TSTP Solution File: SYO096^5 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SYO096^5 : TPTP v7.5.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n018.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 0s
% DateTime : Tue Mar 29 00:50:39 EDT 2022

% Result   : Theorem 2.45s 2.62s
% Output   : Proof 2.45s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.11  % Problem    : SYO096^5 : TPTP v7.5.0. Released v4.0.0.
% 0.00/0.12  % Command    : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% 0.12/0.33  % Computer   : n018.cluster.edu
% 0.12/0.33  % Model      : x86_64 x86_64
% 0.12/0.33  % CPUModel   : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % RAMPerCPU  : 8042.1875MB
% 0.12/0.33  % OS         : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit   : 300
% 0.12/0.33  % DateTime   : Fri Mar 11 15:01:23 EST 2022
% 0.12/0.33  % CPUTime    : 
% 0.12/0.34  ModuleCmd_Load.c(213):ERROR:105: Unable to locate a modulefile for 'python/python27'
% 0.20/0.34  Python 2.7.5
% 1.38/1.57  Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% 1.38/1.57  FOF formula (<kernel.Constant object at 0x2b8fc6853dd0>, <kernel.Constant object at 0x2b8fc6853a70>) of role type named cA
% 1.38/1.57  Using role type
% 1.38/1.57  Declaring cA:fofType
% 1.38/1.57  FOF formula (<kernel.Constant object at 0x2b8fc68538c0>, <kernel.DependentProduct object at 0x1406cb0>) of role type named cQ
% 1.38/1.57  Using role type
% 1.38/1.57  Declaring cQ:(fofType->(fofType->Prop))
% 1.38/1.57  FOF formula (<kernel.Constant object at 0x142c3b0>, <kernel.Single object at 0x2b8fc68532d8>) of role type named cB
% 1.38/1.57  Using role type
% 1.38/1.57  Declaring cB:fofType
% 1.38/1.57  FOF formula (<kernel.Constant object at 0x2b8fc6853a70>, <kernel.DependentProduct object at 0x1406998>) of role type named cR
% 1.38/1.57  Using role type
% 1.38/1.57  Declaring cR:(fofType->(fofType->Prop))
% 1.38/1.57  FOF formula (((and ((and ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))) (forall (U:fofType) (V:fofType), (((cQ U) V)->(forall (Z:fofType), ((cR Z) V)))))->((ex fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA))))) of role conjecture named cLX1
% 1.38/1.57  Conjecture to prove = (((and ((and ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))) (forall (U:fofType) (V:fofType), (((cQ U) V)->(forall (Z:fofType), ((cR Z) V)))))->((ex fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA))))):Prop
% 1.38/1.57  We need to prove ['(((and ((and ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))) (forall (U:fofType) (V:fofType), (((cQ U) V)->(forall (Z:fofType), ((cR Z) V)))))->((ex fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA)))))']
% 1.38/1.57  Parameter fofType:Type.
% 1.38/1.57  Parameter cA:fofType.
% 1.38/1.57  Parameter cQ:(fofType->(fofType->Prop)).
% 1.38/1.57  Parameter cB:fofType.
% 1.38/1.57  Parameter cR:(fofType->(fofType->Prop)).
% 1.38/1.57  Trying to prove (((and ((and ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))) (forall (U:fofType) (V:fofType), (((cQ U) V)->(forall (Z:fofType), ((cR Z) V)))))->((ex fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA)))))
% 1.38/1.57  Found ex_intro0100:=(ex_intro010 x2):((ex fofType) (fun (Y:fofType)=> ((cR x4) Y)))
% 1.38/1.57  Found (ex_intro010 x2) as proof of ((ex fofType) (fun (Y:fofType)=> ((cR x4) Y)))
% 1.38/1.57  Found ((ex_intro01 cB) x2) as proof of ((ex fofType) (fun (Y:fofType)=> ((cR x4) Y)))
% 1.38/1.57  Found (((ex_intro0 (fun (Y:fofType)=> ((cR x4) Y))) cB) x2) as proof of ((ex fofType) (fun (Y:fofType)=> ((cR x4) Y)))
% 1.38/1.57  Found (((ex_intro0 (fun (Y:fofType)=> ((cR x4) Y))) cB) x2) as proof of ((ex fofType) (fun (Y:fofType)=> ((cR x4) Y)))
% 1.38/1.57  Found (x30 (((ex_intro0 (fun (Y:fofType)=> ((cR x4) Y))) cB) x2)) as proof of ((cQ x4) cA)
% 1.38/1.57  Found ((x3 x4) (((ex_intro0 (fun (Y:fofType)=> ((cR x4) Y))) cB) x2)) as proof of ((cQ x4) cA)
% 1.38/1.57  Found ((x3 x4) (((ex_intro0 (fun (Y:fofType)=> ((cR x4) Y))) cB) x2)) as proof of ((cQ x4) cA)
% 1.38/1.57  Found ((x3 x4) (((ex_intro0 (fun (Y:fofType)=> ((cR x4) Y))) cB) x2)) as proof of ((cQ x4) cA)
% 1.38/1.57  Found ex_intro0100:=(ex_intro010 x3):((ex fofType) (fun (Y:fofType)=> ((cR x2) Y)))
% 1.38/1.57  Found (ex_intro010 x3) as proof of ((ex fofType) (fun (Y:fofType)=> ((cR x2) Y)))
% 1.38/1.57  Found ((ex_intro01 cB) x3) as proof of ((ex fofType) (fun (Y:fofType)=> ((cR x2) Y)))
% 1.38/1.57  Found (((ex_intro0 (fun (Y:fofType)=> ((cR x2) Y))) cB) x3) as proof of ((ex fofType) (fun (Y:fofType)=> ((cR x2) Y)))
% 1.38/1.57  Found (((ex_intro0 (fun (Y:fofType)=> ((cR x2) Y))) cB) x3) as proof of ((ex fofType) (fun (Y:fofType)=> ((cR x2) Y)))
% 1.38/1.57  Found (x40 (((ex_intro0 (fun (Y:fofType)=> ((cR x2) Y))) cB) x3)) as proof of ((cQ x2) cA)
% 1.38/1.57  Found ((x4 x2) (((ex_intro0 (fun (Y:fofType)=> ((cR x2) Y))) cB) x3)) as proof of ((cQ x2) cA)
% 1.38/1.57  Found ((x4 x2) (((ex_intro0 (fun (Y:fofType)=> ((cR x2) Y))) cB) x3)) as proof of ((cQ x2) cA)
