TSTP Solution File: SWC051+1 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : SWC051+1 : TPTP v8.1.2. Released v2.4.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n004.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 20:53:38 EDT 2023

% Result   : Theorem 3.51s 0.83s
% Output   : Proof 3.74s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.12  % Problem  : SWC051+1 : TPTP v8.1.2. Released v2.4.0.
% 0.07/0.13  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.13/0.34  % Computer : n004.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 300
% 0.13/0.34  % DateTime : Mon Aug 28 15:02:07 EDT 2023
% 0.13/0.34  % CPUTime  : 
% 3.51/0.83  Command-line arguments: --ground-connectedness --complete-subsets
% 3.51/0.83  
% 3.51/0.83  % SZS status Theorem
% 3.51/0.83  
% 3.51/0.83  % SZS output start Proof
% 3.51/0.83  Take the following subset of the input axioms:
% 3.74/0.84    fof(ax1, axiom, ![U]: (ssItem(U) => ![V]: (ssItem(V) => (neq(U, V) <=> U!=V)))).
% 3.74/0.84    fof(ax13, axiom, ![U2]: (ssList(U2) => (duplicatefreeP(U2) <=> ![V2]: (ssItem(V2) => ![W]: (ssItem(W) => ![X]: (ssList(X) => ![Y]: (ssList(Y) => ![Z]: (ssList(Z) => (app(app(X, cons(V2, Y)), cons(W, Z))=U2 => V2!=W))))))))).
% 3.74/0.84    fof(ax15, axiom, ![U2]: (ssList(U2) => ![V2]: (ssList(V2) => (neq(U2, V2) <=> U2!=V2)))).
% 3.74/0.84    fof(ax18, axiom, ![U2]: (ssList(U2) => ![V2]: (ssItem(V2) => cons(V2, U2)!=U2))).
% 3.74/0.84    fof(ax21, axiom, ![U2]: (ssList(U2) => ![V2]: (ssItem(V2) => nil!=cons(V2, U2)))).
% 3.74/0.84    fof(ax33, axiom, ![U2]: (ssItem(U2) => ![V2]: (ssItem(V2) => (lt(U2, V2) => ~lt(V2, U2))))).
% 3.74/0.84    fof(ax38, axiom, ![U2]: (ssItem(U2) => ~memberP(nil, U2))).
% 3.74/0.84    fof(ax49, axiom, ![U2]: (ssList(U2) => rearsegP(U2, U2))).
% 3.74/0.84    fof(ax8, axiom, ![U2]: (ssList(U2) => (cyclefreeP(U2) <=> ![V2]: (ssItem(V2) => ![W2]: (ssItem(W2) => ![X2]: (ssList(X2) => ![Y2]: (ssList(Y2) => ![Z2]: (ssList(Z2) => (app(app(X2, cons(V2, Y2)), cons(W2, Z2))=U2 => ~(leq(V2, W2) & leq(W2, V2))))))))))).
% 3.74/0.84    fof(ax90, axiom, ![U2]: (ssItem(U2) => ~lt(U2, U2))).
% 3.74/0.84    fof(ax93, axiom, ![U2]: (ssItem(U2) => ![V2]: (ssItem(V2) => (lt(U2, V2) <=> (U2!=V2 & leq(U2, V2)))))).
% 3.74/0.84    fof(ax94, axiom, ![U2]: (ssItem(U2) => ![V2]: (ssItem(V2) => (gt(U2, V2) => ~gt(V2, U2))))).
% 3.74/0.84    fof(co1, conjecture, ![U2]: (ssList(U2) => ![V2]: (ssList(V2) => ![W2]: (ssList(W2) => ![X2]: (ssList(X2) => (V2!=X2 | (U2!=W2 | (~neq(V2, nil) | (?[Y2]: (ssList(Y2) & (neq(Y2, nil) & (rearsegP(V2, Y2) & rearsegP(U2, Y2)))) | ((nil!=W2 & nil=X2) | (neq(X2, nil) & (~neq(W2, nil) | ~rearsegP(X2, W2))))))))))))).
% 3.74/0.84  
% 3.74/0.84  Now clausify the problem and encode Horn clauses using encoding 3 of
% 3.74/0.84  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 3.74/0.84  We repeatedly replace C & s=t => u=v by the two clauses:
% 3.74/0.84    fresh(y, y, x1...xn) = u
% 3.74/0.84    C => fresh(s, t, x1...xn) = v
% 3.74/0.84  where fresh is a fresh function symbol and x1..xn are the free
% 3.74/0.84  variables of u and v.
