TSTP Solution File: SEV397^5 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SEV397^5 : TPTP v6.1.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n093.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:34:08 EDT 2014

% Result   : Theorem 8.59s
% Output   : Proof 8.59s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SEV397^5 : TPTP v6.1.0. Released v4.0.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n093.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 09:06:06 CDT 2014
% % CPUTime  : 8.59 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0x1329290>, <kernel.Type object at 0x1347d40>) of role type named a_type
% Using role type
% Declaring a:Type
% FOF formula (<kernel.Constant object at 0x1329908>, <kernel.DependentProduct object at 0x1347b48>) of role type named cZ
% Using role type
% Declaring cZ:(a->Prop)
% FOF formula (<kernel.Constant object at 0x13293b0>, <kernel.DependentProduct object at 0x1347cb0>) of role type named cY
% Using role type
% Declaring cY:(a->Prop)
% FOF formula (<kernel.Constant object at 0x1329290>, <kernel.DependentProduct object at 0x1347ab8>) of role type named cX
% Using role type
% Declaring cX:(a->Prop)
% FOF formula (forall (Xx:a), ((iff ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) ((and ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx))))) of role conjecture named cTHM59_pme
% Conjecture to prove = (forall (Xx:a), ((iff ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) ((and ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx))))):Prop
% Parameter a_DUMMY:a.
% We need to prove ['(forall (Xx:a), ((iff ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) ((and ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx)))))']
% Parameter a:Type.
% Parameter cZ:(a->Prop).
% Parameter cY:(a->Prop).
% Parameter cX:(a->Prop).
% Trying to prove (forall (Xx:a), ((iff ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) ((and ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx)))))
% Found or_intror00:=(or_intror0 (cZ Xx)):((cZ Xx)->((or ((and (cX Xx)) (cY Xx))) (cZ Xx)))
% Found (or_intror0 (cZ Xx)) as proof of ((cZ Xx)->((or ((and (cX Xx)) (cY Xx))) (cZ Xx)))
% Found ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx)) as proof of ((cZ Xx)->((or ((and (cX Xx)) (cY Xx))) (cZ Xx)))
% Found ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx)) as proof of ((cZ Xx)->((or ((and (cX Xx)) (cY Xx))) (cZ Xx)))
% Found or_intror00:=(or_intror0 (cZ Xx)):((cZ Xx)->((or ((and (cX Xx)) (cY Xx))) (cZ Xx)))
% Found (or_intror0 (cZ Xx)) as proof of ((cZ Xx)->((or ((and (cX Xx)) (cY Xx))) (cZ Xx)))
% Found ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx)) as proof of ((cZ Xx)->((or ((and (cX Xx)) (cY Xx))) (cZ Xx)))
% Found ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx)) as proof of ((cZ Xx)->((or ((and (cX Xx)) (cY Xx))) (cZ Xx)))
% Found or_intror00:=(or_intror0 (cZ Xx)):((cZ Xx)->((or ((and (cX Xx)) (cY Xx))) (cZ Xx)))
% Found (or_intror0 (cZ Xx)) as proof of ((cZ Xx)->((or ((and (cX Xx)) (cY Xx))) (cZ Xx)))
% Found ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx)) as proof of ((cZ Xx)->((or ((and (cX Xx)) (cY Xx))) (cZ Xx)))
% Found ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx)) as proof of ((cZ Xx)->((or ((and (cX Xx)) (cY Xx))) (cZ Xx)))
% Found or_intror00:=(or_intror0 (cZ Xx)):((cZ Xx)->((or ((and (cX Xx)) (cY Xx))) (cZ Xx)))
% Found (or_intror0 (cZ Xx)) as proof of ((cZ Xx)->((or ((and (cX Xx)) (cY Xx))) (cZ Xx)))
% Found ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx)) as proof of ((cZ Xx)->((or ((and (cX Xx)) (cY Xx))) (cZ Xx)))
% Found ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx)) as proof of ((cZ Xx)->((or ((and (cX Xx)) (cY Xx))) (cZ Xx)))
% Found or_intror00:=(or_intror0 (cZ Xx)):((cZ Xx)->((or (cY Xx)) (cZ Xx)))
% Found (or_intror0 (cZ Xx)) as proof of ((cZ Xx)->((or (cY Xx)) (cZ Xx)))
% Found ((or_intror (cY Xx)) (cZ Xx)) as proof of ((cZ Xx)->((or (cY Xx)) (cZ Xx)))
% Found ((or_intror (cY Xx)) (cZ Xx)) as proof of ((cZ Xx)->((or (cY Xx)) (cZ Xx)))
% Found or_intror00:=(or_intror0 (cZ Xx)):((cZ Xx)->((or (cX Xx)) (cZ Xx)))
% Found (or_intror0 (cZ Xx)) as proof of ((cZ Xx)->((or (cX Xx)) (cZ Xx)))
% Found ((or_intror (cX Xx)) (cZ Xx)) as proof of ((cZ Xx)->((or (cX Xx)) (cZ Xx)))
% Found ((or_intror (cX Xx)) (cZ Xx)) as proof of ((cZ Xx)->((or (cX Xx)) (cZ Xx)))
% Found or_introl00:=(or_introl0 ((and (cX Xx)) (cY Xx))):((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found (or_introl0 ((and (cX Xx)) (cY Xx))) as proof of ((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found ((or_introl (cZ Xx)) ((and (cX Xx)) (cY Xx))) as proof of ((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found ((or_introl (cZ Xx)) ((and (cX Xx)) (cY Xx))) as proof of ((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found or_introl00:=(or_introl0 ((and (cX Xx)) (cY Xx))):((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found (or_introl0 ((and (cX Xx)) (cY Xx))) as proof of ((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found ((or_introl (cZ Xx)) ((and (cX Xx)) (cY Xx))) as proof of ((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found ((or_introl (cZ Xx)) ((and (cX Xx)) (cY Xx))) as proof of ((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found or_introl00:=(or_introl0 ((and (cX Xx)) (cY Xx))):((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found (or_introl0 ((and (cX Xx)) (cY Xx))) as proof of ((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found ((or_introl (cZ Xx)) ((and (cX Xx)) (cY Xx))) as proof of ((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found ((or_introl (cZ Xx)) ((and (cX Xx)) (cY Xx))) as proof of ((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found or_intror00:=(or_intror0 (cZ Xx)):((cZ Xx)->((or ((and (cX Xx)) (cY Xx))) (cZ Xx)))
% Found (or_intror0 (cZ Xx)) as proof of ((cZ Xx)->((or ((and (cX Xx)) (cY Xx))) (cZ Xx)))
% Found ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx)) as proof of ((cZ Xx)->((or ((and (cX Xx)) (cY Xx))) (cZ Xx)))
% Found ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx)) as proof of ((cZ Xx)->((or ((and (cX Xx)) (cY Xx))) (cZ Xx)))
% Found or_introl00:=(or_introl0 ((and (cX Xx)) (cY Xx))):((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found (or_introl0 ((and (cX Xx)) (cY Xx))) as proof of ((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found ((or_introl (cZ Xx)) ((and (cX Xx)) (cY Xx))) as proof of ((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found ((or_introl (cZ Xx)) ((and (cX Xx)) (cY Xx))) as proof of ((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found or_intror00:=(or_intror0 (cZ Xx)):((cZ Xx)->((or ((and (cX Xx)) (cY Xx))) (cZ Xx)))
% Found (or_intror0 (cZ Xx)) as proof of ((cZ Xx)->((or ((and (cX Xx)) (cY Xx))) (cZ Xx)))
