<derivation> ::= <clause> ....... <clause id> | <inference><inference>* <inference> ::= <space><clause> ....... <clause id> <space><clause> ....... <clause id> <space><blank><resolvent_factor> ....... R<id> [<clause id>:<literal id>, <clause id>:<literal id>] <space> ::= <blank>* <blank> ::= " " <clause> ::= <literal> <more literals>* <literal> ::= <sign><atom> <more literals> ::= <or> <literal> <sign> ::= ~ | [] <atom> ::= <proposition> | <predicate><arguments> <or> ::= | <proposition> ::= <identifier> <predicate> ::= <identifier> <arguments> ::= (<term><more terms>*) <term> ::= <constant> | <function> | <variable> <more terms> ::= ,<term> <constant> ::= <identifier>() <function> ::= <identifier><arguments> <variable> ::= <identifier> <identifier> ::= <legal character><legal character>* legal character>::= A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R|S|T|U|V|W|X|Y|Z|a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|x|y|z|0|1|2|3|4|5|6|7|8|9|_ <clause id> ::= B<id> | U<id> | R<id> <id> ::= <digit><digit>* <digit> ::= 0|1|2|3|4|5|6|7|8|9 <literal id> :: = L<id> <resolvent_factor> ::= <clause> | "[]"
Base Clauses and Unit Clauses used in proof: ============================================ Base Clauses: ------------- B0: ~equal(f(x0),x0) | big_f(h(x0,x1),f(x0)) | equal(h(x0,x1),x1) B1: ~equal(x0,g(x1)) | big_f(x0,f(x1)) | equal(f(x1),x1) B6: ~big_f(h(x0,x1),f(x0)) | ~equal(f(x0),x0) | ~equal(h(x0,x1),x1) B7: equal(x0,x0) B8: ~equal(x0,x1) | equal(x1,x0) B9: ~big_f(x0,x1) | equal(x0,a()) B10: ~big_f(x0,x1) | equal(x1,b()) B15: ~equal(x0,x1) | ~equal(x1,x2) | equal(x0,x2) B16: ~big_f(x0,x2) | ~equal(x0,x1) | big_f(x1,x2) B18: ~equal(x0,a()) | ~equal(x1,b()) | big_f(x0,x1) Unit Clauses: -------------- U0: equal(x0,x0) U71: equal(f(b()),b()) U72: ~big_f(h(b(),a()),f(b())) U73: equal(b(),f(b())) U90: big_f(a(),f(b())) U138: ~equal(h(b(),a()),a()) U660: equal(h(b(),a()),a()) --------------- Start of Proof --------------- Derivation of unit clause U0: equal(x0,x0) ....... U0 Derivation of unit clause U71: ~equal(x0,g(x1)) | big_f(x0,f(x1)) | equal(f(x1),x1) ....... B1 ~big_f(x0,x1) | equal(x1,b()) ....... B10 ~equal(x0, g(x1)) | equal(f(x1), x1) | equal(f(x1), b()) ....... R1 [B1:L1, B10:L0] ~equal(x0, g(b())) | equal(f(b()), b()) ....... R2 [R1:L1, R1:L2] equal(x0,x0) ....... U0 equal(f(b()), b()) ....... R3 [R2:L0, U0:L0] Derivation of unit clause U72: ~big_f(h(x0,x1),f(x0)) | ~equal(f(x0),x0) | ~equal(h(x0,x1),x1) ....... B6 ~big_f(x0,x1) | equal(x0,a()) ....... B9 ~big_f(h(x0, a()), f(x0)) | ~equal(f(x0), x0) | ~big_f(h(x0, a()), x1) ....... R1 [B6:L2, B9:L1] ~equal(f(x0), x0) | ~big_f(h(x0, a()), f(x0)) ....... R2 [R1:L0, R1:L2] equal(f(b()),b()) ....... U71 ~big_f(h(b(), a()), f(b())) ....... R3 [R2:L0, U71:L0] Derivation of unit clause U73: equal(x0,x0) ....... B7 ~equal(x0,x1) | ~equal(x1,x2) | equal(x0,x2) ....... B15 ~equal(x0, x1) | equal(x0, x1) ....... R1 [B7:L0, B15:L0] ~equal(x0,x1) | equal(x1,x0) ....... B8 ~equal(x0, x1) | equal(x1, x0) ....... R2 [R1:L1, B8:L0] equal(f(b()),b()) ....... U71 equal(b(), f(b())) ....... R3 [R2:L0, U71:L0] Derivation of unit clause U90: equal(x0,x0) ....... B7 ~equal(x0,a()) | ~equal(x1,b()) | big_f(x0,x1) ....... B18 ~equal(x0, b()) | big_f(a(), x0) ....... R1 [B7:L0, B18:L0] ~equal(x0,x1) | equal(x1,x0) ....... B8 big_f(a(), x0) | ~equal(b(), x0) ....... R2 [R1:L0, B8:L1] equal(b(),f(b())) ....... U73 big_f(a(), f(b())) ....... R3 [R2:L1, U73:L0] Derivation of unit clause U138: ~equal(x0,x1) | equal(x1,x0) ....... B8 ~big_f(x0,x2) | ~equal(x0,x1) | big_f(x1,x2) ....... B16 ~equal(x0, x1) | ~big_f(x1, x2) | big_f(x0, x2) ....... R1 [B8:L1, B16:L1] big_f(a(),f(b())) ....... U90 ~equal(x0, a()) | big_f(x0, f(b())) ....... R2 [R1:L1, U90:L0] ~big_f(h(b(),a()),f(b())) ....... U72 ~equal(h(b(), a()), a()) ....... R3 [R2:L1, U72:L0] Derivation of unit clause U660: ~equal(f(x0),x0) | big_f(h(x0,x1),f(x0)) | equal(h(x0,x1),x1) ....... B0 ~equal(x0,x1) | equal(x1,x0) ....... B8 ~equal(f(x0), x0) | big_f(h(x0, x1), f(x0)) | equal(x1, h(x0, x1)) ....... R1 [B0:L2, B8:L0] equal(f(b()),b()) ....... U71 big_f(h(b(), x0), f(b())) | equal(x0, h(b(), x0)) ....... R2 [R1:L0, U71:L0] ~equal(x0,x1) | equal(x1,x0) ....... B8 big_f(h(b(), x0), f(b())) | equal(h(b(), x0), x0) ....... R3 [R2:L1, B8:L0] ~big_f(h(b(),a()),f(b())) ....... U72 equal(h(b(), a()), a()) ....... R4 [R3:L0, U72:L0] Derivation of the empty clause: equal(h(b(),a()),a()) ....... U660 ~equal(h(b(),a()),a()) ....... U138 [] ....... R1 [U660:L0, U138:L0] --------------- End of Proof ---------------
Here is a list of all inferences:
The first proof uses all but "ef", although it uses some in fairly trivial ways. Note that clause normalization is inherently performed after all inferences but rewriting. The second is the required proof for SYN075-1, and contains an example for "ef".
# Problem is unsatisfiable, constructing proof object # TSTP exit status: Unsatisfiable # Proof object starts here. 1 : [++equal(f(X1,X2), f(X2,X1))] : initial 2 : [++equal(f(X1,f(X2,X3)), f(f(X1,X2),X3))] : initial 3 : [++equal(g(X1,X2), g(X2,X1))] : initial 4 : [--equal(f(f(X1,X2),f(X3,g(X4,X5))), f(f(g(X4,X5),X3),f(X2,X1))),--equal(k(X1,X1), k(a,b))] : initial 5 : [++equal(b, c),--equal(X1, X2),--equal(X3, X4),--equal(c, d)] : initial 6 : [++equal(a, b),++equal(a, c)] : initial 7 : [++equal(i(X1), i(X2))] : initial 8 : [++equal(c, d),--equal(h(i(a)), h(i(e)))] : initial 13 : [--equal(k(a,b), k(X1,X1))] : ar(4,1,3,2) 23 : [++equal(c, b),++epred1_0,--equal(d, c),--equal(X3, X4)] : split(5) 24 : [++epred2_0,--equal(X1, X2)] : split(5) 25 : [--epred2_0,--epred1_0] : split(5) 26 : [++epred2_0] : er(24) 27 : [--$true,--epred1_0] : rw(25,26) 28 : [++equal(c, b),++epred1_0,--equal(d, c)] : er(23) 29 : [++equal(c, b),--equal(d, c)] : sr(28,27) 30 : [++equal(d, c)] : sr(8,7) 31 : [++equal(c, b),--equal(c, c)] : rw(29,30) 32 : [++equal(c, b)] : cn(31) 34 : [++equal(b, a)] : pm(6,32) 35 : [--equal(k(b,b), k(X1,X1))] : rw(13,34) 120 : [] : er(35) 121 : [] : 120 : "proof" # Proof object ends here.
# Problem is unsatisfiable, constructing proof object # TSTP exit status: Unsatisfiable # Proof object starts here. 1 : [++equal(X1, a),--big_f(X1,X2)] : initial 3 : [++big_f(X1,X2),--equal(X1, a),--equal(X2, b)] : initial 4 : [++equal(f(X2), X2),--big_f(X1,f(X2)),--equal(X1, g(X2))] : initial 6 : [++big_f(X1,f(X2)),++equal(f(X2), X2),--equal(X1, g(X2))] : initial 9 : [++big_f(h(X1,X2),f(X1)),++equal(h(X1,X2), X2),--equal(f(X1), X1)] : initial 10 : [--equal(f(X1), X1),--equal(h(X1,X2), X2),--big_f(h(X1,X2),f(X1))] : initial 18 : [++equal(f(X2), X2),--equal(g(X2), X1)] : pm(4,6) 19 : [++equal(f(X1), X1)] : er(18) 24 : [--equal(X1, X1),--equal(h(X1,X2), X2),--big_f(h(X1,X2),f(X1))] : rw(10,19) 25 : [--equal(X1, X1),--equal(h(X1,X2), X2),--big_f(h(X1,X2),X1)] : rw(24,19) 26 : [--equal(h(X1,X2), X2),--big_f(h(X1,X2),X1)] : cn(25) 27 : [++equal(h(X1,X2), X2),++big_f(h(X1,X2),X1),--equal(f(X1), X1)] : rw(9,19) 28 : [++equal(h(X1,X2), X2),++big_f(h(X1,X2),X1),--equal(X1, X1)] : rw(27,19) 29 : [++equal(h(X1,X2), X2),++big_f(h(X1,X2),X1)] : cn(28) 30 : [++equal(a, h(X1,X2)),++equal(h(X1,X2), X2)] : pm(1,29) 36 : [++equal(h(X1,X2), X2),--equal(a, X2)] : ef(30) 46 : [--big_f(X2,X1),--equal(h(X1,X2), X2),--equal(a, X2)] : pm(26,36) 56 : [--big_f(X2,X1),--equal(a, X2)] : pm(46,36) 63 : [--equal(a, X1),--equal(b, X2)] : pm(56,3) 94 : [--equal(b, X1)] : er(63) 103 : [] : er(94) 104 : [] : 103 : "proof" # Proof object ends here.
START OF PROOF 12 [] equal(X,X). 13 [] equal(X,a) | -big_f(X,Y). 15 [] -equal(Y,b) | -equal(X,a) | big_f(X,Y). 17 [] big_f(h(X,Y),f(X)) | equal(h(X,Y),Y) | -equal(f(X),X). 20 [] -equal(X,g(Y)) | big_f(X,f(Y)) | equal(f(Y),Y). 22 [] -big_f(X,f(Y)) | -equal(X,g(Y)) | equal(f(Y),Y). 27 [] -big_f(h(X,Y),f(X)) | -equal(h(X,Y),Y) | -equal(f(X),X). 30 [hyper:20,12] big_f(g(X),f(X)) | equal(f(X),X). 32 [hyper:22,12,binarycut:30] equal(f(X),X). 35 [hyper:15,12,12] big_f(a,b). 38 [hyper:17,32,demod:32] big_f(h(X,Y),X) | equal(h(X,Y),Y). 82 [hyper:13,38,factor] equal(h(X,a),a). 100 [hyper:27,82,demod:32,82,cut:12,slowcut:35] contradiction END OF PROOF
Gandalf v. c-2.6 beta starting to prove: /tmp/GandalfTemp4115 prove-all-passes started detected problem class: peq strategies selected: (hyper 30 #f 12 5) (binary-unit 12 #f) (binary-unit-uniteq 12 #f) (binary-posweight-kb-big-order 60 #f 12 5) (binary-posweight-lex-big-order 30 #f 12 5) (binary 30 #t) (binary-posweight-kb-big-order 156 #f) (binary-posweight-lex-big-order 102 #f) (binary-posweight-firstpref-order 60 #f) (binary-order 30 #f) (binary-posweight-kb-small-order 48 #f) (binary-posweight-lex-small-order 30 #f) SOS clause -equal(multiply(inverse(a1),a1),multiply(inverse(b1),b1)) | -equal(multiply(multiply(inverse(b2),b2),a2),a2) | -equal(multiply(multiply(a3,b3),c3),multiply(a3,multiply(b3,c3))). was split for some strategies as: -equal(multiply(inverse(a1),a1),multiply(inverse(b1),b1)). -equal(multiply(multiply(inverse(b2),b2),a2),a2). -equal(multiply(multiply(a3,b3),c3),multiply(a3,multiply(b3,c3))). Starting a split proof attempt with 3 components. Split component 1 started. START OF PROOFPART Making new sos for split: Original clause to be split: -equal(multiply(inverse(a1),a1),multiply(inverse(b1),b1)) | -equal(multiply(multiply(inverse(b2),b2),a2),a2) | -equal(multiply(multiply(a3,b3),c3),multiply(a3,multiply(b3,c3))). Split part used next: -equal(multiply(inverse(a1),a1),multiply(inverse(b1),b1)). END OF PROOFPART **** EMPTY CLAUSE DERIVED **** timer checkpoints: c(3,40,2,6,0,2,13,50,5,16,0,5,9528,4,711,9663,5,906,9663,1,906,9663,50,908,9663,40,908,9666,0,908,10991,3,1113,12378,4,1211,14866,5,1393,14866,1,1393,14866,50,1394,14866,40,1394,14869,0,1394,17337,3,1656,17892,4,1697,19772,5,1795,19784,1,1795,19784,50,1796,19784,40,1796,19787,0,1796,19794,50,1798,19797,0,1798,28123,3,2840,32590,4,3312,37306,5,3747,37308,1,3747,37308,50,3750,37308,40,3750,37311,0,3750,37318,50,3752,37321,0,3752,44100,3,4227,51250,4,4433,55491,5,4653,55493,1,4653,55493,50,4656,55493,40,4656,55496,0,4656,55497,50,4656,55497,40,4656,55500,0,4656,81692,3,7398,89382,4,8908,98454,5,9857,98462,1,9857,98462,50,9860,98462,40,9860,98465,0,9860,118207,3,12472,118207,4,12472,126466,5,13261,126489,1,13263,126489,50,13266,126489,40,13266,126492,0,13266,136384,3,14336,141920,4,14775,148496,5,15470,148507,1,15470,148507,50,15473,148507,40,15473,148510,0,15473,155256,3,15983,161622,4,16226,162526,5,16474,162526,1,16474,162526,50,16476,162526,40,16476,162529,0,16476,174482,3,17313,178673,4,17695,188717,5,18077,188719,1,18077,188719,50,18079,188719,40,18079,188722,0,18079,194033,3,18627,200190,4,18838,206431,5,19080,206431,1,19080,206431,50,19083,206431,40,19083,206431,40,19083,206434,0,19083,206440,50,19085,206443,0,19085) START OF PROOF 206442 [] equal(inverse(multiply(inverse(multiply(X,inverse(multiply(inverse(Y),inverse(multiply(Z,inverse(multiply(inverse(Z),Z)))))))),multiply(X,Z))),Y). 206443 [] -equal(multiply(inverse(a1),a1),multiply(inverse(b1),b1)). 206444 [para:206442.1.1,206442.1.1.1.1.1.2.1.1] equal(inverse(multiply(inverse(multiply(X,inverse(multiply(Y,inverse(multiply(Z,inverse(multiply(inverse(Z),Z)))))))),multiply(X,Z))),multiply(inverse(multiply(U,inverse(multiply(inverse(Y),inverse(multiply(V,inverse(multiply(inverse(V),V)))))))),multiply(U,V))). 206445 [para:206444.1.1,206442.1.1] equal(multiply(inverse(multiply(X,inverse(multiply(inverse(inverse(Y)),inverse(multiply(Z,inverse(multiply(inverse(Z),Z)))))))),multiply(X,Z)),Y). 206453 [para:206445.1.1,206445.1.1.2] equal(multiply(inverse(multiply(inverse(multiply(X,inverse(multiply(inverse(inverse(Y)),inverse(multiply(Z,inverse(multiply(inverse(Z),Z)))))))),inverse(multiply(inverse(inverse(U)),inverse(multiply(multiply(X,Z),inverse(multiply(inverse(multiply(X,Z)),multiply(X,Z))))))))),Y),U). 206466 [para:206453.1.1,206442.1.1.1.1.1.2.1] equal(inverse(multiply(inverse(multiply(X,inverse(Y))),multiply(X,Z))),multiply(inverse(multiply(U,inverse(multiply(inverse(inverse(inverse(multiply(Z,inverse(multiply(inverse(Z),Z)))))),inverse(multiply(V,inverse(multiply(inverse(V),V)))))))),inverse(multiply(inverse(inverse(Y)),inverse(multiply(multiply(U,V),inverse(multiply(inverse(multiply(U,V)),multiply(U,V))))))))). 206473 [para:206466.1.2,206444.1.2.1.1,demod:206445,206442] equal(X,multiply(inverse(inverse(multiply(inverse(multiply(Y,inverse(X))),multiply(Y,Z)))),inverse(multiply(Z,inverse(multiply(inverse(Z),Z)))))). 206481 [para:206466.1.2,206466.1.2] equal(inverse(multiply(inverse(multiply(X,inverse(Y))),multiply(X,Z))),inverse(multiply(inverse(multiply(U,inverse(Y))),multiply(U,Z)))). 206482 [para:206481.1.1,206442.1.1.1.1.1.2.1.1,demod:206442] equal(multiply(inverse(multiply(X,inverse(Y))),multiply(X,Z)),multiply(inverse(multiply(U,inverse(Y))),multiply(U,Z))). 206506 [para:206442.1.1,206482.1.1.1.1.2,demod:206442] equal(multiply(inverse(multiply(X,Y)),multiply(X,Z)),multiply(inverse(multiply(U,Y)),multiply(U,Z))). 206537 [para:206506.1.1,206442.1.1.1.1.1.2.1.2.1.2.1] equal(inverse(multiply(inverse(multiply(X,inverse(multiply(inverse(Y),inverse(multiply(multiply(Z,U),inverse(multiply(inverse(multiply(V,U)),multiply(V,U))))))))),multiply(X,multiply(Z,U)))),Y). 206575 [para:206506.1.1,206453.1.1.1.1.2.1.2.1.2.1] equal(multiply(inverse(multiply(inverse(multiply(X,inverse(multiply(inverse(inverse(Y)),inverse(multiply(Z,inverse(multiply(inverse(Z),Z)))))))),inverse(multiply(inverse(inverse(U)),inverse(multiply(multiply(X,Z),inverse(multiply(inverse(multiply(V,Z)),multiply(V,Z))))))))),Y),U). 207691 [para:206453.1.1,206537.1.1.1.1.1.2.1.2.1.1,demod:206575] equal(inverse(multiply(inverse(multiply(X,inverse(multiply(inverse(Y),inverse(multiply(Z,inverse(multiply(inverse(multiply(U,V)),multiply(U,V))))))))),multiply(X,Z))),Y). 207713 [para:206445.1.1,207691.1.1.1.1.1.2.1.2.1.2.1.1.1,demod:206445] equal(inverse(multiply(inverse(multiply(X,inverse(multiply(inverse(Y),inverse(multiply(Z,inverse(multiply(inverse(U),U)))))))),multiply(X,Z))),Y). 207760 [para:207713.1.1,206473.1.2.1.1] equal(multiply(inverse(X),inverse(multiply(Y,inverse(multiply(inverse(Z),Z))))),multiply(inverse(X),inverse(multiply(Y,inverse(multiply(inverse(Y),Y)))))). 207856 [para:207760.1.2,206473.1.2] equal(X,multiply(inverse(inverse(multiply(inverse(multiply(Y,inverse(X))),multiply(Y,Z)))),inverse(multiply(Z,inverse(multiply(inverse(U),U)))))). 207857 [para:207760.1.1,206473.1.2.1.1.1.1.1,demod:207856] equal(multiply(X,inverse(multiply(inverse(Y),Y))),multiply(X,inverse(multiply(inverse(X),X)))). 208106 [para:207857.1.1,206473.1.2.1.1.1.1.1,demod:207856,slowcut:206443] contradiction END OF PROOF Proof found by the following strategy: using hyperresolution not using sos strategy using positive unit paramodulation strategy using dynamic demodulation using ordered paramodulation using kb ordering for equality preferring bigger arities for lex ordering clause length limited to 5 clause depth limited to 13 seconds given: 12 Split component 2 started. START OF PROOFPART Making new sos for split: Original clause to be split: -equal(multiply(inverse(a1),a1),multiply(inverse(b1),b1)) | -equal(multiply(multiply(inverse(b2),b2),a2),a2) | -equal(multiply(multiply(a3,b3),c3),multiply(a3,multiply(b3,c3))). Split part used next: -equal(multiply(multiply(inverse(b2),b2),a2),a2). END OF PROOFPART using hyperresolution not using sos strategy using positive unit paramodulation strategy using dynamic demodulation using ordered paramodulation using kb ordering for equality preferring bigger arities for lex ordering clause length limited to 5 clause depth limited to 12 seconds given: 12 proof attempt stopped: sos exhausted using hyperresolution not using sos strategy using positive unit paramodulation strategy using dynamic demodulation using ordered paramodulation using kb ordering for equality preferring bigger arities for lex ordering clause length limited to 5 clause depth limited to 13 seconds given: 12 proof attempt stopped: time limit old unit clauses discarded using binary resolution not using sos strategy using unit strategy using dynamic demodulation using ordered paramodulation using kb ordering for equality preferring bigger arities for lex ordering using clause demodulation seconds given: 4 proof attempt stopped: time limit using binary resolution not using sos strategy using unit paramodulation strategy using unit strategy using dynamic demodulation using ordered paramodulation using kb ordering for equality preferring bigger arities for lex ordering using clause demodulation seconds given: 4 proof attempt stopped: time limit using binary resolution using first neg lit preferred strategy not using sos strategy using dynamic demodulation using ordered paramodulation using kb ordering for equality preferring bigger arities for lex ordering using clause demodulation clause length limited to 5 clause depth limited to 12 seconds given: 26 proof attempt stopped: sos exhausted using binary resolution using first neg lit preferred strategy not using sos strategy using dynamic demodulation using ordered paramodulation using kb ordering for equality preferring bigger arities for lex ordering using clause demodulation clause length limited to 5 clause depth limited to 13 seconds given: 26 proof attempt stopped: time limit using binary resolution using first neg lit preferred strategy not using sos strategy using dynamic demodulation using ordered paramodulation using lex ordering for equality preferring bigger arities for lex ordering using clause demodulation clause length limited to 5 clause depth limited to 12 seconds given: 12 proof attempt stopped: sos exhausted using binary resolution using first neg lit preferred strategy not using sos strategy using dynamic demodulation using ordered paramodulation using lex ordering for equality preferring bigger arities for lex ordering using clause demodulation clause length limited to 5 clause depth limited to 13 seconds given: 12 proof attempt stopped: time limit old unit clauses discarded using binary resolution using sos strategy using dynamic demodulation using ordered paramodulation using kb ordering for equality preferring bigger arities for lex ordering using clause demodulation seconds given: 12 proof attempt stopped: sos exhausted using binary resolution using first neg lit preferred strategy not using sos strategy using dynamic demodulation using ordered paramodulation using kb ordering for equality preferring bigger arities for lex ordering using clause demodulation seconds given: 68 proof attempt stopped: time limit using binary resolution using first neg lit preferred strategy not using sos strategy using dynamic demodulation using ordered paramodulation using lex ordering for equality preferring bigger arities for lex ordering using clause demodulation seconds given: 44 proof attempt stopped: time limit old unit clauses discarded using binary resolution using first neg lit preferred strategy not using sos strategy using dynamic demodulation using ordered paramodulation using first arg depth ordering for equality preferring bigger arities for lex ordering using clause demodulation seconds given: 26 proof attempt stopped: time limit