TSTP Solution File: SEV208^5 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SEV208^5 : TPTP v6.1.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n101.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:33:53 EDT 2014

% Result   : Timeout 300.04s
% Output   : None 
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----NO SOLUTION OUTPUT BY SYSTEM
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SEV208^5 : TPTP v6.1.0. Released v4.0.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n101.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 08:29:11 CDT 2014
% % CPUTime  : 300.04 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0xb76950>, <kernel.Type object at 0xb76c68>) of role type named a_type
% Using role type
% Declaring a:Type
% FOF formula (<kernel.Constant object at 0xf33200>, <kernel.Constant object at 0xb765f0>) of role type named z
% Using role type
% Declaring z:a
% FOF formula (<kernel.Constant object at 0xb76638>, <kernel.Constant object at 0xb765f0>) of role type named y
% Using role type
% Declaring y:a
% FOF formula (<kernel.Constant object at 0xb76950>, <kernel.DependentProduct object at 0xb76830>) of role type named cP
% Using role type
% Declaring cP:(a->(a->a))
% FOF formula (<kernel.Constant object at 0xb76a70>, <kernel.Constant object at 0xb76830>) of role type named w
% Using role type
% Declaring w:a
% FOF formula (<kernel.Constant object at 0xb76638>, <kernel.Constant object at 0xb76830>) of role type named x
% Using role type
% Declaring x:a
% FOF formula (<kernel.Constant object at 0xb76950>, <kernel.Constant object at 0xb76830>) of role type named c0
% Using role type
% Declaring c0:a
% FOF formula (((and (forall (R:(a->(a->(a->Prop)))), (((and True) (forall (Xa:a) (Xb:a) (Xc:a), (((or ((or ((and (((eq a) Xa) c0)) (((eq a) Xb) Xc))) ((and (((eq a) Xb) c0)) (((eq a) Xa) Xc)))) ((ex a) (fun (Xx1:a)=> ((ex a) (fun (Xx2:a)=> ((ex a) (fun (Xy1:a)=> ((ex a) (fun (Xy2:a)=> ((ex a) (fun (Xz1:a)=> ((ex a) (fun (Xz2:a)=> ((and ((and ((and ((and (((eq a) Xa) ((cP Xx1) Xx2))) (((eq a) Xb) ((cP Xy1) Xy2)))) (((eq a) Xc) ((cP Xz1) Xz2)))) (((R Xx1) Xy1) Xz1))) (((R Xx2) Xy2) Xz2)))))))))))))))->(((R Xa) Xb) Xc))))->(((R x) y) y)))) (forall (R:(a->(a->(a->Prop)))), (((and True) (forall (Xa:a) (Xb:a) (Xc:a), (((or ((or ((and (((eq a) Xa) c0)) (((eq a) Xb) Xc))) ((and (((eq a) Xb) c0)) (((eq a) Xa) Xc)))) ((ex a) (fun (Xx1:a)=> ((ex a) (fun (Xx2:a)=> ((ex a) (fun (Xy1:a)=> ((ex a) (fun (Xy2:a)=> ((ex a) (fun (Xz1:a)=> ((ex a) (fun (Xz2:a)=> ((and ((and ((and ((and (((eq a) Xa) ((cP Xx1) Xx2))) (((eq a) Xb) ((cP Xy1) Xy2)))) (((eq a) Xc) ((cP Xz1) Xz2)))) (((R Xx1) Xy1) Xz1))) (((R Xx2) Xy2) Xz2)))))))))))))))->(((R Xa) Xb) Xc))))->(((R w) z) z))))->(forall (R:(a->(a->(a->Prop)))), (((and True) (forall (Xa:a) (Xb:a) (Xc:a), (((or ((or ((and (((eq a) Xa) c0)) (((eq a) Xb) Xc))) ((and (((eq a) Xb) c0)) (((eq a) Xa) Xc)))) ((ex a) (fun (Xx1:a)=> ((ex a) (fun (Xx2:a)=> ((ex a) (fun (Xy1:a)=> ((ex a) (fun (Xy2:a)=> ((ex a) (fun (Xz1:a)=> ((ex a) (fun (Xz2:a)=> ((and ((and ((and ((and (((eq a) Xa) ((cP Xx1) Xx2))) (((eq a) Xb) ((cP Xy1) Xy2)))) (((eq a) Xc) ((cP Xz1) Xz2)))) (((R Xx1) Xy1) Xz1))) (((R Xx2) Xy2) Xz2)))))))))))))))->(((R Xa) Xb) Xc))))->(((R ((cP x) w)) ((cP y) z)) ((cP y) z))))) of role conjecture named cS_INCL_LEM1_pme
