TSTP Solution File: SWV235+1 by CSE_E---1.5

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : CSE_E---1.5
% Problem  : SWV235+1 : TPTP v8.1.2. Released v3.2.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : java -jar /export/starexec/sandbox2/solver/bin/mcs_scs.jar %d %s

% Computer : n023.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 21:37:08 EDT 2023

% Result   : Theorem 0.53s 0.65s
% Output   : CNFRefutation 0.53s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   12
%            Number of leaves      :   31
% Syntax   : Number of formulae    :   74 (  32 unt;  15 typ;   0 def)
%            Number of atoms       :  113 (  16 equ)
%            Maximal formula atoms :    4 (   1 avg)
%            Number of connectives :   97 (  43   ~;  40   |;   8   &)
%                                         (   0 <=>;   6  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    8 (   3 avg)
%            Maximal term depth    :    4 (   1 avg)
%            Number of types       :    2 (   0 usr)
%            Number of type conns  :    7 (   4   >;   3   *;   0   +;   0  <<)
%            Number of predicates  :    3 (   1 usr;   1 prp; 0-2 aty)
%            Number of functors    :   14 (  14 usr;  11 con; 0-2 aty)
%            Number of variables   :   85 (   1 sgn;  42   !;   0   ?;   0   :)

% Comments : 
%------------------------------------------------------------------------------
tff(decl_22,type,
    xor: ( $i * $i ) > $i ).

tff(decl_23,type,
    crypt: ( $i * $i ) > $i ).

tff(decl_24,type,
    decrypt: ( $i * $i ) > $i ).

tff(decl_25,type,
    id: $i ).

tff(decl_26,type,
    p: $i > $o ).

tff(decl_27,type,
    km: $i ).

tff(decl_28,type,
    imp: $i ).

tff(decl_29,type,
    exp: $i ).

tff(decl_30,type,
    kp: $i ).

tff(decl_31,type,
    data: $i ).

tff(decl_32,type,
    pin: $i ).

tff(decl_33,type,
    pp: $i ).

tff(decl_34,type,
    rand: $i ).

tff(decl_35,type,
    kek: $i ).

tff(decl_36,type,
    a: $i ).

fof(key_part_import___part_2,axiom,
    ! [X6,X9,X11] :
      ( ( p(X6)
        & p(crypt(xor(km,xor(kp,X9)),X11))
        & p(X9) )
     => p(crypt(xor(km,xor(X9,kp)),xor(X6,X11))) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',key_part_import___part_2) ).

fof(xor_rules_2,axiom,
    ! [X1] : xor(X1,X1) = id,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',xor_rules_2) ).

fof(key_part_import___part_1,axiom,
    ! [X10,X9] :
      ( ( p(X10)
        & p(X9) )
     => p(crypt(xor(km,xor(kp,X9)),X10)) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',key_part_import___part_1) ).

fof(xor_commutative,axiom,
    ! [X1,X2] : xor(X1,X2) = xor(X2,X1),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',xor_commutative) ).

fof(xor_associative,axiom,
    ! [X1,X2,X3] : xor(X1,xor(X2,X3)) = xor(xor(X1,X2),X3),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',xor_associative) ).

fof(an_account_number,axiom,
    p(a),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',an_account_number) ).

fof(xor_rules_1,axiom,
    ! [X1] : xor(X1,id) = X1,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',xor_rules_1) ).

fof(combine_with_XOR,axiom,
    ! [X1,X2] :
      ( ( p(X1)
        & p(X2) )
     => p(xor(X1,X2)) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',combine_with_XOR) ).

fof(key_export,axiom,
    ! [X9,X6,X4] :
      ( ( p(crypt(xor(km,X9),X6))
        & p(X9)
        & p(crypt(xor(km,exp),X4)) )
     => p(crypt(xor(X4,X9),X6)) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',key_export) ).

fof(initial_knowledge_of_intruder_1,axiom,
    p(kp),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',initial_knowledge_of_intruder_1) ).

fof(initial_knowledge_of_intruder_11,axiom,
    p(exp),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',initial_knowledge_of_intruder_11) ).

fof(find_pin,conjecture,
    p(crypt(pp,a)),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',find_pin) ).

fof(encrypt_knowledge,axiom,
    ! [X1,X2] :
      ( ( p(X2)
        & p(X1) )
     => p(crypt(X1,X2)) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',encrypt_knowledge) ).

fof(decrypt_knowledge,axiom,
    ! [X1,X2] :
      ( ( p(crypt(X1,X2))
        & p(X1) )
     => p(X2) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',decrypt_knowledge) ).

fof(initial_knowledge_of_intruder_6,axiom,
    p(crypt(xor(km,pin),pp)),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',initial_knowledge_of_intruder_6) ).

