TSTP Solution File: SWV001-1 by cvc5---1.0.5

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cvc5---1.0.5
% Problem  : SWV001-1 : TPTP v8.2.0. Released v1.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : do_cvc5 %s %d

% Computer : n005.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed May 29 18:04:16 EDT 2024

% Result   : Unsatisfiable 0.20s 0.52s
% Output   : Proof 0.20s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.11/0.13  % Problem    : SWV001-1 : TPTP v8.2.0. Released v1.0.0.
% 0.11/0.14  % Command    : do_cvc5 %s %d
% 0.15/0.34  % Computer : n005.cluster.edu
% 0.15/0.34  % Model    : x86_64 x86_64
% 0.15/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.15/0.34  % Memory   : 8042.1875MB
% 0.15/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.15/0.34  % CPULimit   : 300
% 0.15/0.34  % WCLimit    : 300
% 0.15/0.34  % DateTime   : Sun May 26 21:55:54 EDT 2024
% 0.15/0.35  % CPUTime    : 
% 0.20/0.49  %----Proving TF0_NAR, FOF, or CNF
% 0.20/0.49  --- Run --decision=internal --simplification=none --no-inst-no-entail --no-cbqi --full-saturate-quant at 10...
% 0.20/0.52  % SZS status Unsatisfiable for /export/starexec/sandbox2/tmp/tmp.ZvfqHYIwat/cvc5---1.0.5_10499.smt2
% 0.20/0.52  % SZS output start Proof for /export/starexec/sandbox2/tmp/tmp.ZvfqHYIwat/cvc5---1.0.5_10499.smt2
% 0.20/0.52  (assume a0 (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.equalish X Y)) (not (tptp.less_or_equalish X Z)) (tptp.less_or_equalish Y Z))))
% 0.20/0.52  (assume a1 (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.equalish X Y)) (not (tptp.less_or_equalish Z X)) (tptp.less_or_equalish Z Y))))
% 0.20/0.52  (assume a2 (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.q1 X Y Z)) (not (tptp.less_or_equalish X Y)) (tptp.q2 X Y Z))))
% 0.20/0.52  (assume a3 (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.q1 X Y Z)) (tptp.less_or_equalish X Y) (tptp.q3 X Y Z))))
% 0.20/0.52  (assume a4 (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.q2 X Y Z)) (tptp.q4 X Y Y))))
% 0.20/0.52  (assume a5 (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.q3 X Y Z)) (tptp.q4 X Y X))))
% 0.20/0.52  (assume a6 (forall ((X $$unsorted)) (tptp.less_or_equalish X X)))
% 0.20/0.52  (assume a7 (forall ((X $$unsorted) (Y $$unsorted)) (or (not (tptp.less_or_equalish X Y)) (not (tptp.less_or_equalish Y X)) (tptp.equalish X Y))))
% 0.20/0.52  (assume a8 (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.less_or_equalish X Y)) (not (tptp.less_or_equalish Y Z)) (tptp.less_or_equalish X Z))))
% 0.20/0.52  (assume a9 (forall ((X $$unsorted) (Y $$unsorted)) (or (tptp.less_or_equalish X Y) (tptp.less_or_equalish Y X))))
% 0.20/0.52  (assume a10 (forall ((X $$unsorted) (Y $$unsorted)) (or (tptp.less_or_equalish X Y) (not (tptp.equalish X Y)))))
% 0.20/0.52  (assume a11 (tptp.q1 tptp.a tptp.b tptp.c))
% 0.20/0.52  (assume a12 (forall ((W $$unsorted)) (or (not (tptp.q4 tptp.a tptp.b W)) (not (tptp.less_or_equalish tptp.a W)) (not (tptp.less_or_equalish tptp.b W)) (not (tptp.less_or_equalish W tptp.a)))))
% 0.20/0.52  (assume a13 (forall ((W $$unsorted)) (or (not (tptp.q4 tptp.a tptp.b W)) (not (tptp.less_or_equalish tptp.a W)) (not (tptp.less_or_equalish tptp.b W)) (not (tptp.less_or_equalish W tptp.b)))))
% 0.20/0.52  (step t1 (cl (not (or (not (tptp.q2 tptp.a tptp.b tptp.c)) (tptp.q4 tptp.a tptp.b tptp.b))) (not (tptp.q2 tptp.a tptp.b tptp.c)) (tptp.q4 tptp.a tptp.b tptp.b)) :rule or_pos)
% 0.20/0.52  (step t2 (cl (not (tptp.q2 tptp.a tptp.b tptp.c)) (tptp.q4 tptp.a tptp.b tptp.b) (not (or (not (tptp.q2 tptp.a tptp.b tptp.c)) (tptp.q4 tptp.a tptp.b tptp.b)))) :rule reordering :premises (t1))
% 0.20/0.52  (step t3 (cl (not (or (not (tptp.q4 tptp.a tptp.b tptp.b)) (not (tptp.less_or_equalish tptp.a tptp.b)) (not (tptp.less_or_equalish tptp.b tptp.b)) (not (tptp.less_or_equalish tptp.b tptp.b)))) (not (tptp.q4 tptp.a tptp.b tptp.b)) (not (tptp.less_or_equalish tptp.a tptp.b)) (not (tptp.less_or_equalish tptp.b tptp.b)) (not (tptp.less_or_equalish tptp.b tptp.b))) :rule or_pos)
% 0.20/0.52  (step t4 (cl (not (or (not (tptp.q4 tptp.a tptp.b tptp.b)) (not (tptp.less_or_equalish tptp.a tptp.b)) (not (tptp.less_or_equalish tptp.b tptp.b)) (not (tptp.less_or_equalish tptp.b tptp.b)))) (not (tptp.q4 tptp.a tptp.b tptp.b)) (not (tptp.less_or_equalish tptp.a tptp.b)) (not (tptp.less_or_equalish tptp.b tptp.b))) :rule contraction :premises (t3))
% 0.20/0.52  (step t5 (cl (not (tptp.less_or_equalish tptp.a tptp.b)) (not (tptp.q4 tptp.a tptp.b tptp.b)) (not (tptp.less_or_equalish tptp.b tptp.b)) (not (or (not (tptp.q4 tptp.a tptp.b tptp.b)) (not (tptp.less_or_equalish tptp.a tptp.b)) (not (tptp.less_or_equalish tptp.b tptp.b)) (not (tptp.less_or_equalish tptp.b tptp.b))))) :rule reordering :premises (t4))
% 0.20/0.52  (step t6 (cl (not (or (not (tptp.q4 tptp.a tptp.b tptp.a)) (not (tptp.less_or_equalish tptp.a tptp.a)) (not (tptp.less_or_equalish tptp.b tptp.a)) (not (tptp.less_or_equalish tptp.a tptp.a)))) (not (tptp.q4 tptp.a tptp.b tptp.a)) (not (tptp.less_or_equalish tptp.a tptp.a)) (not (tptp.less_or_equalish tptp.b tptp.a)) (not (tptp.less_or_equalish tptp.a tptp.a))) :rule or_pos)