% 1.38/1.57  Found ((x4 x2) (((ex_intro0 (fun (Y:fofType)=> ((cR x2) Y))) cB) x3)) as proof of ((cQ x2) cA)
% 1.38/1.57  Found ex_intro0100:=(ex_intro010 x3):((ex fofType) (fun (Y:fofType)=> ((cR x0) Y)))
% 1.38/1.57  Found (ex_intro010 x3) as proof of ((ex fofType) (fun (Y:fofType)=> ((cR x0) Y)))
% 1.38/1.57  Found ((ex_intro01 cB) x3) as proof of ((ex fofType) (fun (Y:fofType)=> ((cR x0) Y)))
% 1.38/1.57  Found (((ex_intro0 (fun (Y:fofType)=> ((cR x0) Y))) cB) x3) as proof of ((ex fofType) (fun (Y:fofType)=> ((cR x0) Y)))
% 1.66/1.86  Found (((ex_intro0 (fun (Y:fofType)=> ((cR x0) Y))) cB) x3) as proof of ((ex fofType) (fun (Y:fofType)=> ((cR x0) Y)))
% 1.66/1.86  Found (x40 (((ex_intro0 (fun (Y:fofType)=> ((cR x0) Y))) cB) x3)) as proof of ((cQ x0) cA)
% 1.66/1.86  Found ((x4 x0) (((ex_intro0 (fun (Y:fofType)=> ((cR x0) Y))) cB) x3)) as proof of ((cQ x0) cA)
% 1.66/1.86  Found ((x4 x0) (((ex_intro0 (fun (Y:fofType)=> ((cR x0) Y))) cB) x3)) as proof of ((cQ x0) cA)
% 1.66/1.86  Found ((x4 x0) (((ex_intro0 (fun (Y:fofType)=> ((cR x0) Y))) cB) x3)) as proof of ((cQ x0) cA)
% 1.66/1.86  Found ex_intro0100:=(ex_intro010 x3):((ex fofType) (fun (Y:fofType)=> ((cR x0) Y)))
% 1.66/1.86  Found (ex_intro010 x3) as proof of ((ex fofType) (fun (Y:fofType)=> ((cR x0) Y)))
% 1.66/1.86  Found ((ex_intro01 cB) x3) as proof of ((ex fofType) (fun (Y:fofType)=> ((cR x0) Y)))
% 1.66/1.86  Found (((ex_intro0 (fun (Y:fofType)=> ((cR x0) Y))) cB) x3) as proof of ((ex fofType) (fun (Y:fofType)=> ((cR x0) Y)))
% 1.66/1.86  Found (((ex_intro0 (fun (Y:fofType)=> ((cR x0) Y))) cB) x3) as proof of ((ex fofType) (fun (Y:fofType)=> ((cR x0) Y)))
% 1.66/1.86  Found (x40 (((ex_intro0 (fun (Y:fofType)=> ((cR x0) Y))) cB) x3)) as proof of ((cQ x0) cA)
% 1.66/1.86  Found ((x4 x0) (((ex_intro0 (fun (Y:fofType)=> ((cR x0) Y))) cB) x3)) as proof of ((cQ x0) cA)
% 1.66/1.86  Found ((x4 x0) (((ex_intro0 (fun (Y:fofType)=> ((cR x0) Y))) cB) x3)) as proof of ((cQ x0) cA)
% 1.66/1.86  Found (fun (x4:(forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))=> ((x4 x0) (((ex_intro0 (fun (Y:fofType)=> ((cR x0) Y))) cB) x3))) as proof of ((cQ x0) cA)
% 1.66/1.86  Found (fun (x3:((cR cA) cB)) (x4:(forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))=> ((x4 x0) (((ex_intro0 (fun (Y:fofType)=> ((cR x0) Y))) cB) x3))) as proof of ((forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))->((cQ x0) cA))
% 1.66/1.86  Found (fun (x3:((cR cA) cB)) (x4:(forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))=> ((x4 x0) (((ex_intro0 (fun (Y:fofType)=> ((cR x0) Y))) cB) x3))) as proof of (((cR cA) cB)->((forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))->((cQ x0) cA)))
% 1.66/1.86  Found (and_rect10 (fun (x3:((cR cA) cB)) (x4:(forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))=> ((x4 x0) (((ex_intro0 (fun (Y:fofType)=> ((cR x0) Y))) cB) x3)))) as proof of ((cQ x0) cA)
% 1.66/1.86  Found ((and_rect1 ((cQ x0) cA)) (fun (x3:((cR cA) cB)) (x4:(forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))=> ((x4 x0) (((ex_intro0 (fun (Y:fofType)=> ((cR x0) Y))) cB) x3)))) as proof of ((cQ x0) cA)
% 1.66/1.86  Found (((fun (P:Type) (x3:(((cR cA) cB)->((forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))->P)))=> (((((and_rect ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))) P) x3) x1)) ((cQ x0) cA)) (fun (x3:((cR cA) cB)) (x4:(forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))=> ((x4 x0) (((ex_intro0 (fun (Y:fofType)=> ((cR x0) Y))) cB) x3)))) as proof of ((cQ x0) cA)
% 1.66/1.86  Found (((fun (P:Type) (x3:(((cR cA) cB)->((forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))->P)))=> (((((and_rect ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))) P) x3) x1)) ((cQ x0) cA)) (fun (x3:((cR cA) cB)) (x4:(forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))=> ((x4 x0) (((ex_intro0 (fun (Y:fofType)=> ((cR x0) Y))) cB) x3)))) as proof of ((cQ x0) cA)
% 1.66/1.86  Found ex_intro0100:=(ex_intro010 x3):((ex fofType) (fun (Y:fofType)=> ((cR x2) Y)))
% 1.66/1.86  Found (ex_intro010 x3) as proof of ((ex fofType) (fun (Y:fofType)=> ((cR x2) Y)))
% 1.66/1.86  Found ((ex_intro01 cB) x3) as proof of ((ex fofType) (fun (Y:fofType)=> ((cR x2) Y)))
% 1.66/1.86  Found (((ex_intro0 (fun (Y:fofType)=> ((cR x2) Y))) cB) x3) as proof of ((ex fofType) (fun (Y:fofType)=> ((cR x2) Y)))
% 1.66/1.86  Found (((ex_intro0 (fun (Y:fofType)=> ((cR x2) Y))) cB) x3) as proof of ((ex fofType) (fun (Y:fofType)=> ((cR x2) Y)))
% 1.66/1.86  Found (x40 (((ex_intro0 (fun (Y:fofType)=> ((cR x2) Y))) cB) x3)) as proof of ((cQ x2) cA)
% 2.15/2.31  Found ((x4 x2) (((ex_intro0 (fun (Y:fofType)=> ((cR x2) Y))) cB) x3)) as proof of ((cQ x2) cA)
% 2.15/2.31  Found ((x4 x2) (((ex_intro0 (fun (Y:fofType)=> ((cR x2) Y))) cB) x3)) as proof of ((cQ x2) cA)
% 2.15/2.31  Found (fun (x4:(forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))=> ((x4 x2) (((ex_intro0 (fun (Y:fofType)=> ((cR x2) Y))) cB) x3))) as proof of ((cQ x2) cA)
