EP 1.1pre
Stephan Schulz
Technische Universität München, Germany,
Sample solution for SYN075+1
# Problem is unsatisfiable (or provable), constructing proof object
# SZS status Theorem
# SZS output start CNFRefutation.
fof(1, axiom,?[X1]:?[X2]:![X3]:![X4]:(big_f(X3,X4)<=>(equal(X3, X1)&equal(X4, X2))),file('/home/graph/tptp/TPTP/Problems/SYN/SYN075+1.p', pel52_1)).
fof(2, conjecture,?[X2]:![X4]:(?[X1]:![X3]:(big_f(X3,X4)<=>equal(X3, X1))<=>equal(X4, X2)),file('/home/graph/tptp/TPTP/Problems/SYN/SYN075+1.p', pel52)).
fof(3, negated_conjecture,~(?[X2]:![X4]:(?[X1]:![X3]:(big_f(X3,X4)<=>equal(X3, X1))<=>equal(X4, X2))),inference(assume_negation,[status(cth)],[2])).
fof(4, plain,?[X1]:?[X2]:![X3]:![X4]:((~(big_f(X3,X4))|(equal(X3, X1)&equal(X4, X2)))&((~(equal(X3, X1))|~(equal(X4, X2)))|big_f(X3,X4))),inference(fof_nnf,[status(thm)],[1])).
fof(5, plain,?[X5]:?[X6]:![X7]:![X8]:((~(big_f(X7,X8))|(equal(X7, X5)&equal(X8, X6)))&((~(equal(X7, X5))|~(equal(X8, X6)))|big_f(X7,X8))),inference(variable_rename,[status(thm)],[4])).
fof(6, plain,![X7]:![X8]:((~(big_f(X7,X8))|(equal(X7, esk1_0)&equal(X8, esk2_0)))&((~(equal(X7, esk1_0))|~(equal(X8, esk2_0)))|big_f(X7,X8))),inference(skolemize,[status(sab)],[5])).
fof(7, plain,![X7]:![X8]:(((equal(X7, esk1_0)|~(big_f(X7,X8)))&(equal(X8, esk2_0)|~(big_f(X7,X8))))&((~(equal(X7, esk1_0))|~(equal(X8, esk2_0)))|big_f(X7,X8))),inference(distribute,[status(thm)],[6])).
cnf(8,plain,(big_f(X1,X2)|X2!=esk2_0|X1!=esk1_0),inference(split_conjunct,[status(thm)],[7])).
cnf(9,plain,(X2=esk2_0|~big_f(X1,X2)),inference(split_conjunct,[status(thm)],[7])).
cnf(10,plain,(X1=esk1_0|~big_f(X1,X2)),inference(split_conjunct,[status(thm)],[7])).
fof(11, negated_conjecture,![X2]:?[X4]:((![X1]:?[X3]:((~(big_f(X3,X4))|~(equal(X3, X1)))&(big_f(X3,X4)|equal(X3, X1)))|~(equal(X4, X2)))&(?[X1]:![X3]:((~(big_f(X3,X4))|equal(X3, X1))&(~(equal(X3, X1))|big_f(X3,X4)))|equal(X4, X2))),inference(fof_nnf,[status(thm)],[3])).
fof(12, negated_conjecture,![X5]:?[X6]:((![X7]:?[X8]:((~(big_f(X8,X6))|~(equal(X8, X7)))&(big_f(X8,X6)|equal(X8, X7)))|~(equal(X6, X5)))&(?[X9]:![X10]:((~(big_f(X10,X6))|equal(X10, X9))&(~(equal(X10, X9))|big_f(X10,X6)))|equal(X6, X5))),inference(variable_rename,[status(thm)],[11])).
fof(13, negated_conjecture,![X5]:((![X7]:((~(big_f(esk4_2(X5,X7),esk3_1(X5)))|~(equal(esk4_2(X5,X7), X7)))&(big_f(esk4_2(X5,X7),esk3_1(X5))|equal(esk4_2(X5,X7), X7)))|~(equal(esk3_1(X5), X5)))&(![X10]:((~(big_f(X10,esk3_1(X5)))|equal(X10, esk5_1(X5)))&(~(equal(X10, esk5_1(X5)))|big_f(X10,esk3_1(X5))))|equal(esk3_1(X5), X5))),inference(skolemize,[status(sab)],[12])).
fof(14, negated_conjecture,![X5]:![X7]:![X10]:((((~(big_f(X10,esk3_1(X5)))|equal(X10, esk5_1(X5)))&(~(equal(X10, esk5_1(X5)))|big_f(X10,esk3_1(X5))))|equal(esk3_1(X5), X5))&(((~(big_f(esk4_2(X5,X7),esk3_1(X5)))|~(equal(esk4_2(X5,X7), X7)))&(big_f(esk4_2(X5,X7),esk3_1(X5))|equal(esk4_2(X5,X7), X7)))|~(equal(esk3_1(X5), X5)))),inference(shift_quantors,[status(thm)],[13])).
fof(15, negated_conjecture,![X5]:![X7]:![X10]:((((~(big_f(X10,esk3_1(X5)))|equal(X10, esk5_1(X5)))|equal(esk3_1(X5), X5))&((~(equal(X10, esk5_1(X5)))|big_f(X10,esk3_1(X5)))|equal(esk3_1(X5), X5)))&(((~(big_f(esk4_2(X5,X7),esk3_1(X5)))|~(equal(esk4_2(X5,X7), X7)))|~(equal(esk3_1(X5), X5)))&((big_f(esk4_2(X5,X7),esk3_1(X5))|equal(esk4_2(X5,X7), X7))|~(equal(esk3_1(X5), X5))))),inference(distribute,[status(thm)],[14])).
cnf(16,negated_conjecture,(esk4_2(X1,X2)=X2|big_f(esk4_2(X1,X2),esk3_1(X1))|esk3_1(X1)!=X1),inference(split_conjunct,[status(thm)],[15])).
cnf(17,negated_conjecture,(esk3_1(X1)!=X1|esk4_2(X1,X2)!=X2|~big_f(esk4_2(X1,X2),esk3_1(X1))),inference(split_conjunct,[status(thm)],[15])).
cnf(18,negated_conjecture,(esk3_1(X1)=X1|big_f(X2,esk3_1(X1))|X2!=esk5_1(X1)),inference(split_conjunct,[status(thm)],[15])).
cnf(20,plain,(big_f(esk1_0,X1)|esk2_0!=X1),inference(er,[status(thm)],[8,theory(equality)])).
cnf(21,negated_conjecture,(esk3_1(X1)=X1|big_f(esk5_1(X1),esk3_1(X1))),inference(er,[status(thm)],[18,theory(equality)])).
cnf(23,negated_conjecture,(esk2_0=esk3_1(X1)|esk3_1(X1)=X1),inference(spm,[status(thm)],[9,21,theory(equality)])).
cnf(28,plain,(big_f(esk1_0,esk2_0)),inference(er,[status(thm)],[20,theory(equality)])).
cnf(30,negated_conjecture,(esk3_1(X2)=X2|esk2_0!=X2),inference(ef,[status(thm)],[23,theory(equality)])).
cnf(40,negated_conjecture,(esk3_1(esk2_0)=esk2_0),inference(er,[status(thm)],[30,theory(equality)])).
cnf(44,negated_conjecture,(esk4_2(esk2_0,X1)!=X1|~big_f(esk4_2(esk2_0,X1),esk2_0)),inference(spm,[status(thm)],[17,40,theory(equality)])).
cnf(45,negated_conjecture,(esk4_2(esk2_0,X1)=X1|big_f(esk4_2(esk2_0,X1),esk2_0)),inference(spm,[status(thm)],[16,40,theory(equality)])).
cnf(47,negated_conjecture,(esk1_0=esk4_2(esk2_0,X1)|esk4_2(esk2_0,X1)=X1),inference(spm,[status(thm)],[10,45,theory(equality)])).
cnf(54,negated_conjecture,(esk4_2(esk2_0,X2)=X2|esk1_0!=X2),inference(ef,[status(thm)],[47,theory(equality)])).
cnf(78,negated_conjecture,(esk4_2(esk2_0,esk1_0)=esk1_0),inference(er,[status(thm)],[54,theory(equality)])).
cnf(80,negated_conjecture,(~big_f(esk1_0,esk2_0)),inference(spm,[status(thm)],[44,78,theory(equality)])).
cnf(84,negated_conjecture,($false),inference(rw,[status(thm)],[80,28,theory(equality)])).
cnf(85,negated_conjecture,($false),inference(cn,[status(thm)],[84,theory(equality)])).
cnf(86,negated_conjecture,($false),85,['proof']).
