TSTP Solution File: SEU956^5 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SEU956^5 : TPTP v6.1.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n116.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:33:26 EDT 2014

% Result   : Theorem 1.87s
% Output   : Proof 1.87s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SEU956^5 : TPTP v6.1.0. Released v4.0.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n116.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 11:46:21 CDT 2014
% % CPUTime  : 1.87 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula ((forall (R:(fofType->Prop)) (S:(fofType->Prop)), ((((eq (fofType->Prop)) R) S)->(forall (X:fofType), ((S X)->(R X)))))->(forall (Xx:fofType) (Xy:fofType), ((((eq (fofType->Prop)) (fun (Y:fofType)=> (((eq fofType) Xx) Y))) (fun (Y:fofType)=> (((eq fofType) Xy) Y)))->(((eq fofType) Xx) Xy)))) of role conjecture named cTHM13_pme
% Conjecture to prove = ((forall (R:(fofType->Prop)) (S:(fofType->Prop)), ((((eq (fofType->Prop)) R) S)->(forall (X:fofType), ((S X)->(R X)))))->(forall (Xx:fofType) (Xy:fofType), ((((eq (fofType->Prop)) (fun (Y:fofType)=> (((eq fofType) Xx) Y))) (fun (Y:fofType)=> (((eq fofType) Xy) Y)))->(((eq fofType) Xx) Xy)))):Prop
% Parameter fofType_DUMMY:fofType.
% We need to prove ['((forall (R:(fofType->Prop)) (S:(fofType->Prop)), ((((eq (fofType->Prop)) R) S)->(forall (X:fofType), ((S X)->(R X)))))->(forall (Xx:fofType) (Xy:fofType), ((((eq (fofType->Prop)) (fun (Y:fofType)=> (((eq fofType) Xx) Y))) (fun (Y:fofType)=> (((eq fofType) Xy) Y)))->(((eq fofType) Xx) Xy))))']
% Parameter fofType:Type.
% Trying to prove ((forall (R:(fofType->Prop)) (S:(fofType->Prop)), ((((eq (fofType->Prop)) R) S)->(forall (X:fofType), ((S X)->(R X)))))->(forall (Xx:fofType) (Xy:fofType), ((((eq (fofType->Prop)) (fun (Y:fofType)=> (((eq fofType) Xx) Y))) (fun (Y:fofType)=> (((eq fofType) Xy) Y)))->(((eq fofType) Xx) Xy))))
% Found eq_ref00:=(eq_ref0 Xx):(((eq fofType) Xx) Xx)
% Found (eq_ref0 Xx) as proof of (((eq fofType) Xx) Xx)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) Xx)
% Found ((eq_ref fofType) Xx) as proof of (((eq fofType) Xx) Xx)
% Found (x00 ((eq_ref fofType) Xx)) as proof of (((eq fofType) Xy) Xx)
% Found ((x0 (fun (x2:(fofType->Prop))=> (x2 Xx))) ((eq_ref fofType) Xx)) as proof of (((eq fofType) Xy) Xx)
% Found ((x0 (fun (x2:(fofType->Prop))=> (x2 Xx))) ((eq_ref fofType) Xx)) as proof of (((eq fofType) Xy) Xx)
% Found (eq_sym000 ((x0 (fun (x2:(fofType->Prop))=> (x2 Xx))) ((eq_ref fofType) Xx))) as proof of (((eq fofType) Xx) Xy)
% Found ((eq_sym00 Xx) ((x0 (fun (x2:(fofType->Prop))=> (x2 Xx))) ((eq_ref fofType) Xx))) as proof of (((eq fofType) Xx) Xy)
% Found (((eq_sym0 Xy) Xx) ((x0 (fun (x2:(fofType->Prop))=> (x2 Xx))) ((eq_ref fofType) Xx))) as proof of (((eq fofType) Xx) Xy)
% Found ((((eq_sym fofType) Xy) Xx) ((x0 (fun (x2:(fofType->Prop))=> (x2 Xx))) ((eq_ref fofType) Xx))) as proof of (((eq fofType) Xx) Xy)
% Found (fun (x0:(((eq (fofType->Prop)) (fun (Y:fofType)=> (((eq fofType) Xx) Y))) (fun (Y:fofType)=> (((eq fofType) Xy) Y))))=> ((((eq_sym fofType) Xy) Xx) ((x0 (fun (x2:(fofType->Prop))=> (x2 Xx))) ((eq_ref fofType) Xx)))) as proof of (((eq fofType) Xx) Xy)