% 2.15/2.31  Found (fun (x3:((cR cA) cB)) (x4:(forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))=> ((x4 x2) (((ex_intro0 (fun (Y:fofType)=> ((cR x2) Y))) cB) x3))) as proof of ((forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))->((cQ x2) cA))
% 2.15/2.31  Found (fun (x3:((cR cA) cB)) (x4:(forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))=> ((x4 x2) (((ex_intro0 (fun (Y:fofType)=> ((cR x2) Y))) cB) x3))) as proof of (((cR cA) cB)->((forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))->((cQ x2) cA)))
% 2.15/2.31  Found (and_rect10 (fun (x3:((cR cA) cB)) (x4:(forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))=> ((x4 x2) (((ex_intro0 (fun (Y:fofType)=> ((cR x2) Y))) cB) x3)))) as proof of ((cQ x2) cA)
% 2.15/2.31  Found ((and_rect1 ((cQ x2) cA)) (fun (x3:((cR cA) cB)) (x4:(forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))=> ((x4 x2) (((ex_intro0 (fun (Y:fofType)=> ((cR x2) Y))) cB) x3)))) as proof of ((cQ x2) cA)
% 2.15/2.31  Found (((fun (P:Type) (x3:(((cR cA) cB)->((forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))->P)))=> (((((and_rect ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))) P) x3) x0)) ((cQ x2) cA)) (fun (x3:((cR cA) cB)) (x4:(forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))=> ((x4 x2) (((ex_intro0 (fun (Y:fofType)=> ((cR x2) Y))) cB) x3)))) as proof of ((cQ x2) cA)
% 2.15/2.31  Found (((fun (P:Type) (x3:(((cR cA) cB)->((forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))->P)))=> (((((and_rect ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))) P) x3) x0)) ((cQ x2) cA)) (fun (x3:((cR cA) cB)) (x4:(forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))=> ((x4 x2) (((ex_intro0 (fun (Y:fofType)=> ((cR x2) Y))) cB) x3)))) as proof of ((cQ x2) cA)
% 2.15/2.31  Found ex_intro0100:=(ex_intro010 x3):((ex fofType) (fun (Y:fofType)=> ((cR x0) Y)))
% 2.15/2.31  Found (ex_intro010 x3) as proof of ((ex fofType) (fun (Y:fofType)=> ((cR x0) Y)))
% 2.15/2.31  Found ((ex_intro01 cB) x3) as proof of ((ex fofType) (fun (Y:fofType)=> ((cR x0) Y)))
% 2.15/2.31  Found (((ex_intro0 (fun (Y:fofType)=> ((cR x0) Y))) cB) x3) as proof of ((ex fofType) (fun (Y:fofType)=> ((cR x0) Y)))
% 2.15/2.31  Found (((ex_intro0 (fun (Y:fofType)=> ((cR x0) Y))) cB) x3) as proof of ((ex fofType) (fun (Y:fofType)=> ((cR x0) Y)))
% 2.15/2.31  Found (x40 (((ex_intro0 (fun (Y:fofType)=> ((cR x0) Y))) cB) x3)) as proof of ((cQ x0) cA)
% 2.15/2.31  Found ((x4 x0) (((ex_intro0 (fun (Y:fofType)=> ((cR x0) Y))) cB) x3)) as proof of ((cQ x0) cA)
% 2.15/2.31  Found ((x4 x0) (((ex_intro0 (fun (Y:fofType)=> ((cR x0) Y))) cB) x3)) as proof of ((cQ x0) cA)
% 2.15/2.31  Found (fun (x4:(forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))=> ((x4 x0) (((ex_intro0 (fun (Y:fofType)=> ((cR x0) Y))) cB) x3))) as proof of ((cQ x0) cA)
% 2.15/2.31  Found (fun (x3:((cR cA) cB)) (x4:(forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))=> ((x4 x0) (((ex_intro0 (fun (Y:fofType)=> ((cR x0) Y))) cB) x3))) as proof of ((forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))->((cQ x0) cA))
% 2.15/2.31  Found (fun (x3:((cR cA) cB)) (x4:(forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))=> ((x4 x0) (((ex_intro0 (fun (Y:fofType)=> ((cR x0) Y))) cB) x3))) as proof of (((cR cA) cB)->((forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))->((cQ x0) cA)))
% 2.15/2.31  Found (and_rect10 (fun (x3:((cR cA) cB)) (x4:(forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))=> ((x4 x0) (((ex_intro0 (fun (Y:fofType)=> ((cR x0) Y))) cB) x3)))) as proof of ((cQ x0) cA)
% 2.15/2.31  Found ((and_rect1 ((cQ x0) cA)) (fun (x3:((cR cA) cB)) (x4:(forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))=> ((x4 x0) (((ex_intro0 (fun (Y:fofType)=> ((cR x0) Y))) cB) x3)))) as proof of ((cQ x0) cA)
% 2.15/2.31  Found (((fun (P:Type) (x3:(((cR cA) cB)->((forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))->P)))=> (((((and_rect ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))) P) x3) x1)) ((cQ x0) cA)) (fun (x3:((cR cA) cB)) (x4:(forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))=> ((x4 x0) (((ex_intro0 (fun (Y:fofType)=> ((cR x0) Y))) cB) x3)))) as proof of ((cQ x0) cA)
% 2.15/2.31  Found (fun (x2:(forall (U:fofType) (V:fofType), (((cQ U) V)->(forall (Z:fofType), ((cR Z) V)))))=> (((fun (P:Type) (x3:(((cR cA) cB)->((forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))->P)))=> (((((and_rect ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))) P) x3) x1)) ((cQ x0) cA)) (fun (x3:((cR cA) cB)) (x4:(forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))=> ((x4 x0) (((ex_intro0 (fun (Y:fofType)=> ((cR x0) Y))) cB) x3))))) as proof of ((cQ x0) cA)
% 2.15/2.31  Found (fun (x1:((and ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))) (x2:(forall (U:fofType) (V:fofType), (((cQ U) V)->(forall (Z:fofType), ((cR Z) V)))))=> (((fun (P:Type) (x3:(((cR cA) cB)->((forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))->P)))=> (((((and_rect ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))) P) x3) x1)) ((cQ x0) cA)) (fun (x3:((cR cA) cB)) (x4:(forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))=> ((x4 x0) (((ex_intro0 (fun (Y:fofType)=> ((cR x0) Y))) cB) x3))))) as proof of ((forall (U:fofType) (V:fofType), (((cQ U) V)->(forall (Z:fofType), ((cR Z) V))))->((cQ x0) cA))