fof(initial_knowledge_of_intruder_5,axiom,
    p(pin),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',initial_knowledge_of_intruder_5) ).

fof(c_0_16,plain,
    ! [X31,X32,X33] :
      ( ~ p(X31)
      | ~ p(crypt(xor(km,xor(kp,X32)),X33))
      | ~ p(X32)
      | p(crypt(xor(km,xor(X32,kp)),xor(X31,X33))) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[key_part_import___part_2])]) ).

fof(c_0_17,plain,
    ! [X20] : xor(X20,X20) = id,
    inference(variable_rename,[status(thm)],[xor_rules_2]) ).

fof(c_0_18,plain,
    ! [X29,X30] :
      ( ~ p(X29)
      | ~ p(X30)
      | p(crypt(xor(km,xor(kp,X30)),X29)) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[key_part_import___part_1])]) ).

cnf(c_0_19,plain,
    ( p(crypt(xor(km,xor(X2,kp)),xor(X1,X3)))
    | ~ p(X1)
    | ~ p(crypt(xor(km,xor(kp,X2)),X3))
    | ~ p(X2) ),
    inference(split_conjunct,[status(thm)],[c_0_16]) ).

cnf(c_0_20,plain,
    xor(X1,X1) = id,
    inference(split_conjunct,[status(thm)],[c_0_17]) ).

cnf(c_0_21,plain,
    ( p(crypt(xor(km,xor(kp,X2)),X1))
    | ~ p(X1)
    | ~ p(X2) ),
    inference(split_conjunct,[status(thm)],[c_0_18]) ).

fof(c_0_22,plain,
    ! [X12,X13] : xor(X12,X13) = xor(X13,X12),
    inference(variable_rename,[status(thm)],[xor_commutative]) ).

fof(c_0_23,plain,
    ! [X14,X15,X16] : xor(X14,xor(X15,X16)) = xor(xor(X14,X15),X16),
    inference(variable_rename,[status(thm)],[xor_associative]) ).

cnf(c_0_24,plain,
    ( p(crypt(xor(km,xor(X1,kp)),id))
    | ~ p(X1)
    | ~ p(X2) ),
    inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_19,c_0_20]),c_0_21]) ).

cnf(c_0_25,plain,
    p(a),
    inference(split_conjunct,[status(thm)],[an_account_number]) ).

cnf(c_0_26,plain,
    xor(X1,X2) = xor(X2,X1),
    inference(split_conjunct,[status(thm)],[c_0_22]) ).

cnf(c_0_27,plain,
    xor(X1,xor(X2,X3)) = xor(xor(X1,X2),X3),
    inference(split_conjunct,[status(thm)],[c_0_23]) ).

fof(c_0_28,plain,
    ! [X19] : xor(X19,id) = X19,
    inference(variable_rename,[status(thm)],[xor_rules_1]) ).

cnf(c_0_29,plain,
    ( p(crypt(xor(km,xor(X1,kp)),id))
    | ~ p(X1) ),
    inference(spm,[status(thm)],[c_0_24,c_0_25]) ).

cnf(c_0_30,plain,
    xor(X1,xor(X2,X3)) = xor(X3,xor(X1,X2)),
    inference(spm,[status(thm)],[c_0_26,c_0_27]) ).

cnf(c_0_31,plain,
    xor(X1,id) = X1,
    inference(split_conjunct,[status(thm)],[c_0_28]) ).

cnf(c_0_32,plain,
    ( p(crypt(xor(km,xor(kp,X1)),id))
    | ~ p(X1) ),
    inference(spm,[status(thm)],[c_0_29,c_0_26]) ).

cnf(c_0_33,plain,
    xor(X1,xor(X1,X2)) = X2,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_30,c_0_20]),c_0_31]) ).

cnf(c_0_34,plain,
    ( p(crypt(xor(km,X1),id))
    | ~ p(xor(kp,X1)) ),
    inference(spm,[status(thm)],[c_0_32,c_0_33]) ).

cnf(c_0_35,plain,
    xor(X1,xor(X2,X3)) = xor(X2,xor(X1,X3)),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_27,c_0_26]),c_0_27]) ).

fof(c_0_36,plain,
    ! [X47,X48] :
      ( ~ p(X47)
      | ~ p(X48)
      | p(xor(X47,X48)) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[combine_with_XOR])]) ).

cnf(c_0_37,plain,
    ( p(crypt(X1,id))
    | ~ p(xor(km,xor(kp,X1))) ),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_34,c_0_33]),c_0_35]) ).

cnf(c_0_38,plain,
    ( p(xor(X1,X2))
    | ~ p(X1)
    | ~ p(X2) ),
    inference(split_conjunct,[status(thm)],[c_0_36]) ).