using binary resolution using term-depth-order strategy not using sos strategy using dynamic demodulation using ordered paramodulation using kb ordering for equality preferring bigger arities for lex ordering using clause demodulation seconds given: 12 proof attempt stopped: time limit using binary resolution using first neg lit preferred strategy not using sos strategy using dynamic demodulation using ordered paramodulation using kb ordering for equality preferring smaller arities for lex ordering using clause demodulation seconds given: 20 proof attempt stopped: time limit old unit clauses discarded using binary resolution using first neg lit preferred strategy not using sos strategy using dynamic demodulation using ordered paramodulation using lex ordering for equality preferring smaller arities for lex ordering using clause demodulation seconds given: 130 **** EMPTY CLAUSE DERIVED **** timer checkpoints: c(3,40,2,6,0,2,13,50,5,16,0,5,9528,4,711,9663,5,906,9663,1,906,9663,50,908,9663,40,908,9666,0,908,10991,3,1113,12378,4,1211,14866,5,1393,14866,1,1393,14866,50,1394,14866,40,1394,14869,0,1394,17337,3,1656,17892,4,1697,19772,5,1795,19784,1,1795,19784,50,1796,19784,40,1796,19787,0,1796,19794,50,1798,19797,0,1798,28123,3,2840,32590,4,3312,37306,5,3747,37308,1,3747,37308,50,3750,37308,40,3750,37311,0,3750,37318,50,3752,37321,0,3752,44100,3,4227,51250,4,4433,55491,5,4653,55493,1,4653,55493,50,4656,55493,40,4656,55496,0,4656,55497,50,4656,55497,40,4656,55500,0,4656,81692,3,7398,89382,4,8908,98454,5,9857,98462,1,9857,98462,50,9860,98462,40,9860,98465,0,9860,118207,3,12472,118207,4,12472,126466,5,13261,126489,1,13263,126489,50,13266,126489,40,13266,126492,0,13266,136384,3,14336,141920,4,14775,148496,5,15470,148507,1,15470,148507,50,15473,148507,40,15473,148510,0,15473,155256,3,15983,161622,4,16226,162526,5,16474,162526,1,16474,162526,50,16476,162526,40,16476,162529,0,16476,174482,3,17313,178673,4,17695,188717,5,18077,188719,1,18077,188719,50,18079,188719,40,18079,188722,0,18079,194033,3,18627,200190,4,18838,206431,5,19080,206431,1,19080,206431,50,19083,206431,40,19083,206431,40,19083,206434,0,19083,206440,50,19085,206443,0,19085,208105,50,19282,208105,30,19282,208105,40,19282,208108,0,19282,208114,50,19284,208117,0,19284,217556,4,20130,218132,5,20385,218134,1,20386,218134,50,20386,218134,40,20386,218137,0,20386,220622,3,20602,221096,5,20861,221100,1,20861,221100,50,20862,221100,40,20862,221103,0,20862,223588,3,21097,224339,4,21169,225743,5,21263,225752,1,21263,225752,50,21263,225752,40,21263,225755,0,21263,225761,50,21265,225764,0,21497,234777,3,22756,239295,4,23428,242373,5,23998,242376,1,23998,242376,50,23998,242376,40,23998,242379,0,23999,242385,50,24001,242388,0,24001,245322,3,24559,247872,4,24849,250412,5,25102,250422,1,25102,250422,50,25103,250422,40,25103,250425,0,25103,250425,50,25103,250425,40,25103,250428,0,25103,270586,3,28515,277106,4,30352,281446,5,31904,281446,1,31904,281446,50,31904,281446,40,31904,281449,0,31904,302407,3,34111,308900,4,35270,315476,5,36305,315476,1,36305,315476,50,36306,315476,40,36306,315479,0,36306,325270,3,37607,328904,4,38271,331251,5,38908,331259,1,38908,331259,50,38908,331259,40,38908,331262,0,38908,340711,3,39530,341624,4,39820,344416,5,40109,344426,1,40109,344426,50,40110,344426,40,40110,344429,0,40110,354859,3,41131,359394,4,41614,362901,5,42208,362908,1,42209,362908,50,42210,362908,40,42210,362911,0,42210) START OF PROOF 13810 [?] ? 13838 [?] ? 14020 [para:13810.1.1,13838.1.1.1.1] equal(inverse(inverse(inverse(inverse(inverse(multiply(inverse(X),X)))))),inverse(multiply(inverse(Y),Y))). 14873 [?] ? 18935 [?] ? 19248 [para:14873.1.1,18935.1.2.1.1,demod:14873] equal(multiply(inverse(X),X),multiply(inverse(Y),Y)). 70137 [?] ? 71493 [?] ? 97873 [para:70137.1.1,71493.1.1.1.2.1.2] equal(inverse(multiply(multiply(inverse(X),X),inverse(multiply(Y,multiply(inverse(Z),Z))))),Y). 105933 [?] ? 106140 [?] ? 106412 [para:106140.1.2,105933.1.1.1] equal(multiply(multiply(inverse(X),X),inverse(multiply(inverse(Y),Y))),inverse(multiply(inverse(Z),Z))). 152443 [?] ? 155821 [?] ? 155996 [para:152443.1.1,155821.1.1.1.1] equal(inverse(multiply(inverse(multiply(inverse(X),X)),multiply(inverse(Y),Y))),multiply(inverse(Z),Z)). 362910 [] equal(inverse(multiply(inverse(multiply(X,inverse(multiply(inverse(Y),inverse(multiply(Z,inverse(multiply(inverse(Z),Z)))))))),multiply(X,Z))),Y). 362911 [] -equal(multiply(multiply(inverse(b2),b2),a2),a2). 362912 [para:19248.1.1,362911.1.1.1] -equal(multiply(multiply(inverse(X),X),a2),a2). 362913 [para:19248.1.1,19248.1.1] equal(multiply(inverse(X),X),multiply(inverse(Y),Y)). 362929 [para:362913.1.1,14020.1.1.1.1.1.1.1] equal(inverse(inverse(inverse(inverse(inverse(multiply(inverse(X),X)))))),inverse(multiply(inverse(Y),Y))). 362933 [para:362913.1.1,97873.1.1.1.1] equal(inverse(multiply(multiply(inverse(X),X),inverse(multiply(Y,multiply(inverse(Z),Z))))),Y). 362935 [para:362929.1.1,362929.1.1] equal(inverse(multiply(inverse(X),X)),inverse(multiply(inverse(Y),Y))). 362943 [para:362935.1.1,362913.1.1.1] equal(multiply(inverse(multiply(inverse(X),X)),multiply(inverse(Y),Y)),multiply(inverse(Z),Z)). 363069 [para:106412.1.1,362933.1.1.1] equal(inverse(inverse(multiply(inverse(X),X))),inverse(multiply(inverse(Y),Y))). 363136 [para:363069.1.2,362912.1.1.1.1] -equal(multiply(multiply(inverse(inverse(multiply(inverse(X),X))),multiply(inverse(Y),Y)),a2),a2). 364157 [para:362913.1.1,155996.1.1.1] equal(inverse(multiply(inverse(X),X)),multiply(inverse(Y),Y)). 364188 [para:155996.1.1,362943.1.1.1] equal(multiply(multiply(inverse(X),X),multiply(inverse(Y),Y)),multiply(inverse(Z),Z)). 364207 [para:155996.1.1,363069.1.2] equal(inverse(inverse(multiply(inverse(X),X))),multiply(inverse(Y),Y)). 364284 [para:155996.1.2,363136.1.1.1.2] -equal(multiply(multiply(inverse(inverse(multiply(inverse(X),X))),inverse(multiply(inverse(multiply(inverse(Y),Y)),multiply(inverse(Z),Z)))),a2),a2). 364302 [para:364157.1.2,362933.1.1.1.2.1.2] equal(inverse(multiply(multiply(inverse(X),X),inverse(multiply(Y,inverse(multiply(inverse(Z),Z)))))),Y). 364364 [para:364157.1.1,364157.1.1.1.1] equal(inverse(multiply(multiply(inverse(X),X),multiply(inverse(Y),Y))),multiply(inverse(Z),Z)). 364365 [para:364157.1.1,364157.1.2.1] equal(inverse(multiply(inverse(X),X)),multiply(multiply(inverse(Y),Y),multiply(inverse(Z),Z))). 364436 [para:364207.1.1,362913.1.1.1] equal(multiply(multiply(inverse(X),X),inverse(multiply(inverse(Y),Y))),multiply(inverse(Z),Z)). 365858 [para:364364.1.2,362933.1.1.1.2.1.2] equal(inverse(multiply(multiply(inverse(X),X),inverse(multiply(Y,inverse(multiply(multiply(inverse(Z),Z),multiply(inverse(U),U))))))),Y). 369913 [para:364188.1.1,362910.1.1.1.2,demod:364302,362933] equal(inverse(multiply(inverse(X),multiply(inverse(Y),Y))),X). 369939 [para:364365.1.2,362910.1.1.1.2,demod:365858,369913] equal(inverse(multiply(inverse(X),inverse(multiply(inverse(Y),Y)))),X). 369956 [para:364436.1.1,362910.1.1.1.2,demod:369913,369939,slowcut:364284] contradiction END OF PROOF Proof found by the following strategy: using binary resolution using first neg lit preferred strategy not using sos strategy using dynamic demodulation using ordered paramodulation using lex ordering for equality preferring smaller arities for lex ordering using clause demodulation seconds given: 130 Split component 3 started. START OF PROOFPART Making new sos for split: Original clause to be split: -equal(multiply(inverse(a1),a1),multiply(inverse(b1),b1)) | -equal(multiply(multiply(inverse(b2),b2),a2),a2) | -equal(multiply(multiply(a3,b3),c3),multiply(a3,multiply(b3,c3))). Split part used next: -equal(multiply(multiply(a3,b3),c3),multiply(a3,multiply(b3,c3))). END OF PROOFPART using hyperresolution not using sos strategy using positive unit paramodulation strategy using dynamic demodulation using ordered paramodulation using kb ordering for equality preferring bigger arities for lex ordering clause length limited to 5 clause depth limited to 12 seconds given: 12 proof attempt stopped: sos exhausted using hyperresolution not using sos strategy using positive unit paramodulation strategy using dynamic demodulation using ordered paramodulation using kb ordering for equality preferring bigger arities for lex ordering clause length limited to 5 clause depth limited to 13 seconds given: 12 proof attempt stopped: sos exhausted using binary resolution not using sos strategy using unit strategy using dynamic demodulation using ordered paramodulation using kb ordering for equality preferring bigger arities for lex ordering using clause demodulation seconds given: 4 proof attempt stopped: time limit using binary resolution not using sos strategy using unit paramodulation strategy using unit strategy using dynamic demodulation using ordered paramodulation using kb ordering for equality preferring bigger arities for lex ordering using clause demodulation seconds given: 4 proof attempt stopped: time limit using binary resolution using first neg lit preferred strategy not using sos strategy using dynamic demodulation using ordered paramodulation using kb ordering for equality preferring bigger arities for lex ordering using clause demodulation clause length limited to 5 clause depth limited to 12 seconds given: 26 proof attempt stopped: sos exhausted using binary resolution using first neg lit preferred strategy not using sos strategy using dynamic demodulation using ordered paramodulation using kb ordering for equality preferring bigger arities for lex ordering using clause demodulation clause length limited to 5 clause depth limited to 13 seconds given: 26 proof attempt stopped: time limit old unit clauses discarded using binary resolution using first neg lit preferred strategy not using sos strategy using dynamic demodulation using ordered paramodulation using lex ordering for equality preferring bigger arities for lex ordering using clause demodulation clause length limited to 5 clause depth limited to 12 seconds given: 12 proof attempt stopped: sos exhausted using binary resolution using first neg lit preferred strategy not using sos strategy using dynamic demodulation using ordered paramodulation using lex ordering for equality preferring bigger arities for lex ordering using clause demodulation clause length limited to 5 clause depth limited to 13 seconds given: 12 proof attempt stopped: time limit using binary resolution using sos strategy using dynamic demodulation using ordered paramodulation using kb ordering for equality preferring bigger arities for lex ordering using clause demodulation seconds given: 12 proof attempt stopped: sos exhausted using binary resolution using first neg lit preferred strategy not using sos strategy using dynamic demodulation using ordered paramodulation using kb ordering for equality preferring bigger arities for lex ordering using clause demodulation seconds given: 68 proof attempt stopped: time limit old unit clauses discarded using binary resolution using first neg lit preferred strategy not using sos strategy using dynamic demodulation using ordered paramodulation using lex ordering for equality preferring bigger arities for lex ordering using clause demodulation seconds given: 44 ********* EMPTY CLAUSE DERIVED ********* ********* EMPTY CLAUSE DERIVED ********* timer checkpoints: c(3,40,2,6,0,2,13,50,5,16,0,5,9528,4,711,9663,5,906,9663,1,906,9663,50,908,9663,40,908,9666,0,908,10991,3,1113,12378,4,1211,14866,5,1393,14866,1,1393,14866,50,1394,14866,40,1394,14869,0,1394,17337,3,1656,17892,4,1697,19772,5,1795,19784,1,1795,19784,50,1796,19784,40,1796,19787,0,1796,19794,50,1798,19797,0,1798,28123,3,2840,32590,4,3312,37306,5,3747,37308,1,3747,37308,50,3750,37308,40,3750,37311,0,3750,37318,50,3752,37321,0,3752,44100,3,4227,51250,4,4433,55491,5,4653,55493,1,4653,55493,50,4656,55493,40,4656,55496,0,4656,55497,50,4656,55497,40,4656,55500,0,4656,81692,3,7398,89382,4,8908,98454,5,9857,98462,1,9857,98462,50,9860,98462,40,9860,98465,0,9860,118207,3,12472,118207,4,12472,126466,5,13261,126489,1,13263,126489,50,13266,126489,40,13266,126492,0,13266,136384,3,14336,141920,4,14775,148496,5,15470,148507,1,15470,148507,50,15473,148507,40,15473,148510,0,15473,155256,3,15983,161622,4,16226,162526,5,16474,162526,1,16474,162526,50,16476,162526,40,16476,162529,0,16476,174482,3,17313,178673,4,17695,188717,5,18077,188719,1,18077,188719,50,18079,188719,40,18079,188722,0,18079,194033,3,18627,200190,4,18838,206431,5,19080,206431,1,19080,206431,50,19083,206431,40,19083,206431,40,19083,206434,0,19083,206440,50,19085,206443,0,19085,208105,50,19282,208105,30,19282,208105,40,19282,208108,0,19282,208114,50,19284,208117,0,19284,217556,4,20130,218132,5,20385,218134,1,20386,218134,50,20386,218134,40,20386,218137,0,20386,220622,3,20602,221096,5,20861,221100,1,20861,221100,50,20862,221100,40,20862,221103,0,20862,223588,3,21097,224339,4,21169,225743,5,21263,225752,1,21263,225752,50,21263,225752,40,21263,225755,0,21263,225761,50,21265,225764,0,21497,234777,3,22756,239295,4,23428,242373,5,23998,242376,1,23998,242376,50,23998,242376,40,23998,242379,0,23999,242385,50,24001,242388,0,24001,245322,3,24559,247872,4,24849,250412,5,25102,250422,1,25102,250422,50,25103,250422,40,25103,250425,0,25103,250425,50,25103,250425,40,25103,250428,0,25103,270586,3,28515,277106,4,30352,281446,5,31904,281446,1,31904,281446,50,31904,281446,40,31904,281449,0,31904,302407,3,34111,308900,4,35270,315476,5,36305,315476,1,36305,315476,50,36306,315476,40,36306,315479,0,36306,325270,3,37607,328904,4,38271,331251,5,38908,331259,1,38908,331259,50,38908,331259,40,38908,331262,0,38908,340711,3,39530,341624,4,39820,344416,5,40109,344426,1,40109,344426,50,40110,344426,40,40110,344429,0,40110,354859,3,41131,359394,4,41614,362901,5,42208,362908,1,42209,362908,50,42210,362908,40,42210,362911,0,42210,369955,50,42901,369955,30,42901,369955,40,42901,369958,0,42901,369964,50,42903,369967,0,42903,376063,4,43738,376063,50,43747,376063,40,43747,376066,0,43747,378749,3,43973,380403,4,44095,381450,5,44148,381455,1,44148,381455,50,44148,381455,40,44148,381458,0,44148,382597,3,44449,382597,4,44449,384091,5,44549,384096,1,44549,384096,50,44549,384096,40,44549,384099,0,44549,384105,50,44552,384108,0,44552,397619,3,45818,401730,4,46428,409688,5,47162,409688,1,47162,409688,50,47163,409688,40,47163,409691,0,47164,409697,50,47165,409700,0,47166,415054,3,47936,415770,4,48023,419977,5,48267,419983,1,48267,419983,50,48267,419983,40,48267,419986,0,48267,419986,50,48267,419986,40,48267,419989,0,48267,462267,3,52446,471420,4,53760,484487,5,55068,484541,1,55075,484541,50,55076,484541,40,55076,484544,0,55076,517070,3,57282) START OF PROOF 484543 [] equal(inverse(multiply(inverse(multiply(X,inverse(multiply(inverse(Y),inverse(multiply(Z,inverse(multiply(inverse(Z),Z)))))))),multiply(X,Z))),Y). 484544 [] -equal(multiply(multiply(a3,b3),c3),multiply(a3,multiply(b3,c3))). 484545 [para:484543.1.1,484543.1.1.1.1.1.2.1.1] equal(inverse(multiply(inverse(multiply(X,inverse(multiply(Y,inverse(multiply(Z,inverse(multiply(inverse(Z),Z)))))))),multiply(X,Z))),multiply(inverse(multiply(U,inverse(multiply(inverse(Y),inverse(multiply(V,inverse(multiply(inverse(V),V)))))))),multiply(U,V))). 484547 [para:484545.1.1,484543.1.1] equal(multiply(inverse(multiply(X,inverse(multiply(inverse(inverse(Y)),inverse(multiply(Z,inverse(multiply(inverse(Z),Z)))))))),multiply(X,Z)),Y). 484548 [para:484545.1.2,484543.1.1.1] equal(inverse(inverse(multiply(inverse(multiply(X,inverse(multiply(Y,inverse(multiply(Z,inverse(multiply(inverse(Z),Z)))))))),multiply(X,Z)))),Y). 484561 [para:484547.1.1,484543.1.1.1.2] equal(inverse(multiply(inverse(multiply(inverse(multiply(X,inverse(multiply(inverse(inverse(Y)),inverse(multiply(Z,inverse(multiply(inverse(Z),Z)))))))),inverse(multiply(inverse(U),inverse(multiply(multiply(X,Z),inverse(multiply(inverse(multiply(X,Z)),multiply(X,Z))))))))),Y)),U). 484568 [para:484547.1.1,484547.1.1.2] equal(multiply(inverse(multiply(inverse(multiply(X,inverse(multiply(inverse(inverse(Y)),inverse(multiply(Z,inverse(multiply(inverse(Z),Z)))))))),inverse(multiply(inverse(inverse(U)),inverse(multiply(multiply(X,Z),inverse(multiply(inverse(multiply(X,Z)),multiply(X,Z))))))))),Y),U). 484751 [para:484561.1.1,484543.1.1.1.1.1.2] equal(inverse(multiply(inverse(multiply(X,Y)),multiply(X,Z))),multiply(inverse(multiply(U,inverse(multiply(inverse(inverse(inverse(multiply(Z,inverse(multiply(inverse(Z),Z)))))),inverse(multiply(V,inverse(multiply(inverse(V),V)))))))),inverse(multiply(inverse(Y),inverse(multiply(multiply(U,V),inverse(multiply(inverse(multiply(U,V)),multiply(U,V))))))))). 484920 [para:484751.1.2,484543.1.1.1.1.1,demod:484547] equal(inverse(multiply(inverse(inverse(multiply(inverse(multiply(X,Y)),multiply(X,Z)))),inverse(multiply(Z,inverse(multiply(inverse(Z),Z)))))),Y). 484944 [para:484751.1.2,484547.1.1.1.1,demod:484547] equal(multiply(inverse(inverse(multiply(inverse(multiply(X,inverse(Y))),multiply(X,Z)))),inverse(multiply(Z,inverse(multiply(inverse(Z),Z))))),Y). 485076 [para:484751.1.2,484751.1.2] equal(inverse(multiply(inverse(multiply(X,Y)),multiply(X,Z))),inverse(multiply(inverse(multiply(U,Y)),multiply(U,Z)))). 485088 [para:485076.1.1,484543.1.1.1.1.1.2.1.1,demod:484543] equal(multiply(inverse(multiply(X,Y)),multiply(X,Z)),multiply(inverse(multiply(U,Y)),multiply(U,Z))). 485089 [para:485076.1.1,484543.1.1.1.1.1.2.1.2.1.2] equal(inverse(multiply(inverse(multiply(X,inverse(multiply(inverse(Y),inverse(multiply(multiply(Z,U),inverse(multiply(inverse(multiply(V,U)),multiply(V,U))))))))),multiply(X,multiply(Z,U)))),Y). 485157 [para:485076.1.1,484568.1.1.1.1.2.1.2.1.2] equal(multiply(inverse(multiply(inverse(multiply(X,inverse(multiply(inverse(inverse(Y)),inverse(multiply(Z,inverse(multiply(inverse(Z),Z)))))))),inverse(multiply(inverse(inverse(U)),inverse(multiply(multiply(X,Z),inverse(multiply(inverse(multiply(V,Z)),multiply(V,Z))))))))),Y),U). 485181 [para:485076.1.1,485076.1.2.1.1] equal(inverse(multiply(inverse(multiply(X,multiply(Y,Z))),multiply(X,U))),inverse(multiply(inverse(multiply(inverse(multiply(V,W)),multiply(V,Z))),multiply(inverse(multiply(Y,W)),U)))). 485365 [para:485076.1.1,485088.1.1.1] equal(multiply(inverse(multiply(inverse(multiply(X,Y)),multiply(X,Z))),multiply(inverse(multiply(U,Y)),V)),multiply(inverse(multiply(W,multiply(U,Z))),multiply(W,V))). 488220 [para:484568.1.1,485089.1.1.1.1.1.2.1.2.1.1,demod:485157] equal(inverse(multiply(inverse(multiply(X,inverse(multiply(inverse(Y),inverse(multiply(Z,inverse(multiply(inverse(multiply(U,V)),multiply(U,V))))))))),multiply(X,Z))),Y). 488358 [para:484547.1.1,488220.1.1.1.1.1.2.1.2.1.2.1.1.1,demod:484547] equal(inverse(multiply(inverse(multiply(X,inverse(multiply(inverse(Y),inverse(multiply(Z,inverse(multiply(inverse(U),U)))))))),multiply(X,Z))),Y). 488582 [para:488358.1.1,484944.1.1.1.1] equal(multiply(inverse(X),inverse(multiply(Y,inverse(multiply(inverse(Y),Y))))),multiply(inverse(X),inverse(multiply(Y,inverse(multiply(inverse(Z),Z)))))). 488865 [para:488582.1.1,484920.1.1.1.1.1.1.1.1,demod:484944] equal(inverse(multiply(X,inverse(multiply(inverse(Y),Y)))),inverse(multiply(X,inverse(multiply(inverse(X),X))))). 488885 [para:488582.1.1,484944.1.1] equal(multiply(inverse(inverse(multiply(inverse(multiply(X,inverse(Y))),multiply(X,Z)))),inverse(multiply(Z,inverse(multiply(inverse(U),U))))),Y). 