% 0.20/0.52  (step t7 (cl (not (or (not (tptp.q4 tptp.a tptp.b tptp.a)) (not (tptp.less_or_equalish tptp.a tptp.a)) (not (tptp.less_or_equalish tptp.b tptp.a)) (not (tptp.less_or_equalish tptp.a tptp.a)))) (not (tptp.q4 tptp.a tptp.b tptp.a)) (not (tptp.less_or_equalish tptp.a tptp.a)) (not (tptp.less_or_equalish tptp.b tptp.a))) :rule contraction :premises (t6))
% 0.20/0.52  (step t8 (cl (not (tptp.q4 tptp.a tptp.b tptp.a)) (not (tptp.less_or_equalish tptp.b tptp.a)) (not (tptp.less_or_equalish tptp.a tptp.a)) (not (or (not (tptp.q4 tptp.a tptp.b tptp.a)) (not (tptp.less_or_equalish tptp.a tptp.a)) (not (tptp.less_or_equalish tptp.b tptp.a)) (not (tptp.less_or_equalish tptp.a tptp.a))))) :rule reordering :premises (t7))
% 0.20/0.52  (step t9 (cl (=> (forall ((W $$unsorted)) (or (not (tptp.q4 tptp.a tptp.b W)) (not (tptp.less_or_equalish tptp.a W)) (not (tptp.less_or_equalish tptp.b W)) (not (tptp.less_or_equalish W tptp.a)))) (or (not (tptp.q4 tptp.a tptp.b tptp.a)) (not (tptp.less_or_equalish tptp.a tptp.a)) (not (tptp.less_or_equalish tptp.b tptp.a)) (not (tptp.less_or_equalish tptp.a tptp.a)))) (forall ((W $$unsorted)) (or (not (tptp.q4 tptp.a tptp.b W)) (not (tptp.less_or_equalish tptp.a W)) (not (tptp.less_or_equalish tptp.b W)) (not (tptp.less_or_equalish W tptp.a))))) :rule implies_neg1)
% 0.20/0.52  (anchor :step t10)
% 0.20/0.52  (assume t10.a0 (forall ((W $$unsorted)) (or (not (tptp.q4 tptp.a tptp.b W)) (not (tptp.less_or_equalish tptp.a W)) (not (tptp.less_or_equalish tptp.b W)) (not (tptp.less_or_equalish W tptp.a)))))
% 0.20/0.52  (step t10.t1 (cl (or (not (forall ((W $$unsorted)) (or (not (tptp.q4 tptp.a tptp.b W)) (not (tptp.less_or_equalish tptp.a W)) (not (tptp.less_or_equalish tptp.b W)) (not (tptp.less_or_equalish W tptp.a))))) (or (not (tptp.q4 tptp.a tptp.b tptp.a)) (not (tptp.less_or_equalish tptp.a tptp.a)) (not (tptp.less_or_equalish tptp.b tptp.a)) (not (tptp.less_or_equalish tptp.a tptp.a))))) :rule forall_inst :args ((:= W tptp.a)))
% 0.20/0.52  (step t10.t2 (cl (not (forall ((W $$unsorted)) (or (not (tptp.q4 tptp.a tptp.b W)) (not (tptp.less_or_equalish tptp.a W)) (not (tptp.less_or_equalish tptp.b W)) (not (tptp.less_or_equalish W tptp.a))))) (or (not (tptp.q4 tptp.a tptp.b tptp.a)) (not (tptp.less_or_equalish tptp.a tptp.a)) (not (tptp.less_or_equalish tptp.b tptp.a)) (not (tptp.less_or_equalish tptp.a tptp.a)))) :rule or :premises (t10.t1))
% 0.20/0.52  (step t10.t3 (cl (or (not (tptp.q4 tptp.a tptp.b tptp.a)) (not (tptp.less_or_equalish tptp.a tptp.a)) (not (tptp.less_or_equalish tptp.b tptp.a)) (not (tptp.less_or_equalish tptp.a tptp.a)))) :rule resolution :premises (t10.t2 t10.a0))
% 0.20/0.52  (step t10 (cl (not (forall ((W $$unsorted)) (or (not (tptp.q4 tptp.a tptp.b W)) (not (tptp.less_or_equalish tptp.a W)) (not (tptp.less_or_equalish tptp.b W)) (not (tptp.less_or_equalish W tptp.a))))) (or (not (tptp.q4 tptp.a tptp.b tptp.a)) (not (tptp.less_or_equalish tptp.a tptp.a)) (not (tptp.less_or_equalish tptp.b tptp.a)) (not (tptp.less_or_equalish tptp.a tptp.a)))) :rule subproof :discharge (t10.a0))
% 0.20/0.52  (step t11 (cl (=> (forall ((W $$unsorted)) (or (not (tptp.q4 tptp.a tptp.b W)) (not (tptp.less_or_equalish tptp.a W)) (not (tptp.less_or_equalish tptp.b W)) (not (tptp.less_or_equalish W tptp.a)))) (or (not (tptp.q4 tptp.a tptp.b tptp.a)) (not (tptp.less_or_equalish tptp.a tptp.a)) (not (tptp.less_or_equalish tptp.b tptp.a)) (not (tptp.less_or_equalish tptp.a tptp.a)))) (or (not (tptp.q4 tptp.a tptp.b tptp.a)) (not (tptp.less_or_equalish tptp.a tptp.a)) (not (tptp.less_or_equalish tptp.b tptp.a)) (not (tptp.less_or_equalish tptp.a tptp.a)))) :rule resolution :premises (t9 t10))
% 0.20/0.52  (step t12 (cl (=> (forall ((W $$unsorted)) (or (not (tptp.q4 tptp.a tptp.b W)) (not (tptp.less_or_equalish tptp.a W)) (not (tptp.less_or_equalish tptp.b W)) (not (tptp.less_or_equalish W tptp.a)))) (or (not (tptp.q4 tptp.a tptp.b tptp.a)) (not (tptp.less_or_equalish tptp.a tptp.a)) (not (tptp.less_or_equalish tptp.b tptp.a)) (not (tptp.less_or_equalish tptp.a tptp.a)))) (not (or (not (tptp.q4 tptp.a tptp.b tptp.a)) (not (tptp.less_or_equalish tptp.a tptp.a)) (not (tptp.less_or_equalish tptp.b tptp.a)) (not (tptp.less_or_equalish tptp.a tptp.a))))) :rule implies_neg2)
% 0.20/0.52  (step t13 (cl (=> (forall ((W $$unsorted)) (or (not (tptp.q4 tptp.a tptp.b W)) (not (tptp.less_or_equalish tptp.a W)) (not (tptp.less_or_equalish tptp.b W)) (not (tptp.less_or_equalish W tptp.a)))) (or (not (tptp.q4 tptp.a tptp.b tptp.a)) (not (tptp.less_or_equalish tptp.a tptp.a)) (not (tptp.less_or_equalish tptp.b tptp.a)) (not (tptp.less_or_equalish tptp.a tptp.a)))) (=> (forall ((W $$unsorted)) (or (not (tptp.q4 tptp.a tptp.b W)) (not (tptp.less_or_equalish tptp.a W)) (not (tptp.less_or_equalish tptp.b W)) (not (tptp.less_or_equalish W tptp.a)))) (or (not (tptp.q4 tptp.a tptp.b tptp.a)) (not (tptp.less_or_equalish tptp.a tptp.a)) (not (tptp.less_or_equalish tptp.b tptp.a)) (not (tptp.less_or_equalish tptp.a tptp.a))))) :rule resolution :premises (t11 t12))