# SZS output end CNFRefutation
# SZS status Theorem
leanCoP 2.1
Jens Otten
University of Potsdam, Germany
Sample solution for SYN075+1
TPTP-v3.3.0/Problems/SYN/SYN075+1.p is a Theorem
Start of proof for TPTP-v3.3.0/Problems/SYN/SYN075+1.p
------------------------------------------------------
Proof:
------
Translation into (disjunctive) clausal form:
(1) [-8^[_G4084, _G3031], big_f(6^[_G4084, _G3031], 3^[_G3031])]
(2) [-8^[_G4084, _G3031], - (6^[_G4084, _G3031]=_G4084)]
(3) [-7^[_G4084, _G3031], 6^[_G4084, _G3031]=_G4084]
(4) [-7^[_G4084, _G3031], -big_f(6^[_G4084, _G3031], 3^[_G3031])]
(5) [-9^[_G3031], 7^[_G4084, _G3031], 8^[_G4084, _G3031]]
(6) [-9^[_G3031], - (3^[_G3031]=_G3031)]
(7) [-5^[_G3031], -big_f(_G4166, 3^[_G3031]), _G4166=4^[_G3031]]
(8) [-5^[_G3031], big_f(_G4166, 3^[_G3031]), - (_G4166=4^[_G3031])]
(9) [-5^[_G3031], 3^[_G3031]=_G3031]
(10) [9^[_G3031], 5^[_G3031]]
(11) [big_f(_G3896, _G3901), - (_G3896=1^[])]
(12) [big_f(_G3896, _G3901), - (_G3901=2^[])]
(13) [-big_f(_G3896, _G3901), _G3896=1^[], _G3901=2^[]]
(14) [-big_f(_G1968, _G2109), big_f(_G1899, _G2038), _G1899=_G1968, _G2038=_G2109]
(15) [- (_G1114=_G1114)]
(16) [_G1215=_G1262, - (_G1262=_G1215)]
(17) [- (_G1452=_G1569), _G1452=_G1510, _G1510=_G1569]
We prove that the given clauses are valid, i.e. for
a given substitution they evaluate to true for all
interpretations. The proof is by contradiction:
Assume there is an interpretation so that the given
clauses evaluate to false. Then in each clause there
has to be at least one literal that is false.
Then clause (10) under the substitution [[_G3031], [2^[]]]
is false if at least one of the following is false:
[9^[2^[]], 5^[2^[]]]
1 Assume 9^[2^[]] is false.
Then clause (5) under the substitution [[_G3031, _G4084], [2^[], 1^[]]]
is false if at least one of the following is false:
[7^[1^[], 2^[]], 8^[1^[], 2^[]]]
1.1 Assume 7^[1^[], 2^[]] is false.
Then clause (3) under the substitution [[_G4084, _G3031], [1^[], 2^[]]]
is false if at least one of the following is false:
[6^[1^[], 2^[]]=1^[]]
1.1.1 Assume 6^[1^[], 2^[]]=1^[] is false.
Then clause (11) under the substitution [[_G3896, _G3901], [6^[1^[], 2^[]], 3^[2^[]]]]
is false if at least one of the following is false:
[big_f(6^[1^[], 2^[]], 3^[2^[]])]
1.1.1.1 Assume big_f(6^[1^[], 2^[]], 3^[2^[]]) is false.
Then clause (4) under the substitution [[_G4084, _G3031], [1^[], 2^[]]]
is false if at least one of the following is false:
[-7^[1^[], 2^[]]]
1.1.1.1.1 Assume -7^[1^[], 2^[]] is false.
This is a contradiction to assumption 1.1.
1.2 Assume 8^[1^[], 2^[]] is false.
Then clause (1) under the substitution [[_G4084, _G3031], [1^[], 2^[]]]
is false if at least one of the following is false:
[big_f(6^[1^[], 2^[]], 3^[2^[]])]
1.2.1 Assume big_f(6^[1^[], 2^[]], 3^[2^[]]) is false.
Then clause (13) under the substitution [[_G3896, _G3901], [6^[1^[], 2^[]], 3^[2^[]]]]
is false if at least one of the following is false:
[6^[1^[], 2^[]]=1^[], 3^[2^[]]=2^[]]
1.2.1.1 Assume 6^[1^[], 2^[]]=1^[] is false.
Then clause (2) under the substitution [[_G4084, _G3031], [1^[], 2^[]]]
is false if at least one of the following is false:
[-8^[1^[], 2^[]]]
1.2.1.1.1 Assume -8^[1^[], 2^[]] is false.
This is a contradiction to assumption 1.2.
1.2.1.2 Assume 3^[2^[]]=2^[] is false.
Then clause (6) under the substitution [[_G3031], [2^[]]]
is false if at least one of the following is false:
[-9^[2^[]]]
1.2.1.2.1 Assume -9^[2^[]] is false.
This is a contradiction to assumption 1.
2 Assume 5^[2^[]] is false.
Then clause (7) under the substitution [[_G3031, _G4166], [2^[], 4^[2^[]]]]
is false if at least one of the following is false:
[-big_f(4^[2^[]], 3^[2^[]]), 4^[2^[]]=4^[2^[]]]
2.1 Assume -big_f(4^[2^[]], 3^[2^[]]) is false.
Then clause (12) under the substitution [[_G3896, _G3901], [4^[2^[]], 3^[2^[]]]]
is false if at least one of the following is false:
[- (3^[2^[]]=2^[])]
2.1.1 Assume - (3^[2^[]]=2^[]) is false.
Then clause (9) under the substitution [[_G3031], [2^[]]]
is false if at least one of the following is false:
[-5^[2^[]]]
2.1.1.1 Assume -5^[2^[]] is false.
This is a contradiction to assumption 2.
2.2 Assume 4^[2^[]]=4^[2^[]] is false.
Then clause (15) under the substitution [[_G1114], [4^[2^[]]]]
is true.
Therefore there is no interpretation that makes all
given clauses simultaneously false. Hence the given
clauses are valid.
q.e.d.
------------------------------------------------------
End of proof for TPTP-v3.3.0/Problems/SYN/SYN075+1.p
LEO-II 1.0
Christoph Benzmüller1,2, Frank Theiss1
1International University of Germany, Germany,
2Articulate Software, USA
Sample solution for SET557^1
thf(1,conjecture,(
~ ( ? [G: $i > $i > $o] :
! [F: $i > $o] :
? [X: $i] :
( ( G @ X )
= F ) ) ),
file('SET557^1.p',surjectiveCantorThm)).
thf(2,negated_conjecture,
( ( ~ ( ? [G: $i > $i > $o] :
! [F: $i > $o] :
? [X: $i] :
( ( G @ X )
= F ) ) )
= $false ),
inference(negate_conjecture,[],[1])).
thf(3,plain,
( ( ? [G: $i > $i > $o] :
! [F: $i > $o] :
? [X: $i] :
( ( G @ X )
= F ) )
= $true ),
inference(polarity_switch,[status(thm)],[2])).
thf(4,plain,
( ( ! [F: $i > $o] :
( ( skG1 @ ( skX2 @ F ) )
= F ) )
= $true ),
inference(standard_extcnf,[status(thm)],[3])).
thf(5,plain,
( ( ! [F: $i > $o] :
( ( skG1 @ ( skX2 @ F ) )
= F ) )
= $true ),
inference(copy,[status(thm)],[4])).
