TSTP Solution File: SYO010^1 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SYO010^1 : TPTP v7.5.0. Released v3.7.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n004.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 0s
% DateTime : Tue Mar 29 00:50:23 EDT 2022

% Result   : Theorem 1.91s 2.10s
% Output   : Proof 1.91s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.06/0.11  % Problem    : SYO010^1 : TPTP v7.5.0. Released v3.7.0.
% 0.06/0.11  % Command    : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% 0.11/0.32  % Computer   : n004.cluster.edu
% 0.11/0.32  % Model      : x86_64 x86_64
% 0.11/0.32  % CPUModel   : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.11/0.32  % RAMPerCPU  : 8042.1875MB
% 0.11/0.32  % OS         : Linux 3.10.0-693.el7.x86_64
% 0.11/0.32  % CPULimit   : 300
% 0.11/0.32  % DateTime   : Fri Mar 11 00:06:25 EST 2022
% 0.11/0.32  % CPUTime    : 
% 0.11/0.33  ModuleCmd_Load.c(213):ERROR:105: Unable to locate a modulefile for 'python/python27'
% 0.11/0.33  Python 2.7.5
% 1.91/2.08  Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% 1.91/2.08  FOF formula (<kernel.Constant object at 0x27773f8>, <kernel.DependentProduct object at 0x2777b90>) of role type named leibeq_type
% 1.91/2.08  Using role type
% 1.91/2.08  Declaring leibeq:(fofType->(fofType->Prop))
% 1.91/2.08  FOF formula (((eq (fofType->(fofType->Prop))) leibeq) (fun (U:fofType) (V:fofType)=> (forall (Q:(fofType->Prop)), ((Q U)->(Q V))))) of role definition named leibeq
% 1.91/2.08  A new definition: (((eq (fofType->(fofType->Prop))) leibeq) (fun (U:fofType) (V:fofType)=> (forall (Q:(fofType->Prop)), ((Q U)->(Q V)))))
% 1.91/2.08  Defined: leibeq:=(fun (U:fofType) (V:fofType)=> (forall (Q:(fofType->Prop)), ((Q U)->(Q V))))
% 1.91/2.08  FOF formula (<kernel.Constant object at 0x2777bd8>, <kernel.DependentProduct object at 0x27777e8>) of role type named p_type
% 1.91/2.08  Using role type
% 1.91/2.08  Declaring p:((fofType->fofType)->Prop)
% 1.91/2.08  FOF formula (<kernel.Constant object at 0x27779e0>, <kernel.DependentProduct object at 0x24b4b48>) of role type named f_type
% 1.91/2.08  Using role type
% 1.91/2.08  Declaring f:(fofType->fofType)
% 1.91/2.08  FOF formula (((and (forall (X:fofType), ((leibeq (f X)) X))) (p (fun (X:fofType)=> X)))->(p (fun (X:fofType)=> (f X)))) of role conjecture named conj
% 1.91/2.08  Conjecture to prove = (((and (forall (X:fofType), ((leibeq (f X)) X))) (p (fun (X:fofType)=> X)))->(p (fun (X:fofType)=> (f X)))):Prop
% 1.91/2.08  Parameter fofType_DUMMY:fofType.
% 1.91/2.08  We need to prove ['(((and (forall (X:fofType), ((leibeq (f X)) X))) (p (fun (X:fofType)=> X)))->(p (fun (X:fofType)=> (f X))))']
% 1.91/2.08  Parameter fofType:Type.
% 1.91/2.08  Definition leibeq:=(fun (U:fofType) (V:fofType)=> (forall (Q:(fofType->Prop)), ((Q U)->(Q V)))):(fofType->(fofType->Prop)).
% 1.91/2.08  Parameter p:((fofType->fofType)->Prop).
% 1.91/2.08  Parameter f:(fofType->fofType).
