TSTP Solution File: SYO268^5 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SYO268^5 : TPTP v7.5.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n007.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 0s
% DateTime : Tue Mar 29 00:51:02 EDT 2022

% Result   : Theorem 2.48s 2.66s
% Output   : Proof 2.48s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.06/0.12  % Problem    : SYO268^5 : TPTP v7.5.0. Released v4.0.0.
% 0.06/0.12  % Command    : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% 0.12/0.33  % Computer   : n007.cluster.edu
% 0.12/0.33  % Model      : x86_64 x86_64
% 0.12/0.33  % CPUModel   : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % RAMPerCPU  : 8042.1875MB
% 0.12/0.33  % OS         : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit   : 300
% 0.12/0.33  % DateTime   : Fri Mar 11 23:20:00 EST 2022
% 0.12/0.33  % CPUTime    : 
% 0.12/0.34  ModuleCmd_Load.c(213):ERROR:105: Unable to locate a modulefile for 'python/python27'
% 0.12/0.34  Python 2.7.5
% 1.22/1.40  Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% 1.22/1.40  FOF formula (<kernel.Constant object at 0x1a49b48>, <kernel.Type object at 0x1a496c8>) of role type named a_type
% 1.22/1.40  Using role type
% 1.22/1.40  Declaring a:Type
% 1.22/1.40  FOF formula (<kernel.Constant object at 0x1a4dd88>, <kernel.Type object at 0x1a49ea8>) of role type named b_type
% 1.22/1.40  Using role type
% 1.22/1.40  Declaring b:Type
% 1.22/1.40  FOF formula (<kernel.Constant object at 0x1a49998>, <kernel.DependentProduct object at 0x2ae2c3959680>) of role type named r
% 1.22/1.40  Using role type
% 1.22/1.40  Declaring r:(a->(b->Prop))
% 1.22/1.40  FOF formula (((ex ((b->Prop)->b)) (fun (Xj:((b->Prop)->b))=> (forall (Xp:(b->Prop)), (((ex b) (fun (Xx:b)=> (Xp Xx)))->(Xp (Xj Xp))))))->((iff (forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy))))) ((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx))))))) of role conjecture named cX5308
% 1.22/1.40  Conjecture to prove = (((ex ((b->Prop)->b)) (fun (Xj:((b->Prop)->b))=> (forall (Xp:(b->Prop)), (((ex b) (fun (Xx:b)=> (Xp Xx)))->(Xp (Xj Xp))))))->((iff (forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy))))) ((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx))))))):Prop
% 1.22/1.40  Parameter a_DUMMY:a.
% 1.22/1.40  Parameter b_DUMMY:b.
% 1.22/1.40  We need to prove ['(((ex ((b->Prop)->b)) (fun (Xj:((b->Prop)->b))=> (forall (Xp:(b->Prop)), (((ex b) (fun (Xx:b)=> (Xp Xx)))->(Xp (Xj Xp))))))->((iff (forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy))))) ((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx)))))))']
% 1.22/1.40  Parameter a:Type.
% 1.22/1.40  Parameter b:Type.
% 1.22/1.40  Parameter r:(a->(b->Prop)).
