TSTP Solution File: SWV233+1 by SRASS---0.1

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : SRASS---0.1
% Problem  : SWV233+1 : TPTP v5.0.0. Released v3.2.0.
% Transfm  : none
% Format   : tptp
% Command  : SRASS -q2 -a 0 10 10 10 -i3 -n60 %s

% Computer : art11.cs.miami.edu
% Model    : i686 i686
% CPU      : Intel(R) Pentium(R) 4 CPU 3.00GHz @ 3000MHz
% Memory   : 2006MB
% OS       : Linux 2.6.31.5-127.fc12.i686.PAE
% CPULimit : 300s
% DateTime : Thu Dec 30 08:51:39 EST 2010

% Result   : Theorem 1.14s
% Output   : Solution 1.14s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% Reading problem from /tmp/SystemOnTPTP19015/SWV233+1.tptp
% Adding relevance values
% Extracting the conjecture
% Sorting axioms by relevance
% Looking for THM       ... 
% found
% SZS status THM for /tmp/SystemOnTPTP19015/SWV233+1.tptp
% SZS output start Solution for /tmp/SystemOnTPTP19015/SWV233+1.tptp
% TreeLimitedRun: ----------------------------------------------------------
% TreeLimitedRun: /home/graph/tptp/Systems/EP---1.2/eproof --print-statistics -xAuto -tAuto --cpu-limit=60 --proof-time-unlimited --memory-limit=Auto --tstp-in --tstp-out /tmp/SRASS.s.p 
% TreeLimitedRun: CPU time limit is 60s
% TreeLimitedRun: WC  time limit is 120s
% TreeLimitedRun: PID is 19147
% TreeLimitedRun: ----------------------------------------------------------
% PrfWatch: 0.00 CPU 0.02 WC
% # Preprocessing time     : 0.012 s
% # Problem is unsatisfiable (or provable), constructing proof object
% # SZS status Theorem
% # SZS output start CNFRefutation.
% fof(1, axiom,![X1]:![X2]:(knows(concatenate(X1,X2))=>(knows(X1)&knows(X2))),file('/tmp/SRASS.s.p', construct_message_2)).
% fof(2, axiom,![X1]:![X2]:((knows(symmetric_encrypt(X1,X2))&knows(X2))=>knows(X1)),file('/tmp/SRASS.s.p', symmetric_encrypt_equation)).
% fof(4, axiom,![X5]:![X6]:decrypt(encrypt(X5,X6),inverse(X6))=X5,file('/tmp/SRASS.s.p', decrypt_axiom)).
% fof(5, axiom,![X5]:![X6]:extract(sign(X5,inverse(X6)),X6)=X5,file('/tmp/SRASS.s.p', sign_axiom)).
% fof(6, axiom,![X1]:![X2]:((knows(encrypt(X1,X2))&knows(inverse(X2)))=>knows(X1)),file('/tmp/SRASS.s.p', encrypt_equation)).
% fof(7, axiom,![X5]:![X6]:((knows(sign(X5,inverse(X6)))&knows(X6))=>knows(X5)),file('/tmp/SRASS.s.p', sign_equation)).
% fof(8, axiom,![X3]:![X4]:head(concatenate(X3,X4))=X3,file('/tmp/SRASS.s.p', head_axiom)).
% fof(9, axiom,![X3]:![X4]:tail(concatenate(X3,X4))=X4,file('/tmp/SRASS.s.p', tail_axiom)).
% fof(10, axiom,![X3]:first(X3)=head(X3),file('/tmp/SRASS.s.p', first_axiom)).
% fof(11, axiom,((knows(k_ca)&knows(inverse(k_a)))&knows(k_a)),file('/tmp/SRASS.s.p', previous_knowledge)).
% fof(14, axiom,![X3]:second(X3)=head(tail(X3)),file('/tmp/SRASS.s.p', second_axiom)).
% fof(17, axiom,![X7]:![X8]:![X9]:![X10]:![X11]:((knows(concatenate(n,concatenate(k_c,sign(concatenate(c,concatenate(k_c,eol)),inverse(k_c)))))&((((knows(X10)&knows(X11))&first(extract(X11,k_ca))=s)&second(extract(decrypt(X10,inverse(k_c)),second(extract(X11,k_ca))))=n)=>knows(symmetric_encrypt(secret,first(extract(decrypt(X10,inverse(k_c)),second(extract(X11,k_ca))))))))&((((knows(X7)&knows(X8))&knows(X9))&second(extract(X9,X8))=X8)=>knows(concatenate(encrypt(sign(concatenate(kgen(X8),concatenate(X7,eol)),inverse(k_s)),X8),sign(concatenate(s,concatenate(k_s,eol)),inverse(k_ca)))))),file('/tmp/SRASS.s.p', protocol)).