% Found (fun (Xy:fofType) (x0:(((eq (fofType->Prop)) (fun (Y:fofType)=> (((eq fofType) Xx) Y))) (fun (Y:fofType)=> (((eq fofType) Xy) Y))))=> ((((eq_sym fofType) Xy) Xx) ((x0 (fun (x2:(fofType->Prop))=> (x2 Xx))) ((eq_ref fofType) Xx)))) as proof of ((((eq (fofType->Prop)) (fun (Y:fofType)=> (((eq fofType) Xx) Y))) (fun (Y:fofType)=> (((eq fofType) Xy) Y)))->(((eq fofType) Xx) Xy))
% Found (fun (Xx:fofType) (Xy:fofType) (x0:(((eq (fofType->Prop)) (fun (Y:fofType)=> (((eq fofType) Xx) Y))) (fun (Y:fofType)=> (((eq fofType) Xy) Y))))=> ((((eq_sym fofType) Xy) Xx) ((x0 (fun (x2:(fofType->Prop))=> (x2 Xx))) ((eq_ref fofType) Xx)))) as proof of (forall (Xy:fofType), ((((eq (fofType->Prop)) (fun (Y:fofType)=> (((eq fofType) Xx) Y))) (fun (Y:fofType)=> (((eq fofType) Xy) Y)))->(((eq fofType) Xx) Xy)))
% Found (fun (x:(forall (R:(fofType->Prop)) (S:(fofType->Prop)), ((((eq (fofType->Prop)) R) S)->(forall (X:fofType), ((S X)->(R X)))))) (Xx:fofType) (Xy:fofType) (x0:(((eq (fofType->Prop)) (fun (Y:fofType)=> (((eq fofType) Xx) Y))) (fun (Y:fofType)=> (((eq fofType) Xy) Y))))=> ((((eq_sym fofType) Xy) Xx) ((x0 (fun (x2:(fofType->Prop))=> (x2 Xx))) ((eq_ref fofType) Xx)))) as proof of (forall (Xx:fofType) (Xy:fofType), ((((eq (fofType->Prop)) (fun (Y:fofType)=> (((eq fofType) Xx) Y))) (fun (Y:fofType)=> (((eq fofType) Xy) Y)))->(((eq fofType) Xx) Xy)))
% Found (fun (x:(forall (R:(fofType->Prop)) (S:(fofType->Prop)), ((((eq (fofType->Prop)) R) S)->(forall (X:fofType), ((S X)->(R X)))))) (Xx:fofType) (Xy:fofType) (x0:(((eq (fofType->Prop)) (fun (Y:fofType)=> (((eq fofType) Xx) Y))) (fun (Y:fofType)=> (((eq fofType) Xy) Y))))=> ((((eq_sym fofType) Xy) Xx) ((x0 (fun (x2:(fofType->Prop))=> (x2 Xx))) ((eq_ref fofType) Xx)))) as proof of ((forall (R:(fofType->Prop)) (S:(fofType->Prop)), ((((eq (fofType->Prop)) R) S)->(forall (X:fofType), ((S X)->(R X)))))->(forall (Xx:fofType) (Xy:fofType), ((((eq (fofType->Prop)) (fun (Y:fofType)=> (((eq fofType) Xx) Y))) (fun (Y:fofType)=> (((eq fofType) Xy) Y)))->(((eq fofType) Xx) Xy))))
% Got proof (fun (x:(forall (R:(fofType->Prop)) (S:(fofType->Prop)), ((((eq (fofType->Prop)) R) S)->(forall (X:fofType), ((S X)->(R X)))))) (Xx:fofType) (Xy:fofType) (x0:(((eq (fofType->Prop)) (fun (Y:fofType)=> (((eq fofType) Xx) Y))) (fun (Y:fofType)=> (((eq fofType) Xy) Y))))=> ((((eq_sym fofType) Xy) Xx) ((x0 (fun (x2:(fofType->Prop))=> (x2 Xx))) ((eq_ref fofType) Xx))))
% Time elapsed = 1.550903s
% node=279 cost=57.000000 depth=14
% ::::::::::::::::::::::
% % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% % SZS output start Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% (fun (x:(forall (R:(fofType->Prop)) (S:(fofType->Prop)), ((((eq (fofType->Prop)) R) S)->(forall (X:fofType), ((S X)->(R X)))))) (Xx:fofType) (Xy:fofType) (x0:(((eq (fofType->Prop)) (fun (Y:fofType)=> (((eq fofType) Xx) Y))) (fun (Y:fofType)=> (((eq fofType) Xy) Y))))=> ((((eq_sym fofType) Xy) Xx) ((x0 (fun (x2:(fofType->Prop))=> (x2 Xx))) ((eq_ref fofType) Xx))))
% % SZS output end Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% EOF
%------------------------------------------------------------------------------