% 1.22/1.40  Trying to prove (((ex ((b->Prop)->b)) (fun (Xj:((b->Prop)->b))=> (forall (Xp:(b->Prop)), (((ex b) (fun (Xx:b)=> (Xp Xx)))->(Xp (Xj Xp))))))->((iff (forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy))))) ((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx)))))))
% 1.22/1.40  Found choice000:=(choice00 r):((forall (x:a), ((ex b) (fun (y:b)=> ((r x) y))))->((ex (a->b)) (fun (f:(a->b))=> (forall (x:a), ((r x) (f x))))))
% 1.22/1.40  Found (choice00 r) as proof of ((forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy))))->((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx))))))
% 1.22/1.40  Found ((choice0 b) r) as proof of ((forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy))))->((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx))))))
% 1.22/1.40  Found (((choice a) b) r) as proof of ((forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy))))->((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx))))))
% 1.22/1.40  Found (((choice a) b) r) as proof of ((forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy))))->((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx))))))
% 1.22/1.40  Found choice000:=(choice00 r):((forall (x:a), ((ex b) (fun (y:b)=> ((r x) y))))->((ex (a->b)) (fun (f:(a->b))=> (forall (x:a), ((r x) (f x))))))
% 1.22/1.40  Found (choice00 r) as proof of ((forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy))))->((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx))))))
% 1.22/1.40  Found ((choice0 b) r) as proof of ((forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy))))->((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx))))))
% 1.22/1.40  Found (((choice a) b) r) as proof of ((forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy))))->((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx))))))
% 1.22/1.40  Found (((choice a) b) r) as proof of ((forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy))))->((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx))))))
% 1.22/1.40  Found choice000:=(choice00 r):((forall (x:a), ((ex b) (fun (y:b)=> ((r x) y))))->((ex (a->b)) (fun (f:(a->b))=> (forall (x:a), ((r x) (f x))))))
% 1.22/1.40  Found (choice00 r) as proof of ((forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy))))->((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx))))))
% 1.22/1.40  Found ((choice0 b) r) as proof of ((forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy))))->((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx))))))
% 1.22/1.40  Found (((choice a) b) r) as proof of ((forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy))))->((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx))))))
% 1.22/1.40  Found (((choice a) b) r) as proof of ((forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy))))->((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx))))))
% 2.48/2.64  Found choice000:=(choice00 r):((forall (x:a), ((ex b) (fun (y:b)=> ((r x) y))))->((ex (a->b)) (fun (f:(a->b))=> (forall (x:a), ((r x) (f x))))))
% 2.48/2.64  Found (choice00 r) as proof of ((forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy))))->((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx))))))
% 2.48/2.64  Found ((choice0 b) r) as proof of ((forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy))))->((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx))))))
% 2.48/2.64  Found (((choice a) b) r) as proof of ((forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy))))->((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx))))))
% 2.48/2.64  Found (((choice a) b) r) as proof of ((forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy))))->((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx))))))
% 2.48/2.64  Found choice000:=(choice00 r):((forall (x:a), ((ex b) (fun (y:b)=> ((r x) y))))->((ex (a->b)) (fun (f:(a->b))=> (forall (x:a), ((r x) (f x))))))
% 2.48/2.64  Found (choice00 r) as proof of ((forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy))))->((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx))))))
% 2.48/2.64  Found ((choice0 b) r) as proof of ((forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy))))->((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx))))))
% 2.48/2.64  Found (((choice a) b) r) as proof of ((forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy))))->((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx))))))