% fof(18, axiom,![X1]:![X2]:((knows(X1)&knows(X2))=>((((((knows(concatenate(X1,X2))&knows(encrypt(X1,X2)))&knows(symmetric_encrypt(X1,X2)))&knows(decrypt(X1,X2)))&knows(symmetric_decrypt(X1,X2)))&knows(extract(X1,X2)))&knows(sign(X1,X2)))),file('/tmp/SRASS.s.p', construct_message_1)).
% fof(19, conjecture,knows(secret),file('/tmp/SRASS.s.p', attack)).
% fof(20, negated_conjecture,~(knows(secret)),inference(assume_negation,[status(cth)],[19])).
% fof(21, negated_conjecture,~(knows(secret)),inference(fof_simplification,[status(thm)],[20,theory(equality)])).
% fof(22, plain,![X1]:![X2]:(~(knows(concatenate(X1,X2)))|(knows(X1)&knows(X2))),inference(fof_nnf,[status(thm)],[1])).
% fof(23, plain,![X3]:![X4]:(~(knows(concatenate(X3,X4)))|(knows(X3)&knows(X4))),inference(variable_rename,[status(thm)],[22])).
% fof(24, plain,![X3]:![X4]:((knows(X3)|~(knows(concatenate(X3,X4))))&(knows(X4)|~(knows(concatenate(X3,X4))))),inference(distribute,[status(thm)],[23])).
% cnf(25,plain,(knows(X2)|~knows(concatenate(X1,X2))),inference(split_conjunct,[status(thm)],[24])).
% cnf(26,plain,(knows(X1)|~knows(concatenate(X1,X2))),inference(split_conjunct,[status(thm)],[24])).
% fof(27, plain,![X1]:![X2]:((~(knows(symmetric_encrypt(X1,X2)))|~(knows(X2)))|knows(X1)),inference(fof_nnf,[status(thm)],[2])).
% fof(28, plain,![X3]:![X4]:((~(knows(symmetric_encrypt(X3,X4)))|~(knows(X4)))|knows(X3)),inference(variable_rename,[status(thm)],[27])).
% cnf(29,plain,(knows(X1)|~knows(X2)|~knows(symmetric_encrypt(X1,X2))),inference(split_conjunct,[status(thm)],[28])).
% fof(33, plain,![X7]:![X8]:decrypt(encrypt(X7,X8),inverse(X8))=X7,inference(variable_rename,[status(thm)],[4])).
% cnf(34,plain,(decrypt(encrypt(X1,X2),inverse(X2))=X1),inference(split_conjunct,[status(thm)],[33])).
% fof(35, plain,![X7]:![X8]:extract(sign(X7,inverse(X8)),X8)=X7,inference(variable_rename,[status(thm)],[5])).
% cnf(36,plain,(extract(sign(X1,inverse(X2)),X2)=X1),inference(split_conjunct,[status(thm)],[35])).
% fof(37, plain,![X1]:![X2]:((~(knows(encrypt(X1,X2)))|~(knows(inverse(X2))))|knows(X1)),inference(fof_nnf,[status(thm)],[6])).
% fof(38, plain,![X3]:![X4]:((~(knows(encrypt(X3,X4)))|~(knows(inverse(X4))))|knows(X3)),inference(variable_rename,[status(thm)],[37])).
% cnf(39,plain,(knows(X1)|~knows(inverse(X2))|~knows(encrypt(X1,X2))),inference(split_conjunct,[status(thm)],[38])).
% fof(40, plain,![X5]:![X6]:((~(knows(sign(X5,inverse(X6))))|~(knows(X6)))|knows(X5)),inference(fof_nnf,[status(thm)],[7])).
% fof(41, plain,![X7]:![X8]:((~(knows(sign(X7,inverse(X8))))|~(knows(X8)))|knows(X7)),inference(variable_rename,[status(thm)],[40])).
% cnf(42,plain,(knows(X1)|~knows(X2)|~knows(sign(X1,inverse(X2)))),inference(split_conjunct,[status(thm)],[41])).
% fof(43, plain,![X5]:![X6]:head(concatenate(X5,X6))=X5,inference(variable_rename,[status(thm)],[8])).