% 2.15/2.31  Found (fun (x1:((and ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))) (x2:(forall (U:fofType) (V:fofType), (((cQ U) V)->(forall (Z:fofType), ((cR Z) V)))))=> (((fun (P:Type) (x3:(((cR cA) cB)->((forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))->P)))=> (((((and_rect ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))) P) x3) x1)) ((cQ x0) cA)) (fun (x3:((cR cA) cB)) (x4:(forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))=> ((x4 x0) (((ex_intro0 (fun (Y:fofType)=> ((cR x0) Y))) cB) x3))))) as proof of (((and ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))->((forall (U:fofType) (V:fofType), (((cQ U) V)->(forall (Z:fofType), ((cR Z) V))))->((cQ x0) cA)))
% 2.15/2.31  Found (and_rect00 (fun (x1:((and ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))) (x2:(forall (U:fofType) (V:fofType), (((cQ U) V)->(forall (Z:fofType), ((cR Z) V)))))=> (((fun (P:Type) (x3:(((cR cA) cB)->((forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))->P)))=> (((((and_rect ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))) P) x3) x1)) ((cQ x0) cA)) (fun (x3:((cR cA) cB)) (x4:(forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))=> ((x4 x0) (((ex_intro0 (fun (Y:fofType)=> ((cR x0) Y))) cB) x3)))))) as proof of ((cQ x0) cA)
% 2.15/2.31  Found ((and_rect0 ((cQ x0) cA)) (fun (x1:((and ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))) (x2:(forall (U:fofType) (V:fofType), (((cQ U) V)->(forall (Z:fofType), ((cR Z) V)))))=> (((fun (P:Type) (x3:(((cR cA) cB)->((forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))->P)))=> (((((and_rect ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))) P) x3) x1)) ((cQ x0) cA)) (fun (x3:((cR cA) cB)) (x4:(forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))=> ((x4 x0) (((ex_intro0 (fun (Y:fofType)=> ((cR x0) Y))) cB) x3)))))) as proof of ((cQ x0) cA)
% 2.45/2.61  Found (((fun (P:Type) (x1:(((and ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))->((forall (U:fofType) (V:fofType), (((cQ U) V)->(forall (Z:fofType), ((cR Z) V))))->P)))=> (((((and_rect ((and ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))) (forall (U:fofType) (V:fofType), (((cQ U) V)->(forall (Z:fofType), ((cR Z) V))))) P) x1) x)) ((cQ x0) cA)) (fun (x1:((and ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))) (x2:(forall (U:fofType) (V:fofType), (((cQ U) V)->(forall (Z:fofType), ((cR Z) V)))))=> (((fun (P:Type) (x3:(((cR cA) cB)->((forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))->P)))=> (((((and_rect ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))) P) x3) x1)) ((cQ x0) cA)) (fun (x3:((cR cA) cB)) (x4:(forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))=> ((x4 x0) (((ex_intro0 (fun (Y:fofType)=> ((cR x0) Y))) cB) x3)))))) as proof of ((cQ x0) cA)
% 2.45/2.61  Found (((fun (P:Type) (x1:(((and ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))->((forall (U:fofType) (V:fofType), (((cQ U) V)->(forall (Z:fofType), ((cR Z) V))))->P)))=> (((((and_rect ((and ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))) (forall (U:fofType) (V:fofType), (((cQ U) V)->(forall (Z:fofType), ((cR Z) V))))) P) x1) x)) ((cQ x0) cA)) (fun (x1:((and ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))) (x2:(forall (U:fofType) (V:fofType), (((cQ U) V)->(forall (Z:fofType), ((cR Z) V)))))=> (((fun (P:Type) (x3:(((cR cA) cB)->((forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))->P)))=> (((((and_rect ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))) P) x3) x1)) ((cQ x0) cA)) (fun (x3:((cR cA) cB)) (x4:(forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))=> ((x4 x0) (((ex_intro0 (fun (Y:fofType)=> ((cR x0) Y))) cB) x3)))))) as proof of ((cQ x0) cA)
% 2.45/2.61  Found ex_intro0100:=(ex_intro010 x2):((ex fofType) (fun (Y:fofType)=> ((cR U) Y)))
% 2.45/2.61  Found (ex_intro010 x2) as proof of ((ex fofType) (fun (Y:fofType)=> ((cR U) Y)))
% 2.45/2.61  Found ((ex_intro01 cB) x2) as proof of ((ex fofType) (fun (Y:fofType)=> ((cR U) Y)))
% 2.45/2.61  Found (((ex_intro0 (fun (Y:fofType)=> ((cR U) Y))) cB) x2) as proof of ((ex fofType) (fun (Y:fofType)=> ((cR U) Y)))
% 2.45/2.61  Found (((ex_intro0 (fun (Y:fofType)=> ((cR U) Y))) cB) x2) as proof of ((ex fofType) (fun (Y:fofType)=> ((cR U) Y)))
% 2.45/2.61  Found (x30 (((ex_intro0 (fun (Y:fofType)=> ((cR U) Y))) cB) x2)) as proof of ((cQ U) x4)
% 2.45/2.61  Found ((x3 U) (((ex_intro0 (fun (Y:fofType)=> ((cR U) Y))) cB) x2)) as proof of ((cQ U) x4)
% 2.45/2.61  Found ((x3 U) (((ex_intro0 (fun (Y:fofType)=> ((cR U) Y))) cB) x2)) as proof of ((cQ U) x4)
% 2.45/2.61  Found ((x3 U) (((ex_intro0 (fun (Y:fofType)=> ((cR U) Y))) cB) x2)) as proof of ((cQ U) x4)
% 2.45/2.61  Found (x1000 ((x3 U) (((ex_intro0 (fun (Y:fofType)=> ((cR U) Y))) cB) x2))) as proof of ((cR cB) x4)