% Found ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx)) as proof of ((cZ Xx)->((or ((and (cX Xx)) (cY Xx))) (cZ Xx)))
% Found ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx)) as proof of ((cZ Xx)->((or ((and (cX Xx)) (cY Xx))) (cZ Xx)))
% Found or_intror00:=(or_intror0 (cZ Xx)):((cZ Xx)->((or (cX Xx)) (cZ Xx)))
% Found (or_intror0 (cZ Xx)) as proof of ((cZ Xx)->((or (cX Xx)) (cZ Xx)))
% Found ((or_intror (cX Xx)) (cZ Xx)) as proof of ((cZ Xx)->((or (cX Xx)) (cZ Xx)))
% Found ((or_intror (cX Xx)) (cZ Xx)) as proof of ((cZ Xx)->((or (cX Xx)) (cZ Xx)))
% Found or_intror00:=(or_intror0 (cZ Xx)):((cZ Xx)->((or (cY Xx)) (cZ Xx)))
% Found (or_intror0 (cZ Xx)) as proof of ((cZ Xx)->((or (cY Xx)) (cZ Xx)))
% Found ((or_intror (cY Xx)) (cZ Xx)) as proof of ((cZ Xx)->((or (cY Xx)) (cZ Xx)))
% Found ((or_intror (cY Xx)) (cZ Xx)) as proof of ((cZ Xx)->((or (cY Xx)) (cZ Xx)))
% Found x2:(cZ Xx)
% Found (fun (x2:(cZ Xx))=> x2) as proof of (cZ Xx)
% Found (fun (x2:(cZ Xx))=> x2) as proof of ((cZ Xx)->(cZ Xx))
% Found x2:(cZ Xx)
% Found (fun (x2:(cZ Xx))=> x2) as proof of (cZ Xx)
% Found (fun (x2:(cZ Xx))=> x2) as proof of ((cZ Xx)->(cZ Xx))
% Found x2:(cZ Xx)
% Found (fun (x2:(cZ Xx))=> x2) as proof of (cZ Xx)
% Found (fun (x2:(cZ Xx))=> x2) as proof of ((cZ Xx)->(cZ Xx))
% Found x2:(cZ Xx)
% Found (fun (x2:(cZ Xx))=> x2) as proof of (cZ Xx)
% Found (fun (x2:(cZ Xx))=> x2) as proof of ((cZ Xx)->(cZ Xx))
% Found or_introl00:=(or_introl0 ((and (cX Xx)) (cY Xx))):((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found (or_introl0 ((and (cX Xx)) (cY Xx))) as proof of ((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found ((or_introl (cZ Xx)) ((and (cX Xx)) (cY Xx))) as proof of ((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found ((or_introl (cZ Xx)) ((and (cX Xx)) (cY Xx))) as proof of ((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found or_introl00:=(or_introl0 ((and (cX Xx)) (cY Xx))):((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found (or_introl0 ((and (cX Xx)) (cY Xx))) as proof of ((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found ((or_introl (cZ Xx)) ((and (cX Xx)) (cY Xx))) as proof of ((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found ((or_introl (cZ Xx)) ((and (cX Xx)) (cY Xx))) as proof of ((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found or_introl00:=(or_introl0 ((and (cX Xx)) (cY Xx))):((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found (or_introl0 ((and (cX Xx)) (cY Xx))) as proof of ((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found ((or_introl (cZ Xx)) ((and (cX Xx)) (cY Xx))) as proof of ((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found ((or_introl (cZ Xx)) ((and (cX Xx)) (cY Xx))) as proof of ((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found or_introl00:=(or_introl0 ((and (cX Xx)) (cY Xx))):((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found (or_introl0 ((and (cX Xx)) (cY Xx))) as proof of ((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found ((or_introl (cZ Xx)) ((and (cX Xx)) (cY Xx))) as proof of ((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found ((or_introl (cZ Xx)) ((and (cX Xx)) (cY Xx))) as proof of ((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found or_intror00:=(or_intror0 (cZ Xx)):((cZ Xx)->((or ((and (cX Xx)) (cY Xx))) (cZ Xx)))
% Found (or_intror0 (cZ Xx)) as proof of ((cZ Xx)->((or ((and (cX Xx)) (cY Xx))) (cZ Xx)))
% Found ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx)) as proof of ((cZ Xx)->((or ((and (cX Xx)) (cY Xx))) (cZ Xx)))
% Found ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx)) as proof of ((cZ Xx)->((or ((and (cX Xx)) (cY Xx))) (cZ Xx)))
% Found or_intror00:=(or_intror0 (cZ Xx)):((cZ Xx)->((or ((and (cX Xx)) (cY Xx))) (cZ Xx)))
% Found (or_intror0 (cZ Xx)) as proof of ((cZ Xx)->((or ((and (cX Xx)) (cY Xx))) (cZ Xx)))
% Found ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx)) as proof of ((cZ Xx)->((or ((and (cX Xx)) (cY Xx))) (cZ Xx)))
% Found ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx)) as proof of ((cZ Xx)->((or ((and (cX Xx)) (cY Xx))) (cZ Xx)))
% Found x2:(cZ Xx)
% Found (fun (x2:(cZ Xx))=> x2) as proof of (cZ Xx)
% Found (fun (x2:(cZ Xx))=> x2) as proof of ((cZ Xx)->(cZ Xx))
% Found x2:(cZ Xx)
% Found (fun (x2:(cZ Xx))=> x2) as proof of (cZ Xx)
% Found (fun (x2:(cZ Xx))=> x2) as proof of ((cZ Xx)->(cZ Xx))
% Found x2:(cZ Xx)
% Found (fun (x2:(cZ Xx))=> x2) as proof of (cZ Xx)
% Found (fun (x2:(cZ Xx))=> x2) as proof of ((cZ Xx)->(cZ Xx))
% Found x2:(cZ Xx)
% Found (fun (x2:(cZ Xx))=> x2) as proof of (cZ Xx)
% Found (fun (x2:(cZ Xx))=> x2) as proof of ((cZ Xx)->(cZ Xx))
% Found or_introl00:=(or_introl0 (cZ Xx)):((cY Xx)->((or (cY Xx)) (cZ Xx)))
% Found (or_introl0 (cZ Xx)) as proof of ((cY Xx)->((or (cY Xx)) (cZ Xx)))
% Found ((or_introl (cY Xx)) (cZ Xx)) as proof of ((cY Xx)->((or (cY Xx)) (cZ Xx)))
% Found (fun (x1:(cX Xx))=> ((or_introl (cY Xx)) (cZ Xx))) as proof of ((cY Xx)->((or (cY Xx)) (cZ Xx)))
% Found (fun (x1:(cX Xx))=> ((or_introl (cY Xx)) (cZ Xx))) as proof of ((cX Xx)->((cY Xx)->((or (cY Xx)) (cZ Xx))))
% Found (and_rect00 (fun (x1:(cX Xx))=> ((or_introl (cY Xx)) (cZ Xx)))) as proof of ((or (cY Xx)) (cZ Xx))
% Found ((and_rect0 ((or (cY Xx)) (cZ Xx))) (fun (x1:(cX Xx))=> ((or_introl (cY Xx)) (cZ Xx)))) as proof of ((or (cY Xx)) (cZ Xx))
% Found (((fun (P:Type) (x1:((cX Xx)->((cY Xx)->P)))=> (((((and_rect (cX Xx)) (cY Xx)) P) x1) x0)) ((or (cY Xx)) (cZ Xx))) (fun (x1:(cX Xx))=> ((or_introl (cY Xx)) (cZ Xx)))) as proof of ((or (cY Xx)) (cZ Xx))
% Found (fun (x0:((and (cX Xx)) (cY Xx)))=> (((fun (P:Type) (x1:((cX Xx)->((cY Xx)->P)))=> (((((and_rect (cX Xx)) (cY Xx)) P) x1) x0)) ((or (cY Xx)) (cZ Xx))) (fun (x1:(cX Xx))=> ((or_introl (cY Xx)) (cZ Xx))))) as proof of ((or (cY Xx)) (cZ Xx))
% Found (fun (x0:((and (cX Xx)) (cY Xx)))=> (((fun (P:Type) (x1:((cX Xx)->((cY Xx)->P)))=> (((((and_rect (cX Xx)) (cY Xx)) P) x1) x0)) ((or (cY Xx)) (cZ Xx))) (fun (x1:(cX Xx))=> ((or_introl (cY Xx)) (cZ Xx))))) as proof of (((and (cX Xx)) (cY Xx))->((or (cY Xx)) (cZ Xx)))
% Found ((or_ind00 (fun (x0:((and (cX Xx)) (cY Xx)))=> (((fun (P:Type) (x1:((cX Xx)->((cY Xx)->P)))=> (((((and_rect (cX Xx)) (cY Xx)) P) x1) x0)) ((or (cY Xx)) (cZ Xx))) (fun (x1:(cX Xx))=> ((or_introl (cY Xx)) (cZ Xx)))))) ((or_intror (cY Xx)) (cZ Xx))) as proof of ((or (cY Xx)) (cZ Xx))
% Found (((or_ind0 ((or (cY Xx)) (cZ Xx))) (fun (x0:((and (cX Xx)) (cY Xx)))=> (((fun (P:Type) (x1:((cX Xx)->((cY Xx)->P)))=> (((((and_rect (cX Xx)) (cY Xx)) P) x1) x0)) ((or (cY Xx)) (cZ Xx))) (fun (x1:(cX Xx))=> ((or_introl (cY Xx)) (cZ Xx)))))) ((or_intror (cY Xx)) (cZ Xx))) as proof of ((or (cY Xx)) (cZ Xx))
