TSTP Solution File: SEV206^5 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SEV206^5 : TPTP v6.1.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n189.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:33:53 EDT 2014

% Result   : Timeout 300.04s
% Output   : None 
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----NO SOLUTION OUTPUT BY SYSTEM
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SEV206^5 : TPTP v6.1.0. Released v4.0.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n189.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 08:28:46 CDT 2014
% % CPUTime  : 300.04 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0x1979878>, <kernel.Type object at 0x1979cf8>) of role type named iS_type
% Using role type
% Declaring iS:Type
% FOF formula (<kernel.Constant object at 0x1d51170>, <kernel.Constant object at 0x1979950>) of role type named y
% Using role type
% Declaring y:iS
% FOF formula (<kernel.Constant object at 0x1979b00>, <kernel.Constant object at 0x1979950>) of role type named z
% Using role type
% Declaring z:iS
% FOF formula (<kernel.Constant object at 0x1979878>, <kernel.DependentProduct object at 0x19797e8>) of role type named cP
% Using role type
% Declaring cP:(iS->(iS->iS))
% FOF formula (<kernel.Constant object at 0x1979a28>, <kernel.Constant object at 0x19797e8>) of role type named x
% Using role type
% Declaring x:iS
% FOF formula (<kernel.Constant object at 0x1979b00>, <kernel.Constant object at 0x19797e8>) of role type named c0
% Using role type
% Declaring c0:iS
% FOF formula (((and ((and (forall (Xx0:iS) (Xy0:iS), (not (((eq iS) ((cP Xx0) Xy0)) c0)))) (forall (Xx0:iS) (Xy0:iS) (Xu:iS) (Xv:iS), ((((eq iS) ((cP Xx0) Xu)) ((cP Xy0) Xv))->((and (((eq iS) Xx0) Xy0)) (((eq iS) Xu) Xv)))))) (forall (X:(iS->Prop)), (((and (X c0)) (forall (Xx0:iS) (Xy0:iS), (((and (X Xx0)) (X Xy0))->(X ((cP Xx0) Xy0)))))->(forall (Xx0:iS), (X Xx0)))))->((forall (R:(iS->(iS->(iS->Prop)))), (((and True) (forall (Xa:iS) (Xb:iS) (Xc:iS), (((or ((or ((and (((eq iS) Xa) c0)) (((eq iS) Xb) Xc))) ((and (((eq iS) Xb) c0)) (((eq iS) Xa) Xc)))) ((ex iS) (fun (Xx1:iS)=> ((ex iS) (fun (Xx2:iS)=> ((ex iS) (fun (Xy1:iS)=> ((ex iS) (fun (Xy2:iS)=> ((ex iS) (fun (Xz1:iS)=> ((ex iS) (fun (Xz2:iS)=> ((and ((and ((and ((and (((eq iS) Xa) ((cP Xx1) Xx2))) (((eq iS) Xb) ((cP Xy1) Xy2)))) (((eq iS) Xc) ((cP Xz1) Xz2)))) (((R Xx1) Xy1) Xz1))) (((R Xx2) Xy2) Xz2)))))))))))))))->(((R Xa) Xb) Xc))))->(((R x) y) y)))->(forall (R:(iS->(iS->(iS->Prop)))), (((and True) (forall (Xa:iS) (Xb:iS) (Xc:iS), (((or ((or ((and (((eq iS) Xa) c0)) (((eq iS) Xb) Xc))) ((and (((eq iS) Xb) c0)) (((eq iS) Xa) Xc)))) ((ex iS) (fun (Xx1:iS)=> ((ex iS) (fun (Xx2:iS)=> ((ex iS) (fun (Xy1:iS)=> ((ex iS) (fun (Xy2:iS)=> ((ex iS) (fun (Xz1:iS)=> ((ex iS) (fun (Xz2:iS)=> ((and ((and ((and ((and (((eq iS) Xa) ((cP Xx1) Xx2))) (((eq iS) Xb) ((cP Xy1) Xy2)))) (((eq iS) Xc) ((cP Xz1) Xz2)))) (((R Xx1) Xy1) Xz1))) (((R Xx2) Xy2) Xz2)))))))))))))))->(((R Xa) Xb) Xc))))->(((R ((cP z) x)) ((cP z) y)) ((cP z) y)))))) of role conjecture named cS_INCL_LEM8_pme
