TSTP Solution File: SEV280^5 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SEV280^5 : TPTP v6.1.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n102.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:33:59 EDT 2014

% Result   : Timeout 300.10s
% Output   : None 
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----NO SOLUTION OUTPUT BY SYSTEM
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SEV280^5 : TPTP v6.1.0. Released v4.0.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n102.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 08:43:06 CDT 2014
% % CPUTime  : 300.10 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0x2081170>, <kernel.Type object at 0x20813b0>) of role type named a_type
% Using role type
% Declaring a:Type
% FOF formula (<kernel.Constant object at 0x20f59e0>, <kernel.DependentProduct object at 0x20a1488>) of role type named cR
% Using role type
% Declaring cR:(a->(a->Prop))
% FOF formula ((forall (X:(a->Prop)), (((ex a) (fun (Xz:a)=> (X Xz)))->((ex a) (fun (Xz:a)=> ((and ((and (X Xz)) (forall (Xx:a), ((X Xx)->((cR Xz) Xx))))) (forall (Xy:a), (((and (X Xy)) (forall (Xx:a), ((X Xx)->((cR Xy) Xx))))->(((eq a) Xy) Xz))))))))->((and ((and ((and (forall (Xx:a) (Xy:a) (Xz:a), (((and ((cR Xx) Xy)) ((cR Xy) Xz))->((cR Xx) Xz)))) (forall (Xx:a), ((cR Xx) Xx)))) (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy))))) (forall (Xx:a) (Xy:a), ((or ((cR Xx) Xy)) ((cR Xy) Xx))))) of role conjecture named cTHM546_pme
% Conjecture to prove = ((forall (X:(a->Prop)), (((ex a) (fun (Xz:a)=> (X Xz)))->((ex a) (fun (Xz:a)=> ((and ((and (X Xz)) (forall (Xx:a), ((X Xx)->((cR Xz) Xx))))) (forall (Xy:a), (((and (X Xy)) (forall (Xx:a), ((X Xx)->((cR Xy) Xx))))->(((eq a) Xy) Xz))))))))->((and ((and ((and (forall (Xx:a) (Xy:a) (Xz:a), (((and ((cR Xx) Xy)) ((cR Xy) Xz))->((cR Xx) Xz)))) (forall (Xx:a), ((cR Xx) Xx)))) (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy))))) (forall (Xx:a) (Xy:a), ((or ((cR Xx) Xy)) ((cR Xy) Xx))))):Prop
% Parameter a_DUMMY:a.
% We need to prove ['((forall (X:(a->Prop)), (((ex a) (fun (Xz:a)=> (X Xz)))->((ex a) (fun (Xz:a)=> ((and ((and (X Xz)) (forall (Xx:a), ((X Xx)->((cR Xz) Xx))))) (forall (Xy:a), (((and (X Xy)) (forall (Xx:a), ((X Xx)->((cR Xy) Xx))))->(((eq a) Xy) Xz))))))))->((and ((and ((and (forall (Xx:a) (Xy:a) (Xz:a), (((and ((cR Xx) Xy)) ((cR Xy) Xz))->((cR Xx) Xz)))) (forall (Xx:a), ((cR Xx) Xx)))) (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy))))) (forall (Xx:a) (Xy:a), ((or ((cR Xx) Xy)) ((cR Xy) Xx)))))']
% Parameter a:Type.
% Parameter cR:(a->(a->Prop)).
% Trying to prove ((forall (X:(a->Prop)), (((ex a) (fun (Xz:a)=> (X Xz)))->((ex a) (fun (Xz:a)=> ((and ((and (X Xz)) (forall (Xx:a), ((X Xx)->((cR Xz) Xx))))) (forall (Xy:a), (((and (X Xy)) (forall (Xx:a), ((X Xx)->((cR Xy) Xx))))->(((eq a) Xy) Xz))))))))->((and ((and ((and (forall (Xx:a) (Xy:a) (Xz:a), (((and ((cR Xx) Xy)) ((cR Xy) Xz))->((cR Xx) Xz)))) (forall (Xx:a), ((cR Xx) Xx)))) (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy))))) (forall (Xx:a) (Xy:a), ((or ((cR Xx) Xy)) ((cR Xy) Xx)))))
% Found eq_ref00:=(eq_ref0 (forall (Xx:a) (Xy:a), ((or ((cR Xx) Xy)) ((cR Xy) Xx)))):(((eq Prop) (forall (Xx:a) (Xy:a), ((or ((cR Xx) Xy)) ((cR Xy) Xx)))) (forall (Xx:a) (Xy:a), ((or ((cR Xx) Xy)) ((cR Xy) Xx))))
% Found (eq_ref0 (forall (Xx:a) (Xy:a), ((or ((cR Xx) Xy)) ((cR Xy) Xx)))) as proof of (((eq Prop) (forall (Xx:a) (Xy:a), ((or ((cR Xx) Xy)) ((cR Xy) Xx)))) b)
% Found ((eq_ref Prop) (forall (Xx:a) (Xy:a), ((or ((cR Xx) Xy)) ((cR Xy) Xx)))) as proof of (((eq Prop) (forall (Xx:a) (Xy:a), ((or ((cR Xx) Xy)) ((cR Xy) Xx)))) b)
% Found ((eq_ref Prop) (forall (Xx:a) (Xy:a), ((or ((cR Xx) Xy)) ((cR Xy) Xx)))) as proof of (((eq Prop) (forall (Xx:a) (Xy:a), ((or ((cR Xx) Xy)) ((cR Xy) Xx)))) b)
% Found ((eq_ref Prop) (forall (Xx:a) (Xy:a), ((or ((cR Xx) Xy)) ((cR Xy) Xx)))) as proof of (((eq Prop) (forall (Xx:a) (Xy:a), ((or ((cR Xx) Xy)) ((cR Xy) Xx)))) b)
% Found conj:(forall (A:Prop) (B:Prop), (A->(B->((and A) B))))
% Instantiate: b:=(forall (A:Prop) (B:Prop), (A->(B->((and A) B)))):Prop
% Found conj as proof of b
% Found eq_ref00:=(eq_ref0 (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy)))):(((eq Prop) (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy)))) (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy))))
% Found (eq_ref0 (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy)))) as proof of (((eq Prop) (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy)))) b)
% Found ((eq_ref Prop) (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy)))) as proof of (((eq Prop) (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy)))) b)
% Found ((eq_ref Prop) (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy)))) as proof of (((eq Prop) (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy)))) b)
% Found ((eq_ref Prop) (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy)))) as proof of (((eq Prop) (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy)))) b)
% Found eq_ref00:=(eq_ref0 ((cR Xy) Xx)):(((eq Prop) ((cR Xy) Xx)) ((cR Xy) Xx))
% Found (eq_ref0 ((cR Xy) Xx)) as proof of (((eq Prop) ((cR Xy) Xx)) b)
% Found ((eq_ref Prop) ((cR Xy) Xx)) as proof of (((eq Prop) ((cR Xy) Xx)) b)
% Found ((eq_ref Prop) ((cR Xy) Xx)) as proof of (((eq Prop) ((cR Xy) Xx)) b)
% Found ((eq_ref Prop) ((cR Xy) Xx)) as proof of (((eq Prop) ((cR Xy) Xx)) b)
% Found conj:(forall (A:Prop) (B:Prop), (A->(B->((and A) B))))
% Instantiate: b:=(forall (A:Prop) (B:Prop), (A->(B->((and A) B)))):Prop
% Found conj as proof of b
% Found eq_ref000:=(eq_ref00 P):((P Xx)->(P Xx))
% Found (eq_ref00 P) as proof of (P0 Xx)
% Found ((eq_ref0 Xx) P) as proof of (P0 Xx)
% Found (((eq_ref a) Xx) P) as proof of (P0 Xx)
% Found (((eq_ref a) Xx) P) as proof of (P0 Xx)
% Found eq_ref00:=(eq_ref0 Xx):(((eq a) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xy)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xy)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xy)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xy)
% Found eq_ref00:=(eq_ref0 a0):(((eq a) a0) a0)
% Found (eq_ref0 a0) as proof of (((eq a) a0) Xx)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) Xx)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) Xx)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) Xx)
% Found eq_ref00:=(eq_ref0 a0):(((eq a) a0) a0)
% Found (eq_ref0 a0) as proof of (((eq a) a0) Xx)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) Xx)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) Xx)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) Xx)
% Found eq_ref00:=(eq_ref0 a0):(((eq a) a0) a0)
% Found (eq_ref0 a0) as proof of (((eq a) a0) Xx)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) Xx)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) Xx)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq a) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found eq_ref00:=(eq_ref0 ((cR Xx) Xy)):(((eq Prop) ((cR Xx) Xy)) ((cR Xx) Xy))
% Found (eq_ref0 ((cR Xx) Xy)) as proof of (((eq Prop) ((cR Xx) Xy)) b)
% Found ((eq_ref Prop) ((cR Xx) Xy)) as proof of (((eq Prop) ((cR Xx) Xy)) b)
% Found ((eq_ref Prop) ((cR Xx) Xy)) as proof of (((eq Prop) ((cR Xx) Xy)) b)
% Found ((eq_ref Prop) ((cR Xx) Xy)) as proof of (((eq Prop) ((cR Xx) Xy)) b)
