TSTP Solution File: SEV427^1 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SEV427^1 : TPTP v6.1.0. Released v5.2.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n100.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:34:11 EDT 2014

% Result   : Theorem 3.11s
% Output   : Proof 3.11s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SEV427^1 : TPTP v6.1.0. Released v5.2.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n100.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 09:12:36 CDT 2014
% % CPUTime  : 3.11 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0xbedef0>, <kernel.DependentProduct object at 0xbeda70>) of role type named eps
% Using role type
% Declaring eps:((fofType->Prop)->fofType)
% FOF formula (forall (P:(fofType->Prop)), (((ex fofType) (fun (X:fofType)=> (P X)))->(P (eps P)))) of role axiom named choiceax
% A new axiom: (forall (P:(fofType->Prop)), (((ex fofType) (fun (X:fofType)=> (P X)))->(P (eps P))))
% FOF formula (<kernel.Constant object at 0xbed830>, <kernel.DependentProduct object at 0xbedcb0>) of role type named p
% Using role type
% Declaring p:(fofType->Prop)
% FOF formula (<kernel.Constant object at 0xbedf38>, <kernel.DependentProduct object at 0xbeda28>) of role type named q
% Using role type
% Declaring q:(fofType->Prop)
% FOF formula (forall (X:fofType), ((or (p X)) (q X))) of role axiom named pq
% A new axiom: (forall (X:fofType), ((or (p X)) (q X)))
% FOF formula ((or (p (eps p))) (q (eps q))) of role conjecture named conj
% Conjecture to prove = ((or (p (eps p))) (q (eps q))):Prop
% Parameter fofType_DUMMY:fofType.
% We need to prove ['((or (p (eps p))) (q (eps q)))']
% Parameter fofType:Type.
% Parameter eps:((fofType->Prop)->fofType).
% Axiom choiceax:(forall (P:(fofType->Prop)), (((ex fofType) (fun (X:fofType)=> (P X)))->(P (eps P)))).
% Parameter p:(fofType->Prop).
% Parameter q:(fofType->Prop).
% Axiom pq:(forall (X:fofType), ((or (p X)) (q X))).
% Trying to prove ((or (p (eps p))) (q (eps q)))
% Found or_introl00:=(or_introl0 (q (eps q))):((p X)->((or (p X)) (q (eps q))))
% Found (or_introl0 (q (eps q))) as proof of ((p X)->((or (p (eps p))) (q (eps q))))
% Found ((or_introl (p X)) (q (eps q))) as proof of ((p X)->((or (p (eps p))) (q (eps q))))
% Found ((or_introl (p X)) (q (eps q))) as proof of ((p X)->((or (p (eps p))) (q (eps q))))
% Found ((or_introl (p X)) (q (eps q))) as proof of ((p X)->((or (p (eps p))) (q (eps q))))
% Found or_intror00:=(or_intror0 (q X)):((q X)->((or (p (eps p))) (q X)))
% Found (or_intror0 (q X)) as proof of ((q X)->((or (p (eps p))) (q (eps q))))
% Found ((or_intror (p (eps p))) (q X)) as proof of ((q X)->((or (p (eps p))) (q (eps q))))
% Found ((or_intror (p (eps p))) (q X)) as proof of ((q X)->((or (p (eps p))) (q (eps q))))
% Found ((or_intror (p (eps p))) (q X)) as proof of ((q X)->((or (p (eps p))) (q (eps q))))
% Found x:(p X)
% Instantiate: X:=(eps p):fofType