% cnf(44,plain,(head(concatenate(X1,X2))=X1),inference(split_conjunct,[status(thm)],[43])).
% fof(45, plain,![X5]:![X6]:tail(concatenate(X5,X6))=X6,inference(variable_rename,[status(thm)],[9])).
% cnf(46,plain,(tail(concatenate(X1,X2))=X2),inference(split_conjunct,[status(thm)],[45])).
% fof(47, plain,![X4]:first(X4)=head(X4),inference(variable_rename,[status(thm)],[10])).
% cnf(48,plain,(first(X1)=head(X1)),inference(split_conjunct,[status(thm)],[47])).
% cnf(49,plain,(knows(k_a)),inference(split_conjunct,[status(thm)],[11])).
% cnf(50,plain,(knows(inverse(k_a))),inference(split_conjunct,[status(thm)],[11])).
% cnf(51,plain,(knows(k_ca)),inference(split_conjunct,[status(thm)],[11])).
% fof(60, plain,![X4]:second(X4)=head(tail(X4)),inference(variable_rename,[status(thm)],[14])).
% cnf(61,plain,(second(X1)=head(tail(X1))),inference(split_conjunct,[status(thm)],[60])).
% fof(66, plain,![X7]:![X8]:![X9]:![X10]:![X11]:((knows(concatenate(n,concatenate(k_c,sign(concatenate(c,concatenate(k_c,eol)),inverse(k_c)))))&((((~(knows(X10))|~(knows(X11)))|~(first(extract(X11,k_ca))=s))|~(second(extract(decrypt(X10,inverse(k_c)),second(extract(X11,k_ca))))=n))|knows(symmetric_encrypt(secret,first(extract(decrypt(X10,inverse(k_c)),second(extract(X11,k_ca))))))))&((((~(knows(X7))|~(knows(X8)))|~(knows(X9)))|~(second(extract(X9,X8))=X8))|knows(concatenate(encrypt(sign(concatenate(kgen(X8),concatenate(X7,eol)),inverse(k_s)),X8),sign(concatenate(s,concatenate(k_s,eol)),inverse(k_ca)))))),inference(fof_nnf,[status(thm)],[17])).
% fof(67, plain,![X12]:![X13]:![X14]:![X15]:![X16]:((knows(concatenate(n,concatenate(k_c,sign(concatenate(c,concatenate(k_c,eol)),inverse(k_c)))))&((((~(knows(X15))|~(knows(X16)))|~(first(extract(X16,k_ca))=s))|~(second(extract(decrypt(X15,inverse(k_c)),second(extract(X16,k_ca))))=n))|knows(symmetric_encrypt(secret,first(extract(decrypt(X15,inverse(k_c)),second(extract(X16,k_ca))))))))&((((~(knows(X12))|~(knows(X13)))|~(knows(X14)))|~(second(extract(X14,X13))=X13))|knows(concatenate(encrypt(sign(concatenate(kgen(X13),concatenate(X12,eol)),inverse(k_s)),X13),sign(concatenate(s,concatenate(k_s,eol)),inverse(k_ca)))))),inference(variable_rename,[status(thm)],[66])).
% cnf(68,plain,(knows(concatenate(encrypt(sign(concatenate(kgen(X1),concatenate(X2,eol)),inverse(k_s)),X1),sign(concatenate(s,concatenate(k_s,eol)),inverse(k_ca))))|second(extract(X3,X1))!=X1|~knows(X3)|~knows(X1)|~knows(X2)),inference(split_conjunct,[status(thm)],[67])).
% cnf(69,plain,(knows(symmetric_encrypt(secret,first(extract(decrypt(X1,inverse(k_c)),second(extract(X2,k_ca))))))|second(extract(decrypt(X1,inverse(k_c)),second(extract(X2,k_ca))))!=n|first(extract(X2,k_ca))!=s|~knows(X2)|~knows(X1)),inference(split_conjunct,[status(thm)],[67])).
% cnf(70,plain,(knows(concatenate(n,concatenate(k_c,sign(concatenate(c,concatenate(k_c,eol)),inverse(k_c)))))),inference(split_conjunct,[status(thm)],[67])).
% fof(71, plain,![X1]:![X2]:((~(knows(X1))|~(knows(X2)))|((((((knows(concatenate(X1,X2))&knows(encrypt(X1,X2)))&knows(symmetric_encrypt(X1,X2)))&knows(decrypt(X1,X2)))&knows(symmetric_decrypt(X1,X2)))&knows(extract(X1,X2)))&knows(sign(X1,X2)))),inference(fof_nnf,[status(thm)],[18])).