% Found eq_ref00:=(eq_ref0 (forall (Xx:a), ((cR Xx) Xx))):(((eq Prop) (forall (Xx:a), ((cR Xx) Xx))) (forall (Xx:a), ((cR Xx) Xx)))
% Found (eq_ref0 (forall (Xx:a), ((cR Xx) Xx))) as proof of (((eq Prop) (forall (Xx:a), ((cR Xx) Xx))) b)
% Found ((eq_ref Prop) (forall (Xx:a), ((cR Xx) Xx))) as proof of (((eq Prop) (forall (Xx:a), ((cR Xx) Xx))) b)
% Found ((eq_ref Prop) (forall (Xx:a), ((cR Xx) Xx))) as proof of (((eq Prop) (forall (Xx:a), ((cR Xx) Xx))) b)
% Found ((eq_ref Prop) (forall (Xx:a), ((cR Xx) Xx))) as proof of (((eq Prop) (forall (Xx:a), ((cR Xx) Xx))) b)
% Found eq_ref00:=(eq_ref0 a0):(((eq a) a0) a0)
% Found (eq_ref0 a0) as proof of (((eq a) a0) Xy)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) Xy)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) Xy)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) Xy)
% Found eq_ref00:=(eq_ref0 a0):(((eq a) a0) a0)
% Found (eq_ref0 a0) as proof of (((eq a) a0) Xy)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) Xy)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) Xy)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) Xy)
% Found eq_ref00:=(eq_ref0 a0):(((eq a) a0) a0)
% Found (eq_ref0 a0) as proof of (((eq a) a0) Xy)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) Xy)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) Xy)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) Xy)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq a) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found eq_ref00:=(eq_ref0 a0):(((eq Prop) a0) a0)
% Found (eq_ref0 a0) as proof of (((eq Prop) a0) b)
% Found ((eq_ref Prop) a0) as proof of (((eq Prop) a0) b)
% Found ((eq_ref Prop) a0) as proof of (((eq Prop) a0) b)
% Found ((eq_ref Prop) a0) as proof of (((eq Prop) a0) b)
% Found eq_ref00:=(eq_ref0 b):(((eq Prop) b) b)
% Found (eq_ref0 b) as proof of (((eq Prop) b) (forall (Xx:a) (Xy:a), ((or ((cR Xx) Xy)) ((cR Xy) Xx))))
% Found ((eq_ref Prop) b) as proof of (((eq Prop) b) (forall (Xx:a) (Xy:a), ((or ((cR Xx) Xy)) ((cR Xy) Xx))))
% Found ((eq_ref Prop) b) as proof of (((eq Prop) b) (forall (Xx:a) (Xy:a), ((or ((cR Xx) Xy)) ((cR Xy) Xx))))
% Found ((eq_ref Prop) b) as proof of (((eq Prop) b) (forall (Xx:a) (Xy:a), ((or ((cR Xx) Xy)) ((cR Xy) Xx))))
% Found conj:(forall (A:Prop) (B:Prop), (A->(B->((and A) B))))
% Instantiate: a0:=(forall (A:Prop) (B:Prop), (A->(B->((and A) B)))):Prop
% Found conj as proof of a0
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xy)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xy)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xy)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xy)
% Found eq_ref00:=(eq_ref0 Xx):(((eq a) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found eq_ref000:=(eq_ref00 P):((P Xx)->(P Xx))
% Found (eq_ref00 P) as proof of (P0 Xx)
% Found ((eq_ref0 Xx) P) as proof of (P0 Xx)
% Found (((eq_ref a) Xx) P) as proof of (P0 Xx)
% Found (((eq_ref a) Xx) P) as proof of (P0 Xx)
% Found x1:(P Xx)
% Instantiate: b:=Xx:a
% Found x1 as proof of (P0 b)
% Found iff_sym:=(fun (A:Prop) (B:Prop) (H:((iff A) B))=> ((((conj (B->A)) (A->B)) (((proj2 (A->B)) (B->A)) H)) (((proj1 (A->B)) (B->A)) H))):(forall (A:Prop) (B:Prop), (((iff A) B)->((iff B) A)))
% Instantiate: b:=(forall (A:Prop) (B:Prop), (((iff A) B)->((iff B) A))):Prop
% Found iff_sym as proof of b
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found classic0:=(classic ((cR Xx) Xy)):((or ((cR Xx) Xy)) (not ((cR Xx) Xy)))
% Found (classic ((cR Xx) Xy)) as proof of ((or ((cR Xx) Xy)) b)
% Found (classic ((cR Xx) Xy)) as proof of ((or ((cR Xx) Xy)) b)
% Found (classic ((cR Xx) Xy)) as proof of ((or ((cR Xx) Xy)) b)
% Found (classic ((cR Xx) Xy)) as proof of (P b)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xy)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xy)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xy)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xy)
% Found eq_ref00:=(eq_ref0 Xx):(((eq a) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found eq_ref000:=(eq_ref00 P):((P Xx)->(P Xx))
% Found (eq_ref00 P) as proof of (P0 Xx)
% Found ((eq_ref0 Xx) P) as proof of (P0 Xx)
% Found (((eq_ref a) Xx) P) as proof of (P0 Xx)
% Found (((eq_ref a) Xx) P) as proof of (P0 Xx)
% Found eq_ref00:=(eq_ref0 Xx):(((eq a) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xy)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xy)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xy)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (P b)
% Found ((eq_ref a) b) as proof of (P b)
% Found ((eq_ref a) b) as proof of (P b)
% Found ((eq_ref a) b) as proof of (P b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found eq_ref00:=(eq_ref0 a0):(((eq Prop) a0) a0)
% Found (eq_ref0 a0) as proof of (((eq Prop) a0) b)
% Found ((eq_ref Prop) a0) as proof of (((eq Prop) a0) b)
% Found ((eq_ref Prop) a0) as proof of (((eq Prop) a0) b)
% Found ((eq_ref Prop) a0) as proof of (((eq Prop) a0) b)
% Found eq_ref00:=(eq_ref0 b):(((eq Prop) b) b)
% Found (eq_ref0 b) as proof of (((eq Prop) b) (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy))))
% Found ((eq_ref Prop) b) as proof of (((eq Prop) b) (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy))))
% Found ((eq_ref Prop) b) as proof of (((eq Prop) b) (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy))))
% Found ((eq_ref Prop) b) as proof of (((eq Prop) b) (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy))))
% Found eq_ref00:=(eq_ref0 Xx):(((eq a) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq a) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found x1:(P Xy)
% Instantiate: b:=Xy:a
% Found x1 as proof of (P0 b)
% Found eq_ref000:=(eq_ref00 P):((P Xx)->(P Xx))
% Found (eq_ref00 P) as proof of (P0 Xx)
% Found ((eq_ref0 Xx) P) as proof of (P0 Xx)
% Found (((eq_ref a) Xx) P) as proof of (P0 Xx)
% Found (((eq_ref a) Xx) P) as proof of (P0 Xx)
% Found eq_ref00:=(eq_ref0 Xx):(((eq a) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq a) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xy)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xy)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xy)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xy)
% Found iff_sym:=(fun (A:Prop) (B:Prop) (H:((iff A) B))=> ((((conj (B->A)) (A->B)) (((proj2 (A->B)) (B->A)) H)) (((proj1 (A->B)) (B->A)) H))):(forall (A:Prop) (B:Prop), (((iff A) B)->((iff B) A)))
% Instantiate: a0:=(forall (A:Prop) (B:Prop), (((iff A) B)->((iff B) A))):Prop
% Found iff_sym as proof of a0
% Found eq_ref00:=(eq_ref0 a0):(((eq Prop) a0) a0)
% Found (eq_ref0 a0) as proof of (((eq Prop) a0) b)
% Found ((eq_ref Prop) a0) as proof of (((eq Prop) a0) b)
% Found ((eq_ref Prop) a0) as proof of (((eq Prop) a0) b)
% Found ((eq_ref Prop) a0) as proof of (((eq Prop) a0) b)
% Found eq_ref00:=(eq_ref0 b):(((eq Prop) b) b)
% Found (eq_ref0 b) as proof of (((eq Prop) b) ((cR Xy) Xx))
% Found ((eq_ref Prop) b) as proof of (((eq Prop) b) ((cR Xy) Xx))
% Found ((eq_ref Prop) b) as proof of (((eq Prop) b) ((cR Xy) Xx))
% Found ((eq_ref Prop) b) as proof of (((eq Prop) b) ((cR Xy) Xx))
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found classic0:=(classic ((cR Xy) Xx)):((or ((cR Xy) Xx)) (not ((cR Xy) Xx)))