% Conjecture to prove = (((and (forall (R:(a->(a->(a->Prop)))), (((and True) (forall (Xa:a) (Xb:a) (Xc:a), (((or ((or ((and (((eq a) Xa) c0)) (((eq a) Xb) Xc))) ((and (((eq a) Xb) c0)) (((eq a) Xa) Xc)))) ((ex a) (fun (Xx1:a)=> ((ex a) (fun (Xx2:a)=> ((ex a) (fun (Xy1:a)=> ((ex a) (fun (Xy2:a)=> ((ex a) (fun (Xz1:a)=> ((ex a) (fun (Xz2:a)=> ((and ((and ((and ((and (((eq a) Xa) ((cP Xx1) Xx2))) (((eq a) Xb) ((cP Xy1) Xy2)))) (((eq a) Xc) ((cP Xz1) Xz2)))) (((R Xx1) Xy1) Xz1))) (((R Xx2) Xy2) Xz2)))))))))))))))->(((R Xa) Xb) Xc))))->(((R x) y) y)))) (forall (R:(a->(a->(a->Prop)))), (((and True) (forall (Xa:a) (Xb:a) (Xc:a), (((or ((or ((and (((eq a) Xa) c0)) (((eq a) Xb) Xc))) ((and (((eq a) Xb) c0)) (((eq a) Xa) Xc)))) ((ex a) (fun (Xx1:a)=> ((ex a) (fun (Xx2:a)=> ((ex a) (fun (Xy1:a)=> ((ex a) (fun (Xy2:a)=> ((ex a) (fun (Xz1:a)=> ((ex a) (fun (Xz2:a)=> ((and ((and ((and ((and (((eq a) Xa) ((cP Xx1) Xx2))) (((eq a) Xb) ((cP Xy1) Xy2)))) (((eq a) Xc) ((cP Xz1) Xz2)))) (((R Xx1) Xy1) Xz1))) (((R Xx2) Xy2) Xz2)))))))))))))))->(((R Xa) Xb) Xc))))->(((R w) z) z))))->(forall (R:(a->(a->(a->Prop)))), (((and True) (forall (Xa:a) (Xb:a) (Xc:a), (((or ((or ((and (((eq a) Xa) c0)) (((eq a) Xb) Xc))) ((and (((eq a) Xb) c0)) (((eq a) Xa) Xc)))) ((ex a) (fun (Xx1:a)=> ((ex a) (fun (Xx2:a)=> ((ex a) (fun (Xy1:a)=> ((ex a) (fun (Xy2:a)=> ((ex a) (fun (Xz1:a)=> ((ex a) (fun (Xz2:a)=> ((and ((and ((and ((and (((eq a) Xa) ((cP Xx1) Xx2))) (((eq a) Xb) ((cP Xy1) Xy2)))) (((eq a) Xc) ((cP Xz1) Xz2)))) (((R Xx1) Xy1) Xz1))) (((R Xx2) Xy2) Xz2)))))))))))))))->(((R Xa) Xb) Xc))))->(((R ((cP x) w)) ((cP y) z)) ((cP y) z))))):Prop
% We need to prove ['(((and (forall (R:(a->(a->(a->Prop)))), (((and True) (forall (Xa:a) (Xb:a) (Xc:a), (((or ((or ((and (((eq a) Xa) c0)) (((eq a) Xb) Xc))) ((and (((eq a) Xb) c0)) (((eq a) Xa) Xc)))) ((ex a) (fun (Xx1:a)=> ((ex a) (fun (Xx2:a)=> ((ex a) (fun (Xy1:a)=> ((ex a) (fun (Xy2:a)=> ((ex a) (fun (Xz1:a)=> ((ex a) (fun (Xz2:a)=> ((and ((and ((and ((and (((eq a) Xa) ((cP Xx1) Xx2))) (((eq a) Xb) ((cP Xy1) Xy2)))) (((eq a) Xc) ((cP Xz1) Xz2)))) (((R Xx1) Xy1) Xz1))) (((R Xx2) Xy2) Xz2)))))))))))))))->(((R Xa) Xb) Xc))))->(((R x) y) y)))) (forall (R:(a->(a->(a->Prop)))), (((and True) (forall (Xa:a) (Xb:a) (Xc:a), (((or ((or ((and (((eq a) Xa) c0)) (((eq a) Xb) Xc))) ((and (((eq a) Xb) c0)) (((eq a) Xa) Xc)))) ((ex a) (fun (Xx1:a)=> ((ex a) (fun (Xx2:a)=> ((ex a) (fun (Xy1:a)=> ((ex a) (fun (Xy2:a)=> ((ex a) (fun (Xz1:a)=> ((ex a) (fun (Xz2:a)=> ((and ((and ((and ((and (((eq a) Xa) ((cP Xx1) Xx2))) (((eq a) Xb) ((cP Xy1) Xy2)))) (((eq a) Xc) ((cP Xz1) Xz2)))) (((R Xx1) Xy1) Xz1))) (((R Xx2) Xy2) Xz2)))))))))))))))->(((R Xa) Xb) Xc))))->(((R w) z) z))))->(forall (R:(a->(a->(a->Prop)))), (((and True) (forall (Xa:a) (Xb:a) (Xc:a), (((or ((or ((and (((eq a) Xa) c0)) (((eq a) Xb) Xc))) ((and (((eq a) Xb) c0)) (((eq a) Xa) Xc)))) ((ex a) (fun (Xx1:a)=> ((ex a) (fun (Xx2:a)=> ((ex a) (fun (Xy1:a)=> ((ex a) (fun (Xy2:a)=> ((ex a) (fun (Xz1:a)=> ((ex a) (fun (Xz2:a)=> ((and ((and ((and ((and (((eq a) Xa) ((cP Xx1) Xx2))) (((eq a) Xb) ((cP Xy1) Xy2)))) (((eq a) Xc) ((cP Xz1) Xz2)))) (((R Xx1) Xy1) Xz1))) (((R Xx2) Xy2) Xz2)))))))))))))))->(((R Xa) Xb) Xc))))->(((R ((cP x) w)) ((cP y) z)) ((cP y) z)))))']
% Parameter a:Type.