488886 [para:488582.1.1,484944.1.1.1.1.1.1.1,demod:488885] equal(multiply(X,inverse(multiply(inverse(Y),Y))),multiply(X,inverse(multiply(inverse(X),X)))). 489280 [para:488886.1.1,484920.1.1.1.1.1.1.1.1,demod:488885] equal(inverse(multiply(inverse(X),X)),inverse(multiply(inverse(Y),Y))). 489295 [para:488886.1.1,484944.1.1.1.1.1.1.1,demod:488885] equal(multiply(inverse(X),X),multiply(inverse(Y),Y)). 489514 [para:488886.1.2,488886.1.2] equal(multiply(X,inverse(multiply(inverse(Y),Y))),multiply(X,inverse(multiply(inverse(Z),Z)))). 489628 [para:489295.1.1,484920.1.1.1.1.1.1] equal(inverse(multiply(inverse(inverse(multiply(inverse(X),X))),inverse(multiply(Y,inverse(multiply(inverse(Y),Y)))))),Y). 489641 [para:489295.1.1,484944.1.1.1.1.1] equal(multiply(inverse(inverse(multiply(inverse(X),X))),inverse(multiply(inverse(Y),inverse(multiply(inverse(inverse(Y)),inverse(Y)))))),Y). 489914 [para:489280.1.1,489295.1.1.1] equal(multiply(inverse(multiply(inverse(X),X)),multiply(inverse(Y),Y)),multiply(inverse(Z),Z)). 489916 [para:489280.1.1,489280.1.1.1.1] equal(inverse(multiply(inverse(multiply(inverse(X),X)),multiply(inverse(Y),Y))),inverse(multiply(inverse(Z),Z))). 490115 [para:489514.1.1,489295.1.1] equal(multiply(inverse(inverse(multiply(inverse(X),X))),inverse(multiply(inverse(Y),Y))),multiply(inverse(Z),Z)). 492053 [para:490115.1.1,488582.1.2,demod:489641] equal(inverse(multiply(inverse(X),X)),multiply(inverse(Y),Y)). 492373 [para:492053.1.2,484920.1.1.1.1.1.1] equal(inverse(multiply(inverse(inverse(inverse(multiply(inverse(X),X)))),inverse(multiply(Y,inverse(multiply(inverse(Y),Y)))))),Y). 492697 [para:492053.1.1,488886.1.2.2] equal(multiply(X,inverse(multiply(inverse(Y),Y))),multiply(X,multiply(inverse(Z),Z))). 492711 [para:492053.1.1,489514.1.1.2] equal(multiply(X,multiply(inverse(Y),Y)),multiply(X,inverse(multiply(inverse(Z),Z)))). 492719 [para:492053.1.2,489914.1.1.2] equal(multiply(inverse(multiply(inverse(X),X)),inverse(multiply(inverse(Y),Y))),multiply(inverse(Z),Z)). 492769 [para:492053.1.2,492053.1.1.1] equal(inverse(inverse(multiply(inverse(X),X))),multiply(inverse(Y),Y)). 493404 [para:492769.1.1,484920.1.1.1.1] equal(inverse(multiply(multiply(inverse(X),X),inverse(multiply(Y,inverse(multiply(inverse(Y),Y)))))),Y). 493698 [para:492769.1.1,492053.1.2.1] equal(inverse(multiply(inverse(X),X)),multiply(multiply(inverse(Y),Y),inverse(multiply(inverse(Z),Z)))). 497276 [para:492053.1.1,492697.1.1.2] equal(multiply(X,multiply(inverse(Y),Y)),multiply(X,multiply(inverse(Z),Z))). 520429 [para:492053.1.1,493404.1.1.1.2.1.2] equal(inverse(multiply(multiply(inverse(X),X),inverse(multiply(Y,multiply(inverse(Z),Z))))),Y). 520604 [para:492719.1.2,493404.1.1.1.2.1.2.1] equal(inverse(multiply(multiply(inverse(X),X),inverse(multiply(Y,inverse(multiply(inverse(multiply(inverse(Z),Z)),inverse(multiply(inverse(U),U)))))))),Y). 522048 [para:493698.1.2,484543.1.1.1.2,demod:520604] equal(inverse(multiply(inverse(X),inverse(multiply(inverse(Y),Y)))),X). 522073 [para:493698.1.2,484547.1.1.2,demod:520429,522048] equal(multiply(inverse(inverse(X)),inverse(multiply(inverse(Y),Y))),X). 522108 [para:493698.1.2,484548.1.1.1.1.2,demod:520429,522048,522073] equal(inverse(inverse(multiply(X,inverse(multiply(inverse(Y),Y))))),X). 522917 [para:522048.1.1,484548.1.1.1.1.1,demod:522108] equal(inverse(inverse(multiply(X,multiply(inverse(X),Y)))),Y). 522956 [para:522048.1.1,484561.1.1,demod:492373] equal(multiply(inverse(multiply(X,Y)),inverse(multiply(inverse(Z),inverse(multiply(multiply(X,Y),inverse(multiply(inverse(multiply(X,Y)),multiply(X,Y)))))))),Z). 522985 [para:522048.1.1,484751.1.2.1.1.2.1.1.1.1.1.2,demod:522956,489628,522048] equal(inverse(multiply(inverse(multiply(X,Y)),multiply(X,inverse(multiply(inverse(Z),Z))))),Y). 523024 [para:522048.1.1,484920.1.1.1.2.1.2,demod:522048,522985] equal(inverse(multiply(inverse(X),multiply(inverse(Y),Y))),X). 523324 [para:522048.1.1,493404.1.1.1.2] equal(inverse(multiply(multiply(inverse(X),X),Y)),inverse(Y)). 523465 [para:489280.1.1,522917.1.1.1.1.2.1,demod:523324] equal(inverse(inverse(multiply(inverse(multiply(inverse(X),X)),Y))),Y). 523488 [para:489916.1.2,522917.1.1.1.1.2.1,demod:523324,523024] equal(inverse(inverse(X)),X). 523496 [para:492769.1.1,522917.1.1.1.1.2.1,demod:523465] equal(multiply(multiply(inverse(X),X),Y),Y). 523674 [para:488865.1.1,523488.1.1.1,demod:522108] equal(X,multiply(X,inverse(multiply(inverse(Y),Y)))). 523680 [para:523488.1.1,492697.1.2.2.1,demod:523674] equal(X,multiply(X,multiply(Y,inverse(Y)))). 523681 [para:523488.1.1,497276.1.1.2.1,demod:523680] equal(X,multiply(X,multiply(inverse(Y),Y))). 523682 [para:523488.1.1,492711.1.2.2.1.1,demod:523681] equal(X,multiply(X,inverse(multiply(Y,inverse(Y))))). 523704 [para:523488.1.1,522917.1.1.1.1.2.1,demod:523488] equal(multiply(inverse(X),multiply(X,Y)),Y). 523714 [para:523496.1.1,484547.1.1.1.1,demod:523496,523674,523488] equal(multiply(multiply(X,inverse(Y)),Y),X). 523741 [para:523496.1.1,485088.1.1.1.1,demod:523496] equal(multiply(inverse(X),Y),multiply(inverse(multiply(Z,X)),multiply(Z,Y))). 523759 [para:523680.1.2,484543.1.1.1,demod:523682,523488] equal(multiply(X,inverse(multiply(inverse(Y),X))),Y). 523760 [para:523680.1.2,484545.1.1.1,demod:523714,523741,523759,523682,523488] equal(multiply(X,inverse(multiply(Y,X))),inverse(Y)). 523768 [para:523680.1.2,485076.1.1.1,demod:523741,523488] equal(multiply(X,Y),inverse(multiply(inverse(Y),inverse(X)))). 523774 [para:523680.1.2,485365.1.1.1.1.1.1,demod:523741,523680,523704] equal(multiply(inverse(X),multiply(inverse(Y),Z)),multiply(inverse(multiply(Y,X)),Z)). 523781 [para:523680.1.2,485181.1.1.1,demod:523774,523741,523488] equal(multiply(X,multiply(Y,Z)),inverse(multiply(inverse(Z),multiply(inverse(Y),inverse(X))))). 523916 [para:523760.1.1,485088.1.1.1.1,demod:523741,523488] equal(multiply(X,multiply(Y,Z)),multiply(multiply(X,Y),Z)). 523946 [para:523768.1.1,484544.1.2,demod:523774,523916,cut:523781] contradiction END OF PROOF Proof found by the following strategy: using binary resolution using first neg lit preferred strategy not using sos strategy using unit paramodulation strategy using unit strategy using dynamic demodulation using ordered paramodulation using lex ordering for equality preferring bigger arities for lex ordering using clause demodulation seconds given: 44 old unit clauses discarded Split attempt finished with SUCCESS. ***GANDALF_FOUND_A_REFUTATION*** Global statistics over all passes: given clauses: 2753 derived clauses: 1426622 kept clauses: 280468 kept size sum: 0 kept mid-nuclei: 2 kept new demods: 29146 forw unit-subs: 742803 forw double-subs: 360 forw overdouble-subs: 0 backward subs: 656 fast unit cutoff: 19 full unit cutoff: 0 dbl unit cutoff: 0 real runtime : 583.0 process. runtime: 582.64 specific non-discr-tree subsumption statistics: tried: 0 length fails: 0 strength fails: 0 predlist fails: 0 aux str. fails: 0 by-lit fails: 0 full subs tried: 0 full subs fail: 0 ; program args: ("/home/tptp/Systems/Gandalf---c-2.6B/gandalf" "/tmp/GandalfTemp4115")
MODEL STARTS sk2()=0 environment(0)=t environment(1)=f an_organisation()=0 appear(0,0)=0 appear(1,0)=1 appear(0,1)=1 appear(1,1)=0 in_environment(0,0)=t in_environment(1,0)=f in_environment(0,1)=f in_environment(1,1)=f first_movers()=1 equal(0,0)=t equal(1,0)=f equal(0,1)=f equal(1,1)=t e()=1 number_of_organizations(0,0)=0 number_of_organizations(1,0)=1 number_of_organizations(0,1)=0 number_of_organizations(1,1)=0 zero()=0 greater(0,0)=f greater(1,0)=t greater(0,1)=f greater(1,1)=t sk1(0,0)=0 sk1(1,0)=0 sk1(0,1)=0 sk1(1,1)=0 subpopulation(0,0,0)=f subpopulation(1,0,0)=f subpopulation(0,1,0)=f subpopulation(1,1,0)=f subpopulation(0,0,1)=f subpopulation(1,0,1)=f subpopulation(0,1,1)=f subpopulation(1,1,1)=f cardinality_at_time(0,0)=0 cardinality_at_time(1,0)=0 cardinality_at_time(0,1)=0 cardinality_at_time(1,1)=0 efficient_producers()=0 greater_or_equal(0,0)=t greater_or_equal(1,0)=t greater_or_equal(0,1)=f greater_or_equal(1,1)=t MODEL ENDS
---------------- PROOF ---------------- 1 [] animal(A)| -wolf(A). 2 [] animal(A)| -fox(A). 3 [] animal(A)| -bird(A). 5 [] animal(A)| -snail(A). 6 [] plant(A)| -grain(A). 7 [] eats(A,B)|eats(A,C)| -animal(A)| -plant(B)| -animal(C)| -plant(D)| -much_smaller(C,A)| -eats(C,D). 9 [] much_smaller(A,B)| -snail(A)| -bird(B). 10 [] much_smaller(A,B)| -bird(A)| -fox(B). 11 [] much_smaller(A,B)| -fox(A)| -wolf(B). 13 [] -wolf(A)| -grain(B)| -eats(A,B). 15 [] -bird(A)| -snail(B)| -eats(A,B). 18 [] plant(snail_food_of(A))| -snail(A). 19 [] eats(A,snail_food_of(A))| -snail(A). 20 [] -animal(A)| -animal(B)| -grain(C)| -eats(A,B)| -eats(B,C). 23 [factor,7.4.6] eats(A,B)|eats(A,C)| -animal(A)| -plant(B)| -animal(C)| -much_smaller(C,A)| -eats(C,B). 28 [] wolf(a_wolf). 29 [] fox(a_fox). 30 [] bird(a_bird). 32 [] snail(a_snail). 33 [] grain(a_grain). 34 [hyper,28,1] animal(a_wolf). 35 [hyper,29,11,28] much_smaller(a_fox,a_wolf). 36 [hyper,29,2] animal(a_fox). 37 [hyper,30,10,29] much_smaller(a_bird,a_fox). 38 [hyper,30,3] animal(a_bird). 44 [hyper,32,19] eats(a_snail,snail_food_of(a_snail)). 45 [hyper,32,18] plant(snail_food_of(a_snail)). 46 [hyper,32,9,30] much_smaller(a_snail,a_bird). 47 [hyper,32,5] animal(a_snail). 48 [hyper,33,6] plant(a_grain). 50 [hyper,44,7,38,48,47,45,46] eats(a_bird,a_grain)|eats(a_bird,a_snail). 55 [hyper,50,15,30,32] eats(a_bird,a_grain). 56 [hyper,55,23,36,48,38,37] eats(a_fox,a_grain)|eats(a_fox,a_bird). 62 [hyper,56,20,36,38,33,55] eats(a_fox,a_grain). 63 [hyper,62,23,34,48,36,35] eats(a_wolf,a_grain)|eats(a_wolf,a_fox). 67 [hyper,63,13,28,33] eats(a_wolf,a_fox). 69 [hyper,67,20,34,36,33,62] $F. ------------ end of proof -------------
NOTE: In order to save space in the representation of the model, sometimes, some entries in some of the definition tables are missing. This is not a bug! More detailedly, it might happen that for a model with a domain of size n, for some argument position, only a subset {'1,'2,..,'k} of all domain elements is shown, with k < n. What this means is that the entries for other domain elements 'j (with k < j <= n) occurring at that argument position look the same as entries with 'k at that position. Problem NLP041-1.p is an example where a model is represented in such a way.
an_organisation = '1 appear('1,'1) = '2 appear('1,'2) = '2 appear('2,'1) = '1 appear('2,'2) = '1 cardinality_at_time('1,'1) = '2 cardinality_at_time('1,'2) = '2 cardinality_at_time('2,'1) = '2 cardinality_at_time('2,'2) = '2 e = '1 efficient_producers = '2 environment('1) : FALSE environment('2) : TRUE first_movers = '2 greater('1,'1) : TRUE greater('1,'2) : TRUE greater('2,'1) : FALSE greater('2,'2) : TRUE greater_or_equal('1,'1) : TRUE greater_or_equal('1,'2) : TRUE greater_or_equal('2,'1) : FALSE greater_or_equal('2,'2) : TRUE in_environment('1,'1) : TRUE in_environment('1,'2) : TRUE in_environment('2,'1) : TRUE in_environment('2,'2) : TRUE number_of_organizations('1,'1) = '2 number_of_organizations('1,'2) = '1 number_of_organizations('2,'1) = '2 number_of_organizations('2,'2) = '2 sk1('1,'1) = '2 sk1('1,'2) = '2 sk1('2,'1) = '2 sk1('2,'2) = '2 sk2 = '2 subpopulation('1,'1,'1) : TRUE subpopulation('1,'1,'2) : TRUE subpopulation('1,'2,'1) : TRUE subpopulation('1,'2,'2) : TRUE subpopulation('2,'1,'1) : TRUE subpopulation('2,'1,'2) : TRUE subpopulation('2,'2,'1) : TRUE subpopulation('2,'2,'2) : TRUE zero = '1
abstraction('1,'1) : FALSE abstraction('1,'2) : FALSE abstraction('1,'3) : FALSE abstraction('1,'4) : TRUE act('1,'1) : FALSE act('1,'2) : FALSE act('1,'3) : TRUE act('1,'4) : FALSE actual_world('1) : TRUE agent('1,'1,'1) : TRUE agent('1,'1,'2) : TRUE agent('1,'1,'3) : TRUE agent('1,'1,'4) : TRUE agent('1,'2,'1) : TRUE agent('1,'2,'2) : TRUE agent('1,'2,'3) : TRUE agent('1,'2,'4) : TRUE agent('1,'3,'1) : TRUE agent('1,'3,'2) : FALSE agent('1,'3,'3) : FALSE agent('1,'3,'4) : FALSE agent('1,'4,'1) : TRUE agent('1,'4,'2) : TRUE agent('1,'4,'3) : TRUE agent('1,'4,'4) : FALSE animate('1,'1) : TRUE animate('1,'2) : FALSE animate('1,'3) : FALSE animate('1,'4) : FALSE beverage('1,'1) : FALSE beverage('1,'2) : TRUE beverage('1,'3) : FALSE beverage('1,'4) : FALSE entity('1,'1) : TRUE entity('1,'2) : TRUE entity('1,'3) : FALSE entity('1,'4) : FALSE event('1,'1) : FALSE event('1,'2) : FALSE event('1,'3) : TRUE event('1,'4) : FALSE eventuality('1,'1) : FALSE eventuality('1,'2) : FALSE eventuality('1,'3) : TRUE eventuality('1,'4) : FALSE existent('1,'1) : TRUE existent('1,'2) : TRUE existent('1,'3) : FALSE existent('1,'4) : FALSE female('1,'1) : TRUE female('1,'2) : FALSE female('1,'3) : FALSE female('1,'4) : FALSE food('1,'1) : FALSE food('1,'2) : TRUE food('1,'3) : FALSE food('1,'4) : FALSE forename('1,'1) : FALSE forename('1,'2) : FALSE forename('1,'3) : FALSE forename('1,'4) : TRUE general('1,'1) : FALSE general('1,'2) : FALSE general('1,'3) : FALSE general('1,'4) : TRUE human('1,'1) : TRUE human('1,'2) : FALSE human('1,'3) : FALSE human('1,'4) : FALSE human_person('1,'1) : TRUE human_person('1,'2) : FALSE human_person('1,'3) : FALSE human_person('1,'4) : FALSE impartial('1,'1) : TRUE impartial('1,'2) : TRUE impartial('1,'3) : FALSE impartial('1,'4) : FALSE living('1,'1) : TRUE living('1,'2) : FALSE living('1,'3) : FALSE living('1,'4) : FALSE mia_forename('1,'1) : FALSE mia_forename('1,'2) : FALSE mia_forename('1,'3) : FALSE mia_forename('1,'4) : TRUE nonexistent('1,'1) : FALSE nonexistent('1,'2) : FALSE nonexistent('1,'3) : TRUE nonexistent('1,'4) : TRUE nonhuman('1,'1) : FALSE nonhuman('1,'2) : TRUE nonhuman('1,'3) : TRUE nonhuman('1,'4) : TRUE nonliving('1,'1) : FALSE nonliving('1,'2) : TRUE nonliving('1,'3) : TRUE nonliving('1,'4) : TRUE nonreflexive('1,'1) : FALSE nonreflexive('1,'2) : FALSE nonreflexive('1,'3) : TRUE nonreflexive('1,'4) : TRUE object('1,'1) : FALSE object('1,'2) : TRUE object('1,'3) : FALSE object('1,'4) : FALSE of('1,'1,'1) : FALSE of('1,'1,'2) : TRUE of('1,'1,'3) : TRUE of('1,'1,'4) : TRUE of('1,'2,'1) : FALSE of('1,'2,'2) : TRUE of('1,'2,'3) : TRUE of('1,'2,'4) : TRUE of('1,'3,'1) : FALSE of('1,'3,'2) : TRUE of('1,'3,'3) : TRUE of('1,'3,'4) : TRUE of('1,'4,'1) : TRUE of('1,'4,'2) : TRUE of('1,'4,'3) : TRUE of('1,'4,'4) : TRUE order('1,'1) : FALSE order('1,'2) : FALSE order('1,'3) : TRUE order('1,'4) : FALSE organism('1,'1) : TRUE organism('1,'2) : FALSE organism('1,'3) : FALSE organism('1,'4) : FALSE past('1,'1) : FALSE past('1,'2) : FALSE past('1,'3) : TRUE past('1,'4) : FALSE patient('1,'1,'1) : TRUE patient('1,'1,'2) : TRUE patient('1,'1,'3) : TRUE patient('1,'1,'4) : TRUE patient('1,'2,'1) : TRUE patient('1,'2,'2) : TRUE patient('1,'2,'3) : TRUE patient('1,'2,'4) : TRUE patient('1,'3,'1) : FALSE patient('1,'3,'2) : TRUE patient('1,'3,'3) : TRUE patient('1,'3,'4) : TRUE patient('1,'4,'1) : FALSE patient('1,'4,'2) : FALSE patient('1,'4,'3) : FALSE patient('1,'4,'4) : TRUE relation('1,'1) : FALSE relation('1,'2) : FALSE relation('1,'3) : FALSE relation('1,'4) : TRUE relname('1,'1) : FALSE relname('1,'2) : FALSE relname('1,'3) : FALSE relname('1,'4) : TRUE shake_beverage('1,'1) : FALSE shake_beverage('1,'2) : TRUE shake_beverage('1,'3) : FALSE shake_beverage('1,'4) : FALSE singleton('1,'1) : TRUE singleton('1,'2) : TRUE singleton('1,'3) : TRUE singleton('1,'4) : TRUE skc5 = '1 skc6 = '3 skc7 = '2 skc8 = '4 skc9 = '1 specific('1,'1) : TRUE specific('1,'2) : TRUE specific('1,'3) : TRUE specific('1,'4) : FALSE substance_matter('1,'1) : FALSE substance_matter('1,'2) : TRUE substance_matter('1,'3) : FALSE substance_matter('1,'4) : FALSE thing('1,'1) : TRUE thing('1,'2) : TRUE thing('1,'3) : TRUE thing('1,'4) : TRUE unisex('1,'1) : FALSE unisex('1,'2) : TRUE unisex('1,'3) : TRUE unisex('1,'4) : TRUE woman('1,'1) : TRUE woman('1,'2) : FALSE woman('1,'3) : FALSE woman('1,'4) : FALSE
Axioms: 1: ~E.x:y ~big_fxz big_fyz 2: ~E.x:y ~big_fzx big_fzy 3: ~E.x:y ~E.y:z E.x:z 4 >~E.x:a ~E.y:b big_fxy 5: ~E.x:y E.hxz:hyz 6 >~E.x:y E.hzx:hzy 7: ~E.x:y E.fx:fy 8: ~E.x:y E.gx:gy 9 >~big_fxy E.x:a 10: ~big_fxy E.y:b 11: ~E.x:y E.y:x 12 >E.x:x Negated conclusion: 13S ~big_fxfy E.x:gy big_fhyzfy ~big_fhyzfy 14S ~E.x:gy big_fxfy big_fhyzfy E.hyz:z 15S ~E.x:gy big_fxfy ~E.hyz:z ~big_fhyzfy 16S>~E.fx:x ~E.hxy:y ~big_fhxyfx 17S>~E.fx:x big_fhxyfx E.hxy:y 18S>~big_fxfy ~E.x:gy E.fy:y 19S>~E.x:gy big_fxfy E.fy:y --------------- Phase 0 clauses used in proof: 20S>(19b*18a) ~E.x:gy E.fy:y Phases 1 and 2 clauses used in proof: 21S>(20a,12a) E.fx:x 22S>(20b,17a) ~E.x:gy big_fhyzfy E.hyz:z 23S>(22b,9a) ~E.x:gy E.hyz:z E.hyz:a 24S>(23a,12a) E.hxy:y E.hxy:a 25S>(24ab) E.hxa:a 26S>(21a,4a) ~E.x:b big_ffax 27S>[26b,21a] ~E.x:b big_fax 28S>[27a,12a] big_fab 29S>(16b,6b) ~E.fx:x ~big_fhxhxyfx ~E.hxy:y 30S>[29a,21a] ~E.x:x ~big_fhxhxyfx ~E.hxy:y 31S>[30b,21a] ~E.x:x ~big_fhxhxyx ~E.hxy:y 32S>[31a,12a] ~big_fhxhxyx ~E.hxy:y 33S>(32b,6b) ~big_fhxhxhxyx ~E.hxy:y 34: 33|{a/y} ~big_fhxhxhxax ~E.hxa:a 35S>(34b,25a) ~big_fhxhxhxax 36S>[35a,25a] ~big_fhxhxax 37S>[36a,25a] ~big_fhxax 38S>[37a,25a] ~big_fax 39S>(38a,28a) []
<clause> : <number>"." <clause body> <auxilliary info> "["<background list>"]" % nonempty clause : <number>'. #' <auxilliary info> '['<background list>']' % empty clause <clause body> : <literals> % all literals are selected : <literals>1 | <literals>2 % <literals>1 are selected % <literals>2 are nonselected <background list> : <flags><ancestors> <ancestors> : % empty (must be an input clause) : <number> ("," <number>)* <flags> : (<flag> )+ <flag> : "in" % input clause : "pp" % clause obtained by preprocessing : "br" % generated by binary resolution : "hr" % generated by hyperresolution : "fs" % generated by forward superposition : "bs" % generated by backward superposition : "er" % generated by equality resolution : "ef" % generated by equality factoring : "fd" % simplified by forward demodulation : "bd" % simplified by backward demodulation : "ers" % simplified by equality resolution : "fsr" % simplified by forward subsumption resolution : "sp" % splitting was used : "rea" % "reanimated" passive clause (selected in Discount algorithm) : "nm" % the clause is a part of a name introduction in % splitting, or obtained by preprocessing from such % a clause : "ns" % negative selection was used (does not mean that % all the selected literals are negative) <literals> : <literal> [" \/ " <literals>] <literal> : <standard literal> : <equational literal> : <splitting literal> <standard literal> : ["~"]<atom> % "~" is for negation <atom> : <predicate symbol> % propositional variable : <predicate symbol><arguments> <equational literal> : <term> = <term> % unoriented positive equality : <term> != <term> % unoriented negative equality : <term> == <term> % oriented positive equality : <term> !== <term> % oriented negative equality <splitting literal> : "["<predicate symbol>"]" <term> : <variable> : <constant> : <function symbol><arguments> <variable> : "X"<number> <arguments> : "("<term> (","<term>)* ")"
vproof(<JobId>,[<clause body> <clause number> <ancestors> <flags>]).<JobId> is an atom, uniquely identifying the job that produced the proof. <ancestors> is a list of ancestor numbers. <flags> is a list of flags, every flag is an atom. <clause body> is a list of literals.
