,axiom,disjoint(X1,X2)|set_intersection2(X1,X2)!=empty_set,inference(unfold_definition, [status(thm)], [c_0_195, def_lhs_atom18])). cnf(c_0_196_0,axiom,~proper_subset(X2,X1)|~proper_subset(X1,X2),inference(unfold_definition, [status(thm)], [c_0_196, def_lhs_atom2])). cnf(c_0_197_0,axiom,~in(X2,X1)|~in(X1,X2),inference(unfold_definition, [status(thm)], [c_0_197, def_lhs_atom1])). cnf(c_0_198_0,axiom,~disjoint(X2,X1)|disjoint(X1,X2),inference(unfold_definition, [status(thm)], [c_0_198, def_lhs_atom17])). cnf(c_0_199_0,axiom,~proper_subset(X2,X1)|subset(X2,X1),inference(unfold_definition, [status(thm)], [c_0_199, def_lhs_atom2])). cnf(c_0_200_0,axiom,~disjoint(X1,X2)|set_intersection2(X1,X2)=empty_set,inference(unfold_definition, [status(thm)], [c_0_200, def_lhs_atom17])). cnf(c_0_201_0,axiom,~X2=X1|subset(X2,X1),inference(unfold_definition, [status(thm)], [c_0_201, def_lhs_atom5])). cnf(c_0_202_0,axiom,~X2=X1|subset(X1,X2),inference(unfold_definition, [status(thm)], [c_0_202, def_lhs_atom5])). cnf(c_0_203_0,axiom,~X2=empty_set|~in(X1,X2),inference(unfold_definition, [status(thm)], [c_0_203, def_lhs_atom7])). cnf(c_0_204_0,axiom,X1=empty_set|in(sk1_esk1_1(X1),X1),inference(unfold_definition, [status(thm)], [c_0_204, def_lhs_atom8])). cnf(c_0_205_0,axiom,~proper_subset(X2,X1)|X2!=X1,inference(unfold_definition, [status(thm)], [c_0_205, def_lhs_atom2])). cnf(c_0_208_0,axiom,~empty(X1)|X1=empty_set,inference(unfold_definition, [status(thm)], [c_0_208, def_lhs_atom31])). cnf(c_0_206_0,axiom,set_intersection2(X2,X1)=set_intersection2(X1,X2),inference(unfold_definition, [status(thm)], [c_0_206, def_lhs_atom4])). cnf(c_0_207_0,axiom,set_union2(X2,X1)=set_union2(X1,X2),inference(unfold_definition, [status(thm)], [c_0_207, def_lhs_atom3])). cnf(c_0_209_0,axiom,set_difference(empty_set,X1)=empty_set,inference(unfold_definition, [status(thm)], [c_0_209, def_lhs_atom30])). cnf(c_0_210_0,axiom,set_difference(X1,empty_set)=X1,inference(unfold_definition, [status(thm)], [c_0_210, def_lhs_atom29])). cnf(c_0_211_0,axiom,set_intersection2(X1,empty_set)=empty_set,inference(unfold_definition, [status(thm)], [c_0_211, def_lhs_atom28])). cnf(c_0_212_0,axiom,set_union2(X1,empty_set)=X1,inference(unfold_definition, [status(thm)], [c_0_212, def_lhs_atom27])). cnf(c_0_213_0,axiom,subset(X1,X1),inference(unfold_definition, [status(thm)], [c_0_213, def_lhs_atom26])). cnf(c_0_214_0,axiom,~proper_subset(X1,X1),inference(unfold_definition, [status(thm)], [c_0_214, def_lhs_atom25])). cnf(c_0_215_0,axiom,set_intersection2(X1,X1)=X1,inference(unfold_definition, [status(thm)], [c_0_215, def_lhs_atom24])). cnf(c_0_216_0,axiom,set_union2(X1,X1)=X1,inference(unfold_definition, [status(thm)], [c_0_216, def_lhs_atom23])). cnf(c_0_217_0,axiom,empty(empty_set),inference(unfold_definition, [status(thm)], [c_0_217, def_lhs_atom21])). cnf(c_0_218_0,axiom,$true,inference(unfold_definition, [status(thm)], [c_0_218, def_lhs_atom20])). cnf(c_0_219_0,axiom,$true,inference(unfold_definition, [status(thm)], [c_0_219, def_lhs_atom20])). cnf(c_0_220_0,axiom,$true,inference(unfold_definition, [status(thm)], [c_0_220, def_lhs_atom20])). cnf(c_0_221_0,axiom,$true,inference(unfold_definition, [status(thm)], [c_0_221, def_lhs_atom20])). % Orienting (remaining) axiom formulas using strategy ClausalAll % CNF of (remaining) axioms: % Start CNF derivation fof(c_0_0, axiom, (![X1]:![X2]:~((in(X1,X2)&empty(X2)))), file(' ', t7_boole)). fof(c_0_1, axiom, (![X1]:![X2]:~((empty(X1)&(X1!=X2&empty(X2))))), file(' ', t8_boole)). fof(c_0_2, axiom, (?[X1]:~(empty(X1))), file(' ', rc2_xboole_0)). fof(c_0_3, axiom, (?[X1]:empty(X1)), file(' ', rc1_xboole_0)). fof(c_0_4, axiom, (![X1]:![X2]:~((in(X1,X2)&empty(X2)))), c_0_0). fof(c_0_5, axiom, (![X1]:![X2]:~((empty(X1)&(X1!=X2&empty(X2))))), c_0_1). fof(c_0_6, plain, (?[X1]:~empty(X1)), inference(fof_simplification,[status(thm)],[c_0_2])). fof(c_0_7, axiom, (?[X1]:empty(X1)), c_0_3). fof(c_0_8, plain, (![X3]:![X4]:(~in(X3,X4)|~empty(X4))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_4])])). fof(c_0_9, plain, (![X3]:![X4]:(~empty(X3)|(X3=X4|~empty(X4)))), inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_5])])])])). fof(c_0_10, plain, (~empty(esk1_0)), inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[c_0_6])])). fof(c_0_11, plain, (empty(esk2_0)), inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[c_0_7])])). cnf(c_0_12,plain,(~empty(X1)|~in(X2,X1)), inference(split_conjunct,[status(thm)],[c_0_8])). cnf(c_0_13,plain,(X2=X1|~empty(X1)|~empty(X2)), inference(split_conjunct,[status(thm)],[c_0_9])). cnf(c_0_14,plain,(~empty(esk1_0)), inference(split_conjunct,[status(thm)],[c_0_10])). cnf(c_0_15,plain,(empty(esk2_0)), inference(split_conjunct,[status(thm)],[c_0_11])). cnf(c_0_16,plain,(~empty(X1)|~in(X2,X1)), c_0_12, ['final']). cnf(c_0_17,plain,(X2=X1|~empty(X1)|~empty(X2)), c_0_13, ['final']). cnf(c_0_18,plain,(~empty(esk1_0)), c_0_14, ['final']). cnf(c_0_19,plain,(empty(esk2_0)), c_0_15, ['final']). % End CNF derivation % Generating one_way clauses for all literals in the CNF. cnf(c_0_16_0, axiom, (~empty(X1) |~in(X2,X1)), inference(literals_permutation, [status(thm)], [c_0_16])). cnf(c_0_16_1, axiom, (~in(X2,X1) |~empty(X1)), inference(literals_permutation, [status(thm)], [c_0_16])). cnf(c_0_17_0, axiom, (X2=X1 |(~empty(X1) |~empty(X2))), inference(literals_permutation, [status(thm)], [c_0_17])). cnf(c_0_17_1, axiom, ((~empty(X1) |X2=X1) |~empty(X2)), inference(literals_permutation, [status(thm)], [c_0_17])). cnf(c_0_17_2, axiom, (~empty(X2) |(~empty(X1) |X2=X1)), inference(literals_permutation, [status(thm)], [c_0_17])). cnf(c_0_18_0, axiom, ~empty(sk2_esk1_0), inference(literals_permutation, [status(thm)], [c_0_18])). cnf(c_0_19_0, axiom, empty(sk2_esk2_0), inference(literals_permutation, [status(thm)], [c_0_19])). % CNF of non-axioms % Start CNF derivation fof(c_0_0, lemma, (![X1]:![X2]:![X3]:(subset(X1,X2)=>subset(set_difference(X1,X3),set_difference(X2,X3)))), file(' ', t33_xboole_1)). fof(c_0_1, lemma, (![X1]:![X2]:![X3]:(subset(X1,X2)=>subset(set_intersection2(X1,X3),set_intersection2(X2,X3)))), file(' ', t26_xboole_1)). fof(c_0_2, lemma, (![X1]:![X2]:(~((~(disjoint(X1,X2))&![X3]:~(in(X3,set_intersection2(X1,X2)))))&~((?[X3]:in(X3,set_intersection2(X1,X2))&disjoint(X1,X2))))), file(' ', t4_xboole_0)). fof(c_0_3, lemma, (![X1]:![X2]:![X3]:((subset(X1,X2)&subset(X3,X2))=>subset(set_union2(X1,X3),X2))), file(' ', t8_xboole_1)). fof(c_0_4, lemma, (![X1]:![X2]:![X3]:((subset(X1,X2)&subset(X1,X3))=>subset(X1,set_intersection2(X2,X3)))), file(' ', t19_xboole_1)). fof(c_0_5, lemma, (![X1]:![X2]:(~((~(disjoint(X1,X2))&![X3]:~((in(X3,X1)&in(X3,X2)))))&~((?[X3]:(in(X3,X1)&in(X3,X2))&disjoint(X1,X2))))), file(' ', t3_xboole_0)). fof(c_0_6, lemma, (![X1]:![X2]:(subset(X1,X2)=>X2=set_union2(X1,set_difference(X2,X1)))), file(' ', t45_xboole_1)). fof(c_0_7, lemma, (![X1]:![X2]:![X3]:((subset(X1,X2)&subset(X2,X3))=>subset(X1,X3))), file(' ', t1_xboole_1)). fof(c_0_8, lemma, (![X1]:![X2]:set_difference(X1,set_difference(X1,X2))=set_intersection2(X1,X2)), file(' ', t48_xboole_1)). fof(c_0_9, lemma, (![X1]:![X2]:set_difference(set_union2(X1,X2),X2)=set_difference(X1,X2)), file(' ', t40_xboole_1)). fof(c_0_10, lemma, (![X1]:![X2]:set_union2(X1,set_difference(X2,X1))=set_union2(X1,X2)), file(' ', t39_xboole_1)). fof(c_0_11, lemma, (![X1]:![X2]:~((subset(X1,X2)&proper_subset(X2,X1)))), file(' ', t60_xboole_1)). fof(c_0_12, lemma, (![X1]:![X2]:subset(X1,set_union2(X1,X2))), file(' ', t7_xboole_1)). fof(c_0_13, lemma, (![X1]:![X2]:subset(set_difference(X1,X2),X1)), file(' ', t36_xboole_1)). fof(c_0_14, lemma, (![X1]:![X2]:subset(set_intersection2(X1,X2),X1)), file(' ', t17_xboole_1)). fof(c_0_15, lemma, (![X1]:![X2]:(subset(X1,X2)=>set_intersection2(X1,X2)=X1)), file(' ', t28_xboole_1)). fof(c_0_16, lemma, (![X1]:![X2]:(subset(X1,X2)=>set_union2(X1,X2)=X2)), file(' ', t12_xboole_1)). fof(c_0_17, lemma, (![X1]:![X2]:(set_difference(X1,X2)=empty_set<=>subset(X1,X2))), file(' ', t37_xboole_1)). fof(c_0_18, lemma, (![X1]:![X2]:(set_difference(X1,X2)=empty_set<=>subset(X1,X2))), file(' ', l32_xboole_1)). fof(c_0_19, lemma, (![X1]:(subset(X1,empty_set)=>X1=empty_set)), file(' ', t3_xboole_1)). fof(c_0_20, conjecture, (![X1]:![X2]:![X3]:((subset(X1,X2)&disjoint(X2,X3))=>disjoint(X1,X3))), file(' ', t63_xboole_1)). fof(c_0_21, lemma, (![X1]:subset(empty_set,X1)), file(' ', t2_xboole_1)). fof(c_0_22, lemma, (![X1]:![X2]:![X3]:(subset(X1,X2)=>subset(set_difference(X1,X3),set_difference(X2,X3)))), c_0_0). fof(c_0_23, lemma, (![X1]:![X2]:![X3]:(subset(X1,X2)=>subset(set_intersection2(X1,X3),set_intersection2(X2,X3)))), c_0_1). fof(c_0_24, lemma, (![X1]:![X2]:(~((~disjoint(X1,X2)&![X3]:~in(X3,set_intersection2(X1,X2))))&~((?[X3]:in(X3,set_intersection2(X1,X2))&disjoint(X1,X2))))), inference(fof_simplification,[status(thm)],[c_0_2])). fof(c_0_25, lemma, (![X1]:![X2]:![X3]:((subset(X1,X2)&subset(X3,X2))=>subset(set_union2(X1,X3),X2))), c_0_3). fof(c_0_26, lemma, (![X1]:![X2]:![X3]:((subset(X1,X2)&subset(X1,X3))=>subset(X1,set_intersection2(X2,X3)))), c_0_4). fof(c_0_27, lemma, (![X1]:![X2]:(~((~disjoint(X1,X2)&![X3]:~((in(X3,X1)&in(X3,X2)))))&~((?[X3]:(in(X3,X1)&in(X3,X2))&disjoint(X1,X2))))), inference(fof_simplification,[status(thm)],[c_0_5])). fof(c_0_28, lemma, (![X1]:![X2]:(subset(X1,X2)=>X2=set_union2(X1,set_difference(X2,X1)))), c_0_6). fof(c_0_29, lemma, (![X1]:![X2]:![X3]:((subset(X1,X2)&subset(X2,X3))=>subset(X1,X3))), c_0_7). fof(c_0_30, lemma, (![X1]:![X2]:set_difference(X1,set_difference(X1,X2))=set_intersection2(X1,X2)), c_0_8). fof(c_0_31, lemma, (![X1]:![X2]:set_difference(set_union2(X1,X2),X2)=set_difference(X1,X2)), c_0_9). fof(c_0_32, lemma, (![X1]:![X2]:set_union2(X1,set_difference(X2,X1))=set_union2(X1,X2)), c_0_10). fof(c_0_33, lemma, (![X1]:![X2]:~((subset(X1,X2)&proper_subset(X2,X1)))), c_0_11). fof(c_0_34, lemma, (![X1]:![X2]:subset(X1,set_union2(X1,X2))), c_0_12). fof(c_0_35, lemma, (![X1]:![X2]:subset(set_difference(X1,X2),X1)), c_0_13). fof(c_0_36, lemma, (![X1]:![X2]:subset(set_intersection2(X1,X2),X1)), c_0_14). fof(c_0_37, lemma, (![X1]:![X2]:(subset(X1,X2)=>set_intersection2(X1,X2)=X1)), c_0_15). fof(c_0_38, lemma, (![X1]:![X2]:(subset(X1,X2)=>set_union2(X1,X2)=X2)), c_0_16). fof(c_0_39, lemma, (![X1]:![X2]:(set_difference(X1,X2)=empty_set<=>subset(X1,X2))), c_0_17). fof(c_0_40, lemma, (![X1]:![X2]:(set_difference(X1,X2)=empty_set<=>subset(X1,X2))), c_0_18). fof(c_0_41, lemma, (![X1]:(subset(X1,empty_set)=>X1=empty_set)), c_0_19). fof(c_0_42, negated_conjecture, (~(![X1]:![X2]:![X3]:((subset(X1,X2)&disjoint(X2,X3))=>disjoint(X1,X3)))), inference(assume_negation,[status(cth)],[c_0_20])). fof(c_0_43, lemma, (![X1]:subset(empty_set,X1)), c_0_21). fof(c_0_44, lemma, (![X4]:![X5]:![X6]:(~subset(X4,X5)|subset(set_difference(X4,X6),set_difference(X5,X6)))), inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_22])])])])). fof(c_0_45, lemma, (![X4]:![X5]:![X6]:(~subset(X4,X5)|subset(set_intersection2(X4,X6),set_intersection2(X5,X6)))), inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_23])])])])). fof(c_0_46, lemma, (![X4]:![X5]:![X7]:![X8]:![X9]:((disjoint(X4,X5)|in(esk2_2(X4,X5),set_intersection2(X4,X5)))&(~in(X9,set_intersection2(X7,X8))|~disjoint(X7,X8)))), inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_24])])])])])). fof(c_0_47, lemma, (![X4]:![X5]:![X6]:((~subset(X4,X5)|~subset(X6,X5))|subset(set_union2(X4,X6),X5))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_25])])). fof(c_0_48, lemma, (![X4]:![X5]:![X6]:((~subset(X4,X5)|~subset(X4,X6))|subset(X4,set_intersection2(X5,X6)))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_26])])). fof(c_0_49, lemma, (![X4]:![X5]:![X7]:![X8]:![X9]:(((in(esk1_2(X4,X5),X4)|disjoint(X4,X5))&(in(esk1_2(X4,X5),X5)|disjoint(X4,X5)))&((~in(X9,X7)|~in(X9,X8))|~disjoint(X7,X8)))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_27])])])])])])). fof(c_0_50, lemma, (![X3]:![X4]:(~subset(X3,X4)|X4=set_union2(X3,set_difference(X4,X3)))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_28])])). fof(c_0_51, lemma, (![X4]:![X5]:![X6]:((~subset(X4,X5)|~subset(X5,X6))|subset(X4,X6))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_29])])). fof(c_0_52, lemma, (![X3]:![X4]:set_difference(X3,set_difference(X3,X4))=set_intersection2(X3,X4)), inference(variable_rename,[status(thm)],[c_0_30])). fof(c_0_53, lemma, (![X3]:![X4]:set_difference(set_union2(X3,X4),X4)=set_difference(X3,X4)), inference(variable_rename,[status(thm)],[c_0_31])). fof(c_0_54, lemma, (![X3]:![X4]:set_union2(X3,set_difference(X4,X3))=set_union2(X3,X4)), inference(variable_rename,[status(thm)],[c_0_32])). fof(c_0_55, lemma, (![X3]:![X4]:(~subset(X3,X4)|~proper_subset(X4,X3))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_33])])). fof(c_0_56, lemma, (![X3]:![X4]:subset(X3,set_union2(X3,X4))), inference(variable_rename,[status(thm)],[c_0_34])). fof(c_0_57, lemma, (![X3]:![X4]:subset(set_difference(X3,X4),X3)), inference(variable_rename,[status(thm)],[c_0_35])). fof(c_0_58, lemma, (![X3]:![X4]:subset(set_intersection2(X3,X4),X3)), inference(variable_rename,[status(thm)],[c_0_36])). fof(c_0_59, lemma, (![X3]:![X4]:(~subset(X3,X4)|set_intersection2(X3,X4)=X3)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_37])])). fof(c_0_60, lemma, (![X3]:![X4]:(~subset(X3,X4)|set_union2(X3,X4)=X4)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_38])])). fof(c_0_61, lemma, (![X3]:![X4]:![X5]:![X6]:((set_difference(X3,X4)!=empty_set|subset(X3,X4))&(~subset(X5,X6)|set_difference(X5,X6)=empty_set))), inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_39])])])])). fof(c_0_62, lemma, (![X3]:![X4]:![X5]:![X6]:((set_difference(X3,X4)!=empty_set|subset(X3,X4))&(~subset(X5,X6)|set_difference(X5,X6)=empty_set))), inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_40])])])])). fof(c_0_63, lemma, (![X2]:(~subset(X2,empty_set)|X2=empty_set)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_41])])). fof(c_0_64, negated_conjecture, (((subset(esk3_0,esk4_0)&disjoint(esk4_0,esk5_0))&~disjoint(esk3_0,esk5_0))), inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_42])])])). fof(c_0_65, lemma, (![X2]:subset(empty_set,X2)), inference(variable_rename,[status(thm)],[c_0_43])). cnf(c_0_66,lemma,(subset(set_difference(X1,X2),set_difference(X3,X2))|~subset(X1,X3)), inference(split_conjunct,[status(thm)],[c_0_44])). cnf(c_0_67,lemma,(subset(set_intersection2(X1,X2),set_intersection2(X3,X2))|~subset(X1,X3)), inference(split_conjunct,[status(thm)],[c_0_45])). cnf(c_0_68,lemma,(~disjoint(X1,X2)|~in(X3,set_intersection2(X1,X2))), inference(split_conjunct,[status(thm)],[c_0_46])). cnf(c_0_69,lemma,(subset(set_union2(X1,X2),X3)|~subset(X2,X3)|~subset(X1,X3)), inference(split_conjunct,[status(thm)],[c_0_47])). cnf(c_0_70,lemma,(subset(X1,set_intersection2(X2,X3))|~subset(X1,X3)|~subset(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_48])). cnf(c_0_71,lemma,(in(esk2_2(X1,X2),set_intersection2(X1,X2))|disjoint(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_46])). cnf(c_0_72,lemma,(~disjoint(X1,X2)|~in(X3,X2)|~in(X3,X1)), inference(split_conjunct,[status(thm)],[c_0_49])). cnf(c_0_73,lemma,(X1=set_union2(X2,set_difference(X1,X2))|~subset(X2,X1)), inference(split_conjunct,[status(thm)],[c_0_50])). cnf(c_0_74,lemma,(subset(X1,X2)|~subset(X3,X2)|~subset(X1,X3)), inference(split_conjunct,[status(thm)],[c_0_51])). cnf(c_0_75,lemma,(disjoint(X1,X2)|in(esk1_2(X1,X2),X1)), inference(split_conjunct,[status(thm)],[c_0_49])). cnf(c_0_76,lemma,(disjoint(X1,X2)|in(esk1_2(X1,X2),X2)), inference(split_conjunct,[status(thm)],[c_0_49])). cnf(c_0_77,lemma,(set_difference(X1,set_difference(X1,X2))=set_intersection2(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_52])). cnf(c_0_78,lemma,(set_difference(set_union2(X1,X2),X2)=set_difference(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_53])). cnf(c_0_79,lemma,(set_union2(X1,set_difference(X2,X1))=set_union2(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_54])). cnf(c_0_80,lemma,(~proper_subset(X1,X2)|~subset(X2,X1)), inference(split_conjunct,[status(thm)],[c_0_55])). cnf(c_0_81,lemma,(subset(X1,set_union2(X1,X2))), inference(split_conjunct,[status(thm)],[c_0_56])). cnf(c_0_82,lemma,(subset(set_difference(X1,X2),X1)), inference(split_conjunct,[status(thm)],[c_0_57])). cnf(c_0_83,lemma,(subset(set_intersection2(X1,X2),X1)), inference(split_conjunct,[status(thm)],[c_0_58])). cnf(c_0_84,lemma,(set_intersection2(X1,X2)=X1|~subset(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_59])). cnf(c_0_85,lemma,(set_union2(X1,X2)=X2|~subset(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_60])). cnf(c_0_86,lemma,(subset(X1,X2)|set_difference(X1,X2)!=empty_set), inference(split_conjunct,[status(thm)],[c_0_61])). cnf(c_0_87,lemma,(set_difference(X1,X2)=empty_set|~subset(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_61])). cnf(c_0_88,lemma,(subset(X1,X2)|set_difference(X1,X2)!