% fof(72, plain,![X3]:![X4]:((~(knows(X3))|~(knows(X4)))|((((((knows(concatenate(X3,X4))&knows(encrypt(X3,X4)))&knows(symmetric_encrypt(X3,X4)))&knows(decrypt(X3,X4)))&knows(symmetric_decrypt(X3,X4)))&knows(extract(X3,X4)))&knows(sign(X3,X4)))),inference(variable_rename,[status(thm)],[71])).
% fof(73, plain,![X3]:![X4]:(((((((knows(concatenate(X3,X4))|(~(knows(X3))|~(knows(X4))))&(knows(encrypt(X3,X4))|(~(knows(X3))|~(knows(X4)))))&(knows(symmetric_encrypt(X3,X4))|(~(knows(X3))|~(knows(X4)))))&(knows(decrypt(X3,X4))|(~(knows(X3))|~(knows(X4)))))&(knows(symmetric_decrypt(X3,X4))|(~(knows(X3))|~(knows(X4)))))&(knows(extract(X3,X4))|(~(knows(X3))|~(knows(X4)))))&(knows(sign(X3,X4))|(~(knows(X3))|~(knows(X4))))),inference(distribute,[status(thm)],[72])).
% cnf(74,plain,(knows(sign(X2,X1))|~knows(X1)|~knows(X2)),inference(split_conjunct,[status(thm)],[73])).
% cnf(79,plain,(knows(encrypt(X2,X1))|~knows(X1)|~knows(X2)),inference(split_conjunct,[status(thm)],[73])).
% cnf(80,plain,(knows(concatenate(X2,X1))|~knows(X1)|~knows(X2)),inference(split_conjunct,[status(thm)],[73])).
% cnf(81,negated_conjecture,(~knows(secret)),inference(split_conjunct,[status(thm)],[21])).
% cnf(82,plain,(knows(symmetric_encrypt(secret,head(extract(decrypt(X1,inverse(k_c)),second(extract(X2,k_ca))))))|head(extract(X2,k_ca))!=s|second(extract(decrypt(X1,inverse(k_c)),second(extract(X2,k_ca))))!=n|~knows(X2)|~knows(X1)),inference(rw,[status(thm)],[inference(rw,[status(thm)],[69,48,theory(equality)]),48,theory(equality)]),['unfolding']).
% cnf(83,plain,(knows(concatenate(encrypt(sign(concatenate(kgen(X1),concatenate(X2,eol)),inverse(k_s)),X1),sign(concatenate(s,concatenate(k_s,eol)),inverse(k_ca))))|head(tail(extract(X3,X1)))!=X1|~knows(X3)|~knows(X2)|~knows(X1)),inference(rw,[status(thm)],[68,61,theory(equality)]),['unfolding']).
% cnf(84,plain,(knows(symmetric_encrypt(secret,head(extract(decrypt(X1,inverse(k_c)),head(tail(extract(X2,k_ca)))))))|head(extract(X2,k_ca))!=s|head(tail(extract(decrypt(X1,inverse(k_c)),head(tail(extract(X2,k_ca))))))!=n|~knows(X2)|~knows(X1)),inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[82,61,theory(equality)]),61,theory(equality)]),61,theory(equality)]),['unfolding']).
% cnf(87,plain,(knows(X1)|~knows(encrypt(X1,k_a))),inference(spm,[status(thm)],[39,50,theory(equality)])).
% cnf(98,plain,(knows(concatenate(k_c,sign(concatenate(c,concatenate(k_c,eol)),inverse(k_c))))),inference(spm,[status(thm)],[25,70,theory(equality)])).
% cnf(99,plain,(knows(n)),inference(spm,[status(thm)],[26,70,theory(equality)])).
% cnf(100,plain,(knows(sign(concatenate(c,concatenate(k_c,eol)),inverse(k_c)))),inference(spm,[status(thm)],[25,98,theory(equality)])).
% cnf(101,plain,(knows(k_c)),inference(spm,[status(thm)],[26,98,theory(equality)])).
% cnf(110,plain,(knows(symmetric_encrypt(secret,head(extract(decrypt(X1,inverse(k_c)),head(tail(X2))))))|head(tail(extract(decrypt(X1,inverse(k_c)),head(tail(X2)))))!=n|head(X2)!=s|~knows(sign(X2,inverse(k_ca)))|~knows(X1)),inference(spm,[status(thm)],[84,36,theory(equality)])).
