TSTP Solution File: SWC094+1 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : SWC094+1 : TPTP v8.1.2. Released v2.4.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n011.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 20:53:50 EDT 2023

% Result   : Theorem 5.50s 1.10s
% Output   : Proof 5.50s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.12/0.12  % Problem  : SWC094+1 : TPTP v8.1.2. Released v2.4.0.
% 0.12/0.13  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.13/0.34  % Computer : n011.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 300
% 0.13/0.34  % DateTime : Mon Aug 28 14:46:55 EDT 2023
% 0.13/0.35  % CPUTime  : 
% 5.50/1.10  Command-line arguments: --flip-ordering --lhs-weight 1 --depth-weight 60 --distributivity-heuristic
% 5.50/1.10  
% 5.50/1.10  % SZS status Theorem
% 5.50/1.10  
% 5.50/1.10  % SZS output start Proof
% 5.50/1.10  Take the following subset of the input axioms:
% 5.50/1.10    fof(ax1, axiom, ![U]: (ssItem(U) => ![V]: (ssItem(V) => (neq(U, V) <=> U!=V)))).
% 5.50/1.10    fof(ax13, axiom, ![U2]: (ssList(U2) => (duplicatefreeP(U2) <=> ![V2]: (ssItem(V2) => ![W]: (ssItem(W) => ![X]: (ssList(X) => ![Y]: (ssList(Y) => ![Z]: (ssList(Z) => (app(app(X, cons(V2, Y)), cons(W, Z))=U2 => V2!=W))))))))).
% 5.50/1.10    fof(ax15, axiom, ![U2]: (ssList(U2) => ![V2]: (ssList(V2) => (neq(U2, V2) <=> U2!=V2)))).
% 5.50/1.10    fof(ax17, axiom, ssList(nil)).
% 5.50/1.10    fof(ax18, axiom, ![U2]: (ssList(U2) => ![V2]: (ssItem(V2) => cons(V2, U2)!=U2))).
% 5.50/1.10    fof(ax21, axiom, ![U2]: (ssList(U2) => ![V2]: (ssItem(V2) => nil!=cons(V2, U2)))).
% 5.50/1.10    fof(ax33, axiom, ![U2]: (ssItem(U2) => ![V2]: (ssItem(V2) => (lt(U2, V2) => ~lt(V2, U2))))).
% 5.50/1.10    fof(ax38, axiom, ![U2]: (ssItem(U2) => ~memberP(nil, U2))).
% 5.50/1.10    fof(ax8, axiom, ![U2]: (ssList(U2) => (cyclefreeP(U2) <=> ![V2]: (ssItem(V2) => ![W2]: (ssItem(W2) => ![X2]: (ssList(X2) => ![Y2]: (ssList(Y2) => ![Z2]: (ssList(Z2) => (app(app(X2, cons(V2, Y2)), cons(W2, Z2))=U2 => ~(leq(V2, W2) & leq(W2, V2))))))))))).
% 5.50/1.10    fof(ax84, axiom, ![U2]: (ssList(U2) => app(U2, nil)=U2)).
% 5.50/1.10    fof(ax90, axiom, ![U2]: (ssItem(U2) => ~lt(U2, U2))).
% 5.50/1.10    fof(ax93, axiom, ![U2]: (ssItem(U2) => ![V2]: (ssItem(V2) => (lt(U2, V2) <=> (U2!=V2 & leq(U2, V2)))))).
% 5.50/1.10    fof(ax94, axiom, ![U2]: (ssItem(U2) => ![V2]: (ssItem(V2) => (gt(U2, V2) => ~gt(V2, U2))))).
% 5.50/1.10    fof(co1, conjecture, ![U2]: (ssList(U2) => ![V2]: (ssList(V2) => ![W2]: (ssList(W2) => ![X2]: (ssList(X2) => (V2!=X2 | (U2!=W2 | (X2!=W2 | ?[Y2]: (ssList(Y2) & ?[Z2]: (ssList(Z2) & ?[X1]: (ssList(X1) & (app(app(Y2, Z2), X1)=U2 & app(Y2, X1)=V2)))))))))))).