% 1.91/2.08  Trying to prove (((and (forall (X:fofType), ((leibeq (f X)) X))) (p (fun (X:fofType)=> X)))->(p (fun (X:fofType)=> (f X))))
% 1.91/2.08  Found eq_ref000:=(eq_ref00 p):((p (fun (X:fofType)=> X))->(p (fun (X:fofType)=> X)))
% 1.91/2.08  Found (eq_ref00 p) as proof of (P (fun (X:fofType)=> X))
% 1.91/2.08  Found ((eq_ref0 (fun (X:fofType)=> X)) p) as proof of (P (fun (X:fofType)=> X))
% 1.91/2.08  Found (((eq_ref (fofType->fofType)) (fun (X:fofType)=> X)) p) as proof of (P (fun (X:fofType)=> X))
% 1.91/2.08  Found (((eq_ref (fofType->fofType)) (fun (X:fofType)=> X)) p) as proof of (P (fun (X:fofType)=> X))
% 1.91/2.08  Found eta_expansion_dep0000:=(eta_expansion_dep000 p):((p (fun (X:fofType)=> X))->(p (fun (x:fofType)=> x)))
% 1.91/2.08  Found (eta_expansion_dep000 p) as proof of (P (fun (X:fofType)=> X))
% 1.91/2.08  Found ((eta_expansion_dep00 (fun (X:fofType)=> X)) p) as proof of (P (fun (X:fofType)=> X))
% 1.91/2.08  Found (((eta_expansion_dep0 (fun (x2:fofType)=> fofType)) (fun (X:fofType)=> X)) p) as proof of (P (fun (X:fofType)=> X))
% 1.91/2.08  Found ((((eta_expansion_dep fofType) (fun (x2:fofType)=> fofType)) (fun (X:fofType)=> X)) p) as proof of (P (fun (X:fofType)=> X))
% 1.91/2.08  Found ((((eta_expansion_dep fofType) (fun (x2:fofType)=> fofType)) (fun (X:fofType)=> X)) p) as proof of (P (fun (X:fofType)=> X))
% 1.91/2.08  Found eta_expansion_dep0000:=(eta_expansion_dep000 p):((p (fun (X:fofType)=> X))->(p (fun (x:fofType)=> x)))
% 1.91/2.08  Found (eta_expansion_dep000 p) as proof of (P (fun (X:fofType)=> X))
% 1.91/2.08  Found ((eta_expansion_dep00 (fun (X:fofType)=> X)) p) as proof of (P (fun (X:fofType)=> X))
% 1.91/2.08  Found (((eta_expansion_dep0 (fun (x2:fofType)=> fofType)) (fun (X:fofType)=> X)) p) as proof of (P (fun (X:fofType)=> X))
% 1.91/2.08  Found ((((eta_expansion_dep fofType) (fun (x2:fofType)=> fofType)) (fun (X:fofType)=> X)) p) as proof of (P (fun (X:fofType)=> X))
% 1.91/2.08  Found ((((eta_expansion_dep fofType) (fun (x2:fofType)=> fofType)) (fun (X:fofType)=> X)) p) as proof of (P (fun (X:fofType)=> X))
% 1.91/2.08  Found functional_extensionality_dep00000:=(functional_extensionality_dep0000 x0):(((eq (fofType->fofType)) (fun (X:fofType)=> (f X))) (fun (X:fofType)=> X))
% 1.91/2.08  Found (functional_extensionality_dep0000 x0) as proof of (((eq (fofType->fofType)) (fun (X:fofType)=> (f X))) (fun (X:fofType)=> X))
% 1.91/2.08  Found ((functional_extensionality_dep000 (fun (X:fofType)=> X)) x0) as proof of (((eq (fofType->fofType)) (fun (X:fofType)=> (f X))) (fun (X:fofType)=> X))
% 1.91/2.08  Found (((functional_extensionality_dep00 (fun (X:fofType)=> (f X))) (fun (X:fofType)=> X)) x0) as proof of (((eq (fofType->fofType)) (fun (X:fofType)=> (f X))) (fun (X:fofType)=> X))