<literal> : "++"<atom> % unselected positive literal : "+++"<atom> % selected positive literal : "--"<atom> % unselected negative literal : "---"<atom> % selected negative literal <atom> : <term> : "("<term>" = "<term>")" % unoriented equality : "("<term>" => "<term>")" % oriented equality <term> : <function symbol>["("<term>(","<term>)*")"] : <variable><function symbol> is a Prolog alphanumeric identifier. <variable> is a quoted Prolog atom "'X"
%======================== Proof: ========================= % 1. member(z,z) /3/3/0/ 0pe [in ] % 2. member(z,diagonalise(element_relation)) /4/4/0/ 0pe [in ] % 120. X0=null_class \/ intersection(X0,regular(X0))=null_class /9/9/0/ 2pe [in ] % 121. X0=null_class \/ member(regular(X0),X0) /7/7/0/ 1pe [in ] % 144. union(X0,singleton(X0))=successor(X0) /7/7/0/ 1pe [in ] % 161. complement(intersection(complement(X0),complement(X1)))=union(X0,X1) /10/10/0/ 1pe [in ] % 162. member(X0,complement(X1)) \/ ~member(X0,universal_class) \/ member(X0,X1) /10/10/0/ 0pe [in ] % 163. ~member(X0,complement(X1)) \/ ~member(X0,X1) /7/7/0/ 0pe [in ] % 164. ~member(X0,X2) \/ ~member(X0,X1) \/ member(X0,intersection(X1,X2)) /11/11/0/ 0pe [in ] % 165. ~member(X0,intersection(X1,X2)) \/ member(X0,X2) /8/8/0/ 0pe [in ] % 166. ~member(X0,intersection(X1,X2)) \/ member(X0,X1) /8/8/0/ 0pe [in ] % 175. unordered_pair(X0,X0)=singleton(X0) /6/6/0/ 1pe [in ] % 178. ~member(X0,universal_class) \/ member(X0,unordered_pair(X0,X1)) /8/8/0/ 0pe [in ] % 179. X0=X1 \/ ~member(X0,unordered_pair(X1,X2)) \/ X0=X2 /11/11/0/ 2pe [in ] % 183. subclass(X0,universal_class) /3/3/0/ 0pe [in ] % 186. ~member(X2,X0) \/ ~subclass(X0,X1) \/ member(X2,X1) /9/9/0/ 0pe [in ] % 190. member(z,z) /3/3/0/ 0pe [pp 1] % 191. member(z,diagonalise(element_relation)) /4/4/0/ 0pe [pp 2] % 237. intersection(X0,regular(X0))==null_class | X0=null_class /9/9/5/ 2pe [pp 120] % 238. member(regular(X0),X0) | X0=null_class /7/7/3/ 1pe [pp 121] % 261. union(X0,singleton(X0))==successor(X0) /7/7/3/ 1pe [pp 144] % 278. complement(intersection(complement(X0),complement(X1)))==union(X0,X1) /10/10/4/ 1pe [pp 161]% 279. ~member(X0,universal_class) | member(X0,complement(X1)) \/ member(X0,X1) /10/10/7/ 0pe [pp 162] % 280. ~member(X0,complement(X1)) | ~member(X0,X1) /7/7/3/ 0pe [pp 163] % 281. ~member(X0,X1) | ~member(X0,X2) \/ member(X0,intersection(X1,X2)) /11/11/8/ 0pe [pp ns 164] % 282. ~member(X0,intersection(X1,X2)) | member(X0,X2) /8/8/3/ 0pe [pp 165] % 283. ~member(X0,intersection(X1,X2)) | member(X0,X1) /8/8/3/ 0pe [pp 166] % 292. unordered_pair(X0,X0)==singleton(X0) /6/6/3/ 1pe [pp 175] % 295. ~member(X0,universal_class) | member(X0,unordered_pair(X0,X1)) /8/8/5/ 0pe [pp 178] % 296. ~member(X0,unordered_pair(X1,X2)) | X0=X1 \/ X0=X2 /11/11/6/ 2pe [pp 179] % 299. subclass(X0,universal_class) /3/3/0/ 0pe [pp 183] % 302. ~subclass(X0,X1) | ~member(X2,X0) \/ member(X2,X1) /9/9/6/ 0pe [pp 186] % 303. member(z,z) /3/3/0/ 0pe [pp 190] % 304. member(z,diagonalise(element_relation)) /4/4/0/ 0pe [pp 191] % 350. intersection(X0,regular(X0))==null_class | X0=null_class /9/9/5/ 2pe [pp 237] % 351. member(regular(X0),X0) | X0=null_class /7/7/3/ 1pe [pp 238] % 374. union(X0,singleton(X0))==successor(X0) /7/7/3/ 1pe [pp 261] % 391. complement(intersection(complement(X0),complement(X1)))==union(X0,X1) /10/10/4/ 1pe [pp 278]% 392. ~member(X0,universal_class) | member(X0,complement(X1)) \/ member(X0,X1) /10/10/7/ 0pe [pp 279] % 393. ~member(X0,complement(X1)) | ~member(X0,X1) /7/7/3/ 0pe [pp 280] % 394. ~member(X0,X1) | ~member(X0,X2) \/ member(X0,intersection(X2,X1)) /11/11/8/ 0pe [pp ns 281] % 395. ~member(X0,intersection(X1,X2)) | member(X0,X2) /8/8/3/ 0pe [pp 282] % 396. ~member(X0,intersection(X1,X2)) | member(X0,X1) /8/8/3/ 0pe [pp 283] % 405. unordered_pair(X0,X0)==singleton(X0) /6/6/3/ 1pe [pp 292] % 408. ~member(X0,universal_class) | member(X0,unordered_pair(X0,X1)) /8/8/5/ 0pe [pp 295] % 409. ~member(X0,unordered_pair(X1,X2)) | X0=X1 \/ X0=X2 /11/11/6/ 2pe [pp 296] % 412. subclass(X0,universal_class) /3/3/0/ 0pe [pp 299] % 415. ~subclass(X0,X1) | ~member(X2,X0) \/ member(X2,X1) /9/9/6/ 0pe [pp 302] % 424. member(z,z) /3/3/0/ 0pe [pp 303] % 425. member(z,diagonalise(element_relation)) /4/4/0/ 0pe [pp 304] % 457. intersection(X0,regular(X0))==null_class | X0=null_class /9/9/5/ 2pe [pp 350] % 458. member(regular(X0),X0) | X0=null_class /7/7/3/ 1pe [pp 351] % 474. union(X0,singleton(X0))==successor(X0) /7/7/3/ 1pe [pp 374] % 491. complement(intersection(complement(X0),complement(X1)))==union(X0,X1) /10/10/4/ 1pe [pp 391]% 492. ~member(X0,universal_class) | member(X0,complement(X1)) \/ member(X0,X1) /10/10/7/ 0pe [pp 392] % 493. ~member(X0,complement(X1)) | ~member(X0,X1) /7/7/3/ 0pe [pp 393] % 494. ~member(X0,X1) | ~member(X0,X2) \/ member(X0,intersection(X1,X2)) /11/11/8/ 0pe [pp ns 394] % 495. ~member(X0,intersection(X1,X2)) | member(X0,X2) /8/8/3/ 0pe [pp 395] % 496. ~member(X0,intersection(X1,X2)) | member(X0,X1) /8/8/3/ 0pe [pp 396] % 505. unordered_pair(X0,X0)==singleton(X0) /6/6/3/ 1pe [pp 405] % 508. ~member(X0,universal_class) | member(X0,unordered_pair(X0,X1)) /8/8/5/ 0pe [pp 408] % 509. ~member(X0,unordered_pair(X1,X2)) | X0=X1 \/ X0=X2 /11/11/6/ 2pe [pp 409] % 512. subclass(X0,universal_class) /3/3/0/ 0pe [pp 412] % 515. ~subclass(X0,X1) | ~member(X2,X0) \/ member(X2,X1) /9/9/6/ 0pe [pp 415] % 526. member(z,z) /3/3/0/ 0pe [pp 424] % 527. member(z,diagonalise(element_relation)) /4/4/0/ 0pe [pp 425] % 556. intersection(X0,regular(X0))==null_class | X0=null_class /9/9/5/ 2pe [pp 457] % 557. member(regular(X0),X0) | X0=null_class /7/7/3/ 1pe [pp 458] % 573. union(X0,singleton(X0))==successor(X0) /7/7/3/ 1pe [pp 474] % 590. complement(intersection(complement(X0),complement(X1)))==union(X0,X1) /10/10/4/ 1pe [pp 491]% 591. ~member(X0,universal_class) | member(X0,complement(X1)) \/ member(X0,X1) /10/10/7/ 0pe [pp 492] % 592. ~member(X0,complement(X1)) | ~member(X0,X1) /7/7/3/ 0pe [pp 493] % 593. ~member(X0,X1) | ~member(X0,X2) \/ member(X0,intersection(X2,X1)) /11/11/8/ 0pe [pp ns 494] % 594. ~member(X0,intersection(X1,X2)) | member(X0,X2) /8/8/3/ 0pe [pp 495] % 595. ~member(X0,intersection(X1,X2)) | member(X0,X1) /8/8/3/ 0pe [pp 496] % 604. unordered_pair(X0,X0)==singleton(X0) /6/6/3/ 1pe [pp 505] % 607. ~member(X0,universal_class) | member(X0,unordered_pair(X0,X1)) /8/8/5/ 0pe [pp 508] % 608. ~member(X0,unordered_pair(X1,X2)) | X0=X1 \/ X0=X2 /11/11/6/ 2pe [pp 509] % 611. subclass(X0,universal_class) /3/3/0/ 0pe [pp 512] % 614. ~subclass(X0,X1) | ~member(X2,X0) \/ member(X2,X1) /9/9/6/ 0pe [pp 515] % * 620. member(z,z) /3/3/0/ 0pe vip [pp 526] % * 621. member(z,diagonalise(element_relation)) /4/4/0/ 0pe vip [pp 527] % * 650. intersection(X0,regular(X0))==null_class | X0=null_class /9/9/5/ 2pe vip [pp 556] % * 651. member(regular(X0),X0) | X0=null_class /7/7/3/ 1pe vip [pp 557] % * 667. union(X0,singleton(X0))==successor(X0) /7/7/3/ 1pe [pp 573] % * 685. complement(intersection(complement(X0),complement(X1)))==union(X0,X1) /10/10/4/ 1pe [pp 590] % * 687. ~member(X0,universal_class) | member(X0,complement(X1)) \/ member(X0,X1) /10/10/7/ 0pe [pp 591] % * 688. ~member(X0,complement(X1)) | ~member(X0,X1) /7/7/3/ 0pe vip [pp 592] % * 689. ~member(X0,X1) | ~member(X0,X2) \/ member(X0,intersection(X1,X2)) /11/11/8/ 0pe [pp ns 593] % * 690. ~member(X0,intersection(X1,X2)) | member(X0,X2) /8/8/3/ 0pe vip [pp 594] % * 691. ~member(X0,intersection(X1,X2)) | member(X0,X1) /8/8/3/ 0pe vip [pp 595] % * 700. unordered_pair(X0,X0)==singleton(X0) /6/6/3/ 1pe [pp 604] % * 703. ~member(X0,universal_class) | member(X0,unordered_pair(X0,X1)) /8/8/5/ 0pe [pp 607] % * 704. ~member(X0,unordered_pair(X1,X2)) | X0=X1 \/ X0=X2 /11/11/6/ 2pe [pp 608] % * 707. subclass(X0,universal_class) /3/3/0/ 0pe vip [pp 611] % * 710. ~subclass(X0,X1) | ~member(X2,X0) \/ member(X2,X1) /9/9/6/ 0pe [pp 614] % * 753. ~member(regular(complement(X0)),X0) | complement(X0)==null_class /9/9/4/ 1pe [br 651,688] % * 757. ~member(z,X0) | member(z,intersection(z,X0)) /8/8/5/ 0pe [br 620,689] % * 758. ~member(z,X0) | member(z,intersection(diagonalise(element_relation),X0)) /9/9/6/ 0pe [br 621,689] % * 761. member(regular(intersection(X0,X1)),X1) | intersection(X0,X1)==null_class /11/11/5/ 1pe [br 651,690] % * 768. member(regular(intersection(X0,X1)),X0) | intersection(X0,X1)==null_class /11/11/5/ 1pe [br 651,691] % * 798. ~member(X0,singleton(X1)) | X0=X1 /7/7/3/ 1pe vip [fs 700,704] % * 822. ~member(X0,X1) | member(X0,universal_class) /6/6/3/ 0pe [br 707,710] % * 999. member(z,universal_class) /3/3/0/ 0pe vip [br 620,822] % * 1000. member(regular(X0),universal_class) | X0=null_class /7/7/3/ 1pe vip [br 651,822] % * 1005. member(z,unordered_pair(z,X0)) /5/5/0/ 0pe vip [br 703,999] % * 1007. member(z,complement(X0)) | member(z,X0) /7/7/3/ 0pe vip [br 687,999] % * 1083. member(z,singleton(z)) /4/4/0/ 0pe vip [fs 700,1005] % * 1085. ~member(z,X0) | member(z,intersection(singleton(z),X0)) /9/9/6/ 0pe [br 689,1083] % * 1568. regular(singleton(X0))==X0 | singleton(X0)==null_class /9/9/6/ 2pe vip [br 651,798] % * 1669. member(z,intersection(complement(X0),complement(X1))) | member(z,union(X0,X1)) /12/12/5/ 0pe [fs 685,1007] % * 2598. complement(universal_class)==null_class /4/4/2/ 1pe vip [br 1000,753] % * 2619. ~member(X0,null_class) /3/3/0/ 0pe vip [bs fsr 822,688,2598] % * 2730. member(z,intersection(diagonalise(element_relation),singleton(z))) /7/7/0/ 0pe vip [br 1083,758] % * 2771. ~member(z,X0) | member(z,intersection(intersection(diagonalise(element_relation),singleton(z)),X0)) /12/12/9/ 0pe [br 689,2730] % * 2824. intersection(X0,null_class)==null_class /5/5/2/ 1pe vip [br 2619,761] % * 2971. intersection(null_class,X0)==null_class /5/5/2/ 1pe vip [br 2619,768] % * 20420. member(z,intersection(singleton(z),z)) /6/6/0/ 0pe vip [br 620,1085] % * 23048. intersection(singleton(X0),X0)==null_class | singleton(X0)==null_class /10/10/6/ 2pe [bs 650,1568] % * 110195. member(z,union(X0,X1)) | member(z,complement(X0)) /9/9/4/ 0pe [br 691,1669] % * 110426. member(z,complement(X0)) | member(z,successor(X0)) /8/8/4/ 0pe [fs 667,110195] % * 110427. ~member(z,X0) | member(z,successor(X0)) /7/7/4/ 0pe [br 688,110426] % * 110491. member(z,successor(z)) /4/4/0/ 0pe vip [br 620,110427] % * 110884. ~member(z,X0) | member(z,intersection(successor(z),X0)) /9/9/6/ 0pe [br 689,110491] % * 120575. member(z,intersection(successor(z),intersection(singleton(z),z))) /9/9/0/ 0pe [br 20420,110884] % * 144335. member(z,intersection(intersection(diagonalise(element_relation),singleton(z)),universal_class)) /9/9/0/ 0pe vip [br 999,2771] % 144354. member(z,intersection(z,intersection(intersection(diagonalise(element_relation),singleton(z)),universal_class))) /11/11/0/ 0pe [br 757,144335] % 144460. singleton(z)==null_class /4/4/2/ 1pe vip [bs fd fsr 2619,2824,120575,23048] % 144462. # /1/0/0/ 0pe vip [fd bd fsr 2619,2824,2971,2824,144354,144460] %================== End of proof. ========================
vproof('9520011456592226',[[+++member(z,z)],1,[],[in]]). vproof('9520011456592226',[[+++member(z,diagonalise(element_relation))],2,[],[in]]). vproof('9520011456592226',[[+++('X0' = null_class),+++(intersection('X0',regular('X0')) = null_class)],120,[],[in]]). vproof('9520011456592226',[[+++('X0' = null_class),+++member(regular('X0'),'X0')],121,[],[in]]). vproof('9520011456592226',[[+++(union('X0',singleton('X0')) = successor('X0'))],144,[],[in]]). vproof('9520011456592226',[[+++(complement(intersection(complement('X0'),complement('X1'))) = union('X0','X1'))],161,[],[in]]). vproof('9520011456592226',[[+++member('X0',complement('X1')),---member('X0',universal_class),+++member('X0','X1')],162,[],[in]]). vproof('9520011456592226',[[---member('X0',complement('X1')),---member('X0','X1')],163,[],[in]]). vproof('9520011456592226',[[---member('X0','X2'),---member('X0','X1'),+++member('X0',intersection('X1','X2'))],164,[],[in]]). vproof('9520011456592226',[[---member('X0',intersection('X1','X2')),+++member('X0','X2')],165,[],[in]]). vproof('9520011456592226',[[---member('X0',intersection('X1','X2')),+++member('X0','X1')],166,[],[in]]). vproof('9520011456592226',[[+++(unordered_pair('X0','X0') = singleton('X0'))],175,[],[in]]). vproof('9520011456592226',[[---member('X0',universal_class),+++member('X0',unordered_pair('X0','X1'))],178,[],[in]]). vproof('9520011456592226',[[+++('X0' = 'X1'),---member('X0',unordered_pair('X1','X2')),+++('X0' = 'X2')],179,[],[in]]). vproof('9520011456592226',[[+++subclass('X0',universal_class)],183,[],[in]]). vproof('9520011456592226',[[---member('X2','X0'),---subclass('X0','X1'),+++member('X2','X1')],186,[],[in]]). vproof('9520011456592226',[[+++member(z,z)],190,[1],[pp]]). vproof('9520011456592226',[[+++member(z,diagonalise(element_relation))],191,[2],[pp]]). vproof('9520011456592226',[[+++(intersection('X0',regular('X0')) => null_class),++('X0' = null_class)],237,[120],[pp]]). vproof('9520011456592226',[[+++member(regular('X0'),'X0'),++('X0' = null_class)],238,[121],[pp]]). vproof('9520011456592226',[[+++(union('X0',singleton('X0')) => successor('X0'))],261,[144],[pp]]). vproof('9520011456592226',[[+++(complement(intersection(complement('X0'),complement('X1'))) => union('X0','X1'))],278,[161],[pp]]). vproof('9520011456592226',[[---member('X0',universal_class),++member('X0',complement('X1')),++member('X0','X1')],279,[162],[pp]]). vproof('9520011456592226',[[---member('X0',complement('X1')),--member('X0','X1')],280,[163],[pp]]). vproof('9520011456592226',[[---member('X0','X1'),--member('X0','X2'),++member('X0',intersection('X1','X2'))],281,[164],[pp]]). vproof('9520011456592226',[[---member('X0',intersection('X1','X2')),++member('X0','X2')],282,[165],[pp]]). vproof('9520011456592226',[[---member('X0',intersection('X1','X2')),++member('X0','X1')],283,[166],[pp]]). vproof('9520011456592226',[[+++(unordered_pair('X0','X0') => singleton('X0'))],292,[175],[pp]]). vproof('9520011456592226',[[---member('X0',universal_class),++member('X0',unordered_pair('X0','X1'))],295,[178],[pp]]). vproof('9520011456592226',[[---member('X0',unordered_pair('X1','X2')),++('X0' = 'X1'),++('X0' = 'X2')],296,[179],[pp]]). vproof('9520011456592226',[[+++subclass('X0',universal_class)],299,[183],[pp]]). vproof('9520011456592226',[[---subclass('X0','X1'),--member('X2','X0'),++member('X2','X1')],302,[186],[pp]]). vproof('9520011456592226',[[+++member(z,z)],303,[190],[pp]]). vproof('9520011456592226',[[+++member(z,diagonalise(element_relation))],304,[191],[pp]]). vproof('9520011456592226',[[+++(intersection('X0',regular('X0')) => null_class),++('X0' = null_class)],350,[237],[pp]]). vproof('9520011456592226',[[+++member(regular('X0'),'X0'),++('X0' = null_class)],351,[238],[pp]]). vproof('9520011456592226',[[+++(union('X0',singleton('X0')) => successor('X0'))],374,[261],[pp]]). vproof('9520011456592226',[[+++(complement(intersection(complement('X0'),complement('X1'))) => union('X0','X1'))],391,[278],[pp]]). vproof('9520011456592226',[[---member('X0',universal_class),++member('X0',complement('X1')),++member('X0','X1')],392,[279],[pp]]). vproof('9520011456592226',[[---member('X0',complement('X1')),--member('X0','X1')],393,[280],[pp]]). vproof('9520011456592226',[[---member('X0','X1'),--member('X0','X2'),++member('X0',intersection('X2','X1'))],394,[281],[pp]]). vproof('9520011456592226',[[---member('X0',intersection('X1','X2')),++member('X0','X2')],395,[282],[pp]]). vproof('9520011456592226',[[---member('X0',intersection('X1','X2')),++member('X0','X1')],396,[283],[pp]]). vproof('9520011456592226',[[+++(unordered_pair('X0','X0') => singleton('X0'))],405,[292],[pp]]). vproof('9520011456592226',[[---member('X0',universal_class),++member('X0',unordered_pair('X0','X1'))],408,[295],[pp]]). vproof('9520011456592226',[[---member('X0',unordered_pair('X1','X2')),++('X0' = 'X1'),++('X0' = 'X2')],409,[296],[pp]]). vproof('9520011456592226',[[+++subclass('X0',universal_class)],412,[299],[pp]]). vproof('9520011456592226',[[---subclass('X0','X1'),--member('X2','X0'),++member('X2','X1')],415,[302],[pp]]). vproof('9520011456592226',[[+++member(z,z)],424,[303],[pp]]). vproof('9520011456592226',[[+++member(z,diagonalise(element_relation))],425,[304],[pp]]). vproof('9520011456592226',[[+++(intersection('X0',regular('X0')) => null_class),++('X0' = null_class)],457,[350],[pp]]). vproof('9520011456592226',[[+++member(regular('X0'),'X0'),++('X0' = null_class)],458,[351],[pp]]). vproof('9520011456592226',[[+++(union('X0',singleton('X0')) => successor('X0'))],474,[374],[pp]]). vproof('9520011456592226',[[+++(complement(intersection(complement('X0'),complement('X1'))) => union('X0','X1'))],491,[391],[pp]]). vproof('9520011456592226',[[---member('X0',universal_class),++member('X0',complement('X1')),++member('X0','X1')],492,[392],[pp]]). vproof('9520011456592226',[[---member('X0',complement('X1')),--member('X0','X1')],493,[393],[pp]]). vproof('9520011456592226',[[---member('X0','X1'),--member('X0','X2'),++member('X0',intersection('X1','X2'))],494,[394],[pp]]). vproof('9520011456592226',[[---member('X0',intersection('X1','X2')),++member('X0','X2')],495,[395],[pp]]). vproof('9520011456592226',[[---member('X0',intersection('X1','X2')),++member('X0','X1')],496,[396],[pp]]). vproof('9520011456592226',[[+++(unordered_pair('X0','X0') => singleton('X0'))],505,[405],[pp]]). vproof('9520011456592226',[[---member('X0',universal_class),++member('X0',unordered_pair('X0','X1'))],508,[408],[pp]]). vproof('9520011456592226',[[---member('X0',unordered_pair('X1','X2')),++('X0' = 'X1'),++('X0' = 'X2')],509,[409],[pp]]). vproof('9520011456592226',[[+++subclass('X0',universal_class)],512,[412],[pp]]). vproof('9520011456592226',[[---subclass('X0','X1'),--member('X2','X0'),++member('X2','X1')],515,[415],[pp]]). vproof('9520011456592226',[[+++member(z,z)],526,[424],[pp]]). vproof('9520011456592226',[[+++member(z,diagonalise(element_relation))],527,[425],[pp]]). vproof('9520011456592226',[[+++(intersection('X0',regular('X0')) => null_class),++('X0' = null_class)],556,[457],[pp]]). vproof('9520011456592226',[[+++member(regular('X0'),'X0'),++('X0' = null_class)],557,[458],[pp]]). vproof('9520011456592226',[[+++(union('X0',singleton('X0')) => successor('X0'))],573,[474],[pp]]). vproof('9520011456592226',[[+++(complement(intersection(complement('X0'),complement('X1'))) => union('X0','X1'))],590,[491],[pp]]). vproof('9520011456592226',[[---member('X0',universal_class),++member('X0',complement('X1')),++member('X0','X1')],591,[492],[pp]]). vproof('9520011456592226',[[---member('X0',complement('X1')),--member('X0','X1')],592,[493],[pp]]). vproof('9520011456592226',[[---member('X0','X1'),--member('X0','X2'),++member('X0',intersection('X2','X1'))],593,[494],[pp]]). vproof('9520011456592226',[[---member('X0',intersection('X1','X2')),++member('X0','X2')],594,[495],[pp]]). vproof('9520011456592226',[[---member('X0',intersection('X1','X2')),++member('X0','X1')],595,[496],[pp]]). vproof('9520011456592226',[[+++(unordered_pair('X0','X0') => singleton('X0'))],604,[505],[pp]]). vproof('9520011456592226',[[---member('X0',universal_class),++member('X0',unordered_pair('X0','X1'))],607,[508],[pp]]). vproof('9520011456592226',[[---member('X0',unordered_pair('X1','X2')),++('X0' = 'X1'),++('X0' = 'X2')],608,[509],[pp]]). vproof('9520011456592226',[[+++subclass('X0',universal_class)],611,[512],[pp]]). vproof('9520011456592226',[[---subclass('X0','X1'),--member('X2','X0'),++member('X2','X1')],614,[515],[pp]]). vproof('9520011456592226',[[+++member(z,z)],620,[526],[pp]]). vproof('9520011456592226',[[+++member(z,diagonalise(element_relation))],621,[527],[pp]]). vproof('9520011456592226',[[+++(intersection('X0',regular('X0')) => null_class),++('X0' = null_class)],650,[556],[pp]]). vproof('9520011456592226',[[+++member(regular('X0'),'X0'),++('X0' = null_class)],651,[557],[pp]]). vproof('9520011456592226',[[+++(union('X0',singleton('X0')) => successor('X0'))],667,[573],[pp]]). vproof('9520011456592226',[[+++(complement(intersection(complement('X0'),complement('X1'))) => union('X0','X1'))],685,[590],[pp]]). vproof('9520011456592226',[[---member('X0',universal_class),++member('X0',complement('X1')),++member('X0','X1')],687,[591],[pp]]). vproof('9520011456592226',[[---member('X0',complement('X1')),--member('X0','X1')],688,[592],[pp]]). vproof('9520011456592226',[[---member('X0','X1'),--member('X0','X2'),++member('X0',intersection('X1','X2'))],689,[593],[pp]]). vproof('9520011456592226',[[---member('X0',intersection('X1','X2')),++member('X0','X2')],690,[594],[pp]]). vproof('9520011456592226',[[---member('X0',intersection('X1','X2')),++member('X0','X1')],691,[595],[pp]]). vproof('9520011456592226',[[+++(unordered_pair('X0','X0') => singleton('X0'))],700,[604],[pp]]). vproof('9520011456592226',[[---member('X0',universal_class),++member('X0',unordered_pair('X0','X1'))],703,[607],[pp]]). vproof('9520011456592226',[[---member('X0',unordered_pair('X1','X2')),++('X0' = 'X1'),++('X0' = 'X2')],704,[608],[pp]]). vproof('9520011456592226',[[+++subclass('X0',universal_class)],707,[611],[pp]]). vproof('9520011456592226',[[---subclass('X0','X1'),--member('X2','X0'),++member('X2','X1')],710,[614],[pp]]). vproof('9520011456592226',[[---member(regular(complement('X0')),'X0'),++(complement('X0') => null_class)],753,[651,688],[br]]). vproof('9520011456592226',[[---member(z,'X0'),++member(z,intersection(z,'X0'))],757,[620,689],[br]]). vproof('9520011456592226',[[---member(z,'X0'),++member(z,intersection(diagonalise(element_relation),'X0'))],758,[621,689],[br]]). vproof('9520011456592226',[[+++member(regular(intersection('X0','X1')),'X1'),++(intersection('X0','X1') => null_class)],761,[651,690],[br]]). vproof('9520011456592226',[[+++member(regular(intersection('X0','X1')),'X0'),++(intersection('X0','X1') => null_class)],768,[651,691],[br]]). vproof('9520011456592226',[[---member('X0',singleton('X1')),++('X0' = 'X1')],798,[700,704],[fs]]). vproof('9520011456592226',[[---member('X0','X1'),++member('X0',universal_class)],822,[707,710],[br]]). vproof('9520011456592226',[[+++member(z,universal_class)],999,[620,822],[br]]). vproof('9520011456592226',[[+++member(regular('X0'),universal_class),++('X0' = null_class)],1000,[651,822],[br]]). vproof('9520011456592226',[[+++member(z,unordered_pair(z,'X0'))],1005,[703,999],[br]]). vproof('9520011456592226',[[+++member(z,complement('X0')),++member(z,'X0')],1007,[687,999],[br]]). vproof('9520011456592226',[[+++member(z,singleton(z))],1083,[700,1005],[fs]]). vproof('9520011456592226',[[---member(z,'X0'),++member(z,intersection(singleton(z),'X0'))],1085,[689,1083],[br]]). vproof('9520011456592226',[[+++(regular(singleton('X0')) => 'X0'),++(singleton('X0') => null_class)],1568,[651,798],[br]]). vproof('9520011456592226',[[+++member(z,intersection(complement('X0'),complement('X1'))),++member(z,union('X0','X1'))],1669,[685,1007],[fs]]). vproof('9520011456592226',[[+++(complement(universal_class) => null_class)],2598,[1000,753],[br]]). vproof('9520011456592226',[[---member('X0',null_class)],2619,[822,688,2598],[bs,fsr]]). vproof('9520011456592226',[[+++member(z,intersection(diagonalise(element_relation),singleton(z)))],2730,[1083,758],[br]]). vproof('9520011456592226',[[---member(z,'X0'),++member(z,intersection(intersection(diagonalise(element_relation),singleton(z)),'X0'))],2771,[689,2730],[br]]). vproof('9520011456592226',[[+++(intersection('X0',null_class) => null_class)],2824,[2619,761],[br]]). vproof('9520011456592226',[[+++(intersection(null_class,'X0') => null_class)],2971,[2619,768],[br]]). vproof('9520011456592226',[[+++member(z,intersection(singleton(z),z))],20420,[620,1085],[br]]). vproof('9520011456592226',[[+++(intersection(singleton('X0'),'X0') => null_class),++(singleton('X0') => null_class)],23048,[650,1568],[bs]]). vproof('9520011456592226',[[+++member(z,union('X0','X1')),++member(z,complement('X0'))],107744,[691,1669],[br]]). vproof('9520011456592226',[[+++member(z,complement('X0')),++member(z,successor('X0'))],108260,[667,107744],[fs]]). vproof('9520011456592226',[[---member(z,'X0'),++member(z,successor('X0'))],108261,[688,108260],[br]]). vproof('9520011456592226',[[+++member(z,successor(z))],108325,[620,108261],[br]]). vproof('9520011456592226',[[---member(z,'X0'),++member(z,intersection(successor(z),'X0'))],108718,[689,108325],[br]]). vproof('9520011456592226',[[+++member(z,intersection(successor(z),intersection(singleton(z),z)))],118516,[20420,108718],[br]]). vproof('9520011456592226',[[+++member(z,intersection(intersection(diagonalise(element_relation),singleton(z)),universal_class))],142519,[999,2771],[br]]). vproof('9520011456592226',[[+++member(z,intersection(z,intersection(intersection(diagonalise(element_relation),singleton(z)),universal_class)))],142538,[757,142519],[br]]). vproof('9520011456592226',[[+++(singleton(z) => null_class)],142584,[2619,2824,118516,23048],[bs,fd,fsr]]). vproof('9520011456592226',[[],142585,[2619,2824,2971,2824,142538,142584],[fd,bd,fsr]]).