% Found (classic ((cR Xy) Xx)) as proof of ((or ((cR Xy) Xx)) b)
% Found (classic ((cR Xy) Xx)) as proof of ((or ((cR Xy) Xx)) b)
% Found (classic ((cR Xy) Xx)) as proof of ((or ((cR Xy) Xx)) b)
% Found (classic ((cR Xy) Xx)) as proof of (P b)
% Found x3:(P Xx)
% Instantiate: b:=Xx:a
% Found x3 as proof of (P0 b)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found x1:(P Xx)
% Instantiate: b:=Xx:a
% Found x1 as proof of (P0 b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq a) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found eq_ref000:=(eq_ref00 P):((P b)->(P b))
% Found (eq_ref00 P) as proof of (P0 b)
% Found ((eq_ref0 b) P) as proof of (P0 b)
% Found (((eq_ref a) b) P) as proof of (P0 b)
% Found (((eq_ref a) b) P) as proof of (P0 b)
% Found eq_ref00:=(eq_ref0 a0):(((eq Prop) a0) a0)
% Found (eq_ref0 a0) as proof of (((eq Prop) a0) b)
% Found ((eq_ref Prop) a0) as proof of (((eq Prop) a0) b)
% Found ((eq_ref Prop) a0) as proof of (((eq Prop) a0) b)
% Found ((eq_ref Prop) a0) as proof of (((eq Prop) a0) b)
% Found eq_ref00:=(eq_ref0 b):(((eq Prop) b) b)
% Found (eq_ref0 b) as proof of (((eq Prop) b) ((cR Xx) Xy))
% Found ((eq_ref Prop) b) as proof of (((eq Prop) b) ((cR Xx) Xy))
% Found ((eq_ref Prop) b) as proof of (((eq Prop) b) ((cR Xx) Xy))
% Found ((eq_ref Prop) b) as proof of (((eq Prop) b) ((cR Xx) Xy))
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found eq_ref000:=(eq_ref00 P0):((P0 Xx)->(P0 Xx))
% Found (eq_ref00 P0) as proof of (P1 Xx)
% Found ((eq_ref0 Xx) P0) as proof of (P1 Xx)
% Found (((eq_ref a) Xx) P0) as proof of (P1 Xx)
% Found (((eq_ref a) Xx) P0) as proof of (P1 Xx)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xy)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xy)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xy)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xy)
% Found eq_ref00:=(eq_ref0 Xx):(((eq a) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found eq_ref000:=(eq_ref00 P0):((P0 Xx)->(P0 Xx))
% Found (eq_ref00 P0) as proof of (P1 Xx)
% Found ((eq_ref0 Xx) P0) as proof of (P1 Xx)
% Found (((eq_ref a) Xx) P0) as proof of (P1 Xx)
% Found (((eq_ref a) Xx) P0) as proof of (P1 Xx)
% Found eq_ref000:=(eq_ref00 P):((P Xy)->(P Xy))
% Found (eq_ref00 P) as proof of (P0 Xy)
% Found ((eq_ref0 Xy) P) as proof of (P0 Xy)
% Found (((eq_ref a) Xy) P) as proof of (P0 Xy)
% Found (((eq_ref a) Xy) P) as proof of (P0 Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq a) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq a) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found x30:(P Xx)
% Found (fun (x30:(P Xx))=> x30) as proof of (P Xx)
% Found (fun (x30:(P Xx))=> x30) as proof of (P0 Xx)
% Found eq_ref00:=(eq_ref0 Xx):(((eq a) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xy)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xy)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xy)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xy)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xy)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xy)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xy)
% Found eq_ref00:=(eq_ref0 a0):(((eq a) a0) a0)
% Found (eq_ref0 a0) as proof of (((eq a) a0) b)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) b)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) b)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) b)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found eq_ref00:=(eq_ref0 a0):(((eq a) a0) a0)
% Found (eq_ref0 a0) as proof of (((eq a) a0) b)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) b)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) b)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq a) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq a) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (P b)
% Found ((eq_ref a) b) as proof of (P b)
% Found ((eq_ref a) b) as proof of (P b)
% Found ((eq_ref a) b) as proof of (P b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (P b)
% Found ((eq_ref a) b) as proof of (P b)
% Found ((eq_ref a) b) as proof of (P b)
% Found ((eq_ref a) b) as proof of (P b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found eq_ref00:=(eq_ref0 b0):(((eq a) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq a) b0) Xx)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xx)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xx)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found eq_ref00:=(eq_ref0 Xx):(((eq a) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq a) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found eq_ref00:=(eq_ref0 Xx):(((eq a) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq a) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found conj:(forall (A:Prop) (B:Prop), (A->(B->((and A) B))))
% Instantiate: b:=(forall (A:Prop) (B:Prop), (A->(B->((and A) B)))):Prop
% Found conj as proof of b
% Found conj as proof of a0
% Found eq_ref00:=(eq_ref0 Xz):(((eq a) Xz) Xz)
% Found (eq_ref0 Xz) as proof of (((eq a) Xz) b)
% Found ((eq_ref a) Xz) as proof of (((eq a) Xz) b)
% Found ((eq_ref a) Xz) as proof of (((eq a) Xz) b)
% Found ((eq_ref a) Xz) as proof of (((eq a) Xz) b)
% Found x3:(P Xy)
% Instantiate: b:=Xy:a
% Found x3 as proof of (P0 b)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq a) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xy)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xy)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xy)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xy)
% Found eq_ref000:=(eq_ref00 P):((P Xx)->(P Xx))
% Found (eq_ref00 P) as proof of (P0 Xx)
% Found ((eq_ref0 Xx) P) as proof of (P0 Xx)
% Found (((eq_ref a) Xx) P) as proof of (P0 Xx)
% Found (((eq_ref a) Xx) P) as proof of (P0 Xx)
% Found eq_ref00:=(eq_ref0 Xx):(((eq a) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found x3:(P Xy)
% Instantiate: b:=Xy:a
% Found x3 as proof of (P0 b)
% Found eq_ref00:=(eq_ref0 a0):(((eq Prop) a0) a0)
% Found (eq_ref0 a0) as proof of (((eq Prop) a0) b)
% Found ((eq_ref Prop) a0) as proof of (((eq Prop) a0) b)
% Found ((eq_ref Prop) a0) as proof of (((eq Prop) a0) b)
% Found ((eq_ref Prop) a0) as proof of (((eq Prop) a0) b)
% Found eq_ref00:=(eq_ref0 b):(((eq Prop) b) b)
% Found (eq_ref0 b) as proof of (((eq Prop) b) (forall (Xx:a), ((cR Xx) Xx)))
% Found ((eq_ref Prop) b) as proof of (((eq Prop) b) (forall (Xx:a), ((cR Xx) Xx)))
% Found ((eq_ref Prop) b) as proof of (((eq Prop) b) (forall (Xx:a), ((cR Xx) Xx)))
% Found ((eq_ref Prop) b) as proof of (((eq Prop) b) (forall (Xx:a), ((cR Xx) Xx)))
% Found x1:(P Xx)
% Instantiate: b:=Xx:a
% Found x1 as proof of (P0 b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq a) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found eq_ref00:=(eq_ref0 b0):(((eq a) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq a) b0) b)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) b)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) b)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xy)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xy)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xy)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xy)
% Found eq_ref00:=(eq_ref0 a0):(((eq a) a0) a0)