% 1.91/2.09  Found ((((functional_extensionality_dep0 (fun (x3:fofType)=> fofType)) (fun (X:fofType)=> (f X))) (fun (X:fofType)=> X)) x0) as proof of (((eq (fofType->fofType)) (fun (X:fofType)=> (f X))) (fun (X:fofType)=> X))
% 1.91/2.09  Found (((((functional_extensionality_dep fofType) (fun (x3:fofType)=> fofType)) (fun (X:fofType)=> (f X))) (fun (X:fofType)=> X)) x0) as proof of (((eq (fofType->fofType)) (fun (X:fofType)=> (f X))) (fun (X:fofType)=> X))
% 1.91/2.09  Found (((((functional_extensionality_dep fofType) (fun (x3:fofType)=> fofType)) (fun (X:fofType)=> (f X))) (fun (X:fofType)=> X)) x0) as proof of (((eq (fofType->fofType)) (fun (X:fofType)=> (f X))) (fun (X:fofType)=> X))
% 1.91/2.09  Found ((eq_sym0000 (((((functional_extensionality_dep fofType) (fun (x3:fofType)=> fofType)) (fun (X:fofType)=> (f X))) (fun (X:fofType)=> X)) x0)) (((eq_ref (fofType->fofType)) (fun (X:fofType)=> X)) p)) as proof of ((p (fun (X:fofType)=> X))->(p (fun (X:fofType)=> (f X))))
% 1.91/2.09  Found ((eq_sym0000 (((((functional_extensionality_dep fofType) (fun (x3:fofType)=> fofType)) (fun (X:fofType)=> (f X))) (fun (X:fofType)=> X)) x0)) (((eq_ref (fofType->fofType)) (fun (X:fofType)=> X)) p)) as proof of ((p (fun (X:fofType)=> X))->(p (fun (X:fofType)=> (f X))))
% 1.91/2.09  Found (((fun (x1:(((eq (fofType->fofType)) (fun (X:fofType)=> (f X))) (fun (X:fofType)=> X)))=> ((eq_sym000 x1) (fun (x3:(fofType->fofType))=> ((p (fun (X:fofType)=> X))->(p x3))))) (((((functional_extensionality_dep fofType) (fun (x3:fofType)=> fofType)) (fun (X:fofType)=> (f X))) (fun (X:fofType)=> X)) x0)) (((eq_ref (fofType->fofType)) (fun (X:fofType)=> X)) p)) as proof of ((p (fun (X:fofType)=> X))->(p (fun (X:fofType)=> (f X))))
% 1.91/2.09  Found (((fun (x1:(((eq (fofType->fofType)) (fun (X:fofType)=> (f X))) (fun (X:fofType)=> X)))=> (((eq_sym00 (fun (X:fofType)=> X)) x1) (fun (x3:(fofType->fofType))=> ((p (fun (X:fofType)=> X))->(p x3))))) (((((functional_extensionality_dep fofType) (fun (x3:fofType)=> fofType)) (fun (X:fofType)=> (f X))) (fun (X:fofType)=> X)) x0)) (((eq_ref (fofType->fofType)) (fun (X:fofType)=> X)) p)) as proof of ((p (fun (X:fofType)=> X))->(p (fun (X:fofType)=> (f X))))
% 1.91/2.09  Found (((fun (x1:(((eq (fofType->fofType)) (fun (X:fofType)=> (f X))) (fun (X:fofType)=> X)))=> ((((eq_sym0 (fun (X:fofType)=> (f X))) (fun (X:fofType)=> X)) x1) (fun (x3:(fofType->fofType))=> ((p (fun (X:fofType)=> X))->(p x3))))) (((((functional_extensionality_dep fofType) (fun (x3:fofType)=> fofType)) (fun (X:fofType)=> (f X))) (fun (X:fofType)=> X)) x0)) (((eq_ref (fofType->fofType)) (fun (X:fofType)=> X)) p)) as proof of ((p (fun (X:fofType)=> X))->(p (fun (X:fofType)=> (f X))))
