TSTP Solution File: SEU815^2 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SEU815^2 : TPTP v6.1.0. Released v3.7.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n113.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:33:13 EDT 2014

% Result   : Timeout 300.03s
% Output   : None 
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----NO SOLUTION OUTPUT BY SYSTEM
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SEU815^2 : TPTP v6.1.0. Released v3.7.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n113.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 11:32:51 CDT 2014
% % CPUTime  : 300.03 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0x1a59f80>, <kernel.DependentProduct object at 0x1e8add0>) of role type named in_type
% Using role type
% Declaring in:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x1a59fc8>, <kernel.DependentProduct object at 0x1e8a170>) of role type named setunion_type
% Using role type
% Declaring setunion:(fofType->fofType)
% FOF formula (<kernel.Constant object at 0x1a59f80>, <kernel.Sort object at 0x191e368>) of role type named setunionI_type
% Using role type
% Declaring setunionI:Prop
% FOF formula (((eq Prop) setunionI) (forall (A:fofType) (Xx:fofType) (B:fofType), (((in Xx) B)->(((in B) A)->((in Xx) (setunion A)))))) of role definition named setunionI
% A new definition: (((eq Prop) setunionI) (forall (A:fofType) (Xx:fofType) (B:fofType), (((in Xx) B)->(((in B) A)->((in Xx) (setunion A))))))
% Defined: setunionI:=(forall (A:fofType) (Xx:fofType) (B:fofType), (((in Xx) B)->(((in B) A)->((in Xx) (setunion A)))))
% FOF formula (<kernel.Constant object at 0x1e8a050>, <kernel.Sort object at 0x191e368>) of role type named setunionE_type
% Using role type
% Declaring setunionE:Prop
% FOF formula (((eq Prop) setunionE) (forall (A:fofType) (Xx:fofType), (((in Xx) (setunion A))->(forall (Xphi:Prop), ((forall (B:fofType), (((in Xx) B)->(((in B) A)->Xphi)))->Xphi))))) of role definition named setunionE
% A new definition: (((eq Prop) setunionE) (forall (A:fofType) (Xx:fofType), (((in Xx) (setunion A))->(forall (Xphi:Prop), ((forall (B:fofType), (((in Xx) B)->(((in B) A)->Xphi)))->Xphi)))))
% Defined: setunionE:=(forall (A:fofType) (Xx:fofType), (((in Xx) (setunion A))->(forall (Xphi:Prop), ((forall (B:fofType), (((in Xx) B)->(((in B) A)->Xphi)))->Xphi))))
% FOF formula (<kernel.Constant object at 0x1e8a7a0>, <kernel.DependentProduct object at 0x1c3ad40>) of role type named subset_type
% Using role type
% Declaring subset:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x1e8a758>, <kernel.Sort object at 0x191e368>) of role type named subsetI1_type
% Using role type
% Declaring subsetI1:Prop
% FOF formula (((eq Prop) subsetI1) (forall (A:fofType) (B:fofType), ((forall (Xx:fofType), (((in Xx) A)->((in Xx) B)))->((subset A) B)))) of role definition named subsetI1
% A new definition: (((eq Prop) subsetI1) (forall (A:fofType) (B:fofType), ((forall (Xx:fofType), (((in Xx) A)->((in Xx) B)))->((subset A) B))))
% Defined: subsetI1:=(forall (A:fofType) (B:fofType), ((forall (Xx:fofType), (((in Xx) A)->((in Xx) B)))->((subset A) B)))
% FOF formula (<kernel.Constant object at 0x1e8aef0>, <kernel.DependentProduct object at 0x1c3ad88>) of role type named transitiveset_type
% Using role type
% Declaring transitiveset:(fofType->Prop)
% FOF formula (((eq (fofType->Prop)) transitiveset) (fun (A:fofType)=> (forall (X:fofType), (((in X) A)->((subset X) A))))) of role definition named transitiveset
% A new definition: (((eq (fofType->Prop)) transitiveset) (fun (A:fofType)=> (forall (X:fofType), (((in X) A)->((subset X) A)))))
% Defined: transitiveset:=(fun (A:fofType)=> (forall (X:fofType), (((in X) A)->((subset X) A))))
% FOF formula (<kernel.Constant object at 0x1e8aef0>, <kernel.Sort object at 0x191e368>) of role type named transitivesetOp2_type
% Using role type
% Declaring transitivesetOp2:Prop
% FOF formula (((eq Prop) transitivesetOp2) (forall (X:fofType), ((transitiveset X)->(forall (A:fofType) (Xx:fofType), (((in A) X)->(((in Xx) A)->((in Xx) X))))))) of role definition named transitivesetOp2
% A new definition: (((eq Prop) transitivesetOp2) (forall (X:fofType), ((transitiveset X)->(forall (A:fofType) (Xx:fofType), (((in A) X)->(((in Xx) A)->((in Xx) X)))))))
% Defined: transitivesetOp2:=(forall (X:fofType), ((transitiveset X)->(forall (A:fofType) (Xx:fofType), (((in A) X)->(((in Xx) A)->((in Xx) X))))))
% FOF formula (setunionI->(setunionE->(subsetI1->(transitivesetOp2->(forall (X:fofType), ((forall (Xx:fofType), (((in Xx) X)->(transitiveset Xx)))->(transitiveset (setunion X)))))))) of role conjecture named setunionTransitive
% Conjecture to prove = (setunionI->(setunionE->(subsetI1->(transitivesetOp2->(forall (X:fofType), ((forall (Xx:fofType), (((in Xx) X)->(transitiveset Xx)))->(transitiveset (setunion X)))))))):Prop
% Parameter fofType_DUMMY:fofType.