*********** [<number>] *************** <clause/formula body>
******* [<premise number>,..,<premise number>-><conclusion number>] ********** <premise> . . . <premise> ------------------------------- <conclusion>Premises and conclusions can be formulas or clauses.
*********** [11->20] *********** (~X0=f(g(X0)) \/ ((sk1=f(g(sk1)) & ~sk1=sk0) & sk0=f(g(sk0))) \/ ~X3=g(f(X3)) \/ ((sk3=g(f(sk3)) & ~sk3=sk2) & sk2=g(f(sk2)))) & ((sk4=f(g(sk4)) & ((~X8=f(g(X8)) \/ X8=X7) \/ ~X7=f(g(X7)))) \/ (sk5=g(f(sk5)) & ((~X11=g(f(X11)) \/ X11=X10) \/ ~X10=g(f(X10))))) ----------------------------- sk2=g(f(sk2)) \/ ~X3=g(f(X3)) \/ sk0=f(g(sk0)) \/ ~X0=f(g(X0))The conclusion [20] is one of the clauses obtained by clausification of the premise [11]. The constant sk5 was introduced by skolemisation.
Example 2. Three steps from the sample solution for SYN551+1
*********** [20->25] *********** sk2=g(f(sk2)) \/ ~X3=g(f(X3)) \/ sk0=f(g(sk0)) \/ ~X0=f(g(X0)) ----------------------------- ~g(f(X0))=X0 \/ p__2 *********** [20->31] *********** sk2=g(f(sk2)) \/ ~X3=g(f(X3)) \/ sk0=f(g(sk0)) \/ ~X0=f(g(X0)) ----------------------------- ~f(g(X0))=X0 \/ p__3 *********** [20->42] *********** sk2=g(f(sk2)) \/ ~X3=g(f(X3)) \/ sk0=f(g(sk0)) \/ ~X0=f(g(X0)) ----------------------------- f(g(sk0))=sk0 \/ g(f(sk2))=sk2 \/ ~p__2 \/ ~p__3These steps together form a splitting inference. In the first two we introduce names p__2 and p__3 for the components ~X3=g(f(X3)) and ~X0=f(g(X0)) of the clause [20]. The last one is obtained by folding the components.
Example 3. Two steps from the sample solution for COL003-20:
*********** [9->10] *********** ~apply(strong_fixed_point,fixed_pt)=apply(fixed_pt,apply(strong_fixed_point,fixe d_pt)) ----------------------------- ~p__0(apply(strong_fixed_point,fixed_pt) *********** [9->12] *********** ~apply(strong_fixed_point,fixed_pt)=apply(fixed_pt,apply(strong_fixed_point,fixe d_pt)) ----------------------------- p__0(apply(fixed_pt,apply(strong_fixed_point,fixed_pt)))These steps form a negative equality splitting. Again, p__0 is a new predicate.
Refutation found. Thanks to Tanya! *********** [12] *********** ~X0=a \/ ~X1=b \/ big_f(X0,X1) *********** [12->20] *********** ~X0=a \/ ~X1=b \/ big_f(X0,X1) ----------------------------- big_f(a,b) *********** [20->21] *********** big_f(a,b) ----------------------------- big_f(a,b) *********** [10] *********** ~big_f(X0,X1) \/ X0=a *********** [10->22] *********** ~big_f(X0,X1) \/ X0=a ----------------------------- ~big_f(X0,X1) \/ X0=a *********** [22->23] *********** ~big_f(X0,X1) \/ X0=a ----------------------------- ~big_f(X0,X1) \/ X0=a *********** [13] *********** ~big_f(X1,f(X0)) \/ ~X1=g(X0) \/ f(X0)=X0 *********** [13->24] *********** ~big_f(X1,f(X0)) \/ ~X1=g(X0) \/ f(X0)=X0 ----------------------------- ~big_f(g(X0),f(X0)) \/ f(X0)=X0 *********** [15] *********** ~X1=g(X0) \/ big_f(X1,f(X0)) \/ f(X0)=X0 *********** [24,15->25] *********** ~big_f(g(X0),f(X0)) \/ f(X0)=X0 ~X1=g(X0) \/ big_f(X1,f(X0)) \/ f(X0)=X0 ----------------------------- f(X0)=X0 *********** [25->26] *********** f(X0)=X0 ----------------------------- f(X0)=X0 *********** [18] *********** ~f(X0)=X0 \/ big_f(h(X0,X2),f(X0)) \/ h(X0,X2)=X2 *********** [18->27] *********** ~f(X0)=X0 \/ big_f(h(X0,X2),f(X0)) \/ h(X0,X2)=X2 ----------------------------- ~f(X0)=X0 \/ h(X0,X1)=X1 \/ big_f(h(X0,X1),f(X0)) *********** [26,26,27->28] *********** f(X0)=X0 f(X0)=X0 ~f(X0)=X0 \/ h(X0,X1)=X1 \/ big_f(h(X0,X1),f(X0)) ----------------------------- big_f(h(X0,X1),X0) \/ h(X0,X1)=X1 *********** [23,28->29] *********** ~big_f(X0,X1) \/ X0=a big_f(h(X0,X1),X0) \/ h(X0,X1)=X1 ----------------------------- h(X0,X1)=a \/ h(X0,X1)=X1 *********** [29->30] *********** h(X0,X1)=a \/ h(X0,X1)=X1 ----------------------------- h(X0,a)=a *********** [19] *********** ~f(X0)=X0 \/ ~h(X0,X2)=X2 \/ ~big_f(h(X0,X2),f(X0)) *********** [19->31] *********** ~f(X0)=X0 \/ ~h(X0,X2)=X2 \/ ~big_f(h(X0,X2),f(X0)) ----------------------------- ~big_f(h(X0,X1),f(X0)) \/ ~h(X0,X1)=X1 \/ ~f(X0)=X0 *********** [26,26,31->32] *********** f(X0)=X0 f(X0)=X0 ~big_f(h(X0,X1),f(X0)) \/ ~h(X0,X1)=X1 \/ ~f(X0)=X0 ----------------------------- ~h(X0,X1)=X1 \/ ~big_f(h(X0,X1),X0) *********** [30,32,30->33] *********** h(X0,a)=a ~h(X0,X1)=X1 \/ ~big_f(h(X0,X1),X0) h(X0,a)=a ----------------------------- ~big_f(a,X0) *********** [21,33->34] *********** big_f(a,b) ~big_f(a,X0) ----------------------------- # ======= End of refutation =======
Proof by contradiction found. Thanks to Tanya! =========== Refutation ========== *********** [6] *********** ~((? X0)X0=f(g(X0)) & (! X1 X2) (X1=f(g(X1)) & X2=f(g(X2)) => X1=X2) <=> (? X3)X3=g(f(X3)) & (! X4 X5) (X4=g(f(X4)) & X5=g(f(X5)) => X4=X5)) *********** [6->7] *********** ~((? X0)X0=f(g(X0)) & (! X1 X2) (X1=f(g(X1)) & X2=f(g(X2)) => X1=X2) <=> (? X3)X3=g(f(X3)) & (! X4 X5) (X4=g(f(X4)) & X5=g(f(X5)) => X4=X5)) ----------------------------- (? X0)X0=f(g(X0)) & (! X1 X2) (~X1=f(g(X1)) \/ ~X2=f(g(X2)) \/ X1=X2) <~> (? X3)X3=g(f(X3)) & (! X4 X5) (~X4=g(f(X4)) \/ ~X5=g(f(X5)) \/ X4=X5) *********** [7->8] *********** (? X0)X0=f(g(X0)) & (! X1 X2) (~X1=f(g(X1)) \/ ~X2=f(g(X2)) \/ X1=X2) <~> (? X3)X3=g(f(X3)) & (! X4 X5) (~X4=g(f(X4)) \/ ~X5=g(f(X5)) \/ X4=X5) ----------------------------- ((? X0)X0=f(g(X0)) & (! X1 X2) (~X1=f(g(X1)) \/ ~X2=f(g(X2)) \/ X1=X2) => ~((? X3)X3=g(f(X3)) & (! X4 X5) (~X4=g(f(X4)) \/ ~X5=g(f(X5)) \/ X4=X5))) & (~((? X0)X0=f(g(X0)) & (! X1 X2) (~X1=f(g(X1)) \/ ~X2=f(g(X2)) \/ X1=X2)) => (? X3)X3=g(f(X3)) & (! X4 X5) (~X4=g(f(X4)) \/ ~X5=g(f(X5)) \/ X4=X5)) *********** [8->9] *********** ((? X0)X0=f(g(X0)) & (! X1 X2) (~X1=f(g(X1)) \/ ~X2=f(g(X2)) \/ X1=X2) => ~((? X3)X3=g(f(X3)) & (! X4 X5) (~X4=g(f(X4)) \/ ~X5=g(f(X5)) \/ X4=X5))) & (~((? X0)X0=f(g(X0)) & (! X1 X2) (~X1=f(g(X1)) \/ ~X2=f(g(X2)) \/ X1=X2)) => (? X3)X3=g(f(X3)) & (! X4 X5) (~X4=g(f(X4)) \/ ~X5=g(f(X5)) \/ X4=X5)) ----------------------------- ((! X0) ~X0=f(g(X0)) \/ (? X1 X2) (X1=f(g(X1)) & X2=f(g(X2)) & ~X1=X2) \/ (! X3) ~X3=g(f(X3)) \/ (? X4 X5) (X4=g(f(X4)) & X5=g(f(X5)) & ~X4=X5)) & (((? X0)X0=f(g(X0)) & (! X1 X2) (~X1=f(g(X1)) \/ ~X2=f(g(X2)) \/ X1=X2)) \/ ((? X3)X3=g(f(X3)) & (! X4 X5) (~X4=g(f(X4)) \/ ~X5=g(f(X5)) \/ X4=X5))) *********** [9->10] *********** ((! X0) ~X0=f(g(X0)) \/ (? X1 X2) (X1=f(g(X1)) & X2=f(g(X2)) & ~X1=X2) \/ (! X3) ~X3=g(f(X3)) \/ (? X4 X5) (X4=g(f(X4)) & X5=g(f(X5)) & ~X4=X5)) & (((? X0)X0=f(g(X0)) & (! X1 X2) (~X1=f(g(X1)) \/ ~X2=f(g(X2)) \/ X1=X2)) \/ ((? X3)X3=g(f(X3)) & (! X4 X5) (~X4=g(f(X4)) \/ ~X5=g(f(X5)) \/ X4=X5))) ----------------------------- ((! X0) ~X0=f(g(X0)) \/ (? X1) ((? X2) (X2=f(g(X2)) & ~X2=X1) & X1=f(g(X1))) \/ (! X3) ~X3=g(f(X3)) \/ (? X4) ((? X5) (X5=g(f(X5)) & ~X5=X4) & X4=g(f(X4)))) & (((? X6)X6=f(g(X6)) & (! X7) ((! X8) (~X8=f(g(X8)) \/ X8=X7) \/ ~X7=f(g(X7)))) \/ ((? X9)X9=g(f(X9)) & (! X10) ((! X11) (~X11=g(f(X11)) \/ X11=X10) \/ ~X10=g(f(X10))))) *********** [10->11] *********** ((! X0) ~X0=f(g(X0)) \/ (? X1) ((? X2) (X2=f(g(X2)) & ~X2=X1) & X1=f(g(X1))) \/ (! X3) ~X3=g(f(X3)) \/ (? X4) ((? X5) (X5=g(f(X5)) & ~X5=X4) & X4=g(f(X4)))) & (((? X6)X6=f(g(X6)) & (! X7) ((! X8) (~X8=f(g(X8)) \/ X8=X7) \/ ~X7=f(g(X7)))) \/ ((? X9)X9=g(f(X9)) & (! X10) ((! X11) (~X11=g(f(X11)) \/ X11=X10) \/ ~X10=g(f(X10))))) ----------------------------- (~X0=f(g(X0)) \/ ((sk1=f(g(sk1)) & ~sk1=sk0) & sk0=f(g(sk0))) \/ ~X3=g(f(X3)) \/ ((sk3=g(f(sk3)) & ~sk3=sk2) & sk2=g(f(sk2)))) & ((sk4=f(g(sk4)) & ((~X8=f(g(X8)) \/ X8=X7) \/ ~X7=f(g(X7)))) \/ (sk5=g(f(sk5)) & ((~X11=g(f(X11)) \/ X11=X10) \/ ~X10=g(f(X10))))) *********** [11->20] *********** (~X0=f(g(X0)) \/ ((sk1=f(g(sk1)) & ~sk1=sk0) & sk0=f(g(sk0))) \/ ~X3=g(f(X3)) \/ ((sk3=g(f(sk3)) & ~sk3=sk2) & sk2=g(f(sk2)))) & ((sk4=f(g(sk4)) & ((~X8=f(g(X8)) \/ X8=X7) \/ ~X7=f(g(X7)))) \/ (sk5=g(f(sk5)) & ((~X11=g(f(X11)) \/ X11=X10) \/ ~X10=g(f(X10))))) ----------------------------- sk2=g(f(sk2)) \/ ~X3=g(f(X3)) \/ sk0=f(g(sk0)) \/ ~X0=f(g(X0)) *********** [20->25] *********** sk2=g(f(sk2)) \/ ~X3=g(f(X3)) \/ sk0=f(g(sk0)) \/ ~X0=f(g(X0)) ----------------------------- ~g(f(X0))=X0 \/ p__2 *********** [25->26] *********** ~g(f(X0))=X0 \/ p__2 ----------------------------- ~g(f(X0))=X0 \/ p__2 *********** [11->21] *********** (~X0=f(g(X0)) \/ ((sk1=f(g(sk1)) & ~sk1=sk0) & sk0=f(g(sk0))) \/ ~X3=g(f(X3)) \/ ((sk3=g(f(sk3)) & ~sk3=sk2) & sk2=g(f(sk2)))) & ((sk4=f(g(sk4)) & ((~X8=f(g(X8)) \/ X8=X7) \/ ~X7=f(g(X7)))) \/ (sk5=g(f(sk5)) & ((~X11=g(f(X11)) \/ X11=X10) \/ ~X10=g(f(X10))))) ----------------------------- sk5=g(f(sk5)) \/ sk4=f(g(sk4)) *********** [21->27] *********** sk5=g(f(sk5)) \/ sk4=f(g(sk4)) ----------------------------- f(g(sk4))=sk4 \/ g(f(sk5))=sk5 *********** [27->28] *********** f(g(sk4))=sk4 \/ g(f(sk5))=sk5 ----------------------------- f(g(sk4))=sk4 \/ g(f(sk5))=sk5 *********** [28,26->29] *********** f(g(sk4))=sk4 \/ g(f(sk5))=sk5 ~g(f(X0))=X0 \/ p__2 ----------------------------- g(f(sk5))=sk5 \/ p__2 *********** [26,29->30] *********** ~g(f(X0))=X0 \/ p__2 g(f(sk5))=sk5 \/ p__2 ----------------------------- p__2 *********** [20->31] *********** sk2=g(f(sk2)) \/ ~X3=g(f(X3)) \/ sk0=f(g(sk0)) \/ ~X0=f(g(X0)) ----------------------------- ~f(g(X0))=X0 \/ p__3 *********** [31->32] *********** ~f(g(X0))=X0 \/ p__3 ----------------------------- ~f(g(X0))=X0 \/ p__3 *********** [28,32->33] *********** f(g(sk4))=sk4 \/ g(f(sk5))=sk5 ~f(g(X0))=X0 \/ p__3 ----------------------------- g(f(sk5))=sk5 \/ p__3 *********** [32,33->34] *********** ~f(g(X0))=X0 \/ p__3 g(f(sk5))=sk5 \/ p__3 ----------------------------- p__3 *********** [11->16] *********** (~X0=f(g(X0)) \/ ((sk1=f(g(sk1)) & ~sk1=sk0) & sk0=f(g(sk0))) \/ ~X3=g(f(X3)) \/ ((sk3=g(f(sk3)) & ~sk3=sk2) & sk2=g(f(sk2)))) & ((sk4=f(g(sk4)) & ((~X8=f(g(X8)) \/ X8=X7) \/ ~X7=f(g(X7)))) \/ (sk5=g(f(sk5)) & ((~X11=g(f(X11)) \/ X11=X10) \/ ~X10=g(f(X10))))) ----------------------------- ~sk3=sk2 \/ ~X3=g(f(X3)) \/ ~sk1=sk0 \/ ~X0=f(g(X0)) *********** [16->35] *********** ~sk3=sk2 \/ ~X3=g(f(X3)) \/ ~sk1=sk0 \/ ~X0=f(g(X0)) ----------------------------- ~sk0=sk1 \/ ~sk2=sk3 \/ ~p__2 \/ ~p__3 *********** [35->36] *********** ~sk0=sk1 \/ ~sk2=sk3 \/ ~p__2 \/ ~p__3 ----------------------------- ~sk0=sk1 \/ ~sk2=sk3 \/ ~p__2 \/ ~p__3 *********** [11->22] *********** (~X0=f(g(X0)) \/ ((sk1=f(g(sk1)) & ~sk1=sk0) & sk0=f(g(sk0))) \/ ~X3=g(f(X3)) \/ ((sk3=g(f(sk3)) & ~sk3=sk2) & sk2=g(f(sk2)))) & ((sk4=f(g(sk4)) & ((~X8=f(g(X8)) \/ X8=X7) \/ ~X7=f(g(X7)))) \/ (sk5=g(f(sk5)) & ((~X11=g(f(X11)) \/ X11=X10) \/ ~X10=g(f(X10))))) ----------------------------- ~X10=g(f(X10)) \/ X11=X10 \/ ~X11=g(f(X11)) \/ sk4=f(g(sk4)) *********** [22->37] *********** ~X10=g(f(X10)) \/ X11=X10 \/ ~X11=g(f(X11)) \/ sk4=f(g(sk4)) ----------------------------- f(g(sk4))=sk4 \/ ~p__0 *********** [37->38] *********** f(g(sk4))=sk4 \/ ~p__0 ----------------------------- f(g(sk4))=sk4 \/ ~p__0 *********** [38,26->39] *********** f(g(sk4))=sk4 \/ ~p__0 ~g(f(X0))=X0 \/ p__2 ----------------------------- p__2 \/ ~p__0 *********** [11->24] *********** (~X0=f(g(X0)) \/ ((sk1=f(g(sk1)) & ~sk1=sk0) & sk0=f(g(sk0))) \/ ~X3=g(f(X3)) \/ ((sk3=g(f(sk3)) & ~sk3=sk2) & sk2=g(f(sk2)))) & ((sk4=f(g(sk4)) & ((~X8=f(g(X8)) \/ X8=X7) \/ ~X7=f(g(X7)))) \/ (sk5=g(f(sk5)) & ((~X11=g(f(X11)) \/ X11=X10) \/ ~X10=g(f(X10))))) ----------------------------- ~X10=g(f(X10)) \/ X11=X10 \/ ~X11=g(f(X11)) \/ ~X7=f(g(X7)) \/ X8=X7 \/ ~X8=f(g(X8)) *********** [24->40] *********** ~X10=g(f(X10)) \/ X11=X10 \/ ~X11=g(f(X11)) \/ ~X7=f(g(X7)) \/ X8=X7 \/ ~X8=f(g(X8)) ----------------------------- ~f(g(X0))=X0 \/ ~f(g(X1))=X1 \/ X0=X1 \/ ~p__0 *********** [40->41] *********** ~f(g(X0))=X0 \/ ~f(g(X1))=X1 \/ X0=X1 \/ ~p__0 ----------------------------- ~f(g(X0))=X0 \/ ~f(g(X1))=X1 \/ X0=X1 \/ ~p__0 *********** [20->42] *********** sk2=g(f(sk2)) \/ ~X3=g(f(X3)) \/ sk0=f(g(sk0)) \/ ~X0=f(g(X0)) ----------------------------- f(g(sk0))=sk0 \/ g(f(sk2))=sk2 \/ ~p__2 \/ ~p__3 *********** [42->43] *********** f(g(sk0))=sk0 \/ g(f(sk2))=sk2 \/ ~p__2 \/ ~p__3 ----------------------------- f(g(sk0))=sk0 \/ g(f(sk2))=sk2 \/ ~p__2 \/ ~p__3 *********** [39,32,41,43->44] *********** p__2 \/ ~p__0 ~f(g(X0))=X0 \/ p__3 ~f(g(X0))=X0 \/ ~f(g(X1))=X1 \/ X0=X1 \/ ~p__0 f(g(sk0))=sk0 \/ g(f(sk2))=sk2 \/ ~p__2 \/ ~p__3 ----------------------------- g(f(sk2))=sk2 \/ ~p__0 \/ ~p__5 *********** [41,38->45] *********** ~f(g(X0))=X0 \/ ~f(g(X1))=X1 \/ X0=X1 \/ ~p__0 f(g(sk4))=sk4 \/ ~p__0 ----------------------------- ~f(g(X0))=X0 \/ sk4=X0 \/ ~p__0 *********** [44,45->46] *********** g(f(sk2))=sk2 \/ ~p__0 \/ ~p__5 ~f(g(X0))=X0 \/ sk4=X0 \/ ~p__0 ----------------------------- f(sk2)=sk4 \/ ~p__0 \/ ~p__5 *********** [44,46->47] *********** g(f(sk2))=sk2 \/ ~p__0 \/ ~p__5 f(sk2)=sk4 \/ ~p__0 \/ ~p__5 ----------------------------- g(sk4)=sk2 \/ ~p__0 \/ ~p__5 *********** [11->18] *********** (~X0=f(g(X0)) \/ ((sk1=f(g(sk1)) & ~sk1=sk0) & sk0=f(g(sk0))) \/ ~X3=g(f(X3)) \/ ((sk3=g(f(sk3)) & ~sk3=sk2) & sk2=g(f(sk2)))) & ((sk4=f(g(sk4)) & ((~X8=f(g(X8)) \/ X8=X7) \/ ~X7=f(g(X7)))) \/ (sk5=g(f(sk5)) & ((~X11=g(f(X11)) \/ X11=X10) \/ ~X10=g(f(X10))))) ----------------------------- sk3=g(f(sk3)) \/ ~X3=g(f(X3)) \/ sk0=f(g(sk0)) \/ ~X0=f(g(X0)) *********** [18->48] *********** sk3=g(f(sk3)) \/ ~X3=g(f(X3)) \/ sk0=f(g(sk0)) \/ ~X0=f(g(X0)) ----------------------------- f(g(sk0))=sk0 \/ g(f(sk3))=sk3 \/ ~p__2 \/ ~p__3 *********** [48->49] *********** f(g(sk0))=sk0 \/ g(f(sk3))=sk3 \/ ~p__2 \/ ~p__3 ----------------------------- f(g(sk0))=sk0 \/ g(f(sk3))=sk3 \/ ~p__2 \/ ~p__3 *********** [39,32,41,49->50] *********** p__2 \/ ~p__0 ~f(g(X0))=X0 \/ p__3 ~f(g(X0))=X0 \/ ~f(g(X1))=X1 \/ X0=X1 \/ ~p__0 f(g(sk0))=sk0 \/ g(f(sk3))=sk3 \/ ~p__2 \/ ~p__3 ----------------------------- g(f(sk3))=sk3 \/ ~p__0 \/ ~p__5 *********** [50,45->51] *********** g(f(sk3))=sk3 \/ ~p__0 \/ ~p__5 ~f(g(X0))=X0 \/ sk4=X0 \/ ~p__0 ----------------------------- f(sk3)=sk4 \/ ~p__0 \/ ~p__5 *********** [47,50,51->52] *********** g(sk4)=sk2 \/ ~p__0 \/ ~p__5 g(f(sk3))=sk3 \/ ~p__0 \/ ~p__5 f(sk3)=sk4 \/ ~p__0 \/ ~p__5 ----------------------------- sk2=sk3 \/ ~p__0 \/ ~p__5 *********** [11->19] *********** (~X0=f(g(X0)) \/ ((sk1=f(g(sk1)) & ~sk1=sk0) & sk0=f(g(sk0))) \/ ~X3=g(f(X3)) \/ ((sk3=g(f(sk3)) & ~sk3=sk2) & sk2=g(f(sk2)))) & ((sk4=f(g(sk4)) & ((~X8=f(g(X8)) \/ X8=X7) \/ ~X7=f(g(X7)))) \/ (sk5=g(f(sk5)) & ((~X11=g(f(X11)) \/ X11=X10) \/ ~X10=g(f(X10))))) ----------------------------- ~sk3=sk2 \/ ~X3=g(f(X3)) \/ sk0=f(g(sk0)) \/ ~X0=f(g(X0)) *********** [19->53] *********** ~sk3=sk2 \/ ~X3=g(f(X3)) \/ sk0=f(g(sk0)) \/ ~X0=f(g(X0)) ----------------------------- ~sk2=sk3 \/ f(g(sk0))=sk0 \/ ~p__2 \/ ~p__3 *********** [53->54] *********** ~sk2=sk3 \/ f(g(sk0))=sk0 \/ ~p__2 \/ ~p__3 ----------------------------- ~sk2=sk3 \/ f(g(sk0))=sk0 \/ ~p__2 \/ ~p__3 *********** [30,34,54,52->55] *********** p__2 p__3 ~sk2=sk3 \/ f(g(sk0))=sk0 \/ ~p__2 \/ ~p__3 sk2=sk3 \/ ~p__0 \/ ~p__5 ----------------------------- f(g(sk0))=sk0 \/ ~p__0 \/ ~p__5 *********** [45,55->56] *********** ~f(g(X0))=X0 \/ sk4=X0 \/ ~p__0 f(g(sk0))=sk0 \/ ~p__0 \/ ~p__5 ----------------------------- sk0=sk4 \/ ~p__0 \/ ~p__5 *********** [52,30,34,36,56->57] *********** sk2=sk3 \/ ~p__0 \/ ~p__5 p__2 p__3 ~sk0=sk1 \/ ~sk2=sk3 \/ ~p__2 \/ ~p__3 sk0=sk4 \/ ~p__0 \/ ~p__5 ----------------------------- ~sk1=sk4 \/ ~p__0 \/ ~p__5 *********** [11->13] *********** (~X0=f(g(X0)) \/ ((sk1=f(g(sk1)) & ~sk1=sk0) & sk0=f(g(sk0))) \/ ~X3=g(f(X3)) \/ ((sk3=g(f(sk3)) & ~sk3=sk2) & sk2=g(f(sk2)))) & ((sk4=f(g(sk4)) & ((~X8=f(g(X8)) \/ X8=X7) \/ ~X7=f(g(X7)))) \/ (sk5=g(f(sk5)) & ((~X11=g(f(X11)) \/ X11=X10) \/ ~X10=g(f(X10))))) ----------------------------- ~sk3=sk2 \/ ~X3=g(f(X3)) \/ sk1=f(g(sk1)) \/ ~X0=f(g(X0)) *********** [13->58] *********** ~sk3=sk2 \/ ~X3=g(f(X3)) \/ sk1=f(g(sk1)) \/ ~X0=f(g(X0)) ----------------------------- ~sk2=sk3 \/ f(g(sk1))=sk1 \/ ~p__2 \/ ~p__3 *********** [58->59] *********** ~sk2=sk3 \/ f(g(sk1))=sk1 \/ ~p__2 \/ ~p__3 ----------------------------- ~sk2=sk3 \/ f(g(sk1))=sk1 \/ ~p__2 \/ ~p__3 *********** [30,34,59,52->60] *********** p__2 p__3 ~sk2=sk3 \/ f(g(sk1))=sk1 \/ ~p__2 \/ ~p__3 sk2=sk3 \/ ~p__0 \/ ~p__5 ----------------------------- f(g(sk1))=sk1 \/ ~p__0 \/ ~p__5 *********** [45,60->61] *********** ~f(g(X0))=X0 \/ sk4=X0 \/ ~p__0 f(g(sk1))=sk1 \/ ~p__0 \/ ~p__5 ----------------------------- sk1=sk4 \/ ~p__0 \/ ~p__5 *********** [57,61->62] *********** ~sk1=sk4 \/ ~p__0 \/ ~p__5 sk1=sk4 \/ ~p__0 \/ ~p__5 ----------------------------- ~p__5 \/ ~p__0 *********** [39,32,41,43->63] *********** p__2 \/ ~p__0 ~f(g(X0))=X0 \/ p__3 ~f(g(X0))=X0 \/ ~f(g(X1))=X1 \/ X0=X1 \/ ~p__0 f(g(sk0))=sk0 \/ g(f(sk2))=sk2 \/ ~p__2 \/ ~p__3 ----------------------------- ~f(g(X0))=X0 \/ sk0=X0 \/ p__5 *********** [62,38,63->64] *********** ~p__5 \/ ~p__0 f(g(sk4))=sk4 \/ ~p__0 ~f(g(X0))=X0 \/ sk0=X0 \/ p__5 ----------------------------- sk0=sk4 \/ ~p__0 *********** [30,34,36,64->65] *********** p__2 p__3 ~sk0=sk1 \/ ~sk2=sk3 \/ ~p__2 \/ ~p__3 sk0=sk4 \/ ~p__0 ----------------------------- ~sk1=sk4 \/ ~sk2=sk3 \/ ~p__0 *********** [11->14] *********** (~X0=f(g(X0)) \/ ((sk1=f(g(sk1)) & ~sk1=sk0) & sk0=f(g(sk0))) \/ ~X3=g(f(X3)) \/ ((sk3=g(f(sk3)) & ~sk3=sk2) & sk2=g(f(sk2)))) & ((sk4=f(g(sk4)) & ((~X8=f(g(X8)) \/ X8=X7) \/ ~X7=f(g(X7)))) \/ (sk5=g(f(sk5)) & ((~X11=g(f(X11)) \/ X11=X10) \/ ~X10=g(f(X10))))) ----------------------------- sk2=g(f(sk2)) \/ ~X3=g(f(X3)) \/ sk1=f(g(sk1)) \/ ~X0=f(g(X0)) *********** [14->66] *********** sk2=g(f(sk2)) \/ ~X3=g(f(X3)) \/ sk1=f(g(sk1)) \/ ~X0=f(g(X0)) ----------------------------- f(g(sk1))=sk1 \/ g(f(sk2))=sk2 \/ ~p__2 \/ ~p__3 *********** [66->67] *********** f(g(sk1))=sk1 \/ g(f(sk2))=sk2 \/ ~p__2 \/ ~p__3 ----------------------------- f(g(sk1))=sk1 \/ g(f(sk2))=sk2 \/ ~p__2 \/ ~p__3 *********** [39,32,41,67->68] *********** p__2 \/ ~p__0 ~f(g(X0))=X0 \/ p__3 ~f(g(X0))=X0 \/ ~f(g(X1))=X1 \/ X0=X1 \/ ~p__0 f(g(sk1))=sk1 \/ g(f(sk2))=sk2 \/ ~p__2 \/ ~p__3 ----------------------------- g(f(sk2))=sk2 \/ ~p__0 \/ ~p__7 *********** [68,45->69] *********** g(f(sk2))=sk2 \/ ~p__0 \/ ~p__7 ~f(g(X0))=X0 \/ sk4=X0 \/ ~p__0 ----------------------------- f(sk2)=sk4 \/ ~p__0 \/ ~p__7 *********** [68,69->70] *********** g(f(sk2))=sk2 \/ ~p__0 \/ ~p__7 f(sk2)=sk4 \/ ~p__0 \/ ~p__7 ----------------------------- g(sk4)=sk2 \/ ~p__0 \/ ~p__7 *********** [11->12] *********** (~X0=f(g(X0)) \/ ((sk1=f(g(sk1)) & ~sk1=sk0) & sk0=f(g(sk0))) \/ ~X3=g(f(X3)) \/ ((sk3=g(f(sk3)) & ~sk3=sk2) & sk2=g(f(sk2)))) & ((sk4=f(g(sk4)) & ((~X8=f(g(X8)) \/ X8=X7) \/ ~X7=f(g(X7)))) \/ (sk5=g(f(sk5)) & ((~X11=g(f(X11)) \/ X11=X10) \/ ~X10=g(f(X10))))) ----------------------------- sk3=g(f(sk3)) \/ ~X3=g(f(X3)) \/ sk1=f(g(sk1)) \/ ~X0=f(g(X0)) *********** [12->71] *********** sk3=g(f(sk3)) \/ ~X3=g(f(X3)) \/ sk1=f(g(sk1)) \/ ~X0=f(g(X0)) ----------------------------- f(g(sk1))=sk1 \/ g(f(sk3))=sk3 \/ ~p__2 \/ ~p__3 *********** [71->72] *********** f(g(sk1))=sk1 \/ g(f(sk3))=sk3 \/ ~p__2 \/ ~p__3 ----------------------------- f(g(sk1))=sk1 \/ g(f(sk3))=sk3 \/ ~p__2 \/ ~p__3 *********** [39,32,41,72->73] *********** p__2 \/ ~p__0 ~f(g(X0))=X0 \/ p__3 ~f(g(X0))=X0 \/ ~f(g(X1))=X1 \/ X0=X1 \/ ~p__0 f(g(sk1))=sk1 \/ g(f(sk3))=sk3 \/ ~p__2 \/ ~p__3 ----------------------------- g(f(sk3))=sk3 \/ ~p__0 \/ ~p__7 *********** [73,45->74] *********** g(f(sk3))=sk3 \/ ~p__0 \/ ~p__7 ~f(g(X0))=X0 \/ sk4=X0 \/ ~p__0 ----------------------------- f(sk3)=sk4 \/ ~p__0 \/ ~p__7 *********** [70,73,74->75] *********** g(sk4)=sk2 \/ ~p__0 \/ ~p__7 g(f(sk3))=sk3 \/ ~p__0 \/ ~p__7 f(sk3)=sk4 \/ ~p__0 \/ ~p__7 ----------------------------- sk2=sk3 \/ ~p__0 \/ ~p__7 *********** [30,34,54,75->76] *********** p__2 p__3 ~sk2=sk3 \/ f(g(sk0))=sk0 \/ ~p__2 \/ ~p__3 sk2=sk3 \/ ~p__0 \/ ~p__7 ----------------------------- f(g(sk0))=sk0 \/ ~p__0 \/ ~p__7 *********** [45,76->77] *********** ~f(g(X0))=X0 \/ sk4=X0 \/ ~p__0 f(g(sk0))=sk0 \/ ~p__0 \/ ~p__7 ----------------------------- sk0=sk4 \/ ~p__0 \/ ~p__7 *********** [75,30,34,36,77->78] *********** sk2=sk3 \/ ~p__0 \/ ~p__7 p__2 p__3 ~sk0=sk1 \/ ~sk2=sk3 \/ ~p__2 \/ ~p__3 sk0=sk4 \/ ~p__0 \/ ~p__7 ----------------------------- ~sk1=sk4 \/ ~p__0 \/ ~p__7 *********** [30,34,59,75->79] *********** p__2 p__3 ~sk2=sk3 \/ f(g(sk1))=sk1 \/ ~p__2 \/ ~p__3 sk2=sk3 \/ ~p__0 \/ ~p__7 ----------------------------- f(g(sk1))=sk1 \/ ~p__0 \/ ~p__7 *********** [45,79->80] *********** ~f(g(X0))=X0 \/ sk4=X0 \/ ~p__0 f(g(sk1))=sk1 \/ ~p__0 \/ ~p__7 ----------------------------- sk1=sk4 \/ ~p__0 \/ ~p__7 *********** [78,80->81] *********** ~sk1=sk4 \/ ~p__0 \/ ~p__7 sk1=sk4 \/ ~p__0 \/ ~p__7 ----------------------------- ~p__7 \/ ~p__0 *********** [39,32,41,67->82] *********** p__2 \/ ~p__0 ~f(g(X0))=X0 \/ p__3 ~f(g(X0))=X0 \/ ~f(g(X1))=X1 \/ X0=X1 \/ ~p__0 f(g(sk1))=sk1 \/ g(f(sk2))=sk2 \/ ~p__2 \/ ~p__3 ----------------------------- ~f(g(X0))=X0 \/ sk1=X0 \/ p__7 *********** [81,38,82->83] *********** ~p__7 \/ ~p__0 f(g(sk4))=sk4 \/ ~p__0 ~f(g(X0))=X0 \/ sk1=X0 \/ p__7 ----------------------------- sk1=sk4 \/ ~p__0 *********** [65,83->84] *********** ~sk1=sk4 \/ ~sk2=sk3 \/ ~p__0 sk1=sk4 \/ ~p__0 ----------------------------- ~sk2=sk3 \/ ~p__0 *********** [11->15] *********** (~X0=f(g(X0)) \/ ((sk1=f(g(sk1)) & ~sk1=sk0) & sk0=f(g(sk0))) \/ ~X3=g(f(X3)) \/ ((sk3=g(f(sk3)) & ~sk3=sk2) & sk2=g(f(sk2)))) & ((sk4=f(g(sk4)) & ((~X8=f(g(X8)) \/ X8=X7) \/ ~X7=f(g(X7)))) \/ (sk5=g(f(sk5)) & ((~X11=g(f(X11)) \/ X11=X10) \/ ~X10=g(f(X10))))) ----------------------------- sk3=g(f(sk3)) \/ ~X3=g(f(X3)) \/ ~sk1=sk0 \/ ~X0=f(g(X0)) *********** [15->85] *********** sk3=g(f(sk3)) \/ ~X3=g(f(X3)) \/ ~sk1=sk0 \/ ~X0=f(g(X0)) ----------------------------- ~sk0=sk1 \/ g(f(sk3))=sk3 \/ ~p__2 \/ ~p__3 *********** [85->86] *********** ~sk0=sk1 \/ g(f(sk3))=sk3 \/ ~p__2 \/ ~p__3 ----------------------------- ~sk0=sk1 \/ g(f(sk3))=sk3 \/ ~p__2 \/ ~p__3 *********** [30,34,86,64->87] *********** p__2 p__3 ~sk0=sk1 \/ g(f(sk3))=sk3 \/ ~p__2 \/ ~p__3 sk0=sk4 \/ ~p__0 ----------------------------- ~sk1=sk4 \/ g(f(sk3))=sk3 \/ ~p__0 *********** [87,83->88] *********** ~sk1=sk4 \/ g(f(sk3))=sk3 \/ ~p__0 sk1=sk4 \/ ~p__0 ----------------------------- g(f(sk3))=sk3 \/ ~p__0 *********** [83,81,82,88->89] *********** sk1=sk4 \/ ~p__0 ~p__7 \/ ~p__0 ~f(g(X0))=X0 \/ sk1=X0 \/ p__7 g(f(sk3))=sk3 \/ ~p__0 ----------------------------- f(sk3)=sk4 \/ ~p__0 *********** [88,89->90] *********** g(f(sk3))=sk3 \/ ~p__0 f(sk3)=sk4 \/ ~p__0 ----------------------------- g(sk4)=sk3 \/ ~p__0 *********** [11->17] *********** (~X0=f(g(X0)) \/ ((sk1=f(g(sk1)) & ~sk1=sk0) & sk0=f(g(sk0))) \/ ~X3=g(f(X3)) \/ ((sk3=g(f(sk3)) & ~sk3=sk2) & sk2=g(f(sk2)))) & ((sk4=f(g(sk4)) & ((~X8=f(g(X8)) \/ X8=X7) \/ ~X7=f(g(X7)))) \/ (sk5=g(f(sk5)) & ((~X11=g(f(X11)) \/ X11=X10) \/ ~X10=g(f(X10))))) ----------------------------- sk2=g(f(sk2)) \/ ~X3=g(f(X3)) \/ ~sk1=sk0 \/ ~X0=f(g(X0)) *********** [17->91] *********** sk2=g(f(sk2)) \/ ~X3=g(f(X3)) \/ ~sk1=sk0 \/ ~X0=f(g(X0)) ----------------------------- ~sk0=sk1 \/ g(f(sk2))=sk2 \/ ~p__2 \/ ~p__3 *********** [91->92] *********** ~sk0=sk1 \/ g(f(sk2))=sk2 \/ ~p__2 \/ ~p__3 ----------------------------- ~sk0=sk1 \/ g(f(sk2))=sk2 \/ ~p__2 \/ ~p__3 *********** [30,34,92,64->93] *********** p__2 p__3 ~sk0=sk1 \/ g(f(sk2))=sk2 \/ ~p__2 \/ ~p__3 sk0=sk4 \/ ~p__0 ----------------------------- ~sk1=sk4 \/ g(f(sk2))=sk2 \/ ~p__0 *********** [93,83->94] *********** ~sk1=sk4 \/ g(f(sk2))=sk2 \/ ~p__0 sk1=sk4 \/ ~p__0 ----------------------------- g(f(sk2))=sk2 \/ ~p__0 *********** [83,81,82,94->95] *********** sk1=sk4 \/ ~p__0 ~p__7 \/ ~p__0 ~f(g(X0))=X0 \/ sk1=X0 \/ p__7 g(f(sk2))=sk2 \/ ~p__0 ----------------------------- f(sk2)=sk4 \/ ~p__0 *********** [90,94,95->96] *********** g(sk4)=sk3 \/ ~p__0 g(f(sk2))=sk2 \/ ~p__0 f(sk2)=sk4 \/ ~p__0 ----------------------------- sk2=sk3 \/ ~p__0 *********** [84,96->97] *********** ~sk2=sk3 \/ ~p__0 sk2=sk3 \/ ~p__0 ----------------------------- ~p__0 *********** [11->23] *********** (~X0=f(g(X0)) \/ ((sk1=f(g(sk1)) & ~sk1=sk0) & sk0=f(g(sk0))) \/ ~X3=g(f(X3)) \/ ((sk3=g(f(sk3)) & ~sk3=sk2) & sk2=g(f(sk2)))) & ((sk4=f(g(sk4)) & ((~X8=f(g(X8)) \/ X8=X7) \/ ~X7=f(g(X7)))) \/ (sk5=g(f(sk5)) & ((~X11=g(f(X11)) \/ X11=X10) \/ ~X10=g(f(X10))))) ----------------------------- sk5=g(f(sk5)) \/ ~X7=f(g(X7)) \/ X8=X7 \/ ~X8=f(g(X8)) *********** [23->98] *********** sk5=g(f(sk5)) \/ ~X7=f(g(X7)) \/ X8=X7 \/ ~X8=f(g(X8)) ----------------------------- g(f(sk5))=sk5 \/ p__1 *********** [98->99] *********** g(f(sk5))=sk5 \/ p__1 ----------------------------- g(f(sk5))=sk5 \/ p__1 *********** [23->100] *********** sk5=g(f(sk5)) \/ ~X7=f(g(X7)) \/ X8=X7 \/ ~X8=f(g(X8)) ----------------------------- ~f(g(X0))=X0 \/ ~f(g(X1))=X1 \/ X0=X1 \/ ~p__1 *********** [100->101] *********** ~f(g(X0))=X0 \/ ~f(g(X1))=X1 \/ X0=X1 \/ ~p__1 ----------------------------- ~f(g(X0))=X0 \/ ~f(g(X1))=X1 \/ X0=X1 \/ ~p__1 *********** [99,101,28->102] *********** g(f(sk5))=sk5 \/ p__1 ~f(g(X0))=X0 \/ ~f(g(X1))=X1 \/ X0=X1 \/ ~p__1 f(g(sk4))=sk4 \/ g(f(sk5))=sk5 ----------------------------- ~f(g(X0))=X0 \/ sk4=X0 \/ ~p__1 *********** [32,101,67->103] *********** ~f(g(X0))=X0 \/ p__3 ~f(g(X0))=X0 \/ ~f(g(X1))=X1 \/ X0=X1 \/ ~p__1 f(g(sk1))=sk1 \/ g(f(sk2))=sk2 \/ ~p__2 \/ ~p__3 ----------------------------- g(f(sk2))=sk2 \/ ~p__1 \/ ~p__2 \/ ~p__7 *********** [30,102,103->104] *********** p__2 ~f(g(X0))=X0 \/ sk4=X0 \/ ~p__1 g(f(sk2))=sk2 \/ ~p__1 \/ ~p__2 \/ ~p__7 ----------------------------- f(sk2)=sk4 \/ ~p__1 \/ ~p__7 *********** [24->105] *********** ~X10=g(f(X10)) \/ X11=X10 \/ ~X11=g(f(X11)) \/ ~X7=f(g(X7)) \/ X8=X7 \/ ~X8=f(g(X8)) ----------------------------- ~g(f(X0))=X0 \/ ~g(f(X1))=X1 \/ X0=X1 \/ p__0 *********** [105->106] *********** ~g(f(X0))=X0 \/ ~g(f(X1))=X1 \/ X0=X1 \/ p__0 ----------------------------- ~g(f(X0))=X0 \/ ~g(f(X1))=X1 \/ X0=X1 \/ p__0 *********** [106,28->107] *********** ~g(f(X0))=X0 \/ ~g(f(X1))=X1 \/ X0=X1 \/ p__0 f(g(sk4))=sk4 \/ g(f(sk5))=sk5 ----------------------------- ~g(f(X0))=X0 \/ g(sk4)=X0 \/ p__0 \/ ~p__1 *********** [26,106,67->108] *********** ~g(f(X0))=X0 \/ p__2 ~g(f(X0))=X0 \/ ~g(f(X1))=X1 \/ X0=X1 \/ p__0 f(g(sk1))=sk1 \/ g(f(sk2))=sk2 \/ ~p__2 \/ ~p__3 ----------------------------- g(f(sk2))=sk2 \/ p__0 \/ ~p__3 \/ ~p__6 *********** [34,107,108->109] *********** p__3 ~g(f(X0))=X0 \/ g(sk4)=X0 \/ p__0 \/ ~p__1 g(f(sk2))=sk2 \/ p__0 \/ ~p__3 \/ ~p__6 ----------------------------- g(sk4)=sk2 \/ p__0 \/ ~p__1 \/ ~p__6 *********** [26,106,72->110] *********** ~g(f(X0))=X0 \/ p__2 ~g(f(X0))=X0 \/ ~g(f(X1))=X1 \/ X0=X1 \/ p__0 f(g(sk1))=sk1 \/ g(f(sk3))=sk3 \/ ~p__2 \/ ~p__3 ----------------------------- g(f(sk3))=sk3 \/ p__0 \/ ~p__3 \/ ~p__6 *********** [97,34,107,110->111] *********** ~p__0 p__3 ~g(f(X0))=X0 \/ g(sk4)=X0 \/ p__0 \/ ~p__1 g(f(sk3))=sk3 \/ p__0 \/ ~p__3 \/ ~p__6 ----------------------------- g(sk4)=sk3 \/ ~p__1 \/ ~p__6 *********** [97,109,111->112] *********** ~p__0 g(sk4)=sk2 \/ p__0 \/ ~p__1 \/ ~p__6 g(sk4)=sk3 \/ ~p__1 \/ ~p__6 ----------------------------- sk2=sk3 \/ ~p__1 \/ ~p__6 *********** [26,106,67->113] *********** ~g(f(X0))=X0 \/ p__2 ~g(f(X0))=X0 \/ ~g(f(X1))=X1 \/ X0=X1 \/ p__0 f(g(sk1))=sk1 \/ g(f(sk2))=sk2 \/ ~p__2 \/ ~p__3 ----------------------------- ~g(f(X0))=X0 \/ g(sk1)=X0 \/ p__6 *********** [30,113,103->114] *********** p__2 ~g(f(X0))=X0 \/ g(sk1)=X0 \/ p__6 g(f(sk2))=sk2 \/ ~p__1 \/ ~p__2 \/ ~p__7 ----------------------------- g(sk1)=sk2 \/ ~p__1 \/ p__6 \/ ~p__7 *********** [32,101,72->115] *********** ~f(g(X0))=X0 \/ p__3 ~f(g(X0))=X0 \/ ~f(g(X1))=X1 \/ X0=X1 \/ ~p__1 f(g(sk1))=sk1 \/ g(f(sk3))=sk3 \/ ~p__2 \/ ~p__3 ----------------------------- g(f(sk3))=sk3 \/ ~p__1 \/ ~p__2 \/ ~p__7 *********** [112,114,30,113,115->116] *********** sk2=sk3 \/ ~p__1 \/ ~p__6 g(sk1)=sk2 \/ ~p__1 \/ p__6 \/ ~p__7 p__2 ~g(f(X0))=X0 \/ g(sk1)=X0 \/ p__6 g(f(sk3))=sk3 \/ ~p__1 \/ ~p__2 \/ ~p__7 ----------------------------- sk2=sk3 \/ ~p__1 \/ ~p__7 *********** [104,116->117] *********** f(sk2)=sk4 \/ ~p__1 \/ ~p__7 sk2=sk3 \/ ~p__1 \/ ~p__7 ----------------------------- f(sk3)=sk4 \/ ~p__1 \/ ~p__7 *********** [106,99->118] *********** ~g(f(X0))=X0 \/ ~g(f(X1))=X1 \/ X0=X1 \/ p__0 g(f(sk5))=sk5 \/ p__1 ----------------------------- ~g(f(X0))=X0 \/ sk5=X0 \/ p__0 \/ p__1 *********** [26,106,43->119] *********** ~g(f(X0))=X0 \/ p__2 ~g(f(X0))=X0 \/ ~g(f(X1))=X1 \/ X0=X1 \/ p__0 f(g(sk0))=sk0 \/ g(f(sk2))=sk2 \/ ~p__2 \/ ~p__3 ----------------------------- g(f(sk2))=sk2 \/ p__0 \/ ~p__3 \/ ~p__4 *********** [34,118,119->120] *********** p__3 ~g(f(X0))=X0 \/ sk5=X0 \/ p__0 \/ p__1 g(f(sk2))=sk2 \/ p__0 \/ ~p__3 \/ ~p__4 ----------------------------- sk2=sk5 \/ p__0 \/ p__1 \/ ~p__4 *********** [30,34,54,120->121] *********** p__2 p__3 ~sk2=sk3 \/ f(g(sk0))=sk0 \/ ~p__2 \/ ~p__3 sk2=sk5 \/ p__0 \/ p__1 \/ ~p__4 ----------------------------- ~sk3=sk5 \/ f(g(sk0))=sk0 \/ p__0 \/ p__1 \/ ~p__4 *********** [26,106,49->122] *********** ~g(f(X0))=X0 \/ p__2 ~g(f(X0))=X0 \/ ~g(f(X1))=X1 \/ X0=X1 \/ p__0 f(g(sk0))=sk0 \/ g(f(sk3))=sk3 \/ ~p__2 \/ ~p__3 ----------------------------- g(f(sk3))=sk3 \/ p__0 \/ ~p__3 \/ ~p__4 *********** [34,118,122->123] *********** p__3 ~g(f(X0))=X0 \/ sk5=X0 \/ p__0 \/ p__1 g(f(sk3))=sk3 \/ p__0 \/ ~p__3 \/ ~p__4 ----------------------------- sk3=sk5 \/ p__0 \/ p__1 \/ ~p__4 *********** [121,123->124] *********** ~sk3=sk5 \/ f(g(sk0))=sk0 \/ p__0 \/ p__1 \/ ~p__4 sk3=sk5 \/ p__0 \/ p__1 \/ ~p__4 ----------------------------- f(g(sk0))=sk0 \/ p__0 \/ p__1 \/ ~p__4 *********** [34,107,119->125] *********** p__3 ~g(f(X0))=X0 \/ g(sk4)=X0 \/ p__0 \/ ~p__1 g(f(sk2))=sk2 \/ p__0 \/ ~p__3 \/ ~p__4 ----------------------------- g(sk4)=sk2 \/ p__0 \/ ~p__1 \/ ~p__4 *********** [125,34,107,122->126] *********** g(sk4)=sk2 \/ p__0 \/ ~p__1 \/ ~p__4 p__3 ~g(f(X0))=X0 \/ g(sk4)=X0 \/ p__0 \/ ~p__1 g(f(sk3))=sk3 \/ p__0 \/ ~p__3 \/ ~p__4 ----------------------------- sk2=sk3 \/ p__0 \/ ~p__1 \/ ~p__4 *********** [30,34,124,54,126->127] *********** p__2 p__3 f(g(sk0))=sk0 \/ p__0 \/ p__1 \/ ~p__4 ~sk2=sk3 \/ f(g(sk0))=sk0 \/ ~p__2 \/ ~p__3 sk2=sk3 \/ p__0 \/ ~p__1 \/ ~p__4 ----------------------------- f(g(sk0))=sk0 \/ p__0 \/ ~p__4 *********** [64,102,127->128] *********** sk0=sk4 \/ ~p__0 ~f(g(X0))=X0 \/ sk4=X0 \/ ~p__1 f(g(sk0))=sk0 \/ p__0 \/ ~p__4 ----------------------------- sk0=sk4 \/ ~p__1 \/ ~p__4 *********** [34,102,108->129] *********** p__3 ~f(g(X0))=X0 \/ sk4=X0 \/ ~p__1 g(f(sk2))=sk2 \/ p__0 \/ ~p__3 \/ ~p__6 ----------------------------- f(sk2)=sk4 \/ p__0 \/ ~p__1 \/ ~p__6 *********** [97,129,112->130] *********** ~p__0 f(sk2)=sk4 \/ p__0 \/ ~p__1 \/ ~p__6 sk2=sk3 \/ ~p__1 \/ ~p__6 ----------------------------- f(sk3)=sk4 \/ ~p__1 \/ ~p__6 *********** [26,106,43->131] *********** ~g(f(X0))=X0 \/ p__2 ~g(f(X0))=X0 \/ ~g(f(X1))=X1 \/ X0=X1 \/ p__0 f(g(sk0))=sk0 \/ g(f(sk2))=sk2 \/ ~p__2 \/ ~p__3 ----------------------------- ~g(f(X0))=X0 \/ g(sk0)=X0 \/ p__4 *********** [97,34,131,110->132] *********** ~p__0 p__3 ~g(f(X0))=X0 \/ g(sk0)=X0 \/ p__4 g(f(sk3))=sk3 \/ p__0 \/ ~p__3 \/ ~p__6 ----------------------------- g(sk0)=sk3 \/ p__4 \/ ~p__6 *********** [34,131,108->133] *********** p__3 ~g(f(X0))=X0 \/ g(sk0)=X0 \/ p__4 g(f(sk2))=sk2 \/ p__0 \/ ~p__3 \/ ~p__6 ----------------------------- g(sk0)=sk2 \/ p__0 \/ p__4 \/ ~p__6 *********** [97,133,132->134] *********** ~p__0 g(sk0)=sk2 \/ p__0 \/ p__4 \/ ~p__6 g(sk0)=sk3 \/ p__4 \/ ~p__6 ----------------------------- sk2=sk3 \/ p__4 \/ ~p__6 *********** [132,30,34,54,134->135] *********** g(sk0)=sk3 \/ p__4 \/ ~p__6 p__2 p__3 ~sk2=sk3 \/ f(g(sk0))=sk0 \/ ~p__2 \/ ~p__3 sk2=sk3 \/ p__4 \/ ~p__6 ----------------------------- f(sk3)=sk0 \/ p__4 \/ ~p__6 *********** [128,130,135->136] *********** sk0=sk4 \/ ~p__1 \/ ~p__4 f(sk3)=sk4 \/ ~p__1 \/ ~p__6 f(sk3)=sk0 \/ p__4 \/ ~p__6 ----------------------------- sk0=sk4 \/ ~p__1 \/ ~p__6 *********** [112,30,34,36,136->137] *********** sk2=sk3 \/ ~p__1 \/ ~p__6 p__2 p__3 ~sk0=sk1 \/ ~sk2=sk3 \/ ~p__2 \/ ~p__3 sk0=sk4 \/ ~p__1 \/ ~p__6 ----------------------------- ~sk1=sk4 \/ ~p__1 \/ ~p__6 *********** [34,118,108->138] *********** p__3 ~g(f(X0))=X0 \/ sk5=X0 \/ p__0 \/ p__1 g(f(sk2))=sk2 \/ p__0 \/ ~p__3 \/ ~p__6 ----------------------------- sk2=sk5 \/ p__0 \/ p__1 \/ ~p__6 *********** [30,34,59,138->139] *********** p__2 p__3 ~sk2=sk3 \/ f(g(sk1))=sk1 \/ ~p__2 \/ ~p__3 sk2=sk5 \/ p__0 \/ p__1 \/ ~p__6 ----------------------------- ~sk3=sk5 \/ f(g(sk1))=sk1 \/ p__0 \/ p__1 \/ ~p__6 *********** [97,34,118,110->140] *********** ~p__0 p__3 ~g(f(X0))=X0 \/ sk5=X0 \/ p__0 \/ p__1 g(f(sk3))=sk3 \/ p__0 \/ ~p__3 \/ ~p__6 ----------------------------- sk3=sk5 \/ p__1 \/ ~p__6 *********** [97,139,140->141] *********** ~p__0 ~sk3=sk5 \/ f(g(sk1))=sk1 \/ p__0 \/ p__1 \/ ~p__6 sk3=sk5 \/ p__1 \/ ~p__6 ----------------------------- f(g(sk1))=sk1 \/ p__1 \/ ~p__6 *********** [30,34,141,59,112->142] *********** p__2 p__3 f(g(sk1))=sk1 \/ p__1 \/ ~p__6 ~sk2=sk3 \/ f(g(sk1))=sk1 \/ ~p__2 \/ ~p__3 sk2=sk3 \/ ~p__1 \/ ~p__6 ----------------------------- f(g(sk1))=sk1 \/ ~p__6 *********** [102,142->143] *********** ~f(g(X0))=X0 \/ sk4=X0 \/ ~p__1 f(g(sk1))=sk1 \/ ~p__6 ----------------------------- sk1=sk4 \/ ~p__1 \/ ~p__6 *********** [137,143->144] *********** ~sk1=sk4 \/ ~p__1 \/ ~p__6 sk1=sk4 \/ ~p__1 \/ ~p__6 ----------------------------- ~p__6 \/ ~p__1 *********** [30,34,54,138->145] *********** p__2 p__3 ~sk2=sk3 \/ f(g(sk0))=sk0 \/ ~p__2 \/ ~p__3 sk2=sk5 \/ p__0 \/ p__1 \/ ~p__6 ----------------------------- ~sk3=sk5 \/ f(g(sk0))=sk0 \/ p__0 \/ p__1 \/ ~p__6 *********** [99,131->146] *********** g(f(sk5))=sk5 \/ p__1 ~g(f(X0))=X0 \/ g(sk0)=X0 \/ p__4 ----------------------------- g(sk0)=sk5 \/ p__1 \/ p__4 *********** [146,118,127->147] *********** g(sk0)=sk5 \/ p__1 \/ p__4 ~g(f(X0))=X0 \/ sk5=X0 \/ p__0 \/ p__1 f(g(sk0))=sk0 \/ p__0 \/ ~p__4 ----------------------------- g(sk0)=sk5 \/ p__0 \/ p__1 *********** [145,147->148] *********** ~sk3=sk5 \/ f(g(sk0))=sk0 \/ p__0 \/ p__1 \/ ~p__6 g(sk0)=sk5 \/ p__0 \/ p__1 ----------------------------- ~sk3=sk5 \/ f(sk5)=sk0 \/ p__0 \/ p__1 \/ ~p__6 *********** [97,148,140->149] *********** ~p__0 ~sk3=sk5 \/ f(sk5)=sk0 \/ p__0 \/ p__1 \/ ~p__6 sk3=sk5 \/ p__1 \/ ~p__6 ----------------------------- f(sk5)=sk0 \/ p__1 \/ ~p__6 *********** [99,113->150] *********** g(f(sk5))=sk5 \/ p__1 ~g(f(X0))=X0 \/ g(sk1)=X0 \/ p__6 ----------------------------- g(sk1)=sk5 \/ p__1 \/ p__6 *********** [97,150,118,142->151] *********** ~p__0 g(sk1)=sk5 \/ p__1 \/ p__6 ~g(f(X0))=X0 \/ sk5=X0 \/ p__0 \/ p__1 f(g(sk1))=sk1 \/ ~p__6 ----------------------------- g(sk1)=sk5 \/ p__1 *********** [144,142,151->152] *********** ~p__6 \/ ~p__1 f(g(sk1))=sk1 \/ ~p__6 g(sk1)=sk5 \/ p__1 ----------------------------- f(sk5)=sk1 \/ ~p__6 *********** [144,149,152->153] *********** ~p__6 \/ ~p__1 f(sk5)=sk0 \/ p__1 \/ ~p__6 f(sk5)=sk1 \/ ~p__6 ----------------------------- sk0=sk1 \/ ~p__6 *********** [30,34,36,153->154] *********** p__2 p__3 ~sk0=sk1 \/ ~sk2=sk3 \/ ~p__2 \/ ~p__3 sk0=sk1 \/ ~p__6 ----------------------------- ~sk2=sk3 \/ ~p__6 *********** [97,144,138,154->155] *********** ~p__0 ~p__6 \/ ~p__1 sk2=sk5 \/ p__0 \/ p__1 \/ ~p__6 ~sk2=sk3 \/ ~p__6 ----------------------------- ~sk3=sk5 \/ ~p__6 *********** [144,140,155->156] *********** ~p__6 \/ ~p__1 sk3=sk5 \/ p__1 \/ ~p__6 ~sk3=sk5 \/ ~p__6 ----------------------------- ~p__6 *********** [114,116->157] *********** g(sk1)=sk2 \/ ~p__1 \/ p__6 \/ ~p__7 sk2=sk3 \/ ~p__1 \/ ~p__7 ----------------------------- g(sk1)=sk3 \/ ~p__1 \/ p__6 \/ ~p__7 *********** [156,82,101,157->158] *********** ~p__6 ~f(g(X0))=X0 \/ sk1=X0 \/ p__7 ~f(g(X0))=X0 \/ ~f(g(X1))=X1 \/ X0=X1 \/ ~p__1 g(sk1)=sk3 \/ ~p__1 \/ p__6 \/ ~p__7 ----------------------------- ~f(sk3)=sk1 \/ ~p__1 \/ ~p__7 *********** [117,158->159] *********** f(sk3)=sk4 \/ ~p__1 \/ ~p__7 ~f(sk3)=sk1 \/ ~p__1 \/ ~p__7 ----------------------------- ~sk1=sk4 \/ ~p__1 \/ ~p__7 *********** [30,34,59,116->160] *********** p__2 p__3 ~sk2=sk3 \/ f(g(sk1))=sk1 \/ ~p__2 \/ ~p__3 sk2=sk3 \/ ~p__1 \/ ~p__7 ----------------------------- f(g(sk1))=sk1 \/ ~p__1 \/ ~p__7 *********** [117,156,157,160->161] *********** f(sk3)=sk4 \/ ~p__1 \/ ~p__7 ~p__6 g(sk1)=sk3 \/ ~p__1 \/ p__6 \/ ~p__7 f(g(sk1))=sk1 \/ ~p__1 \/ ~p__7 ----------------------------- sk1=sk4 \/ ~p__1 \/ ~p__7 *********** [159,161->162] *********** ~sk1=sk4 \/ ~p__1 \/ ~p__7 sk1=sk4 \/ ~p__1 \/ ~p__7 ----------------------------- ~p__7 \/ ~p__1 *********** [28,82->163] *********** f(g(sk4))=sk4 \/ g(f(sk5))=sk5 ~f(g(X0))=X0 \/ sk1=X0 \/ p__7 ----------------------------- g(f(sk5))=sk5 \/ sk1=sk4 \/ p__7 *********** [82,163->164] *********** ~f(g(X0))=X0 \/ sk1=X0 \/ p__7 g(f(sk5))=sk5 \/ sk1=sk4 \/ p__7 ----------------------------- f(sk5)=sk1 \/ sk1=sk4 \/ p__7 *********** [162,102,163->165] *********** ~p__7 \/ ~p__1 ~f(g(X0))=X0 \/ sk4=X0 \/ ~p__1 g(f(sk5))=sk5 \/ sk1=sk4 \/ p__7 ----------------------------- f(sk5)=sk4 \/ sk1=sk4 \/ ~p__1 *********** [162,164,165->166] *********** ~p__7 \/ ~p__1 f(sk5)=sk1 \/ sk1=sk4 \/ p__7 f(sk5)=sk4 \/ sk1=sk4 \/ ~p__1 ----------------------------- sk1=sk4 \/ ~p__1 *********** [32,101,43->167] *********** ~f(g(X0))=X0 \/ p__3 ~f(g(X0))=X0 \/ ~f(g(X1))=X1 \/ X0=X1 \/ ~p__1 f(g(sk0))=sk0 \/ g(f(sk2))=sk2 \/ ~p__2 \/ ~p__3 ----------------------------- g(f(sk2))=sk2 \/ ~p__1 \/ ~p__2 \/ ~p__5 *********** [30,102,167->168] *********** p__2 ~f(g(X0))=X0 \/ sk4=X0 \/ ~p__1 g(f(sk2))=sk2 \/ ~p__1 \/ ~p__2 \/ ~p__5 ----------------------------- f(sk2)=sk4 \/ ~p__1 \/ ~p__5 *********** [62,30,107,167->169] *********** ~p__5 \/ ~p__0 p__2 ~g(f(X0))=X0 \/ g(sk4)=X0 \/ p__0 \/ ~p__1 g(f(sk2))=sk2 \/ ~p__1 \/ ~p__2 \/ ~p__5 ----------------------------- g(sk4)=sk2 \/ ~p__1 \/ ~p__5 *********** [32,101,49->170] *********** ~f(g(X0))=X0 \/ p__3 ~f(g(X0))=X0 \/ ~f(g(X1))=X1 \/ X0=X1 \/ ~p__1 f(g(sk0))=sk0 \/ g(f(sk3))=sk3 \/ ~p__2 \/ ~p__3 ----------------------------- g(f(sk3))=sk3 \/ ~p__1 \/ ~p__2 \/ ~p__5 *********** [169,62,30,107,170->171] *********** g(sk4)=sk2 \/ ~p__1 \/ ~p__5 ~p__5 \/ ~p__0 p__2 ~g(f(X0))=X0 \/ g(sk4)=X0 \/ p__0 \/ ~p__1 g(f(sk3))=sk3 \/ ~p__1 \/ ~p__2 \/ ~p__5 ----------------------------- sk2=sk3 \/ ~p__1 \/ ~p__5 *********** [168,171->172] *********** f(sk2)=sk4 \/ ~p__1 \/ ~p__5 sk2=sk3 \/ ~p__1 \/ ~p__5 ----------------------------- f(sk3)=sk4 \/ ~p__1 \/ ~p__5 *********** [34,119,113->173] *********** p__3 g(f(sk2))=sk2 \/ p__0 \/ ~p__3 \/ ~p__4 ~g(f(X0))=X0 \/ g(sk1)=X0 \/ p__6 ----------------------------- g(sk1)=sk2 \/ p__0 \/ ~p__4 \/ p__6 *********** [173,34,122,113->174] *********** g(sk1)=sk2 \/ p__0 \/ ~p__4 \/ p__6 p__3 g(f(sk3))=sk3 \/ p__0 \/ ~p__3 \/ ~p__4 ~g(f(X0))=X0 \/ g(sk1)=X0 \/ p__6 ----------------------------- sk2=sk3 \/ p__0 \/ ~p__4 \/ p__6 *********** [30,34,36,128->175] *********** p__2 p__3 ~sk0=sk1 \/ ~sk2=sk3 \/ ~p__2 \/ ~p__3 sk0=sk4 \/ ~p__1 \/ ~p__4 ----------------------------- ~sk1=sk4 \/ ~sk2=sk3 \/ ~p__1 \/ ~p__4 *********** [30,34,59,120->176] *********** p__2 p__3 ~sk2=sk3 \/ f(g(sk1))=sk1 \/ ~p__2 \/ ~p__3 sk2=sk5 \/ p__0 \/ p__1 \/ ~p__4 ----------------------------- ~sk3=sk5 \/ f(g(sk1))=sk1 \/ p__0 \/ p__1 \/ ~p__4 *********** [176,123->177] *********** ~sk3=sk5 \/ f(g(sk1))=sk1 \/ p__0 \/ p__1 \/ ~p__4 sk3=sk5 \/ p__0 \/ p__1 \/ ~p__4 ----------------------------- f(g(sk1))=sk1 \/ p__0 \/ p__1 \/ ~p__4 *********** [30,34,177,59,126->178] *********** p__2 p__3 f(g(sk1))=sk1 \/ p__0 \/ p__1 \/ ~p__4 ~sk2=sk3 \/ f(g(sk1))=sk1 \/ ~p__2 \/ ~p__3 sk2=sk3 \/ p__0 \/ ~p__1 \/ ~p__4 ----------------------------- f(g(sk1))=sk1 \/ p__0 \/ ~p__4 *********** [97,102,178->179] *********** ~p__0 ~f(g(X0))=X0 \/ sk4=X0 \/ ~p__1 f(g(sk1))=sk1 \/ p__0 \/ ~p__4 ----------------------------- sk1=sk4 \/ ~p__1 \/ ~p__4 *********** [175,179->180] *********** ~sk1=sk4 \/ ~sk2=sk3 \/ ~p__1 \/ ~p__4 sk1=sk4 \/ ~p__1 \/ ~p__4 ----------------------------- ~sk2=sk3 \/ ~p__1 \/ ~p__4 *********** [127,147->181] *********** f(g(sk0))=sk0 \/ p__0 \/ ~p__4 g(sk0)=sk5 \/ p__0 \/ p__1 ----------------------------- f(sk5)=sk0 \/ p__0 \/ p__1 \/ ~p__4 *********** [97,151,178->182] *********** ~p__0 g(sk1)=sk5 \/ p__1 f(g(sk1))=sk1 \/ p__0 \/ ~p__4 ----------------------------- f(sk5)=sk1 \/ p__1 \/ ~p__4 *********** [97,181,182->183] *********** ~p__0 f(sk5)=sk0 \/ p__0 \/ p__1 \/ ~p__4 f(sk5)=sk1 \/ p__1 \/ ~p__4 ----------------------------- sk0=sk1 \/ p__1 \/ ~p__4 *********** [30,34,180,36,183->184] *********** p__2 p__3 ~sk2=sk3 \/ ~p__1 \/ ~p__4 ~sk0=sk1 \/ ~sk2=sk3 \/ ~p__2 \/ ~p__3 sk0=sk1 \/ p__1 \/ ~p__4 ----------------------------- ~sk2=sk3 \/ ~p__4 *********** [97,156,174,184->185] *********** ~p__0 ~p__6 sk2=sk3 \/ p__0 \/ ~p__4 \/ p__6 ~sk2=sk3 \/ ~p__4 ----------------------------- ~p__4 *********** [30,131,167->186] *********** p__2 ~g(f(X0))=X0 \/ g(sk0)=X0 \/ p__4 g(f(sk2))=sk2 \/ ~p__1 \/ ~p__2 \/ ~p__5 ----------------------------- g(sk0)=sk2 \/ ~p__1 \/ p__4 \/ ~p__5 *********** [186,30,131,170->187] *********** g(sk0)=sk2 \/ ~p__1 \/ p__4 \/ ~p__5 p__2 ~g(f(X0))=X0 \/ g(sk0)=X0 \/ p__4 g(f(sk3))=sk3 \/ ~p__1 \/ ~p__2 \/ ~p__5 ----------------------------- sk2=sk3 \/ ~p__1 \/ p__4 \/ ~p__5 *********** [186,187->188] *********** g(sk0)=sk2 \/ ~p__1 \/ p__4 \/ ~p__5 sk2=sk3 \/ ~p__1 \/ p__4 \/ ~p__5 ----------------------------- g(sk0)=sk3 \/ ~p__1 \/ p__4 \/ ~p__5 *********** [185,63,101,188->189] *********** ~p__4 ~f(g(X0))=X0 \/ sk0=X0 \/ p__5 ~f(g(X0))=X0 \/ ~f(g(X1))=X1 \/ X0=X1 \/ ~p__1 g(sk0)=sk3 \/ ~p__1 \/ p__4 \/ ~p__5 ----------------------------- ~f(sk3)=sk0 \/ ~p__1 \/ ~p__5 *********** [172,189->190] *********** f(sk3)=sk4 \/ ~p__1 \/ ~p__5 ~f(sk3)=sk0 \/ ~p__1 \/ ~p__5 ----------------------------- ~sk0=sk4 \/ ~p__1 \/ ~p__5 *********** [30,34,54,171->191] *********** p__2 p__3 ~sk2=sk3 \/ f(g(sk0))=sk0 \/ ~p__2 \/ ~p__3 sk2=sk3 \/ ~p__1 \/ ~p__5 ----------------------------- f(g(sk0))=sk0 \/ ~p__1 \/ ~p__5 *********** [172,185,188,191->192] *********** f(sk3)=sk4 \/ ~p__1 \/ ~p__5 ~p__4 g(sk0)=sk3 \/ ~p__1 \/ p__4 \/ ~p__5 f(g(sk0))=sk0 \/ ~p__1 \/ ~p__5 ----------------------------- sk0=sk4 \/ ~p__1 \/ ~p__5 *********** [190,192->193] *********** ~sk0=sk4 \/ ~p__1 \/ ~p__5 sk0=sk4 \/ ~p__1 \/ ~p__5 ----------------------------- ~p__5 \/ ~p__1 *********** [30,34,49,102->194] *********** p__2 p__3 f(g(sk0))=sk0 \/ g(f(sk3))=sk3 \/ ~p__2 \/ ~p__3 ~f(g(X0))=X0 \/ sk4=X0 \/ ~p__1 ----------------------------- g(f(sk3))=sk3 \/ sk0=sk4 \/ ~p__1 *********** [102,194->195] *********** ~f(g(X0))=X0 \/ sk4=X0 \/ ~p__1 g(f(sk3))=sk3 \/ sk0=sk4 \/ ~p__1 ----------------------------- f(sk3)=sk4 \/ sk0=sk4 \/ ~p__1 *********** [30,34,72,63->196] *********** p__2 p__3 f(g(sk1))=sk1 \/ g(f(sk3))=sk3 \/ ~p__2 \/ ~p__3 ~f(g(X0))=X0 \/ sk0=X0 \/ p__5 ----------------------------- g(f(sk3))=sk3 \/ sk0=sk1 \/ p__5 *********** [63,196->197] *********** ~f(g(X0))=X0 \/ sk0=X0 \/ p__5 g(f(sk3))=sk3 \/ sk0=sk1 \/ p__5 ----------------------------- f(sk3)=sk0 \/ sk0=sk1 \/ p__5 *********** [193,195,197->198] *********** ~p__5 \/ ~p__1 f(sk3)=sk4 \/ sk0=sk4 \/ ~p__1 f(sk3)=sk0 \/ sk0=sk1 \/ p__5 ----------------------------- sk0=sk1 \/ sk0=sk4 \/ ~p__1 *********** [198,166->199] *********** sk0=sk1 \/ sk0=sk4 \/ ~p__1 sk1=sk4 \/ ~p__1 ----------------------------- sk0=sk4 \/ ~p__1 *********** [166,30,34,36,199->200] *********** sk1=sk4 \/ ~p__1 p__2 p__3 ~sk0=sk1 \/ ~sk2=sk3 \/ ~p__2 \/ ~p__3 sk0=sk4 \/ ~p__1 ----------------------------- ~sk2=sk3 \/ ~p__1 *********** [97,106,194->201] *********** ~p__0 ~g(f(X0))=X0 \/ ~g(f(X1))=X1 \/ X0=X1 \/ p__0 g(f(sk3))=sk3 \/ sk0=sk4 \/ ~p__1 ----------------------------- sk0=sk4 \/ ~p__1 \/ ~p__8 *********** [30,34,36,201->202] *********** p__2 p__3 ~sk0=sk1 \/ ~sk2=sk3 \/ ~p__2 \/ ~p__3 sk0=sk4 \/ ~p__1 \/ ~p__8 ----------------------------- ~sk1=sk4 \/ ~sk2=sk3 \/ ~p__1 \/ ~p__8 *********** [30,34,72,102->203] *********** p__2 p__3 f(g(sk1))=sk1 \/ g(f(sk3))=sk3 \/ ~p__2 \/ ~p__3 ~f(g(X0))=X0 \/ sk4=X0 \/ ~p__1 ----------------------------- g(f(sk3))=sk3 \/ sk1=sk4 \/ ~p__1 *********** [97,106,203->204] *********** ~p__0 ~g(f(X0))=X0 \/ ~g(f(X1))=X1 \/ X0=X1 \/ p__0 g(f(sk3))=sk3 \/ sk1=sk4 \/ ~p__1 ----------------------------- sk1=sk4 \/ ~p__1 \/ ~p__8 *********** [202,204->205] *********** ~sk1=sk4 \/ ~sk2=sk3 \/ ~p__1 \/ ~p__8 sk1=sk4 \/ ~p__1 \/ ~p__8 ----------------------------- ~sk2=sk3 \/ ~p__1 \/ ~p__8 *********** [30,34,72,131->206] *********** p__2 p__3 f(g(sk1))=sk1 \/ g(f(sk3))=sk3 \/ ~p__2 \/ ~p__3 ~g(f(X0))=X0 \/ g(sk0)=X0 \/ p__4 ----------------------------- g(f(sk3))=sk3 \/ g(sk0)=g(sk1) \/ p__4 *********** [97,185,106,206->207] *********** ~p__0 ~p__4 ~g(f(X0))=X0 \/ ~g(f(X1))=X1 \/ X0=X1 \/ p__0 g(f(sk3))=sk3 \/ g(sk0)=g(sk1) \/ p__4 ----------------------------- g(sk0)=g(sk1) \/ ~p__8 *********** [30,34,86,201->208] *********** p__2 p__3 ~sk0=sk1 \/ g(f(sk3))=sk3 \/ ~p__2 \/ ~p__3 sk0=sk4 \/ ~p__1 \/ ~p__8 ----------------------------- ~sk1=sk4 \/ g(f(sk3))=sk3 \/ ~p__1 \/ ~p__8 *********** [208,204->209] *********** ~sk1=sk4 \/ g(f(sk3))=sk3 \/ ~p__1 \/ ~p__8 sk1=sk4 \/ ~p__1 \/ ~p__8 ----------------------------- g(f(sk3))=sk3 \/ ~p__1 \/ ~p__8 *********** [204,207,185,131,209->210] *********** sk1=sk4 \/ ~p__1 \/ ~p__8 g(sk0)=g(sk1) \/ ~p__8 ~p__4 ~g(f(X0))=X0 \/ g(sk0)=X0 \/ p__4 g(f(sk3))=sk3 \/ ~p__1 \/ ~p__8 ----------------------------- g(sk4)=sk3 \/ ~p__1 \/ ~p__8 *********** [30,34,92,201->211] *********** p__2 p__3 ~sk0=sk1 \/ g(f(sk2))=sk2 \/ ~p__2 \/ ~p__3 sk0=sk4 \/ ~p__1 \/ ~p__8 ----------------------------- ~sk1=sk4 \/ g(f(sk2))=sk2 \/ ~p__1 \/ ~p__8 *********** [211,204->212] *********** ~sk1=sk4 \/ g(f(sk2))=sk2 \/ ~p__1 \/ ~p__8 sk1=sk4 \/ ~p__1 \/ ~p__8 ----------------------------- g(f(sk2))=sk2 \/ ~p__1 \/ ~p__8 *********** [210,204,207,185,131,212->213] *********** g(sk4)=sk3 \/ ~p__1 \/ ~p__8 sk1=sk4 \/ ~p__1 \/ ~p__8 g(sk0)=g(sk1) \/ ~p__8 ~p__4 ~g(f(X0))=X0 \/ g(sk0)=X0 \/ p__4 g(f(sk2))=sk2 \/ ~p__1 \/ ~p__8 ----------------------------- sk2=sk3 \/ ~p__1 \/ ~p__8 *********** [205,213->214] *********** ~sk2=sk3 \/ ~p__1 \/ ~p__8 sk2=sk3 \/ ~p__1 \/ ~p__8 ----------------------------- ~p__8 \/ ~p__1 *********** [99,32->215] *********** g(f(sk5))=sk5 \/ p__1 ~f(g(X0))=X0 \/ p__3 ----------------------------- p__3 \/ p__1 *********** [30,215,72,118->216] *********** p__2 p__3 \/ p__1 f(g(sk1))=sk1 \/ g(f(sk3))=sk3 \/ ~p__2 \/ ~p__3 ~g(f(X0))=X0 \/ sk5=X0 \/ p__0 \/ p__1 ----------------------------- g(f(sk3))=sk3 \/ g(sk1)=sk5 \/ p__0 \/ p__1 *********** [97,106,216->217] *********** ~p__0 ~g(f(X0))=X0 \/ ~g(f(X1))=X1 \/ X0=X1 \/ p__0 g(f(sk3))=sk3 \/ g(sk1)=sk5 \/ p__0 \/ p__1 ----------------------------- ~g(f(X0))=X0 \/ sk3=X0 \/ p__8 *********** [166,30,34,92,199->218] *********** sk1=sk4 \/ ~p__1 p__2 p__3 ~sk0=sk1 \/ g(f(sk2))=sk2 \/ ~p__2 \/ ~p__3 sk0=sk4 \/ ~p__1 ----------------------------- g(f(sk2))=sk2 \/ ~p__1 *********** [214,217,218->219] *********** ~p__8 \/ ~p__1 ~g(f(X0))=X0 \/ sk3=X0 \/ p__8 g(f(sk2))=sk2 \/ ~p__1 ----------------------------- sk2=sk3 \/ ~p__1 *********** [200,219->220] *********** ~sk2=sk3 \/ ~p__1 sk2=sk3 \/ ~p__1 ----------------------------- ~p__1 *********** [30,215,67,118->221] *********** p__2 p__3 \/ p__1 f(g(sk1))=sk1 \/ g(f(sk2))=sk2 \/ ~p__2 \/ ~p__3 ~g(f(X0))=X0 \/ sk5=X0 \/ p__0 \/ p__1 ----------------------------- g(f(sk2))=sk2 \/ g(sk1)=sk5 \/ p__0 \/ p__1 *********** [97,106,221->222] *********** ~p__0 ~g(f(X0))=X0 \/ ~g(f(X1))=X1 \/ X0=X1 \/ p__0 g(f(sk2))=sk2 \/ g(sk1)=sk5 \/ p__0 \/ p__1 ----------------------------- ~g(f(X0))=X0 \/ sk2=X0 \/ p__9 *********** [99,222->223] *********** g(f(sk5))=sk5 \/ p__1 ~g(f(X0))=X0 \/ sk2=X0 \/ p__9 ----------------------------- sk2=sk5 \/ p__1 \/ p__9 *********** [30,34,43,146->224] *********** p__2 p__3 f(g(sk0))=sk0 \/ g(f(sk2))=sk2 \/ ~p__2 \/ ~p__3 g(sk0)=sk5 \/ p__1 \/ p__4 ----------------------------- g(f(sk2))=sk2 \/ f(sk5)=sk0 \/ p__1 \/ p__4 *********** [97,185,106,224->225] *********** ~p__0 ~p__4 ~g(f(X0))=X0 \/ ~g(f(X1))=X1 \/ X0=X1 \/ p__0 g(f(sk2))=sk2 \/ f(sk5)=sk0 \/ p__1 \/ p__4 ----------------------------- f(sk5)=sk0 \/ p__1 \/ ~p__9 *********** [30,34,67,151->226] *********** p__2 p__3 f(g(sk1))=sk1 \/ g(f(sk2))=sk2 \/ ~p__2 \/ ~p__3 g(sk1)=sk5 \/ p__1 ----------------------------- g(f(sk2))=sk2 \/ f(sk5)=sk1 \/ p__1 *********** [97,220,106,226->227] *********** ~p__0 ~p__1 ~g(f(X0))=X0 \/ ~g(f(X1))=X1 \/ X0=X1 \/ p__0 g(f(sk2))=sk2 \/ f(sk5)=sk1 \/ p__1 ----------------------------- f(sk5)=sk1 \/ ~p__9 *********** [220,225,227->228] *********** ~p__1 f(sk5)=sk0 \/ p__1 \/ ~p__9 f(sk5)=sk1 \/ ~p__9 ----------------------------- sk0=sk1 \/ ~p__9 *********** [30,34,92,228->229] *********** p__2 p__3 ~sk0=sk1 \/ g(f(sk2))=sk2 \/ ~p__2 \/ ~p__3 sk0=sk1 \/ ~p__9 ----------------------------- g(f(sk2))=sk2 \/ ~p__9 *********** [97,220,223,118,229->230] *********** ~p__0 ~p__1 sk2=sk5 \/ p__1 \/ p__9 ~g(f(X0))=X0 \/ sk5=X0 \/ p__0 \/ p__1 g(f(sk2))=sk2 \/ ~p__9 ----------------------------- sk2=sk5 *********** [30,34,36,230->231] *********** p__2 p__3 ~sk0=sk1 \/ ~sk2=sk3 \/ ~p__2 \/ ~p__3 sk2=sk5 ----------------------------- ~sk0=sk1 \/ ~sk3=sk5 *********** [97,217,106,209->232] *********** ~p__0 ~g(f(X0))=X0 \/ sk3=X0 \/ p__8 ~g(f(X0))=X0 \/ ~g(f(X1))=X1 \/ X0=X1 \/ p__0 g(f(sk3))=sk3 \/ ~p__1 \/ ~p__8 ----------------------------- ~g(f(X0))=X0 \/ sk3=X0 \/ ~p__1 *********** [30,34,49,147->233] *********** p__2 p__3 f(g(sk0))=sk0 \/ g(f(sk3))=sk3 \/ ~p__2 \/ ~p__3 g(sk0)=sk5 \/ p__0 \/ p__1 ----------------------------- g(f(sk3))=sk3 \/ f(sk5)=sk0 \/ p__0 \/ p__1 *********** [97,232,106,233->234] *********** ~p__0 ~g(f(X0))=X0 \/ sk3=X0 \/ ~p__1 ~g(f(X0))=X0 \/ ~g(f(X1))=X1 \/ X0=X1 \/ p__0 g(f(sk3))=sk3 \/ f(sk5)=sk0 \/ p__0 \/ p__1 ----------------------------- f(sk5)=sk0 \/ ~p__8 *********** [30,34,72,151->235] *********** p__2 p__3 f(g(sk1))=sk1 \/ g(f(sk3))=sk3 \/ ~p__2 \/ ~p__3 g(sk1)=sk5 \/ p__1 ----------------------------- g(f(sk3))=sk3 \/ f(sk5)=sk1 \/ p__1 *********** [97,220,106,235->236] *********** ~p__0 ~p__1 ~g(f(X0))=X0 \/ ~g(f(X1))=X1 \/ X0=X1 \/ p__0 g(f(sk3))=sk3 \/ f(sk5)=sk1 \/ p__1 ----------------------------- f(sk5)=sk1 \/ ~p__8 *********** [234,236->237] *********** f(sk5)=sk0 \/ ~p__8 f(sk5)=sk1 \/ ~p__8 ----------------------------- sk0=sk1 \/ ~p__8 *********** [237,231->238] *********** sk0=sk1 \/ ~p__8 ~sk0=sk1 \/ ~sk3=sk5 ----------------------------- ~sk3=sk5 \/ ~p__8 *********** [207,97,106,234->239] *********** g(sk0)=g(sk1) \/ ~p__8 ~p__0 ~g(f(X0))=X0 \/ ~g(f(X1))=X1 \/ X0=X1 \/ p__0 f(sk5)=sk0 \/ ~p__8 ----------------------------- ~g(sk1)=sk5 \/ ~p__8 \/ ~p__12 *********** [207,214,99,234->240] *********** g(sk0)=g(sk1) \/ ~p__8 ~p__8 \/ ~p__1 g(f(sk5))=sk5 \/ p__1 f(sk5)=sk0 \/ ~p__8 ----------------------------- g(sk1)=sk5 \/ ~p__8 *********** [239,240->241] *********** ~g(sk1)=sk5 \/ ~p__8 \/ ~p__12 g(sk1)=sk5 \/ ~p__8 ----------------------------- ~p__12 \/ ~p__8 *********** [28,131->242] *********** f(g(sk4))=sk4 \/ g(f(sk5))=sk5 ~g(f(X0))=X0 \/ g(sk0)=X0 \/ p__4 ----------------------------- g(f(sk5))=sk5 \/ g(sk0)=g(sk4) \/ p__4 *********** [97,185,106,242->243] *********** ~p__0 ~p__4 ~g(f(X0))=X0 \/ ~g(f(X1))=X1 \/ X0=X1 \/ p__0 g(f(sk5))=sk5 \/ g(sk0)=g(sk4) \/ p__4 ----------------------------- ~g(f(X0))=X0 \/ sk5=X0 \/ p__12 *********** [30,34,86,237->244] *********** p__2 p__3 ~sk0=sk1 \/ g(f(sk3))=sk3 \/ ~p__2 \/ ~p__3 sk0=sk1 \/ ~p__8 ----------------------------- g(f(sk3))=sk3 \/ ~p__8 *********** [241,243,244->245] *********** ~p__12 \/ ~p__8 ~g(f(X0))=X0 \/ sk5=X0 \/ p__12 g(f(sk3))=sk3 \/ ~p__8 ----------------------------- sk3=sk5 \/ ~p__8 *********** [238,245->246] *********** ~sk3=sk5 \/ ~p__8 sk3=sk5 \/ ~p__8 ----------------------------- ~p__8 *********** [97,220,118,235->247] *********** ~p__0 ~p__1 ~g(f(X0))=X0 \/ sk5=X0 \/ p__0 \/ p__1 g(f(sk3))=sk3 \/ f(sk5)=sk1 \/ p__1 ----------------------------- f(sk5)=sk1 \/ sk3=sk5 *********** [246,217,247->248] *********** ~p__8 ~g(f(X0))=X0 \/ sk3=X0 \/ p__8 f(sk5)=sk1 \/ sk3=sk5 ----------------------------- ~g(sk1)=sk5 \/ sk3=sk5 *********** [220,151,248->249] *********** ~p__1 g(sk1)=sk5 \/ p__1 ~g(sk1)=sk5 \/ sk3=sk5 ----------------------------- sk3=sk5 *********** [231,249->250] *********** ~sk0=sk1 \/ ~sk3=sk5 sk3=sk5 ----------------------------- ~sk0=sk1 *********** [30,34,36,228->251] *********** p__2 p__3 ~sk0=sk1 \/ ~sk2=sk3 \/ ~p__2 \/ ~p__3 sk0=sk1 \/ ~p__9 ----------------------------- ~sk2=sk3 \/ ~p__9 *********** [251,230->252] *********** ~sk2=sk3 \/ ~p__9 sk2=sk5 ----------------------------- ~sk3=sk5 \/ ~p__9 *********** [97,113,106,142->253] *********** ~p__0 ~g(f(X0))=X0 \/ g(sk1)=X0 \/ p__6 ~g(f(X0))=X0 \/ ~g(f(X1))=X1 \/ X0=X1 \/ p__0 f(g(sk1))=sk1 \/ ~p__6 ----------------------------- ~g(f(X0))=X0 \/ g(sk1)=X0 *********** [253,229->254] *********** ~g(f(X0))=X0 \/ g(sk1)=X0 g(f(sk2))=sk2 \/ ~p__9 ----------------------------- g(sk1)=sk2 \/ ~p__9 *********** [254,230->255] *********** g(sk1)=sk2 \/ ~p__9 sk2=sk5 ----------------------------- g(sk1)=sk5 \/ ~p__9 *********** [30,34,86,228->256] *********** p__2 p__3 ~sk0=sk1 \/ g(f(sk3))=sk3 \/ ~p__2 \/ ~p__3 sk0=sk1 \/ ~p__9 ----------------------------- g(f(sk3))=sk3 \/ ~p__9 *********** [255,253,256->257] *********** g(sk1)=sk5 \/ ~p__9 ~g(f(X0))=X0 \/ g(sk1)=X0 g(f(sk3))=sk3 \/ ~p__9 ----------------------------- sk3=sk5 \/ ~p__9 *********** [252,257->258] *********** ~sk3=sk5 \/ ~p__9 sk3=sk5 \/ ~p__9 ----------------------------- ~p__9 *********** [151,30,34,59,223->259] *********** g(sk1)=sk5 \/ p__1 p__2 p__3 ~sk2=sk3 \/ f(g(sk1))=sk1 \/ ~p__2 \/ ~p__3 sk2=sk5 \/ p__1 \/ p__9 ----------------------------- ~sk3=sk5 \/ f(sk5)=sk1 \/ p__1 \/ p__9 *********** [220,258,259,249->260] *********** ~p__1 ~p__9 ~sk3=sk5 \/ f(sk5)=sk1 \/ p__1 \/ p__9 sk3=sk5 ----------------------------- f(sk5)=sk1 *********** [30,34,54,230->261] *********** p__2 p__3 ~sk2=sk3 \/ f(g(sk0))=sk0 \/ ~p__2 \/ ~p__3 sk2=sk5 ----------------------------- ~sk3=sk5 \/ f(g(sk0))=sk0 *********** [261,249->262] *********** ~sk3=sk5 \/ f(g(sk0))=sk0 sk3=sk5 ----------------------------- f(g(sk0))=sk0 *********** [30,34,67,131->263] *********** p__2 p__3 f(g(sk1))=sk1 \/ g(f(sk2))=sk2 \/ ~p__2 \/ ~p__3 ~g(f(X0))=X0 \/ g(sk0)=X0 \/ p__4 ----------------------------- g(f(sk2))=sk2 \/ g(sk0)=g(sk1) \/ p__4 *********** [185,131,263->264] *********** ~p__4 ~g(f(X0))=X0 \/ g(sk0)=X0 \/ p__4 g(f(sk2))=sk2 \/ g(sk0)=g(sk1) \/ p__4 ----------------------------- g(sk0)=g(sk1) \/ g(sk0)=sk2 *********** [264,230->265] *********** g(sk0)=g(sk1) \/ g(sk0)=sk2 sk2=sk5 ----------------------------- g(sk0)=g(sk1) \/ g(sk0)=sk5 *********** [30,34,67,222->266] *********** p__2 p__3 f(g(sk1))=sk1 \/ g(f(sk2))=sk2 \/ ~p__2 \/ ~p__3 ~g(f(X0))=X0 \/ sk2=X0 \/ p__9 ----------------------------- g(f(sk2))=sk2 \/ g(sk1)=sk2 \/ p__9 *********** [255,266,230->267] *********** g(sk1)=sk5 \/ ~p__9 g(f(sk2))=sk2 \/ g(sk1)=sk2 \/ p__9 sk2=sk5 ----------------------------- g(f(sk5))=sk5 \/ g(sk1)=sk5 *********** [267,260->268] *********** g(f(sk5))=sk5 \/ g(sk1)=sk5 f(sk5)=sk1 ----------------------------- g(sk1)=sk5 *********** [265,268->269] *********** g(sk0)=g(sk1) \/ g(sk0)=sk5 g(sk1)=sk5 ----------------------------- g(sk0)=sk5 *********** [260,262,269->270] *********** f(sk5)=sk1 f(g(sk0))=sk0 g(sk0)=sk5 ----------------------------- sk0=sk1 *********** [250,270->271] *********** ~sk0=sk1 sk0=sk1 ----------------------------- # ======= End of refutation =======
Refutation found. Thanks to Tanya! =========== Refutation ========== *********** [9] *********** ~apply(strong_fixed_point,fixed_pt)=apply(fixed_pt,apply(strong_fixed_point,fixed_pt)) *********** [9->10] *********** ~apply(strong_fixed_point,fixed_pt)=apply(fixed_pt,apply(strong_fixed_point,fixed_pt)) ----------------------------- ~p__0(apply(strong_fixed_point,fixed_pt)) *********** [10->11] *********** ~p__0(apply(strong_fixed_point,fixed_pt)) ----------------------------- ~p__0(apply(strong_fixed_point,fixed_pt)) *********** [9->12] *********** ~apply(strong_fixed_point,fixed_pt)=apply(fixed_pt,apply(strong_fixed_point,fixed_pt)) ----------------------------- p__0(apply(fixed_pt,apply(strong_fixed_point,fixed_pt))) *********** [12->13] *********** p__0(apply(fixed_pt,apply(strong_fixed_point,fixed_pt))) ----------------------------- p__0(apply(fixed_pt,apply(strong_fixed_point,fixed_pt))) *********** [4] *********** apply(apply(apply(b,X0),X1),X2)=apply(X0,apply(X1,X2)) *********** [4->14] *********** apply(apply(apply(b,X0),X1),X2)=apply(X0,apply(X1,X2)) ----------------------------- apply(apply(apply(b,X0),X1),X2)=apply(X0,apply(X1,X2)) *********** [14->15] *********** apply(apply(apply(b,X0),X1),X2)=apply(X0,apply(X1,X2)) ----------------------------- apply(apply(apply(b,X0),X1),X2)=apply(X0,apply(X1,X2)) *********** [5] *********** apply(apply(w,X0),X1)=apply(apply(X0,X1),X1) *********** [5->16] *********** apply(apply(w,X0),X1)=apply(apply(X0,X1),X1) ----------------------------- apply(apply(w,X0),X1)=apply(apply(X0,X1),X1) *********** [16->17] *********** apply(apply(w,X0),X1)=apply(apply(X0,X1),X1) ----------------------------- apply(apply(w,X0),X1)=apply(apply(X0,X1),X1) *********** [8] *********** strong_fixed_point=apply(apply(b,apply(w,w)),apply(apply(b,apply(b,w)),apply(apply(b,b),b))) *********** [8->18] *********** strong_fixed_point=apply(apply(b,apply(w,w)),apply(apply(b,apply(b,w)),apply(apply(b,b),b))) ----------------------------- apply(apply(b,apply(w,w)),apply(apply(b,apply(b,w)),apply(apply(b,b),b)))=strong_fixed_point *********** [17,17,18->19] *********** apply(apply(w,X0),X1)=apply(apply(X0,X1),X1) apply(apply(w,X0),X1)=apply(apply(X0,X1),X1) apply(apply(b,apply(w,w)),apply(apply(b,apply(b,w)),apply(apply(b,b),b)))=strong_fixed_point ----------------------------- apply(apply(b,apply(w,w)),apply(apply(b,apply(b,w)),apply(apply(w,w),b)))=strong_fixed_point *********** [15,15,19->20] *********** apply(apply(apply(b,X0),X1),X2)=apply(X0,apply(X1,X2)) apply(apply(apply(b,X0),X1),X2)=apply(X0,apply(X1,X2)) apply(apply(b,apply(w,w)),apply(apply(b,apply(b,w)),apply(apply(w,w),b)))=strong_fixed_point ----------------------------- apply(apply(w,w),apply(apply(b,w),apply(apply(apply(w,w),b),X0)))=apply(strong_fixed_point,X0) *********** [17,17->21] *********** apply(apply(w,X0),X1)=apply(apply(X0,X1),X1) apply(apply(w,X0),X1)=apply(apply(X0,X1),X1) ----------------------------- apply(apply(w,w),X0)=apply(apply(X0,X0),X0) *********** [15,21->22] *********** apply(apply(apply(b,X0),X1),X2)=apply(X0,apply(X1,X2)) apply(apply(w,w),X0)=apply(apply(X0,X0),X0) ----------------------------- apply(apply(apply(w,w),b),X0)=apply(b,apply(b,X0)) *********** [20,22->23] *********** apply(apply(w,w),apply(apply(b,w),apply(apply(apply(w,w),b),X0)))=apply(strong_fixed_point,X0) apply(apply(apply(w,w),b),X0)=apply(b,apply(b,X0)) ----------------------------- apply(apply(w,w),apply(apply(b,w),apply(b,apply(b,X0))))=apply(strong_fixed_point,X0) *********** [15,17->24] *********** apply(apply(apply(b,X0),X1),X2)=apply(X0,apply(X1,X2)) apply(apply(w,X0),X1)=apply(apply(X0,X1),X1) ----------------------------- apply(apply(w,apply(b,X0)),X1)=apply(X0,apply(X1,X1)) *********** [15,24->25] *********** apply(apply(apply(b,X0),X1),X2)=apply(X0,apply(X1,X2)) apply(apply(w,apply(b,X0)),X1)=apply(X0,apply(X1,X1)) ----------------------------- apply(apply(apply(w,apply(b,apply(b,X0))),X1),X2)=apply(X0,apply(apply(X1,X1),X2)) *********** [17,21,25->26] *********** apply(apply(w,X0),X1)=apply(apply(X0,X1),X1) apply(apply(w,w),X0)=apply(apply(X0,X0),X0) apply(apply(apply(w,apply(b,apply(b,X0))),X1),X2)=apply(X0,apply(apply(X1,X1),X2)) ----------------------------- apply(apply(w,apply(w,apply(b,apply(b,X0)))),X1)=apply(X0,apply(apply(w,w),X1)) *********** [15,17->27] *********** apply(apply(apply(b,X0),X1),X2)=apply(X0,apply(X1,X2)) apply(apply(w,X0),X1)=apply(apply(X0,X1),X1) ----------------------------- apply(apply(w,apply(apply(b,X0),X1)),X2)=apply(apply(X0,apply(X1,X2)),X2) *********** [17,17,17->28] *********** apply(apply(w,X0),X1)=apply(apply(X0,X1),X1) apply(apply(w,X0),X1)=apply(apply(X0,X1),X1) apply(apply(w,X0),X1)=apply(apply(X0,X1),X1) ----------------------------- apply(apply(w,apply(w,X0)),X1)=apply(apply(w,apply(X0,X1)),X1) *********** [27,28->29] *********** apply(apply(w,apply(apply(b,X0),X1)),X2)=apply(apply(X0,apply(X1,X2)),X2) apply(apply(w,apply(w,X0)),X1)=apply(apply(w,apply(X0,X1)),X1) ----------------------------- apply(apply(w,apply(apply(b,w),X0)),X1)=apply(apply(w,apply(w,X0)),X1) *********** [17,29->30] *********** apply(apply(w,X0),X1)=apply(apply(X0,X1),X1) apply(apply(w,apply(apply(b,w),X0)),X1)=apply(apply(w,apply(w,X0)),X1) ----------------------------- apply(apply(w,apply(w,X0)),apply(apply(b,w),X0))=apply(apply(w,w),apply(apply(b,w),X0)) *********** [23,23,26,30->31] *********** apply(apply(w,w),apply(apply(b,w),apply(b,apply(b,X0))))=apply(strong_fixed_point,X0) apply(apply(w,w),apply(apply(b,w),apply(b,apply(b,X0))))=apply(strong_fixed_point,X0) apply(apply(w,apply(w,apply(b,apply(b,X0)))),X1)=apply(X0,apply(apply(w,w),X1)) apply(apply(w,apply(w,X0)),apply(apply(b,w),X0))=apply(apply(w,w),apply(apply(b,w),X0)) ----------------------------- apply(X0,apply(strong_fixed_point,X0))=apply(strong_fixed_point,X0) *********** [11,13,31->32] *********** ~p__0(apply(strong_fixed_point,fixed_pt)) p__0(apply(fixed_pt,apply(strong_fixed_point,fixed_pt))) apply(X0,apply(strong_fixed_point,X0))=apply(strong_fixed_point,X0) ----------------------------- # ======= End of refutation =======