% Conjecture to prove = (((and ((and (forall (Xx0:iS) (Xy0:iS), (not (((eq iS) ((cP Xx0) Xy0)) c0)))) (forall (Xx0:iS) (Xy0:iS) (Xu:iS) (Xv:iS), ((((eq iS) ((cP Xx0) Xu)) ((cP Xy0) Xv))->((and (((eq iS) Xx0) Xy0)) (((eq iS) Xu) Xv)))))) (forall (X:(iS->Prop)), (((and (X c0)) (forall (Xx0:iS) (Xy0:iS), (((and (X Xx0)) (X Xy0))->(X ((cP Xx0) Xy0)))))->(forall (Xx0:iS), (X Xx0)))))->((forall (R:(iS->(iS->(iS->Prop)))), (((and True) (forall (Xa:iS) (Xb:iS) (Xc:iS), (((or ((or ((and (((eq iS) Xa) c0)) (((eq iS) Xb) Xc))) ((and (((eq iS) Xb) c0)) (((eq iS) Xa) Xc)))) ((ex iS) (fun (Xx1:iS)=> ((ex iS) (fun (Xx2:iS)=> ((ex iS) (fun (Xy1:iS)=> ((ex iS) (fun (Xy2:iS)=> ((ex iS) (fun (Xz1:iS)=> ((ex iS) (fun (Xz2:iS)=> ((and ((and ((and ((and (((eq iS) Xa) ((cP Xx1) Xx2))) (((eq iS) Xb) ((cP Xy1) Xy2)))) (((eq iS) Xc) ((cP Xz1) Xz2)))) (((R Xx1) Xy1) Xz1))) (((R Xx2) Xy2) Xz2)))))))))))))))->(((R Xa) Xb) Xc))))->(((R x) y) y)))->(forall (R:(iS->(iS->(iS->Prop)))), (((and True) (forall (Xa:iS) (Xb:iS) (Xc:iS), (((or ((or ((and (((eq iS) Xa) c0)) (((eq iS) Xb) Xc))) ((and (((eq iS) Xb) c0)) (((eq iS) Xa) Xc)))) ((ex iS) (fun (Xx1:iS)=> ((ex iS) (fun (Xx2:iS)=> ((ex iS) (fun (Xy1:iS)=> ((ex iS) (fun (Xy2:iS)=> ((ex iS) (fun (Xz1:iS)=> ((ex iS) (fun (Xz2:iS)=> ((and ((and ((and ((and (((eq iS) Xa) ((cP Xx1) Xx2))) (((eq iS) Xb) ((cP Xy1) Xy2)))) (((eq iS) Xc) ((cP Xz1) Xz2)))) (((R Xx1) Xy1) Xz1))) (((R Xx2) Xy2) Xz2)))))))))))))))->(((R Xa) Xb) Xc))))->(((R ((cP z) x)) ((cP z) y)) ((cP z) y)))))):Prop
% We need to prove ['(((and ((and (forall (Xx0:iS) (Xy0:iS), (not (((eq iS) ((cP Xx0) Xy0)) c0)))) (forall (Xx0:iS) (Xy0:iS) (Xu:iS) (Xv:iS), ((((eq iS) ((cP Xx0) Xu)) ((cP Xy0) Xv))->((and (((eq iS) Xx0) Xy0)) (((eq iS) Xu) Xv)))))) (forall (X:(iS->Prop)), (((and (X c0)) (forall (Xx0:iS) (Xy0:iS), (((and (X Xx0)) (X Xy0))->(X ((cP Xx0) Xy0)))))->(forall (Xx0:iS), (X Xx0)))))->((forall (R:(iS->(iS->(iS->Prop)))), (((and True) (forall (Xa:iS) (Xb:iS) (Xc:iS), (((or ((or ((and (((eq iS) Xa) c0)) (((eq iS) Xb) Xc))) ((and (((eq iS) Xb) c0)) (((eq iS) Xa) Xc)))) ((ex iS) (fun (Xx1:iS)=> ((ex iS) (fun (Xx2:iS)=> ((ex iS) (fun (Xy1:iS)=> ((ex iS) (fun (Xy2:iS)=> ((ex iS) (fun (Xz1:iS)=> ((ex iS) (fun (Xz2:iS)=> ((and ((and ((and ((and (((eq iS) Xa) ((cP Xx1) Xx2))) (((eq iS) Xb) ((cP Xy1) Xy2)))) (((eq iS) Xc) ((cP Xz1) Xz2)))) (((R Xx1) Xy1) Xz1))) (((R Xx2) Xy2) Xz2)))))))))))))))->(((R Xa) Xb) Xc))))->(((R x) y) y)))->(forall (R:(iS->(iS->(iS->Prop)))), (((and True) (forall (Xa:iS) (Xb:iS) (Xc:iS), (((or ((or ((and (((eq iS) Xa) c0)) (((eq iS) Xb) Xc))) ((and (((eq iS) Xb) c0)) (((eq iS) Xa) Xc)))) ((ex iS) (fun (Xx1:iS)=> ((ex iS) (fun (Xx2:iS)=> ((ex iS) (fun (Xy1:iS)=> ((ex iS) (fun (Xy2:iS)=> ((ex iS) (fun (Xz1:iS)=> ((ex iS) (fun (Xz2:iS)=> ((and ((and ((and ((and (((eq iS) Xa) ((cP Xx1) Xx2))) (((eq iS) Xb) ((cP Xy1) Xy2)))) (((eq iS) Xc) ((cP Xz1) Xz2)))) (((R Xx1) Xy1) Xz1))) (((R Xx2) Xy2) Xz2)))))))))))))))->(((R Xa) Xb) Xc))))->(((R ((cP z) x)) ((cP z) y)) ((cP z) y))))))']
% Parameter iS:Type.
