TSTP Solution File: SEV116^5 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SEV116^5 : TPTP v6.1.0. Bugfixed v5.2.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n117.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:33:45 EDT 2014

% Result   : Theorem 0.52s
% Output   : Proof 0.52s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SEV116^5 : TPTP v6.1.0. Bugfixed v5.2.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n117.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 08:08:01 CDT 2014
% % CPUTime  : 0.52 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0x16b7dd0>, <kernel.DependentProduct object at 0x16b7998>) of role type named cS_type
% Using role type
% Declaring cS:((fofType->(fofType->Prop))->Prop)
% FOF formula (<kernel.Constant object at 0x188b8c0>, <kernel.Single object at 0x16b77e8>) of role type named x_type
% Using role type
% Declaring x:fofType
% FOF formula (<kernel.Constant object at 0x16b7998>, <kernel.Single object at 0x16b7d40>) of role type named y_type
% Using role type
% Declaring y:fofType
% FOF formula (<kernel.Constant object at 0x16b79e0>, <kernel.DependentProduct object at 0x16b7518>) of role type named cSTRANGE_HO_ABBR_type
% Using role type
% Declaring cSTRANGE_HO_ABBR:(((fofType->(fofType->Prop))->Prop)->(fofType->(fofType->Prop)))
% FOF formula (((eq (((fofType->(fofType->Prop))->Prop)->(fofType->(fofType->Prop)))) cSTRANGE_HO_ABBR) (fun (S:((fofType->(fofType->Prop))->Prop)) (Xx:fofType) (Xy:fofType)=> (forall (Xp:(fofType->(fofType->Prop))), (((and (S Xp)) ((Xp Xx) Xy))->((Xp Xy) Xx))))) of role definition named cSTRANGE_HO_ABBR_def
% A new definition: (((eq (((fofType->(fofType->Prop))->Prop)->(fofType->(fofType->Prop)))) cSTRANGE_HO_ABBR) (fun (S:((fofType->(fofType->Prop))->Prop)) (Xx:fofType) (Xy:fofType)=> (forall (Xp:(fofType->(fofType->Prop))), (((and (S Xp)) ((Xp Xx) Xy))->((Xp Xy) Xx)))))
% Defined: cSTRANGE_HO_ABBR:=(fun (S:((fofType->(fofType->Prop))->Prop)) (Xx:fofType) (Xy:fofType)=> (forall (Xp:(fofType->(fofType->Prop))), (((and (S Xp)) ((Xp Xx) Xy))->((Xp Xy) Xx))))
% FOF formula (((and (cS (cSTRANGE_HO_ABBR cS))) (((cSTRANGE_HO_ABBR cS) x) y))->(((cSTRANGE_HO_ABBR cS) y) x)) of role conjecture named cSTRANGE_HO_EXAMPLE
% Conjecture to prove = (((and (cS (cSTRANGE_HO_ABBR cS))) (((cSTRANGE_HO_ABBR cS) x) y))->(((cSTRANGE_HO_ABBR cS) y) x)):Prop
% We need to prove ['(((and (cS (cSTRANGE_HO_ABBR cS))) (((cSTRANGE_HO_ABBR cS) x) y))->(((cSTRANGE_HO_ABBR cS) y) x))']
% Parameter fofType:Type.
% Parameter cS:((fofType->(fofType->Prop))->Prop).
% Parameter x:fofType.
% Parameter y:fofType.
% Definition cSTRANGE_HO_ABBR:=(fun (S:((fofType->(fofType->Prop))->Prop)) (Xx:fofType) (Xy:fofType)=> (forall (Xp:(fofType->(fofType->Prop))), (((and (S Xp)) ((Xp Xx) Xy))->((Xp Xy) Xx)))):(((fofType->(fofType->Prop))->Prop)->(fofType->(fofType->Prop))).