% 5.50/1.10  
% 5.50/1.10  Now clausify the problem and encode Horn clauses using encoding 3 of
% 5.50/1.10  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 5.50/1.10  We repeatedly replace C & s=t => u=v by the two clauses:
% 5.50/1.10    fresh(y, y, x1...xn) = u
% 5.50/1.10    C => fresh(s, t, x1...xn) = v
% 5.50/1.10  where fresh is a fresh function symbol and x1..xn are the free
% 5.50/1.10  variables of u and v.
% 5.50/1.10  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 5.50/1.10  input problem has no model of domain size 1).
% 5.50/1.10  
% 5.50/1.10  The encoding turns the above axioms into the following unit equations and goals:
% 5.50/1.10  
% 5.50/1.10  Axiom 1 (co1): u = w.
% 5.50/1.10  Axiom 2 (co1_1): v = x.
% 5.50/1.10  Axiom 3 (co1_2): x = w.
% 5.50/1.10  Axiom 4 (ax17): ssList(nil) = true2.
% 5.50/1.10  Axiom 5 (co1_3): ssList(u) = true2.
% 5.50/1.10  Axiom 6 (ax84): fresh(X, X, Y) = Y.
% 5.50/1.10  Axiom 7 (ax84): fresh(ssList(X), true2, X) = app(X, nil).
% 5.50/1.10  
% 5.50/1.10  Lemma 8: app(u, nil) = u.
% 5.50/1.10  Proof:
% 5.50/1.10    app(u, nil)
% 5.50/1.10  = { by axiom 7 (ax84) R->L }
% 5.50/1.10    fresh(ssList(u), true2, u)
% 5.50/1.10  = { by axiom 5 (co1_3) }
% 5.50/1.10    fresh(true2, true2, u)
% 5.50/1.11  = { by axiom 6 (ax84) }
% 5.50/1.11    u
% 5.50/1.11  
% 5.50/1.11  Goal 1 (co1_7): tuple6(app(X, Y), app(app(X, Z), Y), ssList(X), ssList(Z), ssList(Y)) = tuple6(v, u, true2, true2, true2).
% 5.50/1.11  The goal is true when:
% 5.50/1.11    X = u
% 5.50/1.11    Y = nil
% 5.50/1.11    Z = nil
% 5.50/1.11  
% 5.50/1.11  Proof:
% 5.50/1.11    tuple6(app(u, nil), app(app(u, nil), nil), ssList(u), ssList(nil), ssList(nil))
% 5.50/1.11  = { by axiom 4 (ax17) }
% 5.50/1.11    tuple6(app(u, nil), app(app(u, nil), nil), ssList(u), true2, ssList(nil))
% 5.50/1.11  = { by lemma 8 }
% 5.50/1.11    tuple6(u, app(app(u, nil), nil), ssList(u), true2, ssList(nil))
% 5.50/1.11  = { by lemma 8 }
% 5.50/1.11    tuple6(u, app(u, nil), ssList(u), true2, ssList(nil))
% 5.50/1.11  = { by lemma 8 }
% 5.50/1.11    tuple6(u, u, ssList(u), true2, ssList(nil))
% 5.50/1.11  = { by axiom 5 (co1_3) }
% 5.50/1.11    tuple6(u, u, true2, true2, ssList(nil))
% 5.50/1.11  = { by axiom 4 (ax17) }
% 5.50/1.11    tuple6(u, u, true2, true2, true2)
% 5.50/1.11  = { by axiom 1 (co1) }
% 5.50/1.11    tuple6(w, u, true2, true2, true2)
% 5.50/1.11  = { by axiom 3 (co1_2) R->L }
% 5.50/1.11    tuple6(x, u, true2, true2, true2)
% 5.50/1.11  = { by axiom 2 (co1_1) R->L }
% 5.50/1.11    tuple6(v, u, true2, true2, true2)
% 5.50/1.11  % SZS output end Proof
% 5.50/1.11  
% 5.50/1.11  RESULT: Theorem (the conjecture is true).
%------------------------------------------------------------------------------