% 2.45/2.61  Found ((x100 x4) ((x3 x4) (((ex_intro0 (fun (Y:fofType)=> ((cR x4) Y))) cB) x2))) as proof of ((cR cB) x4)
% 2.45/2.61  Found (((fun (U:fofType) (x5:((cQ U) x4))=> (((x10 U) x5) cB)) x4) ((x3 x4) (((ex_intro0 (fun (Y:fofType)=> ((cR x4) Y))) cB) x2))) as proof of ((cR cB) x4)
% 2.45/2.61  Found (((fun (U:fofType) (x5:((cQ U) x4))=> ((((fun (U:fofType)=> ((x1 U) x4)) U) x5) cB)) x4) ((x3 x4) (((ex_intro0 (fun (Y:fofType)=> ((cR x4) Y))) cB) x2))) as proof of ((cR cB) x4)
% 2.45/2.61  Found (((fun (U:fofType) (x5:((cQ U) x4))=> ((((fun (U:fofType)=> ((x1 U) x4)) U) x5) cB)) x4) ((x3 x4) (((ex_intro0 (fun (Y:fofType)=> ((cR x4) Y))) cB) x2))) as proof of ((cR cB) x4)
% 2.45/2.61  Found ((conj00 (((fun (U:fofType) (x5:((cQ U) x4))=> ((((fun (U:fofType)=> ((x1 U) x4)) U) x5) cB)) x4) ((x3 x4) (((ex_intro0 (fun (Y:fofType)=> ((cR x4) Y))) cB) x2)))) ((x3 x4) (((ex_intro0 (fun (Y:fofType)=> ((cR x4) Y))) cB) x2))) as proof of ((and ((cR cB) x4)) ((cQ x4) cA))
% 2.45/2.61  Found (((conj0 ((cQ x4) cA)) (((fun (U:fofType) (x5:((cQ U) x4))=> ((((fun (U:fofType)=> ((x1 U) x4)) U) x5) cB)) x4) ((x3 x4) (((ex_intro0 (fun (Y:fofType)=> ((cR x4) Y))) cB) x2)))) ((x3 x4) (((ex_intro0 (fun (Y:fofType)=> ((cR x4) Y))) cB) x2))) as proof of ((and ((cR cB) x4)) ((cQ x4) cA))
% 2.45/2.61  Found ((((conj ((cR cB) x4)) ((cQ x4) cA)) (((fun (U:fofType) (x5:((cQ U) x4))=> ((((fun (U:fofType)=> ((x1 U) x4)) U) x5) cB)) x4) ((x3 x4) (((ex_intro0 (fun (Y:fofType)=> ((cR x4) Y))) cB) x2)))) ((x3 x4) (((ex_intro0 (fun (Y:fofType)=> ((cR x4) Y))) cB) x2))) as proof of ((and ((cR cB) x4)) ((cQ x4) cA))
% 2.45/2.61  Found ((((conj ((cR cB) x4)) ((cQ x4) cA)) (((fun (U:fofType) (x5:((cQ U) x4))=> ((((fun (U:fofType)=> ((x1 U) x4)) U) x5) cB)) x4) ((x3 x4) (((ex_intro0 (fun (Y:fofType)=> ((cR x4) Y))) cB) x2)))) ((x3 x4) (((ex_intro0 (fun (Y:fofType)=> ((cR x4) Y))) cB) x2))) as proof of ((and ((cR cB) x4)) ((cQ x4) cA))
% 2.45/2.61  Found (ex_intro000 ((((conj ((cR cB) x4)) ((cQ x4) cA)) (((fun (U:fofType) (x5:((cQ U) x4))=> ((((fun (U:fofType)=> ((x1 U) x4)) U) x5) cB)) x4) ((x3 x4) (((ex_intro0 (fun (Y:fofType)=> ((cR x4) Y))) cB) x2)))) ((x3 x4) (((ex_intro0 (fun (Y:fofType)=> ((cR x4) Y))) cB) x2)))) as proof of ((ex fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA))))
% 2.45/2.61  Found ((ex_intro00 cA) ((((conj ((cR cB) cA)) ((cQ cA) cA)) (((fun (U:fofType) (x5:((cQ U) cA))=> ((((fun (U:fofType)=> ((x1 U) cA)) U) x5) cB)) cA) ((x3 cA) (((ex_intro0 (fun (Y:fofType)=> ((cR cA) Y))) cB) x2)))) ((x3 cA) (((ex_intro0 (fun (Y:fofType)=> ((cR cA) Y))) cB) x2)))) as proof of ((ex fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA))))
% 2.45/2.61  Found (((ex_intro0 (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA)))) cA) ((((conj ((cR cB) cA)) ((cQ cA) cA)) (((fun (U:fofType) (x5:((cQ U) cA))=> ((((fun (U:fofType)=> ((x1 U) cA)) U) x5) cB)) cA) ((x3 cA) (((ex_intro0 (fun (Y:fofType)=> ((cR cA) Y))) cB) x2)))) ((x3 cA) (((ex_intro0 (fun (Y:fofType)=> ((cR cA) Y))) cB) x2)))) as proof of ((ex fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA))))
% 2.45/2.61  Found ((((ex_intro fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA)))) cA) ((((conj ((cR cB) cA)) ((cQ cA) cA)) (((fun (U:fofType) (x5:((cQ U) cA))=> ((((fun (U:fofType)=> ((x1 U) cA)) U) x5) cB)) cA) ((x3 cA) ((((ex_intro fofType) (fun (Y:fofType)=> ((cR cA) Y))) cB) x2)))) ((x3 cA) ((((ex_intro fofType) (fun (Y:fofType)=> ((cR cA) Y))) cB) x2)))) as proof of ((ex fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA))))
% 2.45/2.61  Found (fun (x3:(forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))=> ((((ex_intro fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA)))) cA) ((((conj ((cR cB) cA)) ((cQ cA) cA)) (((fun (U:fofType) (x5:((cQ U) cA))=> ((((fun (U:fofType)=> ((x1 U) cA)) U) x5) cB)) cA) ((x3 cA) ((((ex_intro fofType) (fun (Y:fofType)=> ((cR cA) Y))) cB) x2)))) ((x3 cA) ((((ex_intro fofType) (fun (Y:fofType)=> ((cR cA) Y))) cB) x2))))) as proof of ((ex fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA))))
% 2.45/2.61  Found (fun (x2:((cR cA) cB)) (x3:(forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))=> ((((ex_intro fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA)))) cA) ((((conj ((cR cB) cA)) ((cQ cA) cA)) (((fun (U:fofType) (x5:((cQ U) cA))=> ((((fun (U:fofType)=> ((x1 U) cA)) U) x5) cB)) cA) ((x3 cA) ((((ex_intro fofType) (fun (Y:fofType)=> ((cR cA) Y))) cB) x2)))) ((x3 cA) ((((ex_intro fofType) (fun (Y:fofType)=> ((cR cA) Y))) cB) x2))))) as proof of ((forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))->((ex fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA)))))
% 2.45/2.61  Found (fun (x2:((cR cA) cB)) (x3:(forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))=> ((((ex_intro fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA)))) cA) ((((conj ((cR cB) cA)) ((cQ cA) cA)) (((fun (U:fofType) (x5:((cQ U) cA))=> ((((fun (U:fofType)=> ((x1 U) cA)) U) x5) cB)) cA) ((x3 cA) ((((ex_intro fofType) (fun (Y:fofType)=> ((cR cA) Y))) cB) x2)))) ((x3 cA) ((((ex_intro fofType) (fun (Y:fofType)=> ((cR cA) Y))) cB) x2))))) as proof of (((cR cA) cB)->((forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))->((ex fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA))))))
