TSTP Solution File: SWC011-1 by Gandalf---c-2.6

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Gandalf---c-2.6
% Problem  : SWC011-1 : TPTP v3.4.2. Released v2.4.0.
% Transfm  : add_equality:r
% Format   : otter:hypothesis:set(auto),clear(print_given)
% Command  : gandalf-wrapper -time %d %s

% Computer : art10.cs.miami.edu
% Model    : i686 unknown
% CPU      : Intel(R) Pentium(R) 4 CPU 2.80GHz @ 2793MHz
% Memory   : 1000MB
% OS       : Linux 2.4.22-21mdk-i686-up-4GB
% CPULimit : 600s

% Result   : Unsatisfiable 69.3s
% Output   : Assurance 69.3s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----NO SOLUTION OUTPUT BY SYSTEM
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 
% Gandalf c-2.6 r1 starting to prove: /home/graph/tptp/TSTP/PreparedTPTP/otter:hypothesis:set(auto),clear(print_given)---add_equality:r/SWC/SWC011-1+eq_r.in
% Using automatic strategy selection.
% Time limit in seconds: 600
% 
% prove-all-passes started
% 
% detected problem class: neq
% detected subclass: big
% 
% strategies selected: 
% (hyper 28 #f 5 19)
% (binary-unit 28 #f 5 19)
% (binary-double 11 #f 5 19)
% (binary-double 17 #f)
% (binary-double 17 #t)
% (binary 87 #t 5 19)
% (binary-order 28 #f 5 19)
% (binary-posweight-order 58 #f)
% (binary-posweight-lex-big-order 28 #f)
% (binary-posweight-lex-small-order 11 #f)
% (binary-order-sos 28 #t)
% (binary-unit-uniteq 28 #f)
% (binary-weightorder 28 #f)
% (binary-weightorder-sos 17 #f)
% (binary-order 28 #f)
% (hyper-order 17 #f)
% (binary 141 #t)
% 
% 
% ********* EMPTY CLAUSE DERIVED *********
% 
% 
% timer checkpoints: c(206,40,1,412,0,1,56790,4,2244,58725,63,2802,58725,1,2802,58725,50,2804,58725,40,2804,58931,0,2804,139850,3,4210,184554,4,4909,207592,5,5605,207592,5,5607,207593,1,5607,207593,50,5611,207593,40,5611,207799,0,5611,250312,3,6164,267811,4,6440,281662,5,6712,281663,5,6713,281664,1,6713,281664,50,6715,281664,40,6715,281870,0,6716)
% 
% 
% START OF PROOF
% 281722 [] segment^p(X,X) | -ss^list(X).
% 281765 [] neq(X,Y) | equal(X,Y) | -ss^list(Y) | -ss^list(X).
% 281780 [] -neq(X,Y) | -equal(X,Y) | -ss^list(Y) | -ss^list(X).
% 281792 [] -segment^p(X,Y) | -segment^p(Y,X) | equal(Y,X) | -ss^list(Y) | -ss^list(X).
% 281851 [] ss^list(sk1).
% 281852 [] ss^list(sk2).
% 281853 [] ss^list(sk3).
% 281854 [] ss^list(sk4).
% 281855 [] equal(sk2,sk4).
% 281856 [] equal(sk1,sk3).
% 281857 [] neq(sk2,nil).
% 281865 [] -neq(sk4,nil) | -equal(app(app(X,cons(Y,nil)),Z),sk2) | -equal(app(X,Z),sk1) | -ss^item(Y) | -ss^list(X) | -ss^list(Z).
% 281866 [] -neq(sk4,nil) | ss^item(sk5).
% 281867 [] -neq(sk4,nil) | ss^list(sk6).
% 281868 [] -neq(sk4,nil) | ss^list(sk7).
% 281869 [] equal(app(app(sk6,cons(sk5,nil)),sk7),sk4) | -neq(sk4,nil).
% 281870 [] equal(app(sk6,sk7),sk3) | -neq(sk4,nil).
% 282208 [para:281855.1.2,281865.1.1,cut:281857] -equal(app(app(X,cons(Y,nil)),Z),sk2) | -equal(app(X,Z),sk1) | -ss^item(Y) | -ss^list(X) | -ss^list(Z).
% 282238 [para:281855.1.2,281866.1.1,cut:281857] ss^item(sk5).
% 282240 [para:281855.1.2,281867.1.1,cut:281857] ss^list(sk6).
% 282242 [para:281855.1.2,281868.1.1,cut:281857] ss^list(sk7).
% 282244 [para:281855.1.2,281869.2.1,cut:281857] equal(app(app(sk6,cons(sk5,nil)),sk7),sk4).
% 282246 [para:281855.1.2,281870.2.1,cut:281857] equal(app(sk6,sk7),sk3).
% 282308 [binary:281854,281722.2] segment^p(sk4,sk4).
% 282379 [para:281855.1.2,282308.1.1] segment^p(sk2,sk4).
% 282380 [para:281855.1.2,282308.1.2] segment^p(sk4,sk2).
% 285429 [binary:282246,281780.2,demod:282246,cut:281853] -neq(sk3,sk3).
% 285447 [para:281856.1.2,285429.1.2] -neq(sk3,sk1).
% 285511 [binary:281765,285447,cut:281851,cut:281853] equal(sk3,sk1).
% 287091 [binary:282379,281792,cut:282380,cut:281854,cut:281852] equal(sk4,sk2).
% 311749 [para:282244.1.1,282208.1.1,demod:282246,cut:287091,cut:285511,cut:282238,cut:282240,cut:282242] contradiction
% END OF PROOF
% 
% Proof found by the following strategy:
% 
% using binary resolution
% not using sos strategy
% using double strategy
% using dynamic demodulation
% using ordered paramodulation
% using kb ordering for equality
% preferring bigger arities for lex ordering
% using clause demodulation
% seconds given: 17
% 
% 
% old unit clauses discarded
% 
% ***GANDALF_FOUND_A_REFUTATION***
% 
% Global statistics over all passes: 
% 
%  given clauses:    3774
%  derived clauses:   452013
%  kept clauses:      204984
%  kept size sum:     0
%  kept mid-nuclei:   51733
%  kept new demods:   34352
%  forw unit-subs:    44473
%  forw double-subs: 11803
%  forw overdouble-subs: 9795
%  backward subs:     117
%  fast unit cutoff:  45142
%  full unit cutoff:  0
%  dbl  unit cutoff:  887
%  real runtime  :  71.92
%  process. runtime:  71.11
% specific non-discr-tree subsumption statistics: 
%  tried:           2749981
%  length fails:    32193
%  strength fails:  262569
%  predlist fails:  1939323
%  aux str. fails:  84773
%  by-lit fails:    60711
%  full subs tried: 307408
%  full subs fail:  296623
% 
% ; program args: ("/home/graph/tptp/Systems/Gandalf---c-2.6/gandalf" "-time" "600" "/home/graph/tptp/TSTP/PreparedTPTP/otter:hypothesis:set(auto),clear(print_given)---add_equality:r/SWC/SWC011-1+eq_r.in")
% 
%------------------------------------------------------------------------------