% 1.91/2.09  Found (((fun (x1:(((eq (fofType->fofType)) (fun (X:fofType)=> (f X))) (fun (X:fofType)=> X)))=> (((((eq_sym (fofType->fofType)) (fun (X:fofType)=> (f X))) (fun (X:fofType)=> X)) x1) (fun (x3:(fofType->fofType))=> ((p (fun (X:fofType)=> X))->(p x3))))) (((((functional_extensionality_dep fofType) (fun (x3:fofType)=> fofType)) (fun (X:fofType)=> (f X))) (fun (X:fofType)=> X)) x0)) (((eq_ref (fofType->fofType)) (fun (X:fofType)=> X)) p)) as proof of ((p (fun (X:fofType)=> X))->(p (fun (X:fofType)=> (f X))))
% 1.91/2.09  Found (fun (x0:(forall (X:fofType), (((eq fofType) (f X)) X)))=> (((fun (x1:(((eq (fofType->fofType)) (fun (X:fofType)=> (f X))) (fun (X:fofType)=> X)))=> (((((eq_sym (fofType->fofType)) (fun (X:fofType)=> (f X))) (fun (X:fofType)=> X)) x1) (fun (x3:(fofType->fofType))=> ((p (fun (X:fofType)=> X))->(p x3))))) (((((functional_extensionality_dep fofType) (fun (x3:fofType)=> fofType)) (fun (X:fofType)=> (f X))) (fun (X:fofType)=> X)) x0)) (((eq_ref (fofType->fofType)) (fun (X:fofType)=> X)) p))) as proof of ((p (fun (X:fofType)=> X))->(p (fun (X:fofType)=> (f X))))
% 1.91/2.09  Found (fun (x0:(forall (X:fofType), (((eq fofType) (f X)) X)))=> (((fun (x1:(((eq (fofType->fofType)) (fun (X:fofType)=> (f X))) (fun (X:fofType)=> X)))=> (((((eq_sym (fofType->fofType)) (fun (X:fofType)=> (f X))) (fun (X:fofType)=> X)) x1) (fun (x3:(fofType->fofType))=> ((p (fun (X:fofType)=> X))->(p x3))))) (((((functional_extensionality_dep fofType) (fun (x3:fofType)=> fofType)) (fun (X:fofType)=> (f X))) (fun (X:fofType)=> X)) x0)) (((eq_ref (fofType->fofType)) (fun (X:fofType)=> X)) p))) as proof of ((forall (X:fofType), (((eq fofType) (f X)) X))->((p (fun (X:fofType)=> X))->(p (fun (X:fofType)=> (f X)))))
% 1.91/2.09  Found (and_rect00 (fun (x0:(forall (X:fofType), (((eq fofType) (f X)) X)))=> (((fun (x1:(((eq (fofType->fofType)) (fun (X:fofType)=> (f X))) (fun (X:fofType)=> X)))=> (((((eq_sym (fofType->fofType)) (fun (X:fofType)=> (f X))) (fun (X:fofType)=> X)) x1) (fun (x3:(fofType->fofType))=> ((p (fun (X:fofType)=> X))->(p x3))))) (((((functional_extensionality_dep fofType) (fun (x3:fofType)=> fofType)) (fun (X:fofType)=> (f X))) (fun (X:fofType)=> X)) x0)) (((eq_ref (fofType->fofType)) (fun (X:fofType)=> X)) p)))) as proof of (p (fun (X:fofType)=> (f X)))
% 1.91/2.09  Found ((and_rect0 (p (fun (X:fofType)=> (f X)))) (fun (x0:(forall (X:fofType), (((eq fofType) (f X)) X)))=> (((fun (x1:(((eq (fofType->fofType)) (fun (X:fofType)=> (f X))) (fun (X:fofType)=> X)))=> (((((eq_sym (fofType->fofType)) (fun (X:fofType)=> (f X))) (fun (X:fofType)=> X)) x1) (fun (x3:(fofType->fofType))=> ((p (fun (X:fofType)=> X))->(p x3))))) (((((functional_extensionality_dep fofType) (fun (x3:fofType)=> fofType)) (fun (X:fofType)=> (f X))) (fun (X:fofType)=> X)) x0)) (((eq_ref (fofType->fofType)) (fun (X:fofType)=> X)) p)))) as proof of (p (fun (X:fofType)=> (f X)))