=empty_set), inference(split_conjunct,[status(thm)],[c_0_62])). cnf(c_0_89,lemma,(set_difference(X1,X2)=empty_set|~subset(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_62])). cnf(c_0_90,lemma,(X1=empty_set|~subset(X1,empty_set)), inference(split_conjunct,[status(thm)],[c_0_63])). cnf(c_0_91,negated_conjecture,(~disjoint(esk3_0,esk5_0)), inference(split_conjunct,[status(thm)],[c_0_64])). cnf(c_0_92,lemma,(subset(empty_set,X1)), inference(split_conjunct,[status(thm)],[c_0_65])). cnf(c_0_93,negated_conjecture,(subset(esk3_0,esk4_0)), inference(split_conjunct,[status(thm)],[c_0_64])). cnf(c_0_94,negated_conjecture,(disjoint(esk4_0,esk5_0)), inference(split_conjunct,[status(thm)],[c_0_64])). cnf(c_0_95,lemma,(subset(set_difference(X1,X2),set_difference(X3,X2))|~subset(X1,X3)), c_0_66, ['final']). cnf(c_0_96,lemma,(subset(set_intersection2(X1,X2),set_intersection2(X3,X2))|~subset(X1,X3)), c_0_67, ['final']). cnf(c_0_97,lemma,(~disjoint(X1,X2)|~in(X3,set_intersection2(X1,X2))), c_0_68, ['final']). cnf(c_0_98,lemma,(subset(set_union2(X1,X2),X3)|~subset(X2,X3)|~subset(X1,X3)), c_0_69, ['final']). cnf(c_0_99,lemma,(subset(X1,set_intersection2(X2,X3))|~subset(X1,X3)|~subset(X1,X2)), c_0_70, ['final']). cnf(c_0_100,lemma,(in(esk2_2(X1,X2),set_intersection2(X1,X2))|disjoint(X1,X2)), c_0_71, ['final']). cnf(c_0_101,lemma,(~disjoint(X1,X2)|~in(X3,X2)|~in(X3,X1)), c_0_72, ['final']). cnf(c_0_102,lemma,(set_union2(X2,set_difference(X1,X2))=X1|~subset(X2,X1)), c_0_73, ['final']). cnf(c_0_103,lemma,(subset(X1,X2)|~subset(X3,X2)|~subset(X1,X3)), c_0_74, ['final']). cnf(c_0_104,lemma,(disjoint(X1,X2)|in(esk1_2(X1,X2),X1)), c_0_75, ['final']). cnf(c_0_105,lemma,(disjoint(X1,X2)|in(esk1_2(X1,X2),X2)), c_0_76, ['final']). cnf(c_0_106,lemma,(set_difference(X1,set_difference(X1,X2))=set_intersection2(X1,X2)), c_0_77, ['final']). cnf(c_0_107,lemma,(set_difference(set_union2(X1,X2),X2)=set_difference(X1,X2)), c_0_78, ['final']). cnf(c_0_108,lemma,(set_union2(X1,set_difference(X2,X1))=set_union2(X1,X2)), c_0_79, ['final']). cnf(c_0_109,lemma,(~proper_subset(X1,X2)|~subset(X2,X1)), c_0_80, ['final']). cnf(c_0_110,lemma,(subset(X1,set_union2(X1,X2))), c_0_81, ['final']). cnf(c_0_111,lemma,(subset(set_difference(X1,X2),X1)), c_0_82, ['final']). cnf(c_0_112,lemma,(subset(set_intersection2(X1,X2),X1)), c_0_83, ['final']). cnf(c_0_113,lemma,(set_intersection2(X1,X2)=X1|~subset(X1,X2)), c_0_84, ['final']). cnf(c_0_114,lemma,(set_union2(X1,X2)=X2|~subset(X1,X2)), c_0_85, ['final']). cnf(c_0_115,lemma,(subset(X1,X2)|set_difference(X1,X2)!=empty_set), c_0_86, ['final']). cnf(c_0_116,lemma,(set_difference(X1,X2)=empty_set|~subset(X1,X2)), c_0_87, ['final']). cnf(c_0_117,lemma,(subset(X1,X2)|set_difference(X1,X2)!=empty_set), c_0_88, ['final']). cnf(c_0_118,lemma,(set_difference(X1,X2)=empty_set|~subset(X1,X2)), c_0_89, ['final']). cnf(c_0_119,lemma,(X1=empty_set|~subset(X1,empty_set)), c_0_90, ['final']). cnf(c_0_120,negated_conjecture,(~disjoint(esk3_0,esk5_0)), c_0_91, ['final']). cnf(c_0_121,lemma,(subset(empty_set,X1)), c_0_92, ['final']). cnf(c_0_122,negated_conjecture,(subset(esk3_0,esk4_0)), c_0_93, ['final']). cnf(c_0_123,negated_conjecture,(disjoint(esk4_0,esk5_0)), c_0_94, ['final']). % End CNF derivation %------------------------------------------------------------- % Proof by iprover cnf(c_67,plain, ( ~ in(X0,X1) | ~ in(X0,X2) | ~ disjoint(X1,X2) ), file('/tmp/iprover_modulo_6ea52b.p', c_0_101) ). cnf(c_143,plain, ( ~ in(X0,X1) | ~ in(X0,X2) | ~ disjoint(X1,X2) ), inference(copy,[status(esa)],[c_67]) ). cnf(c_201,plain, ( ~ in(X0,X1) | ~ in(X0,X2) | ~ disjoint(X1,X2) ), inference(copy,[status(esa)],[c_143]) ). cnf(c_242,plain, ( ~ in(X0,X1) | ~ in(X0,X2) | ~ disjoint(X1,X2) ), inference(copy,[status(esa)],[c_201]) ). cnf(c_273,plain, ( ~ in(X0,X1) | ~ in(X0,X2) | ~ disjoint(X1,X2) ), inference(copy,[status(esa)],[c_242]) ). cnf(c_526,plain, ( ~ in(X0,X1) | ~ in(X0,X2) | ~ disjoint(X1,X2) ), inference(copy,[status(esa)],[c_273]) ). cnf(c_89,negated_conjecture, ( disjoint(sk3_esk4_0,sk3_esk5_0) ), file('/tmp/iprover_modulo_6ea52b.p', c_0_123) ). cnf(c_187,negated_conjecture, ( disjoint(sk3_esk4_0,sk3_esk5_0) ), inference(copy,[status(esa)],[c_89]) ). cnf(c_221,negated_conjecture, ( disjoint(sk3_esk4_0,sk3_esk5_0) ), inference(copy,[status(esa)],[c_187]) ). cnf(c_222,negated_conjecture, ( disjoint(sk3_esk4_0,sk3_esk5_0) ), inference(copy,[status(esa)],[c_221]) ). cnf(c_266,negated_conjecture, ( disjoint(sk3_esk4_0,sk3_esk5_0) ), inference(copy,[status(esa)],[c_222]) ). cnf(c_512,negated_conjecture, ( disjoint(sk3_esk4_0,sk3_esk5_0) ), inference(copy,[status(esa)],[c_266]) ). cnf(c_1166,plain, ( ~ in(X0,sk3_esk4_0) | ~ in(X0,sk3_esk5_0) ), inference(resolution,[status(thm)],[c_526,c_512]) ). cnf(c_1167,plain, ( ~ in(X0,sk3_esk4_0) | ~ in(X0,sk3_esk5_0) ), inference(rewriting,[status(thm)],[c_1166]) ). cnf(c_88,negated_conjecture, ( subset(sk3_esk3_0,sk3_esk4_0) ), file('/tmp/iprover_modulo_6ea52b.p', c_0_122) ). cnf(c_185,negated_conjecture, ( subset(sk3_esk3_0,sk3_esk4_0) ), inference(copy,[status(esa)],[c_88]) ). cnf(c_220,negated_conjecture, ( subset(sk3_esk3_0,sk3_esk4_0) ), inference(copy,[status(esa)],[c_185]) ). cnf(c_223,negated_conjecture, ( subset(sk3_esk3_0,sk3_esk4_0) ), inference(copy,[status(esa)],[c_220]) ). cnf(c_265,negated_conjecture, ( subset(sk3_esk3_0,sk3_esk4_0) ), inference(copy,[status(esa)],[c_223]) ). cnf(c_510,plain, ( subset(sk3_esk3_0,sk3_esk4_0) ), inference(copy,[status(esa)],[c_265]) ). cnf(c_35,plain, ( ~ in(X0,X1) | in(X0,X2) | ~ subset(X1,X2) ), file('/tmp/iprover_modulo_6ea52b.p', c_0_193_0) ). cnf(c_426,plain, ( ~ in(X0,X1) | in(X0,X2) | ~ subset(X1,X2) ), inference(copy,[status(esa)],[c_35]) ). cnf(c_534,plain, ( ~ in(X0,sk3_esk3_0) | in(X0,sk3_esk4_0) ), inference(resolution,[status(thm)],[c_510,c_426]) ). cnf(c_535,plain, ( ~ in(X0,sk3_esk3_0) | in(X0,sk3_esk4_0) ), inference(rewriting,[status(thm)],[c_534]) ). cnf(c_1234,plain, ( ~ in(X0,sk3_esk3_0) | ~ in(X0,sk3_esk5_0) ), inference(resolution,[status(thm)],[c_1167,c_535]) ). cnf(c_1235,plain, ( ~ in(X0,sk3_esk3_0) | ~ in(X0,sk3_esk5_0) ), inference(rewriting,[status(thm)],[c_1234]) ). cnf(c_71,plain, ( disjoint(X0,X1) | in(sk3_esk1_2(X0,X1),X1) ), file('/tmp/iprover_modulo_6ea52b.p', c_0_105) ). cnf(c_151,plain, ( disjoint(X0,X1) | in(sk3_esk1_2(X0,X1),X1) ), inference(copy,[status(esa)],[c_71]) ). cnf(c_205,plain, ( disjoint(X0,X1) | in(sk3_esk1_2(X0,X1),X1) ), inference(copy,[status(esa)],[c_151]) ). cnf(c_238,plain, ( disjoint(X0,X1) | in(sk3_esk1_2(X0,X1),X1) ), inference(copy,[status(esa)],[c_205]) ). cnf(c_251,plain, ( disjoint(X0,X1) | in(sk3_esk1_2(X0,X1),X1) ), inference(copy,[status(esa)],[c_238]) ). cnf(c_482,plain, ( disjoint(X0,X1) | in(sk3_esk1_2(X0,X1),X1) ), inference(copy,[status(esa)],[c_251]) ). cnf(c_1258,plain, ( ~ in(sk3_esk1_2(X0,sk3_esk5_0),sk3_esk3_0) | disjoint(X0,sk3_esk5_0) ), inference(resolution,[status(thm)],[c_1235,c_482]) ). cnf(c_1259,plain, ( ~ in(sk3_esk1_2(X0,sk3_esk5_0),sk3_esk3_0) | disjoint(X0,sk3_esk5_0) ), inference(rewriting,[status(thm)],[c_1258]) ). cnf(c_70,plain, ( disjoint(X0,X1) | in(sk3_esk1_2(X0,X1),X0) ), file('/tmp/iprover_modulo_6ea52b.p', c_0_104) ). cnf(c_149,plain, ( disjoint(X0,X1) | in(sk3_esk1_2(X0,X1),X0) ), inference(copy,[status(esa)],[c_70]) ). cnf(c_204,plain, ( disjoint(X0,X1) | in(sk3_esk1_2(X0,X1),X0) ), inference(copy,[status(esa)],[c_149]) ). cnf(c_239,plain, ( disjoint(X0,X1) | in(sk3_esk1_2(X0,X1),X0) ), inference(copy,[status(esa)],[c_204]) ). cnf(c_250,plain, ( disjoint(X0,X1) | in(sk3_esk1_2(X0,X1),X0) ), inference(copy,[status(esa)],[c_239]) ). cnf(c_480,plain, ( disjoint(X0,X1) | in(sk3_esk1_2(X0,X1),X0) ), inference(copy,[status(esa)],[c_250]) ). cnf(c_1510,plain, ( disjoint(sk3_esk3_0,sk3_esk5_0) ), inference(resolution,[status(thm)],[c_1259,c_480]) ). cnf(c_1511,plain, ( disjoint(sk3_esk3_0,sk3_esk5_0) ), inference(rewriting,[status(thm)],[c_1510]) ). cnf(c_80,negated_conjecture, ( ~ disjoint(sk3_esk3_0,sk3_esk5_0) ), file('/tmp/iprover_modulo_6ea52b.p', c_0_120) ). cnf(c_183,negated_conjecture, ( ~ disjoint(sk3_esk3_0,sk3_esk5_0) ), inference(copy,[status(esa)],[c_80]) ). cnf(c_212,negated_conjecture, ( ~ disjoint(sk3_esk3_0,sk3_esk5_0) ), inference(copy,[status(esa)],[c_183]) ). cnf(c_231,negated_conjecture, ( ~ disjoint(sk3_esk3_0,sk3_esk5_0) ), inference(copy,[status(esa)],[c_212]) ). cnf(c_257,negated_conjecture, ( ~ disjoint(sk3_esk3_0,sk3_esk5_0) ), inference(copy,[status(esa)],[c_231]) ). cnf(c_494,negated_conjecture, ( ~ disjoint(sk3_esk3_0,sk3_esk5_0) ), inference(copy,[status(esa)],[c_257]) ). cnf(c_2721,plain, ( $false ), inference(forward_subsumption_resolution,[status(thm)],[c_1511,c_494]) ). % SZS output end CNFRefutation
% SZS status Theorem for SEU140+2.p % SZS output start Proof for SEU140+2.p %----------------------------------------------------- fof(t63_xboole_1, conjecture, ! [_62808, _62811, _62814] : (subset(_62808, _62811) & disjoint(_62811, _62814) => disjoint(_62808, _62814)), file('SEU140+2.p', t63_xboole_1)). fof(d3_tarski, axiom, ! [_63043, _63046] : (subset(_63043, _63046) <=> ! [_63064] : (in(_63064, _63043) => in(_63064, _63046))), file('SEU140+2.p', d3_tarski)). fof(t3_xboole_0, lemma, ! [_63293, _63296] : (~ (~ disjoint(_63293, _63296) & ! [_63318] : ~ (in(_63318, _63293) & in(_63318, _63296))) & ~ (? [_63318] : (in(_63318, _63293) & in(_63318, _63296)) & disjoint(_63293, _63296))), file('SEU140+2.p', t3_xboole_0)). cnf(1, plain, [-(subset(11 ^ [], 12 ^ []))], clausify(t63_xboole_1)). cnf(2, plain, [-(disjoint(12 ^ [], 13 ^ []))], clausify(t63_xboole_1)). cnf(3, plain, [disjoint(11 ^ [], 13 ^ [])], clausify(t63_xboole_1)). cnf(4, plain, [subset(_28677, _28733), in(_28847, _28677), -(in(_28847, _28733))], clausify(d3_tarski)). cnf(5, plain, [-(disjoint(_39765, _39852)), -(in(9 ^ [_39852, _39765], _39765))], clausify(t3_xboole_0)). cnf(6, plain, [-(disjoint(_39765, _39852)), -(in(9 ^ [_39852, _39765], _39852))], clausify(t3_xboole_0)). cnf(7, plain, [disjoint(_39765, _39852), in(_40269, _39765), in(_40269, _39852)], clausify(t3_xboole_0)). cnf('1',plain,[disjoint(12 ^ [], 13 ^ []), in(9 ^ [13 ^ [], 11 ^ []], 12 ^ []), in(9 ^ [13 ^ [], 11 ^ []], 13 ^ [])],start(7,bind([[_39765, _40269, _39852], [12 ^ [], 9 ^ [13 ^ [], 11 ^ []], 13 ^ []]]))). cnf('1.1',plain,[-(disjoint(12 ^ [], 13 ^ []))],extension(2)). cnf('1.2',plain,[-(in(9 ^ [13 ^ [], 11 ^ []], 12 ^ [])), subset(11 ^ [], 12 ^ []), in(9 ^ [13 ^ [], 11 ^ []], 11 ^ [])],extension(4,bind([[_28733, _28847, _28677], [12 ^ [], 9 ^ [13 ^ [], 11 ^ []], 11 ^ []]]))). cnf('1.2.1',plain,[-(subset(11 ^ [], 12 ^ []))],extension(1)). cnf('1.2.2',plain,[-(in(9 ^ [13 ^ [], 11 ^ []], 11 ^ [])), -(disjoint(11 ^ [], 13 ^ []))],extension(5,bind([[_39765, _39852], [11 ^ [], 13 ^ []]]))). cnf('1.2.2.1',plain,[disjoint(11 ^ [], 13 ^ [])],extension(3)). cnf('1.3',plain,[-(in(9 ^ [13 ^ [], 11 ^ []], 13 ^ [])), -(disjoint(11 ^ [], 13 ^ []))],extension(6,bind([[_39765, _39852], [11 ^ [], 13 ^ []]]))). cnf('1.3.1',plain,[disjoint(11 ^ [], 13 ^ [])],extension(3)). %----------------------------------------------------- % SZS output end Proof for SEU140+2.pIf nanoCoP proves it ...
% SZS status Theorem for SEU140+2.p % SZS output start Proof for SEU140+2.p - I^V is skolem term f_I(V) for variable list V - (I^K)^V:C is clause C with index (I^K)^V Non-clausal matrix: [(589 ^ _84387) ^ [] : [-(subset(585 ^ [], 586 ^ []))], (591 ^ _84387) ^ [] : [-(disjoint(586 ^ [], 587 ^ []))], (593 ^ _84387) ^ [] : [disjoint(585 ^ [], 587 ^ [])], (86 ^ _84387) ^ [_87252, _87254, _87256, _87258] : [-(set_difference(_87258, _87254) = set_difference(_87256, _87252)), _87258 = _87256, _87254 = _87252], (96 ^ _84387) ^ [_87611, _87613, _87615, _87617] : [-(set_intersection2(_87617, _87613) = set_intersection2(_87615, _87611)), _87617 = _87615, _87613 = _87611], (106 ^ _84387) ^ [_87950, _87952, _87954, _87956] : [-(set_union2(_87956, _87952) = set_union2(_87954, _87950)), _87956 = _87954, _87952 = _87950], (2 ^ _84387) ^ [_84535] : [-(_84535 = _84535)], (4 ^ _84387) ^ [_84642, _84644] : [_84644 = _84642, -(_84642 = _84644)], (10 ^ _84387) ^ [_84846, _84848, _84850] : [-(_84850 = _84846), _84850 = _84848, _84848 = _84846], (20 ^ _84387) ^ [_85187, _85189, _85191, _85193] : [-(proper_subset(_85191, _85187)), proper_subset(_85193, _85189), _85193 = _85191, _85189 = _85187], (34 ^ _84387) ^ [_85631, _85633, _85635, _85637] : [-(in(_85635, _85631)), in(_85637, _85633), _85637 = _85635, _85633 = _85631], (48 ^ _84387) ^ [_86047, _86049] : [-(empty(_86047)), _86049 = _86047, empty(_86049)], (58 ^ _84387) ^ [_86370, _86372, _86374, _86376] : [-(subset(_86374, _86370)), subset(_86376, _86372), _86376 = _86374, _86372 = _86370], (72 ^ _84387) ^ [_86794, _86796, _86798, _86800] : [-(disjoint(_86798, _86794)), disjoint(_86800, _86796), _86800 = _86798, _86796 = _86794], (116 ^ _84387) ^ [_88291, _88293] : [in(_88293, _88291), in(_88291, _88293)], (122 ^ _84387) ^ [_88502, _88504] : [proper_subset(_88504, _88502), proper_subset(_88502, _88504)], (128 ^ _84387) ^ [_88698, _88700] : [-(set_union2(_88700, _88698) = set_union2(_88698, _88700))], (130 ^ _84387) ^ [_88798, _88800] : [-(set_intersection2(_88800, _88798) = set_intersection2(_88798, _88800))], (132 ^ _84387) ^ [_88942, _88944] : [_88944 = _88942, 135 ^ _84387 : [(136 ^ _84387) ^ [] : [-(subset(_88944, _88942))], (138 ^ _84387) ^ [] : [-(subset(_88942, _88944))]]], (140 ^ _84387) ^ [_89179, _89181] : [-(_89181 = _89179), subset(_89181, _89179), subset(_89179, _89181)], (150 ^ _84387) ^ [_89495] : [_89495 = empty_set, 153 ^ _84387 : [(154 ^ _84387) ^ [_89608] : [in(_89608, _89495)]]], (156 ^ _84387) ^ [_89674] : [-(in(157 ^ [_89674], _89674)), -(_89674 = empty_set)], (185 ^ _84387) ^ [_90704, _90706, _90708] : [-(_90704 = set_union2(_90708, _90706)), 189 ^ _84387 : [(190 ^ _84387) ^ [] : [-(in(186 ^ [_90704, _90706, _90708], _90704))], (192 ^ _84387) ^ [] : [in(186 ^ [_90704, _90706, _90708], _90708)], (194 ^ _84387) ^ [] : [in(186 ^ [_90704, _90706, _90708], _90706)]], 195 ^ _84387 : [(202 ^ _84387) ^ [] : [in(186 ^ [_90704, _90706, _90708], _90704)], (196 ^ _84387) ^ [] : [-(in(186 ^ [_90704, _90706, _90708], _90708)), -(in(186 ^ [_90704, _90706, _90708], _90706))]]], (163 ^ _84387) ^ [_89979, _89981, _89983] : [_89979 = set_union2(_89983, _89981), 166 ^ _84387 : [(177 ^ _84387) ^ [_90439] : [178 ^ _84387 : [(179 ^ _84387) ^ [] : [in(_90439, _89983)], (181 ^ _84387) ^ [] : [in(_90439, _89981)]], -(in(_90439, _89979))], (167 ^ _84387) ^ [_90161] : [in(_90161, _89979), -(in(_90161, _89983)), -(in(_90161, _89981))]]], (216 ^ _84387) ^ [_91798, _91800] : [218 ^ _84387 : [(219 ^ _84387) ^ [] : [-(in(217 ^ [_91798, _91800], _91800))], (221 ^ _84387) ^ [] : [in(217 ^ [_91798, _91800], _91798)]], -(subset(_91800, _91798))], (206 ^ _84387) ^ [_91484, _91486] : [subset(_91486, _91484), 209 ^ _84387 : [(210 ^ _84387) ^ [_91621] : [in(_91621, _91486), -(in(_91621, _91484))]]], (247 ^ _84387) ^ [_92923, _92925, _92927] : [-(_92923 = set_intersection2(_92927, _92925)), 259 ^ _84387 : [(260 ^ _84387) ^ [] : [-(in(248 ^ [_92923, _92925, _92927], _92927))], (262 ^ _84387) ^ [] : [-(in(248 ^ [_92923, _92925, _92927], _92925))], (264 ^ _84387) ^ [] : [in(248 ^ [_92923, _92925, _92927], _92923)]], 251 ^ _84387 : [(252 ^ _84387) ^ [] : [-(in(248 ^ [_92923, _92925, _92927], _92923))], (254 ^ _84387) ^ [] : [in(248 ^ [_92923, _92925, _92927], _92927), in(248 ^ [_92923, _92925, _92927], _92925)]]], (225 ^ _84387) ^ [_92198, _92200, _92202] : [_92198 = set_intersection2(_92202, _92200), 228 ^ _84387 : [(229 ^ _84387) ^ [_92380] : [in(_92380, _92198), 232 ^ _84387 : [(233 ^ _84387) ^ [] : [-(in(_92380, _92202))], (235 ^ _84387) ^ [] : [-(in(_92380, _92200))]]], (237 ^ _84387) ^ [_92639] : [-(in(_92639, _92198)), in(_92639, _92202), in(_92639, _92200)]]], (290 ^ _84387) ^ [_94450, _94452, _94454] : [-(_94450 = set_difference(_94454, _94452)), 302 ^ _84387 : [(303 ^ _84387) ^ [] : [-(in(291 ^ [_94450, _94452, _94454], _94454))], (305 ^ _84387) ^ [] : [in(291 ^ [_94450, _94452, _94454], _94452)], (307 ^ _84387) ^ [] : [in(291 ^ [_94450, _94452, _94454], _94450)]], 294 ^ _84387 : [(295 ^ _84387) ^ [] : [-(in(291 ^ [_94450, _94452, _94454], _94450))], (297 ^ _84387) ^ [] : [in(291 ^ [_94450, _94452, _94454], _94454), -(in(291 ^ [_94450, _94452, _94454], _94452))]]], (268 ^ _84387) ^ [_93719, _93721, _93723] : [_93719 = set_difference(_93723, _93721), 271 ^ _84387 : [(272 ^ _84387) ^ [_93903] : [in(_93903, _93719), 275 ^ _84387 : [(276 ^ _84387) ^ [] : [-(in(_93903, _93723))], (278 ^ _84387) ^ [] : [in(_93903, _93721)]]], (280 ^ _84387) ^ [_94163] : [-(in(_94163, _93719)), in(_94163, _93723), -(in(_94163, _93721))]]], (311 ^ _84387) ^ [_95236, _95238] : [disjoint(_95238, _95236), -(set_intersection2(_95238, _95236) = empty_set)], (317 ^ _84387) ^ [_95404, _95406] : [set_intersection2(_95406, _95404) = empty_set, -(disjoint(_95406, _95404))], (323 ^ _84387) ^ [_95651, _95653] : [proper_subset(_95653, _95651), 326 ^ _84387 : [(327 ^ _84387) ^ [] : [-(subset(_95653, _95651))], (329 ^ _84387) ^ [] : [_95653 = _95651]]], (331 ^ _84387) ^ [_95889, _95891] : [-(proper_subset(_95891, _95889)), subset(_95891, _95889), -(_95891 = _95889)], (341 ^ _84387) ^ [] : [true___, -(true___)], (347 ^ _84387) ^ [] : [true___, -(true___)], (353 ^ _84387) ^ [] : [true___, -(true___)], (359 ^ _84387) ^ [] : [true___, -(true___)], (365 ^ _84387) ^ [] : [-(empty(empty_set))], (367 ^ _84387) ^ [_96722, _96724] : [-(empty(_96724)), empty(set_union2(_96724, _96722))], (373 ^ _84387) ^ [_96938, _96940] : [-(empty(_96940)), empty(set_union2(_96938, _96940))], (379 ^ _84387) ^ [_97139, _97141] : [-(set_union2(_97141, _97141) = _97141)], (381 ^ _84387) ^ [_97236, _97238] : [-(set_intersection2(_97238, _97238) = _97238)], (383 ^ _84387) ^ [_97332, _97334] : [proper_subset(_97334, _97334)], (385 ^ _84387) ^ [_97470, _97472] : [set_difference(_97472, _97470) = empty_set, -(subset(_97472, _97470))], (391 ^ _84387) ^ [_97638, _97640] : [subset(_97640, _97638), -(set_difference(_97640, _97638) = empty_set)], (398 ^ _84387) ^ [] : [-(empty(396 ^ []))], (401 ^ _84387) ^ [] : [empty(399 ^ [])], (403 ^ _84387) ^ [_98020, _98022] : [-(subset(_98022, _98022))], (405 ^ _84387) ^ [_98129, _98131] : [disjoint(_98131, _98129), -(disjoint(_98129, _98131))], (411 ^ _84387) ^ [_98339, _98341] : [subset(_98341, _98339), -(set_union2(_98341, _98339) = _98339)], (417 ^ _84387) ^ [_98540, _98542] : [-(subset(set_intersection2(_98542, _98540), _98542))], (419 ^ _84387) ^ [_98666, _98668, _98670] : [-(subset(_98670, set_intersection2(_98668, _98666))), subset(_98670, _98668), subset(_98670, _98666)], (429 ^ _84387) ^ [_98952] : [-(set_union2(_98952, empty_set) = _98952)], (431 ^ _84387) ^ [_99076, _99078, _99080] : [-(subset(_99080, _99076)), subset(_99080, _99078), subset(_99078, _99076)], (441 ^ _84387) ^ [_99399, _99401, _99403] : [subset(_99403, _99401), -(subset(set_intersection2(_99403, _99399), set_intersection2(_99401, _99399)))], (447 ^ _84387) ^ [_99627, _99629] : [subset(_99629, _99627), -(set_intersection2(_99629, _99627) = _99629)], (453 ^ _84387) ^ [_99814] : [-(set_intersection2(_99814, empty_set) = empty_set)], (455 ^ _84387) ^ [_99924, _99926] : [-(_99926 = _99924), 459 ^ _84387 : [(460 ^ _84387) ^ [] : [-(in(456 ^ [_99924, _99926], _99926))], (462 ^ _84387) ^ [] : [in(456 ^ [_99924, _99926], _99924)]], 463 ^ _84387 : [(464 ^ _84387) ^ [] : [-(in(456 ^ [_99924, _99926], _99924))], (466 ^ _84387) ^ [] : [in(456 ^ [_99924, _99926], _99926)]]], (470 ^ _84387) ^ [_100425] : [-(subset(empty_set, _100425))], (472 ^ _84387) ^ [_100546, _100548, _100550] : [subset(_100550, _100548), -(subset(set_difference(_100550, _100546), set_difference(_100548, _100546)))], (478 ^ _84387) ^ [_100759, _100761] : [-(subset(set_difference(_100761, _100759), _100761))], (480 ^ _84387) ^ [_100900, _100902] : [set_difference(_100902, _100900) = empty_set, -(subset(_100902, _100900))], (486 ^ _84387) ^ [_101068, _101070] : [subset(_101070, _101068), -(set_difference(_101070, _101068) = empty_set)], (492 ^ _84387) ^ [_101271, _101273] : [-(set_union2(_101273, set_difference(_101271, _101273)) = set_union2(_101273, _101271))], (494 ^ _84387) ^ [_101360] : [-(set_difference(_101360, empty_set) = _101360)], (496 ^ _84387) ^ [_101490, _101492] : [-(disjoint(_101492, _101490)), 500 ^ _84387 : [(501 ^ _84387) ^ [] : [-(in(499 ^ [_101490, _101492], _101492))], (503 ^ _84387) ^ [] : [-(in(499 ^ [_101490, _101492], _101490))]]], (505 ^ _84387) ^ [_101804, _101806] : [disjoint(_101806, _101804), 506 ^ _84387 : [(507 ^ _84387) ^ [_101896] : [in(_101896, _101806), in(_101896, _101804)]]], (515 ^ _84387) ^ [_102153] : [subset(_102153, empty_set), -(_102153 = empty_set)], (521 ^ _84387) ^ [_102342, _102344] : [-(set_difference(set_union2(_102344, _102342), _102342) = set_difference(_102344, _102342))], (523 ^ _84387) ^ [_102460, _102462] : [subset(_102462, _102460), -(_102460 = set_union2(_102462, set_difference(_102460, _102462)))], (529 ^ _84387) ^ [_102667, _102669] : [-(set_difference(_102669, set_difference(_102669, _102667)) = set_intersection2(_102669, _102667))], (531 ^ _84387) ^ [_102756] : [-(set_difference(empty_set, _102756) = empty_set)], (533 ^ _84387) ^ [_102886, _102888] : [-(disjoint(_102888, _102886)), -(in(536 ^ [_102886, _102888], set_intersection2(_102888, _102886)))], (540 ^ _84387) ^ [_103121, _103123] : [541 ^ _84387 : [(542 ^ _84387) ^ [_103194] : [in(_103194, set_intersection2(_103123, _103121))]], disjoint(_103123, _103121)], (546 ^ _84387) ^ [_103360, _103362] : [subset(_103362, _103360), proper_subset(_103360, _103362)], (552 ^ _84387) ^ [_103555] : [empty(_103555), -(_103555 = empty_set)], (558 ^ _84387) ^ [_103757, _103759] : [in(_103759, _103757), empty(_103757)], (564 ^ _84387) ^ [_103949, _103951] : [-(subset(_103951, set_union2(_103951, _103949)))], (566 ^ _84387) ^ [_104061, _104063] : [empty(_104063), -(_104063 = _104061), empty(_104061)], (576 ^ _84387) ^ [_104352, _104354, _104356] : [-(subset(set_union2(_104356, _104352), _104354)), subset(_104356, _104354), subset(_104352, _104354)]] Connection proof: [(505 ^ 0) ^ [587 ^ [], 586 ^ []] : [disjoint(586 ^ [], 587 ^ []), 506 ^ 0 : [(507 ^ 0) ^ [499 ^ [587 ^ [], 585 ^ []]] : [in(499 ^ [587 ^ [], 585 ^ []], 586 ^ []), in(499 ^ [587 ^ [], 585 ^ []], 587 ^ [])]]], [(591 ^ 1) ^ [] : [-(disjoint(586 ^ [], 587 ^ []))]], [(163 ^ 3) ^ [586 ^ [], set_difference(586 ^ [], 585 ^ []), 585 ^ []] : [-(in(499 ^ [587 ^ [], 585 ^ []], 586 ^ [])), 166 ^ 3 : [(177 ^ 3) ^ [499 ^ [587 ^ [], 585 ^ []]] : [178 ^ 3 : [(179 ^ 3) ^ [] : [in(499 ^ [587 ^ [], 585 ^ []], 585 ^ [])], (181 ^ 3) ^ [] : [in(499 ^ [587 ^ [], 585 ^ []], set_difference(586 ^ [], 585 ^ []))]]]], 586 ^ [] = set_union2(585 ^ [], set_difference(586 ^ [], 585 ^ []))], [(496 ^ 8) ^ [587 ^ [], 585 ^ []] : [-(in(499 ^ [587 ^ [], 585 ^ []], 585 ^ [])), 500 ^ 8 : [(501 ^ 8) ^ [] : []], -(disjoint(585 ^ [], 587 ^ []))], [(593 ^ 9) ^ [] : [disjoint(585 ^ [], 587 ^ [])]]], [(523 ^ 4) ^ [586 ^ [], 585 ^ []] : [-(586 ^ [] = set_union2(585 ^ [], set_difference(586 ^ [], 585 ^ []))), subset(585 ^ [], 586 ^ [])], [(589 ^ 5) ^ [] : [-(subset(585 ^ [], 586 ^ []))]]]], [(496 ^ 3) ^ [587 ^ [], 585 ^ []] : [-(in(499 ^ [587 ^ [], 585 ^ []], 587 ^ [])), 500 ^ 3 : [(503 ^ 3) ^ [] : []], -(disjoint(585 ^ [], 587 ^ []))], [(593 ^ 4) ^ [] : [disjoint(585 ^ [], 587 ^ [])]]]] % SZS output end Proof for SEU140+2.p
% SZS status Theorem for /opt/TPTP/Problems/SET/SET014^4.p : (rf:0,axioms:2,ps:3,u:6,ude:false,rLeibEQ:true,rAndEQ:true,use_choice:true,use_extuni:true,use_extcnf_combined:true,expand_extuni:false,foatp:e,atp_timeout:7,atp_calls_frequency:10,ordering:none,proof_output:1,protocol_output:false,clause_count:28,loop_count:0,foatp_calls:1,translation:fof_full) %**** Beginning of derivation protocol **** % SZS output start CNFRefutation thf(tp_complement,type,(complement: (($i>$o)>($i>$o)))). thf(tp_disjoint,type,(disjoint: (($i>$o)>(($i>$o)>$o)))). thf(tp_emptyset,type,(emptyset: ($i>$o))). thf(tp_excl_union,type,(excl_union: (($i>$o)>(($i>$o)>($i>$o))))). thf(tp_in,type,(in: ($i>(($i>$o)>$o)))). thf(tp_intersection,type,(intersection: (($i>$o)>(($i>$o)>($i>$o))))). thf(tp_is_a,type,(is_a: ($i>(($i>$o)>$o)))). thf(tp_meets,type,(meets: (($i>$o)>(($i>$o)>$o)))). thf(tp_misses,type,(misses: (($i>$o)>(($i>$o)>$o)))). thf(tp_sK1_X,type,(sK1_X: ($i>$o))). thf(tp_sK2_SY0,type,(sK2_SY0: ($i>$o))). thf(tp_sK3_SY2,type,(sK3_SY2: ($i>$o))). thf(tp_sK4_SX0,type,(sK4_SX0: $i)). thf(tp_setminus,type,(setminus: (($i>$o)>(($i>$o)>($i>$o))))). thf(tp_singleton,type,(singleton: ($i>($i>$o)))). thf(tp_subset,type,(subset: (($i>$o)>(($i>$o)>$o)))). thf(tp_union,type,(union: (($i>$o)>(($i>$o)>($i>$o))))). thf(tp_unord_pair,type,(unord_pair: ($i>($i>($i>$o))))). thf(complement,definition,(complement = (^[X:($i>$o),U:$i]: (~ (X@U)))),file('/opt/TPTP/Problems/SET/SET014^4.p',complement)). thf(disjoint,definition,(disjoint = (^[X:($i>$o),Y:($i>$o)]: (((intersection@X)@Y) = emptyset))),file('/opt/TPTP/Problems/SET/SET014^4.p',disjoint)). thf(emptyset,definition,(emptyset = (^[X:$i]: $false)),file('/opt/TPTP/Problems/SET/SET014^4.p',emptyset)). thf(excl_union,definition,(excl_union = (^[X:($i>$o),Y:($i>$o),U:$i]: (((X@U) & (~ (Y@U))) | ((~ (X@U)) & (Y@U))))),file('/opt/TPTP/Problems/SET/SET014^4.p',excl_union)). thf(in,definition,(in = (^[X:$i,M:($i>$o)]: (M@X))),file('/opt/TPTP/Problems/SET/SET014^4.p',in)). thf(intersection,definition,(intersection = (^[X:($i>$o),Y:($i>$o),U:$i]: ((X@U) & (Y@U)))),file('/opt/TPTP/Problems/SET/SET014^4.p',intersection)). thf(is_a,definition,(is_a = (^[X:$i,M:($i>$o)]: (M@X))),file('/opt/TPTP/Problems/SET/SET014^4.p',is_a)). thf(meets,definition,(meets = (^[X:($i>$o),Y:($i>$o)]: (?[U:$i]: ((X@U) & (Y@U))))),file('/opt/TPTP/Problems/SET/SET014^4.p',meets)). thf(misses,definition,(misses = (^[X:($i>$o),Y:($i>$o)]: (~ (?[U:$i]: ((X@U) & (Y@U)))))),file('/opt/TPTP/Problems/SET/SET014^4.p',misses)). thf(setminus,definition,(setminus = (^[X:($i>$o),Y:($i>$o),U:$i]: ((X@U) & (~ (Y@U))))),file('/opt/TPTP/Problems/SET/SET014^4.p',setminus)). thf(singleton,definition,(singleton = (^[X:$i,U:$i]: (U = X))),file('/opt/TPTP/Problems/SET/SET014^4.p',singleton)). thf(subset,definition,(subset = (^[X:($i>$o),Y:($i>$o)]: (![U:$i]: ((X@U) => (Y@U))))),file('/opt/TPTP/Problems/SET/SET014^4.p',subset)). thf(union,definition,(union = (^[X:($i>$o),Y:($i>$o),U:$i]: ((X@U) | (Y@U)))),file('/opt/TPTP/Problems/SET/SET014^4.p',union)). thf(unord_pair,definition,(unord_pair = (^[X:$i,Y:$i,U:$i]: ((U = X) | (U = Y)))),file('/opt/TPTP/Problems/SET/SET014^4.p',unord_pair)). thf(1,conjecture,(![X:($i>$o),Y:($i>$o),A:($i>$o)]: ((((subset@X)@A) & ((subset@Y)@A)) => ((subset@((union@X)@Y))@A))),file('/opt/TPTP/Problems/SET/SET014^4.p',thm)). thf(2,negated_conjecture,(((![X:($i>$o),Y:($i>$o),A:($i>$o)]: ((((subset@X)@A) & ((subset@Y)@A)) => ((subset@((union@X)@Y))@A)))=$false)),inference(negate_conjecture,[status(cth)],[1])). thf(3,plain,(((![SY0:($i>$o),SY1:($i>$o)]: ((((subset@sK1_X)@SY1) & ((subset@SY0)@SY1)) => ((subset@((union@sK1_X)@SY0))@SY1)))=$false)),inference(extcnf_forall_neg,[status(esa)],[2])). thf(4,plain,(((![SY2:($i>$o)]: ((((subset@sK1_X)@SY2) & ((subset@sK2_SY0)@SY2)) => ((subset@((union@sK1_X)@sK2_SY0))@SY2)))=$false)),inference(extcnf_forall_neg,[status(esa)],[3])). thf(5,plain,((((((subset@sK1_X)@sK3_SY2) & ((subset@sK2_SY0)@sK3_SY2)) => ((subset@((union@sK1_X)@sK2_SY0))@sK3_SY2))=$false)),inference(extcnf_forall_neg,[status(esa)],[4])). thf(6,plain,((((subset@sK1_X)@sK3_SY2)=$true)),inference(standard_cnf,[status(thm)],[5])). thf(7,plain,((((subset@sK2_SY0)@sK3_SY2)=$true)),inference(standard_cnf,[status(thm)],[5])). thf(8,plain,((((subset@((union@sK1_X)@sK2_SY0))@sK3_SY2)=$false)),inference(standard_cnf,[status(thm)],[5])). thf(9,plain,(((~ ((subset@((union@sK1_X)@sK2_SY0))@sK3_SY2))=$true)),inference(polarity_switch,[status(thm)],[8])). thf(10,plain,((((subset@sK2_SY0)@sK3_SY2)=$true)),inference(copy,[status(thm)],[7])). thf(11,plain,((((subset@sK1_X)@sK3_SY2)=$true)),inference(copy,[status(thm)],[6])). thf(12,plain,(((~ ((subset@((union@sK1_X)@sK2_SY0))@sK3_SY2))=$true)),inference(copy,[status(thm)],[9])). thf(13,plain,(((~ (![SX0:$i]: ((~ ((sK1_X@SX0) | (sK2_SY0@SX0))) | (sK3_SY2@SX0))))=$true)),inference(unfold_def,[status(thm)],[12,complement,disjoint,emptyset,excl_union,in,intersection,is_a,meets,misses,setminus,singleton,subset,union,unord_pair])). thf(14,plain,(((![SX0:$i]: ((~ (sK1_X@SX0)) | (sK3_SY2@SX0)))=$true)),inference(unfold_def,[status(thm)],[11,complement,disjoint,emptyset,excl_union,in,intersection,is_a,meets,misses,setminus,singleton,subset,union,unord_pair])). thf(15,plain,(((![SX0:$i]: ((~ (sK2_SY0@SX0)) | (sK3_SY2@SX0)))=$true)),inference(unfold_def,[status(thm)],[10,complement,disjoint,emptyset,excl_union,in,intersection,is_a,meets,misses,setminus,singleton,subset,union,unord_pair])). thf(16,plain,(((![SX0:$i]: ((~ ((sK1_X@SX0) | (sK2_SY0@SX0))) | (sK3_SY2@SX0)))=$false)),inference(extcnf_not_pos,[status(thm)],[13])). thf(17,plain,(![SV1:$i]: ((((~ (sK1_X@SV1)) | (sK3_SY2@SV1))=$true))),inference(extcnf_forall_pos,[status(thm)],[14])). thf(18,plain,(![SV2:$i]: ((((~ (sK2_SY0@SV2)) | (sK3_SY2@SV2))=$true))),inference(extcnf_forall_pos,[status(thm)],[15])). thf(19,plain,((((~ ((sK1_X@sK4_SX0) | (sK2_SY0@sK4_SX0))) | (sK3_SY2@sK4_SX0))=$false)),inference(extcnf_forall_neg,[status(esa)],[16])). thf(20,plain,(![SV1:$i]: (((~ (sK1_X@SV1))=$true) | ((sK3_SY2@SV1)=$true))),inference(extcnf_or_pos,[status(thm)],[17])). thf(21,plain,(![SV2:$i]: (((~ (sK2_SY0@SV2))=$true) | ((sK3_SY2@SV2)=$true))),inference(extcnf_or_pos,[status(thm)],[18])). thf(22,plain,(((~ ((sK1_X@sK4_SX0) | (sK2_SY0@sK4_SX0)))=$false)),inference(extcnf_or_neg,[status(thm)],[19])). thf(23,plain,(((sK3_SY2@sK4_SX0)=$false)),inference(extcnf_or_neg,[status(thm)],[19])). thf(24,plain,(![SV1:$i]: (((sK1_X@SV1)=$false) | ((sK3_SY2@SV1)=$true))),inference(extcnf_not_pos,[status(thm)],[20])). thf(25,plain,(![SV2:$i]: (((sK2_SY0@SV2)=$false) | ((sK3_SY2@SV2)=$true))),inference(extcnf_not_pos,[status(thm)],[21])). thf(26,plain,((((sK1_X@sK4_SX0) | (sK2_SY0@sK4_SX0))=$true)),inference(extcnf_not_neg,[status(thm)],[22])). thf(27,plain,(((sK1_X@sK4_SX0)=$true) | ((sK2_SY0@sK4_SX0)=$true)),inference(extcnf_or_pos,[status(thm)],[26])). thf(28,plain,((($false)=$true)),inference(fo_atp_e,[status(thm)],[23,27,25,24])). thf(29,plain,($false),inference(solved_all_splits,[solved_all_splits(join,[])],[28])). % SZS output end CNFRefutation %**** End of derivation protocol **** %**** no. of clauses in derivation: 29 **** %**** clause counter: 28 **** % SZS status Theorem for /opt/TPTP/Problems/SET/SET014^4.p : (rf:0,axioms:2,ps:3,u:6,ude:false,rLeibEQ:true,rAndEQ:true,use_choice:true,use_extuni:true,use_extcnf_combined:true,expand_extuni:false,foatp:e,atp_timeout:7,atp_calls_frequency:10,ordering:none,proof_output:1,protocol_output:false,clause_count:28,loop_count:0,foatp_calls:1,translation:fof_full)
% SZS status Theorem for /opt/TPTP/Problems/SET/SET014^4.p : 3651 ms resp. 1253 ms w/o parsing % SZS output start CNFRefutation for /opt/TPTP/Problems/SET/SET014^4.p thf(union_type, type, union: (($i > $o) > (($i > $o) > ($i > $o)))). thf(union_def, definition, (union = (^ [A:($i > $o),B:($i > $o),C:$i]: ((A @ C) | (B @ C))))). thf(subset_type, type, subset: (($i > $o) > (($i > $o) > $o))). thf(subset_def, definition, (subset = (^ [A:($i > $o),B:($i > $o)]: ! [C:$i]: ((A @ C) => (B @ C))))). thf(sk1_type, type, sk1: ($i > $o)). thf(sk2_type, type, sk2: ($i > $o)). thf(sk3_type, type, sk3: ($i > $o)). thf(sk4_type, type, sk4: $i). thf(1,conjecture,((! [A:($i > $o),B:($i > $o),C:($i > $o)]: (((subset @ A @ C) & (subset @ B @ C)) => (subset @ (union @ A @ B) @ C)))),file('/opt/TPTP/Problems/SET/SET014^4.p',thm)). thf(2,negated_conjecture,((~ (! [A:($i > $o),B:($i > $o),C:($i > $o)]: (((subset @ A @ C) & (subset @ B @ C)) => (subset @ (union @ A @ B) @ C))))),inference(neg_conjecture,[status(cth)],[1])). thf(3,plain,((~ (! [A:($i > $o),B:($i > $o),C:($i > $o)]: ((! [D:$i]: ((A @ D) => (C @ D)) & ! [D:$i]: ((B @ D) => (C @ D))) => (! [D:$i]: (((A @ D) | (B @ D)) => (C @ D))))))),inference(defexp_and_simp_and_etaexpand,[status(thm)],[2])). thf(5,plain,((sk1 @ sk4) | (sk2 @ sk4)),inference(cnf,[status(esa)],[3])). thf(6,plain,(! [A:$i] : ((~ (sk2 @ A)) | (sk3 @ A))),inference(cnf,[status(esa)],[3])). thf(8,plain,(! [A:$i] : ((~ (sk2 @ A)) | (sk3 @ A))),inference(simp,[status(thm)],[6])). thf(4,plain,((~ (sk3 @ sk4))),inference(cnf,[status(esa)],[3])). thf(11,plain,(! [A:$i] : ((~ (sk2 @ A)) | ((sk3 @ sk4) != (sk3 @ A)))),inference(paramod_ordered,[status(thm)],[8,4])). thf(12,plain,((~ (sk2 @ sk4))),inference(pattern_uni,[status(thm)],[11:[bind(A, $thf(sk4))]])). thf(13,plain,((sk1 @ sk4) | ((sk2 @ sk4) != (sk2 @ sk4))),inference(paramod_ordered,[status(thm)],[5,12])). thf(14,plain,((sk1 @ sk4)),inference(pattern_uni,[status(thm)],[13:[]])). thf(7,plain,(! [A:$i] : ((~ (sk1 @ A)) | (sk3 @ A))),inference(cnf,[status(esa)],[3])). thf(9,plain,(! [A:$i] : ((~ (sk1 @ A)) | ((sk3 @ sk4) != (sk3 @ A)))),inference(paramod_ordered,[status(thm)],[7,4])). thf(10,plain,((~ (sk1 @ sk4))),inference(pattern_uni,[status(thm)],[9:[bind(A, $thf(sk4))]])). thf(15,plain,(((sk1 @ sk4) != (sk1 @ sk4))),inference(paramod_ordered,[status(thm)],[14,10])). thf(16,plain,($false),inference(pattern_uni,[status(thm)],[15:[]])). % SZS output end CNFRefutation for /opt/TPTP/Problems/SET/SET014^4.p
# SZS status Theorem # SZS output start CNFRefutation fof(t63_xboole_1, conjecture, (![X1]:![X2]:![X3]:((subset(X1,X2)&disjoint(X2,X3))=>disjoint(X1,X3))), file('/tmp/SystemOnTPTP4890/SEU140+2.tptp', t63_xboole_1)). fof(symmetry_r1_xboole_0, axiom, (![X1]:![X2]:(disjoint(X1,X2)=>disjoint(X2,X1))), file('/tmp/SystemOnTPTP4890/SEU140+2.tptp', symmetry_r1_xboole_0)). fof(t1_xboole_1, lemma, (![X1]:![X2]:![X3]:((subset(X1,X2)&subset(X2,X3))=>subset(X1,X3))), file('/tmp/SystemOnTPTP4890/SEU140+2.tptp', t1_xboole_1)). fof(t40_xboole_1, lemma, (![X1]:![X2]:set_difference(set_union2(X1,X2),X2)=set_difference(X1,X2)), file('/tmp/SystemOnTPTP4890/SEU140+2.tptp', t40_xboole_1)). fof(commutativity_k2_xboole_0, axiom, (![X1]:![X2]:set_union2(X1,X2)=set_union2(X2,X1)), file('/tmp/SystemOnTPTP4890/SEU140+2.tptp', commutativity_k2_xboole_0)). fof(t2_boole, axiom, (![X1]:set_intersection2(X1,empty_set)=empty_set), file('/tmp/SystemOnTPTP4890/SEU140+2.tptp', t2_boole)). fof(t48_xboole_1, lemma, (![X1]:![X2]:set_difference(X1,set_difference(X1,X2))=set_intersection2(X1,X2)), file('/tmp/SystemOnTPTP4890/SEU140+2.tptp', t48_xboole_1)). fof(t3_xboole_0, lemma, (![X1]:![X2]:(~((~(disjoint(X1,X2))&![X3]:~((in(X3,X1)&in(X3,X2)))))&~((?[X3]:(in(X3,X1)&in(X3,X2))&disjoint(X1,X2))))), file('/tmp/SystemOnTPTP4890/SEU140+2.tptp', t3_xboole_0)). fof(d4_xboole_0, axiom, (![X1]:![X2]:![X3]:(X3=set_difference(X1,X2)<=>![X4]:(in(X4,X3)<=>(in(X4,X1)&~(in(X4,X2)))))), file('/tmp/SystemOnTPTP4890/SEU140+2.tptp', d4_xboole_0)). fof(l32_xboole_1, lemma, (![X1]:![X2]:(set_difference(X1,X2)=empty_set<=>subset(X1,X2))), file('/tmp/SystemOnTPTP4890/SEU140+2.tptp', l32_xboole_1)). fof(d7_xboole_0, axiom, (![X1]:![X2]:(disjoint(X1,X2)<=>set_intersection2(X1,X2)=empty_set)), file('/tmp/SystemOnTPTP4890/SEU140+2.tptp', d7_xboole_0)). fof(t39_xboole_1, lemma, (![X1]:![X2]:set_union2(X1,set_difference(X2,X1))=set_union2(X1,X2)), file('/tmp/SystemOnTPTP4890/SEU140+2.tptp', t39_xboole_1)). fof(t3_boole, axiom, (![X1]:set_difference(X1,empty_set)=X1), file('/tmp/SystemOnTPTP4890/SEU140+2.tptp', t3_boole)). fof(commutativity_k3_xboole_0, axiom, (![X1]:![X2]:set_intersection2(X1,X2)=set_intersection2(X2,X1)), file('/tmp/SystemOnTPTP4890/SEU140+2.tptp', commutativity_k3_xboole_0)). fof(t36_xboole_1, lemma, (![X1]:![X2]:subset(set_difference(X1,X2),X1)), file('/tmp/SystemOnTPTP4890/SEU140+2.tptp', t36_xboole_1)). fof(t12_xboole_1, lemma, (![X1]:![X2]:(subset(X1,X2)=>set_union2(X1,X2)=X2)), file('/tmp/SystemOnTPTP4890/SEU140+2.tptp', t12_xboole_1)). fof(t1_boole, axiom, (![X1]:set_union2(X1,empty_set)=X1), file('/tmp/SystemOnTPTP4890/SEU140+2.tptp', t1_boole)). fof(c_0_17, negated_conjecture, (~(![X1]:![X2]:![X3]:((subset(X1,X2)&disjoint(X2,X3))=>disjoint(X1,X3)))), inference(assume_negation,[status(cth)],[t63_xboole_1])). fof(c_0_18, plain, (![X3]:![X4]:(~disjoint(X3,X4)|disjoint(X4,X3))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[symmetry_r1_xboole_0])])). fof(c_0_19, negated_conjecture, (((subset(esk11_0,esk12_0)&disjoint(esk12_0,esk13_0))&~disjoint(esk11_0,esk13_0))), inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_17])])])). fof(c_0_20, lemma, (![X4]:![X5]:![X6]:((~subset(X4,X5)|~subset(X5,X6))|subset(X4,X6))), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[t1_xboole_1])])). fof(c_0_21, lemma, (![X3]:![X4]:set_difference(set_union2(X3,X4),X4)=set_difference(X3,X4)), inference(variable_rename,[status(thm)],[t40_xboole_1])). fof(c_0_22, plain, (![X3]:![X4]:set_union2(X3,X4)=set_union2(X4,X3)), inference(variable_rename,[status(thm)],[commutativity_k2_xboole_0])). fof(c_0_23, plain, (![X2]:set_intersection2(X2,empty_set)=empty_set), inference(variable_rename,[status(thm)],[t2_boole])). fof(c_0_24, lemma, (![X3]:![X4]:set_difference(X3,set_difference(X3,X4))=set_intersection2(X3,X4)), inference(variable_rename,[status(thm)],[t48_xboole_1])). fof(c_0_25, lemma, (![X4]:![X5]:![X4]:![X5]:![X7]:(((in(esk9_2(X4,X5),X4)|disjoint(X4,X5))&(in(esk9_2(X4,X5),X5)|disjoint(X4,X5)))&((~in(X7,X4)|~in(X7,X5))|~disjoint(X4,X5)))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[t3_xboole_0])])])])])])])])). cnf(c_0_26,plain,(disjoint(X1,X2)|~disjoint(X2,X1)), inference(split_conjunct,[status(thm)],[c_0_18])). cnf(c_0_27,negated_conjecture,(disjoint(esk12_0,esk13_0)), inference(split_conjunct,[status(thm)],[c_0_19])). fof(c_0_28, plain, (![X5]:![X6]:![X7]:![X8]:![X8]:![X5]:![X6]:![X7]:(((((in(X8,X5)|~in(X8,X7))|X7!