% 2.45/2.61  Found (and_rect10 (fun (x2:((cR cA) cB)) (x3:(forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))=> ((((ex_intro fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA)))) cA) ((((conj ((cR cB) cA)) ((cQ cA) cA)) (((fun (U:fofType) (x5:((cQ U) cA))=> ((((fun (U:fofType)=> ((x1 U) cA)) U) x5) cB)) cA) ((x3 cA) ((((ex_intro fofType) (fun (Y:fofType)=> ((cR cA) Y))) cB) x2)))) ((x3 cA) ((((ex_intro fofType) (fun (Y:fofType)=> ((cR cA) Y))) cB) x2)))))) as proof of ((ex fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA))))
% 2.45/2.61  Found ((and_rect1 ((ex fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA))))) (fun (x2:((cR cA) cB)) (x3:(forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))=> ((((ex_intro fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA)))) cA) ((((conj ((cR cB) cA)) ((cQ cA) cA)) (((fun (U:fofType) (x5:((cQ U) cA))=> ((((fun (U:fofType)=> ((x1 U) cA)) U) x5) cB)) cA) ((x3 cA) ((((ex_intro fofType) (fun (Y:fofType)=> ((cR cA) Y))) cB) x2)))) ((x3 cA) ((((ex_intro fofType) (fun (Y:fofType)=> ((cR cA) Y))) cB) x2)))))) as proof of ((ex fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA))))
% 2.45/2.61  Found (((fun (P:Type) (x2:(((cR cA) cB)->((forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))->P)))=> (((((and_rect ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))) P) x2) x0)) ((ex fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA))))) (fun (x2:((cR cA) cB)) (x3:(forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))=> ((((ex_intro fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA)))) cA) ((((conj ((cR cB) cA)) ((cQ cA) cA)) (((fun (U:fofType) (x5:((cQ U) cA))=> ((((fun (U:fofType)=> ((x1 U) cA)) U) x5) cB)) cA) ((x3 cA) ((((ex_intro fofType) (fun (Y:fofType)=> ((cR cA) Y))) cB) x2)))) ((x3 cA) ((((ex_intro fofType) (fun (Y:fofType)=> ((cR cA) Y))) cB) x2)))))) as proof of ((ex fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA))))
% 2.45/2.61  Found (fun (x1:(forall (U:fofType) (V:fofType), (((cQ U) V)->(forall (Z:fofType), ((cR Z) V)))))=> (((fun (P:Type) (x2:(((cR cA) cB)->((forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))->P)))=> (((((and_rect ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))) P) x2) x0)) ((ex fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA))))) (fun (x2:((cR cA) cB)) (x3:(forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))=> ((((ex_intro fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA)))) cA) ((((conj ((cR cB) cA)) ((cQ cA) cA)) (((fun (U:fofType) (x5:((cQ U) cA))=> ((((fun (U:fofType)=> ((x1 U) cA)) U) x5) cB)) cA) ((x3 cA) ((((ex_intro fofType) (fun (Y:fofType)=> ((cR cA) Y))) cB) x2)))) ((x3 cA) ((((ex_intro fofType) (fun (Y:fofType)=> ((cR cA) Y))) cB) x2))))))) as proof of ((ex fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA))))
% 2.45/2.61  Found (fun (x0:((and ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))) (x1:(forall (U:fofType) (V:fofType), (((cQ U) V)->(forall (Z:fofType), ((cR Z) V)))))=> (((fun (P:Type) (x2:(((cR cA) cB)->((forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))->P)))=> (((((and_rect ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))) P) x2) x0)) ((ex fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA))))) (fun (x2:((cR cA) cB)) (x3:(forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))=> ((((ex_intro fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA)))) cA) ((((conj ((cR cB) cA)) ((cQ cA) cA)) (((fun (U:fofType) (x5:((cQ U) cA))=> ((((fun (U:fofType)=> ((x1 U) cA)) U) x5) cB)) cA) ((x3 cA) ((((ex_intro fofType) (fun (Y:fofType)=> ((cR cA) Y))) cB) x2)))) ((x3 cA) ((((ex_intro fofType) (fun (Y:fofType)=> ((cR cA) Y))) cB) x2))))))) as proof of ((forall (U:fofType) (V:fofType), (((cQ U) V)->(forall (Z:fofType), ((cR Z) V))))->((ex fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA)))))
% 2.45/2.62  Found (fun (x0:((and ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))) (x1:(forall (U:fofType) (V:fofType), (((cQ U) V)->(forall (Z:fofType), ((cR Z) V)))))=> (((fun (P:Type) (x2:(((cR cA) cB)->((forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))->P)))=> (((((and_rect ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))) P) x2) x0)) ((ex fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA))))) (fun (x2:((cR cA) cB)) (x3:(forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))=> ((((ex_intro fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA)))) cA) ((((conj ((cR cB) cA)) ((cQ cA) cA)) (((fun (U:fofType) (x5:((cQ U) cA))=> ((((fun (U:fofType)=> ((x1 U) cA)) U) x5) cB)) cA) ((x3 cA) ((((ex_intro fofType) (fun (Y:fofType)=> ((cR cA) Y))) cB) x2)))) ((x3 cA) ((((ex_intro fofType) (fun (Y:fofType)=> ((cR cA) Y))) cB) x2))))))) as proof of (((and ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))->((forall (U:fofType) (V:fofType), (((cQ U) V)->(forall (Z:fofType), ((cR Z) V))))->((ex fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA))))))