thf(6,plain,(
! [V1: $i > $o] :
( ( ( skG1 @ ( skX2 @ V1 ) )
= V1 )
= $true ) ),
inference(extcnf,[status(thm)],[5])).
thf(8,plain,(
! [V1: $i > $o] :
( ( ! [V2: $i] :
( ( skG1 @ ( skX2 @ V1 ) @ V2 )
= ( V1 @ V2 ) ) )
= $true ) ),
inference(extcnf,[status(thm)],[6])).
thf(9,plain,(
! [V3: $i,V1: $i > $o] :
( ( ( skG1 @ ( skX2 @ V1 ) @ V3 )
= ( V1 @ V3 ) )
= $true ) ),
inference(extcnf,[status(thm)],[8])).
thf(11,plain,(
! [V3: $i,V1: $i > $o] :
( ( ~ ( ( skG1 @ ( skX2 @ V1 ) @ V3 )
| ( V1 @ V3 ) )
| ~ ( ~ ( skG1 @ ( skX2 @ V1 ) @ V3 )
| ~ ( V1 @ V3 ) ) )
= $true ) ),
inference(extcnf,[status(thm)],[9])).
thf(12,plain,(
! [V3: $i,V1: $i > $o] :
( ( ( ~ ( ( skG1 @ ( skX2 @ V1 ) @ V3 )
| ( V1 @ V3 ) ) )
= $true )
| ( ( ~ ( ~ ( skG1 @ ( skX2 @ V1 ) @ V3 )
| ~ ( V1 @ V3 ) ) )
= $true ) ) ),
inference(extcnf,[status(thm)],[11])).
thf(13,plain,(
! [V3: $i,V1: $i > $o] :
( ( ( ~ ( skG1 @ ( skX2 @ V1 ) @ V3 )
| ~ ( V1 @ V3 ) )
= $false )
| ( ( ~ ( ( skG1 @ ( skX2 @ V1 ) @ V3 )
| ( V1 @ V3 ) ) )
= $true ) ) ),
inference(extcnf,[status(thm)],[12])).
thf(14,plain,(
! [V3: $i,V1: $i > $o] :
( ( ( ( skG1 @ ( skX2 @ V1 ) @ V3 )
| ( V1 @ V3 ) )
= $false )
| ( ( ~ ( skG1 @ ( skX2 @ V1 ) @ V3 )
| ~ ( V1 @ V3 ) )
= $false ) ) ),
inference(extcnf,[status(thm)],[13])).
thf(15,plain,(
! [V3: $i,V1: $i > $o] :
( ( ( ~ ( V1 @ V3 ) )
= $false )
| ( ( ( skG1 @ ( skX2 @ V1 ) @ V3 )
| ( V1 @ V3 ) )
= $false ) ) ),
inference(extcnf,[status(thm)],[14])).
thf(16,plain,(
! [V3: $i,V1: $i > $o] :
( ( ( ~ ( skG1 @ ( skX2 @ V1 ) @ V3 ) )
= $false )
| ( ( ( skG1 @ ( skX2 @ V1 ) @ V3 )
| ( V1 @ V3 ) )
= $false ) ) ),
inference(extcnf,[status(thm)],[14])).
thf(17,plain,(
! [V3: $i,V1: $i > $o] :
( ( ( skG1 @ ( skX2 @ V1 ) @ V3 )
= $true )
| ( ( ( skG1 @ ( skX2 @ V1 ) @ V3 )
| ( V1 @ V3 ) )
= $false ) ) ),
inference(extcnf,[status(thm)],[16])).
thf(18,plain,(
! [V3: $i,V1: $i > $o] :
( ( ( V1 @ V3 )
= $true )
| ( ( ( skG1 @ ( skX2 @ V1 ) @ V3 )
| ( V1 @ V3 ) )
= $false ) ) ),
inference(extcnf,[status(thm)],[15])).
thf(19,plain,(
! [V3: $i,V1: $i > $o] :
( ( ( V1 @ V3 )
= $false )
| ( ( skG1 @ ( skX2 @ V1 ) @ V3 )
= $true ) ) ),
inference(extcnf,[status(thm)],[17])).
thf(22,plain,(
! [V3: $i,V1: $i > $o] :
( ( ( skG1 @ ( skX2 @ V1 ) @ V3 )
= $false )
| ( ( V1 @ V3 )
= $true ) ) ),
inference(extcnf,[status(thm)],[18])).
thf(71,plain,(
! [V3: $i,V1: $i > $o] :
( ( ( V1 @ V3 )
= $false )
| ( ( ( V1 @ V3 )
= ( ~ ( skG1 @ ( skX2 @ V1 ) @ V3 ) ) )
= $false ) ) ),
inference(fac_restr,[status(thm)],[19])).
thf(73,plain,(
! [V3: $i,V1: $i > $o] :
( ( ( V1 @ V3 )
= $true )
| ( ( ( V1 @ V3 )
= ( ~ ( skG1 @ ( skX2 @ V1 ) @ V3 ) ) )
= $false ) ) ),
inference(fac_restr,[status(thm)],[22])).
thf(143,plain,(
! [V3: $i,V1: $i > $o] :
( ( ( ( V1 @ V3 )
= ( ~ ( skG1 @ ( skX2 @ V1 ) @ V3 ) ) )
= $false )
| ( ( V1 @ V3 )
= $false ) ) ),
inference(extcnf,[status(thm)],[71])).
thf(147,plain,(
! [V3: $i,V1: $i > $o] :
( ( ( ( V1 @ V3 )
= ( ~ ( skG1 @ ( skX2 @ V1 ) @ V3 ) ) )
= $false )
| ( ( V1 @ V3 )
= $true ) ) ),
inference(extcnf,[status(thm)],[73])).
thf(630,plain,
( ( ~ ( skG1
@ ( skX2
@ ^ [X0: $i] :
~ ( skG1 @ X0 @ X0 ) )
@ ( skX2
@ ^ [X0: $i] :
~ ( skG1 @ X0 @ X0 ) ) ) )
= $false ),
inference(ext_uni,[status(thm)],[143:[bind(V1,$thf(^ [V203: $i] : ~ ( V204 @ V203 ))),bind(V204,$thf(^ [V206: $i] : ( skG1 @ ( V207 @ V206 ) @ ( V208 @ V206 ) ))),bind(V207,$thf(^ [V209: $i] : V209)),bind(V3,$thf(skX2 @ ^ [X0: $i] : ~ ( skG1 @ X0 @ ( V208 @ X0 ) ))),bind(V208,$thf(^ [V228: $i] : V228))]])).
thf(661,plain,
( ( ~ ( skG1
@ ( skX2
@ ^ [X0: $i] :
~ ( skG1 @ X0 @ X0 ) )
@ ( skX2
@ ^ [X0: $i] :
~ ( skG1 @ X0 @ X0 ) ) ) )
= $true ),
inference(ext_uni,[status(thm)],[147:[bind(V1,$thf(^ [V255: $i] : ~ ( V256 @ V255 ))),bind(V256,$thf(^ [V258: $i] : ( skG1 @ ( V259 @ V258 ) @ ( V260 @ V258 ) ))),bind(V259,$thf(^ [V261: $i] : V261)),bind(V3,$thf(skX2 @ ^ [X0: $i] : ~ ( skG1 @ X0 @ ( V260 @ X0 ) ))),bind(V260,$thf(^ [V280: $i] : V280))]])).
thf(662,plain,
( ( skG1
@ ( skX2
@ ^ [X0: $i] :
~ ( skG1 @ X0 @ X0 ) )
@ ( skX2
@ ^ [X0: $i] :
~ ( skG1 @ X0 @ X0 ) ) )
= $true ),
inference(extcnf,[status(thm)],[630])).
thf(693,plain,
( ( skG1
@ ( skX2
@ ^ [X0: $i] :
~ ( skG1 @ X0 @ X0 ) )
@ ( skX2
@ ^ [X0: $i] :
~ ( skG1 @ X0 @ X0 ) ) )
= $false ),
inference(extcnf,[status(thm)],[661])).
thf(804,plain,
( ( ( skG1
@ ( skX2
@ ^ [X0: $i] :
~ ( skG1 @ X0 @ X0 ) )
@ ( skX2
@ ^ [X0: $i] :
~ ( skG1 @ X0 @ X0 ) ) )
= ( skG1
@ ( skX2
@ ^ [X0: $i] :
~ ( skG1 @ X0 @ X0 ) )
@ ( skX2
@ ^ [X0: $i] :
~ ( skG1 @ X0 @ X0 ) ) ) )
= $false ),
inference(res,[status(thm)],[693,662])).
thf(805,plain,(
$false = $true ),
inference(ext_uni,[status(thm)],[804])).
thf(806,plain,(
$false ),
inference(solved_all_splitted_problems,[status(thm)],[805])).