% 1.91/2.09  Found (((fun (P:Type) (x0:((forall (X:fofType), (((eq fofType) (f X)) X))->((p (fun (X:fofType)=> X))->P)))=> (((((and_rect (forall (X:fofType), (((eq fofType) (f X)) X))) (p (fun (X:fofType)=> X))) P) x0) x)) (p (fun (X:fofType)=> (f X)))) (fun (x0:(forall (X:fofType), (((eq fofType) (f X)) X)))=> (((fun (x1:(((eq (fofType->fofType)) (fun (X:fofType)=> (f X))) (fun (X:fofType)=> X)))=> (((((eq_sym (fofType->fofType)) (fun (X:fofType)=> (f X))) (fun (X:fofType)=> X)) x1) (fun (x3:(fofType->fofType))=> ((p (fun (X:fofType)=> X))->(p x3))))) (((((functional_extensionality_dep fofType) (fun (x3:fofType)=> fofType)) (fun (X:fofType)=> (f X))) (fun (X:fofType)=> X)) x0)) (((eq_ref (fofType->fofType)) (fun (X:fofType)=> X)) p)))) as proof of (p (fun (X:fofType)=> (f X)))
% 1.91/2.09  Found (fun (x:((and (forall (X:fofType), (((eq fofType) (f X)) X))) (p (fun (X:fofType)=> X))))=> (((fun (P:Type) (x0:((forall (X:fofType), (((eq fofType) (f X)) X))->((p (fun (X:fofType)=> X))->P)))=> (((((and_rect (forall (X:fofType), (((eq fofType) (f X)) X))) (p (fun (X:fofType)=> X))) P) x0) x)) (p (fun (X:fofType)=> (f X)))) (fun (x0:(forall (X:fofType), (((eq fofType) (f X)) X)))=> (((fun (x1:(((eq (fofType->fofType)) (fun (X:fofType)=> (f X))) (fun (X:fofType)=> X)))=> (((((eq_sym (fofType->fofType)) (fun (X:fofType)=> (f X))) (fun (X:fofType)=> X)) x1) (fun (x3:(fofType->fofType))=> ((p (fun (X:fofType)=> X))->(p x3))))) (((((functional_extensionality_dep fofType) (fun (x3:fofType)=> fofType)) (fun (X:fofType)=> (f X))) (fun (X:fofType)=> X)) x0)) (((eq_ref (fofType->fofType)) (fun (X:fofType)=> X)) p))))) as proof of (p (fun (X:fofType)=> (f X)))
% 1.91/2.09  Found (fun (x:((and (forall (X:fofType), (((eq fofType) (f X)) X))) (p (fun (X:fofType)=> X))))=> (((fun (P:Type) (x0:((forall (X:fofType), (((eq fofType) (f X)) X))->((p (fun (X:fofType)=> X))->P)))=> (((((and_rect (forall (X:fofType), (((eq fofType) (f X)) X))) (p (fun (X:fofType)=> X))) P) x0) x)) (p (fun (X:fofType)=> (f X)))) (fun (x0:(forall (X:fofType), (((eq fofType) (f X)) X)))=> (((fun (x1:(((eq (fofType->fofType)) (fun (X:fofType)=> (f X))) (fun (X:fofType)=> X)))=> (((((eq_sym (fofType->fofType)) (fun (X:fofType)=> (f X))) (fun (X:fofType)=> X)) x1) (fun (x3:(fofType->fofType))=> ((p (fun (X:fofType)=> X))->(p x3))))) (((((functional_extensionality_dep fofType) (fun (x3:fofType)=> fofType)) (fun (X:fofType)=> (f X))) (fun (X:fofType)=> X)) x0)) (((eq_ref (fofType->fofType)) (fun (X:fofType)=> X)) p))))) as proof of (((and (forall (X:fofType), (((eq fofType) (f X)) X))) (p (fun (X:fofType)=> X)))->(p (fun (X:fofType)=> (f X))))