% Found ((((fun (P:Prop) (x0:(((and (cX Xx)) (cY Xx))->P)) (x1:((cZ Xx)->P))=> ((((((or_ind ((and (cX Xx)) (cY Xx))) (cZ Xx)) P) x0) x1) x)) ((or (cY Xx)) (cZ Xx))) (fun (x0:((and (cX Xx)) (cY Xx)))=> (((fun (P:Type) (x1:((cX Xx)->((cY Xx)->P)))=> (((((and_rect (cX Xx)) (cY Xx)) P) x1) x0)) ((or (cY Xx)) (cZ Xx))) (fun (x1:(cX Xx))=> ((or_introl (cY Xx)) (cZ Xx)))))) ((or_intror (cY Xx)) (cZ Xx))) as proof of ((or (cY Xx)) (cZ Xx))
% Found ((((fun (P:Prop) (x0:(((and (cX Xx)) (cY Xx))->P)) (x1:((cZ Xx)->P))=> ((((((or_ind ((and (cX Xx)) (cY Xx))) (cZ Xx)) P) x0) x1) x)) ((or (cY Xx)) (cZ Xx))) (fun (x0:((and (cX Xx)) (cY Xx)))=> (((fun (P:Type) (x1:((cX Xx)->((cY Xx)->P)))=> (((((and_rect (cX Xx)) (cY Xx)) P) x1) x0)) ((or (cY Xx)) (cZ Xx))) (fun (x1:(cX Xx))=> ((or_introl (cY Xx)) (cZ Xx)))))) ((or_intror (cY Xx)) (cZ Xx))) as proof of ((or (cY Xx)) (cZ Xx))
% Found or_introl00:=(or_introl0 (cX Xx)):((cZ Xx)->((or (cZ Xx)) (cX Xx)))
% Found (or_introl0 (cX Xx)) as proof of ((cZ Xx)->((or (cZ Xx)) (cX Xx)))
% Found ((or_introl (cZ Xx)) (cX Xx)) as proof of ((cZ Xx)->((or (cZ Xx)) (cX Xx)))
% Found ((or_introl (cZ Xx)) (cX Xx)) as proof of ((cZ Xx)->((or (cZ Xx)) (cX Xx)))
% Found x0:(cZ Xx)
% Found (fun (x0:(cZ Xx))=> x0) as proof of (cZ Xx)
% Found (fun (x0:(cZ Xx))=> x0) as proof of ((cZ Xx)->(cZ Xx))
% Found or_introl000:=(or_introl00 (cZ Xx)):((or (cX Xx)) (cZ Xx))
% Found (or_introl00 (cZ Xx)) as proof of ((or (cX Xx)) (cZ Xx))
% Found ((fun (B:Prop)=> ((or_introl0 B) x1)) (cZ Xx)) as proof of ((or (cX Xx)) (cZ Xx))
% Found ((fun (B:Prop)=> (((or_introl (cX Xx)) B) x1)) (cZ Xx)) as proof of ((or (cX Xx)) (cZ Xx))
% Found (fun (x2:(cY Xx))=> ((fun (B:Prop)=> (((or_introl (cX Xx)) B) x1)) (cZ Xx))) as proof of ((or (cX Xx)) (cZ Xx))
% Found (fun (x1:(cX Xx)) (x2:(cY Xx))=> ((fun (B:Prop)=> (((or_introl (cX Xx)) B) x1)) (cZ Xx))) as proof of ((cY Xx)->((or (cX Xx)) (cZ Xx)))
% Found (fun (x1:(cX Xx)) (x2:(cY Xx))=> ((fun (B:Prop)=> (((or_introl (cX Xx)) B) x1)) (cZ Xx))) as proof of ((cX Xx)->((cY Xx)->((or (cX Xx)) (cZ Xx))))
% Found (and_rect00 (fun (x1:(cX Xx)) (x2:(cY Xx))=> ((fun (B:Prop)=> (((or_introl (cX Xx)) B) x1)) (cZ Xx)))) as proof of ((or (cX Xx)) (cZ Xx))
% Found ((and_rect0 ((or (cX Xx)) (cZ Xx))) (fun (x1:(cX Xx)) (x2:(cY Xx))=> ((fun (B:Prop)=> (((or_introl (cX Xx)) B) x1)) (cZ Xx)))) as proof of ((or (cX Xx)) (cZ Xx))
% Found (((fun (P:Type) (x1:((cX Xx)->((cY Xx)->P)))=> (((((and_rect (cX Xx)) (cY Xx)) P) x1) x0)) ((or (cX Xx)) (cZ Xx))) (fun (x1:(cX Xx)) (x2:(cY Xx))=> ((fun (B:Prop)=> (((or_introl (cX Xx)) B) x1)) (cZ Xx)))) as proof of ((or (cX Xx)) (cZ Xx))
% Found (fun (x0:((and (cX Xx)) (cY Xx)))=> (((fun (P:Type) (x1:((cX Xx)->((cY Xx)->P)))=> (((((and_rect (cX Xx)) (cY Xx)) P) x1) x0)) ((or (cX Xx)) (cZ Xx))) (fun (x1:(cX Xx)) (x2:(cY Xx))=> ((fun (B:Prop)=> (((or_introl (cX Xx)) B) x1)) (cZ Xx))))) as proof of ((or (cX Xx)) (cZ Xx))
% Found (fun (x0:((and (cX Xx)) (cY Xx)))=> (((fun (P:Type) (x1:((cX Xx)->((cY Xx)->P)))=> (((((and_rect (cX Xx)) (cY Xx)) P) x1) x0)) ((or (cX Xx)) (cZ Xx))) (fun (x1:(cX Xx)) (x2:(cY Xx))=> ((fun (B:Prop)=> (((or_introl (cX Xx)) B) x1)) (cZ Xx))))) as proof of (((and (cX Xx)) (cY Xx))->((or (cX Xx)) (cZ Xx)))
% Found ((or_ind00 (fun (x0:((and (cX Xx)) (cY Xx)))=> (((fun (P:Type) (x1:((cX Xx)->((cY Xx)->P)))=> (((((and_rect (cX Xx)) (cY Xx)) P) x1) x0)) ((or (cX Xx)) (cZ Xx))) (fun (x1:(cX Xx)) (x2:(cY Xx))=> ((fun (B:Prop)=> (((or_introl (cX Xx)) B) x1)) (cZ Xx)))))) ((or_intror (cX Xx)) (cZ Xx))) as proof of ((or (cX Xx)) (cZ Xx))
% Found (((or_ind0 ((or (cX Xx)) (cZ Xx))) (fun (x0:((and (cX Xx)) (cY Xx)))=> (((fun (P:Type) (x1:((cX Xx)->((cY Xx)->P)))=> (((((and_rect (cX Xx)) (cY Xx)) P) x1) x0)) ((or (cX Xx)) (cZ Xx))) (fun (x1:(cX Xx)) (x2:(cY Xx))=> ((fun (B:Prop)=> (((or_introl (cX Xx)) B) x1)) (cZ Xx)))))) ((or_intror (cX Xx)) (cZ Xx))) as proof of ((or (cX Xx)) (cZ Xx))
% Found ((((fun (P:Prop) (x0:(((and (cX Xx)) (cY Xx))->P)) (x1:((cZ Xx)->P))=> ((((((or_ind ((and (cX Xx)) (cY Xx))) (cZ Xx)) P) x0) x1) x)) ((or (cX Xx)) (cZ Xx))) (fun (x0:((and (cX Xx)) (cY Xx)))=> (((fun (P:Type) (x1:((cX Xx)->((cY Xx)->P)))=> (((((and_rect (cX Xx)) (cY Xx)) P) x1) x0)) ((or (cX Xx)) (cZ Xx))) (fun (x1:(cX Xx)) (x2:(cY Xx))=> ((fun (B:Prop)=> (((or_introl (cX Xx)) B) x1)) (cZ Xx)))))) ((or_intror (cX Xx)) (cZ Xx))) as proof of ((or (cX Xx)) (cZ Xx))
% Found ((((fun (P:Prop) (x0:(((and (cX Xx)) (cY Xx))->P)) (x1:((cZ Xx)->P))=> ((((((or_ind ((and (cX Xx)) (cY Xx))) (cZ Xx)) P) x0) x1) x)) ((or (cX Xx)) (cZ Xx))) (fun (x0:((and (cX Xx)) (cY Xx)))=> (((fun (P:Type) (x1:((cX Xx)->((cY Xx)->P)))=> (((((and_rect (cX Xx)) (cY Xx)) P) x1) x0)) ((or (cX Xx)) (cZ Xx))) (fun (x1:(cX Xx)) (x2:(cY Xx))=> ((fun (B:Prop)=> (((or_introl (cX Xx)) B) x1)) (cZ Xx)))))) ((or_intror (cX Xx)) (cZ Xx))) as proof of ((or (cX Xx)) (cZ Xx))
% Found ((conj10 ((((fun (P:Prop) (x0:(((and (cX Xx)) (cY Xx))->P)) (x1:((cZ Xx)->P))=> ((((((or_ind ((and (cX Xx)) (cY Xx))) (cZ Xx)) P) x0) x1) x)) ((or (cX Xx)) (cZ Xx))) (fun (x0:((and (cX Xx)) (cY Xx)))=> (((fun (P:Type) (x1:((cX Xx)->((cY Xx)->P)))=> (((((and_rect (cX Xx)) (cY Xx)) P) x1) x0)) ((or (cX Xx)) (cZ Xx))) (fun (x1:(cX Xx)) (x2:(cY Xx))=> ((fun (B:Prop)=> (((or_introl (cX Xx)) B) x1)) (cZ Xx)))))) ((or_intror (cX Xx)) (cZ Xx)))) ((((fun (P:Prop) (x0:(((and (cX Xx)) (cY Xx))->P)) (x1:((cZ Xx)->P))=> ((((((or_ind ((and (cX Xx)) (cY Xx))) (cZ Xx)) P) x0) x1) x)) ((or (cY Xx)) (cZ Xx))) (fun (x0:((and (cX Xx)) (cY Xx)))=> (((fun (P:Type) (x1:((cX Xx)->((cY Xx)->P)))=> (((((and_rect (cX Xx)) (cY Xx)) P) x1) x0)) ((or (cY Xx)) (cZ Xx))) (fun (x1:(cX Xx))=> ((or_introl (cY Xx)) (cZ Xx)))))) ((or_intror (cY Xx)) (cZ Xx)))) as proof of ((and ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx)))
% Found (((conj1 ((or (cY Xx)) (cZ Xx))) ((((fun (P:Prop) (x0:(((and (cX Xx)) (cY Xx))->P)) (x1:((cZ Xx)->P))=> ((((((or_ind ((and (cX Xx)) (cY Xx))) (cZ Xx)) P) x0) x1) x)) ((or (cX Xx)) (cZ Xx))) (fun (x0:((and (cX Xx)) (cY Xx)))=> (((fun (P:Type) (x1:((cX Xx)->((cY Xx)->P)))=> (((((and_rect (cX Xx)) (cY Xx)) P) x1) x0)) ((or (cX Xx)) (cZ Xx))) (fun (x1:(cX Xx)) (x2:(cY Xx))=> ((fun (B:Prop)=> (((or_introl (cX Xx)) B) x1)) (cZ Xx)))))) ((or_intror (cX Xx)) (cZ Xx)))) ((((fun (P:Prop) (x0:(((and (cX Xx)) (cY Xx))->P)) (x1:((cZ Xx)->P))=> ((((((or_ind ((and (cX Xx)) (cY Xx))) (cZ Xx)) P) x0) x1) x)) ((or (cY Xx)) (cZ Xx))) (fun (x0:((and (cX Xx)) (cY Xx)))=> (((fun (P:Type) (x1:((cX Xx)->((cY Xx)->P)))=> (((((and_rect (cX Xx)) (cY Xx)) P) x1) x0)) ((or (cY Xx)) (cZ Xx))) (fun (x1:(cX Xx))=> ((or_introl (cY Xx)) (cZ Xx)))))) ((or_intror (cY Xx)) (cZ Xx)))) as proof of ((and ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx)))