% 0.20/0.52  (step t14 (cl (=> (forall ((W $$unsorted)) (or (not (tptp.q4 tptp.a tptp.b W)) (not (tptp.less_or_equalish tptp.a W)) (not (tptp.less_or_equalish tptp.b W)) (not (tptp.less_or_equalish W tptp.a)))) (or (not (tptp.q4 tptp.a tptp.b tptp.a)) (not (tptp.less_or_equalish tptp.a tptp.a)) (not (tptp.less_or_equalish tptp.b tptp.a)) (not (tptp.less_or_equalish tptp.a tptp.a))))) :rule contraction :premises (t13))
% 0.20/0.52  (step t15 (cl (not (forall ((W $$unsorted)) (or (not (tptp.q4 tptp.a tptp.b W)) (not (tptp.less_or_equalish tptp.a W)) (not (tptp.less_or_equalish tptp.b W)) (not (tptp.less_or_equalish W tptp.a))))) (or (not (tptp.q4 tptp.a tptp.b tptp.a)) (not (tptp.less_or_equalish tptp.a tptp.a)) (not (tptp.less_or_equalish tptp.b tptp.a)) (not (tptp.less_or_equalish tptp.a tptp.a)))) :rule implies :premises (t14))
% 0.20/0.52  (step t16 (cl (or (not (tptp.q4 tptp.a tptp.b tptp.a)) (not (tptp.less_or_equalish tptp.a tptp.a)) (not (tptp.less_or_equalish tptp.b tptp.a)) (not (tptp.less_or_equalish tptp.a tptp.a)))) :rule resolution :premises (t15 a12))
% 0.20/0.52  (step t17 (cl (=> (forall ((X $$unsorted)) (tptp.less_or_equalish X X)) (tptp.less_or_equalish tptp.a tptp.a)) (forall ((X $$unsorted)) (tptp.less_or_equalish X X))) :rule implies_neg1)
% 0.20/0.52  (anchor :step t18)
% 0.20/0.52  (assume t18.a0 (forall ((X $$unsorted)) (tptp.less_or_equalish X X)))
% 0.20/0.52  (step t18.t1 (cl (or (not (forall ((X $$unsorted)) (tptp.less_or_equalish X X))) (tptp.less_or_equalish tptp.a tptp.a))) :rule forall_inst :args ((:= X tptp.a)))
% 0.20/0.52  (step t18.t2 (cl (not (forall ((X $$unsorted)) (tptp.less_or_equalish X X))) (tptp.less_or_equalish tptp.a tptp.a)) :rule or :premises (t18.t1))
% 0.20/0.52  (step t18.t3 (cl (tptp.less_or_equalish tptp.a tptp.a)) :rule resolution :premises (t18.t2 t18.a0))
% 0.20/0.53  (step t18 (cl (not (forall ((X $$unsorted)) (tptp.less_or_equalish X X))) (tptp.less_or_equalish tptp.a tptp.a)) :rule subproof :discharge (t18.a0))
% 0.20/0.53  (step t19 (cl (=> (forall ((X $$unsorted)) (tptp.less_or_equalish X X)) (tptp.less_or_equalish tptp.a tptp.a)) (tptp.less_or_equalish tptp.a tptp.a)) :rule resolution :premises (t17 t18))
% 0.20/0.53  (step t20 (cl (=> (forall ((X $$unsorted)) (tptp.less_or_equalish X X)) (tptp.less_or_equalish tptp.a tptp.a)) (not (tptp.less_or_equalish tptp.a tptp.a))) :rule implies_neg2)
% 0.20/0.53  (step t21 (cl (=> (forall ((X $$unsorted)) (tptp.less_or_equalish X X)) (tptp.less_or_equalish tptp.a tptp.a)) (=> (forall ((X $$unsorted)) (tptp.less_or_equalish X X)) (tptp.less_or_equalish tptp.a tptp.a))) :rule resolution :premises (t19 t20))
% 0.20/0.53  (step t22 (cl (=> (forall ((X $$unsorted)) (tptp.less_or_equalish X X)) (tptp.less_or_equalish tptp.a tptp.a))) :rule contraction :premises (t21))
% 0.20/0.53  (step t23 (cl (not (forall ((X $$unsorted)) (tptp.less_or_equalish X X))) (tptp.less_or_equalish tptp.a tptp.a)) :rule implies :premises (t22))
% 0.20/0.53  (step t24 (cl (tptp.less_or_equalish tptp.a tptp.a)) :rule resolution :premises (t23 a6))
% 0.20/0.53  (step t25 (cl (not (or (not (tptp.q3 tptp.a tptp.b tptp.c)) (tptp.q4 tptp.a tptp.b tptp.a))) (not (tptp.q3 tptp.a tptp.b tptp.c)) (tptp.q4 tptp.a tptp.b tptp.a)) :rule or_pos)
% 0.20/0.53  (step t26 (cl (not (tptp.q3 tptp.a tptp.b tptp.c)) (tptp.q4 tptp.a tptp.b tptp.a) (not (or (not (tptp.q3 tptp.a tptp.b tptp.c)) (tptp.q4 tptp.a tptp.b tptp.a)))) :rule reordering :premises (t25))
% 0.20/0.53  (step t27 (cl (=> (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.q3 X Y Z)) (tptp.q4 X Y X))) (or (not (tptp.q3 tptp.a tptp.b tptp.c)) (tptp.q4 tptp.a tptp.b tptp.a))) (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.q3 X Y Z)) (tptp.q4 X Y X)))) :rule implies_neg1)
% 0.20/0.53  (anchor :step t28)
% 0.20/0.53  (assume t28.a0 (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.q3 X Y Z)) (tptp.q4 X Y X))))
% 0.20/0.53  (step t28.t1 (cl (or (not (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.q3 X Y Z)) (tptp.q4 X Y X)))) (or (not (tptp.q3 tptp.a tptp.b tptp.c)) (tptp.q4 tptp.a tptp.b tptp.a)))) :rule forall_inst :args ((:= X tptp.a) (:= Y tptp.b) (:= Z tptp.c)))
% 0.20/0.53  (step t28.t2 (cl (not (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.q3 X Y Z)) (tptp.q4 X Y X)))) (or (not (tptp.q3 tptp.a tptp.b tptp.c)) (tptp.q4 tptp.a tptp.b tptp.a))) :rule or :premises (t28.t1))
% 0.20/0.53  (step t28.t3 (cl (or (not (tptp.q3 tptp.a tptp.b tptp.c)) (tptp.q4 tptp.a tptp.b tptp.a))) :rule resolution :premises (t28.t2 t28.a0))
% 0.20/0.53  (step t28 (cl (not (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.q3 X Y Z)) (tptp.q4 X Y X)))) (or (not (tptp.q3 tptp.a tptp.b tptp.c)) (tptp.q4 tptp.a tptp.b tptp.a))) :rule subproof :discharge (t28.a0))