Metis 2.2
Joe Hurd
Galois, Inc., USA
Metis' logical kernel
signature Thm =
(* ------------------------------------------------------------------------- *)
(* *)
(* ----- axiom C *)
(* C *)
(* ------------------------------------------------------------------------- *)
val axiom : Clause.clause -> thm
(* ------------------------------------------------------------------------- *)
(* *)
(* ----------- assume L *)
(* L \/ ~L *)
(* ------------------------------------------------------------------------- *)
val assume : Literal.literal -> thm
(* ------------------------------------------------------------------------- *)
(* C *)
(* -------- subst s *)
(* C[s] *)
(* ------------------------------------------------------------------------- *)
val subst : Subst.subst -> thm -> thm
(* ------------------------------------------------------------------------- *)
(* L \/ C ~L \/ D *)
(* --------------------- resolve L *)
(* C \/ D *)
(* *)
(* The literal L must occur in the first theorem, and the literal ~L must *)
(* occur in the second theorem. *)
(* ------------------------------------------------------------------------- *)
val resolve : Literal.literal -> thm -> thm -> thm
(* ------------------------------------------------------------------------- *)
(* *)
(* --------- refl t *)
(* t = t *)
(* ------------------------------------------------------------------------- *)
val refl : Term.term -> thm
(* ------------------------------------------------------------------------- *)
(* *)
(* ------------------------ equality L p t *)
(* ~(s = t) \/ ~L \/ L' *)
(* *)
(* where s is the subterm of L at path p, and L' is L with the subterm at *)
(* path p being replaced by t. *)
(* ------------------------------------------------------------------------- *)
val equality : Literal.literal -> Term.path -> Term.term -> thm
end
Sample solution for SYN075+1
SZS output start CNFRefutation for data/problems/all/SYN075+1.tptp
fof(pel52_1, axiom,
(? [Z, W] : ! [X, Y] : (big_f(X, Y) <=> (X = Z & Y = W)))).
fof(pel52, conjecture,
(? [W] : ! [Y] : (? [Z] : ! [X] : (big_f(X, Y) <=> X = Z) <=> Y = W))).
fof(subgoal_0, plain,
(? [W] : ! [Y] : (? [Z] : ! [X] : (big_f(X, Y) <=> X = Z) <=> Y = W)),
inference(strip, [], [pel52])).
fof(negate_0_0, plain,
(~
? [W] :
! [Y] : (? [Z] : ! [X] : (big_f(X, Y) <=> X = Z) <=> Y = W)),
inference(negate, [], [subgoal_0])).
fof(normalize_0_0, plain,
(! [W] :
? [Y] : (Y != W <=> ? [Z] : ! [X] : (X != Z <=> ~ big_f(X, Y)))),
inference(canonicalize, [], [negate_0_0])).
fof(normalize_0_1, plain,
(? [Y] : (Y != W <=> ? [Z] : ! [X] : (X != Z <=> ~ big_f(X, Y)))),
inference(specialize, [], [normalize_0_0])).
fof(normalize_0_2, plain,
(skolemFOFtoCNF_Y(W) != W <=>
? [Z] : ! [X] : (X != Z <=> ~ big_f(X, skolemFOFtoCNF_Y(W)))),
inference(skolemize, [], [normalize_0_1])).
fof(normalize_0_3, plain,
((X != skolemFOFtoCNF_Z_1(W) | skolemFOFtoCNF_Y(W) = W |
big_f(X, skolemFOFtoCNF_Y(W))) &
(skolemFOFtoCNF_X(W, Z) != Z | skolemFOFtoCNF_Y(W) != W |
~ big_f(skolemFOFtoCNF_X(W, Z), skolemFOFtoCNF_Y(W))) &
(skolemFOFtoCNF_Y(W) != W | skolemFOFtoCNF_X(W, Z) = Z |
big_f(skolemFOFtoCNF_X(W, Z), skolemFOFtoCNF_Y(W))) &
(~ big_f(X, skolemFOFtoCNF_Y(W)) | X = skolemFOFtoCNF_Z_1(W) |
skolemFOFtoCNF_Y(W) = W)), inference(clausify, [], [normalize_0_2])).
fof(normalize_0_4, plain,
(skolemFOFtoCNF_X(W, Z) != Z | skolemFOFtoCNF_Y(W) != W |
~ big_f(skolemFOFtoCNF_X(W, Z), skolemFOFtoCNF_Y(W))),
inference(conjunct, [], [normalize_0_3])).
fof(normalize_0_5, plain,
(? [W, Z] : ! [X, Y] : (~ big_f(X, Y) <=> (X != Z | Y != W))),
inference(canonicalize, [], [pel52_1])).
fof(normalize_0_6, plain,
(! [X, Y] :
(~ big_f(X, Y) <=>
(X != skolemFOFtoCNF_Z | Y != skolemFOFtoCNF_W))),
inference(skolemize, [], [normalize_0_5])).
fof(normalize_0_7, plain,
(~ big_f(X, Y) <=> (X != skolemFOFtoCNF_Z | Y != skolemFOFtoCNF_W)),
inference(specialize, [], [normalize_0_6])).
fof(normalize_0_8, plain,
((~ big_f(X, Y) | X = skolemFOFtoCNF_Z) &
(~ big_f(X, Y) | Y = skolemFOFtoCNF_W) &
(X != skolemFOFtoCNF_Z | Y != skolemFOFtoCNF_W | big_f(X, Y))),
inference(clausify, [], [normalize_0_7])).
fof(normalize_0_9, plain, (~ big_f(X, Y) | X = skolemFOFtoCNF_Z),
inference(conjunct, [], [normalize_0_8])).
fof(normalize_0_10, plain,
(skolemFOFtoCNF_Y(W) != W | skolemFOFtoCNF_X(W, Z) = Z |
big_f(skolemFOFtoCNF_X(W, Z), skolemFOFtoCNF_Y(W))),
inference(conjunct, [], [normalize_0_3])).
fof(normalize_0_11, plain, (~ big_f(X, Y) | Y = skolemFOFtoCNF_W),
inference(conjunct, [], [normalize_0_8])).
fof(normalize_0_12, plain,
(X != skolemFOFtoCNF_Z_1(W) | skolemFOFtoCNF_Y(W) = W |
big_f(X, skolemFOFtoCNF_Y(W))),
inference(conjunct, [], [normalize_0_3])).
fof(normalize_0_13, plain,
(X != skolemFOFtoCNF_Z | Y != skolemFOFtoCNF_W | big_f(X, Y)),
inference(conjunct, [], [normalize_0_8])).
cnf(refute_0_0, plain,
(skolemFOFtoCNF_X(W, Z) != Z | skolemFOFtoCNF_Y(W) != W |
~ big_f(skolemFOFtoCNF_X(W, Z), skolemFOFtoCNF_Y(W))),
inference(canonicalize, [], [normalize_0_4])).
cnf(refute_0_1, plain,
(skolemFOFtoCNF_X(W, Z) != Z | ~ big_f(Z, skolemFOFtoCNF_Y(W)) |
big_f(skolemFOFtoCNF_X(W, Z), skolemFOFtoCNF_Y(W))),
introduced(tautology,
[equality,
[$cnf(~ big_f(skolemFOFtoCNF_X(W, Z),
skolemFOFtoCNF_Y(W))), [0], $fot(Z)]])).