% 2.48/2.64  Found (((choice a) b) r) as proof of ((forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy))))->((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx))))))
% 2.48/2.64  Found choice000:=(choice00 r):((forall (x:a), ((ex b) (fun (y:b)=> ((r x) y))))->((ex (a->b)) (fun (f:(a->b))=> (forall (x:a), ((r x) (f x))))))
% 2.48/2.64  Found (choice00 r) as proof of ((forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy))))->((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx))))))
% 2.48/2.64  Found ((choice0 b) r) as proof of ((forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy))))->((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx))))))
% 2.48/2.64  Found (((choice a) b) r) as proof of ((forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy))))->((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx))))))
% 2.48/2.64  Found (((choice a) b) r) as proof of ((forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy))))->((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx))))))
% 2.48/2.64  Found choice000:=(choice00 r):((forall (x:a), ((ex b) (fun (y:b)=> ((r x) y))))->((ex (a->b)) (fun (f:(a->b))=> (forall (x:a), ((r x) (f x))))))
% 2.48/2.64  Found (choice00 r) as proof of ((forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy))))->((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx))))))
% 2.48/2.64  Found ((choice0 b) r) as proof of ((forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy))))->((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx))))))
% 2.48/2.64  Found (((choice a) b) r) as proof of ((forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy))))->((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx))))))
% 2.48/2.64  Found (((choice a) b) r) as proof of ((forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy))))->((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx))))))
% 2.48/2.64  Found x20:=(x2 Xx):((r Xx) (x1 Xx))
% 2.48/2.64  Found (x2 Xx) as proof of ((r Xx) x3)
% 2.48/2.64  Found (x2 Xx) as proof of ((r Xx) x3)
% 2.48/2.64  Found (x2 Xx) as proof of ((r Xx) x3)
% 2.48/2.64  Found (ex_intro000 (x2 Xx)) as proof of ((ex b) (fun (Xy:b)=> ((r Xx) Xy)))
% 2.48/2.64  Found ((ex_intro00 (x1 Xx)) (x2 Xx)) as proof of ((ex b) (fun (Xy:b)=> ((r Xx) Xy)))
% 2.48/2.64  Found (((ex_intro0 (fun (Xy:b)=> ((r Xx) Xy))) (x1 Xx)) (x2 Xx)) as proof of ((ex b) (fun (Xy:b)=> ((r Xx) Xy)))
% 2.48/2.64  Found ((((ex_intro b) (fun (Xy:b)=> ((r Xx) Xy))) (x1 Xx)) (x2 Xx)) as proof of ((ex b) (fun (Xy:b)=> ((r Xx) Xy)))
% 2.48/2.64  Found (fun (x2:(forall (Xx0:a), ((r Xx0) (x1 Xx0))))=> ((((ex_intro b) (fun (Xy:b)=> ((r Xx) Xy))) (x1 Xx)) (x2 Xx))) as proof of ((ex b) (fun (Xy:b)=> ((r Xx) Xy)))
% 2.48/2.64  Found (fun (x1:(a->b)) (x2:(forall (Xx0:a), ((r Xx0) (x1 Xx0))))=> ((((ex_intro b) (fun (Xy:b)=> ((r Xx) Xy))) (x1 Xx)) (x2 Xx))) as proof of ((forall (Xx0:a), ((r Xx0) (x1 Xx0)))->((ex b) (fun (Xy:b)=> ((r Xx) Xy))))
% 2.48/2.64  Found (fun (x1:(a->b)) (x2:(forall (Xx0:a), ((r Xx0) (x1 Xx0))))=> ((((ex_intro b) (fun (Xy:b)=> ((r Xx) Xy))) (x1 Xx)) (x2 Xx))) as proof of (forall (x:(a->b)), ((forall (Xx0:a), ((r Xx0) (x Xx0)))->((ex b) (fun (Xy:b)=> ((r Xx) Xy)))))
% 2.48/2.64  Found (ex_ind00 (fun (x1:(a->b)) (x2:(forall (Xx0:a), ((r Xx0) (x1 Xx0))))=> ((((ex_intro b) (fun (Xy:b)=> ((r Xx) Xy))) (x1 Xx)) (x2 Xx)))) as proof of ((ex b) (fun (Xy:b)=> ((r Xx) Xy)))
% 2.48/2.64  Found ((ex_ind0 ((ex b) (fun (Xy:b)=> ((r Xx) Xy)))) (fun (x1:(a->b)) (x2:(forall (Xx0:a), ((r Xx0) (x1 Xx0))))=> ((((ex_intro b) (fun (Xy:b)=> ((r Xx) Xy))) (x1 Xx)) (x2 Xx)))) as proof of ((ex b) (fun (Xy:b)=> ((r Xx) Xy)))
% 2.48/2.64  Found (((fun (P:Prop) (x1:(forall (x:(a->b)), ((forall (Xx:a), ((r Xx) (x Xx)))->P)))=> (((((ex_ind (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx))))) P) x1) x0)) ((ex b) (fun (Xy:b)=> ((r Xx) Xy)))) (fun (x1:(a->b)) (x2:(forall (Xx0:a), ((r Xx0) (x1 Xx0))))=> ((((ex_intro b) (fun (Xy:b)=> ((r Xx) Xy))) (x1 Xx)) (x2 Xx)))) as proof of ((ex b) (fun (Xy:b)=> ((r Xx) Xy)))
% 2.48/2.64  Found (fun (Xx:a)=> (((fun (P:Prop) (x1:(forall (x:(a->b)), ((forall (Xx:a), ((r Xx) (x Xx)))->P)))=> (((((ex_ind (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx))))) P) x1) x0)) ((ex b) (fun (Xy:b)=> ((r Xx) Xy)))) (fun (x1:(a->b)) (x2:(forall (Xx0:a), ((r Xx0) (x1 Xx0))))=> ((((ex_intro b) (fun (Xy:b)=> ((r Xx) Xy))) (x1 Xx)) (x2 Xx))))) as proof of ((ex b) (fun (Xy:b)=> ((r Xx) Xy)))