% cnf(111,plain,(knows(symmetric_encrypt(secret,head(extract(decrypt(X1,inverse(k_c)),head(tail(concatenate(X2,X3)))))))|head(tail(extract(decrypt(X1,inverse(k_c)),head(tail(concatenate(X2,X3))))))!=n|X2!=s|~knows(sign(concatenate(X2,X3),inverse(k_ca)))|~knows(X1)),inference(spm,[status(thm)],[110,44,theory(equality)])).
% cnf(112,plain,(knows(symmetric_encrypt(secret,head(extract(decrypt(X1,inverse(k_c)),head(X3)))))|head(tail(extract(decrypt(X1,inverse(k_c)),head(tail(concatenate(X2,X3))))))!=n|X2!=s|~knows(sign(concatenate(X2,X3),inverse(k_ca)))|~knows(X1)),inference(rw,[status(thm)],[111,46,theory(equality)])).
% cnf(113,plain,(knows(symmetric_encrypt(secret,head(extract(decrypt(X1,inverse(k_c)),head(X3)))))|head(tail(extract(decrypt(X1,inverse(k_c)),head(X3))))!=n|X2!=s|~knows(sign(concatenate(X2,X3),inverse(k_ca)))|~knows(X1)),inference(rw,[status(thm)],[112,46,theory(equality)])).
% cnf(114,plain,(knows(symmetric_encrypt(secret,head(extract(decrypt(X1,inverse(k_c)),head(X2)))))|head(tail(extract(decrypt(X1,inverse(k_c)),head(X2))))!=n|~knows(sign(concatenate(s,X2),inverse(k_ca)))|~knows(X1)),inference(er,[status(thm)],[113,theory(equality)])).
% cnf(116,plain,(knows(concatenate(encrypt(sign(concatenate(kgen(X1),concatenate(X2,eol)),inverse(k_s)),X1),sign(concatenate(s,concatenate(k_s,eol)),inverse(k_ca))))|head(tail(X3))!=X1|~knows(sign(X3,inverse(X1)))|~knows(X2)|~knows(X1)),inference(spm,[status(thm)],[83,36,theory(equality)])).
% cnf(117,plain,(knows(concatenate(encrypt(sign(concatenate(kgen(head(tail(X1))),concatenate(X2,eol)),inverse(k_s)),head(tail(X1))),sign(concatenate(s,concatenate(k_s,eol)),inverse(k_ca))))|~knows(sign(X1,inverse(head(tail(X1)))))|~knows(X2)|~knows(head(tail(X1)))),inference(er,[status(thm)],[116,theory(equality)])).
% cnf(119,plain,(knows(concatenate(encrypt(sign(concatenate(kgen(head(X2)),concatenate(X3,eol)),inverse(k_s)),head(X2)),sign(concatenate(s,concatenate(k_s,eol)),inverse(k_ca))))|~knows(sign(concatenate(X1,X2),inverse(head(X2))))|~knows(head(X2))|~knows(X3)),inference(spm,[status(thm)],[117,46,theory(equality)])).
% cnf(121,plain,(knows(concatenate(encrypt(sign(concatenate(kgen(X1),concatenate(X3,eol)),inverse(k_s)),X1),sign(concatenate(s,concatenate(k_s,eol)),inverse(k_ca))))|~knows(sign(concatenate(X4,concatenate(X1,X2)),inverse(X1)))|~knows(X1)|~knows(X3)),inference(spm,[status(thm)],[119,44,theory(equality)])).
% cnf(123,plain,(knows(concatenate(encrypt(sign(concatenate(kgen(X1),concatenate(X2,eol)),inverse(k_s)),X1),sign(concatenate(s,concatenate(k_s,eol)),inverse(k_ca))))|~knows(X1)|~knows(X2)|~knows(concatenate(X3,concatenate(X1,X4)))|~knows(inverse(X1))),inference(spm,[status(thm)],[121,74,theory(equality)])).
% cnf(124,plain,(knows(concatenate(encrypt(sign(concatenate(kgen(k_c),concatenate(X1,eol)),inverse(k_s)),k_c),sign(concatenate(s,concatenate(k_s,eol)),inverse(k_ca))))|~knows(k_c)|~knows(X1)),inference(spm,[status(thm)],[121,100,theory(equality)])).