cnf(refute_0_2, plain,
(skolemFOFtoCNF_Y(W) != W | ~ big_f(Z, W) |
big_f(Z, skolemFOFtoCNF_Y(W))),
introduced(tautology,
[equality,
[$cnf(~ big_f(Z, skolemFOFtoCNF_Y(W))), [1], $fot(W)]])).
cnf(refute_0_3, plain,
(skolemFOFtoCNF_X(W, Z) != Z | skolemFOFtoCNF_Y(W) != W |
~ big_f(Z, W) | big_f(skolemFOFtoCNF_X(W, Z), skolemFOFtoCNF_Y(W))),
inference(resolve, [$cnf(big_f(Z, skolemFOFtoCNF_Y(W)))],
[refute_0_2, refute_0_1])).
cnf(refute_0_4, plain,
(skolemFOFtoCNF_X(W, Z) != Z | skolemFOFtoCNF_Y(W) != W |
~ big_f(Z, W)),
inference(resolve,
[$cnf(big_f(skolemFOFtoCNF_X(W, Z), skolemFOFtoCNF_Y(W)))],
[refute_0_3, refute_0_0])).
cnf(refute_0_5, plain,
(skolemFOFtoCNF_X(skolemFOFtoCNF_W, skolemFOFtoCNF_Z) !=
skolemFOFtoCNF_Z |
skolemFOFtoCNF_Y(skolemFOFtoCNF_W) != skolemFOFtoCNF_W |
~ big_f(skolemFOFtoCNF_Z, skolemFOFtoCNF_W)),
inference(subst, [],
[refute_0_4 :
[bind(W, $fot(skolemFOFtoCNF_W)),
bind(Z, $fot(skolemFOFtoCNF_Z))]])).
cnf(refute_0_6, plain, (~ big_f(X, Y) | X = skolemFOFtoCNF_Z),
inference(canonicalize, [], [normalize_0_9])).
cnf(refute_0_7, plain,
(~ big_f(skolemFOFtoCNF_X(skolemFOFtoCNF_W, X1), skolemFOFtoCNF_W) |
skolemFOFtoCNF_X(skolemFOFtoCNF_W, X1) = skolemFOFtoCNF_Z),
inference(subst, [],
[refute_0_6 :
[bind(X, $fot(skolemFOFtoCNF_X(skolemFOFtoCNF_W, X1))),
bind(Y, $fot(skolemFOFtoCNF_W))]])).
cnf(refute_0_8, plain,
(skolemFOFtoCNF_Y(W) != W | skolemFOFtoCNF_X(W, Z) = Z |
big_f(skolemFOFtoCNF_X(W, Z), skolemFOFtoCNF_Y(W))),
inference(canonicalize, [], [normalize_0_10])).
cnf(refute_0_9, plain,
(skolemFOFtoCNF_Y(W) != W |
~ big_f(skolemFOFtoCNF_X(W, Z), skolemFOFtoCNF_Y(W)) |
big_f(skolemFOFtoCNF_X(W, Z), W)),
introduced(tautology,
[equality,
[$cnf(big_f(skolemFOFtoCNF_X(W, Z), skolemFOFtoCNF_Y(W))),
[1], $fot(W)]])).
cnf(refute_0_10, plain,
(skolemFOFtoCNF_Y(W) != W | skolemFOFtoCNF_X(W, Z) = Z |
big_f(skolemFOFtoCNF_X(W, Z), W)),
inference(resolve,
[$cnf(big_f(skolemFOFtoCNF_X(W, Z), skolemFOFtoCNF_Y(W)))],
[refute_0_8, refute_0_9])).
cnf(refute_0_11, plain,
(skolemFOFtoCNF_Y(skolemFOFtoCNF_W) != skolemFOFtoCNF_W |
skolemFOFtoCNF_X(skolemFOFtoCNF_W, X0) = X0 |
big_f(skolemFOFtoCNF_X(skolemFOFtoCNF_W, X0), skolemFOFtoCNF_W)),
inference(subst, [],
[refute_0_10 :
[bind(W, $fot(skolemFOFtoCNF_W)), bind(Z, $fot(X0))]])).
cnf(refute_0_12, plain, (~ big_f(X, Y) | Y = skolemFOFtoCNF_W),
inference(canonicalize, [], [normalize_0_11])).
cnf(refute_0_13, plain,
(~ big_f(skolemFOFtoCNF_Z_1(X2), skolemFOFtoCNF_Y(X2)) |
skolemFOFtoCNF_Y(X2) = skolemFOFtoCNF_W),
inference(subst, [],
[refute_0_12 :
[bind(X, $fot(skolemFOFtoCNF_Z_1(X2))),
bind(Y, $fot(skolemFOFtoCNF_Y(X2)))]])).
cnf(refute_0_14, plain,
(X != skolemFOFtoCNF_Z_1(W) | skolemFOFtoCNF_Y(W) = W |
big_f(X, skolemFOFtoCNF_Y(W))),
inference(canonicalize, [], [normalize_0_12])).
cnf(refute_0_15, plain,
(skolemFOFtoCNF_Z_1(W) != skolemFOFtoCNF_Z_1(W) |
skolemFOFtoCNF_Y(W) = W |
big_f(skolemFOFtoCNF_Z_1(W), skolemFOFtoCNF_Y(W))),
inference(subst, [],
[refute_0_14 : [bind(X, $fot(skolemFOFtoCNF_Z_1(W)))]])).
cnf(refute_0_16, plain, (skolemFOFtoCNF_Z_1(W) = skolemFOFtoCNF_Z_1(W)),
introduced(tautology, [refl, [$fot(skolemFOFtoCNF_Z_1(W))]])).
cnf(refute_0_17, plain,
(skolemFOFtoCNF_Y(W) = W |
big_f(skolemFOFtoCNF_Z_1(W), skolemFOFtoCNF_Y(W))),
inference(resolve,
[$cnf('$equal'(skolemFOFtoCNF_Z_1(W),
skolemFOFtoCNF_Z_1(W)))],
[refute_0_16, refute_0_15])).
cnf(refute_0_18, plain,
(skolemFOFtoCNF_Y(X2) = X2 |
big_f(skolemFOFtoCNF_Z_1(X2), skolemFOFtoCNF_Y(X2))),
inference(subst, [], [refute_0_17 : [bind(W, $fot(X2))]])).
cnf(refute_0_19, plain,
(skolemFOFtoCNF_Y(X2) = X2 | skolemFOFtoCNF_Y(X2) = skolemFOFtoCNF_W),
inference(resolve,
[$cnf(big_f(skolemFOFtoCNF_Z_1(X2), skolemFOFtoCNF_Y(X2)))],
[refute_0_18, refute_0_13])).
cnf(refute_0_20, plain,
(skolemFOFtoCNF_Y(skolemFOFtoCNF_W) = skolemFOFtoCNF_W),
inference(subst, [],
[refute_0_19 : [bind(X2, $fot(skolemFOFtoCNF_W))]])).
cnf(refute_0_21, plain,
(skolemFOFtoCNF_W != skolemFOFtoCNF_W |
skolemFOFtoCNF_Y(skolemFOFtoCNF_W) != skolemFOFtoCNF_W |
skolemFOFtoCNF_Y(skolemFOFtoCNF_W) = skolemFOFtoCNF_W),
introduced(tautology,
[equality,
[$cnf('$equal'(skolemFOFtoCNF_Y(skolemFOFtoCNF_W),
skolemFOFtoCNF_W)), [0, 0],
$fot(skolemFOFtoCNF_W)]])).
cnf(refute_0_22, plain,
(skolemFOFtoCNF_W != skolemFOFtoCNF_W |
skolemFOFtoCNF_Y(skolemFOFtoCNF_W) = skolemFOFtoCNF_W),
inference(resolve,
[$cnf('$equal'(skolemFOFtoCNF_Y(skolemFOFtoCNF_W),
skolemFOFtoCNF_W))], [refute_0_20, refute_0_21])).