% Found (eq_ref0 a0) as proof of (((eq a) a0) b)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) b)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) b)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) b)
% Found eq_ref000:=(eq_ref00 P):((P Xy)->(P Xy))
% Found (eq_ref00 P) as proof of (P0 Xy)
% Found ((eq_ref0 Xy) P) as proof of (P0 Xy)
% Found (((eq_ref a) Xy) P) as proof of (P0 Xy)
% Found (((eq_ref a) Xy) P) as proof of (P0 Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found eq_ref00:=(eq_ref0 a0):(((eq a) a0) a0)
% Found (eq_ref0 a0) as proof of (((eq a) a0) b)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) b)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) b)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) b)
% Found iff_refl:=(fun (A:Prop)=> ((((conj (A->A)) (A->A)) (fun (H:A)=> H)) (fun (H:A)=> H))):(forall (P:Prop), ((iff P) P))
% Instantiate: a0:=(forall (P:Prop), ((iff P) P)):Prop
% Found iff_refl as proof of a0
% Found eq_ref000:=(eq_ref00 P0):((P0 Xx)->(P0 Xx))
% Found (eq_ref00 P0) as proof of (P1 Xx)
% Found ((eq_ref0 Xx) P0) as proof of (P1 Xx)
% Found (((eq_ref a) Xx) P0) as proof of (P1 Xx)
% Found (((eq_ref a) Xx) P0) as proof of (P1 Xx)
% Found eq_ref000:=(eq_ref00 P0):((P0 Xx)->(P0 Xx))
% Found (eq_ref00 P0) as proof of (P1 Xx)
% Found ((eq_ref0 Xx) P0) as proof of (P1 Xx)
% Found (((eq_ref a) Xx) P0) as proof of (P1 Xx)
% Found (((eq_ref a) Xx) P0) as proof of (P1 Xx)
% Found eq_ref00:=(eq_ref0 Xx):(((eq a) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq a) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found eq_ref00:=(eq_ref0 b0):(((eq a) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq a) b0) Xx)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xx)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xx)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found eq_ref00:=(eq_ref0 Xx):(((eq a) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq a) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found conj:(forall (A:Prop) (B:Prop), (A->(B->((and A) B))))
% Instantiate: b:=(forall (A:Prop) (B:Prop), (A->(B->((and A) B)))):Prop
% Found conj as proof of b
% Found eq_ref00:=(eq_ref0 b0):(((eq a) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq a) b0) Xx)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xx)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xx)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found eq_ref000:=(eq_ref00 P):((P Xx)->(P Xx))
% Found (eq_ref00 P) as proof of (P0 Xx)
% Found ((eq_ref0 Xx) P) as proof of (P0 Xx)
% Found (((eq_ref a) Xx) P) as proof of (P0 Xx)
% Found (((eq_ref a) Xx) P) as proof of (P0 Xx)
% Found x1:(P Xy)
% Instantiate: b:=Xy:a
% Found x1 as proof of (P0 b)
% Found x1:(P Xx)
% Instantiate: a0:=Xx:a
% Found x1 as proof of (P0 a0)
% Found eq_ref00:=(eq_ref0 Xx):(((eq a) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xy)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xy)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xy)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xy)
% Found eq_ref00:=(eq_ref0 Xx):(((eq a) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found eq_ref000:=(eq_ref00 P):((P b)->(P b))
% Found (eq_ref00 P) as proof of (P0 b)
% Found ((eq_ref0 b) P) as proof of (P0 b)
% Found (((eq_ref a) b) P) as proof of (P0 b)
% Found (((eq_ref a) b) P) as proof of (P0 b)
% Found classic0:=(classic ((cR Xx) Xy)):((or ((cR Xx) Xy)) (not ((cR Xx) Xy)))
% Found (classic ((cR Xx) Xy)) as proof of ((or ((cR Xx) Xy)) a0)
% Found (classic ((cR Xx) Xy)) as proof of ((or ((cR Xx) Xy)) a0)
% Found (classic ((cR Xx) Xy)) as proof of ((or ((cR Xx) Xy)) a0)
% Found (classic ((cR Xx) Xy)) as proof of (P a0)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found eq_ref000:=(eq_ref00 P):((P Xx)->(P Xx))
% Found (eq_ref00 P) as proof of (P0 Xx)
% Found ((eq_ref0 Xx) P) as proof of (P0 Xx)
% Found (((eq_ref a) Xx) P) as proof of (P0 Xx)
% Found (((eq_ref a) Xx) P) as proof of (P0 Xx)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xy)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xy)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xy)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xy)
% Found eq_ref00:=(eq_ref0 Xx):(((eq a) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq a) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq a) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found classic0:=(classic ((cR Xx) Xy)):((or ((cR Xx) Xy)) (not ((cR Xx) Xy)))
% Found (classic ((cR Xx) Xy)) as proof of ((or ((cR Xx) Xy)) a0)
% Found (classic ((cR Xx) Xy)) as proof of ((or ((cR Xx) Xy)) a0)
% Found (classic ((cR Xx) Xy)) as proof of ((or ((cR Xx) Xy)) a0)
% Found (classic ((cR Xx) Xy)) as proof of (P a0)
% Found eq_ref000:=(eq_ref00 P0):((P0 Xx)->(P0 Xx))
% Found (eq_ref00 P0) as proof of (P1 Xx)
% Found ((eq_ref0 Xx) P0) as proof of (P1 Xx)
% Found (((eq_ref a) Xx) P0) as proof of (P1 Xx)
% Found (((eq_ref a) Xx) P0) as proof of (P1 Xx)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (P b)
% Found ((eq_ref a) b) as proof of (P b)
% Found ((eq_ref a) b) as proof of (P b)
% Found ((eq_ref a) b) as proof of (P b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found x30:(P Xy)
% Found (fun (x30:(P Xy))=> x30) as proof of (P Xy)
% Found (fun (x30:(P Xy))=> x30) as proof of (P0 Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xy)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xy)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xy)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xy)
% Found eq_ref00:=(eq_ref0 a0):(((eq a) a0) a0)
% Found (eq_ref0 a0) as proof of (((eq a) a0) b)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) b)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) b)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) b)
% Found eq_ref00:=(eq_ref0 a0):(((eq a) a0) a0)
% Found (eq_ref0 a0) as proof of (((eq a) a0) b)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) b)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) b)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) b)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found x1:((cR Xx) Xy)
% Instantiate: b:=Xy:a
% Found x1 as proof of (P b)
% Found x30:(P Xy)
% Found (fun (x30:(P Xy))=> x30) as proof of (P Xy)
% Found (fun (x30:(P Xy))=> x30) as proof of (P0 Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found x1:((cR Xx) Xy)
% Instantiate: b:=Xy:a
% Found (fun (x2:((cR Xy) Xz))=> x1) as proof of (P b)
% Found (fun (x1:((cR Xx) Xy)) (x2:((cR Xy) Xz))=> x1) as proof of (((cR Xy) Xz)->(P b))
% Found (fun (x1:((cR Xx) Xy)) (x2:((cR Xy) Xz))=> x1) as proof of (((cR Xx) Xy)->(((cR Xy) Xz)->(P b)))
% Found (and_rect00 (fun (x1:((cR Xx) Xy)) (x2:((cR Xy) Xz))=> x1)) as proof of (P b)
% Found ((and_rect0 (P b)) (fun (x1:((cR Xx) Xy)) (x2:((cR Xy) Xz))=> x1)) as proof of (P b)
% Found (((fun (P0:Type) (x1:(((cR Xx) Xy)->(((cR Xy) Xz)->P0)))=> (((((and_rect ((cR Xx) Xy)) ((cR Xy) Xz)) P0) x1) x0)) (P b)) (fun (x1:((cR Xx) Xy)) (x2:((cR Xy) Xz))=> x1)) as proof of (P b)
% Found (((fun (P0:Type) (x1:(((cR Xx) Xy)->(((cR Xy) Xz)->P0)))=> (((((and_rect ((cR Xx) Xy)) ((cR Xy) Xz)) P0) x1) x0)) (P b)) (fun (x1:((cR Xx) Xy)) (x2:((cR Xy) Xz))=> x1)) as proof of (P b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq a) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq a) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found x1:(P Xy)