% Trying to prove (((and (cS (cSTRANGE_HO_ABBR cS))) (((cSTRANGE_HO_ABBR cS) x) y))->(((cSTRANGE_HO_ABBR cS) y) x))
% Found x0:((and (cS (cSTRANGE_HO_ABBR cS))) (((cSTRANGE_HO_ABBR cS) x) y))
% Found x0 as proof of ((and (cS (cSTRANGE_HO_ABBR cS))) (((cSTRANGE_HO_ABBR cS) x) y))
% Found (x010 x0) as proof of (((cSTRANGE_HO_ABBR cS) y) x)
% Found ((x01 (cSTRANGE_HO_ABBR cS)) x0) as proof of (((cSTRANGE_HO_ABBR cS) y) x)
% Found (fun (x01:(((cSTRANGE_HO_ABBR cS) x) y))=> ((x01 (cSTRANGE_HO_ABBR cS)) x0)) as proof of (((cSTRANGE_HO_ABBR cS) y) x)
% Found (fun (x00:(cS (cSTRANGE_HO_ABBR cS))) (x01:(((cSTRANGE_HO_ABBR cS) x) y))=> ((x01 (cSTRANGE_HO_ABBR cS)) x0)) as proof of ((((cSTRANGE_HO_ABBR cS) x) y)->(((cSTRANGE_HO_ABBR cS) y) x))
% Found (fun (x00:(cS (cSTRANGE_HO_ABBR cS))) (x01:(((cSTRANGE_HO_ABBR cS) x) y))=> ((x01 (cSTRANGE_HO_ABBR cS)) x0)) as proof of ((cS (cSTRANGE_HO_ABBR cS))->((((cSTRANGE_HO_ABBR cS) x) y)->(((cSTRANGE_HO_ABBR cS) y) x)))
% Found (and_rect00 (fun (x00:(cS (cSTRANGE_HO_ABBR cS))) (x01:(((cSTRANGE_HO_ABBR cS) x) y))=> ((x01 (cSTRANGE_HO_ABBR cS)) x0))) as proof of (((cSTRANGE_HO_ABBR cS) y) x)
% Found ((and_rect0 (((cSTRANGE_HO_ABBR cS) y) x)) (fun (x00:(cS (cSTRANGE_HO_ABBR cS))) (x01:(((cSTRANGE_HO_ABBR cS) x) y))=> ((x01 (cSTRANGE_HO_ABBR cS)) x0))) as proof of (((cSTRANGE_HO_ABBR cS) y) x)
% Found (((fun (P:Type) (x1:((cS (cSTRANGE_HO_ABBR cS))->((((cSTRANGE_HO_ABBR cS) x) y)->P)))=> (((((and_rect (cS (cSTRANGE_HO_ABBR cS))) (((cSTRANGE_HO_ABBR cS) x) y)) P) x1) x0)) (((cSTRANGE_HO_ABBR cS) y) x)) (fun (x00:(cS (cSTRANGE_HO_ABBR cS))) (x01:(((cSTRANGE_HO_ABBR cS) x) y))=> ((x01 (cSTRANGE_HO_ABBR cS)) x0))) as proof of (((cSTRANGE_HO_ABBR cS) y) x)
% Found (fun (x0:((and (cS (cSTRANGE_HO_ABBR cS))) (((cSTRANGE_HO_ABBR cS) x) y)))=> (((fun (P:Type) (x1:((cS (cSTRANGE_HO_ABBR cS))->((((cSTRANGE_HO_ABBR cS) x) y)->P)))=> (((((and_rect (cS (cSTRANGE_HO_ABBR cS))) (((cSTRANGE_HO_ABBR cS) x) y)) P) x1) x0)) (((cSTRANGE_HO_ABBR cS) y) x)) (fun (x00:(cS (cSTRANGE_HO_ABBR cS))) (x01:(((cSTRANGE_HO_ABBR cS) x) y))=> ((x01 (cSTRANGE_HO_ABBR cS)) x0)))) as proof of (((cSTRANGE_HO_ABBR cS) y) x)
% Found (fun (x0:((and (cS (cSTRANGE_HO_ABBR cS))) (((cSTRANGE_HO_ABBR cS) x) y)))=> (((fun (P:Type) (x1:((cS (cSTRANGE_HO_ABBR cS))->((((cSTRANGE_HO_ABBR cS) x) y)->P)))=> (((((and_rect (cS (cSTRANGE_HO_ABBR cS))) (((cSTRANGE_HO_ABBR cS) x) y)) P) x1) x0)) (((cSTRANGE_HO_ABBR cS) y) x)) (fun (x00:(cS (cSTRANGE_HO_ABBR cS))) (x01:(((cSTRANGE_HO_ABBR cS) x) y))=> ((x01 (cSTRANGE_HO_ABBR cS)) x0)))) as proof of (((and (cS (cSTRANGE_HO_ABBR cS))) (((cSTRANGE_HO_ABBR cS) x) y))->(((cSTRANGE_HO_ABBR cS) y) x))
% Got proof (fun (x0:((and (cS (cSTRANGE_HO_ABBR cS))) (((cSTRANGE_HO_ABBR cS) x) y)))=> (((fun (P:Type) (x1:((cS (cSTRANGE_HO_ABBR cS))->((((cSTRANGE_HO_ABBR cS) x) y)->P)))=> (((((and_rect (cS (cSTRANGE_HO_ABBR cS))) (((cSTRANGE_HO_ABBR cS) x) y)) P) x1) x0)) (((cSTRANGE_HO_ABBR cS) y) x)) (fun (x00:(cS (cSTRANGE_HO_ABBR cS))) (x01:(((cSTRANGE_HO_ABBR cS) x) y))=> ((x01 (cSTRANGE_HO_ABBR cS)) x0))))
% Time elapsed = 0.202760s
% node=34 cost=109.000000 depth=10
% ::::::::::::::::::::::
% % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% % SZS output start Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% (fun (x0:((and (cS (cSTRANGE_HO_ABBR cS))) (((cSTRANGE_HO_ABBR cS) x) y)))=> (((fun (P:Type) (x1:((cS (cSTRANGE_HO_ABBR cS))->((((cSTRANGE_HO_ABBR cS) x) y)->P)))=> (((((and_rect (cS (cSTRANGE_HO_ABBR cS))) (((cSTRANGE_HO_ABBR cS) x) y)) P) x1) x0)) (((cSTRANGE_HO_ABBR cS) y) x)) (fun (x00:(cS (cSTRANGE_HO_ABBR cS))) (x01:(((cSTRANGE_HO_ABBR cS) x) y))=> ((x01 (cSTRANGE_HO_ABBR cS)) x0))))
% % SZS output end Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% EOF
%------------------------------------------------------------------------------