% cnf(125,plain,(knows(concatenate(encrypt(sign(concatenate(kgen(k_c),concatenate(X1,eol)),inverse(k_s)),k_c),sign(concatenate(s,concatenate(k_s,eol)),inverse(k_ca))))|$false|~knows(X1)),inference(rw,[status(thm)],[124,101,theory(equality)])).
% cnf(126,plain,(knows(concatenate(encrypt(sign(concatenate(kgen(k_c),concatenate(X1,eol)),inverse(k_s)),k_c),sign(concatenate(s,concatenate(k_s,eol)),inverse(k_ca))))|~knows(X1)),inference(cn,[status(thm)],[125,theory(equality)])).
% cnf(127,plain,(knows(sign(concatenate(s,concatenate(k_s,eol)),inverse(k_ca)))|~knows(X1)),inference(spm,[status(thm)],[25,126,theory(equality)])).
% cnf(133,plain,(knows(concatenate(s,concatenate(k_s,eol)))|~knows(k_ca)|~knows(X1)),inference(spm,[status(thm)],[42,127,theory(equality)])).
% cnf(134,plain,(knows(symmetric_encrypt(secret,head(extract(decrypt(X1,inverse(k_c)),head(concatenate(k_s,eol))))))|head(tail(extract(decrypt(X1,inverse(k_c)),head(concatenate(k_s,eol)))))!=n|~knows(X1)|~knows(X2)),inference(spm,[status(thm)],[114,127,theory(equality)])).
% cnf(147,plain,(knows(concatenate(s,concatenate(k_s,eol)))|$false|~knows(X1)),inference(rw,[status(thm)],[133,51,theory(equality)])).
% cnf(148,plain,(knows(concatenate(s,concatenate(k_s,eol)))|~knows(X1)),inference(cn,[status(thm)],[147,theory(equality)])).
% cnf(149,plain,(knows(symmetric_encrypt(secret,head(extract(decrypt(X1,inverse(k_c)),k_s))))|head(tail(extract(decrypt(X1,inverse(k_c)),head(concatenate(k_s,eol)))))!=n|~knows(X1)|~knows(X2)),inference(rw,[status(thm)],[134,44,theory(equality)])).
% cnf(150,plain,(knows(symmetric_encrypt(secret,head(extract(decrypt(X1,inverse(k_c)),k_s))))|head(tail(extract(decrypt(X1,inverse(k_c)),k_s)))!=n|~knows(X1)|~knows(X2)),inference(rw,[status(thm)],[149,44,theory(equality)])).
% cnf(156,plain,(knows(concatenate(s,concatenate(k_s,eol)))),inference(spm,[status(thm)],[148,51,theory(equality)])).
% cnf(168,plain,(knows(concatenate(k_s,eol))),inference(spm,[status(thm)],[25,156,theory(equality)])).
% cnf(169,plain,(knows(s)),inference(spm,[status(thm)],[26,156,theory(equality)])).
% cnf(171,plain,(knows(k_s)),inference(spm,[status(thm)],[26,168,theory(equality)])).
% cnf(173,plain,(knows(symmetric_encrypt(secret,head(extract(X1,k_s))))|head(tail(extract(X1,k_s)))!=n|~knows(encrypt(X1,k_c))|~knows(X2)),inference(spm,[status(thm)],[150,34,theory(equality)])).
% cnf(174,plain,(knows(symmetric_encrypt(secret,head(extract(X1,k_s))))|head(tail(extract(X1,k_s)))!=n|~knows(X2)|~knows(X1)|~knows(k_c)),inference(spm,[status(thm)],[173,79,theory(equality)])).
% cnf(175,plain,(knows(symmetric_encrypt(secret,head(extract(X1,k_s))))|head(tail(extract(X1,k_s)))!=n|~knows(X2)|~knows(X1)|$false),inference(rw,[status(thm)],[174,101,theory(equality)])).
% cnf(176,plain,(knows(symmetric_encrypt(secret,head(extract(X1,k_s))))|head(tail(extract(X1,k_s)))!=n|~knows(X2)|~knows(X1)),inference(cn,[status(thm)],[175,theory(equality)])).
% cnf(177,plain,(knows(symmetric_encrypt(secret,head(X1)))|head(tail(X1))!=n|~knows(X2)|~knows(sign(X1,inverse(k_s)))),inference(spm,[status(thm)],[176,36,theory(equality)])).