% Found ((((conj ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx))) ((((fun (P:Prop) (x0:(((and (cX Xx)) (cY Xx))->P)) (x1:((cZ Xx)->P))=> ((((((or_ind ((and (cX Xx)) (cY Xx))) (cZ Xx)) P) x0) x1) x)) ((or (cX Xx)) (cZ Xx))) (fun (x0:((and (cX Xx)) (cY Xx)))=> (((fun (P:Type) (x1:((cX Xx)->((cY Xx)->P)))=> (((((and_rect (cX Xx)) (cY Xx)) P) x1) x0)) ((or (cX Xx)) (cZ Xx))) (fun (x1:(cX Xx)) (x2:(cY Xx))=> ((fun (B:Prop)=> (((or_introl (cX Xx)) B) x1)) (cZ Xx)))))) ((or_intror (cX Xx)) (cZ Xx)))) ((((fun (P:Prop) (x0:(((and (cX Xx)) (cY Xx))->P)) (x1:((cZ Xx)->P))=> ((((((or_ind ((and (cX Xx)) (cY Xx))) (cZ Xx)) P) x0) x1) x)) ((or (cY Xx)) (cZ Xx))) (fun (x0:((and (cX Xx)) (cY Xx)))=> (((fun (P:Type) (x1:((cX Xx)->((cY Xx)->P)))=> (((((and_rect (cX Xx)) (cY Xx)) P) x1) x0)) ((or (cY Xx)) (cZ Xx))) (fun (x1:(cX Xx))=> ((or_introl (cY Xx)) (cZ Xx)))))) ((or_intror (cY Xx)) (cZ Xx)))) as proof of ((and ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx)))
% Found (fun (x:((or ((and (cX Xx)) (cY Xx))) (cZ Xx)))=> ((((conj ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx))) ((((fun (P:Prop) (x0:(((and (cX Xx)) (cY Xx))->P)) (x1:((cZ Xx)->P))=> ((((((or_ind ((and (cX Xx)) (cY Xx))) (cZ Xx)) P) x0) x1) x)) ((or (cX Xx)) (cZ Xx))) (fun (x0:((and (cX Xx)) (cY Xx)))=> (((fun (P:Type) (x1:((cX Xx)->((cY Xx)->P)))=> (((((and_rect (cX Xx)) (cY Xx)) P) x1) x0)) ((or (cX Xx)) (cZ Xx))) (fun (x1:(cX Xx)) (x2:(cY Xx))=> ((fun (B:Prop)=> (((or_introl (cX Xx)) B) x1)) (cZ Xx)))))) ((or_intror (cX Xx)) (cZ Xx)))) ((((fun (P:Prop) (x0:(((and (cX Xx)) (cY Xx))->P)) (x1:((cZ Xx)->P))=> ((((((or_ind ((and (cX Xx)) (cY Xx))) (cZ Xx)) P) x0) x1) x)) ((or (cY Xx)) (cZ Xx))) (fun (x0:((and (cX Xx)) (cY Xx)))=> (((fun (P:Type) (x1:((cX Xx)->((cY Xx)->P)))=> (((((and_rect (cX Xx)) (cY Xx)) P) x1) x0)) ((or (cY Xx)) (cZ Xx))) (fun (x1:(cX Xx))=> ((or_introl (cY Xx)) (cZ Xx)))))) ((or_intror (cY Xx)) (cZ Xx))))) as proof of ((and ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx)))
% Found (fun (x:((or ((and (cX Xx)) (cY Xx))) (cZ Xx)))=> ((((conj ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx))) ((((fun (P:Prop) (x0:(((and (cX Xx)) (cY Xx))->P)) (x1:((cZ Xx)->P))=> ((((((or_ind ((and (cX Xx)) (cY Xx))) (cZ Xx)) P) x0) x1) x)) ((or (cX Xx)) (cZ Xx))) (fun (x0:((and (cX Xx)) (cY Xx)))=> (((fun (P:Type) (x1:((cX Xx)->((cY Xx)->P)))=> (((((and_rect (cX Xx)) (cY Xx)) P) x1) x0)) ((or (cX Xx)) (cZ Xx))) (fun (x1:(cX Xx)) (x2:(cY Xx))=> ((fun (B:Prop)=> (((or_introl (cX Xx)) B) x1)) (cZ Xx)))))) ((or_intror (cX Xx)) (cZ Xx)))) ((((fun (P:Prop) (x0:(((and (cX Xx)) (cY Xx))->P)) (x1:((cZ Xx)->P))=> ((((((or_ind ((and (cX Xx)) (cY Xx))) (cZ Xx)) P) x0) x1) x)) ((or (cY Xx)) (cZ Xx))) (fun (x0:((and (cX Xx)) (cY Xx)))=> (((fun (P:Type) (x1:((cX Xx)->((cY Xx)->P)))=> (((((and_rect (cX Xx)) (cY Xx)) P) x1) x0)) ((or (cY Xx)) (cZ Xx))) (fun (x1:(cX Xx))=> ((or_introl (cY Xx)) (cZ Xx)))))) ((or_intror (cY Xx)) (cZ Xx))))) as proof of (((or ((and (cX Xx)) (cY Xx))) (cZ Xx))->((and ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx))))
% Found x2:(cY Xx)
% Found x2 as proof of (cY Xx)
% Found x2:(cX Xx)
% Found x2 as proof of (cX Xx)
% Found or_introl00:=(or_introl0 ((and (cX Xx)) (cY Xx))):((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found (or_introl0 ((and (cX Xx)) (cY Xx))) as proof of ((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found ((or_introl (cZ Xx)) ((and (cX Xx)) (cY Xx))) as proof of ((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found ((or_introl (cZ Xx)) ((and (cX Xx)) (cY Xx))) as proof of ((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found or_introl00:=(or_introl0 ((and (cX Xx)) (cY Xx))):((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found (or_introl0 ((and (cX Xx)) (cY Xx))) as proof of ((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found ((or_introl (cZ Xx)) ((and (cX Xx)) (cY Xx))) as proof of ((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found ((or_introl (cZ Xx)) ((and (cX Xx)) (cY Xx))) as proof of ((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found or_introl00:=(or_introl0 ((and (cX Xx)) (cY Xx))):((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found (or_introl0 ((and (cX Xx)) (cY Xx))) as proof of ((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found ((or_introl (cZ Xx)) ((and (cX Xx)) (cY Xx))) as proof of ((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found ((or_introl (cZ Xx)) ((and (cX Xx)) (cY Xx))) as proof of ((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found or_introl00:=(or_introl0 ((and (cX Xx)) (cY Xx))):((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found (or_introl0 ((and (cX Xx)) (cY Xx))) as proof of ((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found ((or_introl (cZ Xx)) ((and (cX Xx)) (cY Xx))) as proof of ((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found ((or_introl (cZ Xx)) ((and (cX Xx)) (cY Xx))) as proof of ((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found or_introl00:=(or_introl0 ((and (cX Xx)) (cY Xx))):((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found (or_introl0 ((and (cX Xx)) (cY Xx))) as proof of ((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found ((or_introl (cZ Xx)) ((and (cX Xx)) (cY Xx))) as proof of ((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found ((or_introl (cZ Xx)) ((and (cX Xx)) (cY Xx))) as proof of ((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found or_introl00:=(or_introl0 ((and (cX Xx)) (cY Xx))):((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found (or_introl0 ((and (cX Xx)) (cY Xx))) as proof of ((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found ((or_introl (cZ Xx)) ((and (cX Xx)) (cY Xx))) as proof of ((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found ((or_introl (cZ Xx)) ((and (cX Xx)) (cY Xx))) as proof of ((cZ Xx)->((or (cZ Xx)) ((and (cX Xx)) (cY Xx))))
% Found x3:(cZ Xx)
% Found (fun (x3:(cZ Xx))=> x3) as proof of (cZ Xx)
% Found (fun (x3:(cZ Xx))=> x3) as proof of ((cZ Xx)->(cZ Xx))
% Found x3:(cZ Xx)
% Found (fun (x3:(cZ Xx))=> x3) as proof of (cZ Xx)
% Found (fun (x3:(cZ Xx))=> x3) as proof of ((cZ Xx)->(cZ Xx))
% Found x3:(cZ Xx)
% Found (fun (x3:(cZ Xx))=> x3) as proof of (cZ Xx)
% Found (fun (x3:(cZ Xx))=> x3) as proof of ((cZ Xx)->(cZ Xx))
% Found x3:(cZ Xx)
% Found (fun (x3:(cZ Xx))=> x3) as proof of (cZ Xx)
% Found (fun (x3:(cZ Xx))=> x3) as proof of ((cZ Xx)->(cZ Xx))
% Found x2:(cZ Xx)
% Found (fun (x2:(cZ Xx))=> x2) as proof of (cZ Xx)
% Found (fun (x2:(cZ Xx))=> x2) as proof of ((cZ Xx)->(cZ Xx))
% Found x2:(cZ Xx)
% Found (fun (x2:(cZ Xx))=> x2) as proof of (cZ Xx)
% Found (fun (x2:(cZ Xx))=> x2) as proof of ((cZ Xx)->(cZ Xx))
% Found x2:(cZ Xx)
% Found (fun (x2:(cZ Xx))=> x2) as proof of (cZ Xx)
% Found (fun (x2:(cZ Xx))=> x2) as proof of ((cZ Xx)->(cZ Xx))
% Found x2:(cZ Xx)
% Found (fun (x2:(cZ Xx))=> x2) as proof of (cZ Xx)
% Found (fun (x2:(cZ Xx))=> x2) as proof of ((cZ Xx)->(cZ Xx))
% Found x2:(cZ Xx)
% Found (fun (x2:(cZ Xx))=> x2) as proof of (cZ Xx)
% Found (fun (x2:(cZ Xx))=> x2) as proof of ((cZ Xx)->(cZ Xx))
% Found x2:(cZ Xx)
% Found (fun (x2:(cZ Xx))=> x2) as proof of (cZ Xx)
% Found (fun (x2:(cZ Xx))=> x2) as proof of ((cZ Xx)->(cZ Xx))
