TSTP Solution File: SYN183-1 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : SYN183-1 : TPTP v8.1.2. Released v1.1.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n027.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Fri Sep  1 03:33:30 EDT 2023

% Result   : Unsatisfiable 13.92s 2.22s
% Output   : Proof 13.92s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.13  % Problem  : SYN183-1 : TPTP v8.1.2. Released v1.1.0.
% 0.00/0.14  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.14/0.36  % Computer : n027.cluster.edu
% 0.14/0.36  % Model    : x86_64 x86_64
% 0.14/0.36  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.14/0.36  % Memory   : 8042.1875MB
% 0.14/0.36  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.14/0.36  % CPULimit : 300
% 0.14/0.36  % WCLimit  : 300
% 0.14/0.36  % DateTime : Sat Aug 26 17:51:20 EDT 2023
% 0.14/0.36  % CPUTime  : 
% 13.92/2.22  Command-line arguments: --kbo-weight0 --lhs-weight 5 --flip-ordering --normalise-queue-percent 10 --cp-renormalise-threshold 10 --goal-heuristic
% 13.92/2.22  
% 13.92/2.22  % SZS status Unsatisfiable
% 13.92/2.22  
% 13.92/2.22  % SZS output start Proof
% 13.92/2.22  Take the following subset of the input axioms:
% 13.92/2.23    fof(axiom_13, axiom, r0(e)).
% 13.92/2.23    fof(axiom_28, axiom, k0(e)).
% 13.92/2.23    fof(prove_this, negated_conjecture, ~q5(e, e)).
% 13.92/2.23    fof(rule_090, axiom, p1(e, e, e) | (~r0(e) | ~k0(e))).
% 13.92/2.23    fof(rule_137, axiom, ![C, B, A2]: (n2(A2) | ~p1(B, C, A2))).
% 13.92/2.23    fof(rule_244, axiom, ![H]: (p3(H, H, H) | ~n2(H))).
% 13.92/2.23    fof(rule_277, axiom, ![J, A, B2]: (l4(J) | ~p3(A, B2, J))).
% 13.92/2.23    fof(rule_324, axiom, ![I]: (q5(I, I) | ~l4(I))).
% 13.92/2.23  
% 13.92/2.23  Now clausify the problem and encode Horn clauses using encoding 3 of
% 13.92/2.23  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 13.92/2.23  We repeatedly replace C & s=t => u=v by the two clauses:
% 13.92/2.23    fresh(y, y, x1...xn) = u
% 13.92/2.23    C => fresh(s, t, x1...xn) = v
% 13.92/2.23  where fresh is a fresh function symbol and x1..xn are the free
% 13.92/2.23  variables of u and v.
% 13.92/2.23  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 13.92/2.23  input problem has no model of domain size 1).
% 13.92/2.23  
% 13.92/2.23  The encoding turns the above axioms into the following unit equations and goals:
% 13.92/2.23  
% 13.92/2.23  Axiom 1 (axiom_13): r0(e) = true.
% 13.92/2.23  Axiom 2 (axiom_28): k0(e) = true.
% 13.92/2.23  Axiom 3 (rule_090): fresh320(X, X) = true.
% 13.92/2.23  Axiom 4 (rule_090): fresh321(X, X) = p1(e, e, e).
% 13.92/2.23  Axiom 5 (rule_090): fresh321(k0(e), true) = fresh320(r0(e), true).
% 13.92/2.23  Axiom 6 (rule_137): fresh262(X, X, Y) = true.
% 13.92/2.23  Axiom 7 (rule_244): fresh121(X, X, Y) = true.
% 13.92/2.23  Axiom 8 (rule_277): fresh79(X, X, Y) = true.
% 13.92/2.23  Axiom 9 (rule_324): fresh7(X, X, Y) = true.
% 13.92/2.23  Axiom 10 (rule_244): fresh121(n2(X), true, X) = p3(X, X, X).
% 13.92/2.23  Axiom 11 (rule_324): fresh7(l4(X), true, X) = q5(X, X).
% 13.92/2.23  Axiom 12 (rule_137): fresh262(p1(X, Y, Z), true, Z) = n2(Z).
% 13.92/2.23  Axiom 13 (rule_277): fresh79(p3(X, Y, Z), true, Z) = l4(Z).
% 13.92/2.23  
% 13.92/2.23  Goal 1 (prove_this): q5(e, e) = true.
% 13.92/2.23  Proof:
% 13.92/2.23    q5(e, e)
% 13.92/2.23  = { by axiom 11 (rule_324) R->L }
% 13.92/2.23    fresh7(l4(e), true, e)
% 13.92/2.23  = { by axiom 13 (rule_277) R->L }
% 13.92/2.23    fresh7(fresh79(p3(e, e, e), true, e), true, e)
% 13.92/2.23  = { by axiom 10 (rule_244) R->L }
% 13.92/2.23    fresh7(fresh79(fresh121(n2(e), true, e), true, e), true, e)
% 13.92/2.23  = { by axiom 12 (rule_137) R->L }
% 13.92/2.23    fresh7(fresh79(fresh121(fresh262(p1(e, e, e), true, e), true, e), true, e), true, e)
% 13.92/2.23  = { by axiom 4 (rule_090) R->L }
% 13.92/2.23    fresh7(fresh79(fresh121(fresh262(fresh321(true, true), true, e), true, e), true, e), true, e)
% 13.92/2.23  = { by axiom 2 (axiom_28) R->L }
% 13.92/2.23    fresh7(fresh79(fresh121(fresh262(fresh321(k0(e), true), true, e), true, e), true, e), true, e)
% 13.92/2.23  = { by axiom 5 (rule_090) }
% 13.92/2.23    fresh7(fresh79(fresh121(fresh262(fresh320(r0(e), true), true, e), true, e), true, e), true, e)
% 13.92/2.23  = { by axiom 1 (axiom_13) }
% 13.92/2.23    fresh7(fresh79(fresh121(fresh262(fresh320(true, true), true, e), true, e), true, e), true, e)
% 13.92/2.23  = { by axiom 3 (rule_090) }
% 13.92/2.23    fresh7(fresh79(fresh121(fresh262(true, true, e), true, e), true, e), true, e)
% 13.92/2.23  = { by axiom 6 (rule_137) }
% 13.92/2.23    fresh7(fresh79(fresh121(true, true, e), true, e), true, e)
% 13.92/2.23  = { by axiom 7 (rule_244) }
% 13.92/2.23    fresh7(fresh79(true, true, e), true, e)
% 13.92/2.23  = { by axiom 8 (rule_277) }
% 13.92/2.23    fresh7(true, true, e)
% 13.92/2.23  = { by axiom 9 (rule_324) }
% 13.92/2.23    true
% 13.92/2.23  % SZS output end Proof
% 13.92/2.23  
% 13.92/2.23  RESULT: Unsatisfiable (the axioms are contradictory).
%------------------------------------------------------------------------------