% 2.45/2.62  Found (and_rect00 (fun (x0:((and ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))) (x1:(forall (U:fofType) (V:fofType), (((cQ U) V)->(forall (Z:fofType), ((cR Z) V)))))=> (((fun (P:Type) (x2:(((cR cA) cB)->((forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))->P)))=> (((((and_rect ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))) P) x2) x0)) ((ex fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA))))) (fun (x2:((cR cA) cB)) (x3:(forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))=> ((((ex_intro fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA)))) cA) ((((conj ((cR cB) cA)) ((cQ cA) cA)) (((fun (U:fofType) (x5:((cQ U) cA))=> ((((fun (U:fofType)=> ((x1 U) cA)) U) x5) cB)) cA) ((x3 cA) ((((ex_intro fofType) (fun (Y:fofType)=> ((cR cA) Y))) cB) x2)))) ((x3 cA) ((((ex_intro fofType) (fun (Y:fofType)=> ((cR cA) Y))) cB) x2)))))))) as proof of ((ex fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA))))
% 2.45/2.62  Found ((and_rect0 ((ex fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA))))) (fun (x0:((and ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))) (x1:(forall (U:fofType) (V:fofType), (((cQ U) V)->(forall (Z:fofType), ((cR Z) V)))))=> (((fun (P:Type) (x2:(((cR cA) cB)->((forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))->P)))=> (((((and_rect ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))) P) x2) x0)) ((ex fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA))))) (fun (x2:((cR cA) cB)) (x3:(forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))=> ((((ex_intro fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA)))) cA) ((((conj ((cR cB) cA)) ((cQ cA) cA)) (((fun (U:fofType) (x5:((cQ U) cA))=> ((((fun (U:fofType)=> ((x1 U) cA)) U) x5) cB)) cA) ((x3 cA) ((((ex_intro fofType) (fun (Y:fofType)=> ((cR cA) Y))) cB) x2)))) ((x3 cA) ((((ex_intro fofType) (fun (Y:fofType)=> ((cR cA) Y))) cB) x2)))))))) as proof of ((ex fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA))))
% 2.45/2.62  Found (((fun (P:Type) (x0:(((and ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))->((forall (U:fofType) (V:fofType), (((cQ U) V)->(forall (Z:fofType), ((cR Z) V))))->P)))=> (((((and_rect ((and ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))) (forall (U:fofType) (V:fofType), (((cQ U) V)->(forall (Z:fofType), ((cR Z) V))))) P) x0) x)) ((ex fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA))))) (fun (x0:((and ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))) (x1:(forall (U:fofType) (V:fofType), (((cQ U) V)->(forall (Z:fofType), ((cR Z) V)))))=> (((fun (P:Type) (x2:(((cR cA) cB)->((forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))->P)))=> (((((and_rect ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))) P) x2) x0)) ((ex fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA))))) (fun (x2:((cR cA) cB)) (x3:(forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))=> ((((ex_intro fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA)))) cA) ((((conj ((cR cB) cA)) ((cQ cA) cA)) (((fun (U:fofType) (x5:((cQ U) cA))=> ((((fun (U:fofType)=> ((x1 U) cA)) U) x5) cB)) cA) ((x3 cA) ((((ex_intro fofType) (fun (Y:fofType)=> ((cR cA) Y))) cB) x2)))) ((x3 cA) ((((ex_intro fofType) (fun (Y:fofType)=> ((cR cA) Y))) cB) x2)))))))) as proof of ((ex fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA))))
% 2.45/2.62  Found (fun (x:((and ((and ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))) (forall (U:fofType) (V:fofType), (((cQ U) V)->(forall (Z:fofType), ((cR Z) V))))))=> (((fun (P:Type) (x0:(((and ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))->((forall (U:fofType) (V:fofType), (((cQ U) V)->(forall (Z:fofType), ((cR Z) V))))->P)))=> (((((and_rect ((and ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))) (forall (U:fofType) (V:fofType), (((cQ U) V)->(forall (Z:fofType), ((cR Z) V))))) P) x0) x)) ((ex fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA))))) (fun (x0:((and ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))) (x1:(forall (U:fofType) (V:fofType), (((cQ U) V)->(forall (Z:fofType), ((cR Z) V)))))=> (((fun (P:Type) (x2:(((cR cA) cB)->((forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))->P)))=> (((((and_rect ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))) P) x2) x0)) ((ex fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA))))) (fun (x2:((cR cA) cB)) (x3:(forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))=> ((((ex_intro fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA)))) cA) ((((conj ((cR cB) cA)) ((cQ cA) cA)) (((fun (U:fofType) (x5:((cQ U) cA))=> ((((fun (U:fofType)=> ((x1 U) cA)) U) x5) cB)) cA) ((x3 cA) ((((ex_intro fofType) (fun (Y:fofType)=> ((cR cA) Y))) cB) x2)))) ((x3 cA) ((((ex_intro fofType) (fun (Y:fofType)=> ((cR cA) Y))) cB) x2))))))))) as proof of ((ex fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA))))