% 2.48/2.64  Found (fun (x0:((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx)))))) (Xx:a)=> (((fun (P:Prop) (x1:(forall (x:(a->b)), ((forall (Xx:a), ((r Xx) (x Xx)))->P)))=> (((((ex_ind (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx))))) P) x1) x0)) ((ex b) (fun (Xy:b)=> ((r Xx) Xy)))) (fun (x1:(a->b)) (x2:(forall (Xx0:a), ((r Xx0) (x1 Xx0))))=> ((((ex_intro b) (fun (Xy:b)=> ((r Xx) Xy))) (x1 Xx)) (x2 Xx))))) as proof of (forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy))))
% 2.48/2.64  Found (fun (x0:((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx)))))) (Xx:a)=> (((fun (P:Prop) (x1:(forall (x:(a->b)), ((forall (Xx:a), ((r Xx) (x Xx)))->P)))=> (((((ex_ind (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx))))) P) x1) x0)) ((ex b) (fun (Xy:b)=> ((r Xx) Xy)))) (fun (x1:(a->b)) (x2:(forall (Xx0:a), ((r Xx0) (x1 Xx0))))=> ((((ex_intro b) (fun (Xy:b)=> ((r Xx) Xy))) (x1 Xx)) (x2 Xx))))) as proof of (((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx)))))->(forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy)))))
% 2.48/2.64  Found ((conj00 (((choice a) b) r)) (fun (x0:((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx)))))) (Xx:a)=> (((fun (P:Prop) (x1:(forall (x:(a->b)), ((forall (Xx:a), ((r Xx) (x Xx)))->P)))=> (((((ex_ind (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx))))) P) x1) x0)) ((ex b) (fun (Xy:b)=> ((r Xx) Xy)))) (fun (x1:(a->b)) (x2:(forall (Xx0:a), ((r Xx0) (x1 Xx0))))=> ((((ex_intro b) (fun (Xy:b)=> ((r Xx) Xy))) (x1 Xx)) (x2 Xx)))))) as proof of ((and ((forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy))))->((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx))))))) (((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx)))))->(forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy))))))
% 2.48/2.64  Found (((conj0 (((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx)))))->(forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy)))))) (((choice a) b) r)) (fun (x0:((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx)))))) (Xx:a)=> (((fun (P:Prop) (x1:(forall (x:(a->b)), ((forall (Xx:a), ((r Xx) (x Xx)))->P)))=> (((((ex_ind (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx))))) P) x1) x0)) ((ex b) (fun (Xy:b)=> ((r Xx) Xy)))) (fun (x1:(a->b)) (x2:(forall (Xx0:a), ((r Xx0) (x1 Xx0))))=> ((((ex_intro b) (fun (Xy:b)=> ((r Xx) Xy))) (x1 Xx)) (x2 Xx)))))) as proof of ((and ((forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy))))->((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx))))))) (((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx)))))->(forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy))))))
% 2.48/2.64  Found ((((conj ((forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy))))->((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx))))))) (((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx)))))->(forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy)))))) (((choice a) b) r)) (fun (x0:((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx)))))) (Xx:a)=> (((fun (P:Prop) (x1:(forall (x:(a->b)), ((forall (Xx:a), ((r Xx) (x Xx)))->P)))=> (((((ex_ind (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx))))) P) x1) x0)) ((ex b) (fun (Xy:b)=> ((r Xx) Xy)))) (fun (x1:(a->b)) (x2:(forall (Xx0:a), ((r Xx0) (x1 Xx0))))=> ((((ex_intro b) (fun (Xy:b)=> ((r Xx) Xy))) (x1 Xx)) (x2 Xx)))))) as proof of ((and ((forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy))))->((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx))))))) (((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx)))))->(forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy))))))
% 2.48/2.65  Found ((((conj ((forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy))))->((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx))))))) (((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx)))))->(forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy)))))) (((choice a) b) r)) (fun (x0:((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx)))))) (Xx:a)=> (((fun (P:Prop) (x1:(forall (x:(a->b)), ((forall (Xx:a), ((r Xx) (x Xx)))->P)))=> (((((ex_ind (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx))))) P) x1) x0)) ((ex b) (fun (Xy:b)=> ((r Xx) Xy)))) (fun (x1:(a->b)) (x2:(forall (Xx0:a), ((r Xx0) (x1 Xx0))))=> ((((ex_intro b) (fun (Xy:b)=> ((r Xx) Xy))) (x1 Xx)) (x2 Xx)))))) as proof of ((and ((forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy))))->((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx))))))) (((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx)))))->(forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy))))))