cnf(refute_0_23, plain,
(skolemFOFtoCNF_W != skolemFOFtoCNF_W |
skolemFOFtoCNF_X(skolemFOFtoCNF_W, X0) = X0 |
big_f(skolemFOFtoCNF_X(skolemFOFtoCNF_W, X0), skolemFOFtoCNF_W)),
inference(resolve,
[$cnf('$equal'(skolemFOFtoCNF_Y(skolemFOFtoCNF_W),
skolemFOFtoCNF_W))], [refute_0_22, refute_0_11])).
cnf(refute_0_24, plain, (skolemFOFtoCNF_W = skolemFOFtoCNF_W),
introduced(tautology, [refl, [$fot(skolemFOFtoCNF_W)]])).
cnf(refute_0_25, plain,
(skolemFOFtoCNF_X(skolemFOFtoCNF_W, X0) = X0 |
big_f(skolemFOFtoCNF_X(skolemFOFtoCNF_W, X0), skolemFOFtoCNF_W)),
inference(resolve,
[$cnf('$equal'(skolemFOFtoCNF_W, skolemFOFtoCNF_W))],
[refute_0_24, refute_0_23])).
cnf(refute_0_26, plain,
(skolemFOFtoCNF_X(skolemFOFtoCNF_W, X1) = X1 |
big_f(skolemFOFtoCNF_X(skolemFOFtoCNF_W, X1), skolemFOFtoCNF_W)),
inference(subst, [], [refute_0_25 : [bind(X0, $fot(X1))]])).
cnf(refute_0_27, plain,
(skolemFOFtoCNF_X(skolemFOFtoCNF_W, X1) = X1 |
skolemFOFtoCNF_X(skolemFOFtoCNF_W, X1) = skolemFOFtoCNF_Z),
inference(resolve,
[$cnf(big_f(skolemFOFtoCNF_X(skolemFOFtoCNF_W, X1),
skolemFOFtoCNF_W))], [refute_0_26, refute_0_7])).
cnf(refute_0_28, plain,
(skolemFOFtoCNF_X(skolemFOFtoCNF_W, skolemFOFtoCNF_Z) =
skolemFOFtoCNF_Z),
inference(subst, [],
[refute_0_27 : [bind(X1, $fot(skolemFOFtoCNF_Z))]])).
cnf(refute_0_29, plain,
(skolemFOFtoCNF_X(skolemFOFtoCNF_W, skolemFOFtoCNF_Z) !=
skolemFOFtoCNF_Z | skolemFOFtoCNF_Z != skolemFOFtoCNF_Z |
skolemFOFtoCNF_X(skolemFOFtoCNF_W, skolemFOFtoCNF_Z) =
skolemFOFtoCNF_Z),
introduced(tautology,
[equality,
[$cnf(~ '$equal'(skolemFOFtoCNF_X(skolemFOFtoCNF_W,
skolemFOFtoCNF_Z), skolemFOFtoCNF_Z)), [0],
$fot(skolemFOFtoCNF_Z)]])).
cnf(refute_0_30, plain,
(skolemFOFtoCNF_Z != skolemFOFtoCNF_Z |
skolemFOFtoCNF_X(skolemFOFtoCNF_W, skolemFOFtoCNF_Z) =
skolemFOFtoCNF_Z),
inference(resolve,
[$cnf('$equal'(skolemFOFtoCNF_X(skolemFOFtoCNF_W,
skolemFOFtoCNF_Z), skolemFOFtoCNF_Z))],
[refute_0_28, refute_0_29])).
cnf(refute_0_31, plain,
(skolemFOFtoCNF_Y(skolemFOFtoCNF_W) != skolemFOFtoCNF_W |
skolemFOFtoCNF_Z != skolemFOFtoCNF_Z |
~ big_f(skolemFOFtoCNF_Z, skolemFOFtoCNF_W)),
inference(resolve,
[$cnf('$equal'(skolemFOFtoCNF_X(skolemFOFtoCNF_W,
skolemFOFtoCNF_Z), skolemFOFtoCNF_Z))],
[refute_0_30, refute_0_5])).
cnf(refute_0_32, plain, (skolemFOFtoCNF_Z = skolemFOFtoCNF_Z),
introduced(tautology, [refl, [$fot(skolemFOFtoCNF_Z)]])).
cnf(refute_0_33, plain,
(skolemFOFtoCNF_Y(skolemFOFtoCNF_W) != skolemFOFtoCNF_W |
~ big_f(skolemFOFtoCNF_Z, skolemFOFtoCNF_W)),
inference(resolve,
[$cnf('$equal'(skolemFOFtoCNF_Z, skolemFOFtoCNF_Z))],
[refute_0_32, refute_0_31])).
cnf(refute_0_34, plain,
(skolemFOFtoCNF_W != skolemFOFtoCNF_W |
~ big_f(skolemFOFtoCNF_Z, skolemFOFtoCNF_W)),
inference(resolve,
[$cnf('$equal'(skolemFOFtoCNF_Y(skolemFOFtoCNF_W),
skolemFOFtoCNF_W))], [refute_0_22, refute_0_33])).
cnf(refute_0_35, plain, (~ big_f(skolemFOFtoCNF_Z, skolemFOFtoCNF_W)),
inference(resolve,
[$cnf('$equal'(skolemFOFtoCNF_W, skolemFOFtoCNF_W))],
[refute_0_24, refute_0_34])).
cnf(refute_0_36, plain,
(X != skolemFOFtoCNF_Z | Y != skolemFOFtoCNF_W | big_f(X, Y)),
inference(canonicalize, [], [normalize_0_13])).
cnf(refute_0_37, plain,
(skolemFOFtoCNF_W != skolemFOFtoCNF_W |
skolemFOFtoCNF_Z != skolemFOFtoCNF_Z |
big_f(skolemFOFtoCNF_Z, skolemFOFtoCNF_W)),
inference(subst, [],
[refute_0_36 :
[bind(X, $fot(skolemFOFtoCNF_Z)),
bind(Y, $fot(skolemFOFtoCNF_W))]])).
cnf(refute_0_38, plain,
(skolemFOFtoCNF_Z != skolemFOFtoCNF_Z |
big_f(skolemFOFtoCNF_Z, skolemFOFtoCNF_W)),
inference(resolve,
[$cnf('$equal'(skolemFOFtoCNF_W, skolemFOFtoCNF_W))],
[refute_0_24, refute_0_37])).
cnf(refute_0_39, plain, (big_f(skolemFOFtoCNF_Z, skolemFOFtoCNF_W)),
inference(resolve,
[$cnf('$equal'(skolemFOFtoCNF_Z, skolemFOFtoCNF_Z))],
[refute_0_32, refute_0_38])).
cnf(refute_0_40, plain, ($false),
inference(resolve, [$cnf(big_f(skolemFOFtoCNF_Z, skolemFOFtoCNF_W))],
[refute_0_39, refute_0_35])).