% Found (fun (x:(p X))=> x) as proof of (p (eps p))
% Found (fun (x:(p X))=> x) as proof of ((p X)->(p (eps p)))
% Found x:(q X)
% Instantiate: X:=(eps q):fofType
% Found (fun (x:(q X))=> x) as proof of (q (eps q))
% Found (fun (x:(q X))=> x) as proof of ((q X)->(q (eps q)))
% Found or_introl00:=(or_introl0 (p (eps p))):((q X)->((or (q X)) (p (eps p))))
% Found (or_introl0 (p (eps p))) as proof of ((q X)->((or (q (eps q))) (p (eps p))))
% Found ((or_introl (q X)) (p (eps p))) as proof of ((q X)->((or (q (eps q))) (p (eps p))))
% Found ((or_introl (q X)) (p (eps p))) as proof of ((q X)->((or (q (eps q))) (p (eps p))))
% Found ((or_introl (q X)) (p (eps p))) as proof of ((q X)->((or (q (eps q))) (p (eps p))))
% Found or_intror00:=(or_intror0 (p X)):((p X)->((or (q (eps q))) (p X)))
% Found (or_intror0 (p X)) as proof of ((p X)->((or (q (eps q))) (p (eps p))))
% Found ((or_intror (q (eps q))) (p X)) as proof of ((p X)->((or (q (eps q))) (p (eps p))))
% Found ((or_intror (q (eps q))) (p X)) as proof of ((p X)->((or (q (eps q))) (p (eps p))))
% Found ((or_intror (q (eps q))) (p X)) as proof of ((p X)->((or (q (eps q))) (p (eps p))))
% Found x:(p X)
% Instantiate: X:=(eps p):fofType
% Found (fun (x:(p X))=> x) as proof of (p (eps p))
% Found (fun (x:(p X))=> x) as proof of ((p X)->(p (eps p)))
% Found x:(q X)
% Instantiate: X:=(eps q):fofType
% Found (fun (x:(q X))=> x) as proof of (q (eps q))
% Found (fun (x:(q X))=> x) as proof of ((q X)->(q (eps q)))
% Found ex_intro0000:=(ex_intro000 x):((ex fofType) (fun (X:fofType)=> (q X)))
% Found (ex_intro000 x) as proof of ((ex fofType) (fun (X:fofType)=> (q X)))
% Found ((ex_intro00 X) x) as proof of ((ex fofType) (fun (X:fofType)=> (q X)))
% Found (((ex_intro0 (fun (X:fofType)=> (q X))) X) x) as proof of ((ex fofType) (fun (X:fofType)=> (q X)))
% Found ((((ex_intro fofType) (fun (X:fofType)=> (q X))) X) x) as proof of ((ex fofType) (fun (X:fofType)=> (q X)))
% Found ((((ex_intro fofType) (fun (X:fofType)=> (q X))) X) x) as proof of ((ex fofType) (fun (X:fofType)=> (q X)))
% Found (choiceax0 ((((ex_intro fofType) (fun (X:fofType)=> (q X))) X) x)) as proof of (q (eps q))
% Found ((choiceax q) ((((ex_intro fofType) (fun (X:fofType)=> (q X))) X) x)) as proof of (q (eps q))
% Found ((choiceax q) ((((ex_intro fofType) (fun (X:fofType)=> (q X))) X) x)) as proof of (q (eps q))
% Found (or_intror00 ((choiceax q) ((((ex_intro fofType) (fun (X:fofType)=> (q X))) X) x))) as proof of ((or (p (eps p))) (q (eps q)))
% Found ((or_intror0 (q (eps q))) ((choiceax q) ((((ex_intro fofType) (fun (X:fofType)=> (q X))) X) x))) as proof of ((or (p (eps p))) (q (eps q)))
% Found (((or_intror (p (eps p))) (q (eps q))) ((choiceax q) ((((ex_intro fofType) (fun (X:fofType)=> (q X))) X) x))) as proof of ((or (p (eps p))) (q (eps q)))
% Found (fun (x:(q X))=> (((or_intror (p (eps p))) (q (eps q))) ((choiceax q) ((((ex_intro fofType) (fun (X:fofType)=> (q X))) X) x)))) as proof of ((or (p (eps p))) (q (eps q)))