% Instantiate: b:=Xy:a
% Found x1 as proof of (P0 b)
% Found eq_ref00:=(eq_ref0 b0):(((eq a) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq a) b0) Xx)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xx)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xx)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found eq_ref00:=(eq_ref0 Xx):(((eq a) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found eq_ref00:=(eq_ref0 b):(((eq Prop) b) b)
% Found (eq_ref0 b) as proof of (((eq Prop) b) b0)
% Found ((eq_ref Prop) b) as proof of (((eq Prop) b) b0)
% Found ((eq_ref Prop) b) as proof of (((eq Prop) b) b0)
% Found ((eq_ref Prop) b) as proof of (((eq Prop) b) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq a) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq a) b0) Xx)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xx)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xx)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found eq_ref00:=(eq_ref0 Xz):(((eq a) Xz) Xz)
% Found (eq_ref0 Xz) as proof of (((eq a) Xz) b)
% Found ((eq_ref a) Xz) as proof of (((eq a) Xz) b)
% Found ((eq_ref a) Xz) as proof of (((eq a) Xz) b)
% Found ((eq_ref a) Xz) as proof of (((eq a) Xz) b)
% Found eq_ref00:=(eq_ref0 b0):(((eq a) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq a) b0) Xx)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xx)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xx)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found iff_sym:=(fun (A:Prop) (B:Prop) (H:((iff A) B))=> ((((conj (B->A)) (A->B)) (((proj2 (A->B)) (B->A)) H)) (((proj1 (A->B)) (B->A)) H))):(forall (A:Prop) (B:Prop), (((iff A) B)->((iff B) A)))
% Instantiate: b:=(forall (A:Prop) (B:Prop), (((iff A) B)->((iff B) A))):Prop
% Found iff_sym as proof of b
% Found iff_sym as proof of a0
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found eq_ref00:=(eq_ref0 b0):(((eq a) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found eq_ref00:=(eq_ref0 Xx):(((eq a) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found eq_ref000:=(eq_ref00 P0):((P0 Xx)->(P0 Xx))
% Found (eq_ref00 P0) as proof of (P1 Xx)
% Found ((eq_ref0 Xx) P0) as proof of (P1 Xx)
% Found (((eq_ref a) Xx) P0) as proof of (P1 Xx)
% Found (((eq_ref a) Xx) P0) as proof of (P1 Xx)
% Found eq_ref00:=(eq_ref0 (forall (Xx:a) (Xy:a), ((or ((cR Xx) Xy)) ((cR Xy) Xx)))):(((eq Prop) (forall (Xx:a) (Xy:a), ((or ((cR Xx) Xy)) ((cR Xy) Xx)))) (forall (Xx:a) (Xy:a), ((or ((cR Xx) Xy)) ((cR Xy) Xx))))
% Found (eq_ref0 (forall (Xx:a) (Xy:a), ((or ((cR Xx) Xy)) ((cR Xy) Xx)))) as proof of (((eq Prop) (forall (Xx:a) (Xy:a), ((or ((cR Xx) Xy)) ((cR Xy) Xx)))) b0)
% Found ((eq_ref Prop) (forall (Xx:a) (Xy:a), ((or ((cR Xx) Xy)) ((cR Xy) Xx)))) as proof of (((eq Prop) (forall (Xx:a) (Xy:a), ((or ((cR Xx) Xy)) ((cR Xy) Xx)))) b0)
% Found ((eq_ref Prop) (forall (Xx:a) (Xy:a), ((or ((cR Xx) Xy)) ((cR Xy) Xx)))) as proof of (((eq Prop) (forall (Xx:a) (Xy:a), ((or ((cR Xx) Xy)) ((cR Xy) Xx)))) b0)
% Found ((eq_ref Prop) (forall (Xx:a) (Xy:a), ((or ((cR Xx) Xy)) ((cR Xy) Xx)))) as proof of (((eq Prop) (forall (Xx:a) (Xy:a), ((or ((cR Xx) Xy)) ((cR Xy) Xx)))) b0)
% Found iff_sym:=(fun (A:Prop) (B:Prop) (H:((iff A) B))=> ((((conj (B->A)) (A->B)) (((proj2 (A->B)) (B->A)) H)) (((proj1 (A->B)) (B->A)) H))):(forall (A:Prop) (B:Prop), (((iff A) B)->((iff B) A)))
% Instantiate: b:=(forall (A:Prop) (B:Prop), (((iff A) B)->((iff B) A))):Prop
% Found iff_sym as proof of b
% Found x3:(P Xx)
% Instantiate: b:=Xx:a
% Found x3 as proof of (P0 b)
% Found eq_ref00:=(eq_ref0 b0):(((eq a) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) b0)
% Found ((eq_ref a) b) as proof of (((eq a) b) b0)
% Found ((eq_ref a) b) as proof of (((eq a) b) b0)
% Found ((eq_ref a) b) as proof of (((eq a) b) b0)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found classic0:=(classic ((cR Xy) Xx)):((or ((cR Xy) Xx)) (not ((cR Xy) Xx)))
% Found (classic ((cR Xy) Xx)) as proof of ((or ((cR Xy) Xx)) a0)
% Found (classic ((cR Xy) Xx)) as proof of ((or ((cR Xy) Xx)) a0)
% Found (classic ((cR Xy) Xx)) as proof of ((or ((cR Xy) Xx)) a0)
% Found (classic ((cR Xy) Xx)) as proof of (P a0)
% Found x1:(P Xx)
% Instantiate: b:=Xx:a
% Found x1 as proof of (P0 b)
% Found iff_sym:=(fun (A:Prop) (B:Prop) (H:((iff A) B))=> ((((conj (B->A)) (A->B)) (((proj2 (A->B)) (B->A)) H)) (((proj1 (A->B)) (B->A)) H))):(forall (A:Prop) (B:Prop), (((iff A) B)->((iff B) A)))
% Instantiate: b0:=(forall (A:Prop) (B:Prop), (((iff A) B)->((iff B) A))):Prop
% Found iff_sym as proof of b0
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found classic0:=(classic ((cR Xy) Xx)):((or ((cR Xy) Xx)) (not ((cR Xy) Xx)))
% Found (classic ((cR Xy) Xx)) as proof of ((or ((cR Xy) Xx)) a0)
% Found (classic ((cR Xy) Xx)) as proof of ((or ((cR Xy) Xx)) a0)
% Found (classic ((cR Xy) Xx)) as proof of ((or ((cR Xy) Xx)) a0)
% Found (classic ((cR Xy) Xx)) as proof of (P a0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq a) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq a) b0) Xx)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xx)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xx)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xx)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (P1 b)
% Found ((eq_ref a) b) as proof of (P1 b)
% Found ((eq_ref a) b) as proof of (P1 b)
% Found ((eq_ref a) b) as proof of (P1 b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (P1 b)
% Found ((eq_ref a) b) as proof of (P1 b)
% Found ((eq_ref a) b) as proof of (P1 b)
% Found ((eq_ref a) b) as proof of (P1 b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found iff_sym:=(fun (A:Prop) (B:Prop) (H:((iff A) B))=> ((((conj (B->A)) (A->B)) (((proj2 (A->B)) (B->A)) H)) (((proj1 (A->B)) (B->A)) H))):(forall (A:Prop) (B:Prop), (((iff A) B)->((iff B) A)))
% Instantiate: b0:=(forall (A:Prop) (B:Prop), (((iff A) B)->((iff B) A))):Prop
% Found iff_sym as proof of b0
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq a) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq a) b0) Xx)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xx)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xx)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found iff_sym:=(fun (A:Prop) (B:Prop) (H:((iff A) B))=> ((((conj (B->A)) (A->B)) (((proj2 (A->B)) (B->A)) H)) (((proj1 (A->B)) (B->A)) H))):(forall (A:Prop) (B:Prop), (((iff A) B)->((iff B) A)))
% Instantiate: b0:=(forall (A:Prop) (B:Prop), (((iff A) B)->((iff B) A))):Prop
% Found iff_sym as proof of b0
% Found eq_ref00:=(eq_ref0 (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy)))):(((eq Prop) (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy)))) (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy))))
% Found (eq_ref0 (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy)))) as proof of (((eq Prop) (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy)))) b0)
% Found ((eq_ref Prop) (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy)))) as proof of (((eq Prop) (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy)))) b0)