% Found x3:(cZ Xx)
% Found (fun (x3:(cZ Xx))=> x3) as proof of (cZ Xx)
% Found (fun (x3:(cZ Xx))=> x3) as proof of ((cZ Xx)->(cZ Xx))
% Found x3:(cZ Xx)
% Found (fun (x3:(cZ Xx))=> x3) as proof of (cZ Xx)
% Found (fun (x3:(cZ Xx))=> x3) as proof of ((cZ Xx)->(cZ Xx))
% Found conj1000:=(conj100 x3):((and (cX Xx)) (cY Xx))
% Found (conj100 x3) as proof of ((and (cX Xx)) (cY Xx))
% Found ((conj10 (cY Xx)) x3) as proof of ((and (cX Xx)) (cY Xx))
% Found (((fun (B:Prop)=> ((conj1 B) x2)) (cY Xx)) x3) as proof of ((and (cX Xx)) (cY Xx))
% Found (((fun (B:Prop)=> (((conj (cX Xx)) B) x2)) (cY Xx)) x3) as proof of ((and (cX Xx)) (cY Xx))
% Found (((fun (B:Prop)=> (((conj (cX Xx)) B) x2)) (cY Xx)) x3) as proof of ((and (cX Xx)) (cY Xx))
% Found (or_introl00 (((fun (B:Prop)=> (((conj (cX Xx)) B) x2)) (cY Xx)) x3)) as proof of ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))
% Found ((or_introl0 (cZ Xx)) (((fun (B:Prop)=> (((conj (cX Xx)) B) x2)) (cY Xx)) x3)) as proof of ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))
% Found (((or_introl ((and (cX Xx)) (cY Xx))) (cZ Xx)) (((fun (B:Prop)=> (((conj (cX Xx)) B) x2)) (cY Xx)) x3)) as proof of ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))
% Found (fun (x3:(cY Xx))=> (((or_introl ((and (cX Xx)) (cY Xx))) (cZ Xx)) (((fun (B:Prop)=> (((conj (cX Xx)) B) x2)) (cY Xx)) x3))) as proof of ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))
% Found (fun (x3:(cY Xx))=> (((or_introl ((and (cX Xx)) (cY Xx))) (cZ Xx)) (((fun (B:Prop)=> (((conj (cX Xx)) B) x2)) (cY Xx)) x3))) as proof of ((cY Xx)->((or ((and (cX Xx)) (cY Xx))) (cZ Xx)))
% Found ((or_ind10 (fun (x3:(cY Xx))=> (((or_introl ((and (cX Xx)) (cY Xx))) (cZ Xx)) (((fun (B:Prop)=> (((conj (cX Xx)) B) x2)) (cY Xx)) x3)))) ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx))) as proof of ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))
% Found (((or_ind1 ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) (fun (x3:(cY Xx))=> (((or_introl ((and (cX Xx)) (cY Xx))) (cZ Xx)) (((fun (B:Prop)=> (((conj (cX Xx)) B) x2)) (cY Xx)) x3)))) ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx))) as proof of ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))
% Found ((((fun (P:Prop) (x3:((cY Xx)->P)) (x4:((cZ Xx)->P))=> ((((((or_ind (cY Xx)) (cZ Xx)) P) x3) x4) x1)) ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) (fun (x3:(cY Xx))=> (((or_introl ((and (cX Xx)) (cY Xx))) (cZ Xx)) (((fun (B:Prop)=> (((conj (cX Xx)) B) x2)) (cY Xx)) x3)))) ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx))) as proof of ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))
% Found (fun (x2:(cX Xx))=> ((((fun (P:Prop) (x3:((cY Xx)->P)) (x4:((cZ Xx)->P))=> ((((((or_ind (cY Xx)) (cZ Xx)) P) x3) x4) x1)) ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) (fun (x3:(cY Xx))=> (((or_introl ((and (cX Xx)) (cY Xx))) (cZ Xx)) (((fun (B:Prop)=> (((conj (cX Xx)) B) x2)) (cY Xx)) x3)))) ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx)))) as proof of ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))
% Found (fun (x2:(cX Xx))=> ((((fun (P:Prop) (x3:((cY Xx)->P)) (x4:((cZ Xx)->P))=> ((((((or_ind (cY Xx)) (cZ Xx)) P) x3) x4) x1)) ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) (fun (x3:(cY Xx))=> (((or_introl ((and (cX Xx)) (cY Xx))) (cZ Xx)) (((fun (B:Prop)=> (((conj (cX Xx)) B) x2)) (cY Xx)) x3)))) ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx)))) as proof of ((cX Xx)->((or ((and (cX Xx)) (cY Xx))) (cZ Xx)))
% Found ((or_ind00 (fun (x2:(cX Xx))=> ((((fun (P:Prop) (x3:((cY Xx)->P)) (x4:((cZ Xx)->P))=> ((((((or_ind (cY Xx)) (cZ Xx)) P) x3) x4) x1)) ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) (fun (x3:(cY Xx))=> (((or_introl ((and (cX Xx)) (cY Xx))) (cZ Xx)) (((fun (B:Prop)=> (((conj (cX Xx)) B) x2)) (cY Xx)) x3)))) ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx))))) ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx))) as proof of ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))
% Found (((or_ind0 ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) (fun (x2:(cX Xx))=> ((((fun (P:Prop) (x3:((cY Xx)->P)) (x4:((cZ Xx)->P))=> ((((((or_ind (cY Xx)) (cZ Xx)) P) x3) x4) x1)) ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) (fun (x3:(cY Xx))=> (((or_introl ((and (cX Xx)) (cY Xx))) (cZ Xx)) (((fun (B:Prop)=> (((conj (cX Xx)) B) x2)) (cY Xx)) x3)))) ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx))))) ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx))) as proof of ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))
% Found ((((fun (P:Prop) (x2:((cX Xx)->P)) (x3:((cZ Xx)->P))=> ((((((or_ind (cX Xx)) (cZ Xx)) P) x2) x3) x0)) ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) (fun (x2:(cX Xx))=> ((((fun (P:Prop) (x3:((cY Xx)->P)) (x4:((cZ Xx)->P))=> ((((((or_ind (cY Xx)) (cZ Xx)) P) x3) x4) x1)) ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) (fun (x3:(cY Xx))=> (((or_introl ((and (cX Xx)) (cY Xx))) (cZ Xx)) (((fun (B:Prop)=> (((conj (cX Xx)) B) x2)) (cY Xx)) x3)))) ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx))))) ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx))) as proof of ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))
% Found (fun (x1:((or (cY Xx)) (cZ Xx)))=> ((((fun (P:Prop) (x2:((cX Xx)->P)) (x3:((cZ Xx)->P))=> ((((((or_ind (cX Xx)) (cZ Xx)) P) x2) x3) x0)) ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) (fun (x2:(cX Xx))=> ((((fun (P:Prop) (x3:((cY Xx)->P)) (x4:((cZ Xx)->P))=> ((((((or_ind (cY Xx)) (cZ Xx)) P) x3) x4) x1)) ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) (fun (x3:(cY Xx))=> (((or_introl ((and (cX Xx)) (cY Xx))) (cZ Xx)) (((fun (B:Prop)=> (((conj (cX Xx)) B) x2)) (cY Xx)) x3)))) ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx))))) ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx)))) as proof of ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))
% Found (fun (x0:((or (cX Xx)) (cZ Xx))) (x1:((or (cY Xx)) (cZ Xx)))=> ((((fun (P:Prop) (x2:((cX Xx)->P)) (x3:((cZ Xx)->P))=> ((((((or_ind (cX Xx)) (cZ Xx)) P) x2) x3) x0)) ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) (fun (x2:(cX Xx))=> ((((fun (P:Prop) (x3:((cY Xx)->P)) (x4:((cZ Xx)->P))=> ((((((or_ind (cY Xx)) (cZ Xx)) P) x3) x4) x1)) ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) (fun (x3:(cY Xx))=> (((or_introl ((and (cX Xx)) (cY Xx))) (cZ Xx)) (((fun (B:Prop)=> (((conj (cX Xx)) B) x2)) (cY Xx)) x3)))) ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx))))) ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx)))) as proof of (((or (cY Xx)) (cZ Xx))->((or ((and (cX Xx)) (cY Xx))) (cZ Xx)))