% 0.20/0.53  (step t29 (cl (=> (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.q3 X Y Z)) (tptp.q4 X Y X))) (or (not (tptp.q3 tptp.a tptp.b tptp.c)) (tptp.q4 tptp.a tptp.b tptp.a))) (or (not (tptp.q3 tptp.a tptp.b tptp.c)) (tptp.q4 tptp.a tptp.b tptp.a))) :rule resolution :premises (t27 t28))
% 0.20/0.53  (step t30 (cl (=> (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.q3 X Y Z)) (tptp.q4 X Y X))) (or (not (tptp.q3 tptp.a tptp.b tptp.c)) (tptp.q4 tptp.a tptp.b tptp.a))) (not (or (not (tptp.q3 tptp.a tptp.b tptp.c)) (tptp.q4 tptp.a tptp.b tptp.a)))) :rule implies_neg2)
% 0.20/0.53  (step t31 (cl (=> (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.q3 X Y Z)) (tptp.q4 X Y X))) (or (not (tptp.q3 tptp.a tptp.b tptp.c)) (tptp.q4 tptp.a tptp.b tptp.a))) (=> (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.q3 X Y Z)) (tptp.q4 X Y X))) (or (not (tptp.q3 tptp.a tptp.b tptp.c)) (tptp.q4 tptp.a tptp.b tptp.a)))) :rule resolution :premises (t29 t30))
% 0.20/0.53  (step t32 (cl (=> (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.q3 X Y Z)) (tptp.q4 X Y X))) (or (not (tptp.q3 tptp.a tptp.b tptp.c)) (tptp.q4 tptp.a tptp.b tptp.a)))) :rule contraction :premises (t31))
% 0.20/0.53  (step t33 (cl (not (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.q3 X Y Z)) (tptp.q4 X Y X)))) (or (not (tptp.q3 tptp.a tptp.b tptp.c)) (tptp.q4 tptp.a tptp.b tptp.a))) :rule implies :premises (t32))
% 0.20/0.53  (step t34 (cl (or (not (tptp.q3 tptp.a tptp.b tptp.c)) (tptp.q4 tptp.a tptp.b tptp.a))) :rule resolution :premises (t33 a5))
% 0.20/0.53  (step t35 (cl (not (or (tptp.less_or_equalish tptp.a tptp.b) (tptp.less_or_equalish tptp.b tptp.a))) (tptp.less_or_equalish tptp.a tptp.b) (tptp.less_or_equalish tptp.b tptp.a)) :rule or_pos)
% 0.20/0.53  (step t36 (cl (tptp.less_or_equalish tptp.a tptp.b) (tptp.less_or_equalish tptp.b tptp.a) (not (or (tptp.less_or_equalish tptp.a tptp.b) (tptp.less_or_equalish tptp.b tptp.a)))) :rule reordering :premises (t35))
% 0.20/0.53  (step t37 (cl (=> (forall ((X $$unsorted) (Y $$unsorted)) (or (tptp.less_or_equalish X Y) (tptp.less_or_equalish Y X))) (or (tptp.less_or_equalish tptp.a tptp.b) (tptp.less_or_equalish tptp.b tptp.a))) (forall ((X $$unsorted) (Y $$unsorted)) (or (tptp.less_or_equalish X Y) (tptp.less_or_equalish Y X)))) :rule implies_neg1)
% 0.20/0.53  (anchor :step t38)
% 0.20/0.53  (assume t38.a0 (forall ((X $$unsorted) (Y $$unsorted)) (or (tptp.less_or_equalish X Y) (tptp.less_or_equalish Y X))))
% 0.20/0.53  (step t38.t1 (cl (or (not (forall ((X $$unsorted) (Y $$unsorted)) (or (tptp.less_or_equalish X Y) (tptp.less_or_equalish Y X)))) (or (tptp.less_or_equalish tptp.a tptp.b) (tptp.less_or_equalish tptp.b tptp.a)))) :rule forall_inst :args ((:= X tptp.a) (:= Y tptp.b)))
% 0.20/0.53  (step t38.t2 (cl (not (forall ((X $$unsorted) (Y $$unsorted)) (or (tptp.less_or_equalish X Y) (tptp.less_or_equalish Y X)))) (or (tptp.less_or_equalish tptp.a tptp.b) (tptp.less_or_equalish tptp.b tptp.a))) :rule or :premises (t38.t1))
% 0.20/0.53  (step t38.t3 (cl (or (tptp.less_or_equalish tptp.a tptp.b) (tptp.less_or_equalish tptp.b tptp.a))) :rule resolution :premises (t38.t2 t38.a0))
% 0.20/0.53  (step t38 (cl (not (forall ((X $$unsorted) (Y $$unsorted)) (or (tptp.less_or_equalish X Y) (tptp.less_or_equalish Y X)))) (or (tptp.less_or_equalish tptp.a tptp.b) (tptp.less_or_equalish tptp.b tptp.a))) :rule subproof :discharge (t38.a0))
% 0.20/0.53  (step t39 (cl (=> (forall ((X $$unsorted) (Y $$unsorted)) (or (tptp.less_or_equalish X Y) (tptp.less_or_equalish Y X))) (or (tptp.less_or_equalish tptp.a tptp.b) (tptp.less_or_equalish tptp.b tptp.a))) (or (tptp.less_or_equalish tptp.a tptp.b) (tptp.less_or_equalish tptp.b tptp.a))) :rule resolution :premises (t37 t38))
% 0.20/0.53  (step t40 (cl (=> (forall ((X $$unsorted) (Y $$unsorted)) (or (tptp.less_or_equalish X Y) (tptp.less_or_equalish Y X))) (or (tptp.less_or_equalish tptp.a tptp.b) (tptp.less_or_equalish tptp.b tptp.a))) (not (or (tptp.less_or_equalish tptp.a tptp.b) (tptp.less_or_equalish tptp.b tptp.a)))) :rule implies_neg2)
% 0.20/0.53  (step t41 (cl (=> (forall ((X $$unsorted) (Y $$unsorted)) (or (tptp.less_or_equalish X Y) (tptp.less_or_equalish Y X))) (or (tptp.less_or_equalish tptp.a tptp.b) (tptp.less_or_equalish tptp.b tptp.a))) (=> (forall ((X $$unsorted) (Y $$unsorted)) (or (tptp.less_or_equalish X Y) (tptp.less_or_equalish Y X))) (or (tptp.less_or_equalish tptp.a tptp.b) (tptp.less_or_equalish tptp.b tptp.a)))) :rule resolution :premises (t39 t40))
% 0.20/0.53  (step t42 (cl (=> (forall ((X $$unsorted) (Y $$unsorted)) (or (tptp.less_or_equalish X Y) (tptp.less_or_equalish Y X))) (or (tptp.less_or_equalish tptp.a tptp.b) (tptp.less_or_equalish tptp.b tptp.a)))) :rule contraction :premises (t41))
% 0.20/0.53  (step t43 (cl (not (forall ((X $$unsorted) (Y $$unsorted)) (or (tptp.less_or_equalish X Y) (tptp.less_or_equalish Y X)))) (or (tptp.less_or_equalish tptp.a tptp.b) (tptp.less_or_equalish tptp.b tptp.a))) :rule implies :premises (t42))