SZS output end CNFRefutation for data/problems/all/SYN075+1.tptp
Sample solution for MGT019+2
SZS output start Saturation for data/problems/all/MGT019+2.tptp
|- ~greater (disbanding_rate first_movers skolemFOFtoCNF_T)
(disbanding_rate efficient_producers skolemFOFtoCNF_T)
|- environment skolemFOFtoCNF_E
|- subpopulations first_movers efficient_producers skolemFOFtoCNF_E
skolemFOFtoCNF_T
|- ~greater (disbanding_rate first_movers $T)
(disbanding_rate efficient_producers $T) \/
~greater_or_equal (founding_rate efficient_producers $T)
(founding_rate first_movers $T) \/
greater (growth_rate efficient_producers $T)
(growth_rate first_movers $T)
|- ~greater_or_equal $X $Y \/ $X = $Y \/ greater $X $Y
|- ~environment $E \/ ~stable $E \/
in_environment $E (skolemFOFtoCNF_To $E)
|- ~environment $E \/ ~greater_or_equal $T (skolemFOFtoCNF_To $E) \/
~stable $E \/ ~subpopulations first_movers efficient_producers $E $T \/
greater_or_equal (founding_rate efficient_producers $T)
(founding_rate first_movers $T)
|- environment skolemFOFtoCNF_E_1
|- stable skolemFOFtoCNF_E_1
|- ~greater (growth_rate efficient_producers (skolemFOFtoCNF_T_1 $To))
(growth_rate first_movers (skolemFOFtoCNF_T_1 $To)) \/
~in_environment skolemFOFtoCNF_E_1 $To
|- ~in_environment skolemFOFtoCNF_E_1 $To \/
greater_or_equal (skolemFOFtoCNF_T_1 $To) $To
|- ~in_environment skolemFOFtoCNF_E_1 $To \/
subpopulations first_movers efficient_producers skolemFOFtoCNF_E_1
(skolemFOFtoCNF_T_1 $To)
|- in_environment skolemFOFtoCNF_E_1 (skolemFOFtoCNF_To skolemFOFtoCNF_E_1)
|- subpopulations first_movers efficient_producers skolemFOFtoCNF_E_1
(skolemFOFtoCNF_T_1 (skolemFOFtoCNF_To skolemFOFtoCNF_E_1))
|- greater_or_equal
(skolemFOFtoCNF_T_1 (skolemFOFtoCNF_To skolemFOFtoCNF_E_1))
(skolemFOFtoCNF_To skolemFOFtoCNF_E_1)
|- skolemFOFtoCNF_T_1 (skolemFOFtoCNF_To skolemFOFtoCNF_E_1) =
skolemFOFtoCNF_To skolemFOFtoCNF_E_1 \/
greater (skolemFOFtoCNF_T_1 (skolemFOFtoCNF_To skolemFOFtoCNF_E_1))
(skolemFOFtoCNF_To skolemFOFtoCNF_E_1)
|- ~greater_or_equal skolemFOFtoCNF_T
(skolemFOFtoCNF_To skolemFOFtoCNF_E) \/ ~stable skolemFOFtoCNF_E \/
greater_or_equal (founding_rate efficient_producers skolemFOFtoCNF_T)
(founding_rate first_movers skolemFOFtoCNF_T)
|- greater_or_equal
(founding_rate efficient_producers
(skolemFOFtoCNF_T_1 (skolemFOFtoCNF_To skolemFOFtoCNF_E_1)))
(founding_rate first_movers
(skolemFOFtoCNF_T_1 (skolemFOFtoCNF_To skolemFOFtoCNF_E_1)))
|- founding_rate efficient_producers
(skolemFOFtoCNF_T_1 (skolemFOFtoCNF_To skolemFOFtoCNF_E_1)) =
founding_rate first_movers
(skolemFOFtoCNF_T_1 (skolemFOFtoCNF_To skolemFOFtoCNF_E_1)) \/
greater
(founding_rate efficient_producers
(skolemFOFtoCNF_T_1 (skolemFOFtoCNF_To skolemFOFtoCNF_E_1)))
(founding_rate first_movers
(skolemFOFtoCNF_T_1 (skolemFOFtoCNF_To skolemFOFtoCNF_E_1)))
|- ~greater
(disbanding_rate first_movers
(skolemFOFtoCNF_T_1 (skolemFOFtoCNF_To skolemFOFtoCNF_E_1)))
(disbanding_rate efficient_producers
(skolemFOFtoCNF_T_1 (skolemFOFtoCNF_To skolemFOFtoCNF_E_1))) \/
greater
(growth_rate efficient_producers
(skolemFOFtoCNF_T_1 (skolemFOFtoCNF_To skolemFOFtoCNF_E_1)))
(growth_rate first_movers
(skolemFOFtoCNF_T_1 (skolemFOFtoCNF_To skolemFOFtoCNF_E_1)))
SZS output end Saturation for data/problems/all/MGT019+2.tptp
Sample solution for SWV010+1
SZS output start Saturation for data/problems/all/SWV010+1.tptp
|- a_holds (key at t)
|- party_of_protocol a
|- message (sent a b (a, an_a_nonce))
|- a_stored (b, an_a_nonce)
|- ~a_stored ($Y, $Z) \/
~message
(sent t a (triple (encrypt (quadruple $Y $Z $W $V) at) $X $U)) \/
a_holds (key $W $Y)
|- ~a_stored ($Y, $Z) \/
~message
(sent t a (triple (encrypt (quadruple $Y $Z $W $V) at) $X $U)) \/
message (sent a $Y ($X, encrypt $U $W))
|- b_holds (key bt t)
|- party_of_protocol b
|- fresh_to_b an_a_nonce
|- ~fresh_to_b $V \/ ~message (sent $U b ($U, $V)) \/ b_stored ($U, $V)
|- ~fresh_to_b $V \/ ~message (sent $U b ($U, $V)) \/
message
(sent b t
(triple b (generate_b_nonce $V)
(encrypt (triple $U $V (generate_expiration_time $V)) bt)))
|- ~b_stored ($X, $Y) \/
~message
(sent $X b
(encrypt (triple $X $V (generate_expiration_time $Y)) bt,
encrypt (generate_b_nonce $Y) $V)) \/ b_holds (key $V $X)
|- t_holds (key at a)
|- t_holds (key bt b)
|- party_of_protocol t
|- ~message (sent $U t (triple $U $V (encrypt (triple $W $X $Y) $Z))) \/
~t_holds (key $X1 $W) \/ ~t_holds (key $Z $U) \/
message
(sent t $W
(triple (encrypt (quadruple $U $X (generate_key $X) $Y) $X1)
(encrypt (triple $W (generate_key $X) $Y) $Z) $V))
|- b_stored (a, an_a_nonce)
|- message
(sent b t
(triple b (generate_b_nonce an_a_nonce)
(encrypt
(triple a an_a_nonce (generate_expiration_time an_a_nonce))
bt)))
|- ~t_holds (key $_32 a) \/
message
(sent t a
(triple
(encrypt
(quadruple b an_a_nonce (generate_key an_a_nonce)
(generate_expiration_time an_a_nonce)) $_32)
(encrypt
(triple a (generate_key an_a_nonce)
(generate_expiration_time an_a_nonce)) bt)
(generate_b_nonce an_a_nonce)))
|- message
(sent t a
(triple
(encrypt
(quadruple b an_a_nonce (generate_key an_a_nonce)
(generate_expiration_time an_a_nonce)) at)
(encrypt
(triple a (generate_key an_a_nonce)
(generate_expiration_time an_a_nonce)) bt)
(generate_b_nonce an_a_nonce)))
|- message
(sent a b
(encrypt
(triple a (generate_key an_a_nonce)
(generate_expiration_time an_a_nonce)) bt,
encrypt (generate_b_nonce an_a_nonce) (generate_key an_a_nonce)))
|- a_holds (key (generate_key an_a_nonce) b)
|- b_holds (key (generate_key an_a_nonce) a)
SZS output end Saturation for data/problems/all/SWV010+1.tptp
Paradox 3.0
Koen Claessen
Chalmers University of Technology, Sweden
Sample solution for MGT019+2
% domain size is 1
disbanding_rate(!1,!1) = !1
efficient_producers = !1
environment(!1) <=> $true
first_movers = !1
founding_rate(!1,!1) = !1
greater(!1,!1) <=> $false
greater_or_equal(!1,!1) <=> $true
growth_rate(!1,!1) = !1
in_environment(!1,!1) <=> $true
stable(!1) <=> $true
subpopulations(!1,!1,!1,!1) <=> $true
Sample solution for SWV010+1
% domain size is 1
a_holds(X1)
a_stored(X1)
b_holds(X1)
b_stored(X1)
fresh_to_b(X1)
message(X1)
party_of_protocol(X1)
t_holds(X1)
SInE 0.4
Kryštof Hoder
The University of Manchester, United Kingdom
Sample solution for SYN075+1
# Problem is unsatisfiable (or provable), constructing proof object
# SZS status Theorem
# SZS output start CNFRefutation.
fof(1, axiom,?[X1]:?[X2]:![X3]:![X4]:(big_f(X3,X4)<=>(equal(X3, X1)&equal(X4, X2))),file('/tmp/tmpHkvhK4/req', pel52_1)).
fof(2, conjecture,?[X2]:![X4]:(?[X1]:![X3]:(big_f(X3,X4)<=>equal(X3, X1))<=>equal(X4, X2)),file('/tmp/tmpHkvhK4/req', pel52)).