% cnf(178,plain,(knows(symmetric_encrypt(secret,head(concatenate(X1,X2))))|head(X2)!=n|~knows(sign(concatenate(X1,X2),inverse(k_s)))|~knows(X3)),inference(spm,[status(thm)],[177,46,theory(equality)])).
% cnf(179,plain,(knows(symmetric_encrypt(secret,X1))|head(X2)!=n|~knows(sign(concatenate(X1,X2),inverse(k_s)))|~knows(X3)),inference(rw,[status(thm)],[178,44,theory(equality)])).
% cnf(180,plain,(knows(symmetric_encrypt(secret,X1))|X2!=n|~knows(sign(concatenate(X1,concatenate(X2,X3)),inverse(k_s)))|~knows(X4)),inference(spm,[status(thm)],[179,44,theory(equality)])).
% cnf(181,plain,(knows(symmetric_encrypt(secret,X1))|~knows(sign(concatenate(X1,concatenate(n,X2)),inverse(k_s)))|~knows(X3)),inference(er,[status(thm)],[180,theory(equality)])).
% cnf(211,plain,(knows(concatenate(encrypt(sign(concatenate(kgen(k_a),concatenate(X1,eol)),inverse(k_s)),k_a),sign(concatenate(s,concatenate(k_s,eol)),inverse(k_ca))))|~knows(concatenate(X2,concatenate(k_a,X3)))|~knows(k_a)|~knows(X1)),inference(spm,[status(thm)],[123,50,theory(equality)])).
% cnf(212,plain,(knows(concatenate(encrypt(sign(concatenate(kgen(k_a),concatenate(X1,eol)),inverse(k_s)),k_a),sign(concatenate(s,concatenate(k_s,eol)),inverse(k_ca))))|~knows(concatenate(X2,concatenate(k_a,X3)))|$false|~knows(X1)),inference(rw,[status(thm)],[211,49,theory(equality)])).
% cnf(213,plain,(knows(concatenate(encrypt(sign(concatenate(kgen(k_a),concatenate(X1,eol)),inverse(k_s)),k_a),sign(concatenate(s,concatenate(k_s,eol)),inverse(k_ca))))|~knows(concatenate(X2,concatenate(k_a,X3)))|~knows(X1)),inference(cn,[status(thm)],[212,theory(equality)])).
% cnf(214,plain,(knows(concatenate(encrypt(sign(concatenate(kgen(k_a),concatenate(X1,eol)),inverse(k_s)),k_a),sign(concatenate(s,concatenate(k_s,eol)),inverse(k_ca))))|~knows(X1)|~knows(X2)|~knows(concatenate(k_a,X3))),inference(spm,[status(thm)],[213,80,theory(equality)])).
% cnf(215,plain,(knows(concatenate(encrypt(sign(concatenate(kgen(k_a),concatenate(X1,eol)),inverse(k_s)),k_a),sign(concatenate(s,concatenate(k_s,eol)),inverse(k_ca))))|~knows(X1)|~knows(X3)|~knows(k_a)|~knows(X2)),inference(spm,[status(thm)],[214,80,theory(equality)])).
% cnf(216,plain,(knows(concatenate(encrypt(sign(concatenate(kgen(k_a),concatenate(X1,eol)),inverse(k_s)),k_a),sign(concatenate(s,concatenate(k_s,eol)),inverse(k_ca))))|~knows(X1)|~knows(X3)|$false|~knows(X2)),inference(rw,[status(thm)],[215,49,theory(equality)])).
% cnf(217,plain,(knows(concatenate(encrypt(sign(concatenate(kgen(k_a),concatenate(X1,eol)),inverse(k_s)),k_a),sign(concatenate(s,concatenate(k_s,eol)),inverse(k_ca))))|~knows(X1)|~knows(X3)|~knows(X2)),inference(cn,[status(thm)],[216,theory(equality)])).
% cnf(224,plain,(knows(encrypt(sign(concatenate(kgen(k_a),concatenate(X1,eol)),inverse(k_s)),k_a))|~knows(X1)|~knows(X2)|~knows(X3)),inference(spm,[status(thm)],[26,217,theory(equality)])).
% cnf(260,plain,(knows(encrypt(sign(concatenate(kgen(k_a),concatenate(X1,eol)),inverse(k_s)),k_a))|~knows(X1)|~knows(X2)),inference(spm,[status(thm)],[224,169,theory(equality)])).