% Found (fun (x0:((or (cX Xx)) (cZ Xx))) (x1:((or (cY Xx)) (cZ Xx)))=> ((((fun (P:Prop) (x2:((cX Xx)->P)) (x3:((cZ Xx)->P))=> ((((((or_ind (cX Xx)) (cZ Xx)) P) x2) x3) x0)) ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) (fun (x2:(cX Xx))=> ((((fun (P:Prop) (x3:((cY Xx)->P)) (x4:((cZ Xx)->P))=> ((((((or_ind (cY Xx)) (cZ Xx)) P) x3) x4) x1)) ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) (fun (x3:(cY Xx))=> (((or_introl ((and (cX Xx)) (cY Xx))) (cZ Xx)) (((fun (B:Prop)=> (((conj (cX Xx)) B) x2)) (cY Xx)) x3)))) ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx))))) ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx)))) as proof of (((or (cX Xx)) (cZ Xx))->(((or (cY Xx)) (cZ Xx))->((or ((and (cX Xx)) (cY Xx))) (cZ Xx))))
% Found (and_rect00 (fun (x0:((or (cX Xx)) (cZ Xx))) (x1:((or (cY Xx)) (cZ Xx)))=> ((((fun (P:Prop) (x2:((cX Xx)->P)) (x3:((cZ Xx)->P))=> ((((((or_ind (cX Xx)) (cZ Xx)) P) x2) x3) x0)) ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) (fun (x2:(cX Xx))=> ((((fun (P:Prop) (x3:((cY Xx)->P)) (x4:((cZ Xx)->P))=> ((((((or_ind (cY Xx)) (cZ Xx)) P) x3) x4) x1)) ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) (fun (x3:(cY Xx))=> (((or_introl ((and (cX Xx)) (cY Xx))) (cZ Xx)) (((fun (B:Prop)=> (((conj (cX Xx)) B) x2)) (cY Xx)) x3)))) ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx))))) ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx))))) as proof of ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))
% Found ((and_rect0 ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) (fun (x0:((or (cX Xx)) (cZ Xx))) (x1:((or (cY Xx)) (cZ Xx)))=> ((((fun (P:Prop) (x2:((cX Xx)->P)) (x3:((cZ Xx)->P))=> ((((((or_ind (cX Xx)) (cZ Xx)) P) x2) x3) x0)) ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) (fun (x2:(cX Xx))=> ((((fun (P:Prop) (x3:((cY Xx)->P)) (x4:((cZ Xx)->P))=> ((((((or_ind (cY Xx)) (cZ Xx)) P) x3) x4) x1)) ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) (fun (x3:(cY Xx))=> (((or_introl ((and (cX Xx)) (cY Xx))) (cZ Xx)) (((fun (B:Prop)=> (((conj (cX Xx)) B) x2)) (cY Xx)) x3)))) ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx))))) ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx))))) as proof of ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))
% Found (((fun (P:Type) (x0:(((or (cX Xx)) (cZ Xx))->(((or (cY Xx)) (cZ Xx))->P)))=> (((((and_rect ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx))) P) x0) x)) ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) (fun (x0:((or (cX Xx)) (cZ Xx))) (x1:((or (cY Xx)) (cZ Xx)))=> ((((fun (P:Prop) (x2:((cX Xx)->P)) (x3:((cZ Xx)->P))=> ((((((or_ind (cX Xx)) (cZ Xx)) P) x2) x3) x0)) ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) (fun (x2:(cX Xx))=> ((((fun (P:Prop) (x3:((cY Xx)->P)) (x4:((cZ Xx)->P))=> ((((((or_ind (cY Xx)) (cZ Xx)) P) x3) x4) x1)) ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) (fun (x3:(cY Xx))=> (((or_introl ((and (cX Xx)) (cY Xx))) (cZ Xx)) (((fun (B:Prop)=> (((conj (cX Xx)) B) x2)) (cY Xx)) x3)))) ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx))))) ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx))))) as proof of ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))
% Found (fun (x:((and ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx))))=> (((fun (P:Type) (x0:(((or (cX Xx)) (cZ Xx))->(((or (cY Xx)) (cZ Xx))->P)))=> (((((and_rect ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx))) P) x0) x)) ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) (fun (x0:((or (cX Xx)) (cZ Xx))) (x1:((or (cY Xx)) (cZ Xx)))=> ((((fun (P:Prop) (x2:((cX Xx)->P)) (x3:((cZ Xx)->P))=> ((((((or_ind (cX Xx)) (cZ Xx)) P) x2) x3) x0)) ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) (fun (x2:(cX Xx))=> ((((fun (P:Prop) (x3:((cY Xx)->P)) (x4:((cZ Xx)->P))=> ((((((or_ind (cY Xx)) (cZ Xx)) P) x3) x4) x1)) ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) (fun (x3:(cY Xx))=> (((or_introl ((and (cX Xx)) (cY Xx))) (cZ Xx)) (((fun (B:Prop)=> (((conj (cX Xx)) B) x2)) (cY Xx)) x3)))) ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx))))) ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx)))))) as proof of ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))
% Found (fun (x:((and ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx))))=> (((fun (P:Type) (x0:(((or (cX Xx)) (cZ Xx))->(((or (cY Xx)) (cZ Xx))->P)))=> (((((and_rect ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx))) P) x0) x)) ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) (fun (x0:((or (cX Xx)) (cZ Xx))) (x1:((or (cY Xx)) (cZ Xx)))=> ((((fun (P:Prop) (x2:((cX Xx)->P)) (x3:((cZ Xx)->P))=> ((((((or_ind (cX Xx)) (cZ Xx)) P) x2) x3) x0)) ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) (fun (x2:(cX Xx))=> ((((fun (P:Prop) (x3:((cY Xx)->P)) (x4:((cZ Xx)->P))=> ((((((or_ind (cY Xx)) (cZ Xx)) P) x3) x4) x1)) ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) (fun (x3:(cY Xx))=> (((or_introl ((and (cX Xx)) (cY Xx))) (cZ Xx)) (((fun (B:Prop)=> (((conj (cX Xx)) B) x2)) (cY Xx)) x3)))) ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx))))) ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx)))))) as proof of (((and ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx)))->((or ((and (cX Xx)) (cY Xx))) (cZ Xx)))
% Found ((conj00 (fun (x:((or ((and (cX Xx)) (cY Xx))) (cZ Xx)))=> ((((conj ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx))) ((((fun (P:Prop) (x0:(((and (cX Xx)) (cY Xx))->P)) (x1:((cZ Xx)->P))=> ((((((or_ind ((and (cX Xx)) (cY Xx))) (cZ Xx)) P) x0) x1) x)) ((or (cX Xx)) (cZ Xx))) (fun (x0:((and (cX Xx)) (cY Xx)))=> (((fun (P:Type) (x1:((cX Xx)->((cY Xx)->P)))=> (((((and_rect (cX Xx)) (cY Xx)) P) x1) x0)) ((or (cX Xx)) (cZ Xx))) (fun (x1:(cX Xx)) (x2:(cY Xx))=> ((fun (B:Prop)=> (((or_introl (cX Xx)) B) x1)) (cZ Xx)))))) ((or_intror (cX Xx)) (cZ Xx)))) ((((fun (P:Prop) (x0:(((and (cX Xx)) (cY Xx))->P)) (x1:((cZ Xx)->P))=> ((((((or_ind ((and (cX Xx)) (cY Xx))) (cZ Xx)) P) x0) x1) x)) ((or (cY Xx)) (cZ Xx))) (fun (x0:((and (cX Xx)) (cY Xx)))=> (((fun (P:Type) (x1:((cX Xx)->((cY Xx)->P)))=> (((((and_rect (cX Xx)) (cY Xx)) P) x1) x0)) ((or (cY Xx)) (cZ Xx))) (fun (x1:(cX Xx))=> ((or_introl (cY Xx)) (cZ Xx)))))) ((or_intror (cY Xx)) (cZ Xx)))))) (fun (x:((and ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx))))=> (((fun (P:Type) (x0:(((or (cX Xx)) (cZ Xx))->(((or (cY Xx)) (cZ Xx))->P)))=> (((((and_rect ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx))) P) x0) x)) ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) (fun (x0:((or (cX Xx)) (cZ Xx))) (x1:((or (cY Xx)) (cZ Xx)))=> ((((fun (P:Prop) (x2:((cX Xx)->P)) (x3:((cZ Xx)->P))=> ((((((or_ind (cX Xx)) (cZ Xx)) P) x2) x3) x0)) ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) (fun (x2:(cX Xx))=> ((((fun (P:Prop) (x3:((cY Xx)->P)) (x4:((cZ Xx)->P))=> ((((((or_ind (cY Xx)) (cZ Xx)) P) x3) x4) x1)) ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) (fun (x3:(cY Xx))=> (((or_introl ((and (cX Xx)) (cY Xx))) (cZ Xx)) (((fun (B:Prop)=> (((conj (cX Xx)) B) x2)) (cY Xx)) x3)))) ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx))))) ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx))))))) as proof of ((iff ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) ((and ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx))))