% 3.74/0.84  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 3.74/0.84  input problem has no model of domain size 1).
% 3.74/0.84  
% 3.74/0.84  The encoding turns the above axioms into the following unit equations and goals:
% 3.74/0.84  
% 3.74/0.84  Axiom 1 (co1): u = w.
% 3.74/0.84  Axiom 2 (co1_1): v = x.
% 3.74/0.84  Axiom 3 (co1_3): ssList(u) = true2.
% 3.74/0.84  Axiom 4 (co1_10): fresh16(X, X) = true2.
% 3.74/0.84  Axiom 5 (co1_9): fresh14(X, X) = true2.
% 3.74/0.84  Axiom 6 (co1_2): neq(v, nil) = true2.
% 3.74/0.84  Axiom 7 (ax49): fresh56(X, X, Y) = true2.
% 3.74/0.84  Axiom 8 (ax49): fresh56(ssList(X), true2, X) = rearsegP(X, X).
% 3.74/0.84  Axiom 9 (co1_10): fresh16(neq(x, nil), true2) = rearsegP(x, w).
% 3.74/0.84  Axiom 10 (co1_9): fresh14(neq(x, nil), true2) = neq(w, nil).
% 3.74/0.84  
% 3.74/0.84  Goal 1 (co1_8): tuple(neq(X, nil), ssList(X), rearsegP(u, X), rearsegP(v, X)) = tuple(true2, true2, true2, true2).
% 3.74/0.84  The goal is true when:
% 3.74/0.84    X = u
% 3.74/0.84  
% 3.74/0.84  Proof:
% 3.74/0.84    tuple(neq(u, nil), ssList(u), rearsegP(u, u), rearsegP(v, u))
% 3.74/0.84  = { by axiom 8 (ax49) R->L }
% 3.74/0.84    tuple(neq(u, nil), ssList(u), fresh56(ssList(u), true2, u), rearsegP(v, u))
% 3.74/0.84  = { by axiom 3 (co1_3) }
% 3.74/0.84    tuple(neq(u, nil), ssList(u), fresh56(true2, true2, u), rearsegP(v, u))
% 3.74/0.84  = { by axiom 7 (ax49) }
% 3.74/0.84    tuple(neq(u, nil), ssList(u), true2, rearsegP(v, u))
% 3.74/0.84  = { by axiom 1 (co1) }
% 3.74/0.84    tuple(neq(w, nil), ssList(u), true2, rearsegP(v, u))
% 3.74/0.84  = { by axiom 10 (co1_9) R->L }
% 3.74/0.84    tuple(fresh14(neq(x, nil), true2), ssList(u), true2, rearsegP(v, u))
% 3.74/0.84  = { by axiom 2 (co1_1) R->L }
% 3.74/0.84    tuple(fresh14(neq(v, nil), true2), ssList(u), true2, rearsegP(v, u))
% 3.74/0.84  = { by axiom 6 (co1_2) }
% 3.74/0.84    tuple(fresh14(true2, true2), ssList(u), true2, rearsegP(v, u))
% 3.74/0.84  = { by axiom 5 (co1_9) }
% 3.74/0.84    tuple(true2, ssList(u), true2, rearsegP(v, u))
% 3.74/0.84  = { by axiom 3 (co1_3) }
% 3.74/0.84    tuple(true2, true2, true2, rearsegP(v, u))
% 3.74/0.84  = { by axiom 1 (co1) }
% 3.74/0.84    tuple(true2, true2, true2, rearsegP(v, w))
% 3.74/0.84  = { by axiom 2 (co1_1) }
% 3.74/0.84    tuple(true2, true2, true2, rearsegP(x, w))
% 3.74/0.84  = { by axiom 9 (co1_10) R->L }
% 3.74/0.84    tuple(true2, true2, true2, fresh16(neq(x, nil), true2))
% 3.74/0.84  = { by axiom 2 (co1_1) R->L }
% 3.74/0.84    tuple(true2, true2, true2, fresh16(neq(v, nil), true2))
% 3.74/0.84  = { by axiom 6 (co1_2) }
% 3.74/0.84    tuple(true2, true2, true2, fresh16(true2, true2))
% 3.74/0.84  = { by axiom 4 (co1_10) }
% 3.74/0.84    tuple(true2, true2, true2, true2)
% 3.74/0.84  % SZS output end Proof
% 3.74/0.84  
% 3.74/0.84  RESULT: Theorem (the conjecture is true).
%------------------------------------------------------------------------------