% 0.20/0.53  (step t44 (cl (or (tptp.less_or_equalish tptp.a tptp.b) (tptp.less_or_equalish tptp.b tptp.a))) :rule resolution :premises (t43 a9))
% 0.20/0.53  (step t45 (cl (not (or (not (tptp.q1 tptp.a tptp.b tptp.c)) (tptp.less_or_equalish tptp.a tptp.b) (tptp.q3 tptp.a tptp.b tptp.c))) (not (tptp.q1 tptp.a tptp.b tptp.c)) (tptp.less_or_equalish tptp.a tptp.b) (tptp.q3 tptp.a tptp.b tptp.c)) :rule or_pos)
% 0.20/0.53  (step t46 (cl (not (tptp.q1 tptp.a tptp.b tptp.c)) (tptp.less_or_equalish tptp.a tptp.b) (tptp.q3 tptp.a tptp.b tptp.c) (not (or (not (tptp.q1 tptp.a tptp.b tptp.c)) (tptp.less_or_equalish tptp.a tptp.b) (tptp.q3 tptp.a tptp.b tptp.c)))) :rule reordering :premises (t45))
% 0.20/0.53  (step t47 (cl (=> (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.q1 X Y Z)) (tptp.less_or_equalish X Y) (tptp.q3 X Y Z))) (or (not (tptp.q1 tptp.a tptp.b tptp.c)) (tptp.less_or_equalish tptp.a tptp.b) (tptp.q3 tptp.a tptp.b tptp.c))) (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.q1 X Y Z)) (tptp.less_or_equalish X Y) (tptp.q3 X Y Z)))) :rule implies_neg1)
% 0.20/0.53  (anchor :step t48)
% 0.20/0.53  (assume t48.a0 (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.q1 X Y Z)) (tptp.less_or_equalish X Y) (tptp.q3 X Y Z))))
% 0.20/0.53  (step t48.t1 (cl (or (not (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.q1 X Y Z)) (tptp.less_or_equalish X Y) (tptp.q3 X Y Z)))) (or (not (tptp.q1 tptp.a tptp.b tptp.c)) (tptp.less_or_equalish tptp.a tptp.b) (tptp.q3 tptp.a tptp.b tptp.c)))) :rule forall_inst :args ((:= X tptp.a) (:= Y tptp.b) (:= Z tptp.c)))
% 0.20/0.53  (step t48.t2 (cl (not (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.q1 X Y Z)) (tptp.less_or_equalish X Y) (tptp.q3 X Y Z)))) (or (not (tptp.q1 tptp.a tptp.b tptp.c)) (tptp.less_or_equalish tptp.a tptp.b) (tptp.q3 tptp.a tptp.b tptp.c))) :rule or :premises (t48.t1))
% 0.20/0.53  (step t48.t3 (cl (or (not (tptp.q1 tptp.a tptp.b tptp.c)) (tptp.less_or_equalish tptp.a tptp.b) (tptp.q3 tptp.a tptp.b tptp.c))) :rule resolution :premises (t48.t2 t48.a0))
% 0.20/0.53  (step t48 (cl (not (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.q1 X Y Z)) (tptp.less_or_equalish X Y) (tptp.q3 X Y Z)))) (or (not (tptp.q1 tptp.a tptp.b tptp.c)) (tptp.less_or_equalish tptp.a tptp.b) (tptp.q3 tptp.a tptp.b tptp.c))) :rule subproof :discharge (t48.a0))
% 0.20/0.53  (step t49 (cl (=> (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.q1 X Y Z)) (tptp.less_or_equalish X Y) (tptp.q3 X Y Z))) (or (not (tptp.q1 tptp.a tptp.b tptp.c)) (tptp.less_or_equalish tptp.a tptp.b) (tptp.q3 tptp.a tptp.b tptp.c))) (or (not (tptp.q1 tptp.a tptp.b tptp.c)) (tptp.less_or_equalish tptp.a tptp.b) (tptp.q3 tptp.a tptp.b tptp.c))) :rule resolution :premises (t47 t48))
% 0.20/0.53  (step t50 (cl (=> (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.q1 X Y Z)) (tptp.less_or_equalish X Y) (tptp.q3 X Y Z))) (or (not (tptp.q1 tptp.a tptp.b tptp.c)) (tptp.less_or_equalish tptp.a tptp.b) (tptp.q3 tptp.a tptp.b tptp.c))) (not (or (not (tptp.q1 tptp.a tptp.b tptp.c)) (tptp.less_or_equalish tptp.a tptp.b) (tptp.q3 tptp.a tptp.b tptp.c)))) :rule implies_neg2)
% 0.20/0.53  (step t51 (cl (=> (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.q1 X Y Z)) (tptp.less_or_equalish X Y) (tptp.q3 X Y Z))) (or (not (tptp.q1 tptp.a tptp.b tptp.c)) (tptp.less_or_equalish tptp.a tptp.b) (tptp.q3 tptp.a tptp.b tptp.c))) (=> (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.q1 X Y Z)) (tptp.less_or_equalish X Y) (tptp.q3 X Y Z))) (or (not (tptp.q1 tptp.a tptp.b tptp.c)) (tptp.less_or_equalish tptp.a tptp.b) (tptp.q3 tptp.a tptp.b tptp.c)))) :rule resolution :premises (t49 t50))
% 0.20/0.53  (step t52 (cl (=> (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.q1 X Y Z)) (tptp.less_or_equalish X Y) (tptp.q3 X Y Z))) (or (not (tptp.q1 tptp.a tptp.b tptp.c)) (tptp.less_or_equalish tptp.a tptp.b) (tptp.q3 tptp.a tptp.b tptp.c)))) :rule contraction :premises (t51))
% 0.20/0.53  (step t53 (cl (not (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.q1 X Y Z)) (tptp.less_or_equalish X Y) (tptp.q3 X Y Z)))) (or (not (tptp.q1 tptp.a tptp.b tptp.c)) (tptp.less_or_equalish tptp.a tptp.b) (tptp.q3 tptp.a tptp.b tptp.c))) :rule implies :premises (t52))
% 0.20/0.53  (step t54 (cl (or (not (tptp.q1 tptp.a tptp.b tptp.c)) (tptp.less_or_equalish tptp.a tptp.b) (tptp.q3 tptp.a tptp.b tptp.c))) :rule resolution :premises (t53 a3))
% 0.20/0.53  (step t55 (cl (tptp.less_or_equalish tptp.a tptp.b) (tptp.less_or_equalish tptp.a tptp.b)) :rule resolution :premises (t8 t16 t24 t26 t34 t36 t44 t46 t54 a11))
% 0.20/0.53  (step t56 (cl (tptp.less_or_equalish tptp.a tptp.b)) :rule contraction :premises (t55))
% 0.20/0.53  (step t57 (cl (=> (forall ((X $$unsorted)) (tptp.less_or_equalish X X)) (tptp.less_or_equalish tptp.b tptp.b)) (forall ((X $$unsorted)) (tptp.less_or_equalish X X))) :rule implies_neg1)
% 0.20/0.53  (anchor :step t58)
% 0.20/0.53  (assume t58.a0 (forall ((X $$unsorted)) (tptp.less_or_equalish X X)))