% Found ((eq_ref Prop) (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy)))) as proof of (((eq Prop) (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy)))) b0)
% Found ((eq_ref Prop) (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy)))) as proof of (((eq Prop) (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy)))) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq a) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq a) b0) Xx)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xx)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xx)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found x1:(P b)
% Found x1 as proof of (P0 Xx)
% Found eq_ref00:=(eq_ref0 (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy)))):(((eq Prop) (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy)))) (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy))))
% Found (eq_ref0 (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy)))) as proof of (((eq Prop) (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy)))) b0)
% Found ((eq_ref Prop) (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy)))) as proof of (((eq Prop) (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy)))) b0)
% Found ((eq_ref Prop) (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy)))) as proof of (((eq Prop) (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy)))) b0)
% Found ((eq_ref Prop) (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy)))) as proof of (((eq Prop) (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy)))) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq a) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq a) b0) Xx)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xx)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xx)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq a) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found eq_ref00:=(eq_ref0 Xx):(((eq a) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq a) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found eq_ref00:=(eq_ref0 Xx):(((eq a) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found x1:(P Xy)
% Instantiate: b:=Xy:a
% Found x1 as proof of (P0 b)
% Found eq_ref00:=(eq_ref0 b0):(((eq a) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq a) b0) Xx)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xx)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xx)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xx)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) b0)
% Found ((eq_ref a) b) as proof of (((eq a) b) b0)
% Found ((eq_ref a) b) as proof of (((eq a) b) b0)
% Found ((eq_ref a) b) as proof of (((eq a) b) b0)
% Found eq_ref000:=(eq_ref00 P):((P Xy)->(P Xy))
% Found (eq_ref00 P) as proof of (P0 Xy)
% Found ((eq_ref0 Xy) P) as proof of (P0 Xy)
% Found (((eq_ref a) Xy) P) as proof of (P0 Xy)
% Found (((eq_ref a) Xy) P) as proof of (P0 Xy)
% Found x1:(P1 Xy)
% Instantiate: b:=Xy:a
% Found x1 as proof of (P2 b)
% Found eq_ref000:=(eq_ref00 P):((P b)->(P b))
% Found (eq_ref00 P) as proof of (P0 b)
% Found ((eq_ref0 b) P) as proof of (P0 b)
% Found (((eq_ref a) b) P) as proof of (P0 b)
% Found (((eq_ref a) b) P) as proof of (P0 b)
% Found x1:(P1 Xy)
% Instantiate: b:=Xy:a
% Found x1 as proof of (P2 b)
% Found eq_ref000:=(eq_ref00 P):((P b)->(P b))
% Found (eq_ref00 P) as proof of (P0 b)
% Found ((eq_ref0 b) P) as proof of (P0 b)
% Found (((eq_ref a) b) P) as proof of (P0 b)
% Found (((eq_ref a) b) P) as proof of (P0 b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq a) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found x1:(P b)
% Instantiate: b0:=b:a
% Found x1 as proof of (P0 b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq a) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq a) b0) b)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) b)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) b)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found eq_ref000:=(eq_ref00 P):((P Xy)->(P Xy))
% Found (eq_ref00 P) as proof of (P0 Xy)
% Found ((eq_ref0 Xy) P) as proof of (P0 Xy)
% Found (((eq_ref a) Xy) P) as proof of (P0 Xy)
% Found (((eq_ref a) Xy) P) as proof of (P0 Xy)
% Found eq_ref00:=(eq_ref0 Xx):(((eq a) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq a) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found eta_expansion:=(fun (A:Type) (B:Type)=> ((eta_expansion_dep A) (fun (x1:A)=> B))):(forall (A:Type) (B:Type) (f:(A->B)), (((eq (A->B)) f) (fun (x:A)=> (f x))))
% Instantiate: b0:=(forall (A:Type) (B:Type) (f:(A->B)), (((eq (A->B)) f) (fun (x:A)=> (f x)))):Prop
% Found eta_expansion as proof of b0
% Found eq_ref00:=(eq_ref0 b0):(((eq a) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found eq_ref00:=(eq_ref0 Xx):(((eq a) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found eq_ref000:=(eq_ref00 P0):((P0 Xx)->(P0 Xx))
% Found (eq_ref00 P0) as proof of (P1 Xx)
% Found ((eq_ref0 Xx) P0) as proof of (P1 Xx)
% Found (((eq_ref a) Xx) P0) as proof of (P1 Xx)
% Found (((eq_ref a) Xx) P0) as proof of (P1 Xx)
% Found x1:(P Xy)
% Instantiate: a0:=Xy:a
% Found x1 as proof of (P0 a0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found eta_expansion:=(fun (A:Type) (B:Type)=> ((eta_expansion_dep A) (fun (x1:A)=> B))):(forall (A:Type) (B:Type) (f:(A->B)), (((eq (A->B)) f) (fun (x:A)=> (f x))))
% Instantiate: b0:=(forall (A:Type) (B:Type) (f:(A->B)), (((eq (A->B)) f) (fun (x:A)=> (f x)))):Prop
% Found eta_expansion as proof of b0
% Found x3:(P Xx)
% Instantiate: a0:=Xx:a
% Found x3 as proof of (P0 a0)
% Found eq_ref000:=(eq_ref00 P0):((P0 Xx)->(P0 Xx))
% Found (eq_ref00 P0) as proof of (P1 Xx)
% Found ((eq_ref0 Xx) P0) as proof of (P1 Xx)
% Found (((eq_ref a) Xx) P0) as proof of (P1 Xx)
% Found (((eq_ref a) Xx) P0) as proof of (P1 Xx)
% Found eq_ref00:=(eq_ref0 b0):(((eq a) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq a) b0) b)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) b)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) b)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found x1:(P Xx)
% Instantiate: a0:=Xx:a
% Found x1 as proof of (P0 a0)
% Found eq_ref000:=(eq_ref00 P1):((P1 Xy)->(P1 Xy))
% Found (eq_ref00 P1) as proof of (P2 Xy)
% Found ((eq_ref0 Xy) P1) as proof of (P2 Xy)
% Found (((eq_ref a) Xy) P1) as proof of (P2 Xy)
% Found (((eq_ref a) Xy) P1) as proof of (P2 Xy)
% Found eq_ref00:=(eq_ref0 Xx):(((eq a) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xy)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xy)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xy)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xy)
% Found eq_ref000:=(eq_ref00 P):((P Xy)->(P Xy))
% Found (eq_ref00 P) as proof of (P0 Xy)
% Found ((eq_ref0 Xy) P) as proof of (P0 Xy)
% Found (((eq_ref a) Xy) P) as proof of (P0 Xy)
% Found (((eq_ref a) Xy) P) as proof of (P0 Xy)
% Found eq_ref00:=(eq_ref0 Xx):(((eq a) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq a) Xx) b1)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b1)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b1)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b1)
% Found eq_ref00:=(eq_ref0 b1):(((eq a) b1) b1)
% Found (eq_ref0 b1) as proof of (((eq a) b1) Xy)
% Found ((eq_ref a) b1) as proof of (((eq a) b1) Xy)
% Found ((eq_ref a) b1) as proof of (((eq a) b1) Xy)