% cnf(304,plain,(knows(encrypt(sign(concatenate(kgen(k_a),concatenate(X1,eol)),inverse(k_s)),k_a))|~knows(X1)),inference(spm,[status(thm)],[260,169,theory(equality)])).
% cnf(327,plain,(knows(sign(concatenate(kgen(k_a),concatenate(X1,eol)),inverse(k_s)))|~knows(X1)),inference(spm,[status(thm)],[87,304,theory(equality)])).
% cnf(332,plain,(knows(concatenate(kgen(k_a),concatenate(X1,eol)))|~knows(k_s)|~knows(X1)),inference(spm,[status(thm)],[42,327,theory(equality)])).
% cnf(334,plain,(knows(symmetric_encrypt(secret,kgen(k_a)))|~knows(X1)|~knows(n)),inference(spm,[status(thm)],[181,327,theory(equality)])).
% cnf(335,plain,(knows(concatenate(kgen(k_a),concatenate(X1,eol)))|$false|~knows(X1)),inference(rw,[status(thm)],[332,171,theory(equality)])).
% cnf(336,plain,(knows(concatenate(kgen(k_a),concatenate(X1,eol)))|~knows(X1)),inference(cn,[status(thm)],[335,theory(equality)])).
% cnf(339,plain,(knows(symmetric_encrypt(secret,kgen(k_a)))|~knows(X1)|$false),inference(rw,[status(thm)],[334,99,theory(equality)])).
% cnf(340,plain,(knows(symmetric_encrypt(secret,kgen(k_a)))|~knows(X1)),inference(cn,[status(thm)],[339,theory(equality)])).
% cnf(345,plain,(knows(secret)|~knows(kgen(k_a))|~knows(X1)),inference(spm,[status(thm)],[29,340,theory(equality)])).
% cnf(363,plain,(~knows(kgen(k_a))|~knows(X1)),inference(sr,[status(thm)],[345,81,theory(equality)])).
% cnf(370,plain,(knows(kgen(k_a))|~knows(X1)),inference(spm,[status(thm)],[26,336,theory(equality)])).
% cnf(384,plain,(knows(kgen(k_a))),inference(spm,[status(thm)],[370,171,theory(equality)])).
% cnf(424,plain,($false|~knows(X1)),inference(rw,[status(thm)],[363,384,theory(equality)])).
% cnf(425,plain,(~knows(X1)),inference(cn,[status(thm)],[424,theory(equality)])).
% cnf(447,plain,($false),inference(sr,[status(thm)],[51,425,theory(equality)])).
% cnf(448,plain,($false),447,['proof']).
% # SZS output end CNFRefutation
% # Processed clauses                  : 136
% # ...of these trivial                : 0
% # ...subsumed                        : 51
% # ...remaining for further processing: 85
% # Other redundant clauses eliminated : 1
% # Clauses deleted for lack of memory : 0
% # Backward-subsumed                  : 6
% # Backward-rewritten                 : 1
% # Generated clauses                  : 339
% # ...of the previous two non-trivial : 292
% # Contextual simplify-reflections    : 0
% # Paramodulations                    : 313
% # Factorizations                     : 0
% # Equation resolutions               : 6
% # Current number of processed clauses: 60
% #    Positive orientable unit clauses: 5
% #    Positive unorientable unit clauses: 0
% #    Negative unit clauses           : 2
% #    Non-unit-clauses                : 53
% # Current number of unprocessed clauses: 65
% # ...number of literals in the above : 249
% # Clause-clause subsumption calls (NU) : 395
% # Rec. Clause-clause subsumption calls : 209
% # Unit Clause-clause subsumption calls : 94
% # Rewrite failures with RHS unbound  : 0
% # Indexed BW rewrite attempts        : 2
% # Indexed BW rewrite successes       : 2
% # Backwards rewriting index:   130 leaves,   1.54+/-1.393 terms/leaf
% # Paramod-from index:           23 leaves,   1.13+/-0.337 terms/leaf
% # Paramod-into index:           98 leaves,   1.23+/-0.711 terms/leaf
% # -------------------------------------------------
% # User time              : 0.022 s
% # System time            : 0.004 s
% # Total time             : 0.026 s
% # Maximum resident set size: 0 pages
% PrfWatch: 0.13 CPU 0.20 WC
% FINAL PrfWatch: 0.13 CPU 0.20 WC
% SZS output end Solution for /tmp/SystemOnTPTP19015/SWV233+1.tptp
% 
%------------------------------------------------------------------------------