% 0.20/0.53  (step t58.t1 (cl (or (not (forall ((X $$unsorted)) (tptp.less_or_equalish X X))) (tptp.less_or_equalish tptp.b tptp.b))) :rule forall_inst :args ((:= X tptp.b)))
% 0.20/0.53  (step t58.t2 (cl (not (forall ((X $$unsorted)) (tptp.less_or_equalish X X))) (tptp.less_or_equalish tptp.b tptp.b)) :rule or :premises (t58.t1))
% 0.20/0.53  (step t58.t3 (cl (tptp.less_or_equalish tptp.b tptp.b)) :rule resolution :premises (t58.t2 t58.a0))
% 0.20/0.53  (step t58 (cl (not (forall ((X $$unsorted)) (tptp.less_or_equalish X X))) (tptp.less_or_equalish tptp.b tptp.b)) :rule subproof :discharge (t58.a0))
% 0.20/0.53  (step t59 (cl (=> (forall ((X $$unsorted)) (tptp.less_or_equalish X X)) (tptp.less_or_equalish tptp.b tptp.b)) (tptp.less_or_equalish tptp.b tptp.b)) :rule resolution :premises (t57 t58))
% 0.20/0.53  (step t60 (cl (=> (forall ((X $$unsorted)) (tptp.less_or_equalish X X)) (tptp.less_or_equalish tptp.b tptp.b)) (not (tptp.less_or_equalish tptp.b tptp.b))) :rule implies_neg2)
% 0.20/0.53  (step t61 (cl (=> (forall ((X $$unsorted)) (tptp.less_or_equalish X X)) (tptp.less_or_equalish tptp.b tptp.b)) (=> (forall ((X $$unsorted)) (tptp.less_or_equalish X X)) (tptp.less_or_equalish tptp.b tptp.b))) :rule resolution :premises (t59 t60))
% 0.20/0.53  (step t62 (cl (=> (forall ((X $$unsorted)) (tptp.less_or_equalish X X)) (tptp.less_or_equalish tptp.b tptp.b))) :rule contraction :premises (t61))
% 0.20/0.53  (step t63 (cl (not (forall ((X $$unsorted)) (tptp.less_or_equalish X X))) (tptp.less_or_equalish tptp.b tptp.b)) :rule implies :premises (t62))
% 0.20/0.53  (step t64 (cl (tptp.less_or_equalish tptp.b tptp.b)) :rule resolution :premises (t63 a6))
% 0.20/0.53  (step t65 (cl (=> (forall ((W $$unsorted)) (or (not (tptp.q4 tptp.a tptp.b W)) (not (tptp.less_or_equalish tptp.a W)) (not (tptp.less_or_equalish tptp.b W)) (not (tptp.less_or_equalish W tptp.b)))) (or (not (tptp.q4 tptp.a tptp.b tptp.b)) (not (tptp.less_or_equalish tptp.a tptp.b)) (not (tptp.less_or_equalish tptp.b tptp.b)) (not (tptp.less_or_equalish tptp.b tptp.b)))) (forall ((W $$unsorted)) (or (not (tptp.q4 tptp.a tptp.b W)) (not (tptp.less_or_equalish tptp.a W)) (not (tptp.less_or_equalish tptp.b W)) (not (tptp.less_or_equalish W tptp.b))))) :rule implies_neg1)
% 0.20/0.53  (anchor :step t66)
% 0.20/0.53  (assume t66.a0 (forall ((W $$unsorted)) (or (not (tptp.q4 tptp.a tptp.b W)) (not (tptp.less_or_equalish tptp.a W)) (not (tptp.less_or_equalish tptp.b W)) (not (tptp.less_or_equalish W tptp.b)))))
% 0.20/0.53  (step t66.t1 (cl (or (not (forall ((W $$unsorted)) (or (not (tptp.q4 tptp.a tptp.b W)) (not (tptp.less_or_equalish tptp.a W)) (not (tptp.less_or_equalish tptp.b W)) (not (tptp.less_or_equalish W tptp.b))))) (or (not (tptp.q4 tptp.a tptp.b tptp.b)) (not (tptp.less_or_equalish tptp.a tptp.b)) (not (tptp.less_or_equalish tptp.b tptp.b)) (not (tptp.less_or_equalish tptp.b tptp.b))))) :rule forall_inst :args ((:= W tptp.b)))
% 0.20/0.53  (step t66.t2 (cl (not (forall ((W $$unsorted)) (or (not (tptp.q4 tptp.a tptp.b W)) (not (tptp.less_or_equalish tptp.a W)) (not (tptp.less_or_equalish tptp.b W)) (not (tptp.less_or_equalish W tptp.b))))) (or (not (tptp.q4 tptp.a tptp.b tptp.b)) (not (tptp.less_or_equalish tptp.a tptp.b)) (not (tptp.less_or_equalish tptp.b tptp.b)) (not (tptp.less_or_equalish tptp.b tptp.b)))) :rule or :premises (t66.t1))
% 0.20/0.53  (step t66.t3 (cl (or (not (tptp.q4 tptp.a tptp.b tptp.b)) (not (tptp.less_or_equalish tptp.a tptp.b)) (not (tptp.less_or_equalish tptp.b tptp.b)) (not (tptp.less_or_equalish tptp.b tptp.b)))) :rule resolution :premises (t66.t2 t66.a0))
% 0.20/0.53  (step t66 (cl (not (forall ((W $$unsorted)) (or (not (tptp.q4 tptp.a tptp.b W)) (not (tptp.less_or_equalish tptp.a W)) (not (tptp.less_or_equalish tptp.b W)) (not (tptp.less_or_equalish W tptp.b))))) (or (not (tptp.q4 tptp.a tptp.b tptp.b)) (not (tptp.less_or_equalish tptp.a tptp.b)) (not (tptp.less_or_equalish tptp.b tptp.b)) (not (tptp.less_or_equalish tptp.b tptp.b)))) :rule subproof :discharge (t66.a0))
% 0.20/0.53  (step t67 (cl (=> (forall ((W $$unsorted)) (or (not (tptp.q4 tptp.a tptp.b W)) (not (tptp.less_or_equalish tptp.a W)) (not (tptp.less_or_equalish tptp.b W)) (not (tptp.less_or_equalish W tptp.b)))) (or (not (tptp.q4 tptp.a tptp.b tptp.b)) (not (tptp.less_or_equalish tptp.a tptp.b)) (not (tptp.less_or_equalish tptp.b tptp.b)) (not (tptp.less_or_equalish tptp.b tptp.b)))) (or (not (tptp.q4 tptp.a tptp.b tptp.b)) (not (tptp.less_or_equalish tptp.a tptp.b)) (not (tptp.less_or_equalish tptp.b tptp.b)) (not (tptp.less_or_equalish tptp.b tptp.b)))) :rule resolution :premises (t65 t66))
% 0.20/0.53  (step t68 (cl (=> (forall ((W $$unsorted)) (or (not (tptp.q4 tptp.a tptp.b W)) (not (tptp.less_or_equalish tptp.a W)) (not (tptp.less_or_equalish tptp.b W)) (not (tptp.less_or_equalish W tptp.b)))) (or (not (tptp.q4 tptp.a tptp.b tptp.b)) (not (tptp.less_or_equalish tptp.a tptp.b)) (not (tptp.less_or_equalish tptp.b tptp.b)) (not (tptp.less_or_equalish tptp.b tptp.b)))) (not (or (not (tptp.q4 tptp.a tptp.b tptp.b)) (not (tptp.less_or_equalish tptp.a tptp.b)) (not (tptp.less_or_equalish tptp.b tptp.b)) (not (tptp.less_or_equalish tptp.b tptp.b))))) :rule implies_neg2)