% Found ((eq_ref a) b1) as proof of (((eq a) b1) Xy)
% Found eq_ref00:=(eq_ref0 Xx):(((eq a) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq a) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found x10:(P Xy)
% Found (fun (x10:(P Xy))=> x10) as proof of (P Xy)
% Found (fun (x10:(P Xy))=> x10) as proof of (P0 Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found x10:(P Xy)
% Found (fun (x10:(P Xy))=> x10) as proof of (P Xy)
% Found (fun (x10:(P Xy))=> x10) as proof of (P0 Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq a) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq a) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found x30:(P Xx)
% Found (fun (x30:(P Xx))=> x30) as proof of (P Xx)
% Found (fun (x30:(P Xx))=> x30) as proof of (P0 Xx)
% Found eq_ref00:=(eq_ref0 Xx):(((eq a) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xy)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xy)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xy)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xy)
% Found eq_ref00:=(eq_ref0 Xx):(((eq a) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq a) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found eq_ref00:=(eq_ref0 b0):(((eq a) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq a) b0) Xx)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xx)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xx)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq a) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found eq_ref00:=(eq_ref0 Xx):(((eq a) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found eq_ref00:=(eq_ref0 a0):(((eq a) a0) a0)
% Found (eq_ref0 a0) as proof of (((eq a) a0) b)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) b)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) b)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) b)
% Found eq_ref00:=(eq_ref0 a0):(((eq a) a0) a0)
% Found (eq_ref0 a0) as proof of (((eq a) a0) b)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) b)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) b)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) b)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (P b)
% Found ((eq_ref a) b) as proof of (P b)
% Found ((eq_ref a) b) as proof of (P b)
% Found ((eq_ref a) b) as proof of (P b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xy)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xy)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xy)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xy)
% Found eq_ref00:=(eq_ref0 a0):(((eq a) a0) a0)
% Found (eq_ref0 a0) as proof of (((eq a) a0) b)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) b)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) b)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) b)
% Found eq_ref00:=(eq_ref0 a0):(((eq a) a0) a0)
% Found (eq_ref0 a0) as proof of (((eq a) a0) b)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) b)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) b)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) b)
% Found eq_ref000:=(eq_ref00 P0):((P0 Xx)->(P0 Xx))
% Found (eq_ref00 P0) as proof of (P1 Xx)
% Found ((eq_ref0 Xx) P0) as proof of (P1 Xx)
% Found (((eq_ref a) Xx) P0) as proof of (P1 Xx)
% Found (((eq_ref a) Xx) P0) as proof of (P1 Xx)
% Found eq_ref00:=(eq_ref0 b0):(((eq a) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq a) b0) b)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) b)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) b)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xy)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xy)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xy)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xy)
% Found eq_ref00:=(eq_ref0 a0):(((eq a) a0) a0)
% Found (eq_ref0 a0) as proof of (((eq a) a0) b)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) b)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) b)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) b)
% Found eq_ref00:=(eq_ref0 a0):(((eq a) a0) a0)
% Found (eq_ref0 a0) as proof of (((eq a) a0) b)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) b)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) b)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) b)
% Found eq_ref00:=(eq_ref0 (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy)))):(((eq Prop) (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy)))) (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy))))
% Found (eq_ref0 (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy)))) as proof of (((eq Prop) (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy)))) b0)
% Found ((eq_ref Prop) (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy)))) as proof of (((eq Prop) (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy)))) b0)
% Found ((eq_ref Prop) (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy)))) as proof of (((eq Prop) (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy)))) b0)
% Found ((eq_ref Prop) (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy)))) as proof of (((eq Prop) (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy)))) b0)
% Found eq_ref00:=(eq_ref0 (forall (Xx:a) (Xy:a), ((or ((cR Xx) Xy)) ((cR Xy) Xx)))):(((eq Prop) (forall (Xx:a) (Xy:a), ((or ((cR Xx) Xy)) ((cR Xy) Xx)))) (forall (Xx:a) (Xy:a), ((or ((cR Xx) Xy)) ((cR Xy) Xx))))
% Found (eq_ref0 (forall (Xx:a) (Xy:a), ((or ((cR Xx) Xy)) ((cR Xy) Xx)))) as proof of (((eq Prop) (forall (Xx:a) (Xy:a), ((or ((cR Xx) Xy)) ((cR Xy) Xx)))) b0)
% Found ((eq_ref Prop) (forall (Xx:a) (Xy:a), ((or ((cR Xx) Xy)) ((cR Xy) Xx)))) as proof of (((eq Prop) (forall (Xx:a) (Xy:a), ((or ((cR Xx) Xy)) ((cR Xy) Xx)))) b0)
% Found ((eq_ref Prop) (forall (Xx:a) (Xy:a), ((or ((cR Xx) Xy)) ((cR Xy) Xx)))) as proof of (((eq Prop) (forall (Xx:a) (Xy:a), ((or ((cR Xx) Xy)) ((cR Xy) Xx)))) b0)
% Found ((eq_ref Prop) (forall (Xx:a) (Xy:a), ((or ((cR Xx) Xy)) ((cR Xy) Xx)))) as proof of (((eq Prop) (forall (Xx:a) (Xy:a), ((or ((cR Xx) Xy)) ((cR Xy) Xx)))) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq a) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq a) b0) Xx)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xx)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xx)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq a) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq a) b0) Xx)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xx)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xx)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (P b)
% Found ((eq_ref a) b) as proof of (P b)
% Found ((eq_ref a) b) as proof of (P b)
% Found ((eq_ref a) b) as proof of (P b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq a) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq a) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found eq_ref00:=(eq_ref0 Xx):(((eq a) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq a) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found eq_ref000:=(eq_ref00 P0):((P0 Xy)->(P0 Xy))
% Found (eq_ref00 P0) as proof of (P1 Xy)
% Found ((eq_ref0 Xy) P0) as proof of (P1 Xy)
% Found (((eq_ref a) Xy) P0) as proof of (P1 Xy)
% Found (((eq_ref a) Xy) P0) as proof of (P1 Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found eq_ref00:=(eq_ref0 a0):(((eq a) a0) a0)