% 1.91/2.09  Found (fun (x:((and (forall (X:fofType), (((eq fofType) (f X)) X))) (p (fun (X:fofType)=> X))))=> (((fun (P:Type) (x0:((forall (X:fofType), (((eq fofType) (f X)) X))->((p (fun (X:fofType)=> X))->P)))=> (((((and_rect (forall (X:fofType), (((eq fofType) (f X)) X))) (p (fun (X:fofType)=> X))) P) x0) x)) (p (fun (X:fofType)=> (f X)))) (fun (x0:(forall (X:fofType), (((eq fofType) (f X)) X)))=> (((fun (x1:(((eq (fofType->fofType)) (fun (X:fofType)=> (f X))) (fun (X:fofType)=> X)))=> (((((eq_sym (fofType->fofType)) (fun (X:fofType)=> (f X))) (fun (X:fofType)=> X)) x1) (fun (x3:(fofType->fofType))=> ((p (fun (X:fofType)=> X))->(p x3))))) (((((functional_extensionality_dep fofType) (fun (x3:fofType)=> fofType)) (fun (X:fofType)=> (f X))) (fun (X:fofType)=> X)) x0)) (((eq_ref (fofType->fofType)) (fun (X:fofType)=> X)) p))))) as proof of (((and (forall (X:fofType), ((leibeq (f X)) X))) (p (fun (X:fofType)=> X)))->(p (fun (X:fofType)=> (f X))))
% 1.91/2.10  Got proof (fun (x:((and (forall (X:fofType), (((eq fofType) (f X)) X))) (p (fun (X:fofType)=> X))))=> (((fun (P:Type) (x0:((forall (X:fofType), (((eq fofType) (f X)) X))->((p (fun (X:fofType)=> X))->P)))=> (((((and_rect (forall (X:fofType), (((eq fofType) (f X)) X))) (p (fun (X:fofType)=> X))) P) x0) x)) (p (fun (X:fofType)=> (f X)))) (fun (x0:(forall (X:fofType), (((eq fofType) (f X)) X)))=> (((fun (x1:(((eq (fofType->fofType)) (fun (X:fofType)=> (f X))) (fun (X:fofType)=> X)))=> (((((eq_sym (fofType->fofType)) (fun (X:fofType)=> (f X))) (fun (X:fofType)=> X)) x1) (fun (x3:(fofType->fofType))=> ((p (fun (X:fofType)=> X))->(p x3))))) (((((functional_extensionality_dep fofType) (fun (x3:fofType)=> fofType)) (fun (X:fofType)=> (f X))) (fun (X:fofType)=> X)) x0)) (((eq_ref (fofType->fofType)) (fun (X:fofType)=> X)) p)))))
% 1.91/2.10  Time elapsed = 1.488407s
% 1.91/2.10  node=392 cost=639.000000 depth=19
% 1.91/2.10  ::::::::::::::::::::::
% 1.91/2.10  % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% 1.91/2.10  % SZS output start Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% 1.91/2.10  (fun (x:((and (forall (X:fofType), (((eq fofType) (f X)) X))) (p (fun (X:fofType)=> X))))=> (((fun (P:Type) (x0:((forall (X:fofType), (((eq fofType) (f X)) X))->((p (fun (X:fofType)=> X))->P)))=> (((((and_rect (forall (X:fofType), (((eq fofType) (f X)) X))) (p (fun (X:fofType)=> X))) P) x0) x)) (p (fun (X:fofType)=> (f X)))) (fun (x0:(forall (X:fofType), (((eq fofType) (f X)) X)))=> (((fun (x1:(((eq (fofType->fofType)) (fun (X:fofType)=> (f X))) (fun (X:fofType)=> X)))=> (((((eq_sym (fofType->fofType)) (fun (X:fofType)=> (f X))) (fun (X:fofType)=> X)) x1) (fun (x3:(fofType->fofType))=> ((p (fun (X:fofType)=> X))->(p x3))))) (((((functional_extensionality_dep fofType) (fun (x3:fofType)=> fofType)) (fun (X:fofType)=> (f X))) (fun (X:fofType)=> X)) x0)) (((eq_ref (fofType->fofType)) (fun (X:fofType)=> X)) p)))))
% 1.91/2.10  % SZS output end Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
%------------------------------------------------------------------------------