% 0.20/0.53  (step t69 (cl (=> (forall ((W $$unsorted)) (or (not (tptp.q4 tptp.a tptp.b W)) (not (tptp.less_or_equalish tptp.a W)) (not (tptp.less_or_equalish tptp.b W)) (not (tptp.less_or_equalish W tptp.b)))) (or (not (tptp.q4 tptp.a tptp.b tptp.b)) (not (tptp.less_or_equalish tptp.a tptp.b)) (not (tptp.less_or_equalish tptp.b tptp.b)) (not (tptp.less_or_equalish tptp.b tptp.b)))) (=> (forall ((W $$unsorted)) (or (not (tptp.q4 tptp.a tptp.b W)) (not (tptp.less_or_equalish tptp.a W)) (not (tptp.less_or_equalish tptp.b W)) (not (tptp.less_or_equalish W tptp.b)))) (or (not (tptp.q4 tptp.a tptp.b tptp.b)) (not (tptp.less_or_equalish tptp.a tptp.b)) (not (tptp.less_or_equalish tptp.b tptp.b)) (not (tptp.less_or_equalish tptp.b tptp.b))))) :rule resolution :premises (t67 t68))
% 0.20/0.53  (step t70 (cl (=> (forall ((W $$unsorted)) (or (not (tptp.q4 tptp.a tptp.b W)) (not (tptp.less_or_equalish tptp.a W)) (not (tptp.less_or_equalish tptp.b W)) (not (tptp.less_or_equalish W tptp.b)))) (or (not (tptp.q4 tptp.a tptp.b tptp.b)) (not (tptp.less_or_equalish tptp.a tptp.b)) (not (tptp.less_or_equalish tptp.b tptp.b)) (not (tptp.less_or_equalish tptp.b tptp.b))))) :rule contraction :premises (t69))
% 0.20/0.53  (step t71 (cl (not (forall ((W $$unsorted)) (or (not (tptp.q4 tptp.a tptp.b W)) (not (tptp.less_or_equalish tptp.a W)) (not (tptp.less_or_equalish tptp.b W)) (not (tptp.less_or_equalish W tptp.b))))) (or (not (tptp.q4 tptp.a tptp.b tptp.b)) (not (tptp.less_or_equalish tptp.a tptp.b)) (not (tptp.less_or_equalish tptp.b tptp.b)) (not (tptp.less_or_equalish tptp.b tptp.b)))) :rule implies :premises (t70))
% 0.20/0.53  (step t72 (cl (or (not (tptp.q4 tptp.a tptp.b tptp.b)) (not (tptp.less_or_equalish tptp.a tptp.b)) (not (tptp.less_or_equalish tptp.b tptp.b)) (not (tptp.less_or_equalish tptp.b tptp.b)))) :rule resolution :premises (t71 a13))
% 0.20/0.53  (step t73 (cl (not (tptp.q4 tptp.a tptp.b tptp.b))) :rule resolution :premises (t5 t56 t64 t72))
% 0.20/0.53  (step t74 (cl (not (or (not (tptp.q1 tptp.a tptp.b tptp.c)) (not (tptp.less_or_equalish tptp.a tptp.b)) (tptp.q2 tptp.a tptp.b tptp.c))) (not (tptp.q1 tptp.a tptp.b tptp.c)) (not (tptp.less_or_equalish tptp.a tptp.b)) (tptp.q2 tptp.a tptp.b tptp.c)) :rule or_pos)
% 0.20/0.53  (step t75 (cl (not (tptp.q1 tptp.a tptp.b tptp.c)) (not (tptp.less_or_equalish tptp.a tptp.b)) (tptp.q2 tptp.a tptp.b tptp.c) (not (or (not (tptp.q1 tptp.a tptp.b tptp.c)) (not (tptp.less_or_equalish tptp.a tptp.b)) (tptp.q2 tptp.a tptp.b tptp.c)))) :rule reordering :premises (t74))
% 0.20/0.53  (step t76 (cl (=> (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.q1 X Y Z)) (not (tptp.less_or_equalish X Y)) (tptp.q2 X Y Z))) (or (not (tptp.q1 tptp.a tptp.b tptp.c)) (not (tptp.less_or_equalish tptp.a tptp.b)) (tptp.q2 tptp.a tptp.b tptp.c))) (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.q1 X Y Z)) (not (tptp.less_or_equalish X Y)) (tptp.q2 X Y Z)))) :rule implies_neg1)
% 0.20/0.53  (anchor :step t77)
% 0.20/0.53  (assume t77.a0 (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.q1 X Y Z)) (not (tptp.less_or_equalish X Y)) (tptp.q2 X Y Z))))
% 0.20/0.53  (step t77.t1 (cl (or (not (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.q1 X Y Z)) (not (tptp.less_or_equalish X Y)) (tptp.q2 X Y Z)))) (or (not (tptp.q1 tptp.a tptp.b tptp.c)) (not (tptp.less_or_equalish tptp.a tptp.b)) (tptp.q2 tptp.a tptp.b tptp.c)))) :rule forall_inst :args ((:= X tptp.a) (:= Y tptp.b) (:= Z tptp.c)))
% 0.20/0.53  (step t77.t2 (cl (not (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.q1 X Y Z)) (not (tptp.less_or_equalish X Y)) (tptp.q2 X Y Z)))) (or (not (tptp.q1 tptp.a tptp.b tptp.c)) (not (tptp.less_or_equalish tptp.a tptp.b)) (tptp.q2 tptp.a tptp.b tptp.c))) :rule or :premises (t77.t1))
% 0.20/0.53  (step t77.t3 (cl (or (not (tptp.q1 tptp.a tptp.b tptp.c)) (not (tptp.less_or_equalish tptp.a tptp.b)) (tptp.q2 tptp.a tptp.b tptp.c))) :rule resolution :premises (t77.t2 t77.a0))
% 0.20/0.53  (step t77 (cl (not (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.q1 X Y Z)) (not (tptp.less_or_equalish X Y)) (tptp.q2 X Y Z)))) (or (not (tptp.q1 tptp.a tptp.b tptp.c)) (not (tptp.less_or_equalish tptp.a tptp.b)) (tptp.q2 tptp.a tptp.b tptp.c))) :rule subproof :discharge (t77.a0))
% 0.20/0.53  (step t78 (cl (=> (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.q1 X Y Z)) (not (tptp.less_or_equalish X Y)) (tptp.q2 X Y Z))) (or (not (tptp.q1 tptp.a tptp.b tptp.c)) (not (tptp.less_or_equalish tptp.a tptp.b)) (tptp.q2 tptp.a tptp.b tptp.c))) (or (not (tptp.q1 tptp.a tptp.b tptp.c)) (not (tptp.less_or_equalish tptp.a tptp.b)) (tptp.q2 tptp.a tptp.b tptp.c))) :rule resolution :premises (t76 t77))