% Found (((conj0 (((and ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx)))->((or ((and (cX Xx)) (cY Xx))) (cZ Xx)))) (fun (x:((or ((and (cX Xx)) (cY Xx))) (cZ Xx)))=> ((((conj ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx))) ((((fun (P:Prop) (x0:(((and (cX Xx)) (cY Xx))->P)) (x1:((cZ Xx)->P))=> ((((((or_ind ((and (cX Xx)) (cY Xx))) (cZ Xx)) P) x0) x1) x)) ((or (cX Xx)) (cZ Xx))) (fun (x0:((and (cX Xx)) (cY Xx)))=> (((fun (P:Type) (x1:((cX Xx)->((cY Xx)->P)))=> (((((and_rect (cX Xx)) (cY Xx)) P) x1) x0)) ((or (cX Xx)) (cZ Xx))) (fun (x1:(cX Xx)) (x2:(cY Xx))=> ((fun (B:Prop)=> (((or_introl (cX Xx)) B) x1)) (cZ Xx)))))) ((or_intror (cX Xx)) (cZ Xx)))) ((((fun (P:Prop) (x0:(((and (cX Xx)) (cY Xx))->P)) (x1:((cZ Xx)->P))=> ((((((or_ind ((and (cX Xx)) (cY Xx))) (cZ Xx)) P) x0) x1) x)) ((or (cY Xx)) (cZ Xx))) (fun (x0:((and (cX Xx)) (cY Xx)))=> (((fun (P:Type) (x1:((cX Xx)->((cY Xx)->P)))=> (((((and_rect (cX Xx)) (cY Xx)) P) x1) x0)) ((or (cY Xx)) (cZ Xx))) (fun (x1:(cX Xx))=> ((or_introl (cY Xx)) (cZ Xx)))))) ((or_intror (cY Xx)) (cZ Xx)))))) (fun (x:((and ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx))))=> (((fun (P:Type) (x0:(((or (cX Xx)) (cZ Xx))->(((or (cY Xx)) (cZ Xx))->P)))=> (((((and_rect ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx))) P) x0) x)) ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) (fun (x0:((or (cX Xx)) (cZ Xx))) (x1:((or (cY Xx)) (cZ Xx)))=> ((((fun (P:Prop) (x2:((cX Xx)->P)) (x3:((cZ Xx)->P))=> ((((((or_ind (cX Xx)) (cZ Xx)) P) x2) x3) x0)) ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) (fun (x2:(cX Xx))=> ((((fun (P:Prop) (x3:((cY Xx)->P)) (x4:((cZ Xx)->P))=> ((((((or_ind (cY Xx)) (cZ Xx)) P) x3) x4) x1)) ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) (fun (x3:(cY Xx))=> (((or_introl ((and (cX Xx)) (cY Xx))) (cZ Xx)) (((fun (B:Prop)=> (((conj (cX Xx)) B) x2)) (cY Xx)) x3)))) ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx))))) ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx))))))) as proof of ((iff ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) ((and ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx))))
% Found ((((conj (((or ((and (cX Xx)) (cY Xx))) (cZ Xx))->((and ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx))))) (((and ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx)))->((or ((and (cX Xx)) (cY Xx))) (cZ Xx)))) (fun (x:((or ((and (cX Xx)) (cY Xx))) (cZ Xx)))=> ((((conj ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx))) ((((fun (P:Prop) (x0:(((and (cX Xx)) (cY Xx))->P)) (x1:((cZ Xx)->P))=> ((((((or_ind ((and (cX Xx)) (cY Xx))) (cZ Xx)) P) x0) x1) x)) ((or (cX Xx)) (cZ Xx))) (fun (x0:((and (cX Xx)) (cY Xx)))=> (((fun (P:Type) (x1:((cX Xx)->((cY Xx)->P)))=> (((((and_rect (cX Xx)) (cY Xx)) P) x1) x0)) ((or (cX Xx)) (cZ Xx))) (fun (x1:(cX Xx)) (x2:(cY Xx))=> ((fun (B:Prop)=> (((or_introl (cX Xx)) B) x1)) (cZ Xx)))))) ((or_intror (cX Xx)) (cZ Xx)))) ((((fun (P:Prop) (x0:(((and (cX Xx)) (cY Xx))->P)) (x1:((cZ Xx)->P))=> ((((((or_ind ((and (cX Xx)) (cY Xx))) (cZ Xx)) P) x0) x1) x)) ((or (cY Xx)) (cZ Xx))) (fun (x0:((and (cX Xx)) (cY Xx)))=> (((fun (P:Type) (x1:((cX Xx)->((cY Xx)->P)))=> (((((and_rect (cX Xx)) (cY Xx)) P) x1) x0)) ((or (cY Xx)) (cZ Xx))) (fun (x1:(cX Xx))=> ((or_introl (cY Xx)) (cZ Xx)))))) ((or_intror (cY Xx)) (cZ Xx)))))) (fun (x:((and ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx))))=> (((fun (P:Type) (x0:(((or (cX Xx)) (cZ Xx))->(((or (cY Xx)) (cZ Xx))->P)))=> (((((and_rect ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx))) P) x0) x)) ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) (fun (x0:((or (cX Xx)) (cZ Xx))) (x1:((or (cY Xx)) (cZ Xx)))=> ((((fun (P:Prop) (x2:((cX Xx)->P)) (x3:((cZ Xx)->P))=> ((((((or_ind (cX Xx)) (cZ Xx)) P) x2) x3) x0)) ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) (fun (x2:(cX Xx))=> ((((fun (P:Prop) (x3:((cY Xx)->P)) (x4:((cZ Xx)->P))=> ((((((or_ind (cY Xx)) (cZ Xx)) P) x3) x4) x1)) ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) (fun (x3:(cY Xx))=> (((or_introl ((and (cX Xx)) (cY Xx))) (cZ Xx)) (((fun (B:Prop)=> (((conj (cX Xx)) B) x2)) (cY Xx)) x3)))) ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx))))) ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx))))))) as proof of ((iff ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) ((and ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx))))
% Found (fun (Xx:a)=> ((((conj (((or ((and (cX Xx)) (cY Xx))) (cZ Xx))->((and ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx))))) (((and ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx)))->((or ((and (cX Xx)) (cY Xx))) (cZ Xx)))) (fun (x:((or ((and (cX Xx)) (cY Xx))) (cZ Xx)))=> ((((conj ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx))) ((((fun (P:Prop) (x0:(((and (cX Xx)) (cY Xx))->P)) (x1:((cZ Xx)->P))=> ((((((or_ind ((and (cX Xx)) (cY Xx))) (cZ Xx)) P) x0) x1) x)) ((or (cX Xx)) (cZ Xx))) (fun (x0:((and (cX Xx)) (cY Xx)))=> (((fun (P:Type) (x1:((cX Xx)->((cY Xx)->P)))=> (((((and_rect (cX Xx)) (cY Xx)) P) x1) x0)) ((or (cX Xx)) (cZ Xx))) (fun (x1:(cX Xx)) (x2:(cY Xx))=> ((fun (B:Prop)=> (((or_introl (cX Xx)) B) x1)) (cZ Xx)))))) ((or_intror (cX Xx)) (cZ Xx)))) ((((fun (P:Prop) (x0:(((and (cX Xx)) (cY Xx))->P)) (x1:((cZ Xx)->P))=> ((((((or_ind ((and (cX Xx)) (cY Xx))) (cZ Xx)) P) x0) x1) x)) ((or (cY Xx)) (cZ Xx))) (fun (x0:((and (cX Xx)) (cY Xx)))=> (((fun (P:Type) (x1:((cX Xx)->((cY Xx)->P)))=> (((((and_rect (cX Xx)) (cY Xx)) P) x1) x0)) ((or (cY Xx)) (cZ Xx))) (fun (x1:(cX Xx))=> ((or_introl (cY Xx)) (cZ Xx)))))) ((or_intror (cY Xx)) (cZ Xx)))))) (fun (x:((and ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx))))=> (((fun (P:Type) (x0:(((or (cX Xx)) (cZ Xx))->(((or (cY Xx)) (cZ Xx))->P)))=> (((((and_rect ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx))) P) x0) x)) ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) (fun (x0:((or (cX Xx)) (cZ Xx))) (x1:((or (cY Xx)) (cZ Xx)))=> ((((fun (P:Prop) (x2:((cX Xx)->P)) (x3:((cZ Xx)->P))=> ((((((or_ind (cX Xx)) (cZ Xx)) P) x2) x3) x0)) ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) (fun (x2:(cX Xx))=> ((((fun (P:Prop) (x3:((cY Xx)->P)) (x4:((cZ Xx)->P))=> ((((((or_ind (cY Xx)) (cZ Xx)) P) x3) x4) x1)) ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) (fun (x3:(cY Xx))=> (((or_introl ((and (cX Xx)) (cY Xx))) (cZ Xx)) (((fun (B:Prop)=> (((conj (cX Xx)) B) x2)) (cY Xx)) x3)))) ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx))))) ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx)))))))) as proof of ((iff ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) ((and ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx))))