=set_difference(X5,X6))&((~in(X8,X6)|~in(X8,X7))|X7!=set_difference(X5,X6)))&(((~in(X8,X5)|in(X8,X6))|in(X8,X7))|X7!=set_difference(X5,X6)))&(((~in(esk5_3(X5,X6,X7),X7)|(~in(esk5_3(X5,X6,X7),X5)|in(esk5_3(X5,X6,X7),X6)))|X7=set_difference(X5,X6))&(((in(esk5_3(X5,X6,X7),X5)|in(esk5_3(X5,X6,X7),X7))|X7=set_difference(X5,X6))&((~in(esk5_3(X5,X6,X7),X6)|in(esk5_3(X5,X6,X7),X7))|X7=set_difference(X5,X6)))))), inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(fof_simplification,[status(thm)],[d4_xboole_0])])])])])])])])). fof(c_0_29, lemma, (![X3]:![X4]:![X3]:![X4]:((set_difference(X3,X4)!=empty_set|subset(X3,X4))&(~subset(X3,X4)|set_difference(X3,X4)=empty_set))), inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[l32_xboole_1])])])])). cnf(c_0_30,lemma,(subset(X1,X2)|~subset(X3,X2)|~subset(X1,X3)), inference(split_conjunct,[status(thm)],[c_0_20])). cnf(c_0_31,negated_conjecture,(subset(esk11_0,esk12_0)), inference(split_conjunct,[status(thm)],[c_0_19])). fof(c_0_32, plain, (![X3]:![X4]:![X3]:![X4]:((~disjoint(X3,X4)|set_intersection2(X3,X4)=empty_set)&(set_intersection2(X3,X4)!=empty_set|disjoint(X3,X4)))), inference(shift_quantors,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[d7_xboole_0])])])])). cnf(c_0_33,lemma,(set_difference(set_union2(X1,X2),X2)=set_difference(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_21])). cnf(c_0_34,plain,(set_union2(X1,X2)=set_union2(X2,X1)), inference(split_conjunct,[status(thm)],[c_0_22])). fof(c_0_35, lemma, (![X3]:![X4]:set_union2(X3,set_difference(X4,X3))=set_union2(X3,X4)), inference(variable_rename,[status(thm)],[t39_xboole_1])). cnf(c_0_36,plain,(set_intersection2(X1,empty_set)=empty_set), inference(split_conjunct,[status(thm)],[c_0_23])). cnf(c_0_37,lemma,(set_difference(X1,set_difference(X1,X2))=set_intersection2(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_24])). fof(c_0_38, plain, (![X2]:set_difference(X2,empty_set)=X2), inference(variable_rename,[status(thm)],[t3_boole])). cnf(c_0_39,lemma,(~disjoint(X1,X2)|~in(X3,X2)|~in(X3,X1)), inference(split_conjunct,[status(thm)],[c_0_25])). cnf(c_0_40,negated_conjecture,(disjoint(esk13_0,esk12_0)), inference(spm,[status(thm)],[c_0_26, c_0_27])). cnf(c_0_41,plain,(in(X4,X2)|X1!=set_difference(X2,X3)|~in(X4,X1)), inference(split_conjunct,[status(thm)],[c_0_28])). fof(c_0_42, plain, (![X3]:![X4]:set_intersection2(X3,X4)=set_intersection2(X4,X3)), inference(variable_rename,[status(thm)],[commutativity_k3_xboole_0])). cnf(c_0_43,lemma,(set_difference(X1,X2)=empty_set|~subset(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_29])). cnf(c_0_44,negated_conjecture,(subset(X1,esk12_0)|~subset(X1,esk11_0)), inference(spm,[status(thm)],[c_0_30, c_0_31])). fof(c_0_45, lemma, (![X3]:![X4]:subset(set_difference(X3,X4),X3)), inference(variable_rename,[status(thm)],[t36_xboole_1])). fof(c_0_46, lemma, (![X3]:![X4]:(~subset(X3,X4)|set_union2(X3,X4)=X4)), inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[t12_xboole_1])])). cnf(c_0_47,plain,(disjoint(X1,X2)|set_intersection2(X1,X2)!=empty_set), inference(split_conjunct,[status(thm)],[c_0_32])). cnf(c_0_48,lemma,(set_difference(set_union2(X1,X2),X1)=set_difference(X2,X1)), inference(spm,[status(thm)],[c_0_33, c_0_34])). cnf(c_0_49,lemma,(set_union2(X1,set_difference(X2,X1))=set_union2(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_35])). cnf(c_0_50,plain,(set_difference(X1,set_difference(X1,empty_set))=empty_set), inference(rw,[status(thm)],[c_0_36, c_0_37])). cnf(c_0_51,plain,(set_difference(X1,empty_set)=X1), inference(split_conjunct,[status(thm)],[c_0_38])). cnf(c_0_52,negated_conjecture,(~in(X1,esk12_0)|~in(X1,esk13_0)), inference(spm,[status(thm)],[c_0_39, c_0_40])). cnf(c_0_53,lemma,(disjoint(X1,X2)|in(esk9_2(X1,X2),X2)), inference(split_conjunct,[status(thm)],[c_0_25])). cnf(c_0_54,plain,(in(X1,X2)|~in(X1,set_difference(X2,X3))), inference(er,[status(thm)],[c_0_41])). cnf(c_0_55,lemma,(disjoint(X1,X2)|in(esk9_2(X1,X2),X1)), inference(split_conjunct,[status(thm)],[c_0_25])). cnf(c_0_56,plain,(set_intersection2(X1,X2)=set_intersection2(X2,X1)), inference(split_conjunct,[status(thm)],[c_0_42])). cnf(c_0_57,lemma,(set_difference(X1,esk12_0)=empty_set|~subset(X1,esk11_0)), inference(spm,[status(thm)],[c_0_43, c_0_44])). cnf(c_0_58,lemma,(subset(set_difference(X1,X2),X1)), inference(split_conjunct,[status(thm)],[c_0_45])). cnf(c_0_59,plain,(set_intersection2(X1,X2)=empty_set|~disjoint(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_32])). fof(c_0_60, plain, (![X2]:set_union2(X2,empty_set)=X2), inference(variable_rename,[status(thm)],[t1_boole])). cnf(c_0_61,lemma,(set_union2(X1,X2)=X2|~subset(X1,X2)), inference(split_conjunct,[status(thm)],[c_0_46])). cnf(c_0_62,plain,(disjoint(X1,X2)|set_difference(X1,set_difference(X1,X2))!=empty_set), inference(rw,[status(thm)],[c_0_47, c_0_37])). cnf(c_0_63,lemma,(set_difference(set_difference(X1,X2),X2)=set_difference(X1,X2)), inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_48, c_0_49]), c_0_48])). cnf(c_0_64,plain,(set_difference(X1,X1)=empty_set), inference(rw,[status(thm)],[c_0_50, c_0_51])). cnf(c_0_65,lemma,(disjoint(X1,esk13_0)|~in(esk9_2(X1,esk13_0),esk12_0)), inference(spm,[status(thm)],[c_0_52, c_0_53])). cnf(c_0_66,lemma,(disjoint(set_difference(X1,X2),X3)|in(esk9_2(set_difference(X1,X2),X3),X1)), inference(spm,[status(thm)],[c_0_54, c_0_55])). cnf(c_0_67,plain,(set_difference(X1,set_difference(X1,X2))=set_difference(X2,set_difference(X2,X1))), inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_56, c_0_37]), c_0_37])). cnf(c_0_68,lemma,(set_difference(set_difference(esk11_0,X1),esk12_0)=empty_set), inference(spm,[status(thm)],[c_0_57, c_0_58])). cnf(c_0_69,plain,(set_difference(X1,set_difference(X1,X2))=empty_set|~disjoint(X1,X2)), inference(rw,[status(thm)],[c_0_59, c_0_37])). cnf(c_0_70,plain,(set_union2(X1,empty_set)=X1), inference(split_conjunct,[status(thm)],[c_0_60])). cnf(c_0_71,lemma,(set_union2(X1,set_difference(X1,X2))=X1), inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_61, c_0_58]), c_0_34])). cnf(c_0_72,lemma,(disjoint(set_difference(X1,X2),X2)), inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_62, c_0_63]), c_0_64])])). cnf(c_0_73,lemma,(disjoint(set_difference(esk12_0,X1),esk13_0)), inference(spm,[status(thm)],[c_0_65, c_0_66])). cnf(c_0_74,lemma,(set_difference(esk12_0,set_difference(esk12_0,set_difference(esk11_0,X1)))=set_difference(esk11_0,X1)), inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_67, c_0_68]), c_0_51])). cnf(c_0_75,lemma,(set_difference(X1,X2)=X1|~disjoint(X1,X2)), inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_49, c_0_69]), c_0_70]), c_0_34]), c_0_71])). cnf(c_0_76,lemma,(disjoint(X1,set_difference(X2,X1))), inference(spm,[status(thm)],[c_0_26, c_0_72])). cnf(c_0_77,lemma,(disjoint(set_difference(esk11_0,X1),esk13_0)), inference(spm,[status(thm)],[c_0_73, c_0_74])). cnf(c_0_78,lemma,(set_difference(X1,set_difference(X2,X1))=X1), inference(spm,[status(thm)],[c_0_75, c_0_76])). cnf(c_0_79,negated_conjecture,(~disjoint(esk11_0,esk13_0)), inference(split_conjunct,[status(thm)],[c_0_19])). cnf(c_0_80,lemma,($false), inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_77, c_0_78]), c_0_79]), ['proof']). # SZS output end CNFRefutation
% SZS status Theorem for DAT013=1 % SZS output start Proof for DAT013=1 Assumptions after simplification: --------------------------------- (co1) ? [v0: $int] : ? [v1: $int] : ? [v2: $int] : (in_array(v0) & ! [v3: $int] : ! [v4: $int] : ( ~ ($lesseq(v4, 0) | ~ ($lesseq(v3, v2)) | ~ ($lesseq(v1, v3)) | ~ (read(v0, v3) = v4)) & ? [v3: $int] : ? [v4: $int] : ($lesseq(v4, 0)$lesseq(v3, v2) & $lesseq(3, $difference(v3, v1)) & read(v0, v3) = v4)) Further assumptions not needed in the proof: -------------------------------------------- ax1, ax2 Those formulas are unsatisfiable: --------------------------------- Begin of proof | | DELTA: instantiating (co1) with fresh symbols all_4_0, all_4_1, all_4_2 gives: | (1) in_array(all_4_2) & ! [v0: $int] : ! [v1: $int] : ( ~ ($lesseq(v1, 0) | | ~ ($lesseq(v0, all_4_0)) | ~ ($lesseq(all_4_1, v0)) | ~ | (read(all_4_2, v0) = v1)) & ? [v0: $int] : ? [v1: $int] : | ($lesseq(v1, 0)$lesseq(v0, all_4_0) & $lesseq(3, $difference(v0, | all_4_1)) & read(all_4_2, v0) = v1) | | ALPHA: (1) implies: | (2) ! [v0: $int] : ! [v1: $int] : ( ~ ($lesseq(v1, 0) | ~ ($lesseq(v0, | all_4_0)) | ~ ($lesseq(all_4_1, v0)) | ~ (read(all_4_2, v0) = | v1)) | (3) ? [v0: $int] : ? [v1: $int] : ($lesseq(v1, 0)$lesseq(v0, all_4_0) & | $lesseq(3, $difference(v0, all_4_1)) & read(all_4_2, v0) = v1) | | DELTA: instantiating (3) with fresh symbols all_9_0, all_9_1 gives: | (4) $lesseq(all_9_0, 0)$lesseq(all_9_1, all_4_0) & $lesseq(3, | $difference(all_9_1, all_4_1)) & read(all_4_2, all_9_1) = all_9_0 | | ALPHA: (4) implies: | (5) $lesseq(3, $difference(all_9_1, all_4_1)) | (6) $lesseq(all_9_1, all_4_0) | (7) $lesseq(all_9_0, 0) | (8) read(all_4_2, all_9_1) = all_9_0 | | GROUND_INST: instantiating (2) with all_9_0, all_9_1, simplifying with (8) | gives: | (9) ~ ($lesseq(all_9_0, 0) | ~ ($lesseq(all_9_1, all_4_0)) | ~ | ($lesseq(all_4_1, all_9_1)) | | BETA: splitting (9) gives: | | Case 1: | | | | (10) $lesseq(1, all_9_0) | | | | COMBINE_INEQS: (7), (10) imply: | | (11) $lesseq(0, -1) | | | | CLOSE: (11) is inconsistent. | | | Case 2: | | | | (12) ~ ($lesseq(all_9_1, all_4_0)) | ~ ($lesseq(all_4_1, all_9_1)) | | | | BETA: splitting (12) gives: | | | | Case 1: | | | | | | (13) $lesseq(1, $difference(all_9_1, all_4_0)) | | | | | | COMBINE_INEQS: (6), (13) imply: | | | (14) $lesseq(0, -1) | | | | | | CLOSE: (14) is inconsistent. | | | | | Case 2: | | | | | | (15) $lesseq(1, $difference(all_4_1, all_9_1)) | | | | | | COMBINE_INEQS: (5), (15) imply: | | | (16) $lesseq(0, -1) | | | | | | CLOSE: (16) is inconsistent. | | | | | End of split | | | End of split | End of proof % SZS output end Proof for DAT013=1
8 (all A all B (subset(A,B) <-> (all C (in(C,A) -> in(C,B))))) # label(d3_tarski) # label(axiom) # label(non_clause). [assumption]. 26 (all A all B (disjoint(A,B) -> disjoint(B,A))) # label(symmetry_r1_xboole_0) # label(axiom) # label(non_clause). [assumption]. 42 (all A all B (-(-disjoint(A,B) & (all C -(in(C,A) & in(C,B)))) & -((exists C (in(C,A) & in(C,B))) & disjoint(A,B)))) # label(t3_xboole_0) # label(lemma) # label(non_clause). [assumption]. 55 -(all A all B all C (subset(A,B) & disjoint(B,C) -> disjoint(A,C))) # label(t63_xboole_1) # label(negated_conjecture) # label(non_clause). [assumption]. 60 subset(c3,c4) # label(t63_xboole_1) # label(negated_conjecture). [clausify(55)]. 61 disjoint(c4,c5) # label(t63_xboole_1) # label(negated_conjecture). [clausify(55)]. 75 disjoint(A,B) | in(f7(A,B),A) # label(t3_xboole_0) # label(lemma). [clausify(42)]. 76 disjoint(A,B) | in(f7(A,B),B) # label(t3_xboole_0) # label(lemma). [clausify(42)]. 92 -disjoint(c3,c5) # label(t63_xboole_1) # label(negated_conjecture). [clausify(55)]. 101 -in(A,B) | -in(A,C) | -disjoint(B,C) # label(t3_xboole_0) # label(lemma). [clausify(42)]. 109 -disjoint(A,B) | disjoint(B,A) # label(symmetry_r1_xboole_0) # label(axiom). [clausify(26)]. 123 -subset(A,B) | -in(C,A) | in(C,B) # label(d3_tarski) # label(axiom). [clausify(8)]. 273 -disjoint(c5,c3). [ur(109,b,92,a)]. 300 -in(A,c3) | in(A,c4). [resolve(123,a,60,a)]. 959 in(f7(c5,c3),c3). [resolve(273,a,76,a)]. 960 in(f7(c5,c3),c5). [resolve(273,a,75,a)]. 1084 -in(f7(c5,c3),c4). [ur(101,b,960,a,c,61,a)]. 1292 $F. [resolve(300,a,959,a),unit_del(a,1084)].
% SZS output start Proof thf(ty$i, type, $i : $tType). thf(tyeigen__3, type, eigen__3 : $i). thf(tyeigen__2, type, eigen__2 : ($i>$o)). thf(tyeigen__1, type, eigen__1 : ($i>$o)). thf(tyeigen__0, type, eigen__0 : ($i>$o)). thf(thm,conjecture,(![X1:$i>$o]:(![X2:$i>$o]:(![X3:$i>$o]:(((![X4:$i]:((X1 @ X4) => (X3 @ X4))) & (![X4:$i]:((X2 @ X4) => (X3 @ X4)))) => (![X4:$i]:(((X1 @ X4) | (X2 @ X4)) => (X3 @ X4)))))))). thf(h0,negated_conjecture,(~((![X1:$i>$o]:(![X2:$i>$o]:(![X3:$i>$o]:(((![X4:$i]:((X1 @ X4) => (X3 @ X4))) & (![X4:$i]:((X2 @ X4) => (X3 @ X4)))) => (![X4:$i]:(((X1 @ X4) | (X2 @ X4)) => (X3 @ X4))))))))),inference(assume_negation,[status(cth)],[thm])). thf(h1,assumption,(~((![X1:$i>$o]:(![X2:$i>$o]:(((![X3:$i]:((eigen__0 @ X3) => (X2 @ X3))) & (![X3:$i]:((X1 @ X3) => (X2 @ X3)))) => (![X3:$i]:(((eigen__0 @ X3) | (X1 @ X3)) => (X2 @ X3)))))))),introduced(assumption,[])). thf(h2,assumption,(~((![X1:$i>$o]:(((![X2:$i]:((eigen__0 @ X2) => (X1 @ X2))) & (![X2:$i]:((eigen__1 @ X2) => (X1 @ X2)))) => (![X2:$i]:(((eigen__0 @ X2) | (eigen__1 @ X2)) => (X1 @ X2))))))),introduced(assumption,[])). thf(h3,assumption,(~((((![X1:$i]:((eigen__0 @ X1) => (eigen__2 @ X1))) & (![X1:$i]:((eigen__1 @ X1) => (eigen__2 @ X1)))) => (![X1:$i]:(((eigen__0 @ X1) | (eigen__1 @ X1)) => (eigen__2 @ X1)))))),introduced(assumption,[])). thf(h4,assumption,((![X1:$i]:((eigen__0 @ X1) => (eigen__2 @ X1))) & (![X1:$i]:((eigen__1 @ X1) => (eigen__2 @ X1)))),introduced(assumption,[])). thf(h5,assumption,(~((![X1:$i]:(((eigen__0 @ X1) | (eigen__1 @ X1)) => (eigen__2 @ X1))))),introduced(assumption,[])). thf(h6,assumption,(![X1:$i]:((eigen__0 @ X1) => (eigen__2 @ X1))),introduced(assumption,[])). thf(h7,assumption,(![X1:$i]:((eigen__1 @ X1) => (eigen__2 @ X1))),introduced(assumption,[])). thf(h8,assumption,(~((((eigen__0 @ eigen__3) | (eigen__1 @ eigen__3)) => (eigen__2 @ eigen__3)))),introduced(assumption,[])). thf(h9,assumption,((eigen__0 @ eigen__3) | (eigen__1 @ eigen__3)),introduced(assumption,[])). thf(h10,assumption,(~((eigen__2 @ eigen__3))),introduced(assumption,[])). thf(h11,assumption,(eigen__0 @ eigen__3),introduced(assumption,[])). thf(h12,assumption,(eigen__1 @ eigen__3),introduced(assumption,[])). thf(h13,assumption,((eigen__0 @ eigen__3) => (eigen__2 @ eigen__3)),introduced(assumption,[])). thf(h14,assumption,(~((eigen__0 @ eigen__3))),introduced(assumption,[])). thf(h15,assumption,(eigen__2 @ eigen__3),introduced(assumption,[])). thf(11,plain,$false,inference(tab_conflict,[status(thm),assumptions([h14,h13,h11,h9,h10,h8,h6,h7,h4,h5,h3,h2,h1,h0])],[h11,h14])). thf(12,plain,$false,inference(tab_conflict,[status(thm),assumptions([h15,h13,h11,h9,h10,h8,h6,h7,h4,h5,h3,h2,h1,h0])],[h15,h10])). thf(10,plain,$false,inference(tab_imp,[status(thm),assumptions([h13,h11,h9,h10,h8,h6,h7,h4,h5,h3,h2,h1,h0]),tab_imp(discharge,[h14]),tab_imp(discharge,[h15])],[h13,11,12,h14,h15])). thf(9,plain,$false,inference(tab_all,[status(thm),assumptions([h11,h9,h10,h8,h6,h7,h4,h5,h3,h2,h1,h0]),tab_all(discharge,[h13])],[h6:[bind(X1,$thf(eigen__3))],10,h13])). thf(h16,assumption,((eigen__1 @ eigen__3) => (eigen__2 @ eigen__3)),introduced(assumption,[])). thf(h17,assumption,(~((eigen__1 @ eigen__3))),introduced(assumption,[])). thf(15,plain,$false,inference(tab_conflict,[status(thm),assumptions([h17,h16,h12,h9,h10,h8,h6,h7,h4,h5,h3,h2,h1,h0])],[h12,h17])). thf(16,plain,$false,inference(tab_conflict,[status(thm),assumptions([h15,h16,h12,h9,h10,h8,h6,h7,h4,h5,h3,h2,h1,h0])],[h15,h10])). thf(14,plain,$false,inference(tab_imp,[status(thm),assumptions([h16,h12,h9,h10,h8,h6,h7,h4,h5,h3,h2,h1,h0]),tab_imp(discharge,[h17]),tab_imp(discharge,[h15])],[h16,15,16,h17,h15])). thf(13,plain,$false,inference(tab_all,[status(thm),assumptions([h12,h9,h10,h8,h6,h7,h4,h5,h3,h2,h1,h0]),tab_all(discharge,[h16])],[h7:[bind(X1,$thf(eigen__3))],14,h16])). thf(8,plain,$false,inference(tab_or,[status(thm),assumptions([h9,h10,h8,h6,h7,h4,h5,h3,h2,h1,h0]),tab_or(discharge,[h11]),tab_or(discharge,[h12])],[h9,9,13,h11,h12])). thf(7,plain,$false,inference(tab_negimp,[status(thm),assumptions([h8,h6,h7,h4,h5,h3,h2,h1,h0]),tab_negimp(discharge,[h9,h10])],[h8,8,h9,h10])). thf(6,plain,$false,inference(tab_negall,[status(thm),assumptions([h6,h7,h4,h5,h3,h2,h1,h0]),tab_negall(discharge,[h8]),tab_negall(eigenvar,eigen__3)],[h5,7,h8])). thf(5,plain,$false,inference(tab_and,[status(thm),assumptions([h4,h5,h3,h2,h1,h0]),tab_and(discharge,[h6,h7])],[h4,6,h6,h7])). thf(4,plain,$false,inference(tab_negimp,[status(thm),assumptions([h3,h2,h1,h0]),tab_negimp(discharge,[h4,h5])],[h3,5,h4,h5])). thf(3,plain,$false,inference(tab_negall,[status(thm),assumptions([h2,h1,h0]),tab_negall(discharge,[h3]),tab_negall(eigenvar,eigen__2)],[h2,4,h3])). thf(2,plain,$false,inference(tab_negall,[status(thm),assumptions([h1,h0]),tab_negall(discharge,[h2]),tab_negall(eigenvar,eigen__1)],[h1,3,h2])). thf(1,plain,$false,inference(tab_negall,[status(thm),assumptions([h0]),tab_negall(discharge,[h1]),tab_negall(eigenvar,eigen__0)],[h0,2,h1])). thf(0,theorem,(![X1:$i>$o]:(![X2:$i>$o]:(![X3:$i>$o]:(((![X4:$i]:((X1 @ X4) => (X3 @ X4))) & (![X4:$i]:((X2 @ X4) => (X3 @ X4)))) => (![X4:$i]:(((X1 @ X4) | (X2 @ X4)) => (X3 @ X4))))))),inference(contra,[status(thm),contra(discharge,[h0])],[1,h0])). % SZS output end Proof