% Found (fun (x:(q X))=> (((or_intror (p (eps p))) (q (eps q))) ((choiceax q) ((((ex_intro fofType) (fun (X:fofType)=> (q X))) X) x)))) as proof of ((q X)->((or (p (eps p))) (q (eps q))))
% Found ((or_ind00 ((or_introl (p X)) (q (eps q)))) (fun (x:(q X))=> (((or_intror (p (eps p))) (q (eps q))) ((choiceax q) ((((ex_intro fofType) (fun (X:fofType)=> (q X))) X) x))))) as proof of ((or (p (eps p))) (q (eps q)))
% Found (((or_ind0 ((or (p (eps p))) (q (eps q)))) ((or_introl (p X)) (q (eps q)))) (fun (x:(q X))=> (((or_intror (p (eps p))) (q (eps q))) ((choiceax q) ((((ex_intro fofType) (fun (X:fofType)=> (q X))) X) x))))) as proof of ((or (p (eps p))) (q (eps q)))
% Found ((((fun (P:Prop) (x:((p X)->P)) (x0:((q X)->P))=> ((((((or_ind (p X)) (q X)) P) x) x0) pq0)) ((or (p (eps p))) (q (eps q)))) ((or_introl (p X)) (q (eps q)))) (fun (x:(q X))=> (((or_intror (p (eps p))) (q (eps q))) ((choiceax q) ((((ex_intro fofType) (fun (X0:fofType)=> (q X0))) X) x))))) as proof of ((or (p (eps p))) (q (eps q)))
% Found ((((fun (P:Prop) (x:((p (eps p))->P)) (x0:((q (eps p))->P))=> ((((((or_ind (p (eps p))) (q (eps p))) P) x) x0) (pq (eps p)))) ((or (p (eps p))) (q (eps q)))) ((or_introl (p (eps p))) (q (eps q)))) (fun (x:(q (eps p)))=> (((or_intror (p (eps p))) (q (eps q))) ((choiceax q) ((((ex_intro fofType) (fun (X0:fofType)=> (q X0))) (eps p)) x))))) as proof of ((or (p (eps p))) (q (eps q)))
% Found ((((fun (P:Prop) (x:((p (eps p))->P)) (x0:((q (eps p))->P))=> ((((((or_ind (p (eps p))) (q (eps p))) P) x) x0) (pq (eps p)))) ((or (p (eps p))) (q (eps q)))) ((or_introl (p (eps p))) (q (eps q)))) (fun (x:(q (eps p)))=> (((or_intror (p (eps p))) (q (eps q))) ((choiceax q) ((((ex_intro fofType) (fun (X0:fofType)=> (q X0))) (eps p)) x))))) as proof of ((or (p (eps p))) (q (eps q)))
% Got proof ((((fun (P:Prop) (x:((p (eps p))->P)) (x0:((q (eps p))->P))=> ((((((or_ind (p (eps p))) (q (eps p))) P) x) x0) (pq (eps p)))) ((or (p (eps p))) (q (eps q)))) ((or_introl (p (eps p))) (q (eps q)))) (fun (x:(q (eps p)))=> (((or_intror (p (eps p))) (q (eps q))) ((choiceax q) ((((ex_intro fofType) (fun (X0:fofType)=> (q X0))) (eps p)) x)))))
% Time elapsed = 2.766329s
% node=669 cost=731.000000 depth=17
% ::::::::::::::::::::::
% % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% % SZS output start Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% ((((fun (P:Prop) (x:((p (eps p))->P)) (x0:((q (eps p))->P))=> ((((((or_ind (p (eps p))) (q (eps p))) P) x) x0) (pq (eps p)))) ((or (p (eps p))) (q (eps q)))) ((or_introl (p (eps p))) (q (eps q)))) (fun (x:(q (eps p)))=> (((or_intror (p (eps p))) (q (eps q))) ((choiceax q) ((((ex_intro fofType) (fun (X0:fofType)=> (q X0))) (eps p)) x)))))
% % SZS output end Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% EOF
%------------------------------------------------------------------------------