% Found (fun (Xx:a)=> ((((conj (((or ((and (cX Xx)) (cY Xx))) (cZ Xx))->((and ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx))))) (((and ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx)))->((or ((and (cX Xx)) (cY Xx))) (cZ Xx)))) (fun (x:((or ((and (cX Xx)) (cY Xx))) (cZ Xx)))=> ((((conj ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx))) ((((fun (P:Prop) (x0:(((and (cX Xx)) (cY Xx))->P)) (x1:((cZ Xx)->P))=> ((((((or_ind ((and (cX Xx)) (cY Xx))) (cZ Xx)) P) x0) x1) x)) ((or (cX Xx)) (cZ Xx))) (fun (x0:((and (cX Xx)) (cY Xx)))=> (((fun (P:Type) (x1:((cX Xx)->((cY Xx)->P)))=> (((((and_rect (cX Xx)) (cY Xx)) P) x1) x0)) ((or (cX Xx)) (cZ Xx))) (fun (x1:(cX Xx)) (x2:(cY Xx))=> ((fun (B:Prop)=> (((or_introl (cX Xx)) B) x1)) (cZ Xx)))))) ((or_intror (cX Xx)) (cZ Xx)))) ((((fun (P:Prop) (x0:(((and (cX Xx)) (cY Xx))->P)) (x1:((cZ Xx)->P))=> ((((((or_ind ((and (cX Xx)) (cY Xx))) (cZ Xx)) P) x0) x1) x)) ((or (cY Xx)) (cZ Xx))) (fun (x0:((and (cX Xx)) (cY Xx)))=> (((fun (P:Type) (x1:((cX Xx)->((cY Xx)->P)))=> (((((and_rect (cX Xx)) (cY Xx)) P) x1) x0)) ((or (cY Xx)) (cZ Xx))) (fun (x1:(cX Xx))=> ((or_introl (cY Xx)) (cZ Xx)))))) ((or_intror (cY Xx)) (cZ Xx)))))) (fun (x:((and ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx))))=> (((fun (P:Type) (x0:(((or (cX Xx)) (cZ Xx))->(((or (cY Xx)) (cZ Xx))->P)))=> (((((and_rect ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx))) P) x0) x)) ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) (fun (x0:((or (cX Xx)) (cZ Xx))) (x1:((or (cY Xx)) (cZ Xx)))=> ((((fun (P:Prop) (x2:((cX Xx)->P)) (x3:((cZ Xx)->P))=> ((((((or_ind (cX Xx)) (cZ Xx)) P) x2) x3) x0)) ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) (fun (x2:(cX Xx))=> ((((fun (P:Prop) (x3:((cY Xx)->P)) (x4:((cZ Xx)->P))=> ((((((or_ind (cY Xx)) (cZ Xx)) P) x3) x4) x1)) ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) (fun (x3:(cY Xx))=> (((or_introl ((and (cX Xx)) (cY Xx))) (cZ Xx)) (((fun (B:Prop)=> (((conj (cX Xx)) B) x2)) (cY Xx)) x3)))) ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx))))) ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx)))))))) as proof of (forall (Xx:a), ((iff ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) ((and ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx)))))
% Got proof (fun (Xx:a)=> ((((conj (((or ((and (cX Xx)) (cY Xx))) (cZ Xx))->((and ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx))))) (((and ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx)))->((or ((and (cX Xx)) (cY Xx))) (cZ Xx)))) (fun (x:((or ((and (cX Xx)) (cY Xx))) (cZ Xx)))=> ((((conj ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx))) ((((fun (P:Prop) (x0:(((and (cX Xx)) (cY Xx))->P)) (x1:((cZ Xx)->P))=> ((((((or_ind ((and (cX Xx)) (cY Xx))) (cZ Xx)) P) x0) x1) x)) ((or (cX Xx)) (cZ Xx))) (fun (x0:((and (cX Xx)) (cY Xx)))=> (((fun (P:Type) (x1:((cX Xx)->((cY Xx)->P)))=> (((((and_rect (cX Xx)) (cY Xx)) P) x1) x0)) ((or (cX Xx)) (cZ Xx))) (fun (x1:(cX Xx)) (x2:(cY Xx))=> ((fun (B:Prop)=> (((or_introl (cX Xx)) B) x1)) (cZ Xx)))))) ((or_intror (cX Xx)) (cZ Xx)))) ((((fun (P:Prop) (x0:(((and (cX Xx)) (cY Xx))->P)) (x1:((cZ Xx)->P))=> ((((((or_ind ((and (cX Xx)) (cY Xx))) (cZ Xx)) P) x0) x1) x)) ((or (cY Xx)) (cZ Xx))) (fun (x0:((and (cX Xx)) (cY Xx)))=> (((fun (P:Type) (x1:((cX Xx)->((cY Xx)->P)))=> (((((and_rect (cX Xx)) (cY Xx)) P) x1) x0)) ((or (cY Xx)) (cZ Xx))) (fun (x1:(cX Xx))=> ((or_introl (cY Xx)) (cZ Xx)))))) ((or_intror (cY Xx)) (cZ Xx)))))) (fun (x:((and ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx))))=> (((fun (P:Type) (x0:(((or (cX Xx)) (cZ Xx))->(((or (cY Xx)) (cZ Xx))->P)))=> (((((and_rect ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx))) P) x0) x)) ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) (fun (x0:((or (cX Xx)) (cZ Xx))) (x1:((or (cY Xx)) (cZ Xx)))=> ((((fun (P:Prop) (x2:((cX Xx)->P)) (x3:((cZ Xx)->P))=> ((((((or_ind (cX Xx)) (cZ Xx)) P) x2) x3) x0)) ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) (fun (x2:(cX Xx))=> ((((fun (P:Prop) (x3:((cY Xx)->P)) (x4:((cZ Xx)->P))=> ((((((or_ind (cY Xx)) (cZ Xx)) P) x3) x4) x1)) ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) (fun (x3:(cY Xx))=> (((or_introl ((and (cX Xx)) (cY Xx))) (cZ Xx)) (((fun (B:Prop)=> (((conj (cX Xx)) B) x2)) (cY Xx)) x3)))) ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx))))) ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx))))))))
% Time elapsed = 8.136111s
% node=1751 cost=925.000000 depth=30
% ::::::::::::::::::::::
% % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% % SZS output start Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% (fun (Xx:a)=> ((((conj (((or ((and (cX Xx)) (cY Xx))) (cZ Xx))->((and ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx))))) (((and ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx)))->((or ((and (cX Xx)) (cY Xx))) (cZ Xx)))) (fun (x:((or ((and (cX Xx)) (cY Xx))) (cZ Xx)))=> ((((conj ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx))) ((((fun (P:Prop) (x0:(((and (cX Xx)) (cY Xx))->P)) (x1:((cZ Xx)->P))=> ((((((or_ind ((and (cX Xx)) (cY Xx))) (cZ Xx)) P) x0) x1) x)) ((or (cX Xx)) (cZ Xx))) (fun (x0:((and (cX Xx)) (cY Xx)))=> (((fun (P:Type) (x1:((cX Xx)->((cY Xx)->P)))=> (((((and_rect (cX Xx)) (cY Xx)) P) x1) x0)) ((or (cX Xx)) (cZ Xx))) (fun (x1:(cX Xx)) (x2:(cY Xx))=> ((fun (B:Prop)=> (((or_introl (cX Xx)) B) x1)) (cZ Xx)))))) ((or_intror (cX Xx)) (cZ Xx)))) ((((fun (P:Prop) (x0:(((and (cX Xx)) (cY Xx))->P)) (x1:((cZ Xx)->P))=> ((((((or_ind ((and (cX Xx)) (cY Xx))) (cZ Xx)) P) x0) x1) x)) ((or (cY Xx)) (cZ Xx))) (fun (x0:((and (cX Xx)) (cY Xx)))=> (((fun (P:Type) (x1:((cX Xx)->((cY Xx)->P)))=> (((((and_rect (cX Xx)) (cY Xx)) P) x1) x0)) ((or (cY Xx)) (cZ Xx))) (fun (x1:(cX Xx))=> ((or_introl (cY Xx)) (cZ Xx)))))) ((or_intror (cY Xx)) (cZ Xx)))))) (fun (x:((and ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx))))=> (((fun (P:Type) (x0:(((or (cX Xx)) (cZ Xx))->(((or (cY Xx)) (cZ Xx))->P)))=> (((((and_rect ((or (cX Xx)) (cZ Xx))) ((or (cY Xx)) (cZ Xx))) P) x0) x)) ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) (fun (x0:((or (cX Xx)) (cZ Xx))) (x1:((or (cY Xx)) (cZ Xx)))=> ((((fun (P:Prop) (x2:((cX Xx)->P)) (x3:((cZ Xx)->P))=> ((((((or_ind (cX Xx)) (cZ Xx)) P) x2) x3) x0)) ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) (fun (x2:(cX Xx))=> ((((fun (P:Prop) (x3:((cY Xx)->P)) (x4:((cZ Xx)->P))=> ((((((or_ind (cY Xx)) (cZ Xx)) P) x3) x4) x1)) ((or ((and (cX Xx)) (cY Xx))) (cZ Xx))) (fun (x3:(cY Xx))=> (((or_introl ((and (cX Xx)) (cY Xx))) (cZ Xx)) (((fun (B:Prop)=> (((conj (cX Xx)) B) x2)) (cY Xx)) x3)))) ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx))))) ((or_intror ((and (cX Xx)) (cY Xx))) (cZ Xx))))))))
% % SZS output end Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% EOF
%------------------------------------------------------------------------------