fof(c_0_39,plain,
    ! [X26,X27,X28] :
      ( ~ p(crypt(xor(km,X26),X27))
      | ~ p(X26)
      | ~ p(crypt(xor(km,exp),X28))
      | p(crypt(xor(X28,X26),X27)) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[key_export])]) ).

cnf(c_0_40,plain,
    ( p(crypt(X1,id))
    | ~ p(xor(km,xor(X1,kp))) ),
    inference(spm,[status(thm)],[c_0_37,c_0_26]) ).

cnf(c_0_41,plain,
    ( p(xor(X1,xor(X2,X3)))
    | ~ p(xor(X1,X2))
    | ~ p(X3) ),
    inference(spm,[status(thm)],[c_0_38,c_0_27]) ).

cnf(c_0_42,plain,
    p(kp),
    inference(split_conjunct,[status(thm)],[initial_knowledge_of_intruder_1]) ).

cnf(c_0_43,plain,
    ( p(crypt(xor(X3,X1),X2))
    | ~ p(crypt(xor(km,X1),X2))
    | ~ p(X1)
    | ~ p(crypt(xor(km,exp),X3)) ),
    inference(split_conjunct,[status(thm)],[c_0_39]) ).

cnf(c_0_44,plain,
    ( p(crypt(X1,id))
    | ~ p(xor(km,X1)) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_40,c_0_41]),c_0_42])]) ).

cnf(c_0_45,plain,
    xor(id,X1) = X1,
    inference(spm,[status(thm)],[c_0_31,c_0_26]) ).

cnf(c_0_46,plain,
    p(exp),
    inference(split_conjunct,[status(thm)],[initial_knowledge_of_intruder_11]) ).

fof(c_0_47,negated_conjecture,
    ~ p(crypt(pp,a)),
    inference(fof_simplification,[status(thm)],[inference(assume_negation,[status(cth)],[find_pin])]) ).

fof(c_0_48,plain,
    ! [X51,X52] :
      ( ~ p(X52)
      | ~ p(X51)
      | p(crypt(X51,X52)) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[encrypt_knowledge])]) ).

fof(c_0_49,plain,
    ! [X49,X50] :
      ( ~ p(crypt(X49,X50))
      | ~ p(X49)
      | p(X50) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[decrypt_knowledge])]) ).

cnf(c_0_50,plain,
    ( p(crypt(X1,X2))
    | ~ p(crypt(xor(km,X1),X2))
    | ~ p(X1) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_43,c_0_44]),c_0_45]),c_0_33]),c_0_46])]) ).

cnf(c_0_51,plain,
    p(crypt(xor(km,pin),pp)),
    inference(split_conjunct,[status(thm)],[initial_knowledge_of_intruder_6]) ).

cnf(c_0_52,plain,
    p(pin),
    inference(split_conjunct,[status(thm)],[initial_knowledge_of_intruder_5]) ).

cnf(c_0_53,negated_conjecture,
    ~ p(crypt(pp,a)),
    inference(split_conjunct,[status(thm)],[c_0_47]) ).

cnf(c_0_54,plain,
    ( p(crypt(X2,X1))
    | ~ p(X1)
    | ~ p(X2) ),
    inference(split_conjunct,[status(thm)],[c_0_48]) ).

cnf(c_0_55,plain,
    ( p(X2)
    | ~ p(crypt(X1,X2))
    | ~ p(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_49]) ).

cnf(c_0_56,plain,
    p(crypt(pin,pp)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_50,c_0_51]),c_0_52])]) ).

cnf(c_0_57,negated_conjecture,
    ~ p(pp),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_53,c_0_54]),c_0_25])]) ).

cnf(c_0_58,plain,
    $false,
    inference(sr,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_55,c_0_56]),c_0_52])]),c_0_57]),
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.06/0.12  % Problem    : SWV235+1 : TPTP v8.1.2. Released v3.2.0.
% 0.06/0.13  % Command    : java -jar /export/starexec/sandbox2/solver/bin/mcs_scs.jar %d %s
% 0.13/0.34  % Computer : n023.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit   : 300
% 0.13/0.34  % WCLimit    : 300
% 0.13/0.34  % DateTime   : Tue Aug 29 04:09:25 EDT 2023
% 0.13/0.34  % CPUTime  : 
% 0.51/0.57  start to proof: theBenchmark
% 0.53/0.65  % Version  : CSE_E---1.5
% 0.53/0.65  % Problem  : theBenchmark.p
% 0.53/0.65  % Proof found
% 0.53/0.65  % SZS status Theorem for theBenchmark.p
% 0.53/0.65  % SZS output start Proof
% See solution above
% 0.53/0.65  % Total time : 0.074000 s
% 0.53/0.65  % SZS output end Proof
% 0.53/0.65  % Total time : 0.078000 s
%------------------------------------------------------------------------------