fof(3, negated_conjecture,~(?[X2]:![X4]:(?[X1]:![X3]:(big_f(X3,X4)<=>equal(X3, X1))<=>equal(X4, X2))),inference(assume_negation,[status(cth)],[2])).
fof(4, plain,?[X1]:?[X2]:![X3]:![X4]:((~(big_f(X3,X4))|(equal(X3, X1)&equal(X4, X2)))&((~(equal(X3, X1))|~(equal(X4, X2)))|big_f(X3,X4))),inference(fof_nnf,[status(thm)],[1])).
fof(5, plain,?[X5]:?[X6]:![X7]:![X8]:((~(big_f(X7,X8))|(equal(X7, X5)&equal(X8, X6)))&((~(equal(X7, X5))|~(equal(X8, X6)))|big_f(X7,X8))),inference(variable_rename,[status(thm)],[4])).
fof(6, plain,![X7]:![X8]:((~(big_f(X7,X8))|(equal(X7, esk1_0)&equal(X8, esk2_0)))&((~(equal(X7, esk1_0))|~(equal(X8, esk2_0)))|big_f(X7,X8))),inference(skolemize,[status(sab)],[5])).
fof(7, plain,![X7]:![X8]:(((equal(X7, esk1_0)|~(big_f(X7,X8)))&(equal(X8, esk2_0)|~(big_f(X7,X8))))&((~(equal(X7, esk1_0))|~(equal(X8, esk2_0)))|big_f(X7,X8))),inference(distribute,[status(thm)],[6])).
cnf(8,plain,(big_f(X1,X2)|X2!=esk2_0|X1!=esk1_0),inference(split_conjunct,[status(thm)],[7])).
cnf(9,plain,(X2=esk2_0|~big_f(X1,X2)),inference(split_conjunct,[status(thm)],[7])).
cnf(10,plain,(X1=esk1_0|~big_f(X1,X2)),inference(split_conjunct,[status(thm)],[7])).
fof(11, negated_conjecture,![X2]:?[X4]:((![X1]:?[X3]:((~(big_f(X3,X4))|~(equal(X3, X1)))&(big_f(X3,X4)|equal(X3, X1)))|~(equal(X4, X2)))&(?[X1]:![X3]:((~(big_f(X3,X4))|equal(X3, X1))&(~(equal(X3, X1))|big_f(X3,X4)))|equal(X4, X2))),inference(fof_nnf,[status(thm)],[3])).
fof(12, negated_conjecture,![X5]:?[X6]:((![X7]:?[X8]:((~(big_f(X8,X6))|~(equal(X8, X7)))&(big_f(X8,X6)|equal(X8, X7)))|~(equal(X6, X5)))&(?[X9]:![X10]:((~(big_f(X10,X6))|equal(X10, X9))&(~(equal(X10, X9))|big_f(X10,X6)))|equal(X6, X5))),inference(variable_rename,[status(thm)],[11])).
fof(13, negated_conjecture,![X5]:((![X7]:((~(big_f(esk4_2(X5,X7),esk3_1(X5)))|~(equal(esk4_2(X5,X7), X7)))&(big_f(esk4_2(X5,X7),esk3_1(X5))|equal(esk4_2(X5,X7), X7)))|~(equal(esk3_1(X5), X5)))&(![X10]:((~(big_f(X10,esk3_1(X5)))|equal(X10, esk5_1(X5)))&(~(equal(X10, esk5_1(X5)))|big_f(X10,esk3_1(X5))))|equal(esk3_1(X5), X5))),inference(skolemize,[status(sab)],[12])).
fof(14, negated_conjecture,![X5]:![X7]:![X10]:((((~(big_f(X10,esk3_1(X5)))|equal(X10, esk5_1(X5)))&(~(equal(X10, esk5_1(X5)))|big_f(X10,esk3_1(X5))))|equal(esk3_1(X5), X5))&(((~(big_f(esk4_2(X5,X7),esk3_1(X5)))|~(equal(esk4_2(X5,X7), X7)))&(big_f(esk4_2(X5,X7),esk3_1(X5))|equal(esk4_2(X5,X7), X7)))|~(equal(esk3_1(X5), X5)))),inference(shift_quantors,[status(thm)],[13])).
fof(15, negated_conjecture,![X5]:![X7]:![X10]:((((~(big_f(X10,esk3_1(X5)))|equal(X10, esk5_1(X5)))|equal(esk3_1(X5), X5))&((~(equal(X10, esk5_1(X5)))|big_f(X10,esk3_1(X5)))|equal(esk3_1(X5), X5)))&(((~(big_f(esk4_2(X5,X7),esk3_1(X5)))|~(equal(esk4_2(X5,X7), X7)))|~(equal(esk3_1(X5), X5)))&((big_f(esk4_2(X5,X7),esk3_1(X5))|equal(esk4_2(X5,X7), X7))|~(equal(esk3_1(X5), X5))))),inference(distribute,[status(thm)],[14])).
cnf(16,negated_conjecture,(esk4_2(X1,X2)=X2|big_f(esk4_2(X1,X2),esk3_1(X1))|esk3_1(X1)!=X1),inference(split_conjunct,[status(thm)],[15])).
cnf(17,negated_conjecture,(esk3_1(X1)!=X1|esk4_2(X1,X2)!=X2|~big_f(esk4_2(X1,X2),esk3_1(X1))),inference(split_conjunct,[status(thm)],[15])).
cnf(18,negated_conjecture,(esk3_1(X1)=X1|big_f(X2,esk3_1(X1))|X2!=esk5_1(X1)),inference(split_conjunct,[status(thm)],[15])).
cnf(25,negated_conjecture,(esk2_0=esk3_1(X2)|esk3_1(X2)=X2|esk5_1(X2)!=X1),inference(pm,[status(thm)],[9,18,theory(equality)])).
cnf(37,negated_conjecture,(esk3_1(X1)=esk2_0|esk3_1(X1)=X1),inference(er,[status(thm)],[25,theory(equality)])).
cnf(48,negated_conjecture,(esk3_1(X2)=X2|esk2_0!=X2),inference(ef,[status(thm)],[37,theory(equality)])).
cnf(60,negated_conjecture,(~big_f(esk4_2(X1,X2),X1)|esk4_2(X1,X2)!=X2|esk3_1(X1)!=X1|esk2_0!=X1),inference(pm,[status(thm)],[17,48,theory(equality)])).
cnf(71,negated_conjecture,(esk4_2(X1,X2)!=X2|esk3_1(X1)!=X1|esk2_0!=X1|esk1_0!=esk4_2(X1,X2)),inference(pm,[status(thm)],[60,8,theory(equality)])).
cnf(1021,negated_conjecture,(esk1_0=esk4_2(X1,X2)|esk4_2(X1,X2)=X2|esk3_1(X1)!=X1),inference(pm,[status(thm)],[10,16,theory(equality)])).
cnf(1085,negated_conjecture,(esk4_2(X3,X4)=X4|esk1_0!=X4|esk3_1(X3)!=X3),inference(ef,[status(thm)],[1021,theory(equality)])).
cnf(1132,negated_conjecture,(X2!=esk1_0|esk4_2(X1,X2)!=X2|esk3_1(X1)!=X1|esk2_0!=X1),inference(pm,[status(thm)],[71,1085,theory(equality)])).
cnf(1179,negated_conjecture,(esk3_1(X1)!=X1|X2!=esk1_0|esk2_0!=X1),inference(pm,[status(thm)],[1132,1085,theory(equality)])).
cnf(1247,negated_conjecture,(X2!=esk1_0|esk2_0!=X1),inference(pm,[status(thm)],[1179,48,theory(equality)])).
cnf(1299,negated_conjecture,(esk2_0!=X1),inference(er,[status(thm)],[1247,theory(equality)])).
cnf(1302,negated_conjecture,($false),inference(er,[status(thm)],[1299,theory(equality)])).
cnf(1304,negated_conjecture,($false),1302,['proof']).
# SZS output end CNFRefutation