% SZS output start Proof thf(ty$i, type, $i : $tType). thf(tyeigen__2, type, eigen__2 : $i). thf(claim,conjecture,(?[X1:$i>$i>$i]:(![X2:$i]:(![X3:$i]:(((X1 @ X2) @ X3) = X3))))). thf(h0,negated_conjecture,(~(?[X1:$i>$i>$i]:(![X2:$i]:(![X3:$i]:(((X1 @ X2) @ X3) = X3))))),inference(assume_negation,[status(cth)],[claim])). thf(h1,assumption,(~((![X1:$i]:(![X2:$i]:(X2 = X2))))),introduced(assumption,[])). thf(h2,assumption,(~((![X1:$i]:(X1 = X1)))),introduced(assumption,[])). thf(h3,assumption,(~((eigen__2 = eigen__2))),introduced(assumption,[])). thf(4,plain,$false,inference(tab_refl,[status(thm),assumptions([h3,h2,h1,h0])],[h3])). thf(3,plain,$false,inference(tab_negall,[status(thm),assumptions([h2,h1,h0]),tab_negall(discharge,[h3]),tab_negall(eigenvar,eigen__2)],[h2,4,h3])). thf(2,plain,$false,inference(tab_negall,[status(thm),assumptions([h1,h0]),tab_negall(discharge,[h2]),tab_negall(eigenvar,eigen__1)],[h1,3,h2])). thf(1,plain,$false,inference(tab_negex,[status(thm),assumptions([h0]),tab_negex(discharge,[h1])],[h0:[bind(X1,$thf((^[X1:$i]:(^[X2:$i]:X2))))],2,h1])). thf(0,theorem,(?[X1:$i>$i>$i]:(![X2:$i]:(![X3:$i]:(((X1 @ X2) @ X3) = X3)))),inference(contra,[status(thm),contra(discharge,[h0])],[1,h0])). % SZS output end Proof
% SZS output start Proof thf(ty_$i, type, $i : $tType). thf(ty_eigen__2, type, eigen__2 : ($i>$o)). thf(ty_eigen__1, type, eigen__1 : ($i>$o)). thf(ty_eigen__0, type, eigen__0 : ($i>$o)). thf(ty_eigen__3, type, eigen__3 : $i). thf(sP1,plain,(sP1 <=> (eigen__0 @ eigen__3),introduced(definition,[new_symbols( definition,[sP1])]))). thf(sP2,plain,(sP2 <=> (sP1 => (eigen__2 @ eigen__3)),introduced(definition,[new _symbols(definition,[sP2])]))). thf(sP3,plain,(sP3 <=> (eigen__1 @ eigen__3),introduced(definition,[new_symbols( definition,[sP3])]))). thf(sP4,plain,(sP4 <=> (sP3 => (eigen__2 @ eigen__3)),introduced(definition,[new _symbols(definition,[sP4])]))). thf(sP5,plain,(sP5 <=> (![X1:$i]:((eigen__1 @ X1) => (eigen__2 @ X1))),introduce d(definition,[new_symbols(definition,[sP5])]))). thf(sP6,plain,(sP6 <=> (eigen__2 @ eigen__3),introduced(definition,[new_symbols( definition,[sP6])]))). thf(sP7,plain,(sP7 <=> (![X1:$i]:((eigen__0 @ X1) => (eigen__2 @ X1))),introduce d(definition,[new_symbols(definition,[sP7])]))). thf(def_in,definition,(in = (^[X1:$i]:(^[X2:$i>$o]:(X2 @ X1))))). thf(def_is_a,definition,(is_a = (^[X1:$i]:(^[X2:$i>$o]:(X2 @ X1))))). thf(def_emptyset,definition,(emptyset = (^[X1:$i]:$false))). thf(def_unord_pair,definition,(unord_pair = (^[X1:$i]:(^[X2:$i]:(^[X3:$i]:((~((X 3 = X1))) => (X3 = X2))))))). thf(def_singleton,definition,(singleton = (^[X1:$i]:(^[X2:$i]:(X2 = X1))))). thf(def_union,definition,(union = (^[X1:$i>$o]:(^[X2:$i>$o]:(^[X3:$i]:((~((X1 @ X3))) => (X2 @ X3))))))). thf(def_excl_union,definition,(excl_union = (^[X1:$i>$o]:(^[X2:$i>$o]:(^[X3:$i]: (((X1 @ X3) => (X2 @ X3)) => (~(((~((X1 @ X3))) => (~((X2 @ X3)))))))))))). thf(def_intersection,definition,(intersection = (^[X1:$i>$o]:(^[X2:$i>$o]:(^[X3: $i]:(~(((X1 @ X3) => (~((X2 @ X3))))))))))). thf(def_setminus,definition,(setminus = (^[X1:$i>$o]:(^[X2:$i>$o]:(^[X3:$i]:(~(( (X1 @ X3) => (X2 @ X3))))))))). thf(def_complement,definition,(complement = (^[X1:$i>$o]:(^[X2:$i]:(~((X1 @ X2)) ))))). thf(def_disjoint,definition,(disjoint = (^[X1:$i>$o]:(^[X2:$i>$o]:(((intersectio n @ X1) @ X2) = emptyset))))). thf(def_subset,definition,(subset = (^[X1:$i>$o]:(^[X2:$i>$o]:(![X3:$i]:((X1 @ X 3) => (X2 @ X3))))))). thf(def_meets,definition,(meets = (^[X1:$i>$o]:(^[X2:$i>$o]:(~((![X3:$i]:((X1 @ X3) => (~((X2 @ X3))))))))))). thf(def_misses,definition,(misses = (^[X1:$i>$o]:(^[X2:$i>$o]:(![X3:$i]:((X1 @ X 3) => (~((X2 @ X3))))))))). thf(thm,conjecture,(![X1:$i>$o]:(![X2:$i>$o]:(![X3:$i>$o]:((~(((![X4:$i]:((X1 @ X4) => (X3 @ X4))) => (~((![X4:$i]:((X2 @ X4) => (X3 @ X4)))))))) => (![X4:$i]:( ((~((X1 @ X4))) => (X2 @ X4)) => (X3 @ X4)))))))). thf(h0,negated_conjecture,(~((![X1:$i>$o]:(![X2:$i>$o]:(![X3:$i>$o]:((~(((![X4:$ i]:((X1 @ X4) => (X3 @ X4))) => (~((![X4:$i]:((X2 @ X4) => (X3 @ X4)))))))) => ( ![X4:$i]:(((~((X1 @ X4))) => (X2 @ X4)) => (X3 @ X4))))))))),inference(assume_ne gation,[status(cth)],[thm])). thf(h1,assumption,(~((![X1:$i>$o]:(![X2:$i>$o]:((~(((![X3:$i]:((eigen__0 @ X3) = > (X2 @ X3))) => (~((![X3:$i]:((X1 @ X3) => (X2 @ X3)))))))) => (![X3:$i]:(((~(( eigen__0 @ X3))) => (X1 @ X3)) => (X2 @ X3)))))))),introduced(assumption,[])). thf(h2,assumption,(~((![X1:$i>$o]:((~(((![X2:$i]:((eigen__0 @ X2) => (X1 @ X2))) => (~((![X2:$i]:((eigen__1 @ X2) => (X1 @ X2)))))))) => (![X2:$i]:(((~((eigen__ 0 @ X2))) => (eigen__1 @ X2)) => (X1 @ X2))))))),introduced(assumption,[])). thf(h3,assumption,(~(((~((sP7 => (~(sP5))))) => (![X1:$i]:(((~((eigen__0 @ X1))) => (eigen__1 @ X1)) => (eigen__2 @ X1)))))),introduced(assumption,[])). thf(h4,assumption,(~((sP7 => (~(sP5))))),introduced(assumption,[])). thf(h5,assumption,(~((![X1:$i]:(((~((eigen__0 @ X1))) => (eigen__1 @ X1)) => (ei gen__2 @ X1))))),introduced(assumption,[])). thf(h6,assumption,sP7,introduced(assumption,[])). thf(h7,assumption,sP5,introduced(assumption,[])). thf(h8,assumption,(~((((~(sP1)) => sP3) => sP6))),introduced(assumption,[])). thf(h9,assumption,((~(sP1)) => sP3),introduced(assumption,[])). thf(h10,assumption,(~(sP6)),introduced(assumption,[])). thf(h11,assumption,sP1,introduced(assumption,[])). thf(h12,assumption,sP3,introduced(assumption,[])). thf(1,plain,((~(sP2) | ~(sP1)) | sP6),inference(prop_rule,[status(thm)],[])). thf(2,plain,(~(sP7) | sP2),inference(all_rule,[status(thm)],[])). thf(3,plain,$false,inference(prop_unsat,[status(thm),assumptions([h11,h9,h10,h8, h6,h7,h4,h5,h3,h2,h1,h0])],[h10,h11,h6,1,2])). thf(4,plain,((~(sP4) | ~(sP3)) | sP6),inference(prop_rule,[status(thm)],[])). thf(5,plain,(~(sP5) | sP4),inference(all_rule,[status(thm)],[])). thf(6,plain,$false,inference(prop_unsat,[status(thm),assumptions([h12,h9,h10,h8, h6,h7,h4,h5,h3,h2,h1,h0])],[h10,h12,h7,4,5])). thf(7,plain,$false,inference(tab_imp,[status(thm),assumptions([h9,h10,h8,h6,h7,h 4,h5,h3,h2,h1,h0]),tab_imp(discharge,[h11]),tab_imp(discharge,[h12])],[h9,3,6,h1 1,h12])). thf(8,plain,$false,inference(tab_negimp,[status(thm),assumptions([h8,h6,h7,h4,h5 ,h3,h2,h1,h0]),tab_negimp(discharge,[h9,h10])],[h8,7,h9,h10])). thf(9,plain,$false,inference(tab_negall,[status(thm),assumptions([h6,h7,h4,h5,h3 ,h2,h1,h0]),tab_negall(discharge,[h8]),tab_negall(eigenvar,eigen__3)],[h5,8,h8]) ). thf(10,plain,$false,inference(tab_negimp,[status(thm),assumptions([h4,h5,h3,h2,h 1,h0]),tab_negimp(discharge,[h6,h7])],[h4,9,h6,h7])). thf(11,plain,$false,inference(tab_negimp,[status(thm),assumptions([h3,h2,h1,h0]) ,tab_negimp(discharge,[h4,h5])],[h3,10,h4,h5])). thf(12,plain,$false,inference(tab_negall,[status(thm),assumptions([h2,h1,h0]),ta b_negall(discharge,[h3]),tab_negall(eigenvar,eigen__2)],[h2,11,h3])). thf(13,plain,$false,inference(tab_negall,[status(thm),assumptions([h1,h0]),tab_n egall(discharge,[h2]),tab_negall(eigenvar,eigen__1)],[h1,12,h2])). thf(14,plain,$false,inference(tab_negall,[status(thm),assumptions([h0]),tab_nega ll(discharge,[h1]),tab_negall(eigenvar,eigen__0)],[h0,13,h1])). % SZS output end Proof
% SZS output start Proof thf(ty_$i, type, $i : $tType). thf(ty_eigen__2, type, eigen__2 : $i). thf(h0, assumption, (![X1:$i>$o]:(![X2:$i]:((X1 @ X2) => (X1 @ (eps__0 @ X1))))) ,introduced(assumption,[])). thf(eigendef_eigen__1, definition, (eigen__1 = (eps__0 @ (^[X1:$i]:(~((![X2:$i]: (X2 = X2))))))), introduced(definition,[new_symbols(definition,[eigen__1]))). thf(eigendef_eigen__2, definition, (eigen__2 = (eps__0 @ (^[X1:$i]:(~((X1 = X1)) )))), introduced(definition,[new_symbols(definition,[eigen__2]))). thf(sP1,plain,(sP1 <=> (![X1:$i]:(![X2:$i]:(X2 = X2))),introduced(definition,[ne w_symbols(definition,[sP1])]))). thf(sP2,plain,(sP2 <=> (![X1:$i]:(X1 = X1)),introduced(definition,[new_symbols(d efinition,[sP2])]))). thf(sP3,plain,(sP3 <=> (![X1:$i>$i>$i]:(~((![X2:$i]:(![X3:$i]:(((X1 @ X2) @ X3) = X3)))))),introduced(definition,[new_symbols(definition,[sP3])]))). thf(sP4,plain,(sP4 <=> (eigen__2 = eigen__2),introduced(definition,[new_symbols( definition,[sP4])]))). thf(claim,conjecture,(~(sP3))). thf(h1,negated_conjecture,sP3,inference(assume_negation,[status(cth)],[claim])). thf(1,plain,(~(sP3) | ~(sP1)),inference(all_rule,[status(thm)],[])). thf(2,plain,(sP1 | ~(sP2)),inference(eigen_choice_rule,[status(thm),assumptions( [h0])],[h0,eigendef_eigen__1])). thf(3,plain,(sP2 | ~(sP4)),inference(eigen_choice_rule,[status(thm),assumptions( [h0])],[h0,eigendef_eigen__2])). thf(4,plain,sP4,inference(prop_rule,[status(thm)],[])). thf(5,plain,$false,inference(prop_unsat,[status(thm),assumptions([h1,h0])],[h1,1 ,2,3,4])). thf(6,plain,$false,inference(eigenvar_choice,[status(thm),assumptions([h1]),eige nvar_choice(discharge,[h0])],[5,h0])). % SZS output end Proof
% SZS status Theorem for SYN054+1.p % SZS output start CNFRefutation for SYN054+1.p cnf(1,plain, ~((big_p MYOWNX3)), inference(decision,[],[]). cnf(2,axiom, predicate3 | (big_p skolemize0), inference(axiom,[status(thm)],[]). cnf(3,plain, predicate3, inference(unit-propagation-resolution,[],[1,2]). cnf(4,axiom, ~(predicate3) | (big_q skolemize1), inference(axiom,[status(thm)],[]). cnf(5,plain, (big_q skolemize1), inference(unit-propagation-resolution,[],[3,4]). cnf(6,axiom, ~((big_q MYOWNX2)) | (predicate4 MYOWNX2 MYOWNX2), inference(axiom,[status(thm)],[]). cnf(7,plain, (predicate4 skolemize1 skolemize1), inference(unit-propagation-resolution,[],[5,6]). cnf(8,axiom, ~((predicate4 MYOWNX2 MYOWNX2)) | (big_s MYOWNX2), inference(axiom,[status(thm)],[]). cnf(9,plain, (big_s skolemize1), inference(unit-propagation-resolution,[],[7,8]). cnf(10,axiom, ~((big_q MYOWNX0)) | ~((predicate0 MYOWNX0 MYOWNX0)), inference(axiom,[status(thm)],[]). cnf(11,plain, ~((predicate0 skolemize1 skolemize1)), inference(unit-propagation-resolution,[],[5,10]). cnf(12,axiom, ~((big_s MYOWNX0)) | (predicate0 MYOWNX0 MYOWNX0), inference(axiom,[status(thm)],[]). cnf(13,plain, ~((big_s skolemize1)), inference(unit-propagation-resolution,[],[11,12]). cnf(14,plain, $false, inference(conflict,[],[9,13]). cnf(15,plain, (big_p skolemize0), inference(conflict-driven-clause-learning,[],[14]). cnf(16,axiom, ~((big_p MYOWNX1)) | (predicate1 MYOWNX1 MYOWNX1), inference(axiom,[status(thm)],[]). cnf(17,plain, (predicate1 skolemize0 skolemize0), inference(unit-propagation-resolution,[],[15,16]). cnf(18,axiom, ~((big_p MYOWNX3)) | (predicate5 MYOWNX3 MYOWNX3), inference(axiom,[status(thm)],[]). cnf(19,plain, (predicate5 skolemize0 skolemize0), inference(unit-propagation-resolution,[],[15,18]). cnf(20,axiom, ~((big_r MYOWNX3)) | ~((predicate5 MYOWNX3 MYOWNX3)), inference(axiom,[status(thm)],[]). cnf(21,plain, ~((big_r skolemize0)), inference(unit-propagation-resolution,[],[19,20]). cnf(22,axiom, ~((predicate2 MYOWNX1 MYOWNX1)) | ~((predicate1 MYOWNX1 MYOWNX1)) | (big_r MYOWNX1), inference(axiom,[status(thm)],[]). cnf(23,plain, ~((predicate2 skolemize0 skolemize0)), inference(unit-propagation-resolution,[],[17,21,22]). cnf(24,axiom, ~((predicate1 MYOWNX1 MYOWNX1)) | (predicate2 MYOWNX1 MYOWNX1) | (big_q MYOWNX1), inference(axiom,[status(thm)],[]). cnf(25,plain, (big_q skolemize0), inference(unit-propagation-resolution,[],[17,23,24]). cnf(26,plain, (predicate4 skolemize0 skolemize0), inference(unit-propagation-resolution,[],[25,6]). cnf(27,plain, (big_s skolemize0), inference(unit-propagation-resolution,[],[26,8]). cnf(28,plain, ~((predicate0 skolemize0 skolemize0)), inference(unit-propagation-resolution,[],[25,10]). cnf(29,plain, ~((big_s skolemize0)), inference(unit-propagation-resolution,[],[28,12]). cnf(30,plain, $false, inference(conflict,[],[27,29]). % SZS output end CNFRefutation for SYN054+1.p
% SZS status Theorem for SEU140+2 % SZS output start Proof for SEU140+2 fof(f6,axiom,( ! [X0] : (empty_set = X0 <=> ! [X1] : ~in(X1,X0))), file('/tmp/SystemOnTPTP11775/SEU140+2.tptp',d1_xboole_0)). fof(f8,axiom,( ! [X0,X1] : (subset(X0,X1) <=> ! [X2] : (in(X2,X0) => in(X2,X1)))), file('/tmp/SystemOnTPTP11775/SEU140+2.tptp',d3_tarski)). fof(f9,axiom,( ! [X0,X1,X2] : (set_intersection2(X0,X1) = X2 <=> ! [X3] : (in(X3,X2) <=> (in(X3,X0) & in(X3,X1))))), file('/tmp/SystemOnTPTP11775/SEU140+2.tptp',d3_xboole_0)). fof(f11,axiom,( ! [X0,X1] : (disjoint(X0,X1) <=> set_intersection2(X0,X1) = empty_set)), file('/tmp/SystemOnTPTP11775/SEU140+2.tptp',d7_xboole_0)). fof(f43,axiom,( ! [X0,X1] : (~(~disjoint(X0,X1) & ! [X2] : ~(in(X2,X0) & in(X2,X1))) & ~(? [X2] : (in(X2,X0) & in(X2,X1)) & disjoint(X0,X1)))), file('/tmp/SystemOnTPTP11775/SEU140+2.tptp',t3_xboole_0)). fof(f51,conjecture,( ! [X0,X1,X2] : ((subset(X0,X1) & disjoint(X1,X2)) => disjoint(X0,X2))), file('/tmp/SystemOnTPTP11775/SEU140+2.tptp',t63_xboole_1)). fof(f52,negated_conjecture,( ~! [X0,X1,X2] : ((subset(X0,X1) & disjoint(X1,X2)) => disjoint(X0,X2))), inference(negated_conjecture,[],[f51])). fof(f60,plain,( ! [X0,X1] : (~(~disjoint(X0,X1) & ! [X3] : ~(in(X3,X0) & in(X3,X1))) & ~(? [X2] : (in(X2,X0) & in(X2,X1)) & disjoint(X0,X1)))), inference(rectify,[],[f43])). fof(f61,plain,( ! [X0,X1] : (~(~disjoint(X0,X1) & ! [X3] : ~(in(X3,X0) & in(X3,X1))) & ~(? [X2] : (in(X2,X0) & in(X2,X1)) & disjoint(X0,X1)))), inference(flattening,[],[f60])). fof(f63,plain,( ! [X0] : (empty_set = X0 <=> ! [X1] : ~in(X1,X0))), inference(flattening,[],[f6])). fof(f74,plain,( ? [X0,X1,X2] : ((subset(X0,X1) & disjoint(X1,X2)) & ~disjoint(X0,X2))), inference(ennf_transformation,[],[f52])). fof(f75,plain,( ? [X0,X1,X2] : (subset(X0,X1) & disjoint(X1,X2) & ~disjoint(X0,X2))), inference(flattening,[],[f74])). fof(f78,plain,( ! [X0,X1] : ((disjoint(X0,X1) | ? [X3] : (in(X3,X0) & in(X3,X1))) & (! [X2] : (~in(X2,X0) | ~in(X2,X1)) | ~disjoint(X0,X1)))), inference(ennf_transformation,[],[f61])). fof(f96,plain,( ! [X0,X1] : (subset(X0,X1) <=> ! [X2] : (~in(X2,X0) | in(X2,X1)))), inference(ennf_transformation,[],[f8])). fof(f101,plain,( subset(sK0,sK1) & disjoint(sK1,sK2) & ~disjoint(sK0,sK2)), inference(skolemisation,[status(esa),new_symbols(skolem,[sK0,sK1,sK2])],[f75])). fof(f103,plain,( ! [X0,X1] : ((disjoint(X0,X1) | (in(sK4(X1,X0),X0) & in(sK4(X1,X0),X1))) & (! [X2] : (~in(X2,X0) | ~in(X2,X1)) | ~disjoint(X0,X1)))), inference(skolemisation,[status(esa),new_symbols(skolem,[sK4])],[f78])). fof(f106,plain,( ! [X0,X1] : ((~disjoint(X0,X1) | set_intersection2(X0,X1) = empty_set) & (set_intersection2(X0,X1) != empty_set | disjoint(X0,X1)))), inference(nnf_transformation,[],[f11])). fof(f109,plain,( ! [X0] : ((empty_set != X0 | ! [X1] : ~in(X1,X0)) & (? [X1] : in(X1,X0) | empty_set = X0))), inference(nnf_transformation,[],[f63])). fof(f110,plain,( ! [X0] : ((empty_set != X0 | ! [X2] : ~in(X2,X0)) & (? [X1] : in(X1,X0) | empty_set = X0))), inference(rectify,[],[f109])). fof(f111,plain,( ! [X0] : ((empty_set != X0 | ! [X2] : ~in(X2,X0)) & (in(sK5(X0),X0) | empty_set = X0))), inference(skolemisation,[status(esa),new_symbols(skolem,[sK5])],[f110])). fof(f116,plain,( ! [X0,X1,X2] : ((set_intersection2(X0,X1) != X2 | ! [X3] : ((~in(X3,X2) | (in(X3,X0) & in(X3,X1))) & ((~in(X3,X0) | ~in(X3,X1)) | in(X3,X2)))) & (? [X3] : ((in(X3,X2) | (in(X3,X0) & in(X3,X1))) & (~in(X3,X2) | (~in(X3,X0) | ~in(X3,X1)))) | set_intersection2(X0,X1) = X2))), inference(nnf_transformation,[],[f9])). fof(f117,plain,( ! [X0,X1,X2] : ((set_intersection2(X0,X1) != X2 | ! [X3] : ((~in(X3,X2) | (in(X3,X0) & in(X3,X1))) & (~in(X3,X0) | ~in(X3,X1) | in(X3,X2)))) & (? [X3] : ((in(X3,X2) | (in(X3,X0) & in(X3,X1))) & (~in(X3,X2) | ~in(X3,X0) | ~in(X3,X1))) | set_intersection2(X0,X1) = X2))), inference(flattening,[],[f116])). fof(f118,plain,( ! [X0,X1,X2] : ((set_intersection2(X0,X1) != X2 | ! [X4] : ((~in(X4,X2) | (in(X4,X0) & in(X4,X1))) & (~in(X4,X0) | ~in(X4,X1) | in(X4,X2)))) & (? [X3] : ((in(X3,X2) | (in(X3,X0) & in(X3,X1))) & (~in(X3,X2) | ~in(X3,X0) | ~in(X3,X1))) | set_intersection2(X0,X1) = X2))), inference(rectify,[],[f117])). fof(f119,plain,( ! [X0,X1,X2] : ((set_intersection2(X0,X1) != X2 | ! [X4] : ((~in(X4,X2) | (in(X4,X0) & in(X4,X1))) & (~in(X4,X0) | ~in(X4,X1) | in(X4,X2)))) & (((in(sK7(X2,X1,X0),X2) | (in(sK7(X2,X1,X0),X0) & in(sK7(X2,X1,X0),X1))) & (~in(sK7(X2,X1,X0),X2) | ~in(sK7(X2,X1,X0),X0) | ~in(sK7(X2,X1,X0),X1))) | set_intersection2(X0,X1) = X2))), inference(skolemisation,[status(esa),new_symbols(skolem,[sK7])],[f118])). fof(f124,plain,( ! [X0,X1] : ((~subset(X0,X1) | ! [X2] : (~in(X2,X0) | in(X2,X1))) & (? [X2] : (in(X2,X0) & ~in(X2,X1)) | subset(X0,X1)))), inference(nnf_transformation,[],[f96])). fof(f125,plain,( ! [X0,X1] : ((~subset(X0,X1) | ! [X3] : (~in(X3,X0) | in(X3,X1))) & (? [X2] : (in(X2,X0) & ~in(X2,X1)) | subset(X0,X1)))), inference(rectify,[],[f124])). fof(f126,plain,( ! [X0,X1] : ((~subset(X0,X1) | ! [X3] : (~in(X3,X0) | in(X3,X1))) & ((in(sK9(X1,X0),X0) & ~in(sK9(X1,X0),X1)) | subset(X0,X1)))), inference(skolemisation,[status(esa),new_symbols(skolem,[sK9])],[f125])). fof(f133,plain,( subset(sK0,sK1)), inference(cnf_transformation,[],[f101])). fof(f134,plain,( disjoint(sK1,sK2)), inference(cnf_transformation,[],[f101])). fof(f135,plain,( ~disjoint(sK0,sK2)), inference(cnf_transformation,[],[f101])). fof(f146,plain,( ( ! [X0,X1] : (in(sK4(X1,X0),X0) | disjoint(X0,X1)) )), inference(cnf_transformation,[],[f103])). fof(f147,plain,( ( ! [X0,X1] : (in(sK4(X1,X0),X1) | disjoint(X0,X1)) )), inference(cnf_transformation,[],[f103])). fof(f162,plain,( ( ! [X0,X1] : (set_intersection2(X0,X1) = empty_set | ~disjoint(X0,X1)) )), inference(cnf_transformation,[],[f106])). fof(f169,plain,( ( ! [X2,X0] : (~in(X2,X0) | empty_set != X0) )), inference(cnf_transformation,[],[f111])). fof(f189,plain,( ( ! [X4,X2,X0,X1] : (in(X4,X2) | ~in(X4,X1) | ~in(X4,X0) | set_intersection2(X0,X1) != X2) )), inference(cnf_transformation,[],[f119])). fof(f202,plain,( ( ! [X0,X3,X1] : (~subset(X0,X1) | ~in(X3,X0) | in(X3,X1)) )), inference(cnf_transformation,[],[f126])). fof(f218,plain,( ( ! [X2] : (~in(X2,empty_set)) )), inference(equality_resolution,[],[f169])). fof(f222,plain,( ( ! [X4,X0,X1] : (in(X4,set_intersection2(X0,X1)) | ~in(X4,X1) | ~in(X4,X0)) )), inference(equality_resolution,[],[f189])). fof(f234,plain,( set_intersection2(sK1,sK2) = empty_set), inference(unit_resulting_resolution,[],[f134,f162])). fof(f467,plain,( in(sK4(sK2,sK0),sK0)), inference(unit_resulting_resolution,[],[f135,f146])). fof(f480,plain,( in(sK4(sK2,sK0),sK1)), inference(unit_resulting_resolution,[],[f133,f467,f202])). fof(f513,plain,( in(sK4(sK2,sK0),sK2)), inference(unit_resulting_resolution,[],[f135,f147])). fof(f857,plain,( in(sK4(sK2,sK0),set_intersection2(sK1,sK2))), inference(unit_resulting_resolution,[],[f513,f480,f222])). fof(f865,plain,( in(sK4(sK2,sK0),empty_set)), inference(forward_demodulation,[],[f857,f234])). fof(f866,plain,( $false), inference(subsumption_resolution,[],[f865,f218])). % SZS output end Proof for SEU140+2