% 2.45/2.62  Found (fun (x:((and ((and ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))) (forall (U:fofType) (V:fofType), (((cQ U) V)->(forall (Z:fofType), ((cR Z) V))))))=> (((fun (P:Type) (x0:(((and ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))->((forall (U:fofType) (V:fofType), (((cQ U) V)->(forall (Z:fofType), ((cR Z) V))))->P)))=> (((((and_rect ((and ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))) (forall (U:fofType) (V:fofType), (((cQ U) V)->(forall (Z:fofType), ((cR Z) V))))) P) x0) x)) ((ex fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA))))) (fun (x0:((and ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))) (x1:(forall (U:fofType) (V:fofType), (((cQ U) V)->(forall (Z:fofType), ((cR Z) V)))))=> (((fun (P:Type) (x2:(((cR cA) cB)->((forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))->P)))=> (((((and_rect ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))) P) x2) x0)) ((ex fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA))))) (fun (x2:((cR cA) cB)) (x3:(forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))=> ((((ex_intro fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA)))) cA) ((((conj ((cR cB) cA)) ((cQ cA) cA)) (((fun (U:fofType) (x5:((cQ U) cA))=> ((((fun (U:fofType)=> ((x1 U) cA)) U) x5) cB)) cA) ((x3 cA) ((((ex_intro fofType) (fun (Y:fofType)=> ((cR cA) Y))) cB) x2)))) ((x3 cA) ((((ex_intro fofType) (fun (Y:fofType)=> ((cR cA) Y))) cB) x2))))))))) as proof of (((and ((and ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))) (forall (U:fofType) (V:fofType), (((cQ U) V)->(forall (Z:fofType), ((cR Z) V)))))->((ex fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA)))))
% 2.45/2.62  Got proof (fun (x:((and ((and ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))) (forall (U:fofType) (V:fofType), (((cQ U) V)->(forall (Z:fofType), ((cR Z) V))))))=> (((fun (P:Type) (x0:(((and ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))->((forall (U:fofType) (V:fofType), (((cQ U) V)->(forall (Z:fofType), ((cR Z) V))))->P)))=> (((((and_rect ((and ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))) (forall (U:fofType) (V:fofType), (((cQ U) V)->(forall (Z:fofType), ((cR Z) V))))) P) x0) x)) ((ex fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA))))) (fun (x0:((and ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))) (x1:(forall (U:fofType) (V:fofType), (((cQ U) V)->(forall (Z:fofType), ((cR Z) V)))))=> (((fun (P:Type) (x2:(((cR cA) cB)->((forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))->P)))=> (((((and_rect ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))) P) x2) x0)) ((ex fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA))))) (fun (x2:((cR cA) cB)) (x3:(forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))=> ((((ex_intro fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA)))) cA) ((((conj ((cR cB) cA)) ((cQ cA) cA)) (((fun (U:fofType) (x5:((cQ U) cA))=> ((((fun (U:fofType)=> ((x1 U) cA)) U) x5) cB)) cA) ((x3 cA) ((((ex_intro fofType) (fun (Y:fofType)=> ((cR cA) Y))) cB) x2)))) ((x3 cA) ((((ex_intro fofType) (fun (Y:fofType)=> ((cR cA) Y))) cB) x2)))))))))
% 2.45/2.62  Time elapsed = 1.991121s
% 2.45/2.62  node=443 cost=2065.000000 depth=34
% 2.45/2.62  ::::::::::::::::::::::
% 2.45/2.62  % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% 2.45/2.62  % SZS output start Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% 2.45/2.62  (fun (x:((and ((and ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))) (forall (U:fofType) (V:fofType), (((cQ U) V)->(forall (Z:fofType), ((cR Z) V))))))=> (((fun (P:Type) (x0:(((and ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))->((forall (U:fofType) (V:fofType), (((cQ U) V)->(forall (Z:fofType), ((cR Z) V))))->P)))=> (((((and_rect ((and ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))) (forall (U:fofType) (V:fofType), (((cQ U) V)->(forall (Z:fofType), ((cR Z) V))))) P) x0) x)) ((ex fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA))))) (fun (x0:((and ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))) (x1:(forall (U:fofType) (V:fofType), (((cQ U) V)->(forall (Z:fofType), ((cR Z) V)))))=> (((fun (P:Type) (x2:(((cR cA) cB)->((forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))->P)))=> (((((and_rect ((cR cA) cB)) (forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X)))) P) x2) x0)) ((ex fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA))))) (fun (x2:((cR cA) cB)) (x3:(forall (X:fofType), (((ex fofType) (fun (Y:fofType)=> ((cR X) Y)))->((cQ X) X))))=> ((((ex_intro fofType) (fun (W:fofType)=> ((and ((cR cB) W)) ((cQ W) cA)))) cA) ((((conj ((cR cB) cA)) ((cQ cA) cA)) (((fun (U:fofType) (x5:((cQ U) cA))=> ((((fun (U:fofType)=> ((x1 U) cA)) U) x5) cB)) cA) ((x3 cA) ((((ex_intro fofType) (fun (Y:fofType)=> ((cR cA) Y))) cB) x2)))) ((x3 cA) ((((ex_intro fofType) (fun (Y:fofType)=> ((cR cA) Y))) cB) x2)))))))))
% 2.45/2.64  % SZS output end Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
%------------------------------------------------------------------------------