% Found (eq_ref0 a0) as proof of (((eq a) a0) b)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) b)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) b)
% Found ((eq_ref a) a0) as proof of (((eq a) a0) b)
% Found eq_ref000:=(eq_ref00 P1):((P1 Xx)->(P1 Xx))
% Found (eq_ref00 P1) as proof of (P2 Xx)
% Found ((eq_ref0 Xx) P1) as proof of (P2 Xx)
% Found (((eq_ref a) Xx) P1) as proof of (P2 Xx)
% Found (((eq_ref a) Xx) P1) as proof of (P2 Xx)
% Found eq_ref000:=(eq_ref00 P1):((P1 b)->(P1 b))
% Found (eq_ref00 P1) as proof of (P2 b)
% Found ((eq_ref0 b) P1) as proof of (P2 b)
% Found (((eq_ref a) b) P1) as proof of (P2 b)
% Found (((eq_ref a) b) P1) as proof of (P2 b)
% Found x3:(P Xy)
% Instantiate: b:=Xy:a
% Found x3 as proof of (P0 b)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found eq_ref00:=(eq_ref0 ((cR Xy) Xx)):(((eq Prop) ((cR Xy) Xx)) ((cR Xy) Xx))
% Found (eq_ref0 ((cR Xy) Xx)) as proof of (((eq Prop) ((cR Xy) Xx)) b0)
% Found ((eq_ref Prop) ((cR Xy) Xx)) as proof of (((eq Prop) ((cR Xy) Xx)) b0)
% Found ((eq_ref Prop) ((cR Xy) Xx)) as proof of (((eq Prop) ((cR Xy) Xx)) b0)
% Found ((eq_ref Prop) ((cR Xy) Xx)) as proof of (((eq Prop) ((cR Xy) Xx)) b0)
% Found eq_ref00:=(eq_ref0 Xx):(((eq a) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found x3:(P Xy)
% Instantiate: b:=Xy:a
% Found x3 as proof of (P0 b)
% Found eq_ref00:=(eq_ref0 b0):(((eq a) b0) b0)
% Found (eq_ref0 b0) as proof of (P b0)
% Found ((eq_ref a) b0) as proof of (P b0)
% Found ((eq_ref a) b0) as proof of (P b0)
% Found ((eq_ref a) b0) as proof of (P b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq a) b0) b0)
% Found (eq_ref0 b0) as proof of (P b0)
% Found ((eq_ref a) b0) as proof of (P b0)
% Found ((eq_ref a) b0) as proof of (P b0)
% Found ((eq_ref a) b0) as proof of (P b0)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq a) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq a) b0) b)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) b)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) b)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) b)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found eq_ref00:=(eq_ref0 (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy)))):(((eq Prop) (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy)))) (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy))))
% Found (eq_ref0 (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy)))) as proof of (((eq Prop) (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy)))) b0)
% Found ((eq_ref Prop) (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy)))) as proof of (((eq Prop) (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy)))) b0)
% Found ((eq_ref Prop) (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy)))) as proof of (((eq Prop) (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy)))) b0)
% Found ((eq_ref Prop) (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy)))) as proof of (((eq Prop) (forall (Xx:a) (Xy:a), (((and ((cR Xx) Xy)) ((cR Xy) Xx))->(((eq a) Xx) Xy)))) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq a) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq a) b0) Xx)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xx)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xx)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b0)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found eq_ref00:=(eq_ref0 (forall (Xx:a), ((cR Xx) Xx))):(((eq Prop) (forall (Xx:a), ((cR Xx) Xx))) (forall (Xx:a), ((cR Xx) Xx)))
% Found (eq_ref0 (forall (Xx:a), ((cR Xx) Xx))) as proof of (((eq Prop) (forall (Xx:a), ((cR Xx) Xx))) b0)
% Found ((eq_ref Prop) (forall (Xx:a), ((cR Xx) Xx))) as proof of (((eq Prop) (forall (Xx:a), ((cR Xx) Xx))) b0)
% Found ((eq_ref Prop) (forall (Xx:a), ((cR Xx) Xx))) as proof of (((eq Prop) (forall (Xx:a), ((cR Xx) Xx))) b0)
% Found ((eq_ref Prop) (forall (Xx:a), ((cR Xx) Xx))) as proof of (((eq Prop) (forall (Xx:a), ((cR Xx) Xx))) b0)
% Found eq_ref00:=(eq_ref0 Xx):(((eq a) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq a) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found eq_ref00:=(eq_ref0 (forall (Xx:a), ((cR Xx) Xx))):(((eq Prop) (forall (Xx:a), ((cR Xx) Xx))) (forall (Xx:a), ((cR Xx) Xx)))
% Found (eq_ref0 (forall (Xx:a), ((cR Xx) Xx))) as proof of (((eq Prop) (forall (Xx:a), ((cR Xx) Xx))) b0)
% Found ((eq_ref Prop) (forall (Xx:a), ((cR Xx) Xx))) as proof of (((eq Prop) (forall (Xx:a), ((cR Xx) Xx))) b0)
% Found ((eq_ref Prop) (forall (Xx:a), ((cR Xx) Xx))) as proof of (((eq Prop) (forall (Xx:a), ((cR Xx) Xx))) b0)
% Found ((eq_ref Prop) (forall (Xx:a), ((cR Xx) Xx))) as proof of (((eq Prop) (forall (Xx:a), ((cR Xx) Xx))) b0)
% Found eq_ref000:=(eq_ref00 P0):((P0 Xx)->(P0 Xx))
% Found (eq_ref00 P0) as proof of (P1 Xx)
% Found ((eq_ref0 Xx) P0) as proof of (P1 Xx)
% Found (((eq_ref a) Xx) P0) as proof of (P1 Xx)
% Found (((eq_ref a) Xx) P0) as proof of (P1 Xx)
% Found eq_ref00:=(eq_ref0 Xx):(((eq a) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b)
% Found eq_ref00:=(eq_ref0 b):(((eq Prop) b) b)
% Found (eq_ref0 b) as proof of (((eq Prop) b) b0)
% Found ((eq_ref Prop) b) as proof of (((eq Prop) b) b0)
% Found ((eq_ref Prop) b) as proof of (((eq Prop) b) b0)
% Found ((eq_ref Prop) b) as proof of (((eq Prop) b) b0)
% Found x10:(P1 Xy)
% Found (fun (x10:(P1 Xy))=> x10) as proof of (P1 Xy)
% Found (fun (x10:(P1 Xy))=> x10) as proof of (P2 Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found x10:(P1 Xy)
% Found (fun (x10:(P1 Xy))=> x10) as proof of (P1 Xy)
% Found (fun (x10:(P1 Xy))=> x10) as proof of (P2 Xy)
% Found eq_ref00:=(eq_ref0 b):(((eq a) b) b)
% Found (eq_ref0 b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found ((eq_ref a) b) as proof of (((eq a) b) Xx)
% Found eq_ref00:=(eq_ref0 Xy):(((eq a) Xy) Xy)
% Found (eq_ref0 Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found ((eq_ref a) Xy) as proof of (((eq a) Xy) b)
% Found eq_ref00:=(eq_ref0 Xx):(((eq a) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (P Xx)
% Found ((eq_ref a) Xx) as proof of (P Xx)
% Found ((eq_ref a) Xx) as proof of (P Xx)
% Found eq_ref00:=(eq_ref0 b0):(((eq a) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) Xy)
% Found eq_ref00:=(eq_ref0 Xx):(((eq a) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found ((eq_ref a) Xx) as proof of (((eq a) Xx) b0)
% Found eta_expansion:=(fun (A:Type) (B:Type)=> ((eta_expansion_dep A) (fun (x1:A)=> B))):(forall (A:Type) (B:Type) (f:(A->B)), (((eq (A->B)) f) (fun (x:A)=> (f x))))
% Instantiate: b0:=(forall (A:Type) (B:Type) (f:(A->B)), (((eq (A->B)) f) (fun (x:A)=> (f x)))):Prop
% Found eta_expansion as proof of b0
% Found eq_ref000:=(eq_ref00 P):((P b0)->(P b0))
% Found (eq_ref00 P) as proof of (P0 b0)
% Found ((eq_ref0 b0) P) as proof of (P0 b0)
% Found (((eq_ref a) b0) P) as proof of (P0 b0)
% Found (((eq_ref a) b0) P) as proof of (P0 b0)
% Found eq_ref00:=(eq_ref0 b0):(((eq a) b0) b0)
% Found (eq_ref0 b0) as proof of (((eq a) b0) b)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) b)
% Found ((eq_ref a) b0) as proof of (((eq a) b0) b)
% Found ((eq_ref a) b0) as pr
% EOF
%------------------------------------------------------------------------------