% 0.20/0.53  (step t79 (cl (=> (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.q1 X Y Z)) (not (tptp.less_or_equalish X Y)) (tptp.q2 X Y Z))) (or (not (tptp.q1 tptp.a tptp.b tptp.c)) (not (tptp.less_or_equalish tptp.a tptp.b)) (tptp.q2 tptp.a tptp.b tptp.c))) (not (or (not (tptp.q1 tptp.a tptp.b tptp.c)) (not (tptp.less_or_equalish tptp.a tptp.b)) (tptp.q2 tptp.a tptp.b tptp.c)))) :rule implies_neg2)
% 0.20/0.53  (step t80 (cl (=> (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.q1 X Y Z)) (not (tptp.less_or_equalish X Y)) (tptp.q2 X Y Z))) (or (not (tptp.q1 tptp.a tptp.b tptp.c)) (not (tptp.less_or_equalish tptp.a tptp.b)) (tptp.q2 tptp.a tptp.b tptp.c))) (=> (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.q1 X Y Z)) (not (tptp.less_or_equalish X Y)) (tptp.q2 X Y Z))) (or (not (tptp.q1 tptp.a tptp.b tptp.c)) (not (tptp.less_or_equalish tptp.a tptp.b)) (tptp.q2 tptp.a tptp.b tptp.c)))) :rule resolution :premises (t78 t79))
% 0.20/0.53  (step t81 (cl (=> (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.q1 X Y Z)) (not (tptp.less_or_equalish X Y)) (tptp.q2 X Y Z))) (or (not (tptp.q1 tptp.a tptp.b tptp.c)) (not (tptp.less_or_equalish tptp.a tptp.b)) (tptp.q2 tptp.a tptp.b tptp.c)))) :rule contraction :premises (t80))
% 0.20/0.53  (step t82 (cl (not (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.q1 X Y Z)) (not (tptp.less_or_equalish X Y)) (tptp.q2 X Y Z)))) (or (not (tptp.q1 tptp.a tptp.b tptp.c)) (not (tptp.less_or_equalish tptp.a tptp.b)) (tptp.q2 tptp.a tptp.b tptp.c))) :rule implies :premises (t81))
% 0.20/0.53  (step t83 (cl (or (not (tptp.q1 tptp.a tptp.b tptp.c)) (not (tptp.less_or_equalish tptp.a tptp.b)) (tptp.q2 tptp.a tptp.b tptp.c))) :rule resolution :premises (t82 a2))
% 0.20/0.53  (step t84 (cl (tptp.q2 tptp.a tptp.b tptp.c)) :rule resolution :premises (t75 a11 t56 t83))
% 0.20/0.53  (step t85 (cl (=> (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.q2 X Y Z)) (tptp.q4 X Y Y))) (or (not (tptp.q2 tptp.a tptp.b tptp.c)) (tptp.q4 tptp.a tptp.b tptp.b))) (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.q2 X Y Z)) (tptp.q4 X Y Y)))) :rule implies_neg1)
% 0.20/0.53  (anchor :step t86)
% 0.20/0.53  (assume t86.a0 (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.q2 X Y Z)) (tptp.q4 X Y Y))))
% 0.20/0.53  (step t86.t1 (cl (or (not (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.q2 X Y Z)) (tptp.q4 X Y Y)))) (or (not (tptp.q2 tptp.a tptp.b tptp.c)) (tptp.q4 tptp.a tptp.b tptp.b)))) :rule forall_inst :args ((:= X tptp.a) (:= Y tptp.b) (:= Z tptp.c)))
% 0.20/0.53  (step t86.t2 (cl (not (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.q2 X Y Z)) (tptp.q4 X Y Y)))) (or (not (tptp.q2 tptp.a tptp.b tptp.c)) (tptp.q4 tptp.a tptp.b tptp.b))) :rule or :premises (t86.t1))
% 0.20/0.53  (step t86.t3 (cl (or (not (tptp.q2 tptp.a tptp.b tptp.c)) (tptp.q4 tptp.a tptp.b tptp.b))) :rule resolution :premises (t86.t2 t86.a0))
% 0.20/0.53  (step t86 (cl (not (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.q2 X Y Z)) (tptp.q4 X Y Y)))) (or (not (tptp.q2 tptp.a tptp.b tptp.c)) (tptp.q4 tptp.a tptp.b tptp.b))) :rule subproof :discharge (t86.a0))
% 0.20/0.53  (step t87 (cl (=> (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.q2 X Y Z)) (tptp.q4 X Y Y))) (or (not (tptp.q2 tptp.a tptp.b tptp.c)) (tptp.q4 tptp.a tptp.b tptp.b))) (or (not (tptp.q2 tptp.a tptp.b tptp.c)) (tptp.q4 tptp.a tptp.b tptp.b))) :rule resolution :premises (t85 t86))
% 0.20/0.53  (step t88 (cl (=> (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.q2 X Y Z)) (tptp.q4 X Y Y))) (or (not (tptp.q2 tptp.a tptp.b tptp.c)) (tptp.q4 tptp.a tptp.b tptp.b))) (not (or (not (tptp.q2 tptp.a tptp.b tptp.c)) (tptp.q4 tptp.a tptp.b tptp.b)))) :rule implies_neg2)
% 0.20/0.53  (step t89 (cl (=> (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.q2 X Y Z)) (tptp.q4 X Y Y))) (or (not (tptp.q2 tptp.a tptp.b tptp.c)) (tptp.q4 tptp.a tptp.b tptp.b))) (=> (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.q2 X Y Z)) (tptp.q4 X Y Y))) (or (not (tptp.q2 tptp.a tptp.b tptp.c)) (tptp.q4 tptp.a tptp.b tptp.b)))) :rule resolution :premises (t87 t88))
% 0.20/0.53  (step t90 (cl (=> (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.q2 X Y Z)) (tptp.q4 X Y Y))) (or (not (tptp.q2 tptp.a tptp.b tptp.c)) (tptp.q4 tptp.a tptp.b tptp.b)))) :rule contraction :premises (t89))
% 0.20/0.53  (step t91 (cl (not (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.q2 X Y Z)) (tptp.q4 X Y Y)))) (or (not (tptp.q2 tptp.a tptp.b tptp.c)) (tptp.q4 tptp.a tptp.b tptp.b))) :rule implies :premises (t90))
% 0.20/0.53  (step t92 (cl (or (not (tptp.q2 tptp.a tptp.b tptp.c)) (tptp.q4 tptp.a tptp.b tptp.b))) :rule resolution :premises (t91 a4))
% 0.20/0.53  (step t93 (cl) :rule resolution :premises (t2 t73 t84 t92))
% 0.20/0.53  
% 0.20/0.53  % SZS output end Proof for /export/starexec/sandbox2/tmp/tmp.ZvfqHYIwat/cvc5---1.0.5_10499.smt2
% 0.20/0.53  % cvc5---1.0.5 exiting
% 0.20/0.53  % cvc5---1.0.5 exiting
%------------------------------------------------------------------------------