% Parameter y:iS.
% Parameter z:iS.
% Parameter cP:(iS->(iS->iS)).
% Parameter x:iS.
% Parameter c0:iS.
% Trying to prove (((and ((and (forall (Xx0:iS) (Xy0:iS), (not (((eq iS) ((cP Xx0) Xy0)) c0)))) (forall (Xx0:iS) (Xy0:iS) (Xu:iS) (Xv:iS), ((((eq iS) ((cP Xx0) Xu)) ((cP Xy0) Xv))->((and (((eq iS) Xx0) Xy0)) (((eq iS) Xu) Xv)))))) (forall (X:(iS->Prop)), (((and (X c0)) (forall (Xx0:iS) (Xy0:iS), (((and (X Xx0)) (X Xy0))->(X ((cP Xx0) Xy0)))))->(forall (Xx0:iS), (X Xx0)))))->((forall (R:(iS->(iS->(iS->Prop)))), (((and True) (forall (Xa:iS) (Xb:iS) (Xc:iS), (((or ((or ((and (((eq iS) Xa) c0)) (((eq iS) Xb) Xc))) ((and (((eq iS) Xb) c0)) (((eq iS) Xa) Xc)))) ((ex iS) (fun (Xx1:iS)=> ((ex iS) (fun (Xx2:iS)=> ((ex iS) (fun (Xy1:iS)=> ((ex iS) (fun (Xy2:iS)=> ((ex iS) (fun (Xz1:iS)=> ((ex iS) (fun (Xz2:iS)=> ((and ((and ((and ((and (((eq iS) Xa) ((cP Xx1) Xx2))) (((eq iS) Xb) ((cP Xy1) Xy2)))) (((eq iS) Xc) ((cP Xz1) Xz2)))) (((R Xx1) Xy1) Xz1))) (((R Xx2) Xy2) Xz2)))))))))))))))->(((R Xa) Xb) Xc))))->(((R x) y) y)))->(forall (R:(iS->(iS->(iS->Prop)))), (((and True) (forall (Xa:iS) (Xb:iS) (Xc:iS), (((or ((or ((and (((eq iS) Xa) c0)) (((eq iS) Xb) Xc))) ((and (((eq iS) Xb) c0)) (((eq iS) Xa) Xc)))) ((ex iS) (fun (Xx1:iS)=> ((ex iS) (fun (Xx2:iS)=> ((ex iS) (fun (Xy1:iS)=> ((ex iS) (fun (Xy2:iS)=> ((ex iS) (fun (Xz1:iS)=> ((ex iS) (fun (Xz2:iS)=> ((and ((and ((and ((and (((eq iS) Xa) ((cP Xx1) Xx2))) (((eq iS) Xb) ((cP Xy1) Xy2)))) (((eq iS) Xc) ((cP Xz1) Xz2)))) (((R Xx1) Xy1) Xz1))) (((R Xx2) Xy2) Xz2)))))))))))))))->(((R Xa) Xb) Xc))))->(((R ((cP z) x)) ((cP z) y)) ((cP z) y))))))
% Found I:True
% Found I as proof of True
% Found I:True
% Found I as proof of True
% Found I:True
% Found I as proof of True
% Found I:True
% Found I as proof of True
% Found x02:True
% Found x02 as proof of True
% Found I:True
% Found I as proof of True
% Found I:True
% Found I as proof of True
% Found I:True
% Found I as proof of True
% Found I:True
% Found I as proof of True
% Found I:True
% Found I as proof of True
% Found I:True
% Found I as proof of True
% Found I:True
% Found I as proof of True
% Found I:True
% Found I as proof of True
% Found I:True
% Found I as proof of True
% Found I:True
% Found I as proof of True
% Found x02:True
% Found x02 as proof of True
% Found I:True
% Found I as proof of True
% Found I:True
% Found I as proof of True
% Found I:True
% Found I as proof of True
% Found I:True
% Found I as proof of True
% Found I:True
% Found I as proof of True
% Found I:True
% Found I as proof of True
% Found x1:True
% Found x1 as proof of True
% Found I:True
% Found I as proof of True
% Found x02:True
% Found x02 as proof of True
% Found I:True
% Found I as proof of True
% Found I:
% EOF
%------------------------------------------------------------------------------