tff(type_def_6, type, array: $tType). tff(func_def_0, type, read: (array * $int) > $int). tff(func_def_1, type, write: (array * $int * $int) > array). tff(func_def_7, type, sK0: array). tff(func_def_8, type, sK1: $int). tff(func_def_9, type, sK2: $int). tff(func_def_10, type, sK3: $int). tff(f3,conjecture,( ! [X0 : array,X1 : $int,X2 : $int] : (! [X3 : $int] : (($lesseq(X3,X2) & $lesseq(X1,X3)) => $greater(read(X0,X3),0)) => ! [X4 : $int] : (($lesseq(X4,X2) & $lesseq($sum(X1,3),X4)) => $greater(read(X0,X4),0)))), file('/Users/giles/TPTP/TPTP-v6.2.0/Problems/DAT/DAT013=1.p',unknown)). tff(f4,negated_conjecture,( ~! [X0 : array,X1 : $int,X2 : $int] : (! [X3 : $int] : (($lesseq(X3,X2) & $lesseq(X1,X3)) => $greater(read(X0,X3),0)) => ! [X4 : $int] : (($lesseq(X4,X2) & $lesseq($sum(X1,3),X4)) => $greater(read(X0,X4),0)))), inference(negated_conjecture,[],[f3])). tff(f6,plain,( ~! [X0 : array,X1 : $int,X2 : $int] : (! [X3 : $int] : ((~$less(X2,X3) & ~$less(X3,X1)) => $less(0,read(X0,X3))) => ! [X4 : $int] : ((~$less(X2,X4) & ~$less(X4,$sum(X1,3))) => $less(0,read(X0,X4))))), inference(evaluation,[],[f4])). tff(f7,plain,( ( ! [X0:$int,X1:$int] : ($sum(X0,X1) = $sum(X1,X0)) )), introduced(theory_axiom,[])). tff(f9,plain,( ( ! [X0:$int] : ($sum(X0,0) = X0) )), introduced(theory_axiom,[])). tff(f12,plain,( ( ! [X0:$int] : (~$less(X0,X0)) )), introduced(theory_axiom,[])). tff(f13,plain,( ( ! [X2:$int,X0:$int,X1:$int] : (~$less(X1,X2) | ~$less(X0,X1) | $less(X0,X2)) )), introduced(theory_axiom,[])). tff(f14,plain,( ( ! [X0:$int,X1:$int] : ($less(X1,X0) | $less(X0,X1) | X0 = X1) )), introduced(theory_axiom,[])). tff(f15,plain,( ( ! [X2:$int,X0:$int,X1:$int] : ($less($sum(X0,X2),$sum(X1,X2)) | ~$less(X0,X1)) )), introduced(theory_axiom,[])). tff(f20,plain,( ? [X0 : array,X1 : $int,X2 : $int] : (? [X4 : $int] : (~$less(0,read(X0,X4)) & (~$less(X2,X4) & ~$less(X4,$sum(X1,3)))) & ! [X3 : $int] : ($less(0,read(X0,X3)) | ($less(X2,X3) | $less(X3,X1))))), inference(ennf_transformation,[],[f6])). tff(f21,plain,( ? [X0 : array,X1 : $int,X2 : $int] : (? [X4 : $int] : (~$less(0,read(X0,X4)) & ~$less(X2,X4) & ~$less(X4,$sum(X1,3))) & ! [X3 : $int] : ($less(0,read(X0,X3)) | $less(X2,X3) | $less(X3,X1)))), inference(flattening,[],[f20])). tff(f22,plain,( ? [X0 : array,X1 : $int,X2 : $int] : (? [X3 : $int] : (~$less(0,read(X0,X3)) & ~$less(X2,X3) & ~$less(X3,$sum(X1,3))) & ! [X4 : $int] : ($less(0,read(X0,X4)) | $less(X2,X4) | $less(X4,X1)))), inference(rectify,[],[f21])). tff(f23,plain,( ? [X0 : array,X1 : $int,X2 : $int] : (? [X3 : $int] : (~$less(0,read(X0,X3)) & ~$less(X2,X3) & ~$less(X3,$sum(X1,3))) & ! [X4 : $int] : ($less(0,read(X0,X4)) | $less(X2,X4) | $less(X4,X1))) => (? [X3 : $int] : (~$less(0,read(sK0,X3)) & ~$less(sK2,X3) & ~$less(X3,$sum(sK1,3))) & ! [X4 : $int] : ($less(0,read(sK0,X4)) | $less(sK2,X4) | $less(X4,sK1)))), introduced(choice_axiom,[])). tff(f24,plain,( ( ! [X2:$int,X0:array,X1:$int] : (? [X3 : $int] : (~$less(0,read(X0,X3)) & ~$less(X2,X3) & ~$less(X3,$sum(X1,3))) => (~$less(0,read(X0,sK3)) & ~$less(X2,sK3) & ~$less(sK3,$sum(X1,3)))) )), introduced(choice_axiom,[])). tff(f25,plain,( (~$less(0,read(sK0,sK3)) & ~$less(sK2,sK3) & ~$less(sK3,$sum(sK1,3))) & ! [X4 : $int] : ($less(0,read(sK0,X4)) | $less(sK2,X4) | $less(X4,sK1))), inference(skolemisation,[status(esa),new_symbols(skolem,[sK0,sK1,sK2,sK3])],[f22,f24,f23])). tff(f29,plain,( ( ! [X4:$int] : ($less(0,read(sK0,X4)) | $less(sK2,X4) | $less(X4,sK1)) )), inference(cnf_transformation,[],[f25])). tff(f30,plain,( ~$less(sK3,$sum(sK1,3))), inference(cnf_transformation,[],[f25])). tff(f31,plain,( ~$less(sK2,sK3)), inference(cnf_transformation,[],[f25])). tff(f32,plain,( ~$less(0,read(sK0,sK3))), inference(cnf_transformation,[],[f25])). tff(f33,plain,( ~$less(sK3,$sum(3,sK1))), inference(forward_demodulation,[],[f30,f7])). tff(f98,plain,( $less($sum(3,sK1),sK3) | $sum(3,sK1) = sK3), inference(resolution,[],[f14,f33])). tff(f131,plain,( spl4_8 <=> $sum(3,sK1) = sK3), introduced(AVATAR_definition,[new_symbols(naming,[spl4_8])])). tff(f132,plain,( $sum(3,sK1) = sK3 | ~spl4_8), inference(AVATAR_component_clause,[],[f131])). tff(f137,plain,( spl4_10 <=> $less($sum(3,sK1),sK3)), introduced(AVATAR_definition,[new_symbols(naming,[spl4_10])])). tff(f138,plain,( $less($sum(3,sK1),sK3) | ~spl4_10), inference(AVATAR_component_clause,[],[f137])). tff(f142,plain,( spl4_8 | spl4_10), inference(AVATAR_split_clause,[],[f98,f137,f131])). tff(f172,plain,( ( ! [X6:$int,X4:$int,X5:$int] : ($less($sum(X5,X4),$sum(X6,X5)) | ~$less(X4,X6)) )), inference(superposition,[],[f15,f7])). tff(f489,plain,( ( ! [X6:$int,X7:$int] : ($less(X6,$sum(X7,X6)) | ~$less(0,X7)) )), inference(superposition,[],[f172,f9])). tff(f659,plain,( $less(sK2,sK3) | $less(sK3,sK1)), inference(resolution,[],[f29,f32])). tff(f662,plain,( $less(sK3,sK1)), inference(subsumption_resolution,[],[f659,f31])). tff(f664,plain,( ( ! [X0:$int] : (~$less(X0,sK3) | $less(X0,sK1)) )), inference(resolution,[],[f662,f13])). tff(f673,plain,( ( ! [X4:$int] : ($less($sum(sK1,X4),sK3) | ~$less(X4,3)) ) | ~spl4_8), inference(superposition,[],[f172,f132])). tff(f2473,plain,( $less(sK1,sK3) | ~$less(0,3) | ~spl4_8), inference(superposition,[],[f673,f9])). tff(f2478,plain,( $less(sK1,sK3) | ~spl4_8), inference(evaluation,[],[f2473])). tff(f2480,plain,( $less(sK1,sK1) | ~spl4_8), inference(resolution,[],[f2478,f664])). tff(f2484,plain,( $false | ~spl4_8), inference(subsumption_resolution,[],[f2480,f12])). tff(f2485,plain,( ~spl4_8), inference(AVATAR_contradiction_clause,[],[f2484,f131])). tff(f2513,plain,( ( ! [X2:$int] : (~$less(X2,$sum(3,sK1)) | $less(X2,sK3)) ) | ~spl4_10), inference(resolution,[],[f138,f13])). tff(f2962,plain,( ~$less(0,3) | $less(sK1,sK3) | ~spl4_10), inference(resolution,[],[f489,f2513])). tff(f2989,plain,( $less(sK1,sK3) | ~spl4_10), inference(evaluation,[],[f2962])). tff(f2991,plain,( $less(sK1,sK1) | ~spl4_10), inference(resolution,[],[f2989,f664])). tff(f2995,plain,( $false | ~spl4_10), inference(subsumption_resolution,[],[f2991,f12])). tff(f2996,plain,( ~spl4_10), inference(AVATAR_contradiction_clause,[],[f2995,f137])). tff(f2997,plain,( $false), inference(AVATAR_sat_refutation,[],[f142,f2485,f2996])).
# SZS output start Saturation. tff(u283,axiom, (![X1, X0] : ((~woman(X0,X1) | human_person(X0,X1))))). tff(u282,axiom, (![X1, X0] : ((~woman(X0,X1) | female(X0,X1))))). tff(u281,negated_conjecture, woman(sK0,sK1)). tff(u280,negated_conjecture, ~female(sK0,sK4)). tff(u279,negated_conjecture, ~female(sK0,sK2)). tff(u278,negated_conjecture, ~female(sK0,sK3)). tff(u277,negated_conjecture, female(sK0,sK1)). tff(u276,axiom, (![X1, X0] : ((~human_person(X0,X1) | organism(X0,X1))))). tff(u275,axiom, (![X1, X0] : ((~human_person(X0,X1) | human(X0,X1))))). tff(u274,axiom, (![X1, X0] : ((~human_person(X0,X1) | animate(X0,X1))))). tff(u273,negated_conjecture, human_person(sK0,sK1)). tff(u272,negated_conjecture, ~animate(sK0,sK3)). tff(u271,negated_conjecture, animate(sK0,sK1)). tff(u270,negated_conjecture, ~human(sK0,sK2)). tff(u269,negated_conjecture, human(sK0,sK1)). tff(u268,axiom, (![X1, X0] : ((~organism(X0,X1) | entity(X0,X1))))). tff(u267,axiom, (![X1, X0] : ((~organism(X0,X1) | living(X0,X1))))). tff(u266,negated_conjecture, organism(sK0,sK1)). tff(u265,negated_conjecture, ~living(sK0,sK3)). tff(u264,negated_conjecture, living(sK0,sK1)). tff(u263,axiom, (![X1, X0] : ((~entity(X0,X1) | specific(X0,X1))))). tff(u262,axiom, (![X1, X0] : ((~entity(X0,X1) | existent(X0,X1))))). tff(u261,negated_conjecture, entity(sK0,sK1)). tff(u260,negated_conjecture, entity(sK0,sK3)). tff(u259,axiom, (![X1, X0] : ((~mia_forename(X0,X1) | forename(X0,X1))))). tff(u258,negated_conjecture, mia_forename(sK0,sK2)). tff(u257,axiom, (![X1, X0] : ((~forename(X0,X1) | relname(X0,X1))))). tff(u256,negated_conjecture, forename(sK0,sK2)). tff(u255,axiom, (![X1, X0] : ((~abstraction(X0,X1) | nonhuman(X0,X1))))). tff(u254,axiom, (![X1, X0] : ((~abstraction(X0,X1) | general(X0,X1))))). tff(u253,axiom, (![X1, X0] : ((~abstraction(X0,X1) | unisex(X0,X1))))). tff(u252,negated_conjecture, abstraction(sK0,sK2)). tff(u251,axiom, (![X1, X0] : ((~unisex(X0,X1) | ~female(X0,X1))))). tff(u250,negated_conjecture, unisex(sK0,sK2)). tff(u249,negated_conjecture, unisex(sK0,sK4)). tff(u248,negated_conjecture, unisex(sK0,sK3)). tff(u247,negated_conjecture, ~general(sK0,sK4)). tff(u246,negated_conjecture, ~general(sK0,sK1)). tff(u245,negated_conjecture, ~general(sK0,sK3)). tff(u244,negated_conjecture, general(sK0,sK2)). tff(u243,axiom, (![X1, X0] : ((~nonhuman(X0,X1) | ~human(X0,X1))))). tff(u242,negated_conjecture, nonhuman(sK0,sK2)). tff(u241,axiom, (![X1, X0] : ((~relation(X0,X1) | abstraction(X0,X1))))). tff(u240,negated_conjecture, relation(sK0,sK2)). tff(u239,axiom, (![X1, X0] : ((~relname(X0,X1) | relation(X0,X1))))). tff(u238,negated_conjecture, relname(sK0,sK2)). tff(u237,axiom, (![X1, X0] : ((~object(X0,X1) | entity(X0,X1))))). tff(u236,axiom, (![X1, X0] : ((~object(X0,X1) | nonliving(X0,X1))))). tff(u235,axiom, (![X1, X0] : ((~object(X0,X1) | unisex(X0,X1))))). tff(u234,negated_conjecture, object(sK0,sK3)). tff(u233,axiom, (![X1, X0] : ((~nonliving(X0,X1) | ~living(X0,X1))))). tff(u232,axiom, (![X1, X0] : ((~nonliving(X0,X1) | ~animate(X0,X1))))). tff(u231,negated_conjecture, nonliving(sK0,sK3)). tff(u230,negated_conjecture, ~existent(sK0,sK4)). tff(u229,negated_conjecture, existent(sK0,sK1)). tff(u228,negated_conjecture, existent(sK0,sK3)). tff(u227,axiom, (![X1, X0] : ((~specific(X0,X1) | ~general(X0,X1))))). tff(u226,negated_conjecture, specific(sK0,sK1)). tff(u225,negated_conjecture, specific(sK0,sK4)). tff(u224,negated_conjecture, specific(sK0,sK3)). tff(u223,axiom, (![X1, X0] : ((~substance_matter(X0,X1) | object(X0,X1))))). tff(u222,negated_conjecture, substance_matter(sK0,sK3)). tff(u221,axiom, (![X1, X0] : ((~food(X0,X1) | substance_matter(X0,X1))))). tff(u220,negated_conjecture, food(sK0,sK3)). tff(u219,axiom, (![X1, X0] : ((~beverage(X0,X1) | food(X0,X1))))). tff(u218,negated_conjecture, beverage(sK0,sK3)). tff(u217,axiom, (![X1, X0] : ((~shake_beverage(X0,X1) | beverage(X0,X1))))). tff(u216,negated_conjecture, shake_beverage(sK0,sK3)). tff(u215,axiom, (![X1, X0] : ((~order(X0,X1) | act(X0,X1))))). tff(u214,axiom, (![X1, X0] : ((~order(X0,X1) | event(X0,X1))))). tff(u213,negated_conjecture, order(sK0,sK4)). tff(u212,axiom, (![X1, X0] : ((~event(X0,X1) | eventuality(X0,X1))))). tff(u211,negated_conjecture, event(sK0,sK4)). tff(u210,axiom, (![X1, X0] : ((~eventuality(X0,X1) | specific(X0,X1))))). tff(u209,axiom, (![X1, X0] : ((~eventuality(X0,X1) | nonexistent(X0,X1))))). tff(u208,axiom, (![X1, X0] : ((~eventuality(X0,X1) | unisex(X0,X1))))). tff(u207,negated_conjecture, eventuality(sK0,sK4)). tff(u206,axiom, (![X1, X0] : ((~nonexistent(X0,X1) | ~existent(X0,X1))))). tff(u205,negated_conjecture, nonexistent(sK0,sK4)). tff(u204,axiom, (![X1, X0] : ((~act(X0,X1) | event(X0,X1))))). tff(u203,negated_conjecture, act(sK0,sK4)). tff(u202,axiom, (![X1, X3, X0, X2] : ((~of(X0,X3,X1) | (X2 = X3) | ~forename(X0,X3) | ~of(X0,X2,X1) | ~forename(X0,X2) | ~entity(X0,X1))))). tff(u201,negated_conjecture, (![X0] : ((~of(sK0,X0,sK1) | (sK2 = X0) | ~forename(sK0,X0))))). tff(u200,negated_conjecture, of(sK0,sK2,sK1)). tff(u199,negated_conjecture, nonreflexive(sK0,sK4)). tff(u198,negated_conjecture, ~agent(sK0,sK4,sK3)). tff(u197,negated_conjecture, agent(sK0,sK4,sK1)). tff(u196,axiom, (![X1, X3, X0] : ((~patient(X0,X1,X3) | ~agent(X0,X1,X3) | ~nonreflexive(X0,X1))))). tff(u195,negated_conjecture, patient(sK0,sK4,sK3)). # SZS output end Saturation.
tff(declare$i,type,$i:$tType). tff(declare_$i1,type,at:$i). tff(declare_$i2,type,an_a_nonce:$i). tff(finite_domain,axiom, ! [X:$i] : ( X = at | X = an_a_nonce ) ). tff(distinct_domain,axiom, at != an_a_nonce ). tff(declare_t,type,t:$i). tff(t_definition,axiom,t = at). tff(declare_a,type,a:$i). tff(a_definition,axiom,a = at). tff(declare_b,type,b:$i). tff(b_definition,axiom,b = at). tff(declare_bt,type,bt:$i). tff(bt_definition,axiom,bt = an_a_nonce). tff(declare_an_intruder_nonce,type,an_intruder_nonce:$i). tff(an_intruder_nonce_definition,axiom,an_intruder_nonce = an_a_nonce). tff(declare_key,type,key: $i * $i > $i). tff(function_key,axiom, key(at,at) = at & key(at,an_a_nonce) = at & key(an_a_nonce,at) = at & key(an_a_nonce,an_a_nonce) = an_a_nonce ). tff(declare_pair,type,pair: $i * $i > $i). tff(function_pair,axiom, pair(at,at) = at & pair(at,an_a_nonce) = an_a_nonce & pair(an_a_nonce,at) = at & pair(an_a_nonce,an_a_nonce) = at ). tff(declare_sent,type,sent: $i * $i * $i > $i). tff(function_sent,axiom, sent(at,at,at) = at & sent(at,at,an_a_nonce) = at & sent(at,an_a_nonce,at) = at & sent(at,an_a_nonce,an_a_nonce) = an_a_nonce & sent(an_a_nonce,at,at) = at & sent(an_a_nonce,at,an_a_nonce) = at & sent(an_a_nonce,an_a_nonce,at) = at & sent(an_a_nonce,an_a_nonce,an_a_nonce) = at ). tff(declare_quadruple,type,quadruple: $i * $i * $i * $i > $i). tff(function_quadruple,axiom, quadruple(at,at,at,at) = at & quadruple(at,at,at,an_a_nonce) = at & quadruple(at,at,an_a_nonce,at) = at & quadruple(at,at,an_a_nonce,an_a_nonce) = at & quadruple(at,an_a_nonce,at,at) = at & quadruple(at,an_a_nonce,at,an_a_nonce) = at & quadruple(at,an_a_nonce,an_a_nonce,at) = at & quadruple(at,an_a_nonce,an_a_nonce,an_a_nonce) = at & quadruple(an_a_nonce,at,at,at) = at & quadruple(an_a_nonce,at,at,an_a_nonce) = an_a_nonce & quadruple(an_a_nonce,at,an_a_nonce,at) = an_a_nonce & quadruple(an_a_nonce,at,an_a_nonce,an_a_nonce) = an_a_nonce & quadruple(an_a_nonce,an_a_nonce,at,at) = an_a_nonce & quadruple(an_a_nonce,an_a_nonce,at,an_a_nonce) = at & quadruple(an_a_nonce,an_a_nonce,an_a_nonce,at) = an_a_nonce & quadruple(an_a_nonce,an_a_nonce,an_a_nonce,an_a_nonce) = an_a_nonce ). tff(declare_encrypt,type,encrypt: $i * $i > $i). tff(function_encrypt,axiom, encrypt(at,at) = an_a_nonce & encrypt(at,an_a_nonce) = an_a_nonce & encrypt(an_a_nonce,at) = at & encrypt(an_a_nonce,an_a_nonce) = at ). tff(declare_triple,type,triple: $i * $i * $i > $i). tff(function_triple,axiom, triple(at,at,at) = at & triple(at,at,an_a_nonce) = an_a_nonce & triple(at,an_a_nonce,at) = at & triple(at,an_a_nonce,an_a_nonce) = at & triple(an_a_nonce,at,at) = at & triple(an_a_nonce,at,an_a_nonce) = an_a_nonce & triple(an_a_nonce,an_a_nonce,at) = at & triple(an_a_nonce,an_a_nonce,an_a_nonce) = an_a_nonce ). tff(declare_generate_b_nonce,type,generate_b_nonce: $i > $i). tff(function_generate_b_nonce,axiom, generate_b_nonce(at) = an_a_nonce & generate_b_nonce(an_a_nonce) = an_a_nonce ). tff(declare_generate_expiration_time,type,generate_expiration_time: $i > $i). tff(function_generate_expiration_time,axiom, generate_expiration_time(at) = an_a_nonce & generate_expiration_time(an_a_nonce) = an_a_nonce ). tff(declare_generate_key,type,generate_key: $i > $i). tff(function_generate_key,axiom, generate_key(at) = at & generate_key(an_a_nonce) = at ). tff(declare_generate_intruder_nonce,type,generate_intruder_nonce: $i > $i). tff(function_generate_intruder_nonce,axiom, generate_intruder_nonce(at) = at & generate_intruder_nonce(an_a_nonce) = an_a_nonce ). tff(declare_a_holds,type,a_holds: $i > $o ). fof(predicate_a_holds,axiom, a_holds(at) & a_holds(an_a_nonce) ). tff(declare_party_of_protocol,type,party_of_protocol: $i > $o ). fof(predicate_party_of_protocol,axiom, party_of_protocol(at) & party_of_protocol(an_a_nonce) ). tff(declare_message,type,message: $i > $o ). fof(predicate_message,axiom, message(at) & message(an_a_nonce) ). tff(declare_a_stored,type,a_stored: $i > $o ). fof(predicate_a_stored,axiom, ~a_stored(at) & a_stored(an_a_nonce) ). tff(declare_b_holds,type,b_holds: $i > $o ). fof(predicate_b_holds,axiom, b_holds(at) & b_holds(an_a_nonce) ). tff(declare_fresh_to_b,type,fresh_to_b: $i > $o ). fof(predicate_fresh_to_b,axiom, fresh_to_b(at) & fresh_to_b(an_a_nonce) ). tff(declare_b_stored,type,b_stored: $i > $o ). fof(predicate_b_stored,axiom, b_stored(at) & b_stored(an_a_nonce) ). tff(declare_a_key,type,a_key: $i > $o ). fof(predicate_a_key,axiom, a_key(at) & ~a_key(an_a_nonce) ). tff(declare_t_holds,type,t_holds: $i > $o ). fof(predicate_t_holds,axiom, t_holds(at) & ~t_holds(an_a_nonce) ). tff(declare_a_nonce,type,a_nonce: $i > $o ). fof(predicate_a_nonce,axiom, ~a_nonce(at) & a_nonce(an_a_nonce) ). tff(declare_intruder_message,type,intruder_message: $i > $o ). fof(predicate_intruder_message,axiom, intruder_message(at) & intruder_message(an_a_nonce) ). tff(declare_intruder_holds,type,intruder_holds: $i > $o ). fof(predicate_intruder_holds,axiom, intruder_holds(at) & intruder_holds(an_a_nonce) ). tff(declare_fresh_intruder_nonce,type,fresh_intruder_nonce: $i > $o ). fof(predicate_fresh_intruder_nonce,axiom, ~fresh_intruder_nonce(at) & fresh_intruder_nonce(an_a_nonce) ).