% We need to prove ['(setunionI->(setunionE->(subsetI1->(transitivesetOp2->(forall (X:fofType), ((forall (Xx:fofType), (((in Xx) X)->(transitiveset Xx)))->(transitiveset (setunion X))))))))']
% Parameter fofType:Type.
% Parameter in:(fofType->(fofType->Prop)).
% Parameter setunion:(fofType->fofType).
% Definition setunionI:=(forall (A:fofType) (Xx:fofType) (B:fofType), (((in Xx) B)->(((in B) A)->((in Xx) (setunion A))))):Prop.
% Definition setunionE:=(forall (A:fofType) (Xx:fofType), (((in Xx) (setunion A))->(forall (Xphi:Prop), ((forall (B:fofType), (((in Xx) B)->(((in B) A)->Xphi)))->Xphi)))):Prop.
% Parameter subset:(fofType->(fofType->Prop)).
% Definition subsetI1:=(forall (A:fofType) (B:fofType), ((forall (Xx:fofType), (((in Xx) A)->((in Xx) B)))->((subset A) B))):Prop.
% Definition transitiveset:=(fun (A:fofType)=> (forall (X:fofType), (((in X) A)->((subset X) A)))):(fofType->Prop).
% Definition transitivesetOp2:=(forall (X:fofType), ((transitiveset X)->(forall (A:fofType) (Xx:fofType), (((in A) X)->(((in Xx) A)->((in Xx) X)))))):Prop.
% Trying to prove (setunionI->(setunionE->(subsetI1->(transitivesetOp2->(forall (X:fofType), ((forall (Xx:fofType), (((in Xx) X)->(transitiveset Xx)))->(transitiveset (setunion X))))))))
% Found x4:((in X0) (setunion X))
% Found x4 as proof of ((in X0) (setunion X))
% Found x5:((in Xx) X0)
% Found x5 as proof of ((in Xx) X0)
% Found x4:((in X0) (setunion X))
% Found x4 as proof of ((in X0) (setunion X))
% Found x4:((in X0) (setunion X))
% Found x4 as proof of ((in X0) (setunion X))
% Found x4:((in X0) (setunion X))
% Found x4 as proof of ((in X0) (setunion X))
% Found x7:((in X00) X)
% Found x7 as proof of ((in X00) X)
% Found x7:((in X00) X)
% Found x7 as proof of ((in X00) X)
% Found x7:((in X00) X)
% Found x7 as proof of ((in X00) X)
% Found x7:((in X00) X)
% Found x7 as proof of ((in X00) X)
% Found x5:((in Xx) X0)
% Found x5 as proof of ((in Xx) X0)
% Found x4:((in X0) (setunion X))
% Instantiate: A:=X:fofType;Xx:=X0:fofType
% Found x4 as proof of ((in Xx) (setunion A))
% Found x4:((in X0) (setunion X))
% Instantiate: A:=X0:fofType;A0:=(setunion X):fofType
% Found x4 as proof of ((in A) A0)
% Found x4:((in X0) (setunion X))
% Instantiate: A:=X0:fofType;A0:=(setunion X):fofType
% Found x4 as proof of ((in A) A0)
% Found x4:((in X0) (setunion X))
% Found x4 as proof of ((in X0) (setunion X))
% Found x4:((in X0) (setunion X))
% Instantiate: A:=X:fofType;Xx0:=X0:fofType
% Found x4 as proof of ((in Xx0) (setunion A))
% Found x60:=(x6 Xx0):(forall (B:fofType), (((in Xx0) B)->(((in B) A)->((in Xx0) (setunion A)))))
% Found (x6 Xx0) as proof of (forall (B:fofType), (((in Xx0) B)->(((in B) A)->Xphi)))
% Found ((x A) Xx0) as proof of (forall (B:fofType), (((in Xx0) B)->(((in B) A)->Xphi)))
% Found ((x A) Xx0) as proof of (forall (B:fofType), (((in Xx0) B)->(((in B) A)->Xphi)))
% Found ((x A) Xx0) as proof of (forall (B:fofType), (((in Xx0) B)->(((in B) A)->Xphi)))
% Found ((x A) Xx0) as proof of (forall (B:fofType), (((in Xx0) B)->(((in B) A)->Xphi)))
% Found x4:((in X0) (setunion X))
% Found x4 as proof of ((in X0) (setunion X))
% Found x4:((in X0) (setunion X))
% Instantiate: A:=X:fofType;Xx:=X0:fofType
% Found x4 as proof of ((in Xx) (setunion A))
% Found x4:((in X0) (setunion X))
% Instantiate: A:=X:fofType;Xx:=X0:fofType
% Found x4 as proof of ((in Xx) (setunion A))
% Found x4:((in X0) (setunion X))
% Found x4 as proof of ((in X0) (setunion X))
% Found x4:((in X0) (setunion X))
% Found x4 as proof of ((in X0) (setunion X))
% Found x4:((in X0) (setunion X))
% Instantiate: A:=X:fofType;Xx0:=X0:fofType
% Found x4 as proof of ((in Xx0) (setunion A))
% Found x6:((in X0) (setunion X))
% Found x6 as proof of ((in X0) (setunion X))
% Found x4:((in X0) (setunion X))
% Instantiate: A:=X:fofType;Xx0:=X0:fofType
% Found x4 as proof of ((in Xx0) (setunion A))
% Found x4:((in X0) (setunion X))
% Found x4 as proof of ((in X0) (setunion X))
% Found x4:((in X0) (setunion X))
% Found x4 as proof of ((in X0) (setuni
% EOF
%------------------------------------------------------------------------------