% 2.48/2.65  Found (fun (x:((ex ((b->Prop)->b)) (fun (Xj:((b->Prop)->b))=> (forall (Xp:(b->Prop)), (((ex b) (fun (Xx:b)=> (Xp Xx)))->(Xp (Xj Xp)))))))=> ((((conj ((forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy))))->((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx))))))) (((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx)))))->(forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy)))))) (((choice a) b) r)) (fun (x0:((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx)))))) (Xx:a)=> (((fun (P:Prop) (x1:(forall (x:(a->b)), ((forall (Xx:a), ((r Xx) (x Xx)))->P)))=> (((((ex_ind (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx))))) P) x1) x0)) ((ex b) (fun (Xy:b)=> ((r Xx) Xy)))) (fun (x1:(a->b)) (x2:(forall (Xx0:a), ((r Xx0) (x1 Xx0))))=> ((((ex_intro b) (fun (Xy:b)=> ((r Xx) Xy))) (x1 Xx)) (x2 Xx))))))) as proof of ((iff (forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy))))) ((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx))))))
% 2.48/2.65  Found (fun (x:((ex ((b->Prop)->b)) (fun (Xj:((b->Prop)->b))=> (forall (Xp:(b->Prop)), (((ex b) (fun (Xx:b)=> (Xp Xx)))->(Xp (Xj Xp)))))))=> ((((conj ((forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy))))->((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx))))))) (((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx)))))->(forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy)))))) (((choice a) b) r)) (fun (x0:((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx)))))) (Xx:a)=> (((fun (P:Prop) (x1:(forall (x:(a->b)), ((forall (Xx:a), ((r Xx) (x Xx)))->P)))=> (((((ex_ind (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx))))) P) x1) x0)) ((ex b) (fun (Xy:b)=> ((r Xx) Xy)))) (fun (x1:(a->b)) (x2:(forall (Xx0:a), ((r Xx0) (x1 Xx0))))=> ((((ex_intro b) (fun (Xy:b)=> ((r Xx) Xy))) (x1 Xx)) (x2 Xx))))))) as proof of (((ex ((b->Prop)->b)) (fun (Xj:((b->Prop)->b))=> (forall (Xp:(b->Prop)), (((ex b) (fun (Xx:b)=> (Xp Xx)))->(Xp (Xj Xp))))))->((iff (forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy))))) ((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx)))))))
% 2.48/2.65  Got proof (fun (x:((ex ((b->Prop)->b)) (fun (Xj:((b->Prop)->b))=> (forall (Xp:(b->Prop)), (((ex b) (fun (Xx:b)=> (Xp Xx)))->(Xp (Xj Xp)))))))=> ((((conj ((forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy))))->((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx))))))) (((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx)))))->(forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy)))))) (((choice a) b) r)) (fun (x0:((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx)))))) (Xx:a)=> (((fun (P:Prop) (x1:(forall (x:(a->b)), ((forall (Xx:a), ((r Xx) (x Xx)))->P)))=> (((((ex_ind (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx))))) P) x1) x0)) ((ex b) (fun (Xy:b)=> ((r Xx) Xy)))) (fun (x1:(a->b)) (x2:(forall (Xx0:a), ((r Xx0) (x1 Xx0))))=> ((((ex_intro b) (fun (Xy:b)=> ((r Xx) Xy))) (x1 Xx)) (x2 Xx)))))))
% 2.48/2.66  Time elapsed = 2.031132s
% 2.48/2.66  node=484 cost=4535.000000 depth=21
% 2.48/2.66  ::::::::::::::::::::::
% 2.48/2.66  % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% 2.48/2.66  % SZS output start Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% 2.48/2.66  (fun (x:((ex ((b->Prop)->b)) (fun (Xj:((b->Prop)->b))=> (forall (Xp:(b->Prop)), (((ex b) (fun (Xx:b)=> (Xp Xx)))->(Xp (Xj Xp)))))))=> ((((conj ((forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy))))->((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx))))))) (((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx)))))->(forall (Xx:a), ((ex b) (fun (Xy:b)=> ((r Xx) Xy)))))) (((choice a) b) r)) (fun (x0:((ex (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx)))))) (Xx:a)=> (((fun (P:Prop) (x1:(forall (x:(a->b)), ((forall (Xx:a), ((r Xx) (x Xx)))->P)))=> (((((ex_ind (a->b)) (fun (Xf:(a->b))=> (forall (Xx:a), ((r Xx) (Xf Xx))))) P) x1) x0)) ((ex b) (fun (Xy:b)=> ((r Xx) Xy)))) (fun (x1:(a->b)) (x2:(forall (Xx0:a), ((r Xx0) (x1 Xx0))))=> ((((ex_intro b) (fun (Xy:b)=> ((r Xx) Xy))) (x1 Xx)) (x2 Xx)))))))
% 2.48/2.66  % SZS output end Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
%------------------------------------------------------------------------------