tff(type_def_5, type, array: $tType). tff(func_def_0, type, read: (array * $int) > $int). tff(func_def_1, type, write: (array * $int * $int) > array). tff(func_def_7, type, sK0: array). tff(func_def_8, type, sK1: $int). tff(func_def_9, type, sK2: $int). tff(func_def_10, type, sK3: $int). tff(f3,conjecture,( ! [X0 : array,X1 : $int,X2 : $int] : (! [X3 : $int] : (($lesseq(X3,X2) & $lesseq(X1,X3)) => $greater(read(X0,X3),0)) => ! [X4 : $int] : (($lesseq(X4,X2) & $lesseq($sum(X1,3),X4)) => $greater(read(X0,X4),0)))), file('TPTP/TPTP-v6.4.0/Problems/DAT/DAT013=1.p',unknown)). tff(f4,negated_conjecture,( ~! [X0 : array,X1 : $int,X2 : $int] : (! [X3 : $int] : (($lesseq(X3,X2) & $lesseq(X1,X3)) => $greater(read(X0,X3),0)) => ! [X4 : $int] : (($lesseq(X4,X2) & $lesseq($sum(X1,3),X4)) => $greater(read(X0,X4),0)))), inference(negated_conjecture,[],[f3])). tff(f6,plain,( ~! [X0 : array,X1 : $int,X2 : $int] : (! [X3 : $int] : ((~$less(X2,X3) & ~$less(X3,X1)) => $less(0,read(X0,X3))) => ! [X4 : $int] : ((~$less(X2,X4) & ~$less(X4,$sum(X1,3))) => $less(0,read(X0,X4))))), inference(evaluation,[],[f4])). tff(f7,plain,( ( ! [X0:$int,X1:$int] : ($sum(X0,X1) = $sum(X1,X0)) )), introduced(theory_axiom,[])). tff(f9,plain,( ( ! [X0:$int] : ($sum(X0,0) = X0) )), introduced(theory_axiom,[])). tff(f12,plain,( ( ! [X0:$int] : (~$less(X0,X0)) )), introduced(theory_axiom,[])). tff(f13,plain,( ( ! [X2:$int,X0:$int,X1:$int] : (~$less(X1,X2) | ~$less(X0,X1) | $less(X0,X2)) )), introduced(theory_axiom,[])). tff(f14,plain,( ( ! [X0:$int,X1:$int] : ($less(X1,X0) | $less(X0,X1) | X0 = X1) )), introduced(theory_axiom,[])). tff(f15,plain,( ( ! [X2:$int,X0:$int,X1:$int] : ($less($sum(X0,X2),$sum(X1,X2)) | ~$less(X0,X1)) )), introduced(theory_axiom,[])). tff(f20,plain,( ? [X0 : array,X1 : $int,X2 : $int] : (? [X4 : $int] : (~$less(0,read(X0,X4)) & (~$less(X2,X4) & ~$less(X4,$sum(X1,3)))) & ! [X3 : $int] : ($less(0,read(X0,X3)) | ($less(X2,X3) | $less(X3,X1))))), inference(ennf_transformation,[],[f6])). tff(f21,plain,( ? [X0 : array,X1 : $int,X2 : $int] : (? [X4 : $int] : (~$less(0,read(X0,X4)) & ~$less(X2,X4) & ~$less(X4,$sum(X1,3))) & ! [X3 : $int] : ($less(0,read(X0,X3)) | $less(X2,X3) | $less(X3,X1)))), inference(flattening,[],[f20])). tff(f22,plain,( ? [X0 : array,X1 : $int,X2 : $int] : (? [X3 : $int] : (~$less(0,read(X0,X3)) & ~$less(X2,X3) & ~$less(X3,$sum(X1,3))) & ! [X4 : $int] : ($less(0,read(X0,X4)) | $less(X2,X4) | $less(X4,X1)))), inference(rectify,[],[f21])). tff(f23,plain,( ? [X0 : array,X1 : $int,X2 : $int] : (? [X3 : $int] : (~$less(0,read(X0,X3)) & ~$less(X2,X3) & ~$less(X3,$sum(X1,3))) & ! [X4 : $int] : ($less(0,read(X0,X4)) | $less(X2,X4) | $less(X4,X1))) => (? [X3 : $int] : (~$less(0,read(sK0,X3)) & ~$less(sK2,X3) & ~$less(X3,$sum(sK1,3))) & ! [X4 : $int] : ($less(0,read(sK0,X4)) | $less(sK2,X4) | $less(X4,sK1)))), introduced(choice_axiom,[])). tff(f24,plain,( ( ! [X2:$int,X0:array,X1:$int] : (? [X3 : $int] : (~$less(0,read(X0,X3)) & ~$less(X2,X3) & ~$less(X3,$sum(X1,3))) => (~$less(0,read(X0,sK3)) & ~$less(X2,sK3) & ~$less(sK3,$sum(X1,3)))) )), introduced(choice_axiom,[])). tff(f25,plain,( (~$less(0,read(sK0,sK3)) & ~$less(sK2,sK3) & ~$less(sK3,$sum(sK1,3))) & ! [X4 : $int] : ($less(0,read(sK0,X4)) | $less(sK2,X4) | $less(X4,sK1))), inference(skolemisation,[status(esa),new_symbols(skolem,[sK0,sK1,sK2,sK3])],[f22,f24,f23])). tff(f29,plain,( ( ! [X4:$int] : ($less(0,read(sK0,X4)) | $less(sK2,X4) | $less(X4,sK1)) )), inference(cnf_transformation,[],[f25])). tff(f30,plain,( ~$less(sK3,$sum(sK1,3))), inference(cnf_transformation,[],[f25])). tff(f31,plain,( ~$less(sK2,sK3)), inference(cnf_transformation,[],[f25])). tff(f32,plain,( ~$less(0,read(sK0,sK3))), inference(cnf_transformation,[],[f25])). tff(f33,plain,( ~$less(sK3,$sum(3,sK1))), inference(forward_demodulation,[],[f30,f7])). tff(f98,plain,( $less($sum(3,sK1),sK3) | $sum(3,sK1) = sK3), inference(resolution,[],[f14,f33])). tff(f131,plain,( spl4_8 <=> $sum(3,sK1) = sK3), introduced(avatar_definition,[new_symbols(naming,[spl4_8])])). tff(f132,plain,( $sum(3,sK1) = sK3 | ~spl4_8), inference(avatar_component_clause,[],[f131])). tff(f137,plain,( spl4_10 <=> $less($sum(3,sK1),sK3)), introduced(avatar_definition,[new_symbols(naming,[spl4_10])])). tff(f138,plain,( $less($sum(3,sK1),sK3) | ~spl4_10), inference(avatar_component_clause,[],[f137])). tff(f142,plain,( spl4_8 | spl4_10), inference(avatar_split_clause,[],[f98,f137,f131])). tff(f172,plain,( ( ! [X6:$int,X4:$int,X5:$int] : ($less($sum(X5,X4),$sum(X6,X5)) | ~$less(X4,X6)) )), inference(superposition,[],[f15,f7])). tff(f489,plain,( ( ! [X6:$int,X7:$int] : ($less(X6,$sum(X7,X6)) | ~$less(0,X7)) )), inference(superposition,[],[f172,f9])). tff(f659,plain,( $less(sK2,sK3) | $less(sK3,sK1)), inference(resolution,[],[f29,f32])). tff(f662,plain,( $less(sK3,sK1)), inference(subsumption_resolution,[],[f659,f31])). tff(f664,plain,( ( ! [X0:$int] : (~$less(X0,sK3) | $less(X0,sK1)) )), inference(resolution,[],[f662,f13])). tff(f673,plain,( ( ! [X4:$int] : ($less($sum(sK1,X4),sK3) | ~$less(X4,3)) ) | ~spl4_8), inference(superposition,[],[f172,f132])). tff(f2468,plain,( $less(sK1,sK3) | ~$less(0,3) | ~spl4_8), inference(superposition,[],[f673,f9])). tff(f2473,plain,( $less(sK1,sK3) | ~spl4_8), inference(evaluation,[],[f2468])). tff(f2475,plain,( $less(sK1,sK1) | ~spl4_8), inference(resolution,[],[f2473,f664])). tff(f2479,plain,( $false | ~spl4_8), inference(subsumption_resolution,[],[f2475,f12])). tff(f2480,plain,( ~spl4_8), inference(avatar_contradiction_clause,[],[f2479])). tff(f2508,plain,( ( ! [X2:$int] : (~$less(X2,$sum(3,sK1)) | $less(X2,sK3)) ) | ~spl4_10), inference(resolution,[],[f138,f13])). tff(f2961,plain,( ~$less(0,3) | $less(sK1,sK3) | ~spl4_10), inference(resolution,[],[f489,f2508])). tff(f2988,plain,( $less(sK1,sK3) | ~spl4_10), inference(evaluation,[],[f2961])). tff(f2990,plain,( $less(sK1,sK1) | ~spl4_10), inference(resolution,[],[f2988,f664])). tff(f2994,plain,( $false | ~spl4_10), inference(subsumption_resolution,[],[f2990,f12])). tff(f2995,plain,( ~spl4_10), inference(avatar_contradiction_clause,[],[f2994])). tff(f2996,plain,( $false), inference(avatar_sat_refutation,[],[f142,f2480,f2995])).
fof(f3,axiom,( ! [X0,X1] : set_union2(X0,X1) = set_union2(X1,X0)), file('TPTP/TPTP-v6.4.0/Problems/SEU/SEU140+2.p',unknown)). fof(f4,axiom,( ! [X0,X1] : set_intersection2(X0,X1) = set_intersection2(X1,X0)), file('TPTP/TPTP-v6.4.0/Problems/SEU/SEU140+2.p',unknown)). fof(f10,axiom,( ! [X0,X1,X2] : (set_difference(X0,X1) = X2 <=> ! [X3] : (in(X3,X2) <=> (~in(X3,X1) & in(X3,X0))))), file('TPTP/TPTP-v6.4.0/Problems/SEU/SEU140+2.p',unknown)). fof(f11,axiom,( ! [X0,X1] : (disjoint(X0,X1) <=> set_intersection2(X0,X1) = empty_set)), file('TPTP/TPTP-v6.4.0/Problems/SEU/SEU140+2.p',unknown)). fof(f20,axiom,( ! [X0,X1] : set_union2(X0,X0) = X0), file('TPTP/TPTP-v6.4.0/Problems/SEU/SEU140+2.p',unknown)). fof(f23,axiom,( ! [X0,X1] : (empty_set = set_difference(X0,X1) <=> subset(X0,X1))), file('TPTP/TPTP-v6.4.0/Problems/SEU/SEU140+2.p',unknown)). fof(f28,axiom,( ! [X0,X1] : (subset(X0,X1) => set_union2(X0,X1) = X1)), file('TPTP/TPTP-v6.4.0/Problems/SEU/SEU140+2.p',unknown)). fof(f31,axiom,( ! [X0] : set_union2(X0,empty_set) = X0), file('TPTP/TPTP-v6.4.0/Problems/SEU/SEU140+2.p',unknown)). fof(f39,axiom,( ! [X0,X1] : subset(set_difference(X0,X1),X0)), file('TPTP/TPTP-v6.4.0/Problems/SEU/SEU140+2.p',unknown)). fof(f41,axiom,( ! [X0,X1] : set_union2(X0,X1) = set_union2(X0,set_difference(X1,X0))), file('TPTP/TPTP-v6.4.0/Problems/SEU/SEU140+2.p',unknown)). fof(f42,axiom,( ! [X0] : set_difference(X0,empty_set) = X0), file('TPTP/TPTP-v6.4.0/Problems/SEU/SEU140+2.p',unknown)). fof(f43,axiom,( ! [X0,X1] : (~(disjoint(X0,X1) & ? [X2] : (in(X2,X1) & in(X2,X0))) & ~(! [X2] : ~(in(X2,X1) & in(X2,X0)) & ~disjoint(X0,X1)))), file('TPTP/TPTP-v6.4.0/Problems/SEU/SEU140+2.p',unknown)). fof(f45,axiom,( ! [X0,X1] : set_difference(X0,X1) = set_difference(set_union2(X0,X1),X1)), file('TPTP/TPTP-v6.4.0/Problems/SEU/SEU140+2.p',unknown)). fof(f47,axiom,( ! [X0,X1] : set_intersection2(X0,X1) = set_difference(X0,set_difference(X0,X1))), file('TPTP/TPTP-v6.4.0/Problems/SEU/SEU140+2.p',unknown)). fof(f51,conjecture,( ! [X0,X1,X2] : ((disjoint(X1,X2) & subset(X0,X1)) => disjoint(X0,X2))), file('TPTP/TPTP-v6.4.0/Problems/SEU/SEU140+2.p',unknown)). fof(f52,negated_conjecture,( ~! [X0,X1,X2] : ((disjoint(X1,X2) & subset(X0,X1)) => disjoint(X0,X2))), inference(negated_conjecture,[],[f51])). fof(f55,axiom,( ! [X0,X1] : subset(X0,set_union2(X0,X1))), file('TPTP/TPTP-v6.4.0/Problems/SEU/SEU140+2.p',unknown)). fof(f58,plain,( ! [X0] : set_union2(X0,X0) = X0), inference(rectify,[],[f20])). fof(f62,plain,( ! [X0,X1] : (~(disjoint(X0,X1) & ? [X2] : (in(X2,X1) & in(X2,X0))) & ~(! [X3] : ~(in(X3,X1) & in(X3,X0)) & ~disjoint(X0,X1)))), inference(rectify,[],[f43])). fof(f73,plain,( ! [X0,X1] : (set_union2(X0,X1) = X1 | ~subset(X0,X1))), inference(ennf_transformation,[],[f28])). fof(f82,plain,( ! [X0,X1] : ((~disjoint(X0,X1) | ! [X2] : (~in(X2,X1) | ~in(X2,X0))) & (? [X3] : (in(X3,X1) & in(X3,X0)) | disjoint(X0,X1)))), inference(ennf_transformation,[],[f62])). fof(f87,plain,( ? [X0,X1,X2] : (~disjoint(X0,X2) & (disjoint(X1,X2) & subset(X0,X1)))), inference(ennf_transformation,[],[f52])). fof(f88,plain,( ? [X0,X1,X2] : (~disjoint(X0,X2) & disjoint(X1,X2) & subset(X0,X1))), inference(flattening,[],[f87])). fof(f114,plain,( ! [X0,X1,X2] : ((set_difference(X0,X1) = X2 | ? [X3] : (((in(X3,X1) | ~in(X3,X0)) | ~in(X3,X2)) & ((~in(X3,X1) & in(X3,X0)) | in(X3,X2)))) & (! [X3] : ((in(X3,X2) | (in(X3,X1) | ~in(X3,X0))) & ((~in(X3,X1) & in(X3,X0)) | ~in(X3,X2))) | set_difference(X0,X1) != X2))), inference(nnf_transformation,[],[f10])). fof(f115,plain,( ! [X0,X1,X2] : ((set_difference(X0,X1) = X2 | ? [X3] : ((in(X3,X1) | ~in(X3,X0) | ~in(X3,X2)) & ((~in(X3,X1) & in(X3,X0)) | in(X3,X2)))) & (! [X3] : ((in(X3,X2) | in(X3,X1) | ~in(X3,X0)) & ((~in(X3,X1) & in(X3,X0)) | ~in(X3,X2))) | set_difference(X0,X1) != X2))), inference(flattening,[],[f114])). fof(f116,plain,( ! [X0,X1,X2] : ((set_difference(X0,X1) = X2 | ? [X3] : ((in(X3,X1) | ~in(X3,X0) | ~in(X3,X2)) & ((~in(X3,X1) & in(X3,X0)) | in(X3,X2)))) & (! [X4] : ((in(X4,X2) | in(X4,X1) | ~in(X4,X0)) & ((~in(X4,X1) & in(X4,X0)) | ~in(X4,X2))) | set_difference(X0,X1) != X2))), inference(rectify,[],[f115])). fof(f117,plain,( ! [X2,X1,X0] : (? [X3] : ((in(X3,X1) | ~in(X3,X0) | ~in(X3,X2)) & ((~in(X3,X1) & in(X3,X0)) | in(X3,X2))) => ((in(sK4(X0,X1,X2),X1) | ~in(sK4(X0,X1,X2),X0) | ~in(sK4(X0,X1,X2),X2)) & ((~in(sK4(X0,X1,X2),X1) & in(sK4(X0,X1,X2),X0)) | in(sK4(X0,X1,X2),X2))))), introduced(choice_axiom,[])). fof(f118,plain,( ! [X0,X1,X2] : ((set_difference(X0,X1) = X2 | ((in(sK4(X0,X1,X2),X1) | ~in(sK4(X0,X1,X2),X0) | ~in(sK4(X0,X1,X2),X2)) & ((~in(sK4(X0,X1,X2),X1) & in(sK4(X0,X1,X2),X0)) | in(sK4(X0,X1,X2),X2)))) & (! [X4] : ((in(X4,X2) | in(X4,X1) | ~in(X4,X0)) & ((~in(X4,X1) & in(X4,X0)) | ~in(X4,X2))) | set_difference(X0,X1) != X2))), inference(skolemisation,[status(esa),new_symbols(skolem,[sK4])],[f116,f117])). fof(f119,plain,( ! [X0,X1] : ((disjoint(X0,X1) | set_intersection2(X0,X1) != empty_set) & (set_intersection2(X0,X1) = empty_set | ~disjoint(X0,X1)))), inference(nnf_transformation,[],[f11])). fof(f120,plain,( ! [X0,X1] : ((empty_set = set_difference(X0,X1) | ~subset(X0,X1)) & (subset(X0,X1) | empty_set != set_difference(X0,X1)))), inference(nnf_transformation,[],[f23])). fof(f129,plain,( ! [X1,X0] : (? [X3] : (in(X3,X1) & in(X3,X0)) => (in(sK8(X0,X1),X1) & in(sK8(X0,X1),X0)))), introduced(choice_axiom,[])). fof(f130,plain,( ! [X0,X1] : ((~disjoint(X0,X1) | ! [X2] : (~in(X2,X1) | ~in(X2,X0))) & ((in(sK8(X0,X1),X1) & in(sK8(X0,X1),X0)) | disjoint(X0,X1)))), inference(skolemisation,[status(esa),new_symbols(skolem,[sK8])],[f82,f129])). fof(f133,plain,( ? [X0,X1,X2] : (~disjoint(X0,X2) & disjoint(X1,X2) & subset(X0,X1)) => (~disjoint(sK10,sK12) & disjoint(sK11,sK12) & subset(sK10,sK11))), introduced(choice_axiom,[])). fof(f134,plain,( ~disjoint(sK10,sK12) & disjoint(sK11,sK12) & subset(sK10,sK11)), inference(skolemisation,[status(esa),new_symbols(skolem,[sK10,sK11,sK12])],[f88,f133])). fof(f137,plain,( ( ! [X0,X1] : (set_union2(X0,X1) = set_union2(X1,X0)) )), inference(cnf_transformation,[],[f3])). fof(f138,plain,( ( ! [X0,X1] : (set_intersection2(X0,X1) = set_intersection2(X1,X0)) )), inference(cnf_transformation,[],[f4])). fof(f159,plain,( ( ! [X4,X2,X0,X1] : (in(X4,X0) | ~in(X4,X2) | set_difference(X0,X1) != X2) )), inference(cnf_transformation,[],[f118])). fof(f160,plain,( ( ! [X4,X2,X0,X1] : (~in(X4,X1) | ~in(X4,X2) | set_difference(X0,X1) != X2) )), inference(cnf_transformation,[],[f118])). fof(f165,plain,( ( ! [X0,X1] : (set_intersection2(X0,X1) = empty_set | ~disjoint(X0,X1)) )), inference(cnf_transformation,[],[f119])). fof(f171,plain,( ( ! [X0] : (set_union2(X0,X0) = X0) )), inference(cnf_transformation,[],[f58])). fof(f175,plain,( ( ! [X0,X1] : (~subset(X0,X1) | empty_set = set_difference(X0,X1)) )), inference(cnf_transformation,[],[f120])). fof(f180,plain,( ( ! [X0,X1] : (~subset(X0,X1) | set_union2(X0,X1) = X1) )), inference(cnf_transformation,[],[f73])). fof(f183,plain,( ( ! [X0] : (set_union2(X0,empty_set) = X0) )), inference(cnf_transformation,[],[f31])). fof(f192,plain,( ( ! [X0,X1] : (subset(set_difference(X0,X1),X0)) )), inference(cnf_transformation,[],[f39])). fof(f195,plain,( ( ! [X0,X1] : (set_union2(X0,X1) = set_union2(X0,set_difference(X1,X0))) )), inference(cnf_transformation,[],[f41])). fof(f196,plain,( ( ! [X0] : (set_difference(X0,empty_set) = X0) )), inference(cnf_transformation,[],[f42])). fof(f197,plain,( ( ! [X0,X1] : (in(sK8(X0,X1),X0) | disjoint(X0,X1)) )), inference(cnf_transformation,[],[f130])). fof(f198,plain,( ( ! [X0,X1] : (in(sK8(X0,X1),X1) | disjoint(X0,X1)) )), inference(cnf_transformation,[],[f130])). fof(f201,plain,( ( ! [X0,X1] : (set_difference(X0,X1) = set_difference(set_union2(X0,X1),X1)) )), inference(cnf_transformation,[],[f45])). fof(f203,plain,( ( ! [X0,X1] : (set_intersection2(X0,X1) = set_difference(X0,set_difference(X0,X1))) )), inference(cnf_transformation,[],[f47])). fof(f208,plain,( subset(sK10,sK11)), inference(cnf_transformation,[],[f134])). fof(f209,plain,( disjoint(sK11,sK12)), inference(cnf_transformation,[],[f134])). fof(f210,plain,( ~disjoint(sK10,sK12)), inference(cnf_transformation,[],[f134])). fof(f213,plain,( ( ! [X0,X1] : (subset(X0,set_union2(X0,X1))) )), inference(cnf_transformation,[],[f55])). fof(f216,plain,( ( ! [X0,X1] : (set_difference(X0,set_difference(X0,X1)) = set_difference(X1,set_difference(X1,X0))) )), inference(definition_unfolding,[],[f138,f203,f203])). fof(f224,plain,( ( ! [X0,X1] : (~disjoint(X0,X1) | empty_set = set_difference(X0,set_difference(X0,X1))) )), inference(definition_unfolding,[],[f165,f203])). fof(f243,plain,( ( ! [X4,X0,X1] : (~in(X4,set_difference(X0,X1)) | ~in(X4,X1)) )), inference(equality_resolution,[],[f160])). fof(f244,plain,( ( ! [X4,X0,X1] : (~in(X4,set_difference(X0,X1)) | in(X4,X0)) )), inference(equality_resolution,[],[f159])). fof(f281,plain,( ( ! [X1] : (set_union2(empty_set,X1) = X1) )), inference(superposition,[],[f137,f183])). fof(f286,plain,( ( ! [X6,X7] : (subset(X6,set_union2(X7,X6))) )), inference(superposition,[],[f213,f137])). fof(f324,plain,( ( ! [X4,X3] : (empty_set = set_difference(X3,set_union2(X4,X3))) )), inference(resolution,[],[f175,f286])). fof(f326,plain,( ( ! [X6,X7] : (empty_set = set_difference(set_difference(X6,X7),X6)) )), inference(resolution,[],[f175,f192])). fof(f340,plain,( set_union2(sK10,sK11) = sK11), inference(resolution,[],[f180,f208])). fof(f399,plain,( ( ! [X10,X8,X9] : (~in(sK8(X8,set_difference(X9,X10)),X10) | disjoint(X8,set_difference(X9,X10))) )), inference(resolution,[],[f243,f198])). fof(f405,plain,( ( ! [X4,X2,X3] : (in(sK8(set_difference(X2,X3),X4),X2) | disjoint(set_difference(X2,X3),X4)) )), inference(resolution,[],[f244,f197])). fof(f468,plain,( ( ! [X4,X5] : (set_union2(X5,set_union2(X4,X5)) = set_union2(X5,set_difference(X4,X5))) )), inference(superposition,[],[f195,f201])). fof(f477,plain,( ( ! [X4,X5] : (set_union2(X5,X4) = set_union2(X5,set_union2(X4,X5))) )), inference(forward_demodulation,[],[f468,f195])). fof(f615,plain,( empty_set = set_difference(sK11,set_difference(sK11,sK12))), inference(resolution,[],[f224,f209])). fof(f726,plain,( ( ! [X6,X7] : (set_difference(X7,set_difference(X7,set_union2(X6,X7))) = set_difference(set_union2(X6,X7),set_difference(X6,X7))) )), inference(superposition,[],[f216,f201])). fof(f772,plain,( ( ! [X6,X7] : (set_difference(X7,empty_set) = set_difference(set_union2(X6,X7),set_difference(X6,X7))) )), inference(forward_demodulation,[],[f726,f324])). fof(f773,plain,( ( ! [X6,X7] : (set_difference(set_union2(X6,X7),set_difference(X6,X7)) = X7) )), inference(forward_demodulation,[],[f772,f196])). fof(f1209,plain,( set_union2(set_difference(sK11,sK12),empty_set) = set_union2(set_difference(sK11,sK12),sK11)), inference(superposition,[],[f195,f615])). fof(f1226,plain,( set_union2(set_difference(sK11,sK12),empty_set) = set_union2(sK11,set_difference(sK11,sK12))), inference(forward_demodulation,[],[f1209,f137])). fof(f1227,plain,( set_union2(empty_set,set_difference(sK11,sK12)) = set_union2(sK11,set_difference(sK11,sK12))), inference(forward_demodulation,[],[f1226,f137])). fof(f1228,plain,( set_union2(sK11,set_difference(sK11,sK12)) = set_difference(sK11,sK12)), inference(forward_demodulation,[],[f1227,f281])). fof(f1312,plain,( ( ! [X10,X11] : (set_union2(X10,empty_set) = set_union2(X10,set_difference(X10,X11))) )), inference(superposition,[],[f195,f326])). fof(f1331,plain,( ( ! [X10,X11] : (set_union2(X10,set_difference(X10,X11)) = X10) )), inference(forward_demodulation,[],[f1312,f183])). fof(f1333,plain,( set_difference(sK11,sK12) = sK11), inference(backward_demodulation,[],[f1331,f1228])). fof(f2114,plain,( set_union2(sK11,sK10) = set_union2(sK11,sK11)), inference(superposition,[],[f477,f340])). fof(f2148,plain,( set_union2(sK11,sK10) = sK11), inference(forward_demodulation,[],[f2114,f171])). fof(f2201,plain,( set_difference(sK11,set_difference(sK11,sK10)) = sK10), inference(superposition,[],[f773,f2148])). fof(f2214,plain,( set_difference(set_union2(sK11,sK12),sK11) = sK12), inference(superposition,[],[f773,f1333])). fof(f4504,plain,( ( ! [X4,X2,X3] : (disjoint(set_difference(X2,X3),set_difference(X4,X2)) | disjoint(set_difference(X2,X3),set_difference(X4,X2))) )), inference(resolution,[],[f405,f399])). fof(f4539,plain,( ( ! [X4,X2,X3] : (disjoint(set_difference(X2,X3),set_difference(X4,X2))) )), inference(duplicate_literal_removal,[],[f4504])). fof(f4747,plain,( ( ! [X41] : (disjoint(sK10,set_difference(X41,sK11))) )), inference(superposition,[],[f4539,f2201])). fof(f4918,plain,( disjoint(sK10,sK12)), inference(superposition,[],[f4747,f2214])). fof(f4925,plain,( $false), inference(subsumption_resolution,[],[f4918,f210])).