% Parameter z:a.
% Parameter y:a.
% Parameter cP:(a->(a->a)).
% Parameter w:a.
% Parameter x:a.
% Parameter c0:a.
% Trying to prove (((and (forall (R:(a->(a->(a->Prop)))), (((and True) (forall (Xa:a) (Xb:a) (Xc:a), (((or ((or ((and (((eq a) Xa) c0)) (((eq a) Xb) Xc))) ((and (((eq a) Xb) c0)) (((eq a) Xa) Xc)))) ((ex a) (fun (Xx1:a)=> ((ex a) (fun (Xx2:a)=> ((ex a) (fun (Xy1:a)=> ((ex a) (fun (Xy2:a)=> ((ex a) (fun (Xz1:a)=> ((ex a) (fun (Xz2:a)=> ((and ((and ((and ((and (((eq a) Xa) ((cP Xx1) Xx2))) (((eq a) Xb) ((cP Xy1) Xy2)))) (((eq a) Xc) ((cP Xz1) Xz2)))) (((R Xx1) Xy1) Xz1))) (((R Xx2) Xy2) Xz2)))))))))))))))->(((R Xa) Xb) Xc))))->(((R x) y) y)))) (forall (R:(a->(a->(a->Prop)))), (((and True) (forall (Xa:a) (Xb:a) (Xc:a), (((or ((or ((and (((eq a) Xa) c0)) (((eq a) Xb) Xc))) ((and (((eq a) Xb) c0)) (((eq a) Xa) Xc)))) ((ex a) (fun (Xx1:a)=> ((ex a) (fun (Xx2:a)=> ((ex a) (fun (Xy1:a)=> ((ex a) (fun (Xy2:a)=> ((ex a) (fun (Xz1:a)=> ((ex a) (fun (Xz2:a)=> ((and ((and ((and ((and (((eq a) Xa) ((cP Xx1) Xx2))) (((eq a) Xb) ((cP Xy1) Xy2)))) (((eq a) Xc) ((cP Xz1) Xz2)))) (((R Xx1) Xy1) Xz1))) (((R Xx2) Xy2) Xz2)))))))))))))))->(((R Xa) Xb) Xc))))->(((R w) z) z))))->(forall (R:(a->(a->(a->Prop)))), (((and True) (forall (Xa:a) (Xb:a) (Xc:a), (((or ((or ((and (((eq a) Xa) c0)) (((eq a) Xb) Xc))) ((and (((eq a) Xb) c0)) (((eq a) Xa) Xc)))) ((ex a) (fun (Xx1:a)=> ((ex a) (fun (Xx2:a)=> ((ex a) (fun (Xy1:a)=> ((ex a) (fun (Xy2:a)=> ((ex a) (fun (Xz1:a)=> ((ex a) (fun (Xz2:a)=> ((and ((and ((and ((and (((eq a) Xa) ((cP Xx1) Xx2))) (((eq a) Xb) ((cP Xy1) Xy2)))) (((eq a) Xc) ((cP Xz1) Xz2)))) (((R Xx1) Xy1) Xz1))) (((R Xx2) Xy2) Xz2)))))))))))))))->(((R Xa) Xb) Xc))))->(((R ((cP x) w)) ((cP y) z)) ((cP y) z)))))
% Found I:True
% Found I as proof of True
% Found I:True
% Found I as proof of True
% Found I:True
% Found I as proof of True
% Found I:True
% Found I as proof of True
% Found I:True
% Found I as proof of True
% Found x01:True
% Found x01 as proof of True
% Found x03:True
% Found x03 as proof of True
% Found x03:True
% Found x03 as proof of True
% Found I:True
% Found I as proof of True
% Found I:True
% Found I as proof of True
% Found I:True
% EOF
%------------------------------------------------------------------------------