tff(u283,axiom, (![X1, X0] : ((~woman(X0,X1) | human_person(X0,X1))))). tff(u282,axiom, (![X1, X0] : ((~woman(X0,X1) | female(X0,X1))))). tff(u281,negated_conjecture, woman(sK0,sK1)). tff(u280,negated_conjecture, ~female(sK0,sK4)). tff(u279,negated_conjecture, ~female(sK0,sK2)). tff(u278,negated_conjecture, ~female(sK0,sK3)). tff(u277,negated_conjecture, female(sK0,sK1)). tff(u276,axiom, (![X1, X0] : ((~human_person(X0,X1) | organism(X0,X1))))). tff(u275,axiom, (![X1, X0] : ((~human_person(X0,X1) | human(X0,X1))))). tff(u274,axiom, (![X1, X0] : ((~human_person(X0,X1) | animate(X0,X1))))). tff(u273,negated_conjecture, human_person(sK0,sK1)). tff(u272,negated_conjecture, ~animate(sK0,sK3)). tff(u271,negated_conjecture, animate(sK0,sK1)). tff(u270,negated_conjecture, ~human(sK0,sK2)). tff(u269,negated_conjecture, human(sK0,sK1)). tff(u268,axiom, (![X1, X0] : ((~organism(X0,X1) | entity(X0,X1))))). tff(u267,axiom, (![X1, X0] : ((~organism(X0,X1) | living(X0,X1))))). tff(u266,negated_conjecture, organism(sK0,sK1)). tff(u265,negated_conjecture, ~living(sK0,sK3)). tff(u264,negated_conjecture, living(sK0,sK1)). tff(u263,axiom, (![X1, X0] : ((~entity(X0,X1) | specific(X0,X1))))). tff(u262,axiom, (![X1, X0] : ((~entity(X0,X1) | existent(X0,X1))))). tff(u261,negated_conjecture, entity(sK0,sK1)). tff(u260,negated_conjecture, entity(sK0,sK3)). tff(u259,axiom, (![X1, X0] : ((~mia_forename(X0,X1) | forename(X0,X1))))). tff(u258,negated_conjecture, mia_forename(sK0,sK2)). tff(u257,axiom, (![X1, X0] : ((~forename(X0,X1) | relname(X0,X1))))). tff(u256,negated_conjecture, forename(sK0,sK2)). tff(u255,axiom, (![X1, X0] : ((~abstraction(X0,X1) | nonhuman(X0,X1))))). tff(u254,axiom, (![X1, X0] : ((~abstraction(X0,X1) | general(X0,X1))))). tff(u253,axiom, (![X1, X0] : ((~abstraction(X0,X1) | unisex(X0,X1))))). tff(u252,negated_conjecture, abstraction(sK0,sK2)). tff(u251,axiom, (![X1, X0] : ((~unisex(X0,X1) | ~female(X0,X1))))). tff(u250,negated_conjecture, unisex(sK0,sK2)). tff(u249,negated_conjecture, unisex(sK0,sK4)). tff(u248,negated_conjecture, unisex(sK0,sK3)). tff(u247,negated_conjecture, ~general(sK0,sK4)). tff(u246,negated_conjecture, ~general(sK0,sK1)). tff(u245,negated_conjecture, ~general(sK0,sK3)). tff(u244,negated_conjecture, general(sK0,sK2)). tff(u243,axiom, (![X1, X0] : ((~nonhuman(X0,X1) | ~human(X0,X1))))). tff(u242,negated_conjecture, nonhuman(sK0,sK2)). tff(u241,axiom, (![X1, X0] : ((~relation(X0,X1) | abstraction(X0,X1))))). tff(u240,negated_conjecture, relation(sK0,sK2)). tff(u239,axiom, (![X1, X0] : ((~relname(X0,X1) | relation(X0,X1))))). tff(u238,negated_conjecture, relname(sK0,sK2)). tff(u237,axiom, (![X1, X0] : ((~object(X0,X1) | entity(X0,X1))))). tff(u236,axiom, (![X1, X0] : ((~object(X0,X1) | nonliving(X0,X1))))). tff(u235,axiom, (![X1, X0] : ((~object(X0,X1) | unisex(X0,X1))))). tff(u234,negated_conjecture, object(sK0,sK3)). tff(u233,axiom, (![X1, X0] : ((~nonliving(X0,X1) | ~living(X0,X1))))). tff(u232,axiom, (![X1, X0] : ((~nonliving(X0,X1) | ~animate(X0,X1))))). tff(u231,negated_conjecture, nonliving(sK0,sK3)). tff(u230,negated_conjecture, ~existent(sK0,sK4)). tff(u229,negated_conjecture, existent(sK0,sK1)). tff(u228,negated_conjecture, existent(sK0,sK3)). tff(u227,axiom, (![X1, X0] : ((~specific(X0,X1) | ~general(X0,X1))))). tff(u226,negated_conjecture, specific(sK0,sK1)). tff(u225,negated_conjecture, specific(sK0,sK4)). tff(u224,negated_conjecture, specific(sK0,sK3)). tff(u223,axiom, (![X1, X0] : ((~substance_matter(X0,X1) | object(X0,X1))))). tff(u222,negated_conjecture, substance_matter(sK0,sK3)). tff(u221,axiom, (![X1, X0] : ((~food(X0,X1) | substance_matter(X0,X1))))). tff(u220,negated_conjecture, food(sK0,sK3)). tff(u219,axiom, (![X1, X0] : ((~beverage(X0,X1) | food(X0,X1))))). tff(u218,negated_conjecture, beverage(sK0,sK3)). tff(u217,axiom, (![X1, X0] : ((~shake_beverage(X0,X1) | beverage(X0,X1))))). tff(u216,negated_conjecture, shake_beverage(sK0,sK3)). tff(u215,axiom, (![X1, X0] : ((~order(X0,X1) | act(X0,X1))))). tff(u214,axiom, (![X1, X0] : ((~order(X0,X1) | event(X0,X1))))). tff(u213,negated_conjecture, order(sK0,sK4)). tff(u212,axiom, (![X1, X0] : ((~event(X0,X1) | eventuality(X0,X1))))). tff(u211,negated_conjecture, event(sK0,sK4)). tff(u210,axiom, (![X1, X0] : ((~eventuality(X0,X1) | specific(X0,X1))))). tff(u209,axiom, (![X1, X0] : ((~eventuality(X0,X1) | nonexistent(X0,X1))))). tff(u208,axiom, (![X1, X0] : ((~eventuality(X0,X1) | unisex(X0,X1))))). tff(u207,negated_conjecture, eventuality(sK0,sK4)). tff(u206,axiom, (![X1, X0] : ((~nonexistent(X0,X1) | ~existent(X0,X1))))). tff(u205,negated_conjecture, nonexistent(sK0,sK4)). tff(u204,axiom, (![X1, X0] : ((~act(X0,X1) | event(X0,X1))))). tff(u203,negated_conjecture, act(sK0,sK4)). tff(u202,axiom, (![X1, X3, X0, X2] : ((~of(X0,X3,X1) | (X2 = X3) | ~forename(X0,X3) | ~of(X0,X2,X1) | ~forename(X0,X2) | ~entity(X0,X1))))). tff(u201,negated_conjecture, (![X0] : ((~of(sK0,X0,sK1) | (sK2 = X0) | ~forename(sK0,X0))))). tff(u200,negated_conjecture, of(sK0,sK2,sK1)). tff(u199,negated_conjecture, nonreflexive(sK0,sK4)). tff(u198,negated_conjecture, ~agent(sK0,sK4,sK3)). tff(u197,negated_conjecture, agent(sK0,sK4,sK1)). tff(u196,axiom, (![X1, X3, X0] : ((~patient(X0,X1,X3) | ~agent(X0,X1,X3) | ~nonreflexive(X0,X1))))). tff(u195,negated_conjecture, patient(sK0,sK4,sK3)).
tff(declare_$i,type,$i:$tType). tff(declare_$i1,type,at:$i). tff(declare_$i2,type,t:$i). tff(finite_domain,axiom, ! [X:$i] : ( X = at | X = t ) ). tff(distinct_domain,axiom, at != t ). tff(declare_a,type,a:$i). tff(a_definition,axiom,a = at). tff(declare_b,type,b:$i). tff(b_definition,axiom,b = at). tff(declare_an_a_nonce,type,an_a_nonce:$i). tff(an_a_nonce_definition,axiom,an_a_nonce = t). tff(declare_bt,type,bt:$i). tff(bt_definition,axiom,bt = at). tff(declare_an_intruder_nonce,type,an_intruder_nonce:$i). tff(an_intruder_nonce_definition,axiom,an_intruder_nonce = at). tff(declare_key,type,key: $i * $i > $i). tff(function_key,axiom, key(at,at) = at & key(at,t) = t & key(t,at) = t & key(t,t) = t ). tff(declare_pair,type,pair: $i * $i > $i). tff(function_pair,axiom, pair(at,at) = at & pair(at,t) = t & pair(t,at) = at & pair(t,t) = at ). tff(declare_sent,type,sent: $i * $i * $i > $i). tff(function_sent,axiom, sent(at,at,at) = at & sent(at,at,t) = at & sent(at,t,at) = at & sent(at,t,t) = at & sent(t,at,at) = at & sent(t,at,t) = at & sent(t,t,at) = at & sent(t,t,t) = at ). tff(declare_quadruple,type,quadruple: $i * $i * $i * $i > $i). tff(function_quadruple,axiom, quadruple(at,at,at,at) = t & quadruple(at,at,at,t) = at & quadruple(at,at,t,at) = t & quadruple(at,at,t,t) = t & quadruple(at,t,at,at) = t & quadruple(at,t,at,t) = at & quadruple(at,t,t,at) = at & quadruple(at,t,t,t) = at & quadruple(t,at,at,at) = t & quadruple(t,at,at,t) = at & quadruple(t,at,t,at) = t & quadruple(t,at,t,t) = t & quadruple(t,t,at,at) = t & quadruple(t,t,at,t) = at & quadruple(t,t,t,at) = t & quadruple(t,t,t,t) = t ). tff(declare_encrypt,type,encrypt: $i * $i > $i). tff(function_encrypt,axiom, encrypt(at,at) = at & encrypt(at,t) = at & encrypt(t,at) = at & encrypt(t,t) = t ). tff(declare_triple,type,triple: $i * $i * $i > $i). tff(function_triple,axiom, triple(at,at,at) = t & triple(at,at,t) = at & triple(at,t,at) = at & triple(at,t,t) = at & triple(t,at,at) = t & triple(t,at,t) = t & triple(t,t,at) = at & triple(t,t,t) = at ). tff(declare_generate_b_nonce,type,generate_b_nonce: $i > $i). tff(function_generate_b_nonce,axiom, generate_b_nonce(at) = t & generate_b_nonce(t) = t ). tff(declare_generate_expiration_time,type,generate_expiration_time: $i > $i). tff(function_generate_expiration_time,axiom, generate_expiration_time(at) = t & generate_expiration_time(t) = t ). tff(declare_generate_key,type,generate_key: $i > $i). tff(function_generate_key,axiom, generate_key(at) = at & generate_key(t) = at ). tff(declare_generate_intruder_nonce,type,generate_intruder_nonce: $i > $i). tff(function_generate_intruder_nonce,axiom, generate_intruder_nonce(at) = at & generate_intruder_nonce(t) = t ). tff(declare_a_holds,type,a_holds: $i > $o ). tff(predicate_a_holds,axiom, % a_holds(at) undefined in model % a_holds(t) undefined in model ). tff(declare_party_of_protocol,type,party_of_protocol: $i > $o ). tff(predicate_party_of_protocol,axiom, party_of_protocol(at) & party_of_protocol(t) ). tff(declare_message,type,message: $i > $o ). tff(predicate_message,axiom, message(at) & ~message(t) ). tff(declare_a_stored,type,a_stored: $i > $o ). tff(predicate_a_stored,axiom, ~a_stored(at) & a_stored(t) ). tff(declare_b_holds,type,b_holds: $i > $o ). tff(predicate_b_holds,axiom, % b_holds(at) undefined in model % b_holds(t) undefined in model ). tff(declare_fresh_to_b,type,fresh_to_b: $i > $o ). tff(predicate_fresh_to_b,axiom, fresh_to_b(at) & fresh_to_b(t) ). tff(declare_b_stored,type,b_stored: $i > $o ). tff(predicate_b_stored,axiom, % b_stored(at) undefined in model % b_stored(t) undefined in model ). tff(declare_a_key,type,a_key: $i > $o ). tff(predicate_a_key,axiom, a_key(at) & ~a_key(t) ). tff(declare_t_holds,type,t_holds: $i > $o ). tff(predicate_t_holds,axiom, t_holds(at) & ~t_holds(t) ). tff(declare_a_nonce,type,a_nonce: $i > $o ). tff(predicate_a_nonce,axiom, ~a_nonce(at) & a_nonce(t) ). tff(declare_intruder_message,type,intruder_message: $i > $o ). tff(predicate_intruder_message,axiom, intruder_message(at) & intruder_message(t) ). tff(declare_intruder_holds,type,intruder_holds: $i > $o ). tff(predicate_intruder_holds,axiom, intruder_holds(at) & intruder_holds(t) ). tff(declare_fresh_intruder_nonce,type,fresh_intruder_nonce: $i > $o ). tff(predicate_fresh_intruder_nonce,axiom, fresh_intruder_nonce(at) & ~fresh_intruder_nonce(t) ).
% SZS status Theorem for 'examples/ho/PUZ081^1.p' % SZS output start Refutation tff(0, plain, is_a(mel,islander) & is_a(zoey,islander), file('examples/ho/PUZ081^1.p', 'kk_6_4')). tff(1, plain, is_a(zoey, islander), inference('cnf', [status(esa)], [0])). tff(2, plain, ![X]: (is_a(X,islander) => (is_a(X,knave) | is_a(X,knight))), file('examples/ho/PUZ081^1.p', 'kk_6_1')). tff(3, plain, ![X0]: (is_a(X0, knight) | is_a(X0, knave) | ~ is_a(X0, islander)), inference('cnf', [status(esa)], [2])). tff(4, plain, (is_a(zoey, knight) | is_a(zoey, knave)), inference('s_sup-', [status(thm)], [1, 3])). tff(5, plain, (is_a(zoey, knave)) | (is_a(zoey, knight)), inference('split', [status(esa)], [4])). tff(6, plain, says(zoey,is_a(mel,knave)), file('examples/ho/PUZ081^1.p', 'kk_6_5')). tff(7, plain, says(zoey, is_a(mel, knave)), inference('cnf', [status(esa)], [6])). tff(8, plain, ![X]: (is_a(X,knight) => (![A:$o]: (says(X,A) => A))), file('examples/ho/PUZ081^1.p', 'kk_6_2')). tff(9, plain, ![X1, X2 : $o]: (~ says(X1, X2) | X2 | ~ is_a(X1, knight)), inference('cnf', [status(esa)], [8])). tff(10, plain, (is_a(mel, knave) | ~ is_a(zoey, knight)), inference('s_sup-', [status(thm)], [7, 9])). tff(11, plain, (is_a(mel, knave)) | ~ (is_a(zoey, knight)), inference('split', [status(esa)], [10])). tff(12, plain, ?[Y,Z]: (is_a(zoey,Z) & is_a(mel,Y) & ((Z = knight) <~> (Z = knave)) & ((Y = knight) <~> (Y = knave))), file('examples/ho/PUZ081^1.p', 'query')). tff(13, plain, ~ (?[Y,Z]: (is_a(zoey,Z) & is_a(mel,Y) & ((Z = knight) <~> (Z = knave)) & ((Y = knight) <~> (Y = knave)))), inference('neg_goal', [status(esa)], [12])). tff(14, plain, ![X5, X6]: (~ is_a(mel, X5) | X5 != knave | X5 = knight | X6 != knight | X6 = knave | ~ is_a(zoey, X6)), inference('cnf', [status(esa)], [13])). tff(15, plain, (~ is_a(zoey, knight) | knave = knight | ~ is_a(mel, knave)), inference('simplify', [status(thm)], [14])). tff(16, plain, ~ (is_a(mel, knave)) | ~ (is_a(zoey, knight)) | (knight = knave), inference('split', [status(esa)], [15])). tff(17, plain, (is_a(zoey, knave)) <= ((is_a(zoey, knave))), inference('split', [status(esa)], [4])). tff(18, plain, ![X5, X6]: (~ is_a(mel, X5) | X5 != knight | X5 = knave | X6 != knave | X6 = knight | ~ is_a(zoey, X6)), inference('cnf', [status(esa)], [13])). tff(19, plain, (~ is_a(zoey, knave) | knight = knave | ~ is_a(mel, knight)), inference('simplify', [status(thm)], [18])). tff(20, plain, (knight = knave) <= ((knight = knave)), inference('split', [status(esa)], [19])). tff(21, plain, (is_a(mel, knave) | says(zoey, $false)), inference('fool_param', [status(thm)], [7])). tff(22, plain, (says(zoey, $false)) <= ((says(zoey, $false))), inference('split', [status(esa)], [21])). tff(23, plain, (~ is_a(zoey, knight)) <= ((says(zoey, $false))), inference('s_sup-', [status(thm)], [22, 9])). tff(24, plain, (~ is_a(zoey, knave)) <= ((says(zoey, $false)) & (knight = knave)), inference('s_sup-', [status(thm)], [20, 23])). tff(25, plain, ~ (is_a(zoey, knave)) | ~ (says(zoey, $false)) | ~ (knight = knave), inference('s_sup-', [status(thm)], [17, 24])). tff(26, plain, ~ (says(zoey, $false)) | (is_a(zoey, knight)) | ~ (knight = knave), inference('sat_resolution', [status(thm)], [5, 25])). tff(27, plain, (is_a(mel, knave)) | ~ (says(zoey, $false)) | ~ (knight = knave), inference('sat_resolution', [status(thm)], [26, 11])). tff(28, plain, (is_a(mel, knave)) | (says(zoey, $false)), inference('split', [status(esa)], [21])). tff(29, plain, (is_a(mel, knave)) | ~ (knight = knave), inference('sat_resolution', [status(thm)], [27, 28])). tff(kk_6_6, axiom, (says(mel,~(is_a(mel,knave) | is_a(zoey,knave))))). tff(31, plain, zip_tseitin = (~(is_a(zoey,knave) | is_a(mel,knave))), by_def([status(thm)])). tff(no_name, axiom, (zip_tseitin <=> (~(is_a(zoey,knave) | is_a(mel,knave))))). tff(33, plain, says(mel,zip_tseitin), inference('preprocess(flatten)', [status(esa)], [30, 32])). tff(34, plain, says(mel, zip_tseitin), inference('cnf', [status(esa)], [33])). tff(35, plain, (zip_tseitin | says(mel, $false)), inference('fool_param', [status(thm)], [34])). tff(36, plain, (zip_tseitin) | (says(mel, $false)), inference('split', [status(esa)], [35])). tff(37, plain, (is_a(mel, knave)) <= ((is_a(mel, knave))), inference('split', [status(esa)], [21])). tff(38, plain, (says(mel, $false)) <= ((says(mel, $false))), inference('split', [status(esa)], [35])). tff(39, plain, (~ is_a(mel, knight)) <= ((says(mel, $false))), inference('s_sup-', [status(thm)], [38, 9])). tff(40, plain, (~ is_a(mel, knave)) <= ((says(mel, $false)) & (knight = knave)), inference('s_sup-', [status(thm)], [20, 39])). tff(41, plain, ~ (is_a(mel, knave)) | ~ (says(mel, $false)) | ~ (knight = knave), inference('s_sup-', [status(thm)], [37, 40])). tff(42, plain, (zip_tseitin) | ~ (is_a(mel, knave)) | ~ (knight = knave), inference('sat_resolution', [status(thm)], [36, 41])). tff(43, plain, zip_tseitin <=> (~(is_a(mel,knave) | is_a(zoey,knave))), inference('renaming', [status(esa)], [30, 31])). tff(44, plain, (~ is_a(mel, knave) | ~ zip_tseitin), inference('cnf', [status(esa)], [43])). tff(45, plain, ~ (zip_tseitin) | ~ (is_a(mel, knave)), inference('split', [status(esa)], [44])). tff(46, plain, ~ (is_a(mel, knave)) | ~ (knight = knave), inference('sat_resolution', [status(thm)], [42, 45])). tff(47, plain, ~ (knight = knave), inference('sat_resolution', [status(thm)], [29, 46])). tff(48, plain, ~ (is_a(mel, knave)) | ~ (is_a(zoey, knight)), inference('sat_resolution', [status(thm)], [16, 47])). tff(49, plain, ~ (is_a(mel, knave)) | (is_a(zoey, knave)), inference('sat_resolution', [status(thm)], [5, 48])). tff(50, plain, ![X]: (is_a(X,knave) => (![A:$o]: (says(X,A) => (~A)))), file('examples/ho/PUZ081^1.p', 'kk_6_3')). tff(51, plain, ![X3, X4 : $o]: (~ says(X3, X4) | ~ X4 | ~ is_a(X3, knave)), inference('cnf', [status(esa)], [50])). tff(52, plain, (~ is_a(mel, knave) | ~ is_a(zoey, knave)), inference('s_sup-', [status(thm)], [7, 51])). tff(53, plain, ~ (is_a(mel, knave)) | ~ (is_a(zoey, knave)), inference('split', [status(esa)], [52])). tff(54, plain, ~ (is_a(mel, knave)), inference('sat_resolution', [status(thm)], [49, 53])). tff(55, plain, ~ (is_a(zoey, knight)), inference('sat_resolution', [status(thm)], [11, 54])). tff(56, plain, (is_a(zoey, knave)), inference('sat_resolution', [status(thm)], [5, 55])). tff(57, plain, ~ (is_a(zoey, knave)) | ~ (is_a(mel, knight)) | (knight = knave), inference('split', [status(esa)], [19])). tff(58, plain, ~ (is_a(zoey, knave)) | ~ (is_a(mel, knight)), inference('sat_resolution', [status(thm)], [57, 47])). tff(59, plain, is_a(mel, islander), inference('cnf', [status(esa)], [0])). tff(60, plain, (is_a(mel, knight) | is_a(mel, knave)), inference('s_sup-', [status(thm)], [59, 3])). tff(61, plain, (is_a(mel, knave)) | (is_a(mel, knight)), inference('split', [status(esa)], [60])). tff(62, plain, (is_a(mel, knight)), inference('sat_resolution', [status(thm)], [61, 54])). tff(63, plain, ~ (is_a(zoey, knave)), inference('sat_resolution', [status(thm)], [58, 62])). tff(64, plain, $false, inference('sat_resolution', [status(thm)], [56, 63])). % SZS output end Refutation
% SZS output start Refutation tff(0, plain, ![U:array,V:$int,W:$int]: ((![X:$int]: ((($lesseq($int, X, W)) & ($lesseq($int, V, X))) => ($greater($int, read(U,X), 0)))) => (![Y:$int]: ((($lesseq($int, Y, W)) & ($lesseq($int, ($sum($int, V, 3)), Y))) => ($greater($int, read(U,Y), 0))))), file('DAT013=1.p', 'co1')). tff(1, plain, ~ (![U:array,V:$int,W:$int]: ((![X:$int]: ((($lesseq($int, X, W)) & ($lesseq($int, V, X))) => ($greater($int, read(U,X), 0)))) => (![Y:$int]: ((($lesseq($int, Y, W)) & ($lesseq($int, ($sum($int, V, 3)), Y))) => ($greater($int, read(U,Y), 0)))))), inference('neg_goal', [status(esa)], [0])). tff(2, plain, $lesseq(read(sk_U, sk_Y), 0), inference('cnf', [status(esa)], [1])). tff(3, plain, ![X7 : $int]: ($less(0, read(sk_U, X7)) | $less(X7, sk_V) | $less(sk_W, X7)), inference('cnf', [status(esa)], [1])). tff(4, plain, ![X7 : $int]: ($lesseq(1, read(sk_U, X7)) | $lesseq($sum(1, X7), sk_V) | $lesseq($sum(1, sk_W), X7)), inference('rw_lit', [status(thm)], [3])). tff(5, plain, ($lesseq($sum(1, sk_W), sk_Y) | $lesseq($sum(1, sk_Y), sk_V)), inference('canc_ineq_chaining', [status(thm)], [2, 4])). tff(6, plain, $lesseq(sk_Y, sk_W), inference('cnf', [status(esa)], [1])). tff(7, plain, $lesseq($sum(1, sk_Y), sk_V), inference('clc', [status(thm)], [5, 6])). tff(8, plain, $lesseq($sum(3, sk_V), sk_Y), inference('cnf', [status(esa)], [1])). tff(9, plain, $false, inference('canc_ineq_chaining', [status(thm)], [7, 8])). % SZS output end Refutation
% SZS status Theorem for 'SEU140+2.p' % SZS output start Refutation tff(0, plain, $false, inference('simplify', [status(thm)], [1])). tff(1, plain, ($false | empty_set != empty_set), inference('demod', [status(thm)], [2, 3])). tff(3, plain, subset(sk_A2, sk_B1), inference('cnf', [status(esa)], [4])). tff(2, plain, (~ subset(sk_A2, sk_B1) | empty_set != empty_set), inference('s_sup-', [status(thm)], [5, 6])). tff(6, plain, set_intersection2(sk_A2, sk_C4) != empty_set, inference('simplify', [status(thm)], [7])). tff(5, plain, ![X0]: (~ subset(X0, sk_B1) | set_intersection2(X0, sk_C4) = empty_set), inference('simplify', [status(thm)], [8])). tff(4, plain, ~(![A,B,C]: ((disjoint(B,C) & subset(A,B)) => disjoint(A,C))), inference('neg_goal', [status(esa)], [9])). tff(9, plain, ![A,B,C]: ((disjoint(B,C) & subset(A,B)) => disjoint(A,C)), file('SEU140+2.p', 't63_xboole_1')). tff(8, plain, ![X0]: ($false | set_intersection2(X0, sk_C4) = empty_set | ~ subset(X0, sk_B1)), inference('demod', [status(thm)], [10, 11])). tff(7, plain, (set_intersection2(sk_A2, sk_C4) != empty_set | $false), inference('s_sup-', [status(thm)], [12, 13])). tff(13, plain, ~ disjoint(sk_A2, sk_C4), inference('cnf', [status(esa)], [4])). tff(12, plain, ![X36, X38]: (disjoint(X36, X38) | set_intersection2(X36, X38) != empty_set), inference('cnf', [status(esa)], [14])). tff(11, plain, ![X74]: subset(empty_set, X74), inference('cnf', [status(esa)], [15])). tff(10, plain, ![X0]: (~ subset(empty_set, set_intersection2(X0, sk_C4)) | set_intersection2(X0, sk_C4) = empty_set | ~ subset(X0, sk_B1)), inference('s_sup-', [status(thm)], [16, 17])). tff(17, plain, ![X0, X1, X2]: (~ subset(set_intersection2(X1, X0), set_intersection2(X2, X0)) | set_intersection2(X2, X0) = set_intersection2(X1, X0) | ~ subset(X2, X1)), inference('simplify', [status(thm)], [18])). tff(16, plain, set_intersection2(sk_B1, sk_C4) = empty_set, inference('simplify', [status(thm)], [19])). tff(15, plain, ![A]: subset(empty_set,A), file('SEU140+2.p', 't2_xboole_1')). tff(14, plain, ![A,B]: (disjoint(A,B) <=> (set_intersection2(A,B) = empty_set)), file('SEU140+2.p', 'd7_xboole_0')). tff(19, plain, (set_intersection2(sk_B1, sk_C4) = empty_set | $false), inference('s_sup-', [status(thm)], [20, 21])). tff(18, plain, ![X0, X1, X2]: (~ subset(X2, X1) | set_intersection2(X2, X0) = set_intersection2(X1, X0) | $false | ~ subset(set_intersection2(X1, X0), set_intersection2(X2, X0))), inference('s_sup-', [status(thm)], [22, 23])). tff(23, plain, ![X9, X10]: (X9 = X10 | ~ subset(X9, X10) | ~ subset(X10, X9)), inference('cnf', [status(esa)], [24])). tff(22, plain, ![X66, X67, X68]: (~ subset(X66, X67) | subset(set_intersection2(X66, X68), set_intersection2(X67, X68))), inference('cnf', [status(esa)], [25])). tff(21, plain, ![X36, X37]: (set_intersection2(X36, X37) = empty_set | ~ disjoint(X36, X37)), inference('cnf', [status(esa)], [14])). tff(20, plain, disjoint(sk_B1, sk_C4), inference('cnf', [status(esa)], [4])). tff(25, plain, ![A,B,C]: (subset(A,B) => subset(set_intersection2(A,C),set_intersection2(B,C))), file('SEU140+2.p', 't26_xboole_1')). tff(24, plain, ![A,B]: ((A = B) <=> (subset(B,A) & subset(A,B))), file('SEU140+2.p